WO2024125316A1 - 一种地图评估方法及装置 - Google Patents

一种地图评估方法及装置 Download PDF

Info

Publication number
WO2024125316A1
WO2024125316A1 PCT/CN2023/135616 CN2023135616W WO2024125316A1 WO 2024125316 A1 WO2024125316 A1 WO 2024125316A1 CN 2023135616 W CN2023135616 W CN 2023135616W WO 2024125316 A1 WO2024125316 A1 WO 2024125316A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
evaluated
layer
information
scoring
Prior art date
Application number
PCT/CN2023/135616
Other languages
English (en)
French (fr)
Inventor
盖季妤
刘建琴
贺越
刘强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024125316A1 publication Critical patent/WO2024125316A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present application relates to the field of map technology, and in particular to a map evaluation method and device.
  • map products Due to the different needs of users for map products, different requirements are also put forward for the quality level and service capabilities of map products. For example, when users use map products for road-level navigation, they need map products to provide static road network information and global dynamic traffic information with an accuracy of 5-10m; for another example, when users use map products to navigate on elevated highways, they need map products to provide lane-level information with an accuracy of 20-50cm; for another example, when users use map products to achieve high-level autonomous driving, they need map products to provide real-time traffic data with higher accuracy and richness. Therefore, evaluating and grading map products can achieve the reasonable allocation of map data resources and optimize the efficiency of map collection, production, and release, which will help promote the application and popularization of map products in intelligent driving vehicles and is of great significance to the map industry.
  • map products are evaluated and graded based on the static mapping elements of the map, the usage scenarios of the map, or the application functions supported by the map.
  • the evaluation methods of existing map products are diverse, and there is a lack of unified map evaluation standards, which makes it difficult for users to evaluate map products based on their own needs.
  • the present application provides a map evaluation method and device to solve the technical problem that it is difficult for users to evaluate map products based on their own needs.
  • the present application provides a map evaluation method, which is applicable to an electronic device, which may be any device with a processing function, such as a terminal device, a server, or a vehicle.
  • the method includes: obtaining a map to be evaluated; obtaining a first configuration file corresponding to the map to be evaluated, the first configuration file being used to indicate multiple scoring dimensions of the map to be evaluated; selecting a first scoring dimension from multiple scoring dimensions; determining a first weight of the first scoring dimension; and evaluating the map to be evaluated according to the first scoring dimension and the first weight.
  • a first configuration file is set for the map to be evaluated, and the first configuration file is used to indicate multiple scoring dimensions of the map to be evaluated; therefore, when evaluating the map to be evaluated, the first configuration file corresponding to the map to be evaluated can be obtained, and at least one scoring dimension can be selected from the multiple scoring dimensions indicated by the first configuration file; and the weight of at least one scoring dimension can be determined; and the map to be evaluated can be evaluated according to the at least one scoring dimension and the corresponding weight.
  • the scoring dimensions of the map to be evaluated can be flexibly set, so that users can evaluate the map to be evaluated based on their own needs, which helps users choose map products that meet their preferred needs.
  • the first configuration file may be preset based on map data quality specifications and/or map evaluation standards recommended by map vendors, or may be customized by a user with reference to map data quality specifications and/or map evaluation standards recommended by map vendors. This application does not impose any specific restrictions.
  • the first scoring dimension may include one or more scoring dimensions.
  • the electronic device selects the first scoring dimension from multiple scoring dimensions, including but not limited to the following implementations:
  • an electronic device receives a first instruction, and the first instruction is used to indicate a first scoring dimension; then the electronic device can select the first scoring dimension from multiple scoring dimensions in response to the first instruction.
  • the first instruction is used to indicate the first scoring dimension
  • the first instruction can be a human-computer interaction instruction, for example, it can be any one of a voice instruction, a touch instruction, or a text instruction. In this way, the user can intuitively set the first scoring dimension that meets his or her preference requirements by inputting the first instruction, making the user operation relatively simple.
  • the electronic device receives a second instruction, which is used to indicate that the weight corresponding to the first rating dimension is not zero; then the electronic device can respond to the second instruction and select the first rating dimension from multiple rating dimensions.
  • “the weight corresponding to the first rating dimension is not zero” can be understood as the user setting the weight corresponding to the first rating dimension to a non-zero value.
  • the second instruction can be a human-computer interaction instruction, for example, it can be any one of a voice instruction, a touch instruction, or a text instruction. In this way, the user can select multiple rating dimensions by The weights of the dimensions are set to select the first scoring dimension that meets their preference needs.
  • the electronic device determines the first weight of the first scoring dimension including but not limited to the following implementations:
  • the electronic device receives a third instruction, which is used to indicate the first weight of the first scoring dimension; and then the electronic device can determine the first weight of the first scoring dimension according to the third instruction.
  • the third instruction can be a human-computer interaction instruction, such as a voice instruction, a touch instruction, or a text instruction. In this way, the user can flexibly set the first weight of the first scoring dimension, so that the map evaluation based on the first scoring dimension is more in line with their preference needs, thereby further improving the user's map evaluation experience.
  • the electronic device reads the first weight of the first scoring dimension.
  • the electronic device can read the first weight of the first scoring dimension from a mapping relationship table between scoring dimensions and preset weights. In this way, the first scoring dimension directly adopts the preset first weight, and the user does not need to set the weight, which makes the user operation relatively simple.
  • the first configuration file is also used to indicate the first preset weight of the first scoring dimension, the evaluation method corresponding to the first scoring dimension, or the rating rule of the map to be evaluated; wherein the evaluation method is used to determine the score of the map to be evaluated in the first dimension, and the rating rule is used to determine the grade of the map to be evaluated.
  • the first configuration file may also indicate the first preset weight of the first scoring dimension, the evaluation method corresponding to the first scoring dimension, or the rating rule of the map to be evaluated; in other words, the first preset weight of the first scoring dimension, the evaluation method corresponding to the first scoring dimension, or the rating rule of the map to be evaluated may be configured in the first configuration file.
  • the user can configure the first preset weight of the first scoring dimension in the first configuration file according to his/her preference requirements for the first scoring dimension, so that the evaluation result obtained by evaluating the map to be evaluated based on the first scoring dimension meets his/her preference requirements; wherein the user can flexibly configure the evaluation method of the first scoring dimension in the first configuration file, so that the evaluation process of evaluating the map to be evaluated based on the first scoring dimension meets his/her preference requirements; wherein the user can flexibly configure the rating rules of the map to be evaluated in the first configuration file, so as to realize the quantitative evaluation of the map to be evaluated, and then intuitively display the level of the map to be evaluated, so as to facilitate the user to choose a map product that meets his/her usage requirements.
  • the evaluation method is related to the object of evaluating the map to be evaluated, for example, it can include at least one of expert evaluation, map vendor evaluation, or user evaluation; the rating rule can include a preset map level mapping table and/or a functional relationship (such as a piecewise function) for determining the map level.
  • multiple scoring dimensions include at least one of coverage scenario information, layer attribute information, security authentication information, product format information, product volume information, update and maintenance information, ecological construction information, or industry customized information; wherein, coverage scenario information is used to describe the usage scenario of the map to be evaluated, layer attribute information is used to describe the quality of at least one layer in the map to be evaluated, security authentication information is used to describe the security level and/or compliance of the map to be evaluated, product format information is used to describe the standard system supported by the map to be evaluated; product volume information is used to describe the product form and/or data packet size of the map to be evaluated; update and maintenance information is used to describe the update scope and/or update frequency of the map to be evaluated; ecological construction information is used to describe the data compatibility of the map to be evaluated in different map-using devices; industry customized information is used to describe the usage requirements of the first industry to which the map to be evaluated is applicable.
  • coverage scenario information is used to describe the usage scenario of the map to be evaluated
  • layer attribute information is used to describe the quality of at least one layer in the map to
  • the coverage scenario information is used to describe the usage scenario of the map to be evaluated, which can be understood as the coverage scenario information used to describe the physical space covered by the map to be evaluated, that is, the application scenario of the map to be evaluated.
  • the coverage scenarios may include but are not limited to closed campus roads, dedicated roads, high-function grade roads, or ordinary urban roads. In this way, using the coverage scenario information as a scoring dimension to evaluate the map will help users choose map products that meet their usage scenarios.
  • the layer attribute information is used to describe the quality of at least one layer in the map to be evaluated, which can be understood as the layer attribute information being used to describe the quality level of the components in each layer in the map to be evaluated, wherein the quality level of the components in each layer can be characterized by the accuracy of the layer elements.
  • the accuracy of the layer elements can be determined based on the integrity, logical consistency, thematic accuracy, numerical accuracy, and temporal quality of the layer elements.
  • the layer elements may include, for example, traffic elements, road geometry elements, etc. in the layer. In this way, using the layer attribute information as a scoring dimension to evaluate the map helps users select map products that meet the quality level of their layer elements.
  • the safety certification information is used to describe the safety level and/or compliance of the map to be evaluated.
  • the safety level can be, for example, the level corresponding to the safety standard in the smart driving car standard, or it can be whether the compilation, update, and release of the map to be evaluated meet the requirements of map-related regulations.
  • the safety standard can be, for example, the safety requirements defined in ISO 26262. In this way, using the safety certification information as a scoring dimension to evaluate the map will help users choose map products that meet their safety needs.
  • the product format information is used to describe the standard system supported by the map to be evaluated. It can be understood that the product format information is used to describe the standardization level of the map to be evaluated, that is, whether the application interface and storage format supported by the map to be evaluated support universal standards.
  • universal standards can be, for example, NDS format and Open DRIVE format. In this way, using product format information as a scoring dimension to evaluate maps will help users choose map products that support universal standards.
  • product volume information is used to describe the product form and/or data package size of the map to be evaluated. It can be understood that product volume information is used to describe the product form and lightweight level of the map. If the volume of the map to be evaluated is too large and the functions are redundant, it will bring a burden to the map update and storage. In this way, using product volume information as a scoring dimension to evaluate the map will help users choose a map product that meets their storage needs.
  • the update and maintenance information is used to describe the update scope and/or update frequency of the map to be evaluated, which can be understood as the update and maintenance information being used to describe the information freshness of the map to be evaluated, that is, whether the update scope and/or update frequency of the map to be evaluated meets the needs of the first application (such as an intelligent driving application).
  • the update scope of the map to be evaluated may include, for example, map elements in the target area.
  • map elements may include, for example, traffic light information and road geometry information, wherein the traffic light information may be updated by seconds, and the road geometry information may be updated by months.
  • the update and maintenance information is used as a scoring dimension to evaluate the map, so that users can choose map products that meet the update scope and/or update frequency of their applications.
  • the ecological construction information is used to describe the data compatibility of the map to be evaluated in different map-using devices. It can be understood that the ecological construction information is used to describe the contribution ability of the map to be evaluated as a super sensor container to the industrial ecology. The contribution ability can be, for example, the scale and completeness of the points of interest (POI) contained in the map to be evaluated, or it can be the scalability of the interfaces and services supported by the map to be evaluated, or it can be the compatibility of the map to be evaluated with the data provided by other data sources such as the cloud, government agencies, and roadside sensors.
  • POI points of interest
  • the ecological construction information is used as a scoring dimension to evaluate the map, so that users can intuitively understand the scalability of the interfaces and services supported by the map, which makes it easier for users to choose map products that meet higher data compatibility.
  • industry customization information is used to describe the usage requirements of the first industry to which the map to be evaluated is applicable. It can be understood that industry customization information is used to describe whether the map to be evaluated meets the customization requirements of the customer's industry.
  • the first industry is the drone logistics industry
  • the usage requirements of the drone logistics industry are that the map product has a road network structure and road geometry elements.
  • the map is evaluated using industry customization information as a scoring dimension, which makes it easier for users to choose map products that meet their industry customization requirements.
  • At least one layer corresponding to the layer attribute information includes a dynamic layer and/or a static layer; wherein the dynamic layer is a traffic event layer, a traffic flow information layer, a real-time perception layer, a meteorological environment layer, or a statistical application layer; the static layer is a lane topology layer, a road topology layer, a road traffic marking, a sign layer, or a roadside and roadside facility layer.
  • the dynamic layer is a traffic event layer, a traffic flow information layer, a real-time perception layer, a meteorological environment layer, or a statistical application layer
  • the static layer is a lane topology layer, a road topology layer, a road traffic marking, a sign layer, or a roadside and roadside facility layer.
  • Lane topology layer including the topological connection network information composed of lane centerline segments and nodes.
  • Road topology layer including topological connection network information consisting of road reference lines, road virtual connection lines and road nodes.
  • Road traffic marking and sign layer including traffic markings and various sign information. Traffic markings are visually visible on the road surface and are used to regulate traffic order; these signboards are installed on the side of the road or hung in the middle of the road and are used to direct and guide traffic.
  • Roadside and roadside facilities layer including static facilities information, which can be used for vehicle positioning. These facilities may include roadside protection facilities, street lights, or speed bumps, etc.
  • Traffic event layer including temporary traffic events that affect the passage of vehicles and pedestrians, such as traffic control, traffic accidents, road construction, or temporary road obstacles.
  • Traffic flow information layer including real-time and predicted traffic flow, traffic flow speed, or traffic flow density information of the road.
  • Real-time perception layer including vehicle traffic participants, vulnerable traffic participants (non-motorized tricycles, bicycles, electric bicycles, motorcycles, pedestrians and animals), or traffic lights and other object information that needs to be perceived in real time.
  • Meteorological environment layer including weather information, lighting conditions, road friction coefficient and other information related to travel and road driving.
  • Statistical application layer including accident-prone road section information obtained by statistical methods, and user behavior preference information customized by the user or obtained by electronic devices through learning user behavior.
  • At least one layer includes multiple layers, and accordingly, the quality of the at least one layer is a quality score obtained by weighted operation of the quality scores of the multiple layers.
  • the quality score of the at least one layer is determined by combining the quality scores of the multiple layers, and then the quality of the at least one layer can be characterized by the quality score, thereby realizing a quantitative evaluation of the map to be evaluated in the dimension of layer attribute information, so that users can intuitively select a map product that meets their preferred needs based on the quality score corresponding to the dimension of layer attribute information.
  • the quality score of each layer in the multiple layers can be determined based on the accuracy of the map elements in the layer.
  • the method further includes: obtaining a second configuration file corresponding to the map to be evaluated, the second configuration file being used to Determine whether the map to be evaluated meets the first condition.
  • the first condition is used to characterize the basic needs of users for the map to be evaluated.
  • a second configuration file is also set for the map to be evaluated. Therefore, the electronic device can obtain the second configuration file corresponding to the map to be evaluated, and determine whether the map to be evaluated meets the first condition based on the second configuration file. In this way, the evaluation process of the map to be evaluated is more reasonable, and the user's map evaluation experience can be improved.
  • the first condition includes: the map to be evaluated is applicable to the first usage scenario; the quality score of the first layer in the map to be evaluated is greater than the first threshold; the map to be evaluated meets the first security level; the map to be evaluated corresponds to the first data format; the product form of the map to be evaluated meets the preset standard; the data packet size of the map to be evaluated is less than the second threshold; the update range and/or update frequency of the map to be evaluated meets the usage requirements of the first application; the data format of the map to be evaluated in different map usage devices is compatible; or, the map to be evaluated meets the usage requirements of the first industry.
  • multiple implementation methods of the first condition are provided, so that users can set a variety of basic requirements in the second configuration file.
  • the method further includes: when the map to be evaluated does not meet the first condition, the quality of the map to be evaluated is evaluated as the lowest level or the lowest score.
  • the first condition is used to characterize the basic needs of users for the map to be evaluated.
  • the top-level decisive indicator of the user's basic needs map evaluation for the map to be evaluated is evaluated as the lowest level or the lowest score when the map to be evaluated does not meet the first condition, so that it can intuitively reflect whether the map product meets the basic needs of users.
  • the method before evaluating the map to be evaluated according to the first scoring dimension and the first weight, the method further includes: determining that the map to be evaluated meets the first condition.
  • the top-level decisive indicator of the user's basic demand map evaluation for the map to be evaluated is evaluated according to the first scoring dimension and the first weight only after determining that the map to be evaluated meets the first condition, so that the evaluation process of the map to be evaluated is more reasonable, which can effectively prevent the map from being evaluated when the map to be evaluated does not meet the basic needs of the user, avoid wasting user time, and effectively improve the user's map evaluation experience.
  • the first configuration file and/or the second configuration file are user-defined.
  • the user can flexibly configure the first configuration file and/or the second configuration file according to his/her preference requirements, thereby making the process of evaluating the map to be evaluated based on the first configuration file and/or the second configuration file more reasonable, and helping the user to select a map product that meets his/her preference requirements.
  • the embodiment of the present application also provides a map evaluation device, which can be any electronic device with a map evaluation function, such as a vehicle, a mobile phone or other terminal, or a circuit or chip set in a vehicle, a mobile phone or other terminal.
  • the device includes: an acquisition module, used to acquire a map to be evaluated; the acquisition module is also used to acquire a first configuration file corresponding to the map to be evaluated, and the first configuration file is used to indicate multiple scoring dimensions of the map to be evaluated; a processing module is used to select a first scoring dimension from multiple scoring dimensions; the processing module is also used to determine a first weight of the first scoring dimension; the processing module is also used to evaluate the map to be evaluated according to the first scoring dimension and the first weight.
  • the first configuration file is also used for the first preset weight of the first scoring dimension, the evaluation method corresponding to the first scoring dimension, or the rating rule of the map to be evaluated; wherein the evaluation method is used to determine the score of the map to be evaluated in the first dimension, and the rating rule is used to determine the grade of the map to be evaluated.
  • multiple scoring dimensions include at least one of coverage scenario information, layer attribute information, security certification information, product format information, product volume information, update and maintenance information, ecological construction information, or industry customized information; wherein, the coverage scenario information is used to describe the usage scenario of the map to be evaluated, the layer attribute information is used to describe the quality of at least one layer in the map to be evaluated, the security certification information is used to describe the security level and/or compliance of the map to be evaluated, and the product format information is used to describe the standard system supported by the map to be evaluated; the product volume information is used to describe the product form and/or data packet size of the map to be evaluated; the update and maintenance information is used to describe the update scope and/or update frequency of the map to be evaluated; the ecological construction information is used to describe the data compatibility of the map to be evaluated in different map usage devices; and the industry customized information is used to describe the usage requirements of the first industry to which the map to be evaluated is applicable.
  • the coverage scenario information is used to describe the usage scenario of the map to be evaluated
  • the layer attribute information is used to describe
  • At least one layer includes a dynamic layer and/or a static layer; wherein the dynamic layer is a traffic event layer, a traffic flow information layer, a real-time perception layer, a meteorological environment layer, or a statistical application layer; the static layer is a lane topology layer, a road topology layer, a road traffic marking, a sign layer, or a roadside and roadside facilities layer.
  • the dynamic layer is a traffic event layer, a traffic flow information layer, a real-time perception layer, a meteorological environment layer, or a statistical application layer
  • the static layer is a lane topology layer, a road topology layer, a road traffic marking, a sign layer, or a roadside and roadside facilities layer.
  • At least one layer includes multiple layers, and the quality of the at least one layer is a quality score obtained by performing a weighted operation on the quality scores of the multiple layers.
  • the acquisition module is further used to: obtain a second configuration file corresponding to the map to be evaluated, and the second configuration file is used to determine whether the map to be evaluated meets the first condition.
  • the first condition includes: the map to be evaluated is applicable to the first usage scenario; the quality score of the first layer in the map to be evaluated is greater than the first threshold; the map to be evaluated meets the first security level; the map to be evaluated corresponds to the first data format; the map to be evaluated The product form meets the preset standard; the data packet size of the map to be evaluated is less than the second threshold; the update range and/or update frequency of the map to be evaluated meets the usage requirements of the first application; the data formats of the map to be evaluated in different map usage devices are compatible; or the map to be evaluated meets the usage requirements of the first industry.
  • the processing module is further configured to: when the map to be evaluated does not meet the first condition, evaluate the quality of the map to be evaluated as the lowest level or the lowest score.
  • the processing module before evaluating the map to be evaluated according to the first scoring dimension and the first weight, is further used to: determine whether the map to be evaluated satisfies the first condition.
  • the first configuration file and/or the second configuration file is user-defined.
  • the present application provides a map evaluation device, including a processor, the processor is connected to a memory, the memory is used to store a computer program, and the processor is used to execute the computer program stored in the memory, so that the map evaluation device performs the method described in any one of the designs of the first aspect above.
  • the present application provides an electronic device for implementing a method as described in any one of the designs of the first aspect above.
  • the present application provides a computer-readable storage medium, in which a computer program is stored.
  • a computer program is stored.
  • the method described in any one of the designs in the first aspect above is implemented.
  • the present application provides a chip, which may include a processor and an interface, wherein the processor is used to read instructions through the interface to execute a method as described in any one of the designs in the first aspect above.
  • the present application provides a computer program product, which, when executed on a processor, implements a method as described in any one of the designs of the first aspect above.
  • FIG1 is a schematic diagram of a possible system architecture applicable to an embodiment of the present application.
  • FIG2 exemplarily shows a flowchart corresponding to a map evaluation method provided in Embodiment 1 of the present application
  • FIG3 exemplarily shows one of the schematic diagrams of the user operation interface provided in the embodiment of the present application.
  • FIG4 exemplarily shows a second schematic diagram of a user operation interface provided in an embodiment of the present application.
  • FIG5 exemplarily shows a flowchart corresponding to a map evaluation method provided in Embodiment 2 of the present application
  • FIG6 exemplarily shows a third schematic diagram of a user operation interface provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a structure of a map evaluation device provided in an embodiment of the present application.
  • FIG. 8 is a second schematic diagram of the structure of a map evaluation device provided in an embodiment of the present application.
  • map evaluation scheme in the embodiment of the present application can be applied to vehicle networking, such as vehicle to everything (V2X), long-term evolution-vehicle (LTE-V), vehicle to vehicle (V2V), etc.
  • V2X vehicle to everything
  • LTE-V long-term evolution-vehicle
  • V2V vehicle to vehicle
  • the other devices include but are not limited to: vehicle-mounted terminals, vehicle-mounted controllers, vehicle-mounted modules, vehicle-mounted modules, vehicle-mounted components, vehicle-mounted chips, vehicle-mounted units, vehicle-mounted radars or vehicle-mounted cameras and other sensors.
  • the vehicle can implement the map evaluation method provided in the present application through the vehicle-mounted terminal, vehicle-mounted controller, vehicle-mounted module, vehicle-mounted module, vehicle-mounted components, vehicle-mounted chips, vehicle-mounted units, vehicle-mounted radars or vehicle-mounted cameras.
  • the map evaluation scheme in the embodiment of the present application can also be used in other intelligent terminals with map evaluation functions other than vehicles, or be set in other intelligent terminals with map evaluation functions other than vehicles, or be set in components of the intelligent terminal.
  • the smart terminal may be a smart transportation device, a smart home device, a robot, etc.
  • it includes but is not limited to a smart terminal or a controller, a chip, other sensors such as a radar or a camera, and other components in the smart terminal.
  • At least one means one or more, and “plurality” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the previous and next associated objects are in an “or” relationship.
  • “At least one of the following” or similar expressions means Any combination of these items includes any combination of single items or plural items.
  • at least one item of a, b, or c can be represented by: a, b, c, ab, ac, bc, or abc, where a, b, c can be single or plural.
  • first and second mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the priority or importance of multiple objects.
  • first configuration file and the second configuration file are only used to distinguish different configuration files, and do not indicate the difference in priority or importance of the two configuration files.
  • this application provides a map evaluation method, which includes: obtaining a map to be evaluated; obtaining a first configuration file corresponding to the map to be evaluated, the first configuration file is used to indicate multiple scoring dimensions of the map to be evaluated; selecting a first scoring dimension from multiple scoring dimensions; determining a first weight of the first scoring dimension; and evaluating the map to be evaluated according to the first scoring dimension and the first weight.
  • the scoring dimensions of the map to be evaluated can be flexibly set, so that users can evaluate the map to be evaluated based on their own needs, which helps users choose map products that meet their preferred needs.
  • FIG1 is a schematic diagram of a possible system architecture applicable to an embodiment of the present application.
  • the system architecture shown in FIG1 includes a collection device 110 , a server 120 , and an electronic device 130 .
  • the collection device 110 refers to a device that can obtain environmental information in a real traffic network, such as but not limited to the following types of devices:
  • the third-party server 111 refers to a server set up in a third-party organization that is independent of the server 120 and the electronic device 130 and has a sharing function.
  • the third-party organization can usually be set as the manager of the transportation system, such as the Ministry of Transportation of the State, the transportation management offices or management offices of cities at all levels, etc.
  • the manager of the transportation system has the ability to supervise the various traffic routes in the transportation system in real time. Not only can they know the traffic conditions of each traffic route in a timely manner, but they can also make certain changes to the traffic mode of the traffic route, such as changing the speed limit of a certain traffic route.
  • Environmental information of the road can also be obtained through the server set up in the third-party organization.
  • the server can be an Internet of Vehicles server.
  • the Internet of Vehicles server can provide planning and control services for Internet of Vehicles terminals by maintaining and updating high-definition map (HD MAP) information, and can also maintain and update map information to provide navigation services for Internet of Vehicles terminals.
  • HD MAP high-definition map
  • the road side unit (RSU) 112 refers to a device with communication function installed on one or both sides of the road.
  • the road side unit can establish a connection with the on-board unit (OBU) on the vehicle when the vehicle passes by to realize the identity recognition of the vehicle.
  • the road side unit can also encapsulate functional modules such as cameras, radars or laser transmitters. The road side unit can monitor the road in real time through these functional modules, and promptly obtain the changed environmental information when the road environment changes;
  • the vehicle 113 has collection functions such as camera function and sensor function, and can collect environmental information around the vehicle.
  • the camera device of the vehicle can be a monocular camera, a binocular camera, etc.
  • the shooting area of the camera device can be the external environment of the vehicle.
  • the sensing device of the vehicle can include radars such as laser radar, millimeter wave radar, ultrasonic radar, etc. for obtaining environmental information, and can also include an inertial navigation system (for example, global navigation satellite system (GNSS), inertial measurement unit (IMU)) for obtaining vehicle posture.
  • GNSS can be used to estimate the geographic location of the vehicle.
  • the GNSS can include a transceiver to estimate the position of the vehicle relative to the earth based on satellite positioning data.
  • the computer system in the vehicle can use GNSS in combination with map data to estimate the road on which the vehicle is traveling.
  • IMU can sense the position and orientation changes of the vehicle based on inertial acceleration and any combination thereof.
  • the combination of sensors in the IMU may include, for example, an accelerometer and a gyroscope.
  • the positioning information obtained based on GNSS and the information obtained based on other technologies are fused, and the fused result is used as the global position of the vehicle at the current moment.
  • This method of fusing the information obtained based on GNSS and the information obtained based on other technologies (for example, sensors such as IMU) to achieve positioning can be called combined positioning.
  • a millimeter wave radar sensor can use radio signals to sense targets in the surrounding environment of the vehicle.
  • millimeter wave radars can also be used to sense the speed and/or direction of travel of targets.
  • Lidar can use lasers to sense targets in the environment where the vehicle is located.
  • Sensors can be used to capture multiple images of the surrounding environment of the vehicle.
  • each vehicle can be provided with one or more sensors, and the number of each sensor can be one or more.
  • the sensor can be installed on the top of the vehicle (for example, it can be set in the middle of the top of the vehicle), the front end of the vehicle, etc. The embodiment of the present application does not limit the installation position and number of sensors in each vehicle.
  • the server 120 may refer to a single server or a server cluster consisting of multiple servers.
  • the server 120 may specifically be a cloud server, also known as cloud, cloud end, cloud server, cloud controller or Internet of Vehicles server, etc.
  • a cloud server is a general term for devices or components with data processing capabilities, such as physical devices such as hosts or processors, virtual devices such as virtual machines or containers, and chips or integrated circuits.
  • the electronic device 130 may be a smart terminal or any vehicle with a map evaluation function, including but not limited to cars, buses, and even trucks.
  • the electronic device 130 may also be registered on the server 120 to obtain various services provided by the server 120, such as voice services, map evaluation services, automatic driving services, flight query services, or voice broadcast services.
  • one server can only interact with one collection device (such as a third-party server 111) and one user vehicle, or it can interact with multiple collection devices (such as a roadside unit 112 and a vehicle 113) and one user vehicle, or it can interact with multiple collection devices and multiple user vehicles.
  • the information interaction between two devices can refer to the direct interaction between the two devices through a wired or wireless method, or it can refer to the indirect interaction between the two devices through one or more other devices.
  • the system architecture to which the embodiments of the present application are applicable can also include other devices, such as terminal devices, network devices, core network devices, etc., which are not limited by the embodiments of the present application.
  • any device in the embodiments of the present application can integrate functions into an independent physical unit, or distribute functions on multiple independent physical units, which are not limited by the embodiments of the present application.
  • the electronic device 130 when the electronic device 130 has a map evaluation function, after the acquisition device 110 obtains environmental information in a real traffic network, the environmental information can be uploaded to the server 120; the server 120 then constructs a map to be evaluated based on the environmental information; the electronic device 130 can then obtain the map to be evaluated from the server 120 in advance and evaluate the map to be evaluated.
  • FIG2 exemplarily shows a flowchart corresponding to a map evaluation method provided in Embodiment 1 of the present application, and the method is applicable to an electronic device having a map evaluation function (for example, the electronic device 130 shown in FIG1 ). As shown in FIG2 , the method includes:
  • the electronic device obtains a map to be evaluated.
  • the map to be evaluated is a map that needs to be evaluated.
  • the electronic device obtains the map to be evaluated in the following manner, but is not limited to:
  • the electronic device receives a user instruction, which is used to indicate a map to be evaluated; and then the electronic device can request the map to be evaluated from a map server (eg, server 120) in response to the user instruction.
  • a map server eg, server 120
  • the vehicle when the vehicle collects environmental information, it generates a corresponding map to be evaluated based on the environmental information, and sends the map to be evaluated to the electronic device. Accordingly, the electronic device receives the map to be evaluated. In this way, the map updated in real time can be evaluated.
  • the electronic device obtains a first configuration file corresponding to the map to be evaluated, where the first configuration file is used to indicate multiple scoring dimensions of the map to be evaluated.
  • the first configuration file may be preset based on the map data quality specification and/or the map evaluation standard recommended by the map vendor, or may be customized by the user with reference to the map data quality specification and/or the map evaluation standard recommended by the map vendor, and the present application does not make any specific restrictions. Accordingly, the electronic device obtains the first configuration file corresponding to the map to be evaluated, including but not limited to the following implementations:
  • the electronic device may obtain a preset first configuration file from a third-party server (eg, a map provider's server or a server corresponding to a government management agency).
  • a third-party server eg, a map provider's server or a server corresponding to a government management agency.
  • the electronic device may provide a user operation interface corresponding to the first configuration file, receive user input information for the user operation interface, and generate a corresponding first configuration file according to the input information, wherein the input information may be, for example, any one of voice information, text information, graphic information, or gesture information.
  • the multiple scoring dimensions include at least one of coverage scenario information, layer attribute information, security authentication information, product format information, product volume information, update and maintenance information, ecological construction information, or industry customized information; wherein, the coverage scenario information is used to describe the usage scenario of the map to be evaluated, the layer attribute information is used to describe the quality of at least one layer in the map to be evaluated, the security authentication information is used to describe the security level and/or compliance of the map to be evaluated, and the product format information is used to describe the standard system supported by the map to be evaluated; the product volume information is used to describe the product form and/or data packet size of the map to be evaluated; the update and maintenance information is used to describe the update scope and/or update frequency of the map to be evaluated; the ecological construction information is used to describe the data compatibility of the map to be evaluated in different map usage devices Compatibility; Industry customization information is used to describe the usage requirements of the first industry to which the map to be evaluated is applicable. In this way, multiple scoring dimensions are provided, so that users can flexibly set their preferred scoring
  • Coverage scenario information is used to describe the usage scenario of the map to be evaluated. It can be understood that coverage scenario information is used to describe the physical space covered by the map to be evaluated, that is, the application scenario of the map to be evaluated. For example, considering the degree of restriction on traffic participants according to different physical spaces, coverage scenarios may include but are not limited to closed campus roads, dedicated roads, high-function grade roads, or ordinary urban roads. In this way, using coverage scenario information as a scoring dimension to evaluate maps helps users choose map products that meet their usage scenarios.
  • Layer attribute information is used to describe the quality of at least one layer in the map to be evaluated. It can be understood that layer attribute information is used to describe the quality level of the components in each layer in the map to be evaluated, wherein the quality level of the components in each layer can be characterized by the accuracy of the layer elements. Optionally, the accuracy of the layer elements can be determined based on the integrity, logical consistency, thematic accuracy, numerical accuracy, and temporal quality of the layer elements.
  • the layer elements may include, for example, traffic elements, road geometry elements, etc. in the layer. In this way, using layer attribute information as a scoring dimension to evaluate the map helps users select map products that meet the quality level of their layer elements.
  • At least one layer corresponding to the layer attribute information includes a dynamic layer and/or a static layer; wherein the dynamic layer is a traffic event layer, a traffic flow information layer, a real-time perception layer, a meteorological environment layer, or a statistical application layer; the static layer is a lane topology layer, a road topology layer, a road traffic marking, a sign layer, or a roadside and roadside facility layer.
  • the dynamic layer is a traffic event layer, a traffic flow information layer, a real-time perception layer, a meteorological environment layer, or a statistical application layer
  • the static layer is a lane topology layer, a road topology layer, a road traffic marking, a sign layer, or a roadside and roadside facility layer.
  • Lane topology layer including the topological connection network information composed of lane centerline segments and nodes.
  • Road topology layer including topological connection network information consisting of road reference lines, road virtual connection lines and road nodes.
  • Road traffic marking and sign layer including traffic markings and various sign information. Traffic markings are visually visible on the road surface and are used to regulate traffic order; these signboards are installed on the side of the road or hung in the middle of the road and are used to direct and guide traffic.
  • Roadside and roadside facilities layer including static facilities information, which can be used for vehicle positioning. These facilities may include roadside protection facilities, street lights, or speed bumps, etc.
  • Traffic event layer including temporary traffic events that affect the passage of vehicles and pedestrians, such as traffic control, traffic accidents, road construction, or temporary road obstacles.
  • Traffic flow information layer including real-time and predicted traffic flow, traffic flow speed, or traffic flow density information of the road.
  • Real-time perception layer including vehicle traffic participants, vulnerable traffic participants (non-motorized tricycles, bicycles, electric bicycles, motorcycles, pedestrians and animals), or traffic lights and other object information that needs to be perceived in real time.
  • Meteorological environment layer including weather information, lighting conditions, road friction coefficient and other information related to travel and road driving.
  • Statistical application layer including accident-prone road section information obtained by statistical methods, and user behavior preference information customized by the user or obtained by electronic devices through learning user behavior.
  • At least one layer includes multiple layers, and accordingly, the quality of the at least one layer is a quality score obtained by weighted operation of the quality scores of the multiple layers.
  • the electronic device can determine the quality score of the at least one layer by combining the quality scores of the multiple layers, and then can characterize the quality of the at least one layer by the quality score, thereby realizing a quantitative evaluation of the map to be evaluated in the dimension of layer attribute information, so that the user can intuitively select a map product that meets his or her preferred needs based on the quality score corresponding to the dimension of layer attribute information.
  • At least one layer includes layer A, layer B, and layer C
  • the quality score of layer A is 90 points, and the corresponding weight value of layer A is 0.35
  • the quality score of layer B is 95 points, and the corresponding weight value of layer B is 0.35
  • the quality score of layer C is 97 points, and the corresponding weight value of layer C is 0.3
  • the quality score of each layer in the multiple layers can be determined according to the accuracy of the map elements in the layer.
  • the quality score of each layer in the multiple layers can be determined according to the accuracy of the map elements in the layer.
  • Safety certification information is used to describe the safety level and/or compliance of the map to be evaluated.
  • the safety level can be, for example, the level corresponding to the safety standard in the smart driving car standard, or it can be whether the compilation, update, and release of the map to be evaluated meet the requirements of map-related regulations.
  • the safety standard can be, for example, the safety requirements defined in ISO 26262
  • the safety certification information can be used to describe whether the map to be evaluated complies with the safety requirements defined in ISO 26262. In this way, using the safety certification information as a scoring dimension to evaluate the map can help users choose map products that meet their safety needs.
  • Product format information is used to describe the standard system supported by the map to be evaluated. It can be understood that product format information is used to describe the standardization level of the map to be evaluated, that is, whether the application interface and storage format supported by the map to be evaluated support universal standards. Among them, universal standards can be, for example, NDS format and Open DRIVE format. In this way, using product format information as a scoring dimension to evaluate maps will help users choose map products that support universal standards.
  • Product volume information is used to describe the product form and/or data package size of the map to be evaluated. It can be understood that product volume information is used to describe the product form and lightweight level of the map. If the volume of the map to be evaluated is too large or has redundant functions, it will bring a burden to the map update and storage. In this case, using product volume information as a scoring dimension to evaluate the map will help users choose a map product that meets their storage needs.
  • the update and maintenance information is used to describe the update scope and/or update frequency of the map to be evaluated. It can be understood that the update and maintenance information is used to describe the information freshness of the map to be evaluated, that is, whether the update scope and/or update frequency of the map to be evaluated meets the needs of the first application (such as an intelligent driving application). It can be understood that the update scope of the map to be evaluated may include, for example, map elements in the target area. Exemplarily, map elements may include, for example, traffic light information and road geometry information, wherein the traffic light information may be updated by seconds and the road geometry information may be updated by months. In this way, the update and maintenance information is used as a scoring dimension to evaluate the map, so that users can choose map products that meet the update scope and/or update frequency of their applications.
  • Ecological construction information is used to describe the compatibility of the map to be evaluated in different map-using devices (such as cloud devices and roadside devices). It can be understood that ecological construction information is used to describe the contribution ability of the map to be evaluated as a super sensor container to the industrial ecology. The contribution ability can be, for example, the scale and completeness of the POIs contained in the map to be evaluated, or it can be the scalability of the interfaces and services supported by the map to be evaluated, or it can be the compatibility of the map to be evaluated with the data provided by other data sources such as the cloud, government agencies, and roadside sensors. In this way, the ecological construction information is used as a scoring dimension to evaluate the map, so that users can intuitively understand the scalability of the interfaces and services supported by the map, which makes it easier for users to choose map products that meet higher data compatibility.
  • Industry customization information is used to describe the usage requirements of the first industry to which the map to be evaluated is applicable. It can be understood that industry customization information is used to describe whether the map to be evaluated meets the customization requirements of the customer's industry.
  • the first industry is the drone logistics industry
  • the usage requirements of the drone logistics industry are that the road network structure and road geometry elements should be prepared in the map product.
  • the map is evaluated using industry customization information as a scoring dimension, which makes it easier for users to choose map products that meet their industry customization requirements.
  • the first configuration file may also be used to indicate other information in addition to the multiple scoring dimensions of the map to be evaluated.
  • the first configuration file is also used to indicate the first preset weight of the first scoring dimension.
  • the user can configure the first preset weight of the first scoring dimension in the first configuration file according to his/her preference requirements for the first scoring dimension, so that the evaluation result obtained by evaluating the map to be evaluated based on the first scoring dimension meets his/her preference requirements.
  • the first configuration file is also used to indicate the evaluation method corresponding to the first scoring dimension, and the evaluation method is used to determine the score of the map to be evaluated in the first dimension.
  • the evaluation method may include at least one of expert evaluation, map vendor evaluation, or user evaluation. In this way, the user can flexibly configure the evaluation method of the first scoring dimension in the first configuration file, so that the evaluation process of evaluating the map to be evaluated based on the first scoring dimension meets their preferred needs.
  • the first scoring dimension takes coverage scene information as an example.
  • the evaluation method corresponding to the coverage scene information can be map provider evaluation and/or user evaluation.
  • Example 2 The first scoring dimension takes security authentication information, ecosystem construction information, and industry customized information as examples.
  • the evaluation method corresponding to ecological construction information and industry customized information can be expert evaluation.
  • the first scoring dimension takes product format information and product volume information as an example.
  • the evaluation methods corresponding to the product format information and product volume information can be image vendor evaluation and/or user evaluation.
  • Example 4 Taking update and maintenance information as an example of the first scoring dimension, the evaluation method corresponding to the update and maintenance information may be vendor evaluation and/or user evaluation.
  • Example 5 The first scoring dimension takes layer attribute information as an example, and the evaluation method corresponding to the layer attribute information can be image provider evaluation.
  • the first configuration file is also used to indicate the rating rules for evaluating the map, and the rating rules are used to determine the level of the map to be evaluated.
  • the rating rules may include a preset map level mapping table and/or a functional relationship (such as a piecewise function) for determining the map level. In this way, the user can flexibly configure the rating rules of the map to be evaluated in the first configuration file, which can achieve quantitative evaluation of the map to be evaluated, and then can intuitively display the level of the map to be evaluated, so that the user can choose a map product that meets their usage needs.
  • the first configuration file is also used to indicate the first preset weight of the first scoring dimension, the evaluation method corresponding to the first scoring dimension, and the rating rule of the map to be evaluated. That is, the user can configure the first preset weight of the first scoring dimension, the evaluation method corresponding to the first scoring dimension, or the rating rule of the map to be evaluated in the first configuration file, which further improves the configuration flexibility of the first configuration file and helps meet the diverse map evaluation needs of users.
  • Case 5 The first configuration file is further used to indicate a first preset weight of the first scoring dimension and an evaluation method corresponding to the first scoring dimension.
  • the first configuration file is also used to indicate the evaluation method corresponding to the first scoring dimension and the rating rule of the map to be evaluated.
  • Case 7 The first configuration file is further used to indicate a first preset weight of a first scoring dimension and a rating rule of the map to be evaluated.
  • S203 The electronic device selects a first scoring dimension from multiple scoring dimensions.
  • the first scoring dimension may specifically include one or more scoring dimensions, and the embodiment of the present application does not limit the number of scoring dimensions included in the first scoring dimension.
  • the electronic device selects the first scoring dimension from the multiple scoring dimensions, including but not limited to the following implementations:
  • an electronic device receives a first instruction, and the first instruction is used to indicate a first scoring dimension; then the electronic device can select the first scoring dimension from multiple scoring dimensions in response to the first instruction.
  • the first instruction is used to indicate the first scoring dimension
  • the first instruction can be a human-computer interaction instruction, for example, it can be any one of a voice instruction, a touch instruction, or a text instruction. In this way, the user can intuitively set the first scoring dimension that meets his or her preference requirements by inputting the first instruction, making the user operation relatively simple.
  • Figure 3 shows one of the schematic diagrams of the user operation interface provided by an embodiment of the present application, in which scoring dimension 1, scoring dimension 2, scoring dimension 3, scoring dimension 4, scoring dimension 5, scoring dimension 6, scoring dimension 7, and scoring dimension 8 are displayed.
  • scoring dimension 1 scoring dimension 2
  • scoring dimension 3 scoring dimension 4
  • scoring dimension 5 scoring dimension 6
  • scoring dimension 7 scoring dimension 8
  • the electronic device detects that the user has checked scoring dimension 2, scoring dimension 3, scoring dimension 4, and scoring dimension 5, and detects the confirmation instruction entered by the user, it determines scoring dimension 2, scoring dimension 3, scoring dimension 4, and scoring dimension 5 as the first scoring dimension.
  • Implementation method 2 The electronic device receives a second instruction, and the second instruction is used to indicate that the weight corresponding to the first scoring dimension is not zero; then the electronic device can select the first scoring dimension from multiple scoring dimensions in response to the second instruction.
  • the second instruction can be a human-computer interaction instruction, such as a voice instruction, a touch instruction, or a text instruction.
  • the user can select the first scoring dimension that meets his or her preference needs by setting the weights of multiple scoring dimensions, which can reduce the situation where the user sets the scoring dimensions unreasonably due to lack of knowledge related to map evaluation.
  • Figure 4 shows the second schematic diagram of the user operation interface provided by an embodiment of the present application, in which scoring dimension 1, scoring dimension 2, scoring dimension 3, scoring dimension 4, and scoring dimension 5 are displayed.
  • the default weight values of scoring dimension 1, scoring dimension 2, scoring dimension 3, and scoring dimension 4 are zero.
  • S204 The electronic device determines a first weight of a first scoring dimension.
  • the first scoring dimension may include one or more scoring dimensions, and correspondingly, the first weight also includes one or more weight values.
  • the first weight is used to represent the user's emphasis on the first scoring dimension. Accordingly, if the user attaches more importance to the first scoring dimension, the first weight can be set to a larger value; if the user does not attach importance to the first scoring dimension, the first weight can be set to a smaller value.
  • the electronic device determines the first weight of the first scoring dimension including but not limited to the following implementations:
  • the electronic device receives a third instruction, the third instruction is used to indicate a first weight of a first scoring dimension; and then the electronic device The first weight of the first scoring dimension may be determined according to the third instruction.
  • the third instruction may be a human-computer interaction instruction, such as a voice instruction, a touch instruction, or a text instruction. In this way, the user can flexibly set the first weight of the first scoring dimension, so that the map evaluation based on the first scoring dimension is more in line with their preference needs, thereby further improving the user's map evaluation experience.
  • the first scoring dimension takes scoring dimension 2 and scoring dimension 3 as an example, and the first weight takes the weights of scoring dimension 2 and scoring dimension 3 as an example; in Figure 4, the user can set the weight of scoring dimension 2 by sliding the weight setting button of scoring dimension 2; and the user can set the weight of scoring dimension 3 by sliding the weight setting button of scoring dimension 3, and enter the corresponding confirmation instruction (i.e., the third instruction), and then the electronic device receives the confirmation instruction and can determine the weights of scoring dimension 2 and scoring dimension 3 according to the confirmation instruction.
  • the confirmation instruction i.e., the third instruction
  • the electronic device reads the first weight of the first scoring dimension.
  • the electronic device can read the first weight of the first scoring dimension from a mapping relationship table between scoring dimensions and preset weights. In this way, the first scoring dimension directly adopts the preset first weight, and the user does not need to set the weight, which makes the user operation relatively simple.
  • the mapping relationship table between the scoring dimensions and the preset weights can be shown in Table 2, wherein the preset weight corresponding to the coverage scene information is 0.15, the preset weight corresponding to the layer attribute information is 0.3, the preset weight corresponding to the security authentication information is 0.2, the preset weight corresponding to the product format information is 0.1, the preset weight corresponding to the product volume information is 0.1, the preset weight corresponding to the update and maintenance information is 0.05, the preset weight corresponding to the ecological construction information is 0.05, and the preset weight corresponding to the industry customization information is 0.05.
  • S205 The electronic device evaluates the map to be evaluated according to the first scoring dimension and the first weight.
  • step 205 there are multiple implementations for the electronic device to evaluate the map to be evaluated according to the first scoring dimension and the first weight, which are described below in different situations:
  • the electronic device scores the map to be evaluated according to the first scoring dimension and the first weight, wherein the scoring includes evaluating the quality of the map to be evaluated.
  • Example 1 Taking scoring dimension 1 as an example of the first scoring dimension, and the weight corresponding to scoring dimension 1 is 1, the electronic device only scores the map to be evaluated from scoring dimension 1.
  • Example 2 taking scoring dimension 1 and scoring dimension 2 as an example of the first scoring dimension, and the weights corresponding to scoring dimension 1 and scoring dimension 2 are both 0.5, the electronic device scores the map to be evaluated from scoring dimension 1 to obtain a score of 1; and scores the map to be evaluated from scoring dimension 2 to obtain a score of 2; finally, according to the weight 0.5 corresponding to scoring dimension 1 and scoring dimension 2, the score 1 and the score 2 are weighted and summed to obtain the score of the map to be evaluated.
  • the electronic device scores and rates the map to be evaluated according to the first scoring dimension and the first weight.
  • Example 1 taking scoring dimension 1 as an example of the first scoring dimension, and the weight corresponding to scoring dimension 1 is 1, the electronic device scores the map to be evaluated from scoring dimension 1, and determines that the quality score of the map to be evaluated is 95; the rating rules indicated by the above-mentioned first configuration file include a mapping table between quality score intervals and map grades as shown in Table 3, and then the electronic device can determine the grade of the map to be evaluated as A according to the rating grade table and the quality score of the map to be evaluated.
  • the first scoring dimension takes scoring dimension 1 and scoring dimension 2 as examples, and the weights corresponding to scoring dimension 1 and scoring dimension 2 are both is 0.5, the electronic device scores the map to be evaluated from scoring dimension 1 and obtains a score of 1; and scores the map to be evaluated from scoring dimension 2 and obtains a score of 2; finally, according to the weight 0.5 corresponding to scoring dimension 1 and scoring dimension 2, the weighted sum of score 1 and score 2 is obtained, and the score of the map to be evaluated is 78. According to the grade table shown in Table 2, the grade of the map to be evaluated can be determined as B.
  • the electronic device rates the map to be evaluated according to the first scoring dimension and the first weight.
  • the first scoring dimension includes taking layer attribute information as an example, and the weight corresponding to the layer attribute information is 1, then the electronic device can determine the level of the map to be evaluated according to the mapping table between the accuracy of the map elements in at least one layer corresponding to the layer attribute information and the map level as shown in Table 4.
  • the accuracy of the map elements in at least one layer is 98%, which is within the range of 95%-100%, and the map level is set to A.
  • the accuracy of the map elements in at least one layer is 78%, which is within the range of 75%-94%, and the map level is set to B.
  • the accuracy of the map elements in at least one layer is 65%, which is within the range of 60%-74%, and the map level is set to C.
  • the accuracy of the map elements in at least one layer is 55%, which is within the range of 0%-59%, and the map level is set to D.
  • the electronic device can perform weighted operations on the accuracy of the map elements in the multiple layers to obtain the accuracy of the map elements in at least one layer.
  • the weighted operation can be, for example, weighted summation.
  • a second configuration file is also set for the map to be evaluated, so that the electronic device can obtain the second configuration file corresponding to the map to be evaluated, and determine whether the map to be evaluated meets the first condition based on the second configuration file. In this way, the evaluation process of the map to be evaluated is more reasonable, and the user's map evaluation experience can be improved.
  • FIG5 shows a flowchart of a map evaluation method provided in the second embodiment of the present application, which is applicable to an electronic device having a map evaluation function (for example, the electronic device 130 shown in FIG1 ). As shown in FIG5 , the method includes:
  • S501 The electronic device obtains a map to be evaluated.
  • the electronic device obtains a first configuration file corresponding to the map to be evaluated, where the first configuration file is used to indicate multiple scoring dimensions of the map to be evaluated.
  • S503 The electronic device selects a first scoring dimension from multiple scoring dimensions.
  • S504 The electronic device determines a first weight of a first scoring dimension.
  • S505 The electronic device obtains a second configuration file corresponding to the map to be evaluated, where the second configuration file is used to determine whether the map to be evaluated meets the first condition.
  • the second configuration file can be a user's reference map data quality specification, a map evaluation standard recommended by a map vendor, or customized based on its application requirements (such as smart driving applications), and this application does not impose any specific limitations.
  • the first condition is used to represent the basic requirements of the user for the map to be evaluated. Therefore, the electronic device can determine whether the map to be evaluated meets the basic requirements of the user based on the second configuration file, so that the user has a better evaluation experience of the map to be evaluated.
  • the first condition includes at least one of the following:
  • the map to be evaluated is applicable to the first usage scenario.
  • the first usage scenario may be a closed park road, a dedicated road, a high-function grade road, or an ordinary urban road.
  • the quality score of the first layer in the map to be evaluated is greater than the first threshold.
  • the first layer includes a traffic event layer, a traffic flow information layer, a real-time perception layer, a meteorological environment layer, a statistical application layer, a lane topology layer, a road topology layer, a road traffic marking, a sign layer, or a roadside and roadside facilities layer.
  • the first threshold can be, for example, 90%.
  • the map to be evaluated meets the first safety level.
  • the safety level may be a level corresponding to the safety standard in the smart driving car standard, or it may be whether the compilation, update, and release of the map to be evaluated meets the requirements of map-related regulations.
  • the map to be evaluated corresponds to a first data format.
  • the first data format may be, for example, an NDS format and/or an Open DRIVE format.
  • the product form of the map to be evaluated meets the preset standard.
  • the preset standard may be the size of the map sheet.
  • the data packet size of the map to be evaluated is smaller than a second threshold value.
  • the second threshold value may be 400 MB, for example.
  • the update scope and/or update frequency of the map to be evaluated meets the usage requirements of the first application. It is understandable that the update scope of the map to be evaluated may include, for example, map elements in the target area.
  • the map elements may include, for example, traffic light information and road geometry information, wherein the traffic light information may be updated by seconds and the road geometry information may be updated by months.
  • the map-using device may be a cloud device or a roadside device.
  • the map to be evaluated meets the usage requirements of the first industry.
  • the first industry is the drone logistics industry
  • the usage requirements of the drone logistics industry are that the road network structure and road geometry elements should be prepared in the map product.
  • Example 1 the first condition can be as shown in Table 5, the first condition includes: condition 1, the map contains the dedicated bus road in urban area A; condition 2, the correctness of the lane topology layer elements in the map is not less than 98%; condition 3, the map needs to pass ISO 26262 certification.
  • the map to be evaluated contains the dedicated bus road in urban area A, the map to be evaluated meets condition 1; if the correctness of the lane topology layer elements of the map to be evaluated is 98%, the map to be evaluated does not meet condition 2; if the map to be evaluated passes ISO 26262 certification, the map to be evaluated meets condition 3; if the map to be evaluated supports the intelligent driving of sprinkler trucks and road cleaning operations, the map to be evaluated meets condition 4; if the update cycle of the map to be evaluated is updated in seconds, the map to be evaluated meets condition 5; if the map to be evaluated supports the NDS and OpenDRIVE standard formats, the map to be evaluated meets condition 6; if the product volume of the map to be evaluated is not greater than 120M, the map to be evaluated meets condition 7; although the map to be evaluated meets conditions 1, conditions 3-condition 7, but the map to be evaluated does not meet condition 2, then the electronic device determines that the map to be evaluated does not meet the first condition.
  • Example 2 the first condition can be as shown in Table 6, the first condition includes: condition 1, the map contains the dedicated bus road in urban area A; condition 2, the correctness of the lane topology layer elements in the map is not less than 98%; condition 3, the map needs to pass ISO 26262 certification.
  • the map to be evaluated contains the dedicated bus road in urban area A, the map to be evaluated satisfies condition 1; if the correctness of the lane topology layer elements of the map to be evaluated is 98%, the map to be evaluated satisfies condition 2; if the map to be evaluated passes ISO 26262 certification, the map to be evaluated satisfies condition 3; therefore, if the map to be evaluated satisfies conditions 1, 2, and 3, the electronic device determines that the map to be evaluated satisfies the first condition.
  • S506 The electronic device determines whether the map to be evaluated meets the first condition based on the second configuration file.
  • the top-level decisive index of the map evaluation of the user's basic needs for the map to be evaluated is used. After determining that the map to be evaluated meets the first condition, the map to be evaluated is evaluated according to the first scoring dimension and the first weight, so that the evaluation process of the map to be evaluated is more reasonable, which can effectively prevent the map from being evaluated when the map to be evaluated does not meet the user's basic needs, thereby avoiding wasting the user's time. It effectively improves the user's map evaluation experience.
  • S507 The electronic device evaluates the map to be evaluated according to the first scoring dimension and the first weight.
  • the electronic device evaluates the quality of the map to be evaluated as the lowest level or the lowest score.
  • the first condition is used to characterize the basic needs of the user for the map to be evaluated. In this way, the top-level decisive indicator of the user's basic needs map evaluation for the map to be evaluated is evaluated as the lowest level or the lowest score when the map to be evaluated does not meet the first condition, so that it can intuitively reflect whether the map product meets the basic needs of the user.
  • Example 3 further introduces the map evaluation method provided in the example of the present application in combination with a specific application scenario.
  • the scoring dimensions include coverage scene information, layer attribute information, security authentication information, product format information, product volume information, update and maintenance information, ecological construction information, and industry customization information.
  • the scoring dimension can be understood as the product portrait of the map to be evaluated.
  • the user can configure the scoring dimension that meets his or her preference requirements in Figure 6. For example, the user can select coverage scene information, layer attribute information, security authentication information, product format information, product volume information, update and maintenance information, ecological construction information, and industry customization information as the first scoring dimension, and enter the corresponding confirmation instruction, and then the electronic device can determine the first scoring dimension according to the confirmation instruction.
  • the scoring items of coverage scene information include closed park roads and dedicated roads, while the map to be evaluated includes scenic area roads in A and public dedicated roads in urban area B.
  • the score of the map to be evaluated in the coverage scene information dimension is 100;
  • the scoring items of layer attribute information dimension include the feature accuracy of lane topology layer, feature accuracy of road topology layer, feature accuracy of road traffic marking and sign layer, feature accuracy of roadside and roadside facilities layer, feature accuracy of traffic event layer, feature accuracy of traffic flow information layer, feature accuracy of real-time perception layer, feature accuracy of meteorological environment layer, feature accuracy of statistical application layer, and the score of the map to be evaluated in the layer attribute information dimension is 96.5; the map to be evaluated has passed ISO 26262 certification, so the map to be evaluated has passed ISO 26262 certification in safety certification.
  • the score of the certification information dimension is 100; if the map to be evaluated supports the NDS and OpenDRIVE standards, the score of the map to be evaluated in the product format information dimension is 100; the data packet size of the map to be evaluated is 120M, so the score of the map to be evaluated in the product volume information dimension is 90; the scoring items of the ecological construction information include the scope of the ecosystem and multi-source adaptability, and the map to be evaluated includes all schools within the coverage area and compatible cloud data, so the score of the map to be evaluated in the ecological construction information dimension is 80; the scoring items of industry customization information include support for specific scenarios in the transportation industry and support for specific scenarios in the logistics industry, and the map to be evaluated supports intelligent driving of sprinkler trucks and completes road cleaning, as well as supports smart logistics unmanned vehicles for express delivery within the park, so the score of the map to be evaluated in the ecological construction information dimension is 100.
  • the user sets weight values as shown in Table 8 for coverage scene information, layer attribute information, security authentication information, product format information, product volume information, update and maintenance information, ecological construction information, and industry customization information. Then, the electronic device calculates the total score of the map to be evaluated as 94.95 points based on the scores of each scoring dimension and the corresponding weights.
  • the user sets a rating rule as shown in Table 9. According to Table 9, when the total score of the map to be evaluated is 94.95 points, the corresponding grade of the map to be evaluated is A.
  • the user can also set a first condition.
  • the first condition is that the feature accuracy of the lane topology layer is greater than 99%. If the feature accuracy of the lane topology layer in the map to be evaluated is greater than 98%, the map to be evaluated does not meet the first condition, so the map to be evaluated is set to the lowest level.
  • FIG7 is a schematic diagram of the structure of a map evaluation device provided in an embodiment of the present application.
  • the device can be an electronic device, or a chip or circuit, such as a chip or circuit that can be set in an electronic device.
  • the electronic device can be a device with processing capabilities, and can be exemplarily the electronic device 130 as shown in FIG1.
  • the map evaluation device 701 may further include a bus system, wherein the processor 702 , the memory 704 , and the transceiver 703 may be connected via the bus system.
  • the processor 702 may be a chip.
  • the processor 702 may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor unit (CPU), a network processor (NP), a digital signal processor (DSP), a microcontroller unit (MCU), or a programmable logic device (PLD). PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor 702 or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiment of the present application can be directly embodied as being executed by a hardware processor, or can be executed by a combination of hardware and software modules in the processor 702.
  • the software module can be located in a mature storage medium in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory 704, and the processor 702 reads the information in the memory 704 and completes the steps of the above method in conjunction with its hardware.
  • the processor 702 in the embodiment of the present application can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by an integrated logic circuit of hardware in the processor or an instruction in the form of software.
  • the above processor can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined and performed.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory 704 in the embodiment of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchlink DRAM
  • DR RAM direct rambus RAM
  • the map evaluation device 701 may include a processor 702, a transceiver 703, and a memory 704.
  • the memory 704 is used to store instructions
  • the processor 702 is used to execute the instructions stored in the memory 704 to implement the relevant scheme of the electronic device in the above method embodiment.
  • map evaluation device 701 is the first device and performs the first embodiment:
  • the transceiver 703 can receive a map to be evaluated and a first configuration file, where the first configuration file is used to indicate multiple scoring dimensions of the map to be evaluated; the processor 702 can select a first scoring dimension from the multiple scoring dimensions, determine a first weight of the first scoring dimension, and evaluate the map to be evaluated based on the first scoring dimension and the first weight.
  • FIG8 is a schematic diagram of a map evaluation device provided in an embodiment of the present application.
  • the map evaluation device 800 can be an electronic device, or a chip or circuit in an electronic device.
  • the map evaluation device 800 can implement the steps performed by the above electronic device.
  • the map evaluation device 800 may include an acquisition module for acquiring a map to be evaluated; the acquisition module 801 is also used to acquire a first configuration file corresponding to the map to be evaluated, and the first configuration file is used to indicate multiple scoring dimensions of the map to be evaluated; the processing module 802 is used to select a first scoring dimension from multiple scoring dimensions; the processing module 802 is also used to determine a first weight of the first scoring dimension; the processing module 802 is also used to evaluate the map to be evaluated according to the first scoring dimension and the first weight.
  • the first configuration file is also used for the first preset weight of the first scoring dimension, the evaluation method corresponding to the first scoring dimension, or the rating rule of the map to be evaluated; wherein the evaluation method is used to determine the score of the map to be evaluated in the first dimension, and the rating rule is used to determine the grade of the map to be evaluated.
  • the multiple scoring dimensions include at least one of coverage scenario information, layer attribute information, security certification information, product format information, product volume information, update and maintenance information, ecosystem construction information, or industry customized information; wherein, the coverage scenario information is used to describe the usage scenario of the map to be evaluated, the layer attribute information is used to describe the quality of at least one layer in the map to be evaluated, the security certification information is used to describe the security level and/or compliance of the map to be evaluated, and the product format information is used to describe the standard system supported by the map to be evaluated; the product volume information is used to describe the product form and/or data packet size of the map to be evaluated; the update and maintenance information is used to describe the update scope and/or update frequency of the map to be evaluated; the ecosystem construction information is used to describe the data of the map to be evaluated in different map usage devices Compatibility; Industry customization information is used to describe the usage requirements of the first industry to which the map to be evaluated applies.
  • At least one layer includes a dynamic layer and/or a static layer; wherein the dynamic layer is a traffic event layer, a traffic flow information layer, a real-time perception layer, a meteorological environment layer, or a statistical application layer; the static layer is a lane topology layer, a road topology layer, a road traffic marking, a sign layer, or a roadside and roadside facilities layer.
  • the dynamic layer is a traffic event layer, a traffic flow information layer, a real-time perception layer, a meteorological environment layer, or a statistical application layer
  • the static layer is a lane topology layer, a road topology layer, a road traffic marking, a sign layer, or a roadside and roadside facilities layer.
  • At least one layer includes multiple layers, and the quality of the at least one layer is a quality score obtained by performing a weighted operation on the quality scores of the multiple layers.
  • the acquisition module 801 is further used to: obtain a second configuration file corresponding to the map to be evaluated, and the second configuration file is used to determine whether the map to be evaluated meets the first condition.
  • the first condition includes: the map to be evaluated is suitable for a first usage scenario; the quality score of the first layer in the map to be evaluated is greater than a first threshold; the map to be evaluated meets the first security level; the map to be evaluated corresponds to a first data format; the product form of the map to be evaluated meets a preset standard; the data packet size of the map to be evaluated is less than a second threshold; the update range and/or update frequency of the map to be evaluated meets the usage requirements of the first application; the data formats of the map to be evaluated in different map usage devices are compatible; or, the map to be evaluated meets the usage requirements of the first industry.
  • the processing module 802 is further used to: when the map to be evaluated does not meet the first condition, evaluate the quality of the map to be evaluated as the lowest level or the lowest score.
  • the processing module 802 before evaluating the map to be evaluated according to the first scoring dimension and the first weight, the processing module 802 is further used to: determine whether the map to be evaluated meets the first condition.
  • the first configuration file and/or the second configuration file is user-defined.
  • the present application also provides a computer-readable storage medium, which stores a program code.
  • the program code runs on a computer, the computer executes the method of any one of the above method embodiments.
  • An embodiment of the present application also provides an electronic device, which is used to execute a method in any one of the above method embodiments.
  • a component can be, but is not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program and/or a computer.
  • applications running on a computing device and a computing device can be components.
  • One or more components may reside in a process and/or an execution thread, and a component may be located on a computer and/or distributed between two or more computers.
  • these components may be executed from various computer-readable media having various data structures stored thereon.
  • Components may, for example, communicate through local and/or remote processes according to signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
  • signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer software product is stored in a storage medium and includes several instructions for enabling a computer device (which can be a personal computer, server, or network device, etc.) to execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Instructional Devices (AREA)

Abstract

一种地图评估方法及装置,该方法包括:获取待评估地图;获取待评估地图对应的第一配置文件,该第一配置文件用于指示待评估地图的多个评分维度;从多个评分维度中选择第一评分维度;确定第一评分维度的第一权重;根据第一评分维度和第一权重,对待评估地图进行评估。如此,可以灵活设置待评估地图的评分维度,使得用户可以基于自身需求对待评估地图进行评估,进而有助于用户选择符合其偏好需求的地图产品。

Description

一种地图评估方法及装置
相关申请的交叉引用
本申请要求在2022年12月13日提交中国专利局、申请号为202211604004.1、申请名称为“一种地图评估方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及地图技术领域,尤其涉及一种地图评估方法及装置。
背景技术
由于用户对地图产品的使用需求不同,对地图产品的质量水平与服务能力也提出了不同要求。例如,用户在使用地图产品进行道路级导航时,需要地图产品能够提供精度为5-10m的静态道路网络信息和全局动态交通信息;又如,用户在使用地图产品在高架高速路段上实现导航时,需要地图产品能够提供精度为20-50cm的车道级信息;又如,用户在使用地图产品实现高级别自动驾驶时,需要地图产品能够提供精度和丰富度更高的实时交通数据。因此,对地图产品进行测评分级,可以实现地图数据资源的合理分配,以及优化地图的采集、制作、和发布的效率,有助于推动地图产品在智能驾驶车辆中的应用和普及,对地图产业具有重要意义。
一些技术方案中,根据地图的静态测绘要素、地图的使用场景或地图支持应用功能,对地图产品进行测评分级。现有地图产品的测评方式多样化,缺乏统一的地图评价标准,导致用户难以基于自身需求对地图产品进行评价。
发明内容
本申请提供一种地图评估方法及装置,用以解决用户难以基于自身需求对地图产品进行评价的技术问题。
第一方面,本申请提供一种地图评估方法,该方法适用于电子设备,电子设备可以为具有处理功能的任一设备,如终端设备、服务器或车辆。该方法包括:获取待评估地图;获取待评估地图对应的第一配置文件,该第一配置文件用于指示待评估地图的多个评分维度;从多个评分维度中选择第一评分维度;确定第一评分维度的第一权重;根据第一评分维度和第一权重,对待评估地图进行评估。
本申请中,考虑到地图数据质量规范以及图商的地图评价体系中缺乏统一的地图评价标准,针对待评估地图设置了第一配置文件,该第一配置文件用于指示待评估地图的多个评分维度;因此在对待评估地图进行评估时,可以获取待评估地图对应的第一配置文件,并从第一配置文件所指示的多个评分维度中选择至少一个评分维度;以及确定至少一个评分维度的权重;根据至少一个评分维度和对应的权重,对待评估地图进行评估。如此,可以灵活设置待评估地图的评分维度,使得用户可以基于自身需求对待评估地图进行评估,进而有助于用户选择符合其偏好需求的地图产品。
在本申请中,第一配置文件可以是基于地图数据质量规范和/或图商推荐的地图评价标准预设的,或者,也可以是用户参考地图数据质量规范和/或图商推荐的地图评价标准自定义的,本申请不作具体限制。
在本申请中,第一评分维度可以包括一个或多个评分维度。
在本申请中,电子设备从多个评分维度中选择第一评分维度包括但不限于以下实施方式:
实施方式1,电子设备接收第一指令,该第一指令用于指示第一评分维度;进而电子设备可以响应于第一指令,从多个评分维度中选择第一评分维度。其中,“第一指令用于指示第一评分维度”可以理解为用户在多个评分维度中勾选了第一评分维度。可选的,第一指令可以为人机交互指令,例如可以是语音指令、触摸指令、或文字指令中的任一项。如此,用户可以通过输入第一指令,直观地设置符合其偏好需求的第一评分维度,使得用户操作较为简便。
实施方式2,电子设备接收第二指令,该第二指令用于指示第一评分维度对应的权重不为零;进而电子设备可以响应于第二指令,从多个评分维度中选择第一评分维度。其中,“第一评分维度对应的权重不为零”可以理解为用户将第一评分维度对应的权重设置为非零的数值。可选的,第二指令可以为人机交互指令,例如可以是语音指令、触摸指令、或文字指令中的任一项。如此,用户可以通过对多个评 分维度的权重进行设置,来选择符合其偏好需求的第一评分维度。
在本申请中,电子设备确定第一评分维度的第一权重包括但不限于以下实施方式:
实施方式1,电子设备接收第三指令,该第三指令用于指示第一评分维度的第一权重;进而电子设备可以根据第三指令,确定第一评分维度的第一权重。可选的,第三指令可以为人机交互指令,例如可以是语音指令、触摸指令、或文字指令中的任一项。如此,用户可以灵活设置第一评分维度的第一权重,使得基于第一评分维度进行的地图评估更加符合其偏好需求,从而进一步提升用户的地图评价体验。
实施方式2,电子设备读取第一评分维度的第一权重。例如,电子设备可以从评分维度与预设权重之间的映射关系表中,读取第一评分维度的第一权重。如此,第一评分维度直接采用预设的第一权重,无需用户设置权重,使得用户操作较为简便。
在一种可能的设计中,第一配置文件还用于指示第一评分维度的第一预设权重,第一评分维度对应的评估方式,或待评估地图的评级规则;其中,评估方式用于确定待评估地图在第一维度的分数,评级规则用于确定待评估地图的等级。在该设计中,第一配置文件还可以指示第一评分维度的第一预设权重,第一评分维度对应的评估方式,或待评估地图的评级规则;换而言之,可以在第一配置文件中配置第一评分维度的第一预设权重,第一评分维度对应的评估方式,或待评估地图的评级规则。
其中,用户可以根据其对第一评分维度的偏好需求,在第一配置文件中配置第一评分维度的第一预设权重,使得基于第一评分维度对待评估地图进行评估所得到评估结果符合其偏好需求;其中,用户可以在第一配置文件中灵活配置第一评分维度的评估方式,可以使得基于第一评分维度对待评估地图进行评估的评估过程符合其偏好需求;其中,用户可以在第一配置文件中灵活配置待评估地图的评级规则,可以实现对待评估地图的量化评价,进而可以直观地展示待评估地图的等级,便于用户选择符合其使用需求的地图产品。可选的,评估方式与测评待评估地图的对象有关,例如可以包括专家评测、图商评测、或用户评测中的至少一项;评级规则可以包括预设的地图等级映射表和/或用于确定地图等级的函数关系式(例如分段函数)。
在一种可能的设计中,多个评分维度包括覆盖场景信息、图层属性信息、安全认证信息、产品格式信息、产品体量信息、更新维护信息、生态建设信息、或行业定制化信息中的至少一项;其中,覆盖场景信息用于描述待评估地图的使用场景,图层属性信息用于描述待评估地图中的至少一个图层的质量,安全认证信息用于描述待评估地图的安全等级和/或合规性,产品格式信息用于描述待评估地图支持的标准体系;产品体量信息用于描述待评估地图的产品形态和/或数据包大小;更新维护信息用于描述待评估地图的更新范围和/或更新频率;生态建设信息用于描述待评估地图在不同地图使用设备中的数据兼容性;行业定制化信息用于描述待评估地图适用的第一行业的使用需求。在该设计中,提供了多个评分维度的实施方式,进而用户可以灵活设置自己偏好的评分维度。
其中,覆盖场景信息用于描述待评估地图的使用场景,可以理解为覆盖场景信息用于描述待评估地图覆盖的物理空间,即待评估地图的应用场景。示例性的,考虑按不同物理空间对交通参与者的限制程度,覆盖场景可以包括但不限于封闭园区道路、专用道路、高功能等级道路、或城市普通道路。如此,将覆盖场景信息作为评分维度对地图进行评估,有助于用户选择满足其使用场景的地图产品。
其中,图层属性信息用于描述待评估地图中的至少一个图层的质量,可以理解为图层属性信息用于描述待评估地图中各个图层中的组成要素的质量水平,其中,各个图层中的组成要素的质量水平可以通过图层要素的正确率来表征。可选的,图层要素的正确率可根据图层要素的完整性、逻辑一致性、专题准确度、数值准确度、和时间质量确定。其中,图层要素例如可以包括图层中的交通元素、道路几何元素等。如此,将图层属性信息作为评分维度对地图进行评估,有助于用户选择满足其图层要素质量水平的地图产品。
其中,安全认证信息用于描述待评估地图的安全等级和/或合规性。安全等级例如可以是智能驾驶汽车标准中的安全标准对应的等级,或者,可以是待评估地图的编制、更新、发布是否满足地图相关法规的要求。其中,安全标准例如可以是ISO 26262定义的安全要求。如此,将安全认证信息作为评分维度对地图进行评估,有助于用户选择满足其安全需求的地图产品。
其中,产品格式信息用于描述待评估地图支持的标准体系,可以理解为产品格式信息用于描述待评估地图的标准化水平,即待评估地图支持的应用接口、存储格式是否支持通用标准。其中,通用标准例如可以是NDS格式、Open DRIVE格式。如此,将产品格式信息作为评分维度对地图进行评估,有助于用户选择支持通用标准的地图产品。
其中,产品体量信息用于描述待评估地图的产品形态和/或数据包大小,可以理解为产品体量信息用于描述地图的产品形态和轻量化水平。若待评估地图的体量过大、功能冗余,会给地图更新、存储带来负担,如此,将产品体量信息作为评分维度对地图进行评估,有助于用户选择满足其存储需求的地图产品。
其中,更新维护信息用于描述待评估地图的更新范围和/或更新频率,可以理解为更新维护信息用于描述待评估地图的信息鲜度,即待评估地图的更新范围和/或更新频率是否满足第一应用(例如智能驾驶应用)的需求。可以理解的是,待评估地图的更新范围例如可以包括目标区域中的地图要素。示例性的,地图要素例如可以包括红绿灯信息和道路几何信息,其中,红绿灯信息可以按秒更新,道路几何信息可以按月更新。如此,将更新维护信息作为评分维度对地图进行评估,便于用户选择满足其应用的更新范围和/或更新频率的地图产品。
其中,生态建设信息用于描述待评估地图在不同地图使用设备中的数据兼容性,可以理解为生态建设信息用于描述待评估地图作为超级传感容器对产业生态的贡献能力。贡献能力例如可以是待评估地图所包含的兴趣点(Point of Interest,POI)规模和完备性,或者可以是待评估地图支持的接口和服务对应的可扩展性,或者可以是待评估地图与云端、政府机构、路侧传感器等其他数据来源提供的数据的兼容情况。如此,将生态建设信息作为评分维度对地图进行评估,使得用户可以直观地了解地图支持的接口和服务对应的可扩展性,进而便于用户选择满足数据兼容性较高的地图产品。
其中,行业定制化信息用于描述待评估地图适用的第一行业的使用需求,可以理解为行业定制化信息用于描述待评估地图是否满足客户所在行业的定制化需求。例如,第一行业为无人机物流行业,无人机物流行业的使用需求为地图产品中具备道路网络结构和道路几何要素。如此,将行业定制化信息作为评分维度对地图进行评估,便于用户选择符合其行业定制化需求的地图产品。
在一种可能的设计中,图层属性信息对应的至少一个图层包括动态图层和/或静态图层;其中,动态图层为交通事件图层、交通流量信息图层、实时感知图层、气象环境图层、或统计应用图层;静态图层为车道拓扑图层、道路拓扑图层、道路交通标线、标志图层、或路侧及路内设施图层。在该设计中,考虑到现实世界中的真实交通环境存在实时变化的特性,为提高地图评估的准确性,将图层属性信息维度对应的至少一个图层设置为动态图层或静态图层。如此,可以使得基于图层属性信息维度对待评估地图的评估结果更加准确。下面对这些的含义进行说明。
a)车道拓扑图层,包括车道中心线的线段和结点构成的拓扑连接网络信息。
b)道路拓扑图层,包括道路参考线、道路虚拟连接线和道路结点构成的拓扑连接网络信息。
c)道路交通标线及标志图层,包括交通标线和各种标志牌信息,交通标线是路面视觉可见的,且用于规范交通秩序;这些标志牌安装在路侧或悬挂在路中央,且用于指挥引导交通。
d)路侧及路内设施图层,包括静态的设施信息,这些设施可用于车辆定位。这些设施例如可以包括路侧防护设施、路灯、或减速带等。
e)交通事件图层,包括临时性的、影响车辆与行人通行的交通事件,例如交通管制、交通事故、占路施工、或设置道路临时障碍物等。
f)交通流量信息图层,包括道路实时和预测的交通流量、交通流速度、或交通流密度信息。
g)实时感知图层,包括车辆交通参与者、弱势交通参与者(非机动三轮车、自行车、电动自行车、摩托车、行人及动物)、或交通信号灯等需实时感知的对象信息。
h)气象环境图层,包括与出行和道路行驶相关的天气信息、光照情况、以及道路摩擦系数等信息。
i)统计应用图层,包括用统计方法获得的事故频发路段信息,以及用户自定义或电子设备通过学习用户行为获得的用户行为偏好信息。
在一种可能的设计中,至少一个图层包括多个图层,相应的,至少一个图层的质量是通过对多个图层的质量分数进行加权运算得到的一个质量分数。在该设计中,结合多个图层的质量分数,来确定至少一个图层的质量分数,进而可以通过该质量分数来表征至少一个图层的质量,实现了在图层属性信息维度对待评估地图的量化评估,使得用户可以基于图层属性信息维度对应的质量分数,直观地选择符合其偏好需求的地图产品。可选的,多个图层中每个图层的质量分数可以根据该图层中的地图要素准确率确定。
在一种可能的设计中,所述方法还包括:获取待评估地图对应的第二配置文件,第二配置文件用于 确定待评估地图是否满足第一条件。其中,第一条件用于表征用户对待评估地图的基本需求。在该设计中,考虑到不同用户对地图产品的基本需求不一致,针对待评估地图还设置了第二配置文件,因此电子设备可以获取待评估地图对应的第二配置文件,基于第二配置文件,确定待评估地图是否满足第一条件。如此,使得对待评估地图的评估过程更加合理,以及可以提升用户的地图评估体验。
在一种可能的设计中,第一条件包括:待评估地图适用于第一使用场景;待评估地图中的第一图层的质量分数大于第一阈值;待评估地图满足第一安全等级;待评估地图对应第一数据格式;待评估地图的产品形态满足预设标准;待评估地图的数据包大小小于第二阈值;待评估地图的更新范围和/或更新频率满足第一应用的使用需求;待评估地图在不同地图使用设备中的数据格式兼容;或者,待评估地图满足第一行业的使用需求。在该设计中,提供了第一条件的多种实现方式,进而使得用户可以在第二配置文件中设置多样化的基本需求。
在一种可能的设计中,所述方法还包括:在待评估地图不满足第一条件时,将待评估地图的质量评估为最低等级或最低分数。其中,第一条件用于表征用户对待评估地图的基本需求。在该设计中,将用户对待评估地图的基本需求地图评估的顶层决定性指标,在待评估地图不满足第一条件时,将待评估地图的质量评估为最低等级或最低分数,如此可以直观反映地图产品是否满足用户的基本需求。
在一种可能的设计中,在根据第一评分维度和第一权重,对待评估地图进行评估之前,所述方法还包括:确定待评估地图满足第一条件。在该设计中,将用户对待评估地图的基本需求地图评估的顶层决定性指标,在确定待评估地图满足第一条件之后,才根据第一评分维度和第一权重,对待评估地图进行评估,使得待评估地图的评估过程更加合理,可以有效防止在待评估地图不满足用户基本需求的情况下对地图进行评估,避免浪费用户时间,有效提升用户的地图评估体验。
在一种可能的设计中,第一配置文件和/或第二配置文件是用户自定义的。在该设计中,用户可以根据其偏好需求对第一配置文件和/或第二配置文件进行灵活配置,进而使得基于第一配置文件和/或第二配置文件对待评估地图进行评估的过程更加合理,有助于用户筛选到符合其偏好需求的地图产品。
第二方面,本申请实施例还提供了一种地图评估装置,该装置可以为具有地图评估功能的任一电子设备,如车辆、手机或其它终端,或者,车辆、手机或其它终端中设置的电路或芯片。该装置包括:获取模块,用于获取待评估地图;获取模块,还用于获取待评估地图对应的第一配置文件,该第一配置文件用于指示待评估地图的多个评分维度;处理模块,用于从多个评分维度中选择第一评分维度;处理模块,还用于确定第一评分维度的第一权重;处理模块,还用于根据第一评分维度和第一权重,对待评估地图进行评估。
在一种可能的设计中,第一配置文件还用于第一评分维度的第一预设权重,第一评分维度对应的评估方式,或待评估地图的评级规则;其中,评估方式用于确定待评估地图在第一维度的分数,评级规则用于确定待评估地图的等级。
在一种可能的设计中,多个评分维度包括覆盖场景信息、图层属性信息、安全认证信息、产品格式信息、产品体量信息、更新维护信息、生态建设信息、或行业定制化信息中的至少一项;其中,覆盖场景信息用于描述待评估地图的使用场景,图层属性信息用于描述待评估地图中的至少一个图层的质量,安全认证信息用于描述待评估地图的安全等级和/或合规性,产品格式信息用于描述待评估地图支持的标准体系;产品体量信息用于描述待评估地图的产品形态和/或数据包大小;更新维护信息用于描述待评估地图的更新范围和/或更新频率;生态建设信息用于描述待评估地图在不同地图使用设备中的数据兼容性;行业定制化信息用于描述待评估地图适用的第一行业的使用需求。
在一种可能的设计中,至少一个图层包括动态图层和/或静态图层;其中,动态图层为交通事件图层、交通流量信息图层、实时感知图层、气象环境图层、或统计应用图层;静态图层为车道拓扑图层、道路拓扑图层、道路交通标线、标志图层、或路侧及路内设施图层。
在一种可能的设计中,至少一个图层包括多个图层,至少一个图层的质量是通过对多个图层的质量分数进行加权运算得到的一个质量分数。
在一种可能的设计中,获取模块,还用于:获取待评估地图对应的第二配置文件,第二配置文件用于确定待评估地图是否满足第一条件。
在一种可能的设计中,第一条件包括:待评估地图适用于第一使用场景;待评估地图中的第一图层的质量分数大于第一阈值;待评估地图满足第一安全等级;待评估地图对应第一数据格式;待评估地图 的产品形态满足预设标准;待评估地图的数据包大小小于第二阈值;待评估地图的更新范围和/或更新频率满足第一应用的使用需求;待评估地图在不同地图使用设备中的数据格式兼容;或者,待评估地图满足第一行业的使用需求。
在一种可能的设计中,处理模块,还用于:在待评估地图不满足第一条件时,将待评估地图的质量评估为最低等级或最低分数。
在一种可能的设计中,处理模块在根据第一评分维度和第一权重,对待评估地图进行评估之前,还用于:确定待评估地图满足第一条件。
在一种可能的设计中,第一配置文件和/或第二配置文件是用户自定义的。
第三方面,本申请提供一种地图评估装置,包括处理器,处理器与存储器相连,存储器用于存储计算机程序,处理器用于执行存储器中存储的计算机程序,以使得地图评估装置执行如上述第一方面中任一项设计所述的方法。
第四方面,本申请提供一种电子设备,该电子设备用于实现如上述第一方面中任一项设计所述的方法。
第五方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当计算机程序被运行时,实现如上述第一方面中任一项设计所述的方法。
第六方面,本申请提供一种芯片,该芯片可以包括处理器和接口,处理器用于通过接口读取指令,以执行如上述第一方面中任一项设计所述的方法。
第七方面,本申请提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,实现如上述第一方面中任一项设计所述的方法。
上述第二方面至第七方面的有益效果,具体请参照上述第一方面中相应设计可以达到的技术效果,这里不再重复赘述。
附图说明
图1为本申请实施例适用的一种可能的***架构示意图;
图2示例性示出本申请实施例一提供的一种地图评估方法对应的流程示意图;
图3示例性示出本申请实施例提供的用户操作界面的示意图之一;
图4示例性示出本申请实施例提供的用户操作界面的示意图之二;
图5示例性示出了本申请实施例二提供的一种地图评估方法对应的流程示意图;
图6示例性示出本申请实施例提供的用户操作界面的示意图之三;
图7为本申请实施例提供的一种地图评估装置的结构示意图之一;
图8为本申请实施例提供的一种地图评估装置的结构示意图之二。
具体实施方式
需要说明的是,本申请实施例中的地图评估方案可以应用于车联网,如车-万物(vehicle to everything,V2X)、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车辆-车辆(vehicle to vehicle,V2V)等。例如可以应用于具有地图评估功能的车辆,或者车辆中具有地图评估功能的其它装置。该其它装置包括但不限于:车载终端、车载控制器、车载模块、车载模组、车载部件、车载芯片、车载单元、车载雷达或车载摄像头等其他传感器,车辆可通过该车载终端、车载控制器、车载模块、车载模组、车载部件、车载芯片、车载单元、车载雷达或车载摄像头,实施本申请提供的地图评估方法。当然,本申请实施例中的地图评估方案还可以用于除了车辆之外的其它具有地图评估功能的智能终端,或设置在除了车辆之外的其它具有地图评估功能的智能终端中,或设置于该智能终端的部件中。该智能终端可以为智能运输设备、智能家居设备、机器人等。例如包括但不限于智能终端或智能终端内的控制器、芯片、雷达或摄像头等其它传感器、以及其它部件等。
需要说明的是,本申请实施例中的术语“***”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的 这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的优先级或者重要程度。例如,第一配置文件和第二配置文件,只是为了区分根据不同配置文件,而并不是表示这两个配置文件的优先级或者重要程度等的不同。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
鉴于地图数据质量规范以及图商的地图评价体系中缺乏统一的地图评价标准,本申请提供了一种地图评估方法,该方法包括:获取待评估地图;获取待评估地图对应的第一配置文件,该第一配置文件用于指示待评估地图的多个评分维度;从多个评分维度中选择第一评分维度;确定第一评分维度的第一权重;根据第一评分维度和第一权重,对待评估地图进行评估。如此,可以实现灵活设置待评估地图的评分维度,使得用户可以基于自身需求对待评估地图进行评估,进而有助于用户选择符合其偏好需求的地图产品。
在介绍本申请实施例提供的地图评估方法之前,首先对本申请实施例适用的***架构进行详细的介绍。
图1为本申请实施例适用的一种可能的***架构示意图,如图1所示的***架构包括采集设备110、服务器120和电子设备130。
采集设备110是指能获取真实交通网络中的环境信息的设备,如可以包含但不限于如下类型的设备:
第三方服务器111,是指独立于服务器120和电子设备130以外的、且具有共享功能的第三方机构中设置的服务器。在车联网领域中,第三方机构通常可以设置为交通运输体系的管理者,如国家交通运输管理部、各级城市交通运输管理处或管理所等。交通运输体系的管理者具有实时监管交通运输体系中各条交通线路的能力,不仅能及时获知各条交通线路的通行情况,还能对交通线路的通行方式作出一定的改变,如更改某条交通线路的限速。通过第三方机构中设置的服务器也可以获得道路的环境信息。再比如,该服务器可以是车联网服务器,车联网服务器可以通过维护和更新高精地图(high definition map,HD MAP)的信息,为车联网终端提供规划和控制服务,还可以维护和更新地图的信息,为车联网终端提供导航服务。
路侧单元(road side unit,RSU)112,是指安装在道路一侧或两侧的具有通信功能的装置。通常情况下,路侧单元能在车辆经过时与车辆上的车载单元(on board unit,OBU)建立连接,实现对车辆的身份识别。在本申请实施例中,路侧单元中还可以封装诸如摄像头、雷达或激光发射器等的功能模块,路侧单元能通过这些功能模块实时监测所在道路,在道路环境发生变化时及时获知变化后的环境信息;
车辆113,具有摄像功能、传感功能等采集功能,可以采集车辆周围的环境信息。辆的摄像装置可以是单目摄像头、双目摄像头等。摄像装置的拍摄区域可以为车辆的外部环境。车辆的传感装置可以包括用于获取环境信息的激光雷达、毫米波雷达、超声波雷达等雷达,以及还可以包括用于获取车辆位姿的惯性导航***(例如,全球导航卫星***(global navigation satellite system,GNSS),惯性测量单元(Inertial measurement unit,IMU))等。GNSS可以用于估计车辆的地理位置。为此,GNSS可以包括收发器,基于卫星定位数据估计车辆相对于地球的位置。在示例中,车辆中的计算机***可以结合地图数据使用GNSS来估计车辆行驶的道路。IMU可以基于惯性加速度及其任意组合来感测车辆的位置和朝向变化。在一些示例中,IMU中传感器的组合可包括例如加速度计和陀螺仪。将基于GNSS得到的定位信息和基于其它技术(例如,IMU)得到的信息融合,将融合后的结果作为车辆的当前时刻的全局位姿。这种将基于GNSS得到的信息和基于其它技术(例如,IMU等传感器)得到的信息进行融合以实现定位的方式可以称为组合定位。当然,组合定位还可以通过其他传感器采集到的数据与高精地图中存储的相应的传感器的数据进行匹配,可以实现对车辆当前所在的车道级的定位位置。例如,毫米波雷达传感器可利用无线电信号来感测车辆的周边环境内的目标。在一些实施例中,除了感测目标以外,毫米波雷达还可用于感测目标的速度和/或前进方向。激光雷达可利用激光来感测车辆所位于的环境中的目标。传感器可用于捕捉车辆的周边环境的多个图像。另外,每辆车可以设置一种或多种传感器,每种传感器的数量可以为一个或多个。传感器可以安装在车辆的顶部(例如可以设置在车辆顶部的中间位置)、车辆前端等等位置,本申请实施例对每个车辆中传感器安装位置和数量并不做限定。
其中,服务器120可以是指单个服务器,也可以是指由多个服务器构成的服务器集群。在车联网领 域中,该服务器120具体可以是云服务器,也称为云、云端、云端服务器、云端控制器或车联网服务器等。云服务器是对具有数据处理能力的设备或器件的统称,诸如可以包括主机或处理器等实体设备,也可以包括虚拟机或容器等虚拟设备,还可以包括芯片或集成电路。
其中,电子设备130可以是具有地图评估功能的智能终端或任意车辆,车辆包括但不限于轿车、公交车甚至货车等。电子设备130通常还可以在服务器120上进行注册,以便获取服务器120所提供的各项服务,诸如语音服务、地图评估服务、自动驾驶服务、航班查询服务或语音播报服务等。
应理解,本申请实施例对***架构中采集设备的种类和数量、服务器的数量以及用户车辆的数量均不作限定,例如1个服务器可以只与1种采集设备(如第三方服务器111)和1台用户车辆进行信息交互,也可以与多种采集设备(如路侧单元112和车辆113)和1台用户车辆进行信息交互,还可以与多种采集设备和多台用户车辆进行信息交互。两个设备之间的信息交互可以是指这两个设备通过有线方式或无线方式直接交互,也可以是指这两个设备通过一个或多个其它设备间接交互。且,本申请实施例所适用的***架构中除了包括采集设备、服务器和用户车辆以外,还可以包括其它设备,如终端设备、网络设备、核心网设备等,对此本申请实施例也不作限定。以及,本申请实施例中的任一设备可以将功能集成在一个独立的物理单元上,也可以将功能分布在多个独立的物理单元上,对此本申请实施例也不作限定。
基于图1所示意的***架构,当电子设备130具有地图评估功能时,采集设备110获取真实交通网络中的环境信息之后,可以将该环境信息上传至服务器120;进而服务器120根据该环境信息,构建待评估地图;进而电子设备130可以预先从服务器120中获取待评估地图,并对待评估地图进行评估。
以上介绍了本申请实施例适用的***架构,下面结合具体的附图介绍本申请实施例提供的地图评估方法。
【实施例一】
图2示例性示出本申请实施例一提供的一种地图评估方法对应的流程示意图,该方法适用于具备地图评估功能的电子设备(例如可以是如图1所示意的电子设备130)。如图2所示,该方法包括:
S201,电子设备获取待评估地图。
在本申请实施例中,待评估地图即需要进行评估的地图。其中,电子设备获取待评估地图包括但不限于以下实施方式:
在一种可能的实施方式中,电子设备接收用户指令,该用户指令用于指示待评估地图;进而电子设备可以响应于用户指令,向地图服务器(例如服务器120)请求待评估地图。如此,用户可以灵活选择待评估地图。
在另一种可能的实施方式中,车辆在采集到环境信息时,根据环境信息生成相应的待评估地图,并将待评估地图发送至电子设备。相应的,电子设备接收待评估地图。如此,可以实现对实时更新的地图进行评估。
S202,电子设备获取待评估地图对应的第一配置文件,该第一配置文件用于指示待评估地图的多个评分维度。
在本申请实施例中,第一配置文件可以是基于地图数据质量规范和/或图商推荐的地图评价标准预设的,或者,也可以是用户参考地图数据质量规范和/或图商推荐的地图评价标准自定义的,本申请不作具体限制。相应的,电子设备获取待评估地图对应的第一配置文件包括但不限于以下实施方式:
在一种可能的实施方式中,电子设备可以从第三方服务器(例如可以是图商服务器或政府管理机构对应的服务器)获取预设的第一配置文件。
在另一种可能的实施方式中,电子设备可以提供第一配置文件对应的用户操作界面,接收用户针对用户操作界面的输入信息,并根据该输入信息生成相应的第一配置文件。其中,该输入信息例如可以是语音信息、文字信息、图形信息、或手势信息中的任一项。
在上述步骤202中,多个评分维度包括覆盖场景信息、图层属性信息、安全认证信息、产品格式信息、产品体量信息、更新维护信息、生态建设信息、或行业定制化信息中的至少一项;其中,覆盖场景信息用于描述待评估地图的使用场景,图层属性信息用于描述待评估地图中的至少一个图层的质量,安全认证信息用于描述待评估地图的安全等级和/或合规性,产品格式信息用于描述待评估地图支持的标准体系;产品体量信息用于描述待评估地图的产品形态和/或数据包大小;更新维护信息用于描述待评估地图的更新范围和/或更新频率;生态建设信息用于描述待评估地图在不同地图使用设备中的数据兼 容性;行业定制化信息用于描述待评估地图适用的第一行业的使用需求。如此,提供了多个评分维度的实施方式,进而用户可以灵活设置自己偏好的评分维度。下面对这些评分维度进行介绍:
(1)、覆盖场景信息用于描述待评估地图的使用场景,可以理解为覆盖场景信息用于描述待评估地图覆盖的物理空间,即待评估地图的应用场景。示例性的,考虑按不同物理空间对交通参与者的限制程度,覆盖场景可以包括但不限于封闭园区道路、专用道路、高功能等级道路、或城市普通道路。如此,将覆盖场景信息作为评分维度对地图进行评估,有助于用户选择满足其使用场景的地图产品。
(2)、图层属性信息用于描述待评估地图中的至少一个图层的质量,可以理解为图层属性信息用于描述待评估地图中各个图层中的组成要素的质量水平,其中,各个图层中的组成要素的质量水平可以通过图层要素的正确率来表征。可选的,图层要素的正确率可根据图层要素的完整性、逻辑一致性、专题准确度、数值准确度、和时间质量确定。其中,图层要素例如可以包括图层中的交通元素、道路几何元素等。如此,将图层属性信息作为评分维度对地图进行评估,有助于用户选择满足其图层要素质量水平的地图产品。
在一种可能的实施方式中,图层属性信息对应的至少一个图层包括动态图层和/或静态图层;其中,动态图层为交通事件图层、交通流量信息图层、实时感知图层、气象环境图层、或统计应用图层;静态图层为车道拓扑图层、道路拓扑图层、道路交通标线、标志图层、或路侧及路内设施图层。在该实施方式中,考虑到现实世界中的真实交通环境存在实时变化的特性,为提高地图评估的准确性,将图层属性信息维度对应的至少一个图层设置为动态图层或静态图层。如此,可以使得基于图层属性信息维度对待评估地图的评估结果更加准确。下面对这些的含义进行说明。
a)车道拓扑图层,包括车道中心线的线段和结点构成的拓扑连接网络信息。
b)道路拓扑图层,包括道路参考线、道路虚拟连接线和道路结点构成的拓扑连接网络信息。
c)道路交通标线及标志图层,包括交通标线和各种标志牌信息,交通标线是路面视觉可见的,且用于规范交通秩序;这些标志牌安装在路侧或悬挂在路中央,且用于指挥引导交通。
d)路侧及路内设施图层,包括静态的设施信息,这些设施可用于车辆定位。这些设施例如可以包括路侧防护设施、路灯、或减速带等。
e)交通事件图层,包括临时性的、影响车辆与行人通行的交通事件,例如交通管制、交通事故、占路施工、或设置道路临时障碍物等。
f)交通流量信息图层,包括道路实时和预测的交通流量、交通流速度、或交通流密度信息。
g)实时感知图层,包括车辆交通参与者、弱势交通参与者(非机动三轮车、自行车、电动自行车、摩托车、行人及动物)、或交通信号灯等需实时感知的对象信息。
h)气象环境图层,包括与出行和道路行驶相关的天气信息、光照情况、以及道路摩擦系数等信息。
i)统计应用图层,包括用统计方法获得的事故频发路段信息,以及用户自定义或电子设备通过学习用户行为获得的用户行为偏好信息。
在一种可能的实施方式中,至少一个图层包括多个图层,相应的,至少一个图层的质量是通过对多个图层的质量分数进行加权运算得到的一个质量分数。如此,电子设备可以结合多个图层的质量分数,来确定至少一个图层的质量分数,进而可以通过该质量分数来表征至少一个图层的质量,实现了在图层属性信息维度对待评估地图的量化评估,使得用户可以基于图层属性信息维度对应的质量分数,直观地选择符合其偏好需求的地图产品。
示例性的,至少一个图层包括图层A、图层B、和图层C,图层A的质量分数为90分,图层A对应的权重值为0.35;图层B的质量分数为95分,图层B对应的权重值为0.35;图层C的质量分数为97分,图层C对应的权重值为0.3;进而电子设备可以对图层A、图层B、和图层C的质量分数进行加权运算:(90*0.35+95*0.35+97*0.3)=93.85,并将93.85作为至少一个图层的质量分数。
可选的,多个图层中每个图层的质量分数可以根据该图层中的地图要素的准确率确定。示例性的,图层的质量分数与图层中的地图要素的准确率之间存在如表1所示的映射关系,进而电子设备可以根据表1所示的映射关系,确定每个图层的质量分数。
表1
(3)、安全认证信息用于描述待评估地图的安全等级和/或合规性。安全等级例如可以是智能驾驶汽车标准中的安全标准对应的等级,或者,可以是待评估地图的编制、更新、发布是否满足地图相关法规的要求。示例性的,安全标准例如可以是ISO 26262定义的安全要求,安全认证信息可以用于描述待评估地图是否符合ISO 26262定义的安全要求。如此,将安全认证信息作为评分维度对地图进行评估,有助于用户选择满足其安全需求的地图产品。
(4)、产品格式信息用于描述待评估地图支持的标准体系,可以理解为产品格式信息用于描述待评估地图的标准化水平,即待评估地图支持的应用接口、存储格式是否支持通用标准。其中,通用标准例如可以是NDS格式、Open DRIVE格式。如此,将产品格式信息作为评分维度对地图进行评估,有助于用户选择支持通用标准的地图产品。
(5)、产品体量信息用于描述待评估地图的产品形态和/或数据包大小,可以理解为产品体量信息用于描述地图的产品形态和轻量化水平。若待评估地图的体量过大、功能冗余,会给地图更新、存储带来负担,如此,将产品体量信息作为评分维度对地图进行评估,有助于用户选择满足其存储需求的地图产品。
(6)、更新维护信息用于描述待评估地图的更新范围和/或更新频率,可以理解为更新维护信息用于描述待评估地图的信息鲜度,即待评估地图的更新范围和/或更新频率是否满足第一应用(例如智能驾驶应用)的需求。可以理解的是,待评估地图的更新范围例如可以包括目标区域中的地图要素。示例性的,地图要素例如可以包括红绿灯信息和道路几何信息,其中,红绿灯信息可以按秒更新,道路几何信息可以按月更新。如此,将更新维护信息作为评分维度对地图进行评估,便于用户选择满足其应用的更新范围和/或更新频率的地图产品。
(7)、生态建设信息用于描述待评估地图在不同地图使用设备(例如云端设备、路侧设备)中据兼容性,可以理解为生态建设信息用于描述待评估地图作为超级传感容器对产业生态的贡献能力。贡献能力例如可以是待评估地图所包含的POI规模和完备性,或者可以是待评估地图支持的接口和服务对应的可扩展性,或者可以是待评估地图与云端、政府机构、路侧传感器等其他数据来源提供的数据的兼容情况。如此,将生态建设信息作为评分维度对地图进行评估,使得用户可以直观地了解地图支持的接口和服务对应的可扩展性,进而便于用户选择满足数据兼容性较高的地图产品。
(8)、行业定制化信息用于描述待评估地图适用的第一行业的使用需求,可以理解为行业定制化信息用于描述待评估地图是否满足客户所在行业的定制化需求。例如,第一行业为无人机物流行业,无人机物流行业的使用需求为地图产品中应备道路网络结构和道路几何要素。如此,将行业定制化信息作为评分维度对地图进行评估,便于用户选择符合其行业定制化需求的地图产品。
本申请实施例中,第一配置文件还可以用于指示除待评估地图的多个评分维度之外的其他信息,下面对可能的几种情况进行介绍:
情况1,第一配置文件还用于指示第一评分维度的第一预设权重。如此,用户可以根据其对第一评分维度的偏好需求,在第一配置文件中配置第一评分维度的第一预设权重,可以使得基于第一评分维度对待评估地图进行评估所得到评估结果符合其偏好需求。
情况2,第一配置文件还用于指示第一评分维度对应的评估方式,该评估方式用于确定待评估地图在第一维度的分数。其中,评估方式例如可以包括专家评测、图商评测、或用户评测中的至少一项。如此,用户可以在第一配置文件中灵活配置第一评分维度的评估方式,可以使得基于第一评分维度对待评估地图进行评估的评估过程符合其偏好需求。
示例1,第一评分维度以覆盖场景信息为例,覆盖场景信息对应的评估方式可以是图商评测和/或用户评测。
示例2,第一评分维度以安全认证信息、生态建设信息、和行业定制化信息为例,安全认证信息、 生态建设信息、和行业定制化信息对应的评估方式可以是专家评测。
示例3,第一评分维度以产品格式信息和产品体量信息为例,产品格式信息和产品体量信息对应的评估方式可以是图商评测和/或用户评测。
示例4,第一评分维度以更新维护信息为例,更新维护信息对应的评估方式可以是图商评测和/或用户评测。
示例5,第一评分维度以图层属性信息为例,图层属性信息对应的评估方式可以是图商评测。
情况3,第一配置文件还用于指示评估地图的评级规则,该评级规则用于确定待评估地图的等级。其中,评级规则可以包括预设的地图等级映射表和/或用于确定地图等级的函数关系式(例如分段函数)。如此,用户可以在第一配置文件中灵活配置待评估地图的评级规则,可以实现对待评估地图的量化评价,进而可以直观地展示待评估地图的等级,便于用户选择符合其使用需求的地图产品。
情况4,第一配置文件还用于指示第一评分维度的第一预设权重、第一评分维度对应的评估方式、和待评估地图的评级规则。也就是说,用户可以在第一配置文件中配置第一评分维度的第一预设权重,第一评分维度对应的评估方式,或待评估地图的评级规则,如此进一步提升第一配置文件的配置灵活度,有助于满足用户多样化的地图评估需求。
情况5,第一配置文件还用于指示第一评分维度的第一预设权重和第一评分维度对应的评估方式。
情况6,第一配置文件还用于指示第一评分维度对应的评估方式和待评估地图的评级规则。
情况7,第一配置文件还用于指示第一评分维度的第一预设权重和待评估地图的评级规则。
S203,电子设备从多个评分维度中选择第一评分维度。
在上述步骤203中,第一评分维度具体可以包括一个或多个评分维度,本申请实施例对第一评分维度所包含的评分维度数量不作限制。以及,电子设备从多个评分维度中选择第一评分维度包括但不限于以下实施方式:
实施方式1,电子设备接收第一指令,该第一指令用于指示第一评分维度;进而电子设备可以响应于第一指令,从多个评分维度中选择第一评分维度。其中,“第一指令用于指示第一评分维度”可以理解为用户在多个评分维度中勾选了第一评分维度。可选的,第一指令可以为人机交互指令,例如可以是语音指令、触摸指令、或文字指令中的任一项。如此,用户可以通过输入第一指令,直观地设置符合其偏好需求的第一评分维度,使得用户操作较为简便。
示例性的,图3示出了本申请实施例提供的用户操作界面的示意图之一,该用户操作界面中显示了评分维度1、评分维度2、评分维度3、评分维度4、评分维度5、评分维度6、评分维度7、和评分维度8,电子设备检测到用户勾选了评分维度2、评分维度3、评分维度4和评分维度5,以及检测到用户输入的确认指令之后,将评分维度2、评分维度3、评分维度4和评分维度5确定为第一评分维度。
实施方式2,电子设备接收第二指令,该第二指令用于指示第一评分维度对应的权重不为零;进而电子设备可以响应于第二指令,从多个评分维度中选择第一评分维度。其中,“第一评分维度对应的权重不为零”可以理解为用户将第一评分维度对应的权重设置为非零的数值。可选的,第二指令可以为人机交互指令,例如可以是语音指令、触摸指令、或文字指令中的任一项。如此,用户可以通过对多个评分维度的权重进行设置,来选择符合其偏好需求的第一评分维度,可以减少用户由于缺乏地图评价相关知识而导致其评分维度设置不合理的情况。
示例性的,图4示出了本申请实施例提供的用户操作界面的示意图之二,该用户操作界面中显示了评分维度1、评分维度2、评分维度3、评分维度4、和评分维度5,评分维度1、评分维度2、评分维度3、和评分维度4默认的权重值为零,电子设备检测到用户将评分维度2和评分维度3对应的权重设置为0.5,以及检测到用户输入的确认指令之后,将评分维度2和评分维度3确定为第一评分维度。
S204,电子设备确定第一评分维度的第一权重。
由前文描述可知,第一评分维度可以包括一个或多个评分维度,相应的,第一权重也包括一个或多个权重的取值。
在上述步骤204中,第一权重用于表征用户对第一评分维度的重视程度。相应的,若用户对第一评分维度较为重视,可以将第一权重设置为较大的取值;若用户对第一评分维度不重视,可以将第一权重设置为较小的取值。
在本申请中,电子设备确定第一评分维度的第一权重包括但不限于以下实施方式:
实施方式1,电子设备接收第三指令,该第三指令用于指示第一评分维度的第一权重;进而电子设 备可以根据第三指令,确定第一评分维度的第一权重。可选的,第三指令可以为人机交互指令,例如可以是语音指令、触摸指令、或文字指令中的任一项。如此,用户可以灵活设置第一评分维度的第一权重,使得基于第一评分维度进行的地图评估更加符合其偏好需求,从而进一步提升用户的地图评价体验。
示例性的,请继续参见图4,第一评分维度以评分维度2和评分维度3为例,第一权重以评分维度2和评分维度3的权重为例;在图4中,用户可以通过滑动评分维度2的权重设置按钮,来设置评分维度2的权重;以及用户可以通过滑动评分维度3的权重设置按钮,来设置评分维度3的权重,并输入相应的确认指令(即第三指令),进而电子设备接收到该确认指令,可以根据该确认指令,确定评分维度2和评分维度3的权重。
实施方式2,电子设备读取第一评分维度的第一权重。例如,电子设备可以从评分维度与预设权重之间的映射关系表中,读取第一评分维度的第一权重。如此,第一评分维度直接采用预设的第一权重,无需用户设置权重,使得用户操作较为简便。
示例性的,评分维度与预设权重之间的映射关系表可以如表2所示,其中,覆盖场景信息对应的预设权重为0.15,图层属性信息对应的预设权重为0.3,安全认证信息对应的预设权重为0.2,产品格式信息对应的预设权重为0.1,产品体量信息对应的预设权重为0.1,更新维护信息对应的预设权重为0.05,生态建设信息对应的预设权重为0.05,行业定制化信息对应的预设权重为0.05。
表2
S205,电子设备根据第一评分维度和第一权重,对待评估地图进行评估。
在上述步骤205中,电子设备根据第一评分维度和第一权重,对待评估地图进行评估有多种实现方式,下面分情况进行介绍:
情况1,电子设备根据第一评分维度和第一权重,对待评估地图进行评分。其中,评分包括对待评估地图的质量进行评估。
示例1,第一评分维度以评分维度1为例,且评分维度1对应的权重为1,则电子设备仅从评分维度1对待评估地图进行评分。
示例2,第一评分维度以评分维度1和评分维度2为例,且评分维度1和评分维度2对应的权重均为0.5,则电子设备从评分维度1对待评估地图进行评分,得到分数1;以及从评分维度2对待评估地图进行评分,得到分数2;最后根据评分维度1和评分维度2对应的权重0.5,对分数1和分数2加权求和,得到待评估地图的评分。
情况2,电子设备根据第一评分维度和第一权重,对待评估地图进行评分和评级。
示例1,第一评分维度以评分维度1为例,且评分维度1对应的权重为1,则电子设备从评分维度1对待评估地图进行评分,确定待评估地图的质量分数是95;上述第一配置文件指示的评级规则包括如表3所示的质量分数区间与地图等级之间的映射表,进而电子设备可以根据该评级等级表和待评估地图的质量分数,将待评估地图的等级确定为A级。
表3
示例2,第一评分维度以评分维度1和评分维度2为例,且评分维度1和评分维度2对应的权重均 为0.5,则电子设备从评分维度1对待评估地图进行评分,得到分数1;以及从评分维度2对待评估地图进行评分,得到分数2;最后根据评分维度1和评分维度2对应的权重0.5,对分数1和分数2加权求和,得到待评估地图的评分为78,则根据表2所示的等级表,可以将待评估地图的等级确定为B级。
情况3,电子设备根据第一评分维度和第一权重,对待评估地图进行评级。
示例1,第一评分维度包括以图层属性信息为例,且图层属性信息对应的权重为1,则电子设备可以根据如表4所示的图层属性信息对应的至少一个图层中地图要素的准确率与地图等级之间的映射表,确定待评估地图的等级。例如,至少一个图层中地图要素的准确率为98%,属于95%-100%范围内,将地图等级设置为A级。又如,至少一个图层中地图要素的准确率为78%,属于75%-94%范围内,将地图等级设置为B级。又如,至少一个图层中地图要素的准确率为65%,属于60%-74%范围内,将地图等级设置为C级。又如,至少一个图层中地图要素的准确率为55%,属于0%-59%范围内,将地图等级设置为D级。可选的,至少一个图层包括多个图层时,电子设备可以对多个图层中地图要素的准确率进行加权运算得到至少一个图层中地图要素的准确率。其中,加权运算例如可以是加权求和。
表4
【实施例二】
在实施例二中,考虑到不同用户对地图产品的基本需求不一致,针对待评估地图还设置了第二配置文件,因此电子设备可以获取待评估地图对应的第二配置文件,基于第二配置文件,确定待评估地图是否满足第一条件。如此,使得对待评估地图的评估过程更加合理,以及可以提升用户的地图评估体验。
图5示出本申请实施例二提供的一种地图评估方法对应的流程示意图,该方法适用于具备地图评估功能的电子设备(例如可以是如图1所示意的电子设备130)。如图5示,该方法包括:
S501,电子设备获取待评估地图。
S502,电子设备获取待评估地图对应的第一配置文件,该第一配置文件用于指示待评估地图的多个评分维度。
S503,电子设备从多个评分维度中选择第一评分维度。
S504,电子设备确定第一评分维度的第一权重。
S505,电子设备获取待评估地图对应的第二配置文件,第二配置文件用于确定待评估地图是否满足第一条件。
可以理解的是,第二配置文件可以是用户参考地图数据质量规范、图商推荐的地图评价标准或基于其应用需求(例如智能驾驶应用)自定义的,本申请不作具体限制。
在S505中,第一条件用于表征用户对待评估地图的基本要求。因此,电子设备可以根据第二配置文件,确定待评估地图是否满足用户的基本需求,使得用户对待评估地图的评测体验更好。第一条件包括以下内容中的至少一项:
待评估地图适用于第一使用场景。示例性的,第一使用场景例如可以是封闭园区道路、专用道路、高功能等级道路、或城市普通道路等。
待评估地图中的第一图层的质量分数大于第一阈值。示例性的,第一图层包括交通事件图层、交通流量信息图层、实时感知图层、气象环境图层、统计应用图层、车道拓扑图层、道路拓扑图层、道路交通标线、标志图层、或路侧及路内设施图层。第一阈值例如可以是90%。
待评估地图满足第一安全等级。示例性的,安全等级例如可以是智能驾驶汽车标准中的安全标准对应的等级,或者,可以是待评估地图的编制、更新、发布是否满足地图相关法规的要求。
待评估地图对应第一数据格式。示例性的,第一数据格式例如可以是NDS格式和/或Open DRIVE格式。
待评估地图的产品形态满足预设标准。示例性的,预设标准例如可以是地图图幅的范围大小。
待评估地图的数据包大小小于第二阈值。示例性的,第二阈值例如可以是400MB。
待评估地图的更新范围和/或更新频率满足第一应用的使用需求。可以理解的是,待评估地图的更新范围例如可以包括目标区域中的地图要素。示例性的,地图要素例如可以包括红绿灯信息和道路几何信息,其中,红绿灯信息可以按秒更新,道路几何信息可以按月更新。
待评估地图在不同地图使用设备中的数据格式兼容。示例性的,地图使用设备例如可以是云端设备或路侧设备。
待评估地图满足第一行业的使用需求。示例性的,第一行业为无人机物流行业,无人机物流行业的使用需求为地图产品中应备道路网络结构和道路几何要素。
如此,提供了第一条件的多种实现方式,进而使得用户可以在第二配置文件中设置多样化的基本需求。
示例1,第一条件可以如表5所示,第一条件包括:条件1,地图中包含A城区公交专用道路;条件2,地图中车道拓扑图层要素正确率不小于98%;条件3,地图需通过ISO 26262认证。其中,待评估地图包含A城区公交专用道路,则待评估地图满足条件1;待评估地图的车道拓扑图层要素正确率为98%,则待评估地图不满足条件2;待评估地图通过ISO 26262认证,则待评估地图满足条件3;待评估地图支持洒水车智能驾驶及路面清洗作业,则待评估地图满足条件4;待评估地图的更新周期为按秒更新,则待评估地图满足条件5;待评估地图支持NDS、OpenDRIVE标准格式,则待评估地图满足条件6;待评估地图产品体量不大于120M,则待评估地图满足条件7;虽然待评估地图满足条件1、条件3-条件7,但是待评估地图不满足条件2,则电子设备将待评估地图判定为不满足第一条件。
表5
示例2,第一条件可以如表6所示,第一条件包括:条件1,地图中包含A城区公交专用道路;条件2,地图中车道拓扑图层要素正确率不小于98%;条件3,地图需通过ISO 26262认证。其中,待评估地图包含A城区公交专用道路,则待评估地图满足条件1;待评估地图的车道拓扑图层要素正确率为98%,则待评估地图满足条件2;待评估地图通过ISO 26262认证,则待评估地图满足条件3;因此待评估地图满足条件1、条件2、和条件3,则电子设备将待评估地图判定为满足第一条件。
表6
S506,电子设备基于第二配置文件,确定待评估地图是否满足第一条件。
在S506中,将用户对待评估地图的基本需求地图评估的顶层决定性指标,在确定待评估地图满足第一条件之后,才根据第一评分维度和第一权重,对待评估地图进行评估,使得待评估地图的评估过程更加合理,可以有效防止在待评估地图不满足用户基本需求的情况下对地图进行评估,避免浪费用户时 间,有效提升用户的地图评估体验。
S507,电子设备根据第一评分维度和第一权重,对待评估地图进行评估。
在一种可能的实施方式中,电子设备在待评估地图不满足第一条件时,将待评估地图的质量评估为最低等级或最低分数。其中,第一条件用于表征用户对待评估地图的基本需求。如此,将用户对待评估地图的基本需求地图评估的顶层决定性指标,在待评估地图不满足第一条件时,将待评估地图的质量评估为最低等级或最低分数,如此可以直观反映地图产品是否满足用户的基本需求。
【实施例三】
为了便于理解,在实施例二的基础上,实施例三结合具体的应用场景对本申请实施例提供的地图评估方法进一步介绍。
请参见图6,图6示出本申请实施例提供的用户操作界面的示意图之三。在图6中,评分维度包括覆盖场景信息、图层属性信息、安全认证信息、产品格式信息、产品体量信息、更新维护信息、生态建设信息、和行业定制化信息。其中,评分维度可以理解为待评估地图的产品画像。用户可以在图6中配置符合其偏好需求的评分维度,例如,用户可以选择覆盖场景信息、图层属性信息、安全认证信息、产品格式信息、产品体量信息、更新维护信息、生态建设信息、和行业定制化信息作为第一评分维度,并输入相应的确认指令,进而电子设备可以根据该确认指令,确定第一评分维度。
如表7所示,覆盖场景信息的评分项包含封闭园区道路和专用道路,而待评估地图包含A景区道路和B城区公共专用道路,则待评估地图在覆盖场景信息维度的得分是100;图层属性信息维度的评分项包含车道拓扑图层的要素正确率、道路拓扑图层的要素正确率、道路交通标线及标志图层的要素正确率、路侧及路内设施图层的要素正确率、交通事件图层的要素正确率、交通流量信息图层的要素正确率、实时感知图层的要素正确率、气象环境图层的要素正确率、统计应用图层的要素正确率,且待评估地图在图层属性信息维度的得分是96.5;待评估地图通过ISO 26262认证,则待评估地图在安全认证信息维度的得分是100;待评估地图支持NDS、OpenDRIVE标准,则待评估地图在产品格式信息维度的得分是100;待评估地图的数据包大小120M,则待评估地图在产品体量信息维度的得分是90;生态建设信息的评分项包含生态圈范围和具有多源适配性,而待评估地图包含覆盖范围内所有学校和可兼容云端数据,则待评估地图在生态建设信息维度的得分是80;行业定制化信息的评分项包含支持交通行业特定场景和支持物流行业特定场景,而待评估地图支持洒水车智能驾驶并完成路面清洗,以及支持园区内智慧物流无人车运输快递,则待评估地图在生态建设信息维度的得分是100。
表7

进一步的,用户针对覆盖场景信息、图层属性信息、安全认证信息、产品格式信息、产品体量信息、更新维护信息、生态建设信息、和行业定制化信息,设置了如表8所示的权重值,进而电子设备根据各个评分维度的得分和相应的权重,计算得到待评估地图的总分数为94.95分。
表8
进一步的,用户设置如表9所示的评级规则,根据表9可知,待评估地图的总分数为94.95分时,待评估地图对应的等级为A。
表9
可选的,用户还可以设置第一条件,第一条件以车道拓扑图层的要素正确率大于99%为例,待评估地图中的车道拓扑图层的要素正确率大于98%,则待评估地图不满足第一条件,因此将待评估地图设置为最低等级。
根据前述方法,图7为本申请实施例提供的一种地图评估装置的结构示意图,如图7所示,该装置可以为电子设备,也可以为芯片或电路,比如可设置于电子设备中的芯片或电路。其中,电子设备可以为具有处理能力的设备,示例性地可以为如图1所述的电子设备130。
进一步的,该地图评估装置701还可以进一步包括总线***,其中,处理器702、存储器704、收发器703可以通过总线***相连。
应理解,上述处理器702可以是一个芯片。例如,该处理器702可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是***芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device, PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器702中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器702中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器704,处理器702读取存储器704中的信息,结合其硬件完成上述方法的步骤。
应注意,本申请实施例中的处理器702可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器704可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
该地图评估装置701对应电子设备的情况下,该地图评估装置可以包括处理器702、收发器703和存储器704。该存储器704用于存储指令,该处理器702用于执行该存储器704存储的指令,以实现如上方法实施例中电子设备的相关方案。
当地图评估装置701为第一设备,且执行实施例一时:
收发器703可以接收待评估地图和第一配置文件,该第一配置文件用于指示待评估地图的多个评分维度;处理器702可以从多个评分维度中选择第一评分维度,确定第一评分维度的第一权重,并根据第一评分维度和第一权重,对待评估地图进行评估。
基于以上实施例以及相同构思,图8为本申请实施例提供的地图评估装置的示意图,如图8所示,该地图评估装置800可以为电子设备,也可以为电子设备中的芯片或电路。该地图评估装置800可以实现如上电子设备所执行的步骤。该地图评估装置800可以包括获取模块,用于获取待评估地图;获取模块801,还用于获取待评估地图对应的第一配置文件,该第一配置文件用于指示待评估地图的多个评分维度;处理模块802,用于从多个评分维度中选择第一评分维度;处理模块802,还用于确定第一评分维度的第一权重;处理模块802,还用于根据第一评分维度和第一权重,对待评估地图进行评估。
在一种可能的设计中,第一配置文件还用于第一评分维度的第一预设权重,第一评分维度对应的评估方式,或待评估地图的评级规则;其中,评估方式用于确定待评估地图在第一维度的分数,评级规则用于确定待评估地图的等级。
在一种可能的设计中,多个评分维度包括覆盖场景信息、图层属性信息、安全认证信息、产品格式信息、产品体量信息、更新维护信息、生态建设信息、或行业定制化信息中的至少一项;其中,覆盖场景信息用于描述待评估地图的使用场景,图层属性信息用于描述待评估地图中的至少一个图层的质量,安全认证信息用于描述待评估地图的安全等级和/或合规性,产品格式信息用于描述待评估地图支持的标准体系;产品体量信息用于描述待评估地图的产品形态和/或数据包大小;更新维护信息用于描述待评估地图的更新范围和/或更新频率;生态建设信息用于描述待评估地图在不同地图使用设备中的数据 兼容性;行业定制化信息用于描述待评估地图适用的第一行业的使用需求。
在一种可能的设计中,至少一个图层包括动态图层和/或静态图层;其中,动态图层为交通事件图层、交通流量信息图层、实时感知图层、气象环境图层、或统计应用图层;静态图层为车道拓扑图层、道路拓扑图层、道路交通标线、标志图层、或路侧及路内设施图层。
在一种可能的设计中,至少一个图层包括多个图层,至少一个图层的质量是通过对多个图层的质量分数进行加权运算得到的一个质量分数。
在一种可能的设计中,获取模块801,还用于:获取待评估地图对应的第二配置文件,第二配置文件用于确定待评估地图是否满足第一条件。
在一种可能的设计中,第一条件包括:待评估地图适用于第一使用场景;待评估地图中的第一图层的质量分数大于第一阈值;待评估地图满足第一安全等级;待评估地图对应第一数据格式;待评估地图的产品形态满足预设标准;待评估地图的数据包大小小于第二阈值;待评估地图的更新范围和/或更新频率满足第一应用的使用需求;待评估地图在不同地图使用设备中的数据格式兼容;或者,待评估地图满足第一行业的使用需求。
在一种可能的设计中,处理模块802,还用于:在待评估地图不满足第一条件时,将待评估地图的质量评估为最低等级或最低分数。
在一种可能的设计中,处理模块802在根据第一评分维度和第一权重,对待评估地图进行评估之前,还用于:确定待评估地图满足第一条件。
在一种可能的设计中,第一配置文件和/或第二配置文件是用户自定义的。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中任意一个实施例的方法。
本申请实施例还提供一种电子设备,该电子设备用于执行上述方法实施例中任意一个实施例的方法。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机 可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种地图评估方法,其特征在于,所述方法包括:
    获取待评估地图;
    获取所述待评估地图对应的第一配置文件,所述第一配置文件用于指示所述待评估地图的多个评分维度;
    从所述多个评分维度中选择第一评分维度;
    确定所述第一评分维度的第一权重;
    根据所述第一评分维度和所述第一权重,对所述待评估地图进行评估。
  2. 如权利要求1所述的方法,其特征在于,所述第一配置文件还用于指示所述第一评分维度的第一预设权重,所述第一评分维度对应的评估方式,或所述待评估地图的评级规则;
    其中,所述评估方式用于确定所述待评估地图在所述第一维度的分数,所述评级规则用于确定所述待评估地图的等级。
  3. 如权利要求1或2所述的方法,其特征在于,所述多个评分维度包括覆盖场景信息、图层属性信息、安全认证信息、产品格式信息、产品体量信息、更新维护信息、生态建设信息、或行业定制化信息中的至少一项;
    其中,所述覆盖场景信息用于描述所述待评估地图的使用场景,所述图层属性信息用于描述所述待评估地图中的至少一个图层的质量,所述安全认证信息用于描述所述待评估地图的安全等级和/或合规性,所述产品格式信息用于描述所述待评估地图支持的标准体系;所述产品体量信息用于描述所述待评估地图的产品形态和/或数据包大小;所述更新维护信息用于描述所述待评估地图的更新范围和/或更新频率;所述生态建设信息用于描述所述待评估地图在不同地图使用设备中的数据兼容性;所述行业定制化信息用于描述所述待评估地图适用的第一行业的使用需求。
  4. 如权利要求3所述的方法,其特征在于,所述至少一个图层包括动态图层和/或静态图层;
    其中,所述动态图层为交通事件图层、交通流量信息图层、实时感知图层、气象环境图层、或统计应用图层;所述静态图层为车道拓扑图层、道路拓扑图层、道路交通标线、标志图层、或路侧及路内设施图层。
  5. 如权利要求3或4所述的方法,其特征在于,所述至少一个图层包括多个图层,所述至少一个图层的质量是通过对所述多个图层的质量分数进行加权运算得到的一个质量分数。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    获取所述待评估地图对应的第二配置文件,所述第二配置文件用于确定所述待评估地图是否满足第一条件。
  7. 如权利要求6所述的方法,其特征在于,所述第一条件包括以下内容中的至少一项:
    所述待评估地图适用于第一使用场景;
    所述待评估地图中的第一图层的质量分数大于第一阈值;
    所述待评估地图满足第一安全等级;
    所述待评估地图对应第一数据格式;
    所述待评估地图的产品形态满足预设标准;
    所述待评估地图的数据包大小小于第二阈值;
    所述待评估地图的更新范围和/或更新频率满足第一应用的使用需求;
    所述待评估地图在不同地图使用设备中的数据格式兼容;
    或者,
    所述待评估地图满足第一行业的使用需求。
  8. 如权利要求6或7所述的方法,其特征在于,所述方法还包括:
    在所述待评估地图不满足所述第一条件时,将所述待评估地图的质量评估为最低等级或最低分数。
  9. 如权利要求6或7所述的方法,其特征在于,在根据所述第一评分维度和所述第一权重,对所述待评估地图进行评估之前,所述方法还包括:
    确定所述待评估地图满足所述第一条件。
  10. 如权利要求6-9任一项所述的方法,其特征在于,所述第一配置文件和/或所述第二配置文件是用户自定义的。
  11. 一种地图评估装置,其特征在于,所述装置包括:
    获取模块,用于获取待评估地图;
    所述获取模块,还用于获取所述待评估地图对应的第一配置文件,所述第一配置文件用于指示所述待评估地图的多个评分维度;
    处理模块,用于从所述多个评分维度中选择第一评分维度;
    所述处理模块,还用于确定所述第一评分维度的第一权重;
    所述处理模块,还用于根据所述第一评分维度和所述第一权重,对所述待评估地图进行评估。
  12. 如权利要求11所述的装置,其特征在于,所述第一配置文件还用于指示所述第一评分维度的第一预设权重,所述第一评分维度对应的评估方式,或所述待评估地图的评级规则;
    其中,所述评估方式用于确定所述待评估地图在所述第一维度的分数,所述评级规则用于确定所述待评估地图的等级。
  13. 如权利要求11或12所述的装置,其特征在于,所述多个评分维度包括覆盖场景信息、图层属性信息、安全认证信息、产品格式信息、产品体量信息、更新维护信息、生态建设信息、或行业定制化信息中的至少一项;
    其中,所述覆盖场景信息用于描述所述待评估地图的使用场景,所述图层属性信息用于描述所述待评估地图中的至少一个图层的质量,所述安全认证信息用于描述所述待评估地图的安全等级和/或合规性,所述产品格式信息用于描述所述待评估地图支持的标准体系;所述产品体量信息用于描述所述待评估地图的产品形态和/或数据包大小;所述更新维护信息用于描述所述待评估地图的更新范围和/或更新频率;所述生态建设信息用于描述所述待评估地图在不同地图使用设备中的数据兼容性;所述行业定制化信息用于描述所述待评估地图适用的第一行业的使用需求。
  14. 如权利要求13所述的装置,其特征在于,所述至少一个图层包括动态图层和/或静态图层;
    其中,所述动态图层为交通事件图层、交通流量信息图层、实时感知图层、气象环境图层、或统计应用图层;所述静态图层为车道拓扑图层、道路拓扑图层、道路交通标线、标志图层、或路侧及路内设施图层。
  15. 如权利要求13或14所述的装置,其特征在于,所述至少一个图层包括多个图层,所述至少一个图层的质量是通过对所述多个图层的质量分数进行加权运算得到的一个质量分数。
  16. 如权利要求11-15任一项所述的装置,其特征在于,所述获取模块,还用于:
    获取所述待评估地图对应的第二配置文件,所述第二配置文件用于确定所述待评估地图是否满足第一条件。
  17. 如权利要求16所述的装置,其特征在于,所述第一条件包括以下内容中的至少一项:
    所述待评估地图适用于第一使用场景;
    所述待评估地图中的第一图层的质量分数大于第一阈值;
    所述待评估地图满足第一安全等级;
    所述待评估地图对应第一数据格式;
    所述待评估地图的产品形态满足预设标准;
    所述待评估地图的数据包大小小于第二阈值;
    所述待评估地图的更新范围和/或更新频率满足第一应用的使用需求;
    所述待评估地图在不同地图使用设备中的数据格式兼容;
    或者,
    所述待评估地图满足第一行业的使用需求。
  18. 如权利要求16或17所述的装置,其特征在于,所述处理模块,还用于:
    在所述待评估地图不满足所述第一条件时,将所述待评估地图的质量评估为最低等级或最低分数。
  19. 如权利要求16或17所述的装置,其特征在于,所述处理模块在根据所述第一评分维度和所述第一权重,对所述待评估地图进行评估之前,还用于:
    确定所述待评估地图满足所述第一条件。
  20. 如权利要求16-19任一项所述的装置,其特征在于,所述第一配置文件和/或所述第二配置文件 是用户自定义的。
  21. 一种地图评估装置,其特征在于,包括处理器和存储器,所述存储器存储计算机程序指令,所述处理器运行所述计算机程序指令以实现如上述权利要求1至权利要求10中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如上述权利要求1至权利要求10中任一项所述的方法。
PCT/CN2023/135616 2022-12-13 2023-11-30 一种地图评估方法及装置 WO2024125316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211604004.1 2022-12-13
CN202211604004.1A CN118195987A (zh) 2022-12-13 2022-12-13 一种地图评估方法及装置

Publications (1)

Publication Number Publication Date
WO2024125316A1 true WO2024125316A1 (zh) 2024-06-20

Family

ID=91404871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/135616 WO2024125316A1 (zh) 2022-12-13 2023-11-30 一种地图评估方法及装置

Country Status (2)

Country Link
CN (1) CN118195987A (zh)
WO (1) WO2024125316A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112766670A (zh) * 2021-01-07 2021-05-07 武汉四维图新科技有限公司 基于高精度地图数据众包更新***的评估方法及装置
CN113874681A (zh) * 2019-05-23 2021-12-31 北京嘀嘀无限科技发展有限公司 点云地图质量的评估方法和***
CN114757870A (zh) * 2020-12-29 2022-07-15 深圳市普渡科技有限公司 栅格地图质量评估方法、装置、计算机设备及存储介质
US20220335950A1 (en) * 2019-10-18 2022-10-20 Nec Corporation Neural network-based signal processing apparatus, neural network-based signal processing method, and computer-readable storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113874681A (zh) * 2019-05-23 2021-12-31 北京嘀嘀无限科技发展有限公司 点云地图质量的评估方法和***
US20220335950A1 (en) * 2019-10-18 2022-10-20 Nec Corporation Neural network-based signal processing apparatus, neural network-based signal processing method, and computer-readable storage medium
CN114757870A (zh) * 2020-12-29 2022-07-15 深圳市普渡科技有限公司 栅格地图质量评估方法、装置、计算机设备及存储介质
CN112766670A (zh) * 2021-01-07 2021-05-07 武汉四维图新科技有限公司 基于高精度地图数据众包更新***的评估方法及装置

Also Published As

Publication number Publication date
CN118195987A (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
US20230004874A1 (en) Vehicle Map Service System
US10885795B2 (en) Air space maps
JP2023179580A (ja) V2xおよびセンサデータを使用するためのシステムおよび方法
CN110945498A (zh) 地图不确定性和观测模型
KR102580095B1 (ko) 시나리오 기반 거동 명세 및 검증
US20210403001A1 (en) Systems and methods for generating lane data using vehicle trajectory sampling
US20210156696A1 (en) Method and system to validate road signs
US20230204372A1 (en) Method, apparatus, and system for determining road work zone travel time reliability based on vehicle sensor data
EP3617654A1 (en) User familiarization with a novel route for reducing cognitive load associated with navigation
US11885625B1 (en) Data fusion system
US11047697B2 (en) User familiarization with a novel route for reducing cognitive load associated with navigation
WO2024125316A1 (zh) 一种地图评估方法及装置
CN115729228A (zh) 利用可驾驶区域检测来导航的方法和***以及存储介质
US11029171B2 (en) User familiarization with a novel route for reducing cognitive load associated with navigation
WO2023274309A1 (zh) 一种地图生成、使用方法及装置
Wang Design, data collection, and driver behavior simulation for the open-mode integrated transportation system (OMITS)
US20230023255A1 (en) Controlled ingestion of map update data
Sykes Transport planning with microsimulation
Cristea et al. POLITECHNICA UNIVERSITY OF BUCHAREST FACULTY OF AUTOMATIC CONTROL AND COMPUTERS COMPUTER SCIENCE DEPARTMENT