WO2024125400A1 - 传输方法、装置、终端及网络侧设备 - Google Patents

传输方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2024125400A1
WO2024125400A1 PCT/CN2023/137383 CN2023137383W WO2024125400A1 WO 2024125400 A1 WO2024125400 A1 WO 2024125400A1 CN 2023137383 W CN2023137383 W CN 2023137383W WO 2024125400 A1 WO2024125400 A1 WO 2024125400A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
symbol
channel response
target
sending
Prior art date
Application number
PCT/CN2023/137383
Other languages
English (en)
French (fr)
Inventor
谭俊杰
黄伟
简荣灵
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024125400A1 publication Critical patent/WO2024125400A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless

Definitions

  • a transmission method comprising:
  • the second device receives the second signal or the fourth signal from a target device, the target device including the first device or the third device;
  • the first signal is used to determine a first channel response from the target device to the first device via the second device, the first channel response is used to determine the first symbol with the second channel response, the second channel response is a channel response from the target device to the first device via the second device determined by the first device or the third device according to a third signal used for channel estimation, and the third signal is a signal sent by the second device based on the fourth signal received from the target device.
  • the third device performs a second operation on the first device, where the second operation includes any one of the following:
  • a transmission device comprising:
  • a first receiving module configured to receive a first signal from a second device, wherein the first signal is a signal sent based on a second signal received from a target device, and the first signal carries a first symbol, and the first symbol is information to be transmitted by the second device, and the target device includes the first device or the third device;
  • the first execution module is configured to execute a first operation, where the first operation includes any one of the following:
  • the first channel response is used to determine the first symbol together with the second channel response
  • the second channel response is a channel response determined by the first device or the third device from the target device through the second device to the first device according to a third signal used for channel estimation
  • the third signal is a signal sent by the second device based on a fourth signal received from the target device.
  • a transmission device comprising: a second receiving module, configured to receive a second signal from a target device, wherein the target device comprises a first device or a third device;
  • a second sending module configured to send a first signal to the first device based on the second signal, where the first signal carries a first symbol, and the first symbol is information to be transmitted by the second device;
  • the first signal is used to determine a first channel response from the target device to the first device via the second device, the first channel response is used to determine the first symbol with the second channel response, the second channel response is a channel response from the target device to the first device via the second device determined by the first device or the third device according to a third signal used for channel estimation, and the third signal is a signal sent by the second device based on a fourth signal received from the target device.
  • a transmission device including: a third sending module, configured to send a second signal to a second device, the second signal being used to send a first signal to a first device, the first signal carrying a first symbol, the first symbol being information to be transmitted by the second device;
  • a second execution module is configured to execute a second operation on the first device, where the second operation includes any one of the following:
  • the first channel response is used to determine the first symbol together with the second channel response, the first symbol is the information to be transmitted by the second device, the second channel response is a channel response determined by the first device or the third device from the third device through the second device to the first device according to a third signal used for channel estimation, and the third signal is a signal sent by the second device based on a fourth signal received from the third device.
  • a terminal which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented, or the steps of the method described in the third aspect are implemented.
  • a terminal including a processor and a communication interface, wherein:
  • the communication interface is used to receive a first signal from a second device, the first signal is a signal sent based on a second signal received from a target device, and the first signal carries a first symbol, the first symbol is information to be transmitted by the second device, and the target device includes a first device or a third device;
  • the processor is used to perform a first operation, and the first operation includes any one of the following: determining a first channel response from the target device to the first device through the second device according to the first signal; sending a first signal to the third device A first message, wherein the first message is used to carry at least part of the content of the first signal, and the at least part of the content is used to determine a first channel response from the target device to the first device via the second device; wherein the first channel response is used to determine the first symbol together with a second channel response, the second channel response is a channel response determined by the first device or the third device from the target device to the first device via the second device according to a
  • the communication interface is used to receive a second signal from a target device, and the target device includes a first device or a third device; a first signal is sent to the first device based on the second signal, and the first signal carries a first symbol, and the first symbol is the information to be transmitted of the second device; wherein the first signal is used to determine a first channel response from the target device to the first device via the second device, and the first channel response is used to determine the first symbol with the second channel response, and the second channel response is a channel response determined by the first device or the third device from the target device to the first device via the second device according to a third signal used for channel estimation, and the third signal is a signal sent by the second device based on a fourth signal received from the target device.
  • the communication interface is used to send a second signal to the second device, the second signal is used to send a first signal to the first device, the first signal carries a first symbol, and the first symbol is information to be transmitted by the second device;
  • the processor is used to perform a second operation from the first device, and the second operation includes any one of the following: receiving a first channel response from the first device determined based on the first signal from the third device through the second device to the first device; receiving a first message from the first device, and determining a first channel response from the third device through the second device to the first device based on the first message; wherein the first channel response is used to determine the first symbol together with the second channel response, the first symbol is the information to be transmitted by the second device, the second channel response is a channel response determined by the first device or the third device from the third device through the second device to the first device based on the third signal used for channel estimation, and the third signal is a signal sent by the second device based on a fourth
  • a network side device which includes a processor and a memory, wherein the memory stores programs or instructions that can be run on the processor, and when the program or instructions are executed by the processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented, or the steps of the method described in the third aspect are implemented.
  • a network side device including a processor and a communication interface, wherein:
  • the communication interface is used to receive a first signal from a second device, the first signal is a signal sent based on a second signal received from a target device, and the first signal carries a first symbol, the first symbol is information to be transmitted by the second device, and the target device includes a first device or a third device;
  • the processor is used to perform a first operation, and the first operation includes any one of the following: determining a first channel response from the target device to the first device via the second device according to the first signal; sending a first message to the third device, the first message being used to carry at least part of the content of the first signal, and the at least part of the content
  • the device is used to determine a first channel response from the target device to the first device via the second device; wherein the first channel response is used to determine the first symbol together with a second channel response, the second channel response is a channel response from the target device to the first device via the second device determined by the first device or the third device according to a third
  • the communication interface is used to receive a second signal from a target device, and the target device includes a first device or a third device; based on the second signal, a first signal is sent to the first device, and the first signal carries a first symbol, and the first symbol is the information to be transmitted of the second device; wherein the first signal is used to determine a first channel response from the target device to the first device via the second device, and the first channel response is used to determine the first symbol with the second channel response, and the second channel response is a channel response determined by the first device or the third device from the target device to the first device via the second device according to a third signal used for channel estimation, and the third signal is a signal sent by the second device based on a fourth signal received from the target device.
  • the communication interface is used to send a second signal to the second device, the second signal is used to send a first signal to the first device, the first signal carries a first symbol, and the first symbol is information to be transmitted by the second device;
  • the processor is used to perform a second operation from the first device, and the second operation includes any one of the following: receiving a first channel response from the first device determined based on the first signal from the third device through the second device to the first device; receiving a first message from the first device, and determining a first channel response from the third device through the second device to the first device based on the first message; wherein the first channel response is used to determine the first symbol with the second channel response, the first symbol is the information to be transmitted by the second device, the second channel response is a channel response determined by the first device or the third device from the third device through the second device to the first device based on the third signal used for channel estimation, and the third signal is a signal sent by the second device based on a
  • a communication system comprising: a first device, a second device and a third device, wherein the first device can be used to execute the steps of the transmission method described in the first aspect, the second device can be used to execute the steps of the transmission method described in the second aspect, and the third device can be used to execute the steps of the transmission method described in the third aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented, or the steps of the method described in the third aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instructions to implement the steps of the method described in the first aspect, or the steps of the method described in the second aspect, or the steps of the method described in the third aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method according to the first aspect, or the steps of the method according to the second aspect, or the steps of the method according to the third aspect. step.
  • a first signal is received from a second device by a first device, the first signal is a signal sent based on a second signal or a fourth signal received from a target device, and the first signal carries a first symbol, the first symbol is information to be transmitted of the second device, and the target device includes the first device or the third device; the first device performs a first operation, the first operation includes any one of the following: determining a first channel response from the target device to the first device via the second device according to the first signal; sending a first message to the third device, the first message is used to carry at least part of the content of the first signal, and the at least part of the content is used to determine a first channel response from the target device to the first device via the second device; wherein the first channel response is used to determine the first symbol with a second channel response, the second channel response is a channel response from the target device to the first device via the second device determined by the first device or the third device according to a third signal used for channel estimation, and the
  • FIG1 is a schematic diagram of a network structure applicable to an embodiment of the present application.
  • FIG2 is an example diagram of a single-base transmission scenario applicable to an embodiment of the present application.
  • FIG3 is an example diagram of a dual-base transmission scenario applicable to an embodiment of the present application.
  • FIG4 is an example diagram of a conventional communication scenario
  • FIG5 is a diagram showing an example of a BSC communication scenario
  • FIG6 is a schematic diagram of a flow chart of a transmission method provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a flow chart of another transmission method provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a flow chart of another transmission method provided in an embodiment of the present application.
  • FIG9 is a structural diagram of a transmission device provided in an embodiment of the present application.
  • FIG10 is a structural diagram of another transmission device provided in an embodiment of the present application.
  • FIG11 is a structural diagram of another transmission device provided in an embodiment of the present application.
  • FIG12 is a structural diagram of a communication device provided in an embodiment of the present application.
  • FIG13 is a structural diagram of a terminal provided in an embodiment of the present application.
  • FIG. 14 is a structural diagram of a network-side device provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • instruction in the specification and claims of this application can be either an explicit instruction or an implicit instruction.
  • An explicit instruction can be understood as the sender explicitly informing the receiver of the operation to be performed or the request result in the instruction sent; an implicit instruction can be understood as the receiver making a judgment based on the instruction sent by the sender and determining the operation to be performed or the request result based on the judgment result.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 may be a mobile phone, a tablet computer, a laptop computer or a notebook computer, a personal digital assistant (PDA), a handheld computer, a netbook, an ultra-mobile personal computer (UMPC), a mobile Internet device (MID), an augmented reality (AR)/virtual reality (VR) device, a robot, a wearable device (Wearable Device), a vehicle user equipment (VUE), a pedestrian terminal (Pedestrian User Equipment, PUE), a smart home (a home appliance with wireless communication function, such as a refrigerator, a television, a washing machine or furniture, etc.), a game console, a personal computer (PC), a teller machine or a self-service machine and other terminal side devices, and the wearable device includes: a smart watch, a smart bracelet, a smart headset, a smart glasses, smart jewelry (
  • the network side device 12 may include access network equipment or core network equipment, wherein the access network equipment may also be referred to as wireless access network equipment, wireless access network (RAN), wireless access network function or wireless access network unit.
  • the access network equipment may include base stations, wireless local area networks (WLANs), wireless local area networks (WLANs), wireless access network functions, wireless access network units, ...
  • the base station may be referred to as a Node B, an evolved Node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home Node B, a home evolved Node B, a transmitting and receiving point (TRP) or some other suitable term in the field.
  • eNB evolved Node B
  • BTS base transceiver station
  • ESS extended service set
  • TRP transmitting and receiving point
  • the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiment of the present application, only the base station in the NR system is taken as an example for introduction, and the specific type of the base station is not limited.
  • Backscatter communication refers to the use of radio frequency signals from other devices or the environment to modulate signals in order to transmit its own information. It is a typical passive IoT device.
  • the basic components and main functions of the backscatter communication transmitter include:
  • Antenna unit used to receive RF signals and control commands, and also used to send modulated backscattered signals;
  • Energy harvesting module or power supply module This module is used for backscatter communication equipment to harvest radio frequency energy or other energy, including but not limited to solar energy, kinetic energy, mechanical energy, thermal energy, etc. In addition to the energy harvesting module, it may also include a battery power supply module. In this case, the backscatter communication equipment is a semi-passive device. The energy harvesting module or power supply module supplies power to all other modules in the device.
  • Microcontroller including control of baseband signal processing, energy storage or data scheduling status, switch switching, system synchronization, etc.;
  • Signal receiving module used to demodulate control commands or data sent by the backscatter communication receiving end or other network nodes;
  • Channel coding and modulation module performs channel coding and signal modulation under the control of the controller, and realizes modulation by selecting different load impedances under the control of the controller through a selection switch;
  • Memory or sensor module used to store device identity (ID) information, location information or sensor data, etc.
  • future backscatter communication transmitters can even integrate tunnel diode amplifier modules, low-noise amplifier modules, etc. to improve the receiving sensitivity and transmission power of the transmitter.
  • the backscatter communication receiving end such as the backscatter communication receiving end in the traditional Radio Frequency Identification (RFID) system
  • RFID Radio Frequency Identification
  • Antenna unit used to receive modulated backscattered signals
  • Backscatter signal detection module used to detect the backscatter signal sent by the transmitter, including amplitude shift keying (ASK) detection, phase shift keying (PSK) detection, frequency shift keying (FSK) or quadrature amplitude modulation (QAM) detection, etc.
  • ASK amplitude shift keying
  • PSK phase shift keying
  • FSK frequency shift keying
  • QAM quadrature amplitude modulation
  • Demodulation and decoding module demodulates and decodes the detected signal to restore the original information stream.
  • MCSs Monostatic Backscatter Communication System
  • the traditional RFID system is a typical MBCS.
  • the system includes a BSC transmitter. (such as a tag) and a reader.
  • the reader contains an RF source and a BSC receiver, wherein the RF source is used to generate an RF signal to power the BSC transmitter/Tag.
  • the BSC transmitter backscatters the modulated RF signal, and the BSC receiver in the reader receives the backscattered signal and then demodulates the signal. Since the RF source and the BSC receiver are in the same device, such as the reader here, it becomes a single-station backscatter communication system.
  • the MBCSs system since the RF signal sent from the BSC transmitter will undergo a double near-far effect caused by the signal attenuation of the round-trip signal, the signal energy attenuation is large. Therefore, the MBCS system is generally used for short-distance backscatter communications, such as traditional RFID applications.
  • BBCSs Bistatic Backscatter Communication Systems
  • the RF source, BSC transmitting equipment and BSC receiving equipment in the BBCS system are separated, as shown in Figure 3. Therefore, BBCS avoids the problem of large round-trip signal attenuation.
  • the performance of the BBCS communication system can be further improved by properly placing the RF source.
  • the ambient backscatter communication system (ABCSs) is also a type of dual-base backscatter communication, but the RF source in the BBCS system is a dedicated signal RF source.
  • the RF source in the ABCS system can be an available early RF source in the environment, such as: TV towers, cellular base stations, WiFi signals, Bluetooth signals, etc.
  • Multiple access is also called multi-user access. Its purpose is to allow multiple users to access a base station (or access point) for communication at the same time, while ensuring that the signals between users do not interfere with each other and that the signals sent by the users are successfully detected.
  • Common multiple access methods include frequency division multiple access (FDMA), time division multiple access (TDMA) and code division multiple access (CDMA).
  • RFID is a traditional backscatter communication system, whose main design goal is to identify the ID and read the data of BSC devices (i.e. tags) within the coverage of the reader. Since RFID was originally used in the automated inventory of large quantities of goods, the process of identifying tags and reading data is also called inventory.
  • the Tag After the reader sends a query (Query) command, the Tag responds (Reply). For example, if the Reply is RN16, the Tag generates a 16-bit random number and sends it to the reader. Then the reader sends the sequence to the Tag through the Acknowledge (ACK) command. After the Tag successfully verifies the RN16 in the ACK, it sends the subsequent data (such as PC/XPC, EPC, etc.) to the reader.
  • Query query
  • the Tag After the Tag sends a query (Query) command, the Tag generates a 16-bit random number and sends it to the reader. Then the reader sends the sequence to the Tag through the Acknowledge (ACK) command. After the Tag successfully verifies the RN16 in the ACK, it sends the subsequent data (such as PC/XPC, EPC, etc.) to the reader.
  • ACK Acknowledge
  • the reader sends a Select command to select the tag to be inventoried
  • the reader sends a Query command to start a round of inventory, and Query indicates a Q value
  • All tags generate a random integer in the range of [0, 2Q-1] as the initial value of the counter;
  • the reader sends an ACK command, including the RN16 and a 2-bit command field;
  • Tag receives ACK and checks whether the RN16 contained in the ACK is the RN16 sent previously;
  • the tag that receives the QueryRep command will reduce its own counter by 1;
  • the reader can send a QueryAdjust command to reconfigure a Q value
  • the tag that has received the QueryAdjust command and has not completed the inventory will randomly select an integer in the range of [0, 2 Q -1] as the counter;
  • the tag needs to repeatedly send RN16 until the RN16 is correctly and uniquely identified by the reader, and the reader then uses the RN16 to instruct the tag to exclusively use the channel to send data.
  • the transmission of RN16 itself is prone to failure due to resource conflicts, resulting in failure to seize subsequent data transmission opportunities.
  • data transmission opportunities are exclusive, resulting in a large time overhead for waiting for transmission opportunities in the case of multiple devices.
  • hi (t) represents the gain of the i-th path to the signal at time t.
  • the reflector only has an attenuation effect on the signal, so 0 ⁇ hi (t) ⁇ 1; ⁇ ( ⁇ ) is the impulse function. If the gain of each path to the signal is time-invariant or slowly varying, then c( ⁇ ; t) can be simplified to:
  • the reflector is replaced with a device capable of modulating signals, such as a BSC device.
  • a device capable of modulating signals such as a BSC device.
  • the BSC device can modulate its own transmission symbol x i onto the original h i by adjusting the reflection coefficient, that is,
  • hi corresponds to the gain value of the i-th path when the i-th BSC device does not modulate symbols (generally, the maximum reflection coefficient can be used, such as total reflection, that is, a reflection coefficient with an absolute value of 1 is selected).
  • each BSC device can be obtained by comparing the gain values corresponding to each path. Since each path can be distinguished by delay and has a corresponding relationship with the BSC device (in an ideal case, the path corresponds to the BSC device one by one), this multi-user access method can be called delay domain multiple access.
  • the process of obtaining the channel response c( ⁇ ) is the process of channel estimation.
  • Tx sends a training sequence known to Rx, and Rx compares the difference between the received sequence after passing through the channel and the original sequence to infer the specific value of the channel response.
  • * represents the linear convolution operation
  • the length of r d is n is a noise sequence with the same length as r c . Since Rx knows d, h can be obtained by performing deconvolution and denoising operations on r d (due to the existence of noise, only an estimated value of h can be obtained, but for the sake of ease of description, perfect estimation is assumed here).
  • the training sequence may have only one symbol, which can reduce overhead but also reduce estimation accuracy.
  • the signal sent by Tx carries the training sequence.
  • Tx the training sequence
  • Case 1 Tx only sends a continuous wave (CW), and then the BSC device modulates and backscatters the training sequence based on the CW.
  • the training sequence can be generated by the BSC device backscattering the CW instead of the Tx.
  • the signal that the BSC device needs to modulate and backscatter is actually the training sequence. The product of the sequence and the symbol to be transmitted.
  • Tx does not even need to send any information, but only needs to instruct the device to generate a training sequence according to certain rules.
  • the signal that the device needs to generate is the product of the training sequence and the symbol to be transmitted.
  • h′ [x 1 h 1 ,...,x 2 h 2 ,...,...,x I h I ];
  • the modulation symbols x 1 , ..., x I of the BSC device can be obtained by dividing h′ and the non-zero elements of h.
  • the BSC device can modulate a symbol, and after sending a training sequence, it needs to wait for the sequence to reach Rx through all paths before sending the next sequence (strictly speaking, after Tx sends, it needs to wait for ⁇ I - ⁇ 1 before starting the next transmission). This is to prevent the symbols modulated by the BSC device in the next sequence from aliasing the symbols modulated by other BSC devices in the previous sequence. To this end, there are the following two problems:
  • ⁇ I - ⁇ 1 may be much longer than the total duration of the sent training sequence
  • the BSC equipment can only modulate 1 symbol in each training sequence.
  • the training sequence segmentation is to divide the original training sequence of length L into multiple subsequences, which is equivalent to k training sequence symbols (subsequence length is k) corresponding to one BSC device modulation symbol.
  • the symbol modulated by the i-th BSC device i.e., the i-th BSC device
  • the m-th modulation corresponding to the m-th (i.e., the m-th) training subsequence of length 2
  • the relationship between rd and d1 , d2 , h and the modulation symbol can be expressed as:
  • RD (z) is the z-transform expression of rd
  • D (m) (z) is the z-transform expression of the training sequence used for the m-th modulation symbol.
  • H (m) (z) is the z-transform of the m-th modulation symbol of the BSC device together with its own channel.
  • a set of equations can be listed to obtain the symbols modulated by the BSC device.
  • the multiple access method based on the delay domain is an efficient multi-user communication method suitable for BSC. It utilizes the multipath naturally generated by BSC equipment (or communication equipment with equivalent effects of "reflection/scattering". Rx detects the modulation symbols of BSC equipment based on the correspondence between multipath delay and BSC equipment.
  • BSC equipment can use the same physical resources (time domain, frequency domain, code domain) for communication, which can improve the access capacity and spectrum efficiency of the system.
  • the transmission method includes:
  • Step 601 A first device receives a first signal from a second device, where the first signal is a signal sent based on a second signal or a fourth signal received from a target device, and the first signal carries a first symbol, where the first symbol is information to be transmitted by the second device, and the target device includes the first device or the third device.
  • the first channel response is used to determine the first symbol together with the second channel response
  • the second channel response is a channel response determined by the first device or the third device from the target device through the second device to the first device according to a third signal used for channel estimation
  • the third signal is a signal sent by the second device based on a fourth signal received from the target device.
  • the specific types of the above-mentioned first device, second device and third device can be set according to actual needs, for example, the first device is a base station, a reader/writer, a terminal device or a relay; the second device is a backscatter device, a terminal device or a relay; the third device is a base station, a reader/writer, a terminal device or a relay.
  • the target device is a first device; for a dual-base communication scenario, the target device is a third device.
  • the fourth signal and the second signal may be two independent signals, and the fourth signal may be an enhanced signal combined with the second signal, that is, the fourth signal includes part of the content of the second signal.
  • the first device or the third device may determine the second channel response based on the third signal, determine the first channel response based on the first signal, and finally determine the first symbol transmitted by the second device based on the first channel response and the second channel response.
  • the device that determines the channel response may be the same as or different from the device that determines the first symbol, and no further limitation is made here.
  • the first channel response and the second channel response may include a gain value and a delay.
  • a first signal is received from a second device by a first device, the first signal is a signal sent based on a second signal or a fourth signal received from a target device, and the first signal carries a first symbol, the first symbol is information to be transmitted of the second device, and the target device includes the first device or the third device; the first device performs a first operation, the first operation includes any one of the following: determining a first channel response from the target device to the first device via the second device according to the first signal; sending a first message to the third device, the first message is used to carry at least part of the content of the first signal, and the at least part of the content is used to determine a first channel response from the target device to the first device via the second device; wherein the first channel response is used to determine the first symbol with a second channel response, the second channel response is a channel response from the target device to the first device via the second device determined by the first device or the third device according to a third signal used for channel estimation, and the
  • the embodiments of the present application can increase the probability of successful access and reduce overhead such as latency and energy consumption.
  • the method further includes any one of the following:
  • the first device obtains the first symbol according to the first channel response and the second channel response;
  • the first device sends the first channel response to the third device.
  • the first device can send the second signal after completing the channel estimation, and the second device sends the first signal based on the second signal using the first configuration.
  • the fourth signal is an enhanced signal
  • the second device sends the first signal based on the fourth signal using the second configuration.
  • the first device obtains the first channel response based on the first signal, it obtains the information to be transmitted of the second device based on the first channel response and the second channel response, that is, obtains the first symbol.
  • the third device can send the second signal, and the second device sends the first signal based on the second signal using the first configuration.
  • the fourth signal is an enhanced signal
  • the second device sends the first signal based on the fourth signal using the second configuration.
  • the first device obtains the first channel response based on the first signal, it obtains the information to be transmitted of the second device based on the first channel response and the second channel response, that is, obtains the first symbol; or sends the first channel response to the third device, and the third device obtains the information to be transmitted of the second device based on the first channel response and the second channel response, that is, obtains the first symbol.
  • the first device also needs to send the second channel response to the third device.
  • the method further includes:
  • the first device receives, from the third device, the first symbol obtained by the third device based on the first channel response and the second channel response.
  • the third device may send the first symbol to the first device.
  • the method further includes any one of the following:
  • the first device receives the first channel response determined by the third device from the third device, and obtains the first symbol according to the first channel response and the second channel response;
  • the first device receives, from the third device, the first symbol determined by the third device.
  • the second channel response when the first channel response is determined by the third device, the second channel response may also be determined by the third device. At this time, the determination of the first symbol may be determined by the third device or by the first device.
  • the third device may directly obtain the first symbol based on the determined first channel response and second channel response, and send the first symbol to the first device; when the first symbol is determined by the first device, the third device may send the first channel response and the second channel response to the first device, so that the first device obtains the first symbol based on the seismometer channel response and the second channel response.
  • the method further includes:
  • the first device sends a second message to the third device, where the second message is used to carry the first symbol.
  • the step of determining, according to the first signal, from the target device through the second The first channel response of the device to the first device includes:
  • the first parameter is a parameter for receiving the first signal.
  • the first parameter includes at least one of the following:
  • the third signal sends the length or number of symbols of the third symbol
  • the third signal sends a symbol interval of a third symbol
  • the third signal sends a waveform of a third symbol
  • the third signal sends the center frequency of the third symbol
  • the third signal sends a bandwidth of a third symbol
  • the third symbol is used to generate the first signal.
  • the modulation method may include PSK, On-Off Keying (OOK) and FSK, etc.
  • the waveform of the third symbol may include a single-carrier square wave, a rolled-off cosine wave, a sinc wave, a sine wave, etc.; it may also include multi-carrier orthogonal frequency division multiplexing (OFDM), (Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing, DFT-S-OFDM), and orthogonal time-frequency space (OTFS).
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • OTFS orthogonal time-frequency space
  • the first configuration includes at least one of the following:
  • first target information where the first target information is used to autonomously generate a third symbol based on the first radio frequency signal in the second signal
  • Target characteristic information the target identification information is used to indicate that the first signal ends or the information to be transmitted is sent Finish;
  • the first part of the second signal is used to instruct the second device to start sending the first signal
  • the first part of the fourth signal is used to instruct the second device to start sending the third signal
  • the second part of the second signal is used to generate the third signal.
  • the first configuration may be indicated by the second signal or the fourth symbol, or may be agreed upon by a protocol, and no further limitation is made herein.
  • the first target information may include at least one of the following: the content of the fifth symbol, the interval of the fifth symbol, the modulation mode of the fifth symbol (such as OOK, ASK, FSK, etc.), and the mapping relationship between the fifth symbol and the reflection coefficient.
  • the modulation mode of the fifth symbol such as OOK, ASK, FSK, etc.
  • the first part of the second signal may include a second symbol for indicating that the second part of the second signal is sent. Since the second symbol is sent for all devices, some second devices (BSC devices) may complete the transmission of all information before the end of the second symbol. At this time, the BSC device may use an agreed symbol (or reflection coefficient) or an agreed symbol sequence (reflection coefficient sequence) as the terminator. The terminator may use a reflection coefficient that does not define a mapping relationship between the reflection coefficient and the symbol. In other words, the above-mentioned first target information is used to indicate the above-mentioned terminator.
  • BSC devices may use an agreed symbol (or reflection coefficient) or an agreed symbol sequence (reflection coefficient sequence) as the terminator.
  • the terminator may use a reflection coefficient that does not define a mapping relationship between the reflection coefficient and the symbol. In other words, the above-mentioned first target information is used to indicate the above-mentioned terminator.
  • the first parameter is indicated by the third device or agreed upon by protocol.
  • the third device before the third device sends the second signal, the third device sends a message to the first device to indicate the first parameter.
  • the third device indicates the first parameter through a second symbol.
  • the second signal and the fourth signal are independent signals.
  • the second signal is defined as follows: the second signal includes a first part and a second part, wherein the first part of the second signal includes a second symbol for indicating the start of sending the second part, and the second part of the second signal includes a third symbol or a first radio frequency signal for generating a portion of the content of the first signal, and the first radio frequency signal is used to modulate and send the third symbol.
  • the first radio frequency signal may be a continuous carrier.
  • the first signal satisfies at least one of the following:
  • the first signal is generated by the second device based on backscattering of a received second signal
  • the first signal is obtained by the second device performing signal amplification based on the received second signal
  • the first signal is obtained after the second device performs amplitude and/or phase adjustment on the received second signal
  • the first signal is generated by the second device decoding the second signal and regenerating the second signal based on the content obtained by decoding;
  • the first signal is obtained by the second device decoding the second signal, regenerating a signal based on content obtained by decoding, and adjusting the amplitude and/or phase of the regenerated signal.
  • the fourth signal satisfies any one of the following:
  • the fourth signal includes a first part and a second part, the first part includes a fourth symbol for indicating the start of sending the second part, and the second part of the fourth signal includes a fifth symbol or a second radio frequency signal for generating a third signal;
  • the fourth signal includes a first part, a second part and a third part, the first part of the fourth signal includes a second symbol for indicating the start of transmission, the second part of the fourth signal includes a fifth symbol or a second radio frequency signal for generating a third signal, and the third part includes a third symbol or a first radio frequency signal for generating partial content of the first signal.
  • the first part of the fourth signal, the second part of the fourth signal, and the third part of the fourth signal can be placed continuously.
  • the second device detects the first part of the fourth signal, it sends the third signal and the first signal successively.
  • the first part of the fourth signal and the second part of the fourth signal can be placed continuously while there is a first interval between the third part of the fourth signal.
  • the second device detects the end of the first part of the fourth signal, it sends the third signal, and then sends the first signal after the first interval.
  • the first interval can be an optional parameter of the first configuration.
  • the RF source and the receiving end are considered to be the same device, which can be a base station, a reader, a terminal device, a relay, etc., hereinafter referred to as the first device, and the BSC device is the second device.
  • the second device sends a third signal, and the first device detects the third signal to perform channel estimation. Specifically, the following process may be included:
  • the first device sends a fourth signal to the second device, the fourth signal comprising a first part and a second part, wherein the first part includes a fourth symbol and the second part includes a fifth symbol or a CW.
  • the second device After the second device detects that the first part (or fourth symbol) of the fourth signal ends, it sends a third signal in a second configuration, wherein the third signal is backscattered by the second part of the fourth signal.
  • the second configuration may be indicated by the fourth symbol or an agreed default value.
  • the first device receives the third signal, and obtains a second channel response (including a gain value and a delay) which is initiated from the first device, backscattered by the (each) second device, and reaches the first device.
  • a second channel response including a gain value and a delay
  • the second device sends the first signal, and the first device obtains the information sent by the second device based on the received third signal and the first signal.
  • the specific process includes the following:
  • the first device sends a second signal to the second device, the second signal including a first part and a second part, wherein the first part includes a second symbol and the second part includes a third symbol or a CW.
  • the second device After the second device detects that the first part (or the second symbol) of the second signal ends, the second device sends the first signal in the first configuration, wherein the first signal carries the information to be transmitted by the second device (i.e., the first symbol), and the second part (or the second symbol) of the second signal is received by the second device. Partial backscatter generation.
  • the first configuration may be indicated by a second symbol, or an agreed default value.
  • the second symbol is optional, and its function is to inform the second device when to start backscattering the signal, or to serve as a start symbol.
  • the second signal and the fourth signal are combined, that is, the enhanced fourth signal is used, and when the fourth symbol, the fifth symbol, and the third symbol are placed continuously, there is no second symbol.
  • the first device receives the first signal, and obtains a first channel response (including a gain value and a delay) which is initiated from the first device, backscattered by the (each) second device, and reaches the first device.
  • a first channel response including a gain value and a delay
  • the first device obtains the first symbol according to the second channel response and the first channel response, and completes the detection of the information sent by the second device.
  • the fourth signal and the second signal can be combined, that is, an enhanced fourth signal is sent, including a first part, a second part and a third part, which respectively contain a fourth symbol, a fifth symbol or CW, a third symbol or CW, and no second symbol, wherein the second configuration and/or the first configuration can be indicated by the fourth symbol, or an agreed default value.
  • the possible placements include the following two situations:
  • the first part, the second part and the third part are placed continuously.
  • the second device detects that the first part is finished, it sends the third signal and the first signal successively.
  • the first part and the second part are placed continuously, and there is a first interval between the second part and the third part.
  • the second device detects that the first part ends, it sends the third signal and then sends the first signal after the first interval.
  • the first interval is an optional parameter of the first configuration.
  • the RF source and the receiving end are considered to be different devices, which may be a base station, a reader/writer, a terminal device, and a relay, etc., hereinafter the receiving end is referred to as the first device, the RF source is referred to as the third device, and the BSC device is referred to as the second device.
  • the second device sends a third signal, and the first device detects the third signal to perform channel estimation. Specifically, the following process may be included:
  • the third device sends a fourth signal to the second device, wherein the fourth signal includes a first part and a second part, wherein the first part includes a fourth symbol and the second part includes a fifth symbol or a CW
  • the second device After the second device detects the end of the first part (or fourth symbol) of the fourth signal, it sends a third signal in a second configuration, where the third signal is generated by backscattering the second part of the fourth signal.
  • the second configuration can be indicated by the fourth symbol, or an agreed default value.
  • the second device sends the first signal, and the first or first device obtains the information sent by the first device according to the received third signal and the first signal.
  • the process includes the following:
  • the first signal is sent in a first configuration, wherein the first signal carries information to be transmitted by the second device (first symbol) and is generated by backscattering the second part of the second signal.
  • the first configuration may be indicated by the second symbol or an agreed default value.
  • the first device sends a message 5 to the third device, where the message 5 carries the first symbol;
  • Case 2 (the first device determines the first channel response, and the third device determines the first symbol): the first device obtains, based on the first parameter, the first channel response (including a gain value and a delay) that starts from the third device, passes through backscattering of the (each) second device, and reaches the first device; after obtaining the first channel response, the first device sends a message 7 to the third device, and the message 7 carries the first channel response; the third device obtains the first symbol based on the second channel response and the first channel response, and completes the detection of the information sent by the first device.
  • the first device obtains, based on the first parameter, the first channel response (including a gain value and a delay) that starts from the third device, passes through backscattering of the (each) second device, and reaches the first device; after obtaining the first channel response, the first device sends a message 7 to the third device, and the message 7 carries the first channel response; the third device obtains the first symbol based on
  • Case 3 (the first channel response and the first symbol are determined by the third device): the first device sends a message 9 to the third device, wherein the message 9 carries part or all of the content of the first signal; the third device obtains the first channel response (including a gain value and a delay) which starts from the third device, is backscattered by the (each) second device, and reaches the first device; the third device obtains the first symbol based on the second channel response and the first channel response, and completes the detection of the information sent by the first device.
  • the first device sends a message 9 to the third device, wherein the message 9 carries part or all of the content of the first signal
  • the third device obtains the first channel response (including a gain value and a delay) which starts from the third device, is backscattered by the (each) second device, and reaches the first device
  • the third device obtains the first symbol based on the second channel response and the first channel response, and completes the detection of the information sent by the first device.
  • the third device sends a message 10 to the first device, where the message 10 carries the first symbol.
  • the first device sends a message 12 to the third device, where the message 12 carries the first symbol.
  • first target information where the first target information is used to autonomously generate a third symbol based on the first radio frequency signal in the second signal
  • Target characteristic information the target identification information is used to indicate the end of the first signal or the end of sending the information to be transmitted;
  • the first part of the second signal is used to instruct the second device to start sending the first signal
  • the first part of the fourth signal is used to instruct the second device to start sending the third signal
  • the second part of the second signal is used to generate the third signal.
  • the second configuration may include at least one of the following:
  • the second target information is used to autonomously generate a fifth symbol according to a second radio frequency signal in the fourth signal
  • the second target signal is the second signal or the fourth signal, the second signal is used to send the first signal; the first part of the fourth signal is used to indicate the start of sending the second part of the fourth signal, the second part of the fourth signal is used to generate the third signal, and the second part of the fourth signal includes the fifth symbol or the second RF signal.
  • the above transmission method may be applied to initial access and data transmission procedures.
  • the corresponding functions can be achieved by flexibly using the steps in the above single-base and dual-base scenarios.
  • the following takes the single-base case as an example.
  • the first device instructs a qualified second device to send device identification (ID) information (such as RN16 for temporary identification of the device).
  • ID device identification
  • the first device may indicate the matching condition through the first part of the second signal/the fourth signal or by sending another message, such as a Select command;
  • the second device can divide the ID into multiple first symbols and send them to the first device through multiple "information transmission and detection", that is, multiple first signals.
  • the first device concatenates them and restores them into the ID of the second device.
  • the transmission method of the embodiment of the present application can allow multiple BSC devices to send RN16 at the same time without causing transmission failure due to signal collision. It can also save the BSC device waiting process (waiting counter is 0), ultimately greatly improving the probability of successful initial access, reducing latency and energy consumption.
  • Data transmission Based on the ID information of the second device that has been obtained, the first device can further instruct the device of interest to perform data transmission.
  • the first device may indicate the matching condition through the fourth signal/the first part of the second signal or by sending another message, such as a Select command; or directly indicate the second device ID (or ID set) to be subsequently scheduled.
  • the second device may divide the data to be transmitted into multiple first symbols (or sets) and send them to the first device through multiple "information transmission and detection", that is, multiple first signals.
  • the first device concatenates them and restores them into data sent by the second device.
  • the first device may use a similar step to obtain the device ID.
  • the second device is requested to report other information, such as the length of the data to be transmitted, the power level, etc., and based on this information, a suitable second device is scheduled to participate in the data transmission.
  • a second device with a similar amount of data can be selected to avoid long idle waiting times for some devices after the transmission is completed.
  • the transmission method provided in the embodiment of the present application can allow multiple BSC devices to send data simultaneously, greatly reducing the waiting time and lowering the access delay.
  • the second device may be a relay in addition to a BSC device.
  • the relay may include a direct forwarding relay and a regenerative forwarding relay.
  • the relay directly forwards the received signal after amplification. Therefore, if the amplification factor of the relay for the signal is ⁇ , the channel gain value from Tx to the relay is h 1 and the delay is ⁇ 1 , and the channel gain value from the relay to Rx is h 2 and the delay is ⁇ 2 , then, when the symbol is not modulated, the channel gain value of Tx-relay-Rx is ⁇ h 1 h 2 and the delay is ⁇ 1 + ⁇ 2 .
  • the relay when the signal sent by Tx reaches the relay, the relay can also achieve the same effect as the BSC device modulating the reflection coefficient by adjusting the amplitude and/or phase of the forwarded signal, modulating its own transmission symbol x onto the original ⁇ h 1 h 2 , and the delay of this path is fixed to ⁇ 1 + ⁇ 2 .
  • the relay decodes the received signal and regenerates the signal sent by Tx based on the decoded content. Therefore, when Rx receives the signal, its signal does not pass through the gain of the path from Tx to relay, but experiences the delay of this path. Similarly, if the amplification factor of the relay for the signal is ⁇ , the channel gain value from Tx to relay is h 1 and the delay is ⁇ 1 , and the channel gain value from relay to Rx is h 2 and the delay is ⁇ 2 , then, when the symbol is not modulated, the channel gain value of Tx-relay-Rx is ⁇ h 2 and the delay is ⁇ 1 + ⁇ 2
  • the relay decodes the received signal, regenerates the signal sent by Tx according to the decoded content, and then adjusts the amplitude and/or phase of the signal when sending, which can also achieve the same effect as the BSC device modulating the reflection coefficient, modulating its own transmission symbol x onto the original ⁇ h 2 , and the delay of this path is fixed to ⁇ 1 + ⁇ 2 .
  • the first configuration and the second configuration have the following differences:
  • Delete the reflection coefficient related parameters add the modulation symbol set, signal amplification factor and relay mode.
  • first target information where the first target information is used to autonomously generate a third symbol based on the first radio frequency signal in the second signal
  • Target characteristic information the target identification information is used to indicate the end of the first signal or the end of sending the information to be transmitted;
  • the first part of the second signal is used to instruct the second device to start sending the first signal
  • the first part of the fourth signal is used to instruct the second device to start sending the third signal
  • the second part of the second signal is used to generate the third signal.
  • the second configuration includes at least one of the following:
  • the second target information is used to autonomously generate a fifth symbol according to a second radio frequency signal in the fourth signal
  • silence parameter is used to determine whether to send the first message
  • the second target signal is the second signal or the fourth signal, the second signal is used to send the first signal; the first part of the fourth signal is used to indicate the start of sending the second part of the fourth signal, the second part of the fourth signal is used to generate the third signal, and the second part of the fourth signal includes the fifth symbol or the second RF signal.
  • Delete reflection coefficient related parameters add a modulation symbol set; include the second parameter and part or all of the first parameter.
  • the first configuration includes at least one of the following:
  • first target information where the first target information is used to autonomously generate a third symbol based on the first radio frequency signal in the second signal
  • Target characteristic information the target identification information is used to indicate the end of the first signal or the end of sending the information to be transmitted;
  • the first part of the second signal is used to instruct the second device to start sending the first signal
  • the first part of the fourth signal is used to instruct the second device to start sending the third signal
  • the second part of the second signal is used to generate the third signal.
  • the second configuration includes at least one of the following:
  • the second target information is used to autonomously generate a fifth signal according to the second radio frequency signal in the fourth signal symbol;
  • silence parameter is used to determine whether to send the first message
  • the second target signal is the second signal or the fourth signal, the second signal is used to send the first signal; the first part of the fourth signal is used to indicate the start of sending the second part of the fourth signal, the second part of the fourth signal is used to generate the third signal, and the second part of the fourth signal includes the fifth symbol or the second RF signal.
  • the second parameter may be understood as a parameter for receiving the third signal, and may specifically include at least one of the following:
  • the fourth signal sends a symbol interval of a fifth symbol
  • the fourth signal sends a waveform of the fifth symbol, such as a square wave, a rolled-off cosine wave, a sinc wave, a sine wave, etc. of a single carrier; OFDM, DFT-S-OFDM, OTFS, etc. of a multi-carrier;
  • the fourth signal sends the center frequency of the fifth symbol
  • the fourth signal transmits a bandwidth of the fifth symbol
  • Step 702 The second device sends a first signal to the first device based on the second signal or the fourth signal, where the first signal carries a first symbol, and the first symbol is information to be transmitted by the second device;
  • the first signal is used to determine a first channel response from the target device to the first device via the second device, the first channel response is used to determine the first symbol together with the second channel response, the second channel response is a channel response from the target device to the first device via the second device determined by the first device or the third device according to a third signal used for channel estimation, and the third signal is a signal sent by the second device based on the fourth signal received from the target device.
  • the second device sends a first signal to the first device in a first configuration based on the second signal or the fourth signal;
  • the first configuration includes at least one of the following:
  • first target information where the first target information is used to autonomously generate a third symbol based on the first radio frequency signal in the second signal
  • Target characteristic information the target identification information is used to indicate the end of the first signal or the end of sending the information to be transmitted;
  • the first part of the second signal is used to instruct the second device to start sending the first signal
  • the first part of the fourth signal is used to instruct the second device to start sending the third signal
  • the second part of the second signal is used to generate the third signal.
  • the first configuration is indicated by the target device or agreed upon by a protocol.
  • the second signal includes a first part and a second part, wherein the first part of the second signal includes a second symbol for indicating the start of sending the second part, and the second part of the second signal includes a third symbol or a first radio frequency signal for generating partial content of the first signal, and the first radio frequency signal is used to modulate and send the third symbol.
  • the first signal satisfies at least one of the following:
  • the first signal is generated by the second device based on backscattering of a received second signal
  • the first signal is obtained by the second device performing signal amplification based on the received second signal
  • the first signal is obtained after the second device performs amplitude and/or phase adjustment on the received second signal
  • the first signal is generated by the second device decoding the second signal and regenerating the second signal based on the content obtained by decoding;
  • the first signal is obtained by the second device decoding the second signal, regenerating a signal based on content obtained by decoding, and adjusting the amplitude and/or phase of the regenerated signal.
  • the fourth signal satisfies any one of the following:
  • the fourth signal includes a first part and a second part, the first part includes a fourth symbol for indicating the start of sending the second part, and the second part of the fourth signal includes a fifth symbol or a second radio frequency signal for generating a third signal;
  • the fourth signal includes a first part, a second part and a third part, the first part of the fourth signal includes a second symbol for indicating the start of transmission, the second part of the fourth signal includes a fifth symbol or a second radio frequency signal for generating a third signal, and the third part includes a third symbol or a first radio frequency signal for generating partial content of the first signal.
  • an embodiment of the present application further provides a transmission method.
  • the transmission method includes:
  • Step 801 A third device sends a second signal and/or a fourth signal to a second device, where the second signal or the fourth signal is used to send a first signal to a first device, where the first signal carries a first symbol, and the first symbol is information to be transmitted by the second device;
  • Step 802 The third device performs a second operation on the first device, where the second operation includes any one of the following:
  • the first channel response is used to determine the first symbol together with the second channel response, the first symbol is the information to be transmitted by the second device, the second channel response is a channel response determined by the first device or the third device from the third device through the second device to the first device according to a third signal used for channel estimation, and the third signal is a signal sent by the second device based on a fourth signal received from the third device.
  • the method further includes:
  • the third device obtains the first symbol according to the first channel response and the second channel response
  • the third device sends the first symbol to the first device.
  • the method further includes:
  • the third device sends the first channel response to the first device.
  • the method further includes:
  • the third device receives the first symbol from the first device.
  • the method further comprises:
  • the third device sends a first configuration to the first device, where the first configuration is used to send the first signal, and the first configuration includes at least one of the following:
  • first target information where the first target information is used to autonomously generate a third symbol based on the first radio frequency signal in the second signal
  • Target characteristic information the target identification information is used to indicate the end of the first signal or the end of sending the information to be transmitted;
  • the first part of the second signal is used to instruct the second device to start sending the first signal
  • the first part of the fourth signal is used to instruct the second device to start sending the third signal
  • the second part of the second signal is used to generate the third signal.
  • the second signal includes a first part and a second part, wherein the first part of the second signal includes a second symbol for indicating the start of sending the second part, and the second part of the second signal includes a third symbol or a first radio frequency signal for generating partial content of the first signal, and the first radio frequency signal is used to modulate and send the third symbol.
  • the first signal satisfies at least one of the following:
  • the first signal is generated by the second device based on backscattering of a received second signal
  • the first signal is obtained by the second device performing signal amplification based on the received second signal
  • the first signal is obtained after the second device performs amplitude and/or phase adjustment on the received second signal
  • the first signal is generated by the second device decoding the second signal and regenerating the second signal based on the content obtained by decoding;
  • the first signal is obtained by the second device decoding the second signal, regenerating a signal based on content obtained by decoding, and adjusting the amplitude and/or phase of the regenerated signal.
  • the fourth signal satisfies any one of the following:
  • the fourth signal includes a first part and a second part, the first part includes a fourth symbol for indicating the start of sending the second part, and the second part of the fourth signal includes a fifth symbol or a second radiated signal for generating a third signal.
  • Frequency signal
  • the fourth signal includes a first part, a second part and a third part, the first part of the fourth signal includes a second symbol for indicating the start of transmission, the second part of the fourth signal includes a fifth symbol or a second radio frequency signal for generating a third signal, and the third part includes a third symbol or a first radio frequency signal for generating partial content of the first signal.
  • the transmission method provided in the embodiment of the present application can be executed by a transmission device.
  • the transmission device provided in the embodiment of the present application is described by taking the transmission method executed by the transmission device as an example.
  • an embodiment of the present application further provides a transmission device.
  • the transmission device 900 includes:
  • a first receiving module 901 is configured to receive a first signal from a second device, where the first signal is a signal sent based on a second signal received from a target device, and the first signal carries a first symbol, where the first symbol is information to be transmitted by the second device, and the target device includes the first device or the third device;
  • the first execution module 902 is configured to execute a first operation, where the first operation includes any one of the following:
  • the first channel response is used to determine the first symbol together with the second channel response
  • the second channel response is a channel response determined by the first device or the third device from the target device through the second device to the first device according to a third signal used for channel estimation
  • the third signal is a signal sent by the second device based on a fourth signal received from the target device.
  • the transmission device further includes any one of the following:
  • a first determining module configured to obtain the first symbol according to the first channel response and the second channel response
  • the first sending module is configured to send the first channel response to the third device.
  • the first receiving module 901 is further used to receive, from the third device, the first symbol obtained by the third device based on the first channel response and the second channel response.
  • the first execution module 902 is further configured to execute any of the following:
  • the first symbol determined by the third device is received from the third device.
  • the transmission device further includes:
  • the first sending module is used to send a second message to the third device, where the second message is used to carry the first symbol.
  • determining, according to the first signal, a first channel response from the target device to the first device via the second device includes:
  • the first parameter is a parameter for receiving the first signal.
  • the first parameter includes at least one of the following:
  • the third signal sends the length or number of symbols of the third symbol
  • the third signal sends a symbol interval of a third symbol
  • the third signal sends a waveform of a third symbol
  • the third signal sends the center frequency of the third symbol
  • the third signal sends a bandwidth of a third symbol
  • the third symbol is used to generate the first signal.
  • the first configuration includes at least one of the following:
  • first target information where the first target information is used to autonomously generate a third symbol based on the first radio frequency signal in the second signal
  • Target characteristic information the target identification information is used to indicate the end of the first signal or the end of sending the information to be transmitted;
  • the first part of the second signal is used to instruct the second device to start sending the first signal
  • the first part of the fourth signal is used to instruct the second device to start sending the third signal
  • the second part of the second signal is used to instruct the second device to start sending the third signal.
  • the portion is used to generate the third signal.
  • the first parameter is indicated by the third device or agreed upon by protocol.
  • the second signal includes a first part and a second part, wherein the first part of the second signal includes a second symbol for indicating the start of sending the second part, and the second part of the second signal includes a third symbol or a first radio frequency signal for generating partial content of the first signal, and the first radio frequency signal is used to modulate and send the third symbol.
  • the first signal satisfies at least one of the following:
  • the first signal is generated by the second device based on backscattering of a received second signal
  • the first signal is obtained by the second device performing signal amplification based on the received second signal
  • the first signal is obtained after the second device performs amplitude and/or phase adjustment on the received second signal
  • the first signal is generated by the second device decoding the second signal and regenerating the second signal based on the content obtained by decoding;
  • the first signal is obtained by the second device decoding the second signal, regenerating a signal based on content obtained by decoding, and adjusting the amplitude and/or phase of the regenerated signal.
  • the fourth signal satisfies any one of the following:
  • the fourth signal includes a first part and a second part, the first part includes a fourth symbol for indicating the start of sending the second part, and the second part of the fourth signal includes a fifth symbol or a second radio frequency signal for generating a third signal;
  • the fourth signal includes a first part, a second part and a third part, the first part of the fourth signal includes a second symbol for indicating the start of transmission, the second part of the fourth signal includes a fifth symbol or a second radio frequency signal for generating a third signal, and the third part includes a third symbol or a first radio frequency signal for generating partial content of the first signal.
  • the transmission device 1000 includes:
  • a second receiving module 1001 is configured to receive a second signal from a target device, where the target device includes the first device or the third device;
  • a second sending module 1002 is configured to send a first signal to the first device based on the second signal, where the first signal carries a first symbol, and the first symbol is information to be transmitted by the second device;
  • the first signal is used to determine a first channel response from the target device to the first device via the second device, the first channel response is used to determine the first symbol with the second channel response, the second channel response is a channel response from the target device to the first device via the second device determined by the first device or the third device according to a third signal used for channel estimation, and the third signal is a signal sent by the second device based on a fourth signal received from the target device.
  • the second sending module 1002 is specifically configured to: send a first signal to the first device in a first configuration based on the second signal or the fourth signal;
  • the first configuration includes at least one of the following:
  • first target information where the first target information is used to autonomously generate a third symbol based on the first radio frequency signal in the second signal
  • Target characteristic information the target identification information is used to indicate the end of the first signal or the end of sending the information to be transmitted;
  • the first part of the second signal is used to instruct the second device to start sending the first signal
  • the first part of the fourth signal is used to instruct the second device to start sending the third signal
  • the second part of the second signal is used to generate the third signal.
  • the first configuration is indicated by the target device or agreed upon by a protocol.
  • the second signal includes a first part and a second part, wherein the first part of the second signal includes a second symbol for indicating the start of sending the second part, and the second part of the second signal includes a third symbol or a first radio frequency signal for generating partial content of the first signal, and the first radio frequency signal is used to modulate and send the third symbol.
  • the first signal satisfies at least one of the following:
  • the first signal is generated by the second device based on backscattering of a received second signal
  • the first signal is obtained by the second device performing signal amplification based on the received second signal
  • the first signal is obtained by the second device performing amplitude and/or phase adjustment on the received second signal
  • the first signal is generated by the second device decoding the second signal and regenerating the second signal based on the content obtained by decoding;
  • the first signal is the second device decoding the second signal, and regenerating the signal based on the content obtained by decoding. signal and adjust the amplitude and/or phase of the regenerated signal.
  • the fourth signal satisfies any one of the following:
  • the fourth signal includes a first part and a second part, the first part includes a fourth symbol for indicating the start of sending the second part, and the second part of the fourth signal includes a fifth symbol or a second radio frequency signal for generating a third signal;
  • the fourth signal includes a first part, a second part and a third part, the first part of the fourth signal includes a second symbol for indicating the start of transmission, the second part of the fourth signal includes a fifth symbol or a second radio frequency signal for generating a third signal, and the third part includes a third symbol or a first radio frequency signal for generating partial content of the first signal.
  • the transmission device 1100 includes:
  • a third sending module 1101 is configured to send a second signal to a second device, where the second signal is used to send a first signal to a first device, where the first signal carries a first symbol, and the first symbol is information to be transmitted by the second device;
  • the second execution module 1102 is configured to execute a second operation from the first device, where the second operation includes any one of the following:
  • the first channel response is used to determine the first symbol together with the second channel response, the first symbol is the information to be transmitted by the second device, the second channel response is a channel response determined by the first device or the third device from the third device through the second device to the first device according to a third signal used for channel estimation, and the third signal is a signal sent by the second device based on a fourth signal received from the third device.
  • the transmission device further includes:
  • a second determining module configured to obtain the first symbol according to the first channel response and the second channel response
  • the third sending module 1101 is further configured to send the first symbol to the first device.
  • the method further includes:
  • the third device sends the first channel response to the first device.
  • the transmission device further includes:
  • the third receiving module is configured to receive the first symbol from the first device.
  • the third sending module 1101 is further used to send a first configuration to the first device, where the first configuration is used to send the first signal, and the first configuration includes at least one of the following:
  • first target information where the first target information is used to autonomously generate a third symbol based on the first radio frequency signal in the second signal
  • Target characteristic information the target identification information is used to indicate the end of the first signal or the end of sending the information to be transmitted;
  • the first part of the second signal is used to instruct the second device to start sending the first signal
  • the first part of the fourth signal is used to instruct the second device to start sending the third signal
  • the second part of the second signal is used to generate the third signal.
  • the second signal includes a first part and a second part, wherein the first part of the second signal includes a second symbol for indicating the start of sending the second part, and the second part of the second signal includes a third symbol or a first radio frequency signal for generating partial content of the first signal, and the first radio frequency signal is used to modulate and send the third symbol.
  • the first signal satisfies at least one of the following:
  • the first signal is generated by the second device based on backscattering of a received second signal
  • the first signal is obtained by the second device performing signal amplification based on the received second signal
  • the first signal is obtained by the second device performing amplitude and/or phase adjustment on the received second signal
  • the first signal is generated by the second device decoding the second signal and regenerating the second signal based on the content obtained by decoding;
  • the first signal is obtained by the second device decoding the second signal, regenerating a signal based on content obtained by decoding, and adjusting the amplitude and/or phase of the regenerated signal.
  • the fourth signal satisfies any one of the following:
  • the fourth signal includes a first part and a second part, wherein the first part includes a signal for indicating the start of sending the fourth signal. a fourth symbol of two parts, the second part of the fourth signal including a fifth symbol or a second radio frequency signal for generating a third signal;
  • the fourth signal includes a first part, a second part and a third part, the first part of the fourth signal includes a second symbol for indicating the start of transmission, the second part of the fourth signal includes a fifth symbol or a second radio frequency signal for generating a third signal, and the third part includes a third symbol or a first radio frequency signal for generating partial content of the first signal.
  • the transmission method provided in the embodiment of the present application can be executed by a transmission device.
  • the transmission device provided in the embodiment of the present application is described by taking the transmission method executed by the transmission device as an example.
  • the transmission device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminal 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the transmission device provided in the embodiment of the present application can implement the various processes implemented in the method embodiments of Figures 6 to 8 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • an embodiment of the present application also provides a communication device 1200, including a processor 1201 and a memory 1202, and the memory 1202 stores a program or instruction that can be executed on the processor 1201.
  • the program or instruction is executed by the processor 1201
  • the various steps of the above-mentioned transmission method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, wherein:
  • the communication interface is used to receive a first signal from a second device, the first signal is a signal sent based on a second signal received from a target device, and the first signal carries a first symbol, the first symbol is information to be transmitted by the second device, and the target device includes a first device or a third device;
  • the processor is used to perform a first operation, and the first operation includes any one of the following: determining a first channel response from the target device to the first device via the second device according to the first signal; sending a first message to the third device, the first message is used to carry at least part of the content of the first signal, and the at least part of the content is used to determine a first channel response from the target device to the first device via the second device; wherein the first channel response is used to determine the first symbol with a second channel response, the second channel response is a channel response determined by the first device or the third device from the target device to the first device via the second device according to a third signal used for channel estimation
  • the communication interface is used to receive a second signal from a target device, where the target device includes a first device or a third device; send a first signal to the first device based on the second signal, where the first signal carries a first symbol, where the first symbol is information to be transmitted by the second device; wherein the first signal is used to determine a first channel response from the target device to the first device via the second device, and the first signal The channel response is used to determine the first symbol with a second channel response, the second channel response is a channel response determined by the first device or the third device from the target device through the second device to the first device according to a third signal used for channel estimation, and the third signal is a signal sent by the second device based on a fourth signal received from the target device.
  • the communication interface is used to send a second signal to the second device, the second signal is used to send a first signal to the first device, the first signal carries a first symbol, and the first symbol is information to be transmitted by the second device;
  • the processor is used to perform a second operation from the first device, and the second operation includes any one of the following: receiving a first channel response from the first device determined based on the first signal from the third device through the second device to the first device; receiving a first message from the first device, and determining a first channel response from the third device through the second device to the first device based on the first message; wherein the first channel response is used to determine the first symbol together with the second channel response, the first symbol is the information to be transmitted by the second device, the second channel response is a channel response determined by the first device or the third device from the third device through the second device to the first device based on the third signal used for channel estimation, and the third signal is a signal sent by the second device based on a fourth
  • the terminal embodiment corresponds to the above-mentioned terminal side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to the terminal embodiment and can achieve the same technical effect.
  • Figure 13 is a schematic diagram of the hardware structure of a terminal implementing the embodiment of the present application.
  • the terminal 1300 includes but is not limited to: a radio frequency unit 1301, a network module 1302, an audio output unit 1303, an input unit 1304, a sensor 1305, a display unit 1306, a user input unit 1307, an interface unit 1308, a memory 1309 and at least some of the components of a processor 1310.
  • the terminal 1300 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1310 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG13 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1304 may include a graphics processing unit (GPU) 13041 and a microphone 13042, and the graphics processor 13041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1306 may include a display panel 13061, and the display panel 13061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1307 includes a touch panel 13071 and at least one of other input devices 13072.
  • the touch panel 13071 is also called a touch screen.
  • the touch panel 13071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 13072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 1301 may transmit the data to the processor 1310 for processing; in addition, the RF unit 1301 may send uplink data to the network side device.
  • Unit 1301 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1309 can be used to store software programs or instructions and various data.
  • the memory 1309 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1309 may include a volatile memory or a non-volatile memory, or the memory 1309 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1309 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1310 may include one or more processing units; optionally, the processor 1310 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1310.
  • the radio frequency unit 1301 is used to receive a first signal from a second device, the first signal is a signal sent based on a second signal received from a target device, and the first signal carries a first symbol, the first symbol is information to be transmitted by the second device, and the target device includes a first device or a third device;
  • the processor 1310 is used to perform a first operation, and the first operation includes any one of the following: determining a first channel response from the target device to the first device via the second device according to the first signal; sending a first message to the third device, the first message is used to carry at least part of the content of the first signal, and the at least part of the content is used to determine a first channel response from the target device to the first device via the second device; wherein the first channel response is used to determine the first symbol with the second channel response, the second channel response is a channel response determined by the first device or the third device from the target device to the first device via the second device according to
  • the radio frequency unit 1301 is used to receive a second signal from a target device, and the target device includes a first device or a third device; based on the second signal, a first signal is sent to the first device, and the first signal carries a first symbol, and the first symbol is information to be transmitted by the second device; wherein the first signal is used to determine a first channel response from the target device to the first device via the second device, and the first channel response is used to determine the first symbol with a second channel response, and the second channel response is the first device or the third device.
  • the third device determines a channel response from the target device through the second device to the first device according to a third signal used for channel estimation, wherein the third signal is a signal sent by the second device based on a fourth signal received from the target device.
  • the radio frequency unit 1301 is used to send a second signal to the second device, the second signal is used to send a first signal to the first device, the first signal carries a first symbol, and the first symbol is information to be transmitted by the second device;
  • the processor 1310 is used to perform a second operation from the first device, and the second operation includes any one of the following: receiving a first channel response from the first device determined based on the first signal from the third device through the second device to the first device; receiving a first message from the first device, and determining a first channel response from the third device through the second device to the first device according to the first message; wherein the first channel response is used to determine the first symbol with the second channel response, the first symbol is the information to be transmitted by the second device, the second channel response is a channel response determined by the first device or the third device from the third device through the second device to the first device according to the third signal used for channel estimation, and the third signal is a signal sent by the second device based on
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, wherein:
  • the communication interface is used to receive a first signal from a second device, the first signal is a signal sent based on a second signal received from a target device, and the first signal carries a first symbol, the first symbol is information to be transmitted by the second device, and the target device includes a first device or a third device;
  • the processor is used to perform a first operation, and the first operation includes any one of the following: determining a first channel response from the target device to the first device via the second device according to the first signal; sending a first message to the third device, the first message is used to carry at least part of the content of the first signal, and the at least part of the content is used to determine a first channel response from the target device to the first device via the second device; wherein the first channel response is used to determine the first symbol with the second channel response, the second channel response is a channel response determined by the first device or the third device from the target device to the first device via the second device according to a third signal used for channel
  • the communication interface is used to receive a second signal from a target device, and the target device includes a first device or a third device; based on the second signal, a first signal is sent to the first device, and the first signal carries a first symbol, and the first symbol is the information to be transmitted of the second device; wherein the first signal is used to determine a first channel response from the target device to the first device via the second device, and the first channel response is used to determine the first symbol with the second channel response, and the second channel response is a channel response determined by the first device or the third device from the target device to the first device via the second device according to a third signal used for channel estimation, and the third signal is a signal sent by the second device based on a fourth signal received from the target device.
  • the communication interface is used to send a second signal to the second device, the second signal is used to send a first signal to the first device, the first signal carries a first symbol, and the first The symbol is information to be transmitted by the second device;
  • the processor is used to perform a second operation from the first device, and the second operation includes any one of the following: receiving a first channel response from the first device determined based on the first signal from a third device through the second device to the first device; receiving a first message from the first device, and determining a first channel response from the third device through the second device to the first device according to the first message; wherein the first channel response is used to determine the first symbol with the second channel response, the first symbol is the information to be transmitted by the second device, the second channel response is the channel response determined by the first device or the third device from the third device through the second device to the first device according to the third signal used for channel estimation, and the third signal is a signal sent by the second device based on a fourth
  • This network side device embodiment corresponds to the above-mentioned network side device method embodiment.
  • Each implementation process and implementation method of the above-mentioned method embodiment can be applied to this network side device embodiment and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1400 includes: an antenna 1401, a radio frequency device 1402, a baseband device 1403, a processor 1404 and a memory 1405.
  • the antenna 1401 is connected to the radio frequency device 1402.
  • the radio frequency device 1402 receives information through the antenna 1401 and sends the received information to the baseband device 1403 for processing.
  • the baseband device 1403 processes the information to be sent and sends it to the radio frequency device 1402.
  • the radio frequency device 1402 processes the received information and sends it out through the antenna 1401.
  • the method executed by the network-side device in the above embodiment may be implemented in the baseband device 1403, which includes a baseband processor.
  • the baseband device 1403 may include, for example, at least one baseband board, on which multiple chips are arranged, as shown in Figure 14, one of which is, for example, a baseband processor, which is connected to the memory 1405 through a bus interface to call the program in the memory 1405 and execute the network device operations shown in the above method embodiment.
  • the network side device may also include a network interface 1406, which is, for example, a common public radio interface (CPRI).
  • a network interface 1406 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1400 of the embodiment of the present invention also includes: instructions or programs stored in the memory 1405 and executable on the processor 1404.
  • the processor 1404 calls the instructions or programs in the memory 1405 to execute the method executed by each module shown in Figure XX and achieves the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned transmission method embodiment are implemented and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned transmission method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium and is executed by at least one processor to implement the various processes of the above-mentioned transmission method embodiment and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a communication system, including: a first device, a second device and a third device, wherein the first device is used to execute the various processes of the various method embodiments as shown in Figure 6 and the above-mentioned first device side, the second device is used to execute the various processes of the various method embodiments as shown in Figure 7 and the above-mentioned second device side, and the third device is used to execute the various processes of the various method embodiments as shown in Figure 8 and the above-mentioned third device side, and can achieve the same technical effect, which will not be repeated here to avoid repetition.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输方法、装置、终端及网络侧设备,属于通信技术领域,本申请实施例的传输方法包括:第一设备从第二设备接收第一信号,第一信号携带第二设备的待传输信息;第一设备执行以下任一项:根据第一信号确定从目标设备经过第二设备到达第一设备的第一信道响应;向第三设备发送第一消息,第一消息用于承载第一信号的至少部分内容,至少部分内容用于确定从目标设备经过第二设备到达第一设备的第一信道响应;第一信道响应用于与第二信道响应确定第一符号,第二信道响应为第一设备或第三设备根据用于信道估计的第三信号确定从目标设备经过第二设备到达第一设备的信道响应,第三信号为第二设备基于从目标设备接收到的第四信号发送的信号。

Description

传输方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请主张在2022年12月12日提交的中国专利申请No.202211600298.0的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种传输方法、装置、终端及网络侧设备。
背景技术
在传统的反向散射通信***中,多个反向散射通信(Backscatter Communication,BSC)设备使用完全正交的资源接入信道、传输数据,比如在使用时分多址(Time division multiple access,TDMA)时,下一BSC设备需要等待上一BSC设备传输结束后才能开始结束。特别地,为了获得传输机会,BSC设备还需要在进行正式的数据传输前,向读写器(或接入点)发送竞争数据包,直到该竞争数据包被正确且唯一识别时,才能获得进行后续数据传输的资源。显然,当BSC设备数量较多、待传输数据量较大时,这种接入方式是极其低效的。因此,现有技术中存在BSC设备传输的效率较低的问题。
发明内容
本申请实施例提供一种传输方法、装置、终端及网络侧设备,能够解决BSC设备传输的效率较低的问题。
第一方面,提供了一种传输方法,包括:
第一设备从第二设备接收第一信号,所述第一信号为基于从目标设备接收到的第二信号或第四信号发送的信号,且所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息,所述目标设备包括所述第一设备或第三设备;
所述第一设备执行第一操作,所述第一操作包括以下任一项:
根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
向所述第三设备发送第一消息,所述第一消息用于承载所述第一信号的至少部分内容,所述至少部分内容用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过 所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
第二方面,提供了一种传输方法,包括:
第二设备从目标设备接收第二信号或第四信号,所述目标设备包括第一设备或第三设备;
第二设备基于所述第二信号或第四信号向所述第一设备发送第一信号,所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息;
其中,所述第一信号用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应,第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的所述第四信号发送的信号。
第三方面,提供了一种传输方法,包括:
第三设备向第二设备发送第二信号和/或第四信号,所述第二信号或第四信号用于向第一设备发送的第一信号,所述第一信号携带有第一符号,所述第一符号为所述第二设备待传输的信息;
所述第三设备从所述第一设备执行第二操作,所述第二操作包括以下任一项:
从所述第一设备接收基于所述第一信号确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;
从所述第一设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;
其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第一符号为所述第二设备的待传输信息,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述第三设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述第三设备接收到的第四信号发送的信号。
第四方面,提供了一种传输装置,包括:
第一接收模块,用于从第二设备接收第一信号,所述第一信号为基于从目标设备接收到的第二信号发送的信号,且所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息,所述目标设备包括第一设备或第三设备;
第一执行模块,用于执行第一操作,所述第一操作包括以下任一项:
根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
向所述第三设备发送第一消息,所述第一消息用于承载所述第一信号的至少部分内容,所述至少部分内容用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
第五方面,提供了一种传输装置,包括:第二接收模块,用于从目标设备接收第二信号,所述目标设备包括第一设备或第三设备;
第二发送模块,用于基于所述第二信号向所述第一设备发送第一信号,所述第一信号携带有第一符号,所述第一符号为第二设备的待传输信息;
其中,所述第一信号用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应,第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
第六方面,提供了一种传输装置,包括:第三发送模块,用于向第二设备发送第二信号,所述第二信号用于向第一设备发送的第一信号,所述第一信号携带有第一符号,所述第一符号为所述第二设备待传输的信息;
第二执行模块,用于从所述第一设备执行第二操作,所述第二操作包括以下任一项:
从所述第一设备接收基于所述第一信号确定从第三设备经过所述第二设备到达所述第一设备的第一信道响应;
从所述第一设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;
其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第一符号为所述第二设备的待传输信息,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述第三设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述第三设备接收到的第四信号发送的信号。
第七方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第八方面,提供了一种终端,包括处理器及通信接口,其中,
在所述终端为第一设备的情况下,所述通信接口用于从第二设备接收第一信号,所述第一信号为基于从目标设备接收到的第二信号发送的信号,且所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息,所述目标设备包括第一设备或第三设备;所述处理器用于执行第一操作,所述第一操作包括以下任一项:根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;向所述第三设备发送 第一消息,所述第一消息用于承载所述第一信号的至少部分内容,所述至少部分内容用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
在所述终端为第二设备的情况下,所述通信接口用于从目标设备接收第二信号,所述目标设备包括第一设备或第三设备;基于所述第二信号向所述第一设备发送第一信号,所述第一信号携带有第一符号,所述第一符号为第二设备的待传输信息;其中,所述第一信号用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应,第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
在所述终端为第三设备的情况下,所述通信接口用于向第二设备发送第二信号,所述第二信号用于向第一设备发送的第一信号,所述第一信号携带有第一符号,所述第一符号为所述第二设备待传输的信息;处理器用于从所述第一设备执行第二操作,所述第二操作包括以下任一项:从所述第一设备接收基于所述第一信号确定从第三设备经过所述第二设备到达所述第一设备的第一信道响应;从所述第一设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第一符号为所述第二设备的待传输信息,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述第三设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述第三设备接收到的第四信号发送的信号。
第九方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十方面,提供了一种网络侧设备,包括处理器及通信接口,其中,
在所述网络侧设备为第一设备的情况下,所述通信接口用于从第二设备接收第一信号,所述第一信号为基于从目标设备接收到的第二信号发送的信号,且所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息,所述目标设备包括第一设备或第三设备;所述处理器用于执行第一操作,所述第一操作包括以下任一项:根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;向所述第三设备发送第一消息,所述第一消息用于承载所述第一信号的至少部分内容,所述至少部分内 容用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
在所述网络侧设备为第二设备的情况下,所述通信接口用于从目标设备接收第二信号,所述目标设备包括第一设备或第三设备;基于所述第二信号向所述第一设备发送第一信号,所述第一信号携带有第一符号,所述第一符号为第二设备的待传输信息;其中,所述第一信号用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应,第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
在所述网络侧设备为第三设备的情况下,所述通信接口用于向第二设备发送第二信号,所述第二信号用于向第一设备发送的第一信号,所述第一信号携带有第一符号,所述第一符号为所述第二设备待传输的信息;处理器用于从所述第一设备执行第二操作,所述第二操作包括以下任一项:从所述第一设备接收基于所述第一信号确定从第三设备经过所述第二设备到达所述第一设备的第一信道响应;从所述第一设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第一符号为所述第二设备的待传输信息,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述第三设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述第三设备接收到的第四信号发送的信号。
第十一方面,提供了一种通信***,包括:第一设备、第二设备及第三设备,所述第一设备可用于执行如第一方面所述的传输方法的步骤,所述第二设备可用于执行如第二方面所述的传输方法的步骤,所述第三设备可用于执行如第三方面所述的传输方法的步骤。
第十二方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十三方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十四方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的 步骤。
本申请实施例中,通过第一设备从第二设备接收第一信号,所述第一信号为基于从目标设备接收到的第二信号或第四信号发送的信号,且所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息,所述目标设备包括所述第一设备或第三设备;所述第一设备执行第一操作,所述第一操作包括以下任一项:根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;向所述第三设备发送第一消息,所述第一消息用于承载所述第一信号的至少部分内容,所述至少部分内容用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。这样,由于利用不同的第二设备的时延差异确定不同的信道响应,并基于信道响应解调获得对应的待传输信息,从而可以允许多个设备共享相同的物理资源进行并行并发传输,因此提高了传输的效率。
附图说明
图1是本申请实施例可应用的网络结构示意图;
图2是本申请实施例可应用的单基地传输场景示例图;
图3是本申请实施例可应用的双基地传输场景示例图;
图4是一种常规通信场景示例图;
图5是一种BSC通信场景示例图;
图6是本申请实施例提供的一种传输方法的流程示意图;
图7是本申请实施例提供的另一种传输方法的流程示意图;
图8是本申请实施例提供的又一种传输方法的流程示意图;
图9是本申请实施例提供的一种传输装置的结构图;
图10是本申请实施例提供的另一种传输装置的结构图;
图11是本申请实施例提供的又一种传输装置的结构图;
图12是本申请实施例提供的通信设备的结构图;
图13是本申请实施例提供的终端的结构图;
图14是本申请实施例提供的网络侧设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施 例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
本申请的说明书和权利要求书中的术语“指示”既可以是一个明确的指示,也可以是一个隐含的指示。其中,明确的指示可以理解为,发送方在发送的指示中明确告知了接收方需要执行的操作或请求结果;隐含的指示可以理解为,接收方根据发送方发送的指示进行判断,根据判断结果确定需要执行的操作或请求结果。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6th Generation,6G)通信***。
图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area  Networks,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、BSC。
反向散射通信是指反向散射通信设备利用其它设备或者环境中的射频信号进行信号调制来传输自己信息,是一种比较典型的无源物联设备。
其中,反向散射通信发送端,其基本构成模块及主要功能包括:
天线单元:用于接收射频信号、控制命令,同时用于发送调制的反向散射信号;
能量采集模块或供能模块:该模块用于反向散射通信设备进行射频能量采集,或者其它能量采集,包括但不限于太阳能、动能、机械能、热能等;另外除了能量采集模块,也可能包括电池供能模块,此时反向散射通信设备为半无源设备;能量采集模块或供能模块给设备中的其它所有模块进行供电;
微控制器:包括控制基带信号处理、储能或数据调度状态、开关切换、***同步等;
信号接收模块:用于解调反向散射通信接收端或是其它网络节点发送的控制命令或数据等;
信道编码和调制模块:在控制器的控制下进行信道编码和信号调制,并通过选择开关在控制器的控制下通过选择不同的负载阻抗来实现调制;
存储器或传感模块:用于存储设备的身份标识(Identity,ID)信息、位置信息或是传感数据等。
除了上述典型的构成模块之外,未来的反向散射通信发送端甚至可以集成隧道二极管放大器模块、低噪声放大器模块等,用于提升发送端的接收灵敏度和发送功率。
其中,反向散射通信接收端,如传统的射频识别(Radio Frequency Identification,RFID)***中的反向散射通信接收端即为阅读器,其基本构成模块及主要功能包括:
天线单元:用于接收调制的反向散射信号;
反向散射信号检波模块:即用于对发送端发送的反向散射信号进行检波,包括振幅键控(Amplitude Shift Keying,ASK)检波、相移键控(Phase Shift Keying,PSK)检波、频移键控(Frequency-shift Keying,FSK)或正交幅度调制(Quadrature Amplitude Modulation,QAM)检波等;
解调解码模块:对检波出的信号进行解调制和解码,以恢复出原始信息流。
二、单基地反向散射通信***(Monostatic Backscatter Communication System,MBCSs)。
MBCS如图2所示,传统的RFID***就是典型的MBCS,***中包含BSC发送端 (比如标签(Tag))和读写器(Reader)。读写器中包含RF射频源和BSC接收端,其中RF射频源用于产生RF射频信号从而来给BSC发送端/Tag供能。BSC发送端通过反向散射经过调制后的RF射频信号,Reader中的BSC接收端接收到该反向散射信号后进行信号解调。由于RF射频源和BSC接收端是在同一个设备中,比如这里的Reader,因此成为单站反向散射通信***。MBCSs***中,由于从BSC发送端发送出去的RF射频信号会经过往返信号的信号衰减引起的双倍远近效应,因而信号的能量衰减大,因而MBCS***一般用于短距离的反向散射通信,比如传统的RFID应用。
三、双基地反向散射通信***(Bistatic Backscatter Communication Systems,BBCSs)。
不同于MBCS***,BBCS***中的RF射频源、BSC发送设备和BSC接收设备是分开的,如图3所示。因而,BBCS避免了往返信号衰减大的问题,另外通过合理的放置RF射频源的位置可以进一步提高BBCS通信***的性能。值得注意,环境反向散射通信***(Ambient Backscatter Communication Systems,ABCSs)也是双基地反向散射通信的一种,但与BBCS***中的射频源为专用的信号射频源,ABCS***中的射频源可以是可用的环境早的射频源,比如:电视塔、蜂窝基站、WiFi信号、蓝牙信号等。
四、多址接入。
多址接入又称多用户接入,目的是让多个用户能同时接入基站(或接入点)进行通信,同时保证各个用户之间的信号不会互相干扰,并且成功检测用户发送的信号。常见的多址接入有频分多址(Frequency Division Multiple Access,FDMA)、时分多址(Time Division Multiple Access,TDMA)和码分多址(Code Division Multiple Access,CDMA)。
五、RFID的多址接入。
RFID是一种传统的反向散射通信***,其主要设计目标就是对读写器覆盖范围内的BSC设备(即Tag)进行ID识别以及数据读取。由于RFID最初应用于大量货物的自动化盘点中,对Tag进行识别和数据读取的过程也被称为盘存。
以ISO 18000-6c定义的EPC C1G2 RFID***为例。在读写器发送查询(Query)指令后Tag响应回应(Reply),以Reply为RN16为例,Tag产生一个16-bit的随机数发送给读写器。然后读写器将该序列通过确认(Acknowledge,ACK)指令发给Tag后,Tag对ACK中的RN16验证成功后,将后续的数据(如PC/XPC、EPC等)发送给读写器。
对于存在多个Tag的场景,RFID需要采用结合竞争接入的TDMA的方式对多个Tag进行盘存。同样以EPC C1G2 RFID***为例,其具体流程如下:
1.读写器发送选择(Select)命令选中需要盘存的Tag;
2.读写器发送Query命令开启一轮盘存,Query指示一个Q值;
3.所有Tag产生一个[0,2Q-1]范围内的随机整数作为计数器的初始值;
4.Tag检查计数器是否为0;
5a.(若有Tag的计数器为0)计数器为0的Tag发送Reply,包含一个随机生成的16位随机数,记作RN16;
6a.(若读写器解码RN16成功)读写器发送一个ACK命令,包含该RN16以及2bits的命令字段;
7.Tag接收ACK,并检查ACK中包含的RN16是否为此前发送的RN16;
8a.(若RN16正确)检验RN16正确的Tag向读写器发送需要上报的数据,如PC、XPC、EPC或者其他数据,该Tag盘存完成;
8b.(若RN16错误)检验RN16错误的Tag将自身计数器设置为最大值;
6b.(若读写器解码RN16失败)读写器发送一个否定(Negative Acknowledgment,NAK)命令;
9.若接收到NAK命令的Tag在上一相邻时序发送了Reply,则将自身计数器设置为最大值
5b.(若无Tag的计数器为0)读写器发送QueryRep命令;
10.接收到QueryRep命令的Tag将自身计数器-1;
11.(可选地)读写器可以发送QueryAdjust命令,重新配置一个Q值
12.接收到QueryAdjust命令且未完成盘存的Tag重新在[0,2Q-1]范围内随机选择一个整数作为计数器;
13.重复步骤4-12直至所有Tag盘存完成。
简而言之,在这种多址接入方式下,Tag需要不断重复发送RN16,直到该RN16被读写器正确且唯一地识别,后续读写器再以该RN16指示Tag独占信道发送数据。在这一方式中,传输RN16本身就容易因资源冲突而传输失败,导致后续的数据传输机会抢占失败,而且数据传输机会是独占的,导致多设备情况下轮候传输机会的时间开销大。
六、基于时延域进行多址接入的基本原理。
如图4所示,在具有一个发送端(Transmitter,Tx)和一个接收端(Receiver,Rx)的常规通信***中,若在Tx和Rx之间存在多个反射体(比如墙),那么Tx发出的信号会经过这些反射体的反射后到达Rx,而由于每个反射体距离Tx和Rx的远近差异,信号从Tx发出后经过每条路径到达Rx的时延也有差异。以最简单的情况为例,考虑不存在Tx-Rx的直接路径,同时存在共I条反射路径,其时延均不同,且按升序排列可记为τ1<τ2<…<τI。那么,在时刻t,整体的信道响应可以表示为:
其中,hi(t)表示i-th路径在时刻t对信号的增益值,一般情况下反射体对信号只有衰减作用,因此0<hi(t)<1;δ(τ)为冲激函数。如果各路径对信号的增益值为时不变,或者慢变,那么c(τ;t)可以简化为:
此时,如图5所示,若将反射体替换为具有调制信号能力的设备,比如BSC设备, 当Tx发出的信号到达BSC设备时,BSC设备通过调整反射系数,可将自身传输符号xi调制到原有hi上,即有:
其中,hi对应i-th BSC设备不调制符号(一般可采用最大反射系数,比如全反射,即选择绝对值为1的反射系数)时的i-th路径的增益值。
可以理解,当已知c(τ)和c′(τ)时,通过对比各路径对应的增益值,即可得到各BSC设备调制的符号xi。由于各路径可由时延区分,且与BSC设备之间存在对应关系(在理想情况下,路径与BSC设备一一对应),这种多用户接入方式可以被称为时延域多址接入。
在常规通信***中,获得信道响应c(τ)的过程就是进行信道估计的过程。一般地,Tx发送一段Rx已知的训练序列,由Rx对比经过信道后的接收序列与原始序列间的差异,反推出信道响应的具体值。在最简单的情况下,Tx发送的信号带宽W可大于任意路径时延差的倒数(或符号间隔Ts小于任意路径时延差),即,此时,若Rx同样以符号间隔Ts为采样间隔,那么相当于对c(τ)以Ts为间隔进行了采样,得到离散时间的信道响应:
h=[h1,…,h2,…,…,hI];
其中,而其余值为0,总长度为若训练序列为d=[d1,d2,…,dL],长度为L,那么Rx接收到的序列为:
rd=d*h+n;
其中,*表示线性卷积运算,rd的长度为n为长度与rc一致的噪声序列。由于Rx已知d,通过对rd进行反卷积、去噪等操作即可获得h(由于噪声的存在,实际只能获得h的估计值,但为便于表述,此处假设完美估计)。
可选地,在极端情况下,训练序列也可以只有一个符号,这样可以降低开销,但同时也降低了估计精度。
可选地,若没有经过干扰消除或干扰消除不完美,那么将会在h中出现一个额外的非零值,表示信号从Tx到Rx的视距(Los-of-Sight,LoS)路径(或自干扰路径)的信号增益值,这不会影响本方案的有效性,只是为了方便表述,此处假设该值为0。
可选地,在上面所述过程中,Tx发出的信号承载了训练序列。但还有两种特殊的情况:
情况1:Tx只发送一个连续载波(Continous Wave,CW),然后由BSC设备基于CW自行调制和反向散射训练序列,换言之,训练序列可以由BSC设备反向散射CW来生成,而不是Tx。特别地,在数据传输时,BSC设备需要调制和反向散射的信号实际上是训练 序列与待传输符号的乘积。
情况2:更进一步地,如果“反射”的设备具备主动的载波信号生成能力,Tx甚至可以不发送任何信息,只需指示设备按照一定的规则生成训练序列即可。同样地,在数据传输时,设备需要生成的信号是训练序列和待传输符号的乘积。
同样地,采用上述方法,当BSC设备调制符号时,亦可获得其对应的离散时间信道响应:
h′=[x1h1,…,x2h2,…,…,xIhI];
然后通过将h′和h的非零元素相除就可获得BSC设备的调制符号x1,…,xI
应理解,Tx每发送一次训练序列,BSC设备可以调制一次符号,而且在发送完一次训练序列后,需等待该序列经过所有路径到达Rx后,才可发送下一序列(严格上来说,Tx发送结束后需等待τI1才能开始下一次发送),这是为了防止BSC设备在下一序列调制的符号对其他BSC设备在上一序列调制的符号产生混叠。为此,存在以下两个问题:
τI1可能会远大于发送的训练序列的总时长;
BSC设备只能在每个训练序列调制1个符号。
针对上述两个问题都会使得BSC设备调制符号的速率较慢。因此,需进一步考虑:
训练序列的连续发送(Tx不等待);
训练序列分段,即将原长度为L的训练序列划分为多个子序列,相当于k个训练序列符号(子序列长度为k)对应1个BSC设备调制符号。
可选地,考虑I=2,L=4,k=2,BSC设备未调制符号时的离散时间信道响应向量为:
h=[h1,h2];
i-th BSC设备(即第i个BSC设备)在m-th(即第m个)调制的符号(对应m-th(即第m个)长度为2的训练子序列)记为L=4的训练序列被划分为两个k=2的子序列,记为d1=[d1,d2]和d2=[d3,d4];接收序列记为rd=[r9,…,r1]。那么,rd和d1、d2、h以及调制符号之间的关系可以表示为:
由于rd和d1、d2、h都是已知的(假设h已通过信道估计获得),基于上述rd和d1、d2、h以及调制符号之间的关系可以列出9个等式,将2个BSC设备分别调制的4个符号求解得到。
上述等式是以时域卷积表示的,另外一种更方便的表示方式为z变换域:
其中,RD(z)为rd的z变换表达式;D(m)(z)为m-th调制符号所用的训练序列的z变 换,比如在上述的例子中,D(1)(z)=D(3)(z)=1+d1z-1+d2z-2,D(2)(z)=D(4)(z)=1+d3z-1+d4z-2;H(m)(z)为BSC设备m-th调制符号连同本身信道对应的z变换,比如在上述的例子中,类似地,基于等式(1)两边z次项的系数,可列出等式组来获得BSC设备调制的符号。
综上,基于时延域的多址接入方式是适用于BSC的高效多用户通信方式,其利用到了BSC设备(或者具有“反射/散射”等效效果的通信设备)自然产生的多径,Rx根据多径时延-BSC设备的对应关系来实现对BSC设备调制符号的检测。好处在于:一方面,无需在BSC设备侧进行额外的同步操作(比如,传统的TDMA需要接入的所有设备在Rx处的到达时间精确同步,为此需要进行TA等操作),降低了BSC设备的复杂度;另一方面,BSC设备可以利用相同的物理资源(时域、频域、码域)进行通信,能够提高***的接入容量和频谱效率。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的传输方法进行详细地说明。
参照图6,本申请实施例提供了一种传输方法,如图6所示,该传输方法包括:
步骤601,第一设备从第二设备接收第一信号,所述第一信号为基于从目标设备接收到的第二信号或第四信号发送的信号,且所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息,所述目标设备包括所述第一设备或第三设备;
步骤602,所述第一设备执行第一操作,所述第一操作包括以下任一项:
根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
向所述第三设备发送第一消息,所述第一消息用于承载所述第一信号的至少部分内容,所述至少部分内容用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
本申请实施例中,上述第一设备、第二设备和第三设备的具体的类型可以根据实际需要进行设置,例如所述第一设备为基站、读写器、终端设备或中继;所述第二设备为反向散射设备、终端设备或中继;所述第三设备为基站、读写器、终端设备或中继。
可选地,针对单基地通信场景,上述目标设备为第一设备;针对双基地通信场景,上述目标设备为第三设备。
需要说明的是,上述第四信号和第二信号可以为两个相互独立的信号,上述第四信号可以为与第二信号合并的增强信号,即第四信号包括第二信号的部分内容。
应理解,上述第三信号为信道估计信号,上述第一信号可以理解为数据传输信号,用 于传输第二设备的待传输信息。针对单基地通信场景,可以由第一设备基于第三信号确定上述第二信道响应,基于第一信号确定上述第一信道响应,然后基于第一信道响应和第二信道响应确定第二设备传输的第一符号。
针对双基地通信场景,可以由第一设备或第三设备基于第三信号确定上述第二信道响应,基于第一信号确定上述第一信道响应,最后基于第一信道响应和第二信道响应确定第二设备传输的第一符号。其中,确定信道响应的设备可以与确定第一符号的设备相同或不同,在此不做进一步的限定。
可选地,上述第一信道响应和第二信道响应可以包括增益值和时延。
本申请实施例中,通过第一设备从第二设备接收第一信号,所述第一信号为基于从目标设备接收到的第二信号或第四信号发送的信号,且所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息,所述目标设备包括所述第一设备或第三设备;所述第一设备执行第一操作,所述第一操作包括以下任一项:根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;向所述第三设备发送第一消息,所述第一消息用于承载所述第一信号的至少部分内容,所述至少部分内容用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。这样,由于利用不同的第二设备的时延差异确定不同的信道响应,并基于信道响应解调获得对应的待传输信息,从而可以允许多个设备共享相同的物理资源进行并行并发传输,因此提高了传输的效率。此外,无需在设备侧进行额外的同步操作,降低设备的实现复杂度;与此同时,也可以提高***的接入容量和频谱效率。综上,本申请实施例中无论对于初始接入阶段还是正式的数据传输阶段,本申请实施例都能够提高接入成功概率,降低时延、能耗等开销。
可选地,在一些实施例中,所述根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应之后,所述方法还包括以下任一项:
所述第一设备根据所述第一信道响应和第二信道响应,获得所述第一符号;
所述第一设备向所述第三设备发送所述第一信道响应。
本申请实施例中,针对单基地通信场景:第一设备可以首先向第二设备发送第四信号,第二设备基于第四信号,采用第二配置向第一设备发送第三信号,第一设备基于第三信号获得第二信道响应。
进一步地,在第四信号和第二信号可以为两个相互独立的信号的情况下,第一设备在完成信道估计后,可以发送第二信号,第二设备基于第二信号,采用第一配置发送第一信号。在第四信号为增强信号的情况下,第二设备基于第四信号,采用第二配置发送第一信号。
最后,第一设备基于第一信号获得第一信道响应后,基于第一信道响应和第二信道响应获得第二设备的待传输信息,即获得第一符号。
针对双基地通信场景:第三设备可以首先向第二设备发送第四信号,第二设备基于第四信号,采用第二配置向第一设备发送第三信号,第一设备基于第三信号获得第二信道响应。
进一步地,在第四信号和第二信号可以为两个相互独立的信号的情况下,第一设备在完成信道估计后,可以由第三设备发送第二信号,第二设备基于第二信号,采用第一配置发送第一信号。在第四信号为增强信号的情况下,第二设备基于第四信号,采用第二配置发送第一信号。
最后,第一设备基于第一信号获得第一信道响应后,基于第一信道响应和第二信道响应获得第二设备的待传输信息,即获得第一符号;或者将第一信道响应发送至第三设备由第三设备基于第一信道响应和第二信道响应获得第二设备的待传输信息,即获得第一符号。其中,在由第三设备确定第二设备的待传输信息的情况下,第一设备还需要向第三设备发送第二信道响应。
可选地,在一些实施例中,所述第一设备向所述第三设备发送所述第一信道响应之后,所述方法还包括:
所述第一设备从所述第三设备接收所述第三设备基于所述第一信道响应和所述第二信道响应获得的所述第一符号。
本申请实施例中,在由第三设备基于第一信道响应和第二信道响应获得第一符号后,第三设备可以将第一符号发送给第一设备。
可选地,在一些实施例中,所述向所述第三设备发送第一消息之后,所述方法还包括以下任一项:
所述第一设备从所述第三设备接收所述第三设备确定的所述第一信道响应,并根据所述第一信道响应和所述第二信道响应,获得所述第一符号;
所述第一设备从所述第三设备接收所述第三设备确定的所述第一符号。
本申请实施例中,在由第三设备确定第一信道响应的情况下,第二信道响应可以也由第三设备确定。此时第一符号的确定可以由第三设备确定也可以由第一设备确定,在由第三设备确定的情况下,第三设备可以直接基于确定的第一信道响应和第二信道响应,获得第一符号,并向第一设备发送第一符号;在由第一设备确定第一符号的情况下,第三设备可以向第一设备发送第一信道响应和第二信道响应,从而由第一设备基于地动仪信道响应和第二信道响应获得第一符号。
可选地,在一些实施例中,所述根据所述第一信道响应和第二信道响应,获得所述第一符号之后,所述方法还包括:
所述第一设备向所述第三设备发送第二消息,所述第二消息用于承载所述第一符号。
可选地,在一些实施例中,所述根据所述第一信号确定从所述目标设备经过所述第二 设备到达所述第一设备的第一信道响应包括:
根据所述第一信号和第一参数确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
其中,所述第一参数为接收所述第一信号的参数。
可选地,所述第一参数包括以下至少一项:
第三符号的内容;
第三信号发送第三符号的调制方式;
第三信号发送第三符号的长度或符号数;
第三信号发送第三符号的符号间隔;
第三信号发送第三符号的波形;
第三信号发送第三符号的中心频率;
第三信号发送第三符号的带宽;
第一配置的至少部分内容,所述第一配置用于发送所述第一信号;
其中,所述第三符号用于生成所述第一信号。
可选地,所述调制方式可以包括PSK、开关键控(On-Off Keying,OOK)和FSK等。
可选地,第三符号的波形可以包括单载波的方波、滚降余弦波、sinc波和正弦波等;也可以包括多载波的正交频分复用(Orthogonal frequency division multiplex,OFDM)、(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,DFT-S-OFDM)、正交时频空间(Orthogonal Time Frequency Space,OTFS)。
可选地,所述第一配置包括以下至少一项:
发送所述第一信号的可用反射系数;
所述第一信号距离所述第二信号的第一部分的结束时刻的间隔时间;
所述第一信号距离第四信号的第一部分的结束时刻的间隔时间,或者,所述第一信号距离第四信号的第二部分的结束时刻的间隔时间;
所述第一信号的长度;
反射系数的调整间隔;
调制符号与反射系数的映射关系;
调制方式;
所述第一信号的中心频率,或者所述第一信号与特定参考信号的频率偏移;
所述第一信号的带宽;
是否由所述第二设备根据第二信号中的第一射频信号自主生成第三符号的第一指示信息;
第一目标信息,所述第一目标信息用于根据第二信号中的第一射频信号自主生成第三符号;
目标特征信息,所述目标标识信息用于表征所述第一信号结束或所述待传输信息发送 结束;
调制符号集合;
信号放大系数;
中继模式;
其中,所述第二信号的第一部分用于指示所述第二设备开始发送所述第一信号,所述第四信号的第一部分用于指示所述第二设备开始发送所述第三信号,所述第二信号的第二部分用于生成所述第三信号。
本申请实施例中,上述第一配置可以通过上述第二信号或所述第四符号指示,也可以由协议约定,在此不做进一步的限定。
可选地,上述第一目标信息可以包括以下至少一项:第五符号的内容、第五符号的间隔、第五符号的调制方式(如OOK、ASK、FSK等)以及第五符号与反射系数的映射关系。
可选地,第二信号的第一部分可以包括第二符号,用于指示发送第二信号的第二部分。由于第二符号是为所有设备发送的,某些第二设备(BSC设备)可能在第二符号结束前完成了所有信息的传输,此时BSC设备可以以约定的符号(或反射系数),或约定的符号序列(反射系数序列)作为结束符。结束符可能使用的是没有定义反射系数和符号映射关系的反射系数。也就是说,上述第一目标信息用于指示上述结束符。
需要说明的是,上述第二信号包括的第二符号的数量可以根据实际需要进行设置,例如,在一些实施例中,第二信号的第一部分可以包括一个或多个第二符号,当第二信号的第一部分包括多个第二符号的情况下,可以理解为第二信号的第一部分包括第二符号集合。针对其他符号的数量的描述与第二符号类似,后续不再赘述。
可选地,在一些实施例中,所述第一参数由所述第三设备指示或协议约定。
例如,在第三设备发送第二信号之前,第三设备向第一设备发送消息,指示该第一参数。或者,第三设备通过的第二符号指示第一参数。
可选地,在一些实施例中,在第二信号和第四信号为相互独立的信号。所述第二信号的定义如下:所述第二信号包括第一部分和第二部分,其中,所述第二信号的第一部分包括用于指示开始发送所述第二部分的第二符号,所述第二信号的第二部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号,所述第一射频信号用于调制和发送第三符号。
可选地,上述第一射频信号可以为连续载波。
可选地,在一些实施例中,所述第一信号满足以下至少一项:
所述第一信号由所述第二设备基于接收到的第二信号反向散射生成;
所述第一信号由所述第二设备基于接收到的第二信号进行信号放大得到;
所述第一信号为所述第二设备对接收到的所述第二信号进行幅度和/或相位调整后得到;
所述第一信号为所述第二设备对所述第二信号解码,并基于解码获得的内容重新生成;
所述第一信号为所述第二设备对所述第二信号解码,基于解码获得的内容重新生成信号,并对重新生成的信号进行幅度和/或相位调整后得到。
可选地,在一些实施例中,所述第四信号满足以下任意一项:
所述第四信号包括第一部分和第二部分,所述第一部分包括用于指示开始发送所述第二部分的第四符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号;
所述第四信号包括第一部分、第二部分和第三部分,所述第四信号的第一部分包括用于指示开始发送的第二符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号,所述第三部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号。
本申请实施例中,上述第四信号的第一部分、第四信号的第二部分和第四信号的第三部分可以连续放置,此时第二设备检测到第四信号的第一部分后,接连发送第三信号和第一信号。此外,上述第四信号的第一部分和第四信号的第二部分可以连续放置而第四信号的第三部分存在第一间隔,此时,第二设备检测到第四信号的第一部分结束后,发送第三信号,然后经过第一间隔后发送第一信号。其中,该第一间隔可以为第一配置的可选参数。
为了更好的理解本申请,以下通过一些具体实例进行详细说明。
可选地,在一些实施例中,针对单基地BSC多址接入。本实施例中,考虑RF射频源与接收端为相同的设备,可以是基站、读写器、终端设备和中继等,以下称之为第一设备,BSC设备为第二设备。
1、(信道估计)第二设备发送第三信号,第一设备检测第三信号进行信道估计。具体可以包括以下流程:
第一设备向第二设备发送第四信号,所述第四信号包括第一部分和第二部分,其中第一部分包含第四符号,第二部分包含第五符号或CW。
第二设备检测到第四信号的第一部分(或第四符号)结束后,以第二配置发送第三信号,其中第三信号由第四信号的第二部分反向散射(backscatter)生成。其中,所述第二配置可以由第四符号指示,或约定的默认值。
第一设备接收第三信号,获得从第一设备出发,经过(各个)第二设备反向散射,到达第一设备的第二信道响应(包括增益值和时延)。
2、(信息传输及检测)第二设备发送第一信号,第一设备根据接收到的第三信号和第一信号得到第二设备发送的信息。具体包括以下流程:
第一设备向第二设备发送第二信号,所述第二信号包括第一部分和第二部分,其中第一部分包含第二符号,第二部分包含第三符号或CW。
第二设备检测到第二信号的第一部分(或第二符号)结束后,以第一配置发送第一信号,其中,第一信号承载了第二设备的待传输信息(即第一符号),由对第二信号的第二 部分反向散射生成。其中,所述第一配置可以由第二符号指示,或约定的默认值。第二符号为可选,其作用为告知第二设备开始反向散射信号的时间,或者而作为起始符。例如第二信号和第四信号进行合并,即采用增强的第四信号,第四符号、第五符号、第三符号连续放置时,无第二符号。
第一设备接收第一信号,获得从第一设备出发,经过(各个)第二设备反向散射,到达第一设备的第一信道响应(包括增益值和时延)。
第一设备根据第二信道响应和第一信道响应,获得第一符号,完成对第二设备发送信息的检测。
可选地,第四信号和第二信号可以合并,即发送增强的第四信号,包括第一部分,第二部分和第三部分,分别包含第四符号、第五符号或CW、第三符号或CW,无第二符号,其中,第二配置和/或第一配置可由第四符号指示,或约定的默认值。
此时,可以放置的位置可以包括以下两种情况:
情况1,第一部分、第二部分和第三部分连续放置,此时,第二设备检测到第一部分结束后,接连发送第三信号和第一信号。
情况2,第一部分与第二部分连续放置,而第二部分与第三部分之间存在第一间隔,此时,第二设备检测到第一部分结束后,发送第三信号,然后经过第一间隔发送第一信号。所述第一间隔为第一配置的可选参数。
可选地,在一些实施例中,针对双基地BSC多址接入。本实施例中,考虑RF射频源与接收端为不同设备,可以是基站、读写器、终端设备和中继等,以下称接收端为第一设备,称RF射频源为第三设备,BSC设备为第二设备。
1、(信道估计)第二设备发送第三信号,第一设备检测第三信号进行信道估计。具体可以包括以下流程:
第三设备向第二设备发送第四信号,所述第四信号包括第一部分和第二部分,其中第一部分包含第四符号,第二部分包含第五符号或CW
第二设备检测到第四信号的第一部分(或第四符号)结束后,以第二配置发送第三信号,其中第三信号由第四信号的第二部分反向散射生成。其中,所述第二配置可以由第四符号指示,或约定的默认值
第一设备接收第三信号,具体可以包括以下情况:
情况1(由第一设备确定第二信道响应):第一设备根据第二参数,获得从第三设备出发,经过(各个)第二设备反向散射,到达第一设备的第二信道响应(包括增益值和时延)。可选地,在发送第四信号之前,第三设备向第一设备发送消息1,指示获得第二信道响应所需第二参数;或,第一设备检测第四符号,获得第二参数;或,第二参数是约定值。可选地,在获得第二信道响应后,第一设备向第三设备发送消息2,所述消息2承载第二信道响应。
情况2(由第三设备确定第二信道响应):第一设备向第三设备发送消息3,其中,消 息3承载第三信号的部分或全部内容;第三设备获得从第三设备出发,经过(各个)第二设备反向散射,到达第一设备的第二信道响应(包括增益值和时延)。可选地,在获得第二信道响应后,第三设备向第一设备发送消息4,所述消息4承载第二信道响应。
2、(信息传输及检测):第二设备发送第一信号,第一或第一设备根据接收到的第三信号和第一信号得到第一设备发送的信息。具体包括以下流程:
第三设备向第二设备发送第二信号,所述第二信号包括第一部分和第二部分,其中第一部分包含第二符号,第二部分包含第三符号或CW。
第二设备检测到第二信号的第一部分(或第二符号)结束后,以第一配置发送第一信号,其中,第一信号承载了第二设备待传输的信息(第一符号),由对第二信号的第二部分反向散射生成。其中,所述第一配置可以由第二符号指示,或约定的默认值。
第一设备接收第一信号,具体可以包括以下情况:
情况1(由第一设备确定第一信道响应及第一符号):第一设备根据第一参数获得从第三设备出发,经过(各个)第二设备反向散射,到达第一设备的第一信道响应(包括增益值和时延);第一设备根据第二信道响应和第一信道响应,获得第一符号,完成对第一设备发送信息的检测。
可选地,在获得第一符号后,第一设备向第三设备发送消息5,所述消息5承载第一符号;
可选地,在发送第二信号之前,第三设备向第一设备发送消息6,指示获得第一信道响应所需第一参数;或,第一设备检测第二符号,获得第一参数;或,第一参数是约定值。
情况2(由第一设备确定第一信道响应,第三设备确定第一符号):第一设备根据第一参数,获得从第三设备出发,经过(各个)第二设备反向散射,到达第一设备的第一信道响应(包括增益值和时延);在获得第一信道响应后,第一设备向第三设备发送消息7,所述消息7承载第一信道响应;第三设备根据第二信道响应和第一信道响应,获得第一符号,完成对第一设备发送信息的检测。
可选地,在获得第一符号后,第三设备向第一设备发送消息8,所述消息8承载第一符号。
可选地,在发送第二信号之前,第三设备向第一设备发送消息6,指示获得第一信道响应所需第一参数;或,第一设备检测第二符号,获得第一参数;或,第一参数是约定值。
情况3(由第三设备确定第一信道响应及第一符号):第一设备向第三设备发送消息9,其中,消息9承载第一信号的部分或全部内容;第三设备获得从第三设备出发,经过(各个)第二设备反向散射,到达第一设备的第一信道响应(包括增益值和时延);第三设备根据第二信道响应和第一信道响应,获得第一符号,完成对第一设备发送信息的检测。
可选地,在获得第一符号后,第三设备向第一设备发送消息10,所述消息10承载第一符号。
情况4(由第三设备确定第一信道响应,第一设备确定第一符号):第一设备向第三 设备发送消息9,其中,消息9承载第一信号的部分或全部内容;第三设备获得从第三设备出发,经过(各个)第二设备反向散射,到达第一设备的第一信道响应(包括增益值和时延);在获得第一信道响应后,第三设备向第一设备发送消息11,所述消息11承载第一信道响应;第一设备根据第二信道响应和第一信道响应,获得第一符号,完成对第一设备发送信息的检测。
可选地,在获得第一符号后,第一设备向第三设备发送消息12,所述消息12承载第一符号。
需要说明的是,在第二设备为上述BSC设备时,上述第一配置可以包括以下至少一项:
发送所述第一信号的可用反射系数;
所述第一信号距离所述第二信号的第一部分的结束时刻的间隔时间;
所述第一信号距离第四信号的第一部分的结束时刻的间隔时间,或者,所述第一信号距离第四信号的第二部分的结束时刻的间隔时间;
所述第一信号的长度;
反射系数的调整间隔;
调制符号与反射系数的映射关系;
调制方式;
所述第一信号的中心频率,或者所述第一信号与特定参考信号的频率偏移;
所述第一信号的带宽;
是否由所述第二设备根据第二信号中的第一射频信号自主生成第三符号的第一指示信息;
第一目标信息,所述第一目标信息用于根据第二信号中的第一射频信号自主生成第三符号;
目标特征信息,所述目标标识信息用于表征所述第一信号结束或所述待传输信息发送结束;
其中,所述第二信号的第一部分用于指示所述第二设备开始发送所述第一信号,所述第四信号的第一部分用于指示所述第二设备开始发送所述第三信号,所述第二信号的第二部分用于生成所述第三信号。
可选地,在第二设备为上述BSC设备时,上述第二配置可以包括以下至少一项
发送第三信号采用的反射系数;
发送第三信号的模式;
第三信号距离第二信号的第一部分或第四信号的第一部分结束的间隔时间,所述第二信号的第一部分或第四信号的第一部分用于指示所述第二设备开始发送第三信号;
第三信号的长度;
第三信号的中心频率;
第三信号的带宽;
是否由所述第二设备根据第四信号中的第二射频信号自主生成第五符号的第二指示信息;
第二目标信息,所述第二目标信息用于根据第四信号中的第二射频信号自主生成第五符号;
其中,所述第二目标信号为所述第二信号或所述第四信号,所述第二信号用于发送所述第一信号;所述第四信号的第一部分用于指示开始发送所述第四信号的第二部分,第四信号的第二部分用于生成所述第三信号,所述第四信号的第二部分包括所述第五符号或所述第二射频信号。
可选地,在一些实施例中,上述传输方法可以应用在初始接入和数据传输流程。
在实际应用中,无论是初始接入阶段,比如RFID中发送RN16的过程,还是后续的数据传输阶段,比如读取EPC等信息,都可以通过灵活使用上述单基地以及双基地的场景中的步骤来实现相应的功能。下面以单基地的情况为例。
1、初始接入:第一设备指示符合条件的第二设备发送设备的标识(Identity,ID)信息(比如用于临时识别设备的RN16)。
可选地第一设备可以通过第二信号/第四信号的第一部分或者发送另外的消息来指示匹配条件,比如Select命令;
可选地,取决于第一信号可承载的第一符号数量(由第一配置决定)和ID的长度,第二设备可以将ID分成多个第一符号,通过多次“信息传输及检测”,也就是多个第一信号发送给第一设备。
可选地,第一设备在获得足够数量的第一符号后,将其拼接还原为第二设备的ID。
与传统的初始接入方法相比,比如RFID中发送RN16、竞争接入机会的过程,本申请实施例的传输方法可以允许多个BSC设备同时发送RN16,而不会产生因为信号的碰撞而发送失败,也可以省去BSC设备等待的过程(等待计数器为0),最终大幅提高初始接入成功的概率、降低时延以及能量开销。
2、数据传输:第一设备基于已经获取的第二设备的ID信息,可进一步指示感兴趣的设备来进行数据传输。
可选地,第一设备可以通过第四信号/第二信号的第一部分或者发送另外的消息来指示匹配条件,比如Select命令;或者直接指示后续调度的第二设备ID(或ID集合)。
可选地,取决于第一信号可承载的第一符号数量(由第一配置决定)和待传输数据的长度,第二设备可将待传输的数据分成多个第一符号(或集合),通过多次“信息传输及检测”,也就是多个第一信号发送给第一设备。
可选地,第一设备在获得足够数量的第一符号后,将其拼接还原为第二设备发送的数据。
可选地,在正式的数据传输开始前,采用与获取设备ID类似的步骤,第一设备可要 求第二设备上报其他信息,比如待传数据的长度、电量等,并基于这些信息调度合适的第二设备参与数据传输。
这样,可以提高调度的效率,比如在同一次数据传输过程中选择数据量相近的第二设备,以避免部分设备传输完成后长时间空闲等待。
与传统的数据传输方法相比,比如RFID中的TDMA方式,本申请实施例提供的传输方法可以允许多个BSC设备同时发送数据,大幅减少了等待时间,降低接入时延。
可选地,在一些实施例中,上述第二设备除了可以为BSC设备,还可以为中继。该中继发可以包括直接转发中继和再生转发中继。
针对直接转发中继,中继将接收到的信号,经过放大后,直接转发。因此,若中继对信号的放大系数为α,Tx到中继的信道增益值为h1、时延为τ1,中继到Rx的信道增益值为h2,时延为τ2,那么,在未调制符号时,Tx-中继-Rx的信道增益值为αh1h2、时延为τ12
可选地,当Tx发出的信号到达中继时,中继通过调整转发信号的幅度和/或相位,也可以实现BSC设备调制反射系数相同的效果,把自身传输符号x调制到原有αh1h2上,并且这一路径的时延固定为τ12
需要说明的是,以上假设的是理想情况,考虑中继的转发时延τ为0。对于非理想情况,相当于在最终的时延τ12上再加入τ′。
针对再生转发中继,中继是将接收到的信号进行解码,根据解码的内容重新生成Tx发出的信号。因此,Rx接收到信号时,其信号没有经过从Tx到中继这一路径的增益,但经历这一路径的时延。同样地,若中继对信号的放大系数为α,Tx到中继的信道增益值为h1、时延为τ1,中继到Rx的信道增益值为h2,时延为τ2,那么,在未调制符号时,Tx-中继-Rx的信道增益值为αh2、时延为τ12
类似的,当Tx发出的信号到达中继时,中继对接收到的信号进行解码,根据解码的内容重新生成Tx发出的信号,然后在发送时调整信号的幅度和/或相位,也可以实现BSC设备调制反射系数相同的效果,把自身传输符号x调制到原有αh2上,并且这一路径的时延固定为τ12
需要说明的是,以上假设的是理想情况,考虑中继的转发时延τ为0。对于非理想情况,相当于在最终的时延τ12上再加入τ′。
在本申请实施例中,相对于BSC设备,第一配置和第二配置具有以下区别:
删除反射系数相关参数;增加调制符号集合、信号放大系数和中继模式。
例如,所述第一配置包括以下至少一项:
所述第一信号距离所述第二信号的第一部分的结束时刻的间隔时间;
所述第一信号距离第四信号的第一部分的结束时刻的间隔时间,或者,所述第一信号距离第四信号的第二部分的结束时刻的间隔时间;
所述第一信号的长度;
调制方式;
所述第一信号的中心频率,或者所述第一信号与特定参考信号的频率偏移;
所述第一信号的带宽;
是否由所述第二设备根据第二信号中的第一射频信号自主生成第三符号的第一指示信息;
第一目标信息,所述第一目标信息用于根据第二信号中的第一射频信号自主生成第三符号;
目标特征信息,所述目标标识信息用于表征所述第一信号结束或所述待传输信息发送结束;
调制符号集合;
信号放大系数;
中继模式;
其中,所述第二信号的第一部分用于指示所述第二设备开始发送所述第一信号,所述第四信号的第一部分用于指示所述第二设备开始发送所述第三信号,所述第二信号的第二部分用于生成所述第三信号。
第二配置包括以下至少一项::
发送第三信号的模式;
第三信号距离第二信号的第一部分或第四信号的第一部分结束的间隔时间,所述第二信号的第一部分或第四信号的第一部分用于指示所述第二设备开始发送第三信号;
第三信号的长度;
第三信号的中心频率;
第三信号的带宽;
是否由所述第二设备根据第四信号中的第二射频信号自主生成第五符号的第二指示信息;
第二目标信息,所述第二目标信息用于根据第四信号中的第二射频信号自主生成第五符号;
静默参数,所述静默参数用于确定是否发送所述第一消息;
调制符号集合;
信号放大系数;
中继模式;
其中,所述第二目标信号为所述第二信号或所述第四信号,所述第二信号用于发送所述第一信号;所述第四信号的第一部分用于指示开始发送所述第四信号的第二部分,第四信号的第二部分用于生成所述第三信号,所述第四信号的第二部分包括所述第五符号或所述第二射频信号。
需要说明的是,对于一般的普通终端(Legacy UE)也能模仿中继或者BSC设备进行时延域多址接入,相当于一个不但能自主生成训练序列,还能自主生成载波信号的BSC 设备。与上述BSC设备的实施例的区别在于第三信号和第一信号由UE自主产生,因此,第四信号和第二信号只有第一部分。此时,相较于BSC设备,第二配置和第一配置的有以下区别:
删除反射系数相关参数;增加调制符号集合;包含第二参数和第一参数的部分或全部内容。
例如,所述第一配置包括以下至少一项:
所述第一信号距离所述第二信号的第一部分的结束时刻的间隔时间;
所述第一信号距离第四信号的第一部分的结束时刻的间隔时间,或者,所述第一信号距离第四信号的第二部分的结束时刻的间隔时间;
所述第一信号的长度;
调制方式;
所述第一信号的中心频率,或者所述第一信号与特定参考信号的频率偏移;
所述第一信号的带宽;
是否由所述第二设备根据第二信号中的第一射频信号自主生成第三符号的第一指示信息;
第一目标信息,所述第一目标信息用于根据第二信号中的第一射频信号自主生成第三符号;
目标特征信息,所述目标标识信息用于表征所述第一信号结束或所述待传输信息发送结束;
调制符号集合;
第二参数的部分或全部内容;
第一参数的部分或全部内容;
其中,所述第二信号的第一部分用于指示所述第二设备开始发送所述第一信号,所述第四信号的第一部分用于指示所述第二设备开始发送所述第三信号,所述第二信号的第二部分用于生成所述第三信号。
第二配置包括以下至少一项::
发送第三信号的模式;
第三信号距离第二信号的第一部分或第四信号的第一部分结束的间隔时间,所述第二信号的第一部分或第四信号的第一部分用于指示所述第二设备开始发送第三信号;
第三信号的长度;
第三信号的中心频率;
第三信号的带宽;
是否由所述第二设备根据第四信号中的第二射频信号自主生成第五符号的第二指示信息;
第二目标信息,所述第二目标信息用于根据第四信号中的第二射频信号自主生成第五 符号;
静默参数,所述静默参数用于确定是否发送所述第一消息;
调制符号集合;
第二参数的部分或全部内容;
第一参数的部分或全部内容;
其中,所述第二目标信号为所述第二信号或所述第四信号,所述第二信号用于发送所述第一信号;所述第四信号的第一部分用于指示开始发送所述第四信号的第二部分,第四信号的第二部分用于生成所述第三信号,所述第四信号的第二部分包括所述第五符号或所述第二射频信号。
可选地,该第二参数可以理解为用于接收第三信号的参数,具体可以包括以下至少一项:
第五符号的内容;
第四信号发送第五符号的调制方式,如PSK、OOK、FSK等;
第四信号发送第五符号的长度或符号数;
第四信号发送第五符号的符号间隔;
第四信号发送第五符号的波形,如单载波的方波、滚降余弦波、sinc波、正弦波等;多载波的OFDM、DFT-S-OFDM、OTFS等;
第四信号发送第五符号的中心频率;
第四信号发送第五符号的带宽;
第二配置的部分或全部内容。
参照图7,本申请实施例还提供了一种传输方法,如图7所示,该传输方法包括:
步骤701,第二设备从目标设备接收第二信号或第四信号,所述目标设备包括第一设备或第三设备;
步骤702,第二设备基于所述第二信号或第四信号向所述第一设备发送第一信号,所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息;
其中,所述第一信号用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应,第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的所述第四信号发送的信号。
可选地,所述第二设备基于所述第二信号或第四信号向所述第一设备发送第一信号包括:
所述第二设备基于所述第二信号或第四信号,以第一配置向所述第一设备发送第一信号;
其中,所述第一配置包括以下至少一项:
发送所述第一信号的可用反射系数;
所述第一信号距离所述第二信号的第一部分的结束时刻的间隔时间;
所述第一信号距离第四信号的第一部分的结束时刻的间隔时间,或者,所述第一信号距离第四信号的第二部分的结束时刻的间隔时间;
所述第一信号的长度;
反射系数的调整间隔;
调制符号与反射系数的映射关系;
调制方式;
所述第一信号的中心频率,或者所述第一信号与特定参考信号的频率偏移;
所述第一信号的带宽;
是否由所述第二设备根据第二信号中的第一射频信号自主生成第三符号的第一指示信息;
第一目标信息,所述第一目标信息用于根据第二信号中的第一射频信号自主生成第三符号;
目标特征信息,所述目标标识信息用于表征所述第一信号结束或所述待传输信息发送结束;
调制符号集合;
信号放大系数;
中继模式;
其中,所述第二信号的第一部分用于指示所述第二设备开始发送所述第一信号,所述第四信号的第一部分用于指示所述第二设备开始发送所述第三信号,所述第二信号的第二部分用于生成所述第三信号。
可选地,所述第一配置由所述目标设备指示或者协议约定。
可选地,所述第二信号包括第一部分和第二部分,其中,所述第二信号的第一部分包括用于指示开始发送所述第二部分的第二符号,所述第二信号的第二部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号,所述第一射频信号用于调制和发送第三符号。
可选地,所述第一信号满足以下至少一项:
所述第一信号由所述第二设备基于接收到的第二信号反向散射生成;
所述第一信号由所述第二设备基于接收到的第二信号进行信号放大得到;
所述第一信号为所述第二设备对接收到的所述第二信号进行幅度和/或相位调整后得到;
所述第一信号为所述第二设备对所述第二信号解码,并基于解码获得的内容重新生成;
所述第一信号为所述第二设备对所述第二信号解码,基于解码获得的内容重新生成信号,并对重新生成的信号进行幅度和/或相位调整后得到。
可选地,所述第四信号满足以下任意一项:
所述第四信号包括第一部分和第二部分,所述第一部分包括用于指示开始发送所述第二部分的第四符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号;
所述第四信号包括第一部分、第二部分和第三部分,所述第四信号的第一部分包括用于指示开始发送的第二符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号,所述第三部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号。
参照图8,本申请实施例还提供了一种传输方法,如图8所示,该传输方法包括:
步骤801,第三设备向第二设备发送第二信号和/或第四信号,所述第二信号或第四信号用于向第一设备发送的第一信号,所述第一信号携带有第一符号,所述第一符号为所述第二设备待传输的信息;
步骤802,所述第三设备从所述第一设备执行第二操作,所述第二操作包括以下任一项:
从所述第一设备接收基于所述第一信号确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;
从所述第一设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;
其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第一符号为所述第二设备的待传输信息,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述第三设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述第三设备接收到的第四信号发送的信号。
可选地,所述第三设备从所述第一设备执行第二操作之后,所述方法还包括:
所述第三设备根据所述第一信道响应和所述第二信道响应,获得所述第一符号;
所述第三设备向所述第一设备发送所述第一符号。
可选地,所述从所述第二设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应之后,所述方法还包括:
所述第三设备向所述第一设备发送所述第一信道响应。
可选地,所述第三设备向所述第一设备发送所述第一信道响应之后,所述方法还包括:
所述第三设备从所述第一设备接收所述第一符号。
可选地,所述方法还包括:
所述第三设备向所述第一设备发送第一配置,所述第一配置用于发送所述第一信号,所述第一配置包括以下至少一项:
发送所述第一信号的可用反射系数;
所述第一信号距离所述第二信号的第一部分的结束时刻的间隔时间;
所述第一信号距离第四信号的第一部分的结束时刻的间隔时间,或者,所述第一信号距离第四信号的第二部分的结束时刻的间隔时间;
所述第一信号的长度;
反射系数的调整间隔;
调制符号与反射系数的映射关系;
调制方式;
所述第一信号的中心频率,或者所述第一信号与特定参考信号的频率偏移;
所述第一信号的带宽;
是否由所述第二设备根据第二信号中的第一射频信号自主生成第三符号的第一指示信息;
第一目标信息,所述第一目标信息用于根据第二信号中的第一射频信号自主生成第三符号;
目标特征信息,所述目标标识信息用于表征所述第一信号结束或所述待传输信息发送结束;
调制符号集合;
信号放大系数;
中继模式;
其中,所述第二信号的第一部分用于指示所述第二设备开始发送所述第一信号,所述第四信号的第一部分用于指示所述第二设备开始发送所述第三信号,所述第二信号的第二部分用于生成所述第三信号。
可选地,所述第二信号包括第一部分和第二部分,其中,所述第二信号的第一部分包括用于指示开始发送所述第二部分的第二符号,所述第二信号的第二部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号,所述第一射频信号用于调制和发送第三符号。
可选地,所述第一信号满足以下至少一项:
所述第一信号由所述第二设备基于接收到的第二信号反向散射生成;
所述第一信号由所述第二设备基于接收到的第二信号进行信号放大得到;
所述第一信号为所述第二设备对接收到的所述第二信号进行幅度和/或相位调整后得到;
所述第一信号为所述第二设备对所述第二信号解码,并基于解码获得的内容重新生成;
所述第一信号为所述第二设备对所述第二信号解码,基于解码获得的内容重新生成信号,并对重新生成的信号进行幅度和/或相位调整后得到。
可选地,所述第四信号满足以下任意一项:
所述第四信号包括第一部分和第二部分,所述第一部分包括用于指示开始发送所述第二部分的第四符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射 频信号;
所述第四信号包括第一部分、第二部分和第三部分,所述第四信号的第一部分包括用于指示开始发送的第二符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号,所述第三部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号。
本申请实施例提供的传输方法,执行主体可以为传输装置。本申请实施例中以传输装置执行传输方法为例,说明本申请实施例提供的传输装置。
参照图9,本申请实施例还提供了一种传输装置,如图9所示,该传输装置900包括:
第一接收模块901,用于从第二设备接收第一信号,所述第一信号为基于从目标设备接收到的第二信号发送的信号,且所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息,所述目标设备包括第一设备或第三设备;
第一执行模块902,用于执行第一操作,所述第一操作包括以下任一项:
根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
向所述第三设备发送第一消息,所述第一消息用于承载所述第一信号的至少部分内容,所述至少部分内容用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
可选地,所述传输装置还包括以下任一项:
第一确定模块,用于根据所述第一信道响应和第二信道响应,获得所述第一符号;
第一发送模块,用于向所述第三设备发送所述第一信道响应。
可选地,第一接收模块901,还用于从所述第三设备接收所述第三设备基于所述第一信道响应和所述第二信道响应获得的所述第一符号。
可选地,所述第一执行模块902还用于执行以下任一项:
从所述第三设备接收所述第三设备确定的所述第一信道响应,并根据所述第一信道响应和所述第二信道响应,获得所述第一符号;
从所述第三设备接收所述第三设备确定的所述第一符号。
可选地,所述传输装置还包括:
第一发送模块,用于向所述第三设备发送第二消息,所述第二消息用于承载所述第一符号。
可选地,所述根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应包括:
根据所述第一信号和第一参数确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
其中,所述第一参数为接收所述第一信号的参数。
可选地,所述第一参数包括以下至少一项:
第三符号的内容;
第三信号发送第三符号的调制方式;
第三信号发送第三符号的长度或符号数;
第三信号发送第三符号的符号间隔;
第三信号发送第三符号的波形;
第三信号发送第三符号的中心频率;
第三信号发送第三符号的带宽;
第一配置的至少部分内容,所述第一配置用于发送所述第一信号;
其中,所述第三符号用于生成所述第一信号。
可选地,所述第一配置包括以下至少一项:
发送所述第一信号的可用反射系数;
所述第一信号距离所述第二信号的第一部分的结束时刻的间隔时间;
所述第一信号距离第四信号的第一部分的结束时刻的间隔时间,或者,所述第一信号距离第四信号的第二部分的结束时刻的间隔时间;
所述第一信号的长度;
反射系数的调整间隔;
调制符号与反射系数的映射关系;
调制方式;
所述第一信号的中心频率,或者所述第一信号与特定参考信号的频率偏移;
所述第一信号的带宽;
是否由所述第二设备根据第二信号中的第一射频信号自主生成第三符号的第一指示信息;
第一目标信息,所述第一目标信息用于根据第二信号中的第一射频信号自主生成第三符号;
目标特征信息,所述目标标识信息用于表征所述第一信号结束或所述待传输信息发送结束;
调制符号集合;
信号放大系数;
中继模式;
其中,所述第二信号的第一部分用于指示所述第二设备开始发送所述第一信号,所述第四信号的第一部分用于指示所述第二设备开始发送所述第三信号,所述第二信号的第二 部分用于生成所述第三信号。
可选地,所述第一参数由所述第三设备指示或协议约定。
可选地,所述第二信号包括第一部分和第二部分,其中,所述第二信号的第一部分包括用于指示开始发送所述第二部分的第二符号,所述第二信号的第二部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号,所述第一射频信号用于调制和发送第三符号。
可选地,所述第一信号满足以下至少一项:
所述第一信号由所述第二设备基于接收到的第二信号反向散射生成;
所述第一信号由所述第二设备基于接收到的第二信号进行信号放大得到;
所述第一信号为所述第二设备对接收到的所述第二信号进行幅度和/或相位调整后得到;
所述第一信号为所述第二设备对所述第二信号解码,并基于解码获得的内容重新生成;
所述第一信号为所述第二设备对所述第二信号解码,基于解码获得的内容重新生成信号,并对重新生成的信号进行幅度和/或相位调整后得到。
可选地,所述第四信号满足以下任意一项:
所述第四信号包括第一部分和第二部分,所述第一部分包括用于指示开始发送所述第二部分的第四符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号;
所述第四信号包括第一部分、第二部分和第三部分,所述第四信号的第一部分包括用于指示开始发送的第二符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号,所述第三部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号。
参照图10,本申请实施例还提供了一种传输装置,如图10所示,该传输装置1000包括:
第二接收模块1001,用于从目标设备接收第二信号,所述目标设备包括第一设备或第三设备;
第二发送模块1002,用于基于所述第二信号向所述第一设备发送第一信号,所述第一信号携带有第一符号,所述第一符号为第二设备的待传输信息;
其中,所述第一信号用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应,第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
可选地,所述第二发送模块1002具体用于:基于所述第二信号或第四信号,以第一配置向所述第一设备发送第一信号;
其中,所述第一配置包括以下至少一项:
发送所述第一信号的可用反射系数;
所述第一信号距离所述第二信号的第一部分的结束时刻的间隔时间;
所述第一信号距离第四信号的第一部分的结束时刻的间隔时间,或者,所述第一信号距离第四信号的第二部分的结束时刻的间隔时间;
所述第一信号的长度;
反射系数的调整间隔;
调制符号与反射系数的映射关系;
调制方式;
所述第一信号的中心频率,或者所述第一信号与特定参考信号的频率偏移;
所述第一信号的带宽;
是否由所述第二设备根据第二信号中的第一射频信号自主生成第三符号的第一指示信息;
第一目标信息,所述第一目标信息用于根据第二信号中的第一射频信号自主生成第三符号;
目标特征信息,所述目标标识信息用于表征所述第一信号结束或所述待传输信息发送结束;
调制符号集合;
信号放大系数;
中继模式;
其中,所述第二信号的第一部分用于指示所述第二设备开始发送所述第一信号,所述第四信号的第一部分用于指示所述第二设备开始发送所述第三信号,所述第二信号的第二部分用于生成所述第三信号。
可选地,所述第一配置由所述目标设备指示或者协议约定。
可选地,所述第二信号包括第一部分和第二部分,其中,所述第二信号的第一部分包括用于指示开始发送所述第二部分的第二符号,所述第二信号的第二部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号,所述第一射频信号用于调制和发送第三符号。
可选地,所述第一信号满足以下至少一项:
所述第一信号由所述第二设备基于接收到的第二信号反向散射生成;
所述第一信号由所述第二设备基于接收到的第二信号进行信号放大得到;
所述第一信号为所述第二设备对接收到的所述第二信号进行幅度和/或相位调整后得到;
所述第一信号为所述第二设备对所述第二信号解码,并基于解码获得的内容重新生成;
所述第一信号为所述第二设备对所述第二信号解码,基于解码获得的内容重新生成信 号,并对重新生成的信号进行幅度和/或相位调整后得到。
可选地,所述第四信号满足以下任意一项:
所述第四信号包括第一部分和第二部分,所述第一部分包括用于指示开始发送所述第二部分的第四符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号;
所述第四信号包括第一部分、第二部分和第三部分,所述第四信号的第一部分包括用于指示开始发送的第二符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号,所述第三部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号。
参照图11,本申请实施例还提供了一种传输装置,如图11所示,该传输装置1100包括:
第三发送模块1101,用于向第二设备发送第二信号,所述第二信号用于向第一设备发送的第一信号,所述第一信号携带有第一符号,所述第一符号为所述第二设备待传输的信息;
第二执行模块1102,用于从所述第一设备执行第二操作,所述第二操作包括以下任一项:
从所述第一设备接收基于所述第一信号确定从第三设备经过所述第二设备到达所述第一设备的第一信道响应;
从所述第一设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;
其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第一符号为所述第二设备的待传输信息,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述第三设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述第三设备接收到的第四信号发送的信号。
可选地,所述传输装置还包括:
第二确定模块,用于根据所述第一信道响应和所述第二信道响应,获得所述第一符号;
所述第三发送模块1101,还用于向所述第一设备发送所述第一符号。
可选地,所述从所述第二设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应之后,所述方法还包括:
所述第三设备向所述第一设备发送所述第一信道响应。
可选地,所述传输装置还包括:
第三接收模块,用于从所述第一设备接收所述第一符号。
可选地,所述第三发送模块1101,还用于向所述第一设备发送第一配置,所述第一配置用于发送所述第一信号,所述第一配置包括以下至少一项:
发送所述第一信号的可用反射系数;
所述第一信号距离所述第二信号的第一部分的结束时刻的间隔时间;
所述第一信号距离第四信号的第一部分的结束时刻的间隔时间,或者,所述第一信号距离第四信号的第二部分的结束时刻的间隔时间;
所述第一信号的长度;
反射系数的调整间隔;
调制符号与反射系数的映射关系;
调制方式;
所述第一信号的中心频率,或者所述第一信号与特定参考信号的频率偏移;
所述第一信号的带宽;
是否由所述第二设备根据第二信号中的第一射频信号自主生成第三符号的第一指示信息;
第一目标信息,所述第一目标信息用于根据第二信号中的第一射频信号自主生成第三符号;
目标特征信息,所述目标标识信息用于表征所述第一信号结束或所述待传输信息发送结束;
调制符号集合;
信号放大系数;
中继模式;
其中,所述第二信号的第一部分用于指示所述第二设备开始发送所述第一信号,所述第四信号的第一部分用于指示所述第二设备开始发送所述第三信号,所述第二信号的第二部分用于生成所述第三信号。
可选地,所述第二信号包括第一部分和第二部分,其中,所述第二信号的第一部分包括用于指示开始发送所述第二部分的第二符号,所述第二信号的第二部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号,所述第一射频信号用于调制和发送第三符号。
可选地,所述第一信号满足以下至少一项:
所述第一信号由所述第二设备基于接收到的第二信号反向散射生成;
所述第一信号由所述第二设备基于接收到的第二信号进行信号放大得到;
所述第一信号为所述第二设备对接收到的所述第二信号进行幅度和/或相位调整后得到;
所述第一信号为所述第二设备对所述第二信号解码,并基于解码获得的内容重新生成;
所述第一信号为所述第二设备对所述第二信号解码,基于解码获得的内容重新生成信号,并对重新生成的信号进行幅度和/或相位调整后得到。
可选地,所述第四信号满足以下任意一项:
所述第四信号包括第一部分和第二部分,所述第一部分包括用于指示开始发送所述第 二部分的第四符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号;
所述第四信号包括第一部分、第二部分和第三部分,所述第四信号的第一部分包括用于指示开始发送的第二符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号,所述第三部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号。
本申请实施例提供的传输方法,执行主体可以为传输装置。本申请实施例中以传输装置执行传输方法为例,说明本申请实施例提供的传输装置。
本申请实施例中的传输装置可以是电子设备,例如具有操作***的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的传输装置能够实现图6至图8的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图12所示,本申请实施例还提供一种通信设备1200,包括处理器1201和存储器1202,存储器1202上存储有可在所述处理器1201上运行的程序或指令,该程序或指令被处理器1201执行时实现上述传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,其中,
在所述终端为第一设备的情况下,所述通信接口用于从第二设备接收第一信号,所述第一信号为基于从目标设备接收到的第二信号发送的信号,且所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息,所述目标设备包括第一设备或第三设备;所述处理器用于执行第一操作,所述第一操作包括以下任一项:根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;向所述第三设备发送第一消息,所述第一消息用于承载所述第一信号的至少部分内容,所述至少部分内容用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
在所述终端为第二设备的情况下,所述通信接口用于从目标设备接收第二信号,所述目标设备包括第一设备或第三设备;基于所述第二信号向所述第一设备发送第一信号,所述第一信号携带有第一符号,所述第一符号为第二设备的待传输信息;其中,所述第一信号用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应,第一信 道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
在所述终端为第三设备的情况下,所述通信接口用于向第二设备发送第二信号,所述第二信号用于向第一设备发送的第一信号,所述第一信号携带有第一符号,所述第一符号为所述第二设备待传输的信息;处理器用于从所述第一设备执行第二操作,所述第二操作包括以下任一项:从所述第一设备接收基于所述第一信号确定从第三设备经过所述第二设备到达所述第一设备的第一信道响应;从所述第一设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第一符号为所述第二设备的待传输信息,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述第三设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述第三设备接收到的第四信号发送的信号。
该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图13为实现本申请实施例的一种终端的硬件结构示意图。
该终端1300包括但不限于:射频单元1301、网络模块1302、音频输出单元1303、输入单元1304、传感器1305、显示单元1306、用户输入单元1307、接口单元1308、存储器1309以及处理器1310等中的至少部分部件。
本领域技术人员可以理解,终端1300还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器1310逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图13中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1304可以包括图形处理器(Graphics Processing Unit,GPU)13041和麦克风13042,图形处理器13041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1306可包括显示面板13061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板13061。用户输入单元1307包括触控面板13071以及其他输入设备13072中的至少一种。触控面板13071,也称为触摸屏。触控面板13071可包括触摸检测装置和触摸控制器两个部分。其他输入设备13072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1301接收来自网络侧设备的下行数据后,可以传输给处理器1310进行处理;另外,射频单元1301可以向网络侧设备发送上行数据。通常,射频 单元1301包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1309可用于存储软件程序或指令以及各种数据。存储器1309可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1309可以包括易失性存储器或非易失性存储器,或者,存储器1309可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1309包括但不限于这些和任意其它适合类型的存储器。
处理器1310可包括一个或多个处理单元;可选的,处理器1310集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作***、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1310中。
其中,在所述终端为第一设备的情况下,所述射频单元1301用于从第二设备接收第一信号,所述第一信号为基于从目标设备接收到的第二信号发送的信号,且所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息,所述目标设备包括第一设备或第三设备;所述处理器1310用于执行第一操作,所述第一操作包括以下任一项:根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;向所述第三设备发送第一消息,所述第一消息用于承载所述第一信号的至少部分内容,所述至少部分内容用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
在所述终端为第二设备的情况下,所述射频单元1301用于从目标设备接收第二信号,所述目标设备包括第一设备或第三设备;基于所述第二信号向所述第一设备发送第一信号,所述第一信号携带有第一符号,所述第一符号为第二设备的待传输信息;其中,所述第一信号用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应,第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所 述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
在所述终端为第三设备的情况下,所述射频单元1301用于向第二设备发送第二信号,所述第二信号用于向第一设备发送的第一信号,所述第一信号携带有第一符号,所述第一符号为所述第二设备待传输的信息;处理器1310用于从所述第一设备执行第二操作,所述第二操作包括以下任一项:从所述第一设备接收基于所述第一信号确定从第三设备经过所述第二设备到达所述第一设备的第一信道响应;从所述第一设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第一符号为所述第二设备的待传输信息,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述第三设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述第三设备接收到的第四信号发送的信号。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,其中,
在所述网络侧设备为第一设备的情况下,所述通信接口用于从第二设备接收第一信号,所述第一信号为基于从目标设备接收到的第二信号发送的信号,且所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息,所述目标设备包括第一设备或第三设备;所述处理器用于执行第一操作,所述第一操作包括以下任一项:根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;向所述第三设备发送第一消息,所述第一消息用于承载所述第一信号的至少部分内容,所述至少部分内容用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
在所述网络侧设备为第二设备的情况下,所述通信接口用于从目标设备接收第二信号,所述目标设备包括第一设备或第三设备;基于所述第二信号向所述第一设备发送第一信号,所述第一信号携带有第一符号,所述第一符号为第二设备的待传输信息;其中,所述第一信号用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应,第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
在所述网络侧设备为第三设备的情况下,所述通信接口用于向第二设备发送第二信号,所述第二信号用于向第一设备发送的第一信号,所述第一信号携带有第一符号,所述第一 符号为所述第二设备待传输的信息;处理器用于从所述第一设备执行第二操作,所述第二操作包括以下任一项:从所述第一设备接收基于所述第一信号确定从第三设备经过所述第二设备到达所述第一设备的第一信道响应;从所述第一设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第一符号为所述第二设备的待传输信息,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述第三设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述第三设备接收到的第四信号发送的信号。
该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图14所示,该网络侧设备1400包括:天线1401、射频装置1402、基带装置1403、处理器1404和存储器1405。天线1401与射频装置1402连接。在上行方向上,射频装置1402通过天线1401接收信息,将接收的信息发送给基带装置1403进行处理。在下行方向上,基带装置1403对要发送的信息进行处理,并发送给射频装置1402,射频装置1402对收到的信息进行处理后经过天线1401发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1403中实现,该基带装置1403包括基带处理器。
基带装置1403例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图14所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1405连接,以调用存储器1405中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1406,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1400还包括:存储在存储器1405上并可在处理器1404上运行的指令或程序,处理器1404调用存储器1405中的指令或程序执行图XX所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信***,包括:第一设备、第二设备及第三设备,所述第一用于执行如图6及上述第一设备侧各个方法实施例的各个过程,所述第二设备用于执行如图7及上述第二设备侧各个方法实施例的各个过程,所述第三设备用于执行如图8及上述第三设备侧各个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种传输方法,包括:
    第一设备从第二设备接收第一信号,所述第一信号为基于从目标设备接收到的第二信号或第四信号发送的信号,且所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息,所述目标设备包括所述第一设备或第三设备;
    所述第一设备执行第一操作,所述第一操作包括以下任一项:
    根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
    向所述第三设备发送第一消息,所述第一消息用于承载所述第一信号的至少部分内容,所述至少部分内容用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
    其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
  2. 根据权利要求1所述的方法,其中,所述根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应之后,所述方法还包括以下任一项:
    所述第一设备根据所述第一信道响应和第二信道响应,获得所述第一符号;
    所述第一设备向所述第三设备发送所述第一信道响应。
  3. 根据权利要求2所述的方法,其中,所述第一设备向所述第三设备发送所述第一信道响应之后,所述方法还包括:
    所述第一设备从所述第三设备接收所述第三设备基于所述第一信道响应和所述第二信道响应获得的所述第一符号。
  4. 根据权利要求1所述的方法,其中,所述向所述第三设备发送第一消息之后,所述方法还包括以下任一项:
    所述第一设备从所述第三设备接收所述第三设备确定的所述第一信道响应,并根据所述第一信道响应和所述第二信道响应,获得所述第一符号;
    所述第一设备从所述第三设备接收所述第三设备确定的所述第一符号。
  5. 根据权利要求2或4所述的方法,其中,根据所述第一信道响应和第二信道响应,获得所述第一符号之后,所述方法还包括:
    所述第一设备向所述第三设备发送第二消息,所述第二消息用于承载所述第一符号。
  6. 根据权利要求1所述的方法,其中,所述根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应包括:
    根据所述第一信号和第一参数确定从所述目标设备经过所述第二设备到达所述第一 设备的第一信道响应;
    其中,所述第一参数为接收所述第一信号的参数。
  7. 根据权利要求6所述的方法,其中,所述第一参数包括以下至少一项:
    第三符号的内容;
    第三信号发送第三符号的调制方式;
    第三信号发送第三符号的长度或符号数;
    第三信号发送第三符号的符号间隔;
    第三信号发送第三符号的波形;
    第三信号发送第三符号的中心频率;
    第三信号发送第三符号的带宽;
    第一配置的至少部分内容,所述第一配置用于发送所述第一信号;
    其中,所述第三符号用于生成所述第一信号。
  8. 根据权利要求7所述的方法,其中,所述第一配置包括以下至少一项:
    发送所述第一信号的可用反射系数;
    所述第一信号距离所述第二信号的第一部分的结束时刻的间隔时间;
    所述第一信号距离第四信号的第一部分的结束时刻的间隔时间,或者,所述第一信号距离第四信号的第二部分的结束时刻的间隔时间;
    所述第一信号的长度;
    反射系数的调整间隔;
    调制符号与反射系数的映射关系;
    调制方式;
    所述第一信号的中心频率,或者所述第一信号与特定参考信号的频率偏移;
    所述第一信号的带宽;
    是否由所述第二设备根据第二信号中的第一射频信号自主生成第三符号的第一指示信息;
    第一目标信息,所述第一目标信息用于根据第二信号中的第一射频信号自主生成第三符号;
    目标特征信息,所述目标标识信息用于表征所述第一信号结束或所述待传输信息发送结束;
    调制符号集合;
    信号放大系数;
    中继模式;
    其中,所述第二信号的第一部分用于指示所述第二设备开始发送所述第一信号,所述第四信号的第一部分用于指示所述第二设备开始发送所述第三信号,所述第二信号的第二部分用于生成所述第三信号。
  9. 根据权利要求6所述的方法,其中,所述第一参数由所述第三设备指示或协议约定。
  10. 根据权利要求1至9任一项所述的方法,其中,所述第二信号包括第一部分和第二部分,其中,所述第二信号的第一部分包括用于指示开始发送所述第二部分的第二符号,所述第二信号的第二部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号,所述第一射频信号用于调制和发送第三符号。
  11. 根据权利要求10所述的方法,其中,所述第一信号满足以下至少一项:
    所述第一信号由所述第二设备基于接收到的第二信号反向散射生成;
    所述第一信号由所述第二设备基于接收到的第二信号进行信号放大得到;
    所述第一信号为所述第二设备对接收到的所述第二信号进行幅度和/或相位调整后得到;
    所述第一信号为所述第二设备对所述第二信号解码,并基于解码获得的内容重新生成;
    所述第一信号为所述第二设备对所述第二信号解码,基于解码获得的内容重新生成信号,并对重新生成的信号进行幅度和/或相位调整后得到。
  12. 根据权利要求1至9任一项所述的方法,其中,所述第四信号满足以下任意一项:
    所述第四信号包括第一部分和第二部分,所述第一部分包括用于指示开始发送所述第二部分的第四符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号;
    所述第四信号包括第一部分、第二部分和第三部分,所述第四信号的第一部分包括用于指示开始发送的第二符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号,所述第三部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号。
  13. 一种传输方法,包括:
    第二设备从目标设备接收第二信号或第四信号,所述目标设备包括第一设备或第三设备;
    第二设备基于所述第二信号或第四信号向所述第一设备发送第一信号,所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息;
    其中,所述第一信号用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应,第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的所述第四信号发送的信号。
  14. 根据权利要求13所述的方法,其中,所述第二设备基于所述第二信号或第四信号向所述第一设备发送第一信号包括:
    所述第二设备基于所述第二信号或第四信号,以第一配置向所述第一设备发送第一信号;
    其中,所述第一配置包括以下至少一项:
    发送所述第一信号的可用反射系数;
    所述第一信号距离所述第二信号的第一部分的结束时刻的间隔时间;
    所述第一信号距离第四信号的第一部分的结束时刻的间隔时间,或者,所述第一信号距离第四信号的第二部分的结束时刻的间隔时间;
    所述第一信号的长度;
    反射系数的调整间隔;
    调制符号与反射系数的映射关系;
    调制方式;
    所述第一信号的中心频率,或者所述第一信号与特定参考信号的频率偏移;
    所述第一信号的带宽;
    是否由所述第二设备根据第二信号中的第一射频信号自主生成第三符号的第一指示信息;
    第一目标信息,所述第一目标信息用于根据第二信号中的第一射频信号自主生成第三符号;
    目标特征信息,所述目标标识信息用于表征所述第一信号结束或所述待传输信息发送结束;
    调制符号集合;
    信号放大系数;
    中继模式;
    其中,所述第二信号的第一部分用于指示所述第二设备开始发送所述第一信号,所述第四信号的第一部分用于指示所述第二设备开始发送所述第三信号,所述第二信号的第二部分用于生成所述第三信号。
  15. 根据权利要求14所述的方法,其中,所述第一配置由所述目标设备指示或者协议约定。
  16. 根据权利要求13至15任一项所述的方法,其中,所述第二信号包括第一部分和第二部分,其中,所述第二信号的第一部分包括用于指示开始发送所述第二部分的第二符号,所述第二信号的第二部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号,所述第一射频信号用于调制和发送第三符号。
  17. 根据权利要求16所述的方法,其中,所述第一信号满足以下至少一项:
    所述第一信号由所述第二设备基于接收到的第二信号反向散射生成;
    所述第一信号由所述第二设备基于接收到的第二信号进行信号放大得到;
    所述第一信号为所述第二设备对接收到的所述第二信号进行幅度和/或相位调整后得到;
    所述第一信号为所述第二设备对所述第二信号解码,并基于解码获得的内容重新生成;
    所述第一信号为所述第二设备对所述第二信号解码,基于解码获得的内容重新生成信号,并对重新生成的信号进行幅度和/或相位调整后得到。
  18. 根据权利要求13至15任一项所述的方法,其中,所述第四信号满足以下任意一项:
    所述第四信号包括第一部分和第二部分,所述第一部分包括用于指示开始发送所述第二部分的第四符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号;
    所述第四信号包括第一部分、第二部分和第三部分,所述第四信号的第一部分包括用于指示开始发送的第二符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号,所述第三部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号。
  19. 一种传输方法,包括:
    第三设备向第二设备发送第二信号和/或第四信号,所述第二信号或第四信号用于向第一设备发送的第一信号,所述第一信号携带有第一符号,所述第一符号为所述第二设备待传输的信息;
    所述第三设备从所述第一设备执行第二操作,所述第二操作包括以下任一项:
    从所述第一设备接收基于所述第一信号确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;
    从所述第一设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;
    其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第一符号为所述第二设备的待传输信息,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述第三设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述第三设备接收到的第四信号发送的信号。
  20. 根据权利要求19所述的方法,其中,所述第三设备从所述第一设备执行第二操作之后,所述方法还包括:
    所述第三设备根据所述第一信道响应和所述第二信道响应,获得所述第一符号;
    所述第三设备向所述第一设备发送所述第一符号。
  21. 根据权利要求19所述的方法,其中,所述从所述第二设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应之后,所述方法还包括:
    所述第三设备向所述第一设备发送所述第一信道响应。
  22. 根据权利要求21所述的方法,其中,所述第三设备向所述第一设备发送所述第一信道响应之后,所述方法还包括:
    所述第三设备从所述第一设备接收所述第一符号。
  23. 根据权利要求19所述的方法,其中,所述方法还包括:
    所述第三设备向所述第一设备发送第一配置,所述第一配置用于发送所述第一信号,所述第一配置包括以下至少一项:
    发送所述第一信号的可用反射系数;
    所述第一信号距离所述第二信号的第一部分的结束时刻的间隔时间;
    所述第一信号距离第四信号的第一部分的结束时刻的间隔时间,或者,所述第一信号距离第四信号的第二部分的结束时刻的间隔时间;
    所述第一信号的长度;
    反射系数的调整间隔;
    调制符号与反射系数的映射关系;
    调制方式;
    所述第一信号的中心频率,或者所述第一信号与特定参考信号的频率偏移;
    所述第一信号的带宽;
    是否由所述第二设备根据第二信号中的第一射频信号自主生成第三符号的第一指示信息;
    第一目标信息,所述第一目标信息用于根据第二信号中的第一射频信号自主生成第三符号;
    目标特征信息,所述目标标识信息用于表征所述第一信号结束或所述待传输信息发送结束;
    调制符号集合;
    信号放大系数;
    中继模式;
    其中,所述第二信号的第一部分用于指示所述第二设备开始发送所述第一信号,所述第四信号的第一部分用于指示所述第二设备开始发送所述第三信号,所述第二信号的第二部分用于生成所述第三信号。
  24. 根据权利要求19至23任一项所述的方法,其中,所述第二信号包括第一部分和第二部分,其中,所述第二信号的第一部分包括用于指示开始发送所述第二部分的第二符号,所述第二信号的第二部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号,所述第一射频信号用于调制和发送第三符号。
  25. 根据权利要求24所述的方法,其中,所述第一信号满足以下至少一项:
    所述第一信号由所述第二设备基于接收到的第二信号反向散射生成;
    所述第一信号由所述第二设备基于接收到的第二信号进行信号放大得到;
    所述第一信号为所述第二设备对接收到的所述第二信号进行幅度和/或相位调整后得到;
    所述第一信号为所述第二设备对所述第二信号解码,并基于解码获得的内容重新生成;
    所述第一信号为所述第二设备对所述第二信号解码,基于解码获得的内容重新生成信号,并对重新生成的信号进行幅度和/或相位调整后得到。
  26. 根据权利要求19至23任一项所述的方法,其中,所述第四信号满足以下任意一项:
    所述第四信号包括第一部分和第二部分,所述第一部分包括用于指示开始发送所述第二部分的第四符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号;
    所述第四信号包括第一部分、第二部分和第三部分,所述第四信号的第一部分包括用于指示开始发送的第二符号,所述第四信号的第二部分包括用于生成第三信号的第五符号或第二射频信号,所述第三部分包括用于生成所述第一信号的部分内容的第三符号或第一射频信号。
  27. 一种传输装置,包括:
    第一接收模块,用于从第二设备接收第一信号,所述第一信号为基于从目标设备接收到的第二信号发送的信号,且所述第一信号携带有第一符号,所述第一符号为所述第二设备的待传输信息,所述目标设备包括第一设备或第三设备;
    第一执行模块,用于执行第一操作,所述第一操作包括以下任一项:
    根据所述第一信号确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
    向所述第三设备发送第一消息,所述第一消息用于承载所述第一信号的至少部分内容,所述至少部分内容用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应;
    其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
  28. 一种传输装置,包括:
    第二接收模块,用于从目标设备接收第二信号,所述目标设备包括第一设备或第三设备;
    第二发送模块,用于基于所述第二信号向所述第一设备发送第一信号,所述第一信号携带有第一符号,所述第一符号为第二设备的待传输信息;
    其中,所述第一信号用于确定从所述目标设备经过所述第二设备到达所述第一设备的第一信道响应,第一信道响应用于与第二信道响应确定所述第一符号,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述目标设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述目标设备接收到的第四信号发送的信号。
  29. 一种传输装置,包括:
    第三发送模块,用于向第二设备发送第二信号,所述第二信号用于向第一设备发送的第一信号,所述第一信号携带有第一符号,所述第一符号为所述第二设备待传输的信息;
    第二执行模块,用于从所述第一设备执行第二操作,所述第二操作包括以下任一项:
    从所述第一设备接收基于所述第一信号确定从第三设备经过所述第二设备到达所述第一设备的第一信道响应;
    从所述第一设备接收第一消息,并根据所述第一消息确定从所述第三设备经过所述第二设备到达所述第一设备的第一信道响应;
    其中,所述第一信道响应用于与第二信道响应确定所述第一符号,所述第一符号为所述第二设备的待传输信息,所述第二信道响应为所述第一设备或所述第三设备根据用于信道估计的第三信号确定从所述第三设备经过所述第二设备到达所述第一设备的信道响应,所述第三信号为所述第二设备基于从所述第三设备接收到的第四信号发送的信号。
  30. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至26任一项所述的传输方法的步骤。
  31. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至26任一项所述的传输方法的步骤。
  32. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至26任一项所述的传输方法的步骤。
PCT/CN2023/137383 2022-12-12 2023-12-08 传输方法、装置、终端及网络侧设备 WO2024125400A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211600298.0 2022-12-12
CN202211600298.0A CN118201095A (zh) 2022-12-12 2022-12-12 传输方法、装置、终端及网络侧设备

Publications (1)

Publication Number Publication Date
WO2024125400A1 true WO2024125400A1 (zh) 2024-06-20

Family

ID=91393500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/137383 WO2024125400A1 (zh) 2022-12-12 2023-12-08 传输方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN118201095A (zh)
WO (1) WO2024125400A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495412A (zh) * 2019-01-14 2019-03-19 电子科技大学 基于mpsk载波的反向散射通信***接收机设计方法
WO2020030254A1 (en) * 2018-08-07 2020-02-13 Huawei Technologies Co., Ltd. Joint channel estimation
CN111769904A (zh) * 2020-06-23 2020-10-13 电子科技大学 一种反向散射通信***中多反射设备并行传输的检测方法
WO2022200673A1 (en) * 2021-03-22 2022-09-29 Nokia Technologies Oy Use of sidelink communications for backscatter node positioning within wireless networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020030254A1 (en) * 2018-08-07 2020-02-13 Huawei Technologies Co., Ltd. Joint channel estimation
CN109495412A (zh) * 2019-01-14 2019-03-19 电子科技大学 基于mpsk载波的反向散射通信***接收机设计方法
CN111769904A (zh) * 2020-06-23 2020-10-13 电子科技大学 一种反向散射通信***中多反射设备并行传输的检测方法
WO2022200673A1 (en) * 2021-03-22 2022-09-29 Nokia Technologies Oy Use of sidelink communications for backscatter node positioning within wireless networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUE HENG, ZHAO JUMIN, LI DENGAO: "Multi-antenna Tag Ambient Backscatter System Based on Clustering Analysis", JOURNAL OF TAIYUAN UNIVERSITY OF TECHNOLOGY, vol. 52, no. 6, 1 January 2021 (2021-01-01), pages 913 - 919, XP093182075 *

Also Published As

Publication number Publication date
CN118201095A (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
WO2021169586A1 (zh) 一种通信方法及装置
CN113573409A (zh) 一种通信方法及装置
US9628149B2 (en) Emulation of multiple NFC devices inside a communication device
WO2024125400A1 (zh) 传输方法、装置、终端及网络侧设备
WO2023109786A1 (zh) 反向散射通信方法、终端及网络侧设备
WO2024125403A1 (zh) 传输方法、装置、终端及网络侧设备
WO2024125393A1 (zh) 传输方法、装置、终端及网络侧设备
WO2024125438A1 (zh) 信号传输方法、装置及设备
CN117255424A (zh) 资源分配方法、装置、通信设备、***及存储介质
CN117200820A (zh) 反向散射通信方法及设备
WO2024032496A1 (zh) 通信、资源配置方法、装置、阅读器、标签和网络侧设备
WO2024061175A1 (zh) 信号传输方法、装置、通信设备及存储介质
WO2023103904A1 (zh) 传输数据的方法及其装置
WO2024149103A1 (zh) 一种盘点处理方法、装置及设备
WO2024061111A1 (zh) 资源处理方法、装置及通信设备
WO2024037447A1 (zh) 反向散射通信处理方法、装置、通信设备及可读存储介质
WO2024032609A1 (zh) 时延信息估计方法、装置、通信设备及存储介质
WO2023236868A1 (zh) 反向散射通信配置方法、装置、网络侧设备和终端
WO2023125311A1 (zh) 信道估计方法、装置、终端、网络侧设备及介质
WO2023125402A1 (zh) 通信方法、装置、终端、网络侧设备及介质
WO2023236907A1 (zh) 信息指示方法、终端、网络侧设备及可读存储介质
WO2023226844A1 (zh) 反向散射信号传输方法、装置、通信设备及可读存储介质
WO2024017049A1 (zh) Bsc设备的识别方法、装置及通信设备
WO2024061110A1 (zh) 传输处理方法、装置及设备
WO2024032607A1 (zh) 帧结构确定方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23902596

Country of ref document: EP

Kind code of ref document: A1