WO2024125305A1 - 能量校正方法、装置、电子设备、探测设备及存储介质 - Google Patents

能量校正方法、装置、电子设备、探测设备及存储介质 Download PDF

Info

Publication number
WO2024125305A1
WO2024125305A1 PCT/CN2023/135149 CN2023135149W WO2024125305A1 WO 2024125305 A1 WO2024125305 A1 WO 2024125305A1 CN 2023135149 W CN2023135149 W CN 2023135149W WO 2024125305 A1 WO2024125305 A1 WO 2024125305A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
energy value
pulse signal
acquisition device
corrected
Prior art date
Application number
PCT/CN2023/135149
Other languages
English (en)
French (fr)
Inventor
李硕
吕旭东
华越轩
龚正光
付乙
谢庆国
肖鹏
Original Assignee
苏州瑞派宁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州瑞派宁科技有限公司 filed Critical 苏州瑞派宁科技有限公司
Publication of WO2024125305A1 publication Critical patent/WO2024125305A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments

Definitions

  • the present application relates to the field of ray detection technology, and in particular to an energy correction method, device, electronic equipment, detection equipment and storage medium.
  • High-energy rays can be used in a variety of detection scenarios such as security inspection, food safety, geological exploration, nuclear medicine, etc.
  • the detection of high-energy rays usually requires the use of detection methods such as scintillation detectors.
  • the working principle of scintillation detectors is to deposit high-energy rays through scintillation crystals to generate a large number of visible photons that can be responded to by photoelectric conversion devices, and then the photoelectric conversion devices output electrical signals. Subsequently, the energy, time and other information of the high-energy rays are obtained through collection and processing.
  • the electronic link of collection and processing is a very important link, which affects the performance of scintillation detectors to a certain extent.
  • the MVT (Multi-Voltage Threshold) digitization method is a scintillation detector electronic method commonly used in nuclear medicine. It collects the scintillation pulses generated by the scintillation detector by setting multiple voltage thresholds, and then reconstructs the scintillation pulses to complete the energy-time information acquisition. Since it adopts the method of setting voltage thresholds for sampling, the input-output nonlinearity problem mentioned above will occur. Since the energy output is nonlinearly related to the input, the energy of the input pulse cannot be accurately obtained through the output energy.
  • an energy correction method which includes: synchronously acquiring pulse signals and respectively obtaining the energy value to be corrected and the standard energy value of each pulse signal; obtaining an energy correction function according to the energy value to be corrected and the standard energy value of each pulse signal; and correcting the energy value to be corrected of each pulse signal based on the energy correction function.
  • the step of synchronously collecting pulse signals and respectively obtaining the energy value to be corrected and the standard energy value of each pulse signal comprises: controlling the first collection device and the second collection device to synchronously collect the pulse signals; obtaining The energy value of each pulse signal collected by the first collection device is obtained to obtain the energy value to be corrected, and the energy value of each pulse signal collected by the second collection device is obtained to obtain the standard energy value.
  • the step of controlling the first acquisition device and the second acquisition device to synchronously acquire the pulse signal includes: when the first acquisition device completes acquiring the current pulse signal, outputting a trigger signal to the second acquisition device to instruct the second acquisition device to retain the currently acquired pulse signal.
  • the step of controlling the first acquisition device and the second acquisition device to synchronously acquire the pulse signal includes: obtaining a sampling threshold corresponding to the first acquisition device; setting a comparison threshold based on the sampling threshold; when the target parameter value of the pulse signal is greater than the comparison threshold, outputting the pulse signal to the first acquisition device and the second acquisition device, and outputting a trigger signal to the second acquisition device to instruct the second acquisition device to retain the currently acquired pulse signal.
  • the comparison threshold is greater than the sampling threshold.
  • the first acquisition device includes an MVT acquisition device
  • the sampling threshold is the highest sampling threshold of the MVT acquisition device.
  • the second acquisition device includes an oscilloscope.
  • the step of obtaining the energy correction function based on the energy value to be corrected and the standard energy value of each pulse signal includes: obtaining a scatter plot of the energy value to be corrected with respect to the standard energy value based on the energy value to be corrected and the standard energy value of each pulse signal; and obtaining the energy correction function based on the distribution pattern of each position point in the scatter plot.
  • the step of obtaining the energy correction function according to the distribution pattern of each position point in the scatter plot includes: extracting a number of target position points in the scatter plot; solving an n-order function according to the coordinates of the several target position points, where n is a natural number not including 0, to obtain a fitting function; verifying whether the fitting function meets the preset requirements, and if not, adjusting the n-order function to an n+1-order function until the obtained fitting function meets the preset requirements, and finally using the fitting function that meets the preset requirements as the energy correction function.
  • the target position point includes a plurality of trend points in the scatter plot, and the plurality of trend points include a plurality of centroid points or center points corresponding to different positions in the horizontal coordinate in the scatter plot.
  • the target location points include all points in the scatter plot.
  • the step of verifying whether the fitting function meets the preset requirements, and if not, adjusting the n-order function to the n+1-order function until the obtained fitting function meets the preset requirements, and using the fitting function that finally meets the preset requirements as the energy correction function includes: determining the error amount of the fitting function according to the energy value to be corrected and the standard energy value corresponding to each position point in the scatter plot; if the error amount exceeds the allowable range, continuing to calculate according to the coordinates of the target position point Solve the n+1th function to obtain a new fitting function, and so on, until the error of the fitting function is within the allowable range.
  • the step of determining the error amount of the fitting function based on the energy values to be corrected and the standard energy values corresponding to each position point in the scatter plot includes: correcting the energy values to be corrected at each position point in the scatter plot by means of the fitting function to obtain correction values; comparing the correction values corresponding to each position point with the standard energy values; and determining the error amount of the fitting function based on the comparison results.
  • an energy correction device comprising: a first acquisition module, configured to synchronously acquire pulse signals and respectively acquire the energy value to be corrected and the standard energy value of each pulse signal; a second acquisition module, used to acquire an energy correction function according to the energy value to be corrected and the standard energy value of each pulse signal; and a correction module, used to correct the energy value to be corrected of each pulse signal based on the energy correction function.
  • the first acquisition module is further configured to: control the first acquisition device and the second acquisition device to synchronously acquire the pulse signals; obtain the energy value of each pulse signal collected by the first acquisition device to obtain the energy value to be corrected, and obtain the energy value of each pulse signal collected by the second acquisition device to obtain the standard energy value.
  • the first acquisition device is configured to output a trigger signal to the second acquisition device when the acquisition of the current pulse signal is completed, so as to instruct the second acquisition device to retain the currently acquired pulse signal.
  • the energy correction device also includes a comparison unit, which is configured to obtain a sampling threshold corresponding to the first acquisition device and set a comparison threshold based on the sampling threshold; when the target parameter value of the pulse signal is greater than the comparison threshold, the pulse signal is output to the first acquisition device and the second acquisition device, and a trigger signal is output to the second acquisition device to instruct the second acquisition device to retain the currently acquired pulse signal.
  • a comparison unit configured to obtain a sampling threshold corresponding to the first acquisition device and set a comparison threshold based on the sampling threshold; when the target parameter value of the pulse signal is greater than the comparison threshold, the pulse signal is output to the first acquisition device and the second acquisition device, and a trigger signal is output to the second acquisition device to instruct the second acquisition device to retain the currently acquired pulse signal.
  • the comparison threshold is greater than the sampling threshold.
  • the first acquisition device includes an MVT acquisition device
  • the sampling threshold is the highest sampling threshold of the MVT acquisition device.
  • the second acquisition device includes an oscilloscope.
  • the second acquisition module in order to obtain the energy correction function based on the energy value to be corrected and the standard energy value of each pulse signal, is configured to: obtain a scatter plot of the energy value to be corrected with respect to the standard energy value based on the energy value to be corrected and the standard energy value of each pulse signal; and obtain the energy correction function based on the distribution law of each position point in the scatter plot.
  • the second acquisition module further comprises: an extraction unit configured to extract the A plurality of target position points in a scatter plot; a solving unit, configured to solve an n-order function according to the coordinates of the plurality of target position points, wherein n is a natural number not including 0, to obtain a fitting function; a verifying unit, configured to verify whether the fitting function meets the preset requirements, and if not, adjusting the n-order function to an n+1-order function until the obtained fitting function meets the preset requirements, and taking the fitting function that finally meets the preset requirements as the energy correction function.
  • the verification unit is further configured to: determine the error amount of the fitting function based on the energy value to be corrected and the standard energy value corresponding to each position point in the scatter plot; if the error amount exceeds the allowable range, continue to solve the n+1 function according to the coordinates of the target position point to obtain a new fitting function, and so on, until the error amount of the fitting function is within the allowable range.
  • the verification unit in order to determine the error amount of the fitting function based on the energy values to be corrected and the standard energy values corresponding to each position point in the scatter plot, is further configured to: correct the energy values to be corrected at each position point in the scatter plot by using the fitting function to obtain the corrected values; compare the corrected values corresponding to each position point with the standard energy values; and determine the error amount of the fitting function based on the comparison results.
  • an electronic device comprising: a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the computer program implements the steps of the energy correction method described above when executed by the processor.
  • a detection device which includes the energy correction device as described above.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the energy correction method described above are implemented.
  • the above energy correction method while collecting and obtaining the energy value to be corrected of each pulse signal, also collects and obtains the standard energy value of each pulse signal at the same time. Based on the energy value to be corrected and the standard energy value, an energy correction function can be obtained. Based on the energy correction function, the energy value to be corrected of each pulse signal can be corrected. Therefore, it is only necessary to establish an energy correction function to correct the energy value of each pulse signal.
  • the correction method does not require complex calculations, requires fewer resources, and has a simple correction process. Even chips with fewer resources are suitable for the above energy correction method, and it has strong versatility.
  • FIG1 is a flowchart of an energy calibration method provided in an embodiment of the present application.
  • FIG. 2 is a flowchart of step S200 in the energy calibration method provided in one embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of synchronously collecting pulse signals in an energy correction method provided in an embodiment of the present application
  • FIG4 is a flowchart of step S210 in the energy calibration method provided in one embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of synchronously collecting pulse signals in an energy correction method provided in another embodiment of the present application.
  • FIG6 is a flowchart of step S400 in the energy calibration method provided in one embodiment of the present application.
  • FIG7 is a scatter plot of the energy values to be corrected for each pulse signal with respect to the standard energy value
  • FIG8 is a flowchart of step S420 in the energy calibration method provided in one embodiment of the present application.
  • FIG9 is a flowchart of step S423 in the energy calibration method provided in one embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of an energy correction device provided in one embodiment of the present application.
  • FIG. 11 is a schematic diagram of the structure of an electronic device provided in one embodiment of the present application.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, a feature defined as “first” or “second” may explicitly or implicitly include at least one of the features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • an energy calibration method is provided.
  • the energy calibration method provided in this embodiment includes The following steps are included:
  • Step S200 synchronously collect pulse signals and obtain the energy value to be corrected and the standard energy value of each pulse signal respectively.
  • the energy value to be corrected refers to the energy value obtained by collecting the pulse signal through the collection device and then processing it. Due to the limitations of the collection device, there is often a deviation between the energy value and the real energy value, so it needs to be corrected.
  • the standard energy value corresponding to each pulse signal is also obtained.
  • the standard energy value refers to the real energy value corresponding to the pulse signal, which can be measured by an electronic measuring instrument (such as an oscilloscope) to ensure that the real energy value of each pulse signal can be obtained.
  • Step S400 Obtain an energy correction function according to the energy value to be corrected and the standard energy value of each pulse signal.
  • the difference pattern between the energy value to be corrected and the standard energy value of each pulse signal can be analyzed to obtain an energy correction function, which can reflect the mathematical relationship between the energy value to be corrected and the standard energy value.
  • Step S600 Correct the energy value to be corrected of each pulse signal based on the energy correction function.
  • the energy value to be corrected of each pulse signal can be substituted into the energy correction function to correct the energy value to be corrected. That is, by substituting the energy value to be corrected of the pulse signal collected by the acquisition device into the energy correction function, the true energy value of the pulse signal can be obtained to complete the correction of the energy value to be corrected.
  • the pulse signal of a certain time period can be collected to obtain the energy value to be corrected and the standard energy value of the pulse signal in the time period, and then obtain the energy correction function.
  • the energy correction function can be used to correct the energy value to be corrected of the pulse signal collected in other time periods.
  • the energy correction method provided in this embodiment collects the energy value to be corrected of each pulse signal and the standard energy value of each pulse signal at the same time. Based on the energy value to be corrected and the standard energy value, an energy correction function can be obtained. Based on the energy correction function, the energy value to be corrected of each pulse signal can be corrected. Therefore, it is only necessary to establish an energy correction function to correct the energy value of each pulse signal. Compared with the neural network correction method, the correction method does not require complex calculations, requires fewer resources, and has a simple correction process. Even chips with fewer resources are suitable for the above-mentioned energy correction method, and it has strong versatility.
  • step S200 i.e., the step of synchronously collecting pulse signals and respectively obtaining the energy value to be corrected and the standard energy value of each pulse signal, comprises:
  • Step S210 Control the first acquisition device 10 and the second acquisition device 20 to synchronously acquire the pulse signal.
  • the first acquisition device 10 can be an acquisition device for acquiring pulse signals in actual application scenarios, such as an MVT acquisition device.
  • the second acquisition device 20 can be an electronic measuring device, such as an oscilloscope, through which the real electrical parameters of the pulse signal can be obtained. The signals are collected synchronously to ensure that the energy value to be corrected corresponding to the first collection device 10 and the standard energy value corresponding to the second collection device 20 correspond to pulse signals at the same time.
  • Step S220 acquiring the energy value of each pulse signal acquired by the first acquisition device 10 to obtain the energy value to be corrected, and acquiring the energy value of each pulse signal acquired by the second acquisition device 20 to obtain the standard energy value.
  • the energy value of each pulse signal acquired by the first acquisition device 10 can be obtained by integration operation as the energy value to be corrected, and the energy value of each pulse signal acquired by the second acquisition device 20 can also be obtained by integration operation as the standard energy value.
  • the integration operation method can include Newton integration method, Riemann integration method, numerical integration method, etc., which are not specifically limited.
  • step S210 i.e., the step of controlling the first acquisition device and the second acquisition device to synchronously acquire the pulse signal, includes: when the first acquisition device 10 completes acquisition of the current pulse signal, outputting a trigger signal to the second acquisition device 20 to instruct the second acquisition device 20 to retain the currently acquired pulse signal.
  • the pulse signal output by the photoelectric conversion device can be synchronously input to the first acquisition device 10 and the second acquisition device 20.
  • the second acquisition device 20 is an electronic measuring device, such as an oscilloscope, which can collect all input signals.
  • it in the absence of external triggering, it often does not actively retain the collected data, that is, it cannot enter the subsequent processing and analysis link with the data collected by the first acquisition device 10. Therefore, in order to retain the data collected by the second acquisition device 20 for subsequent processing and analysis, in one embodiment, when the first acquisition device 10 completes the collection of the currently input pulse signal, it will generate a collection completion flag signal, and use the flag signal as a trigger signal of the second acquisition device 20 and send it to the second acquisition device 20.
  • the second acquisition device 20 When the second acquisition device 20 receives the trigger signal, it retains the currently collected pulse signal. Therefore, the pulse signal currently input to the first acquisition device 10 and the second acquisition device 20 can be collected and retained by the second acquisition device 20 synchronously when it is collected by the first acquisition device 10.
  • the MVT acquisition device acquires a pulse signal (that is, the amplitude of the pulse signal exceeds the preset threshold of the MVT acquisition device), it outputs a flag signal indicating that the acquisition is completed, and outputs the flag signal to the oscilloscope.
  • the oscilloscope uses the flag signal as a trigger signal to trigger the retention of the pulse signal.
  • the non-acquisition channel of the oscilloscope receives the trigger signal, the acquisition channel is triggered to retain the currently acquired pulse signal.
  • the voltage value of the trigger signal is greater than the trigger voltage of the oscilloscope.
  • the voltage value of the trigger signal can be greater than 1V, such as 3V, thereby ensuring that the trigger signal can be acquired by the oscilloscope. In the above manner, it can be ensured that the MVT acquisition device and the oscilloscope can simultaneously acquire pulse waveforms in the same time period.
  • each acquisition device often has certain acquisition conditions, and data can only be acquired when the conditions are met. Therefore, before the pulse signal is input to each acquisition device, it can be pre-determined whether it can be collected by each acquisition device. If so, the pulse signal is input to each acquisition device, and the second acquisition device is instructed to retain the input pulse signal.
  • step S210 i.e., the step of controlling the first acquisition device and the second acquisition device to synchronously acquire the pulse signal, includes:
  • Step S211 Acquire a sampling threshold corresponding to the first acquisition device 10 .
  • the sampling threshold of the first acquisition device 10 can be used to compare with the amplitude of the pulse signal to be input. When the amplitude of the pulse signal to be input can exceed the sampling threshold, the pulse signal can be acquired by the first acquisition device 10.
  • the first acquisition device 10 includes an MVT acquisition device, and the sampling threshold is the highest sampling threshold of the MVT acquisition device.
  • the MVT acquisition device can acquire the complete waveform of the pulse signal.
  • Step S212 setting a comparison threshold according to the sampling threshold.
  • a comparison threshold can be set according to the sampling threshold.
  • the comparison threshold can be used to compare with the amplitude of the pulse signal before the pulse signal is input into each acquisition device, so as to pre-determine whether the pulse signal can be acquired by the first acquisition device 10.
  • the comparison threshold may be a value greater than the sampling threshold. Since the comparison threshold is greater than the sampling threshold, when the amplitude of the pulse signal is greater than the comparison threshold, the amplitude of the pulse signal can certainly cross the sampling threshold, and it can be determined that the pulse signal can be collected by the first acquisition device 10.
  • the highest sampling threshold of the MVT acquisition device is 80V
  • the comparison threshold can be set to 81V or 85V or 90V or 100V, etc.
  • the amplitude of the pulse signal to be input is greater than the comparison threshold, it can certainly cross the highest sampling threshold of the MVT acquisition device, and it can be determined that the MVT acquisition device can completely collect the complete waveform of the pulse signal to be input.
  • the comparison threshold can be determined only based on the sampling threshold of the first acquisition device, that is, it is only necessary to confirm whether the pulse signal can be collected by the first acquisition device.
  • Step S213 when the target parameter value of the pulse signal is greater than the comparison threshold, the pulse signal is output to the first acquisition device 10 and the second acquisition device 20, and a trigger signal is output to the second acquisition device 20 to instruct the second acquisition device 20 to retain the currently acquired pulse signal.
  • the target parameter value of the pulse signal may include the amplitude of the pulse signal.
  • the amplitude is greater than the comparison threshold, it can be determined that the pulse signal can be collected by the first collection device 10, so the pulse signal is output to the first collection device 10 and the second collection device.
  • the first acquisition device 10 and the second acquisition device 20 are provided so that the first acquisition device 10 and the second acquisition device 20 can acquire the pulse signal and output a trigger signal to the second acquisition device 20 at the same time.
  • the second acquisition device 20 receives the trigger signal, the currently acquired pulse signal is retained.
  • the first acquisition device 10 and the second acquisition device 20 can synchronously acquire the pulse signal at the same time.
  • a comparator 30 may be provided to implement the comparison between the comparison threshold and the target parameter value of the pulse signal.
  • the pulse signal is synchronously output to the first acquisition device 10 and the second acquisition device 20, and a high-level square wave signal is simultaneously output to the second acquisition device 20 as a trigger signal.
  • the first acquisition device 10 and the second acquisition device 20 may synchronously acquire the pulse signal.
  • the second acquisition device 20 may also retain the acquired pulse signal for subsequent processing.
  • step S400 i.e., the step of obtaining an energy correction function according to the energy value to be corrected and the standard energy value of each pulse signal, comprises:
  • Step S410 Obtain a scatter plot of the energy value to be corrected with respect to the standard energy value according to the energy value to be corrected and the standard energy value of each pulse signal.
  • the X-axis can represent the energy value to be corrected of each pulse signal
  • the Y-axis can represent the standard energy value of each pulse signal.
  • One pulse signal corresponds to an X value and a Y value, which are recorded as coordinates (X, Y).
  • Several pulse signals collected can form a set (X i , Yi ), (X i , Yi ) is a combination of the energy value to be corrected and the standard energy value of the i-th sampled pulse signal, where i is a positive integer less than or equal to the total number of pulse signals collected. Plot each point (X i , Yi ) in a two-dimensional coordinate system to obtain a scatter plot of the energy value to be corrected of each pulse signal with respect to the standard energy value.
  • Step S420 Obtain an energy correction function according to the distribution pattern of each position point in the scatter plot.
  • the distribution pattern of each position point can be determined, and the mathematical relationship between the energy value to be corrected and the standard energy value corresponding to each position point can be further determined. From this, an energy correction function can be constructed.
  • the energy value to be corrected can be corrected through the energy correction function to obtain an energy correction value.
  • the energy correction value of a pulse signal is the standard energy value of the pulse signal. However, considering that errors are inevitable in practical applications, the energy correction value obtained after correction by the energy correction function may have some errors.
  • step S420 i.e., the step of obtaining the energy correction function according to the distribution law of each position point in the scatter plot, includes:
  • Step S421 extract several target position points in the scatter plot.
  • the target position point may include several trend points in the scatter plot.
  • the trend of each position point can be clearly seen through the scatter plot.
  • the main trend in the scatter plot can be extracted according to the trend of each position point. Just click.
  • the trend point can be extracted by using the centroid extraction method, that is, calculating the coordinates of several centroid points corresponding to different positions of the horizontal coordinate in the scatter plot.
  • the horizontal coordinate can be divided into several parts, and the average value of the horizontal coordinates of all points in each part can be calculated, that is, the horizontal coordinate of the centroid point in each part, and the average value of the vertical coordinates of all points in each part can be calculated, that is, the vertical coordinate of the centroid point in each part, thereby obtaining the horizontal and vertical coordinates of the centroid point in each part, that is, extracting several centroid points in the scatter plot as trend points.
  • the average value of the horizontal coordinates and the average value of the vertical coordinates of these 100 points are calculated to obtain the coordinates of the center of gravity points in the range of 0-2.
  • the coordinates of 500 center of gravity points can be obtained, that is, 500 center of gravity points are obtained, which are used as trend points of the scatter plot.
  • the method of extracting trend points may also adopt the center extraction method. Since the center of the scatter plot in this embodiment is the same as the center of gravity, the center extraction method is the same as the center of gravity extraction method, which will not be described in detail here.
  • the target position point may include all points in the scatter plot, that is, all points in the scatter plot are directly extracted for determining the subsequent function.
  • Step S422 Solve an n-order function according to the coordinates of a number of target position points, where n is a natural number not including 0, to obtain a fitting function.
  • Step S423 verify whether the fitting function meets the preset requirements. If not, adjust the n-order function to the n+1-order function until the obtained fitting parameters meet the preset requirements, and use the fitting function that finally meets the preset requirements as the energy correction function.
  • the fitting function After the fitting function is preliminarily determined, it can be verified, that is, the correction accuracy of the fitting function can be judged. If the accuracy meets the preset requirements, no adjustment is required, and the fitting function can be directly used as the energy correction function. If the accuracy does not meet the preset conditions, it needs to be further adjusted, that is, adjust the n-order function to the n+1-order function, solve the n+1-order function, and then verify the n+1-order function until a fitting function that meets the requirements is obtained, which is used as the energy correction function.
  • step S423 that is, verifying whether the fitting function meets the preset requirements, if not, adjusting the n-order function to the n+1-order function until the obtained fitting function meets the preset requirements, and using the fitting function that finally meets the preset requirements as the energy correction function includes:
  • Step S423a Determine the error amount of the fitting function according to the energy value to be corrected and the standard energy value corresponding to each position point in the scatter plot.
  • the error amount of the fitting function can be the error amount between the correction value after correction by the fitting function and the standard energy value. Specifically, several position points in the scatter plot can be randomly selected, and then the energy value to be corrected at each position point in the scatter plot is corrected by the fitting function to obtain the correction value, that is, the energy value to be corrected corresponding to each position point, that is, each pulse signal is substituted into the fitting function to obtain the correction value, and then the correction value corresponding to each position point is compared with the standard energy value, and the error amount of the fitting function is determined according to the comparison result. Specifically, the correction error value corresponding to each position point (that is, the difference between the correction value and the standard energy value) can be obtained, and the error amount of the fitting function can be determined according to the correction error value of each position point.
  • the maximum value among the correction error values of various position points may be screened out and used as the error amount of the fitting function.
  • Step S423b If the error amount exceeds the allowable range, continue to solve the n+1th function according to the coordinates of the target position point to obtain a new fitting function, and so on, until the error amount of the fitting function is within the allowable range.
  • the error of the fitting function After the error of the fitting function is obtained, it is determined whether the error exceeds the allowable range. Returning to the above example, assuming that the allowable range of error is 0 to 1.5, the error of the fitting function of 1.7 exceeds the allowable range of 0 to 1.5. It is considered that the accuracy of the fitting function does not meet the requirements, and the linear function cannot be used as an energy correction function. It is necessary to continue to solve the quadratic function.
  • the accuracy of the fitting function is then verified by the above verification method, which will not be repeated here. If it meets the requirements, the fitting function is used as the energy correction function. If it does not meet the requirements, the cubic function is further solved, and so on, until it meets the requirements, and the fitting function that finally meets the preset requirements is used as the energy correction function.
  • the allowable range of error can be set according to actual needs. For example, in a well logging scenario, when the total energy channel address is 256, the allowable range of error can be within one energy channel address. If the error exceeds one energy channel address, the fitting function needs to be further adjusted.
  • steps in the flowcharts of the above embodiments are shown in sequence as indicated by the arrows, these steps are not necessarily executed in the order indicated by the arrows. There is no strict order restriction for the execution of these steps, and these steps can be executed in other orders. Moreover, at least a part of the steps in the flowcharts involved in the above embodiments may include multiple steps or multiple stages, and these steps or stages are not necessarily executed at the same time, but can be executed at different times, and the execution order of these steps or stages is not necessarily to be carried out in sequence, but can be executed in turn or alternately with other steps or at least a part of the steps or stages in other steps.
  • another embodiment of the present application further provides an energy correction device for implementing the energy correction method involved above.
  • the implementation scheme for solving the problem provided by the energy correction device is similar to the implementation scheme recorded in the above method, so the specific limitations in one or more energy correction device embodiments provided below can refer to the limitations on the energy correction method above, and will not be repeated here.
  • the energy correction device provided in this embodiment includes a first acquisition module 200, a second acquisition module 400 and a correction module 600.
  • a first acquisition module 200 the energy correction device provided in this embodiment includes a first acquisition module 200, a second acquisition module 400 and a correction module 600.
  • the first acquisition module 200 is configured to synchronously acquire pulse signals and respectively acquire the energy value to be corrected and the standard energy value of each pulse signal;
  • a second acquisition module 400 is used to acquire an energy correction function according to the energy value to be corrected of each pulse signal and the standard energy value;
  • the correction module 600 is used to correct the energy value to be corrected of each pulse signal based on the energy correction function.
  • the first acquisition module 200 is further configured to: control the first acquisition device and the second acquisition device to synchronously acquire the pulse signals; obtain the energy value of each pulse signal collected by the first acquisition device to obtain the energy value to be corrected, and obtain the energy value of each pulse signal collected by the second acquisition device to obtain the standard energy value.
  • the first acquisition device is configured to output a trigger signal to the second acquisition device when the acquisition of the current pulse signal is completed, so as to instruct the second acquisition device to retain the currently acquired pulse signal.
  • the energy correction device provided in this embodiment also includes a comparison unit, which is configured to obtain a sampling threshold corresponding to the first acquisition device and set a comparison threshold based on the sampling threshold; when the target parameter value of the pulse signal is greater than the comparison threshold, the pulse signal is output to the first acquisition device and the second acquisition device, and a trigger signal is output to the second acquisition device to instruct the second acquisition device to retain the currently acquired pulse signal.
  • a comparison unit which is configured to obtain a sampling threshold corresponding to the first acquisition device and set a comparison threshold based on the sampling threshold; when the target parameter value of the pulse signal is greater than the comparison threshold, the pulse signal is output to the first acquisition device and the second acquisition device, and a trigger signal is output to the second acquisition device to instruct the second acquisition device to retain the currently acquired pulse signal.
  • the comparison threshold is greater than the sampling threshold.
  • the first acquisition device includes an MVT acquisition device
  • the sampling threshold is the highest sampling threshold of the MVT acquisition device.
  • the second acquisition device includes an oscilloscope.
  • the second acquisition module 400 in order to obtain the energy correction function based on the energy value to be corrected and the standard energy value of each pulse signal, is configured to obtain a scatter plot of the energy value to be corrected with respect to the standard energy value based on the energy value to be corrected and the standard energy value of each pulse signal; and obtain the energy correction function based on the distribution law of each position point in the scatter plot.
  • the second acquisition module 400 further includes an extraction unit, a solution unit and a verification unit, wherein the extraction unit is configured to extract a number of target position points in the scatter plot; the solution unit is configured to solve an n-order function according to the coordinates of the number of target position points, wherein n is a natural number not including 0, to obtain a fitting function; the verification unit is configured to verify whether the fitting function meets the preset requirements, and if not, adjust the fitting function until it meets the preset requirements, so as to finally use the fitting function that meets the preset requirements as the energy correction function.
  • the extraction unit is configured to extract a number of target position points in the scatter plot
  • the solution unit is configured to solve an n-order function according to the coordinates of the number of target position points, wherein n is a natural number not including 0, to obtain a fitting function
  • the verification unit is configured to verify whether the fitting function meets the preset requirements, and if not, adjust the fitting function until it meets the preset requirements, so as to finally use the fitting function that meets the
  • the target position point includes a plurality of trend points in the scatter plot, and the plurality of trend points include a plurality of centroid points or center points corresponding to different positions in the horizontal coordinate in the scatter plot.
  • the target location points include all points in the scatter plot.
  • the verification unit is further configured to: determine the error amount of the fitting function based on the energy value to be corrected and the standard energy value corresponding to each position point in the scatter plot; if the error amount exceeds the allowable range, continue to solve the n+1 function according to the coordinates of the target position point to obtain a new fitting function, and so on, until the error amount of the fitting function is within the allowable range.
  • the verification unit in order to determine the error amount of the fitting function based on the energy values to be corrected and the standard energy values corresponding to each position point in the scatter plot, is further configured to: correct the energy values to be corrected at each position point in the scatter plot by using the fitting function to obtain corrected values; compare the corrected values corresponding to each position point with the standard energy values; and determine the error amount of the fitting function based on the comparison results.
  • Each module in the above energy correction device can be implemented in whole or in part by software, hardware, or a combination thereof.
  • Each module can be embedded in or independent of a processor in a computer device in the form of hardware, or can be stored in a memory in a computer device in the form of software, so that the processor can call and execute operations corresponding to each module.
  • a detection device may include any components used to implement the energy correction device described in the above embodiments of the present application.
  • the detection device may be implemented by hardware, software program, firmware or a combination thereof.
  • an electronic device including a memory and a processor, wherein the memory stores a computer program, and the processor implements the steps in the above-mentioned method embodiments when executing the computer program.
  • FIG. 11 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application, wherein the electronic device may be a server.
  • the internal structure diagram may be shown in FIG11.
  • the electronic device includes a processor, a memory, and a network interface connected via a system bus.
  • the processor of the electronic device is used to provide computing and control capabilities.
  • the memory of the electronic device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for the operation of the operating system and the computer program in the non-volatile storage medium.
  • the database of the electronic device is used to store various types of data involved in the energy correction method.
  • the network interface of the electronic device is used to communicate with an external terminal via a network connection. When the computer program is executed by the processor, an energy correction method is implemented.
  • FIG. 11 is merely a block diagram of a partial structure related to the scheme of the present application, and does not constitute a limitation on the electronic device to which the scheme of the present application is applied.
  • the specific electronic device may include more or fewer components than shown in the figure, or combine certain components, or have a different arrangement of components.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps in the above-mentioned method embodiments are implemented.
  • Non-volatile memory may include read-only memory (ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM can be in various forms, such as static random access memory (SRAM) or dynamic random access memory (DRAM).

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种能量校正方法、装置、电子设备、探测设备及存储介质,能量校正方法包括:同步采集脉冲信号并分别获取各脉冲信号的待校正能量值和标准能量值(S200);根据各脉冲信号的待校正能量值和标准能量值,获取能量校正函数(S400);基于能量校正函数,对各脉冲信号的待校正能量值进行校正(S600)。由此,仅需同步采集到各脉冲信号的待校正能量值和标准能量值,并依此建立能量校正函数,即可对各脉冲信号的能量值进行校正。校正方式相对于神经网络校正方式来说,无需复杂的计算,所需占用的资源较少,校正过程简单,通用性强。

Description

能量校正方法、装置、电子设备、探测设备及存储介质 技术领域
本申请涉及射线探测技术领域,特别是涉及一种能量校正方法、装置、电子设备、探测设备及存储介质。
背景技术
高能射线可以应用于安检、食品安全、地质勘探、核医学等多种探测场景中,对高能射线(例如X射线、γ射线)的探测通常需要利用闪烁探测器这一类的探测手段。闪烁探测器的工作原理是通过闪烁晶体将高能射线沉积之后产生大量可被光电转换器件响应的可见光子,再由光电转换器件输出电信号,后续通过采集处理得到高能射线的能量、时间等信息。其中,采集处理的电子学环节是非常重要的一环,其在一定程度上影响了闪烁探测器的性能。
目前在采集处理的电子学部分,会出现输入的能谱与输出的能谱不能在通过线性变换之后完全重合的问题。例如MVT(Multi-Voltage Threshold,多电压阈值采样)数字化方法,其是一种常用于核医学方向的闪烁探测器电子学方法,通过设置多个电压阈值采集由闪烁探测器产生的闪烁脉冲,再通过重建闪烁脉冲完成能量时间的信息获取,由于其是采用设置电压阈值来采样这一种方式,因此会出现如上所述的输入输出非线性的问题,由于能量的输出与输入成非线性关系,因此通过该输出能量不能准确获得输入的脉冲的能量。
针对上述问题,目前已经出现利用神经网络来校正输入脉冲能量的方法,但是该方法需要大量的数据参与训练,计算量较大,计算过程繁杂,不适合少资源芯片,通用性较差。
发明内容
基于此,有必要针对上述问题,提供一种能量校正方法、能量校正装置、电子设备、探测设备及计算机可读存储介质。
根据本申请实施例的第一方面,提供一种能量校正方法,所述能量校正方法包括:同步采集脉冲信号并分别获取各脉冲信号的待校正能量值和标准能量值;根据各脉冲信号的所述待校正能量值和所述标准能量值,获取能量校正函数;基于所述能量校正函数,对各脉冲信号的所述待校正能量值进行校正。
在其中一个实施例中,所述同步采集脉冲信号并分别获取各脉冲信号的待校正能量值和标准能量值的步骤包括:控制第一采集设备和第二采集设备对脉冲信号进行同步采集;获取 所述第一采集设备采集到的各脉冲信号的能量值,以得到待校正能量值,获取所述第二采集设备采集到的各脉冲信号的能量值,以得到标准能量值。
在其中一个实施例中,所述控制第一采集设备和第二采集设备对脉冲信号进行同步采集的步骤包括:当所述第一采集设备对当前的脉冲信号采集完毕时,输出触发信号至所述第二采集设备,以指示所述第二采集设备保留当前采集到的脉冲信号。
在其中一个实施例中,所述控制第一采集设备和第二采集设备对脉冲信号进行同步采集的步骤包括:获取对应于所述第一采集设备的采样阈值;根据所述采样阈值设定比较阈值;当所述脉冲信号的目标参数值大于所述比较阈值,则输出所述脉冲信号至所述第一采集设备和所述第二采集设备,并输出触发信号至所述第二采集设备,以指示所述第二采集设备保留当前采集到的脉冲信号。
在其中一个实施例中,所述比较阈值大于所述采样阈值。
在其中一个实施例中,所述第一采集设备包括MVT采集设备,所述采样阈值为所述MVT采集设备的最高采样阈值。
在其中一个实施例中,所述第二采集设备包括示波器。
在其中一个实施例中,所述根据各脉冲信号的所述待校正能量值和所述标准能量值,获取能量校正函数的步骤包括:根据各脉冲信号的待校正能量值和标准能量值,获取所述待校正能量值关于所述标准能量值的散点图;根据所述散点图中各个位置点的分布规律,获取能量校正函数。
在其中一个实施例中,所述根据所述散点图中各个位置点的分布规律,获取能量校正函数的步骤包括:提取所述散点图中的若干目标位置点;根据若干目标位置点的坐标,求解n次函数,其中n为不包括0的自然数,以得到拟合函数;验证所述拟合函数是否符合预设要求,若不符合,则调整n次函数为n+1次函数,直至得到的拟合函数符合预设要求,以最终符合预设要求的拟合函数作为能量校正函数。
在其中一个实施例中,所述目标位置点包括所述散点图中的若干走势点,所述若干走势点包括所述散点图中横坐标中不同位置所对应的若干重心点或中心点。
在其中一个实施例中,所述目标位置点包括所述散点图中的所有点。
在其中一个实施例中,所述验证所述拟合函数是否符合预设要求,若不符合,则调整n次函数为n+1次函数,直至得到的拟合函数符合预设要求,以最终符合预设要求的拟合函数作为能量校正函数的步骤包括:根据散点图中各位置点对应的待校正能量值与标准能量值,确定所述拟合函数的误差量;若所述误差量超出允许范围,则根据目标位置点的坐标继续求 解n+1次函数,以得到新的拟合函数,依此类推,直至拟合函数的误差量位于允许范围内。
在其中一个实施例中,所述根据散点图中各位置点对应的待校正能量值与标准能量值,确定所述拟合函数的误差量的步骤包括:通过拟合函数对散点图中各位置点的待校正能量值进行校正,得到校正值;比对各位置点所对应的校正值与标准能量值;根据比对结果确定所述拟合函数的误差量。
根据本申请实施例的第二方面,提供一种能量校正装置,所述能量校正装置包括:第一获取模块,配置为用于同步采集脉冲信号并分别获取各脉冲信号的待校正能量值和标准能量值;第二获取模块,用于根据各脉冲信号的所述待校正能量值和所述标准能量值,获取能量校正函数;校正模块,用于基于所述能量校正函数,对各脉冲信号的所述待校正能量值进行校正。
在其中一个实施例中,为实现同步采集脉冲信号并分别获取各脉冲信号的待校正能量值和标准能量值,所述第一获取模块进一步配置为用于:控制第一采集设备和第二采集设备对脉冲信号进行同步采集;获取所述第一采集设备采集到的各脉冲信号的能量值,以得到待校正能量值,获取所述第二采集设备采集到的各脉冲信号的能量值,以得到标准能量值。
在其中一个实施例中,所述第一采集设备配置为对当前的脉冲信号采集完毕时,输出触发信号至所述第二采集设备,以指示所述第二采集设备保留当前采集到的脉冲信号。
在其中一个实施例中,所述能量校正装置还包括比较单元,所述比较单元配置为用于获取对应于所述第一采集设备的采样阈值并根据所述采样阈值设定比较阈值;当所述脉冲信号的目标参数值大于所述比较阈值,则输出所述脉冲信号至所述第一采集设备和所述第二采集设备,并输出触发信号至所述第二采集设备,以指示所述第二采集设备保留当前采集到的脉冲信号。
在其中一个实施例中,所述比较阈值大于所述采样阈值。
在其中一个实施例中,所述第一采集设备包括MVT采集设备,所述采样阈值为所述MVT采集设备的最高采样阈值。
在其中一个实施例中,所述第二采集设备包括示波器。
在其中一个实施例中,为实现根据各脉冲信号的所述待校正能量值和所述标准能量值,获取能量校正函数,所述第二获取模块配置为用于:根据各脉冲信号的待校正能量值和标准能量值,获取所述待校正能量值关于所述标准能量值的散点图;根据所述散点图中各个位置点的分布规律,获取能量校正函数。
在其中一个实施例中,所述第二获取模块进一步包括:提取单元,配置为用于提取所述 散点图中的若干目标位置点;求解单元,配置为根据若干目标位置点的坐标,求解n次函数,其中n为不包括0的自然数,以得到拟合函数;验证单元,配置为用于验证所述拟合函数是否符合预设要求,若不符合,则调整n次函数为n+1次函数,直至得到的拟合函数符合预设要求,以最终符合预设要求的拟合函数作为能量校正函数。
在其中一个实施例中,所述验证单元进一步配置为:根据散点图中各位置点对应的待校正能量值与标准能量值,确定所述拟合函数的误差量;若所述误差量超出允许范围,则根据目标位置点的坐标继续求解n+1次函数,以得到新的拟合函数,依此类推,直至拟合函数的误差量位于允许范围内。
在其中一个实施例中,为实现根据散点图中各位置点对应的待校正能量值与标准能量值,确定所述拟合函数的误差量,所述验证单元进一步配置为:通过拟合函数对散点图中各位置点的待校正能量值进行校正,得到校正值;比对各位置点所对应的校正值与标准能量值;根据比对结果确定所述拟合函数的误差量。
根据本申请实施例的第三方面,提供一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的能量校正方法的步骤。
根据本申请实施例的第四方面,提供一种探测设备,该探测设备包括如上所述的能量校正装置。
根据本申请实施例的第五方面,提供一种计算机可读存储介质,所述存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上所述的能量校正方法的步骤。
上述能量校正方法,在采集获取到各脉冲信号的待校正能量值的同时,还同时采集获取到各脉冲信号的标准能量值,基于待校正能量值和标准能量值,即可获取得到能量校正函数,基于该能量校正函数即可对各脉冲信号的待校正能量值进行校正,由此,仅需建立能量校正函数即可对各脉冲信号的能量值进行校正,校正方式相对于神经网络校正方式来说,无需复杂的计算,所需占用的资源较少,校正过程简单,即使是少资源的芯片也适用于上述能量校正方法,通用性强。
附图说明
图1为本申请一实施例提供的能量校正方法的流程框图;
图2为本申请一实施例提供的能量校正方法中步骤S200的流程框图;
图3为本申请一实施例提供的能量校正方法中同步采集脉冲信号的结构示意图;
图4为本申请一实施例提供的能量校正方法中步骤S210的流程框图;
图5为本申请另一实施例提供的能量校正方法中同步采集脉冲信号的结构示意图;
图6为本申请一实施例提供的能量校正方法中步骤S400的流程框图;
图7为各脉冲信号的待校正能量值关于标准能量值的散点图;
图8为本申请一实施例提供的能量校正方法中步骤S420的流程框图;
图9为本申请一实施例提供的能量校正方法中步骤S423的流程框图;
图10为本申请一实施例提供的能量校正装置的结构示意图;
图11为本申请一实施例提供的电子设备的结构示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的优选实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反的,提供这些实施方式的目的是为了对本申请的公开内容理解得更加透彻全面。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
以下参考附图对本申请的一些优选实施例进行说明。应当注意的是,以下描述是为了说明的目的,并不旨在限制本申请的保护范围。
在一个实施例中,参照图1,提供一种能量校正方法。本实施例提供的能量校正方法包 括以下步骤:
步骤S200、同步采集脉冲信号并分别获取各脉冲信号的待校正能量值和标准能量值。
其中,待校正能量值指的是通过采集设备对脉冲信号进行采集,进而处理得到的能量值,由于采集设备的局限性,该能量值与真实能量值往往存在偏差,因此需要对其进行校正。本实施例中,在获取各脉冲信号的待校正能量值的同时,还获取到各脉冲信号所对应的标准能量值,标准能量值指的是脉冲信号所对应的真实能量值,其可以是由电子测量仪器(例如示波器)进行测量得到,以保证能够得到各脉冲信号的真实能量值。
步骤S400、根据各脉冲信号的待校正能量值和标准能量值,获取能量校正函数。
当得到各脉冲信号的待校正能量值和标准能量值后,可以对各脉冲信号的待校正能量值与标准能量值之间的差异规律进行分析,进而得到能量校正函数,能量校正函数可以体现待校正能量值与标准能量值之间的数学关系。
步骤S600、基于能量校正函数,对各脉冲信号的待校正能量值进行校正。
当得到能量校正函数后,即可将各脉冲信号的待校正能量值代入至能量校正函数,以对待校正能量值进行校正,即,将采集设备采集到的脉冲信号的待校正能量值代入能量校正函数中,可以得到该脉冲信号的真实能量值,以完成对待校正能量值的校正。
本实施例中,可以对某一时间段的脉冲信号进行采集,以得到该时间段中脉冲信号的待校正能量值和标准能量值,进而得到能量校正函数,利用能量校正函数可以对其他时间段采集到的脉冲信号的待校正能量值进行校正。
本实施例提供的能量校正方法,在采集各脉冲信号的待校正能量值的同时,还同时采集各脉冲信号的标准能量值,基于待校正能量值和标准能量值,即可获取得到能量校正函数,基于该能量校正函数即可对各脉冲信号的待校正能量值进行校正,由此,仅需建立能量校正函数即可对各脉冲信号的能量值进行校正,校正方式相对于神经网络校正方式来说,无需复杂的计算,所需占用的资源较少,校正过程简单,即使是少资源的芯片也适用上述能量校正方法,通用性强。
在其中一个实施例中,参照图2,步骤S200,即同步采集脉冲信号并分别获取各脉冲信号的待校正能量值和标准能量值的步骤包括:
步骤S210、控制第一采集设备10和第二采集设备20对脉冲信号进行同步采集。
本实施例中,第一采集设备10可以是实际应用场景下用于采集脉冲信号的采集设备,例如MVT采集设备等。第二采集设备20可以是电子测量设备,例如示波器等,通过电子测量设备可以得到脉冲信号的真实电学参数。通过第一采集设备10和第二采集设备20对脉冲 信号进行同步采集,以确保对应于第一采集设备10的待校正能量值与对应于第二采集设备20的标准能量值对应的是同一时间的脉冲信号。
步骤S220、获取第一采集设备10采集到的各脉冲信号的能量值,以得到待校正能量值,获取第二采集设备20采集到的各脉冲信号的能量值,以得到标准能量值。
在第一采集设备10和第二采集设备20同步采集到一定数量的脉冲信号后,可以通过积分运算获取第一采集设备10采集到的各脉冲信号的能量值,以此作为待校正能量值,也可以通过积分运算获取第二采集设备20采集到的各脉冲信号的能量值,以此作为标准能量值。由此可获得各脉冲信号的待校正能量值和标准能量值。其中,积分运算方式可以包括牛顿积分法、黎曼积分法、数值积分法等,对此不做具体限制。
在其中一个实施例中,步骤S210,即控制第一采集设备和第二采集设备对脉冲信号进行同步采集的步骤包括:当第一采集设备10对当前的脉冲信号采集完毕时,输出触发信号至第二采集设备20,以指示第二采集设备20保留当前采集到的脉冲信号。
参照图3,在实际应用中,光电转换器件输出的脉冲信号可以同步输入至第一采集设备10和第二采集设备20,第二采集设备20作为一种电子测量设备,例如示波器,其可以对输入的所有信号进行采集,但是在没有外界触发的情况下,其往往不会主动保留采集到的数据,即无法与第一采集设备10采集到的数据进入后续处理分析环节。因此,为了保留第二采集设备20采集到的数据,以备后续处理分析,在一个实施例中,第一采集设备10对当前输入的脉冲信号采集完毕时,会产生一采集完毕的标志信号,并将该标志信号作为第二采集设备20的触发信号,发送至第二采集设备20,当第二采集设备20接收到触发信号时,保留当前采集到的脉冲信号,由此当前输入至第一采集设备10和第二采集设备20的脉冲信号可以在被第一采集设备10采集到时,也能够同步被第二采集设备20采集和保留。
以第一采集设备10为MVT采集设备,第二采集设备20为示波器为例,MVT采集设备采集到脉冲信号时(即,脉冲信号的幅值超出MVT采集设备的预设阈值),其输出一个采集完毕的标志信号,将该标志信号输出至示波器,示波器以该标志信号作为触发信号以触发保留该脉冲信号,当示波器的非采集通道接收到该触发信号,则触发采集通道对当前采集到的脉冲信号进行保留。一般地,触发信号的电压值大于示波器的触发电压,假设,示波器的触发电压为1V,则触发信号的电压值可以大于1V,如3V,由此可确保触发信号可以被示波器采集到。通过上述方式,可以保证MVT采集设备和示波器可以同时采集到同一时间段的脉冲波形。
除了上述通过在第一采集设备采集完毕时触发第二采集设备保留采集到的数据之外,还 可以通过其他方式来确保第一采集设备和第二采集设备同步采集获取到同一时间段的脉冲。例如,各采集设备往往存在一定的采集条件,在数据满足条件时才能够被采集到,因此可以在脉冲信号输入至各采集设备之前,预先判断其是否能被各采集设备所采集到,若能,则输入脉冲信号至各采集设备,同时指示第二采集设备保留输入的脉冲信号。
具体地,在另一实施例中,参照图4,步骤S210,即控制第一采集设备和第二采集设备对脉冲信号进行同步采集的步骤包括:
步骤S211、获取对应于第一采集设备10的采样阈值。
第一采集设备10的采样阈值可以用于与待输入的脉冲信号的幅值进行比较,当待输入的脉冲信号的幅值能够越过采样阈值,则该脉冲信号可以被第一采集设备10采集到。
在一个实施例中,第一采集设备10包括MVT采集设备,采样阈值为MVT采集设备的最高采样阈值,当脉冲信号的幅值能够越过MVT采集设备的最高采样阈值时,MVT采集设备可以采集到该脉冲信号的完整波形。
步骤S212、根据采样阈值设定比较阈值。
当获取到第一采集设备10的采样阈值后,即可以根据采样阈值设定比较阈值,该比较阈值可以是在脉冲信号输入至各采集设备之前,用于与脉冲信号的幅值进行比较,进而预先判断该脉冲信号能否被第一采集设备10采集。
在一个实施例中,比较阈值可以是大于采样阈值的数值。由于比较阈值大于采样阈值,则当脉冲信号的幅值大于比较阈值时,脉冲信号的幅值必然可以越过采样阈值,即可确定该脉冲信号可以被第一采集设备10采集到。例如,MVT采集设备的最高采样阈值为80V,可以设定比较阈值为81V或85V或90V或100V等,当待输入的脉冲信号的幅值大于比较阈值,其必然能够越过MVT采集设备的最高采样阈值,即可确定MVT采集设备可以完整地采集到当前待输入的脉冲信号的完整波形。
本领域技术人员应当理解的是,能够被MVT采集设备成功采集的脉冲信号,必然可以被示波器采集到,因此,本实施例中,可以仅根据第一采集设备的采样阈值来确定比较阈值,即,仅需确认脉冲信号能否被第一采集设备采集到即可。
步骤S213、当脉冲信号的目标参数值大于比较阈值,则输出脉冲信号至第一采集设备10和第二采集设备20,并输出触发信号至第二采集设备20,以指示第二采集设备20保留当前采集到的脉冲信号。
脉冲信号的目标参数值可以包括脉冲信号的幅值,当其大于比较阈值,即可确定该脉冲信号可以被第一采集设备10采集到,因此将脉冲信号输出至第一采集设备10和第二采集设 备20,以便第一采集设备10和第二采集设备20采集该脉冲信号,同时输出触发信号至第二采集设备20,当第二采集设备20收到触发信号,则对当前采集到的脉冲信号进行保留,由此,第一采集设备10和第二采集设备20可以同步采集获取同一时间的脉冲信号。
本实施例中,参照图5,可以设置一比较器30来实现上述比较阈值与脉冲信号的目标参数值的比较,当脉冲信号的目标参数值大于比较阈值,则将脉冲信号同步输出至第一采集设备10和第二采集设备20,同时输出高电平方波信号至第二采集设备20,以作为触发信号,进而,第一采集设备10和第二采集设备20可以同步采集到脉冲信号,同时,第二采集设备20还能够对采集到的脉冲信号进行保留,便于后续处理。
在其中一个实施例中,参照图6,步骤S400,即根据各脉冲信号的待校正能量值和标准能量值,获取能量校正函数的步骤包括:
步骤S410、根据各脉冲信号的待校正能量值和标准能量值,获取待校正能量值关于标准能量值的散点图。
当获取得到各脉冲信号的待校正能量值和标准能量值时,即可建立待校正能量值关于标准能量值的散点图。具体地,参照图7,X轴可以表示各脉冲信号的待校正能量值,Y轴可以表示各脉冲信号的标准能量值,一个脉冲信号即对应一个X值和Y值,记为坐标(X,Y),采集到的若干个脉冲信号即可形成集合(Xi,Yi),(Xi,Yi)为第i个被采样到的脉冲信号的待校正能量值和标准能量值的组合,其中,i为小于或等于被采集到的脉冲信号总个数的正整数。将(Xi,Yi)各点绘制在二维坐标系中,即可得到各个脉冲信号的待校正能量值关于标准能量值的散点图。
步骤S420、根据散点图中各个位置点的分布规律,获取能量校正函数。
对散点图中各个位置点进行分析,可确定出各个位置点的分布规律,可进一步确定各个位置点对应的待校正能量值与标准能量值之间的数学关系,由此可构建出能量校正函数,通过能量校正函数可以对待校正能量值进行校正,得到能量校正值,理想情况下,某个脉冲信号的能量校正值即为该脉冲信号的标准能量值,但考虑到实际应用中难免存在误差,因此经能量校正函数校正之后得到的能量校正值可以存在些许误差。
在其中一个实施例中,参照图8,步骤S420,即根据散点图中各个位置点的分布规律,获取能量校正函数的步骤包括:
步骤S421、提取散点图中的若干目标位置点。
其中,目标位置点可以包括散点图中的若干走势点。通过散点图可以较为清晰地看出各个位置点的走势,为简化校正过程,可以根据各个位置点的走势提取出散点图中主要的走势 点即可。
提取走势点的方式可以采用重心提取法,即计算获得散点图中横坐标不同位置对应的若干个重心点的坐标。具体地,可将横坐标分成若干份,可以计算出每一份内所有点的横坐标的平均值,即为每一份内重心点的横坐标,以及计算出每一份内所有点的纵坐标的平均值,即为每一份内重心点的纵坐标,由此可获得每一份内的重心点的横纵坐标,即提取出散点图中的若干重心点,以此作为走势点。例如,横坐标的总长度为X,将其分为N份,X=1000,N=500,则每一份的长度为2,第一份为0~2,第二份为2~4,第三份为4~6,以此类推,假设0~2范围内有100个点,则计算这100个点的横坐标的平均值以及纵坐标的平均值,得到0~2范围内的重心点坐标,以此类推,可获得500个重心点的坐标,即得到500个重心点,以此作为散点图的走势点。
提取走势点的方式也可以采用中心提取法,由于本实施例中散点图的中心与重心相同,因此,中心提取法的方式与重心提取法的方式相同,在此不做赘述。
在另一实施例中,目标位置点可以包括散点图中的所有点,即直接提取出散点图中所有的点,用于后续函数的确定。
步骤S422、根据若干目标位置点的坐标,求解n次函数,其中n为不包括0的自然数,以得到拟合函数。
例如,当提取出若干目标位置点,可尝试从一次函数开始求解,以得到一次拟合函数。
具体地,可以先拟合出直线方程:y=kx+b,其中,x为对应于第一采集设备的待校正能量值,y为经校正之后的校正值。
将获取到的目标位置点的坐标代入至上述直线方程中,进而可求解出k和b的值,进而求解出一次函数,以此作为拟合函数。
步骤S423、验证拟合函数是否符合预设要求,若不符合,则调整n次函数为n+1次函数,直至得到的拟合参数符合预设要求,以最终符合预设要求的拟合函数作为能量校正函数。
当初步确定了拟合函数后,可以对其进行验证,即对该拟合函数的校正精度进行判断,若精度符合预设要求,则无需调整,直接以该拟合函数作为能量校正函数,若精度不符合预设条件,则需要对其进行进一步调整,即,调整n次函数为n+1次函数,并求解n+1次函数,再对n+1次函数进行验证,直至得到符合要求的拟合函数,以此作为能量校正函数。
在其中一个实施例中,参照图9,步骤S423,即验证拟合函数是否符合预设要求,若不符合,则调整n次函数为n+1次函数,直至得到的拟合函数符合预设要求,以最终符合预设要求的拟合函数作为能量校正函数的步骤包括:
步骤S423a、根据散点图中各位置点对应的待校正能量值与标准能量值,确定拟合函数的误差量。
拟合函数的误差量可以是经拟合函数校正后的校正值与标准能量值之间的误差量。具体地,可以随机选取散点图中的若干个位置点,再通过拟合函数对散点图中各位置点的待校正能量值进行校正,得到校正值,即,将各位置点,即各个脉冲信号所对应的待校正能量值分别代入至拟合函数中,得到校正值,再比对各个位置点所对应的校正值与标准能量值,根据比对结果确定拟合函数的误差量。具体地,可以得到对应于各个位置点的校正误差值(即校正值与标准能量值的差值),可以根据各个位置点的校正误差值确定拟合函数的误差量。
在一个实施例中,可以筛选出各个位置点的校正误差值中的最大值,以此作为拟合函数的误差量。
例如,求解出一次函数为:y=0.8x+0.3,x为待校正能量值,y为校正后所得的校正值,假设提取出散点图中存在的四个点,坐标分别为(1,1.5)、(3,3.5)、(6,5.5)、(10,9.5),将四个点的横坐标分别代入至一次函数中的x,得到的y值分别为1.1、2.7、5.1、8.3,由此可见,各个y值(即校正值)与散点图中各点的纵坐标(即标准能量值)均存在差异,误差值分别为0.4、0.8、0.4、1.7,其中最大的误差值为1.7,即,拟合函数的误差量为1.7。
步骤S423b、若误差量超出允许范围,则根据目标位置点的坐标继续求解n+1次函数,以得到新的拟合函数,依此类推,直至拟合函数的误差量位于允许范围内。
当得到拟合函数的误差量后,判断误差量是否超出允许范围,回到上述示例,假设误差的允许范围为0~1.5,则拟合函数的误差量1.7超出了允许范围0~1.5,则认为该拟合函数的精度不符合要求,一次函数不能够作为能量校正函数,需要继续求解二次函数。
二次函数的方程为y=ax2+cx+d,与求解一次函数的方法类似,即,将获取到的散点图中的目标位置点的坐标代入至二次函数的方程中,求解得到a、b、c的值,进而求解出二次函数,以此作为拟合函数。再通过上述验证方式对该拟合函数的精度进行验证,在此不再赘述,若符合要求,则以该拟合函数作为能量校正函数,若不符合要求,则进一步求解三次函数,以此类推,直至符合要求,以最终符合预设要求的拟合函数作为能量校正函数。
本实施例中,误差的允许范围可以根据实际需求设定,如在测井场景中,在总能量道址为256道的情况下,误差的允许范围可以是一个能量道址以内,若误差量超出一个能量道址,则需继续调整拟合函数。
应该理解的是,虽然如上的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明, 这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请另一实施例还提供了一种用于实现上述所涉及的能量校正方法的能量校正装置。该能量校正装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个能量校正装置实施例中的具体限定可以参见上文中对于能量校正方法的限定,在此不再赘述。
参照图10,本实施例提供的能量校正装置包括第一获取模块200、第二获取模块400以及校正模块600。其中:
第一获取模块200,配置为用于同步采集脉冲信号并分别获取各脉冲信号的待校正能量值和标准能量值;
第二获取模块400,用于根据各脉冲信号的待校正能量值和所述标准能量值,获取能量校正函数;
校正模块600,用于基于能量校正函数,对各脉冲信号的待校正能量值进行校正。
在其中一个实施例中,为实现同步采集脉冲信号并分别获取各脉冲信号的待校正能量值和标准能量值,第一获取模块200进一步配置为用于:控制第一采集设备和第二采集设备对脉冲信号进行同步采集;获取所述第一采集设备采集到的各脉冲信号的能量值,以得到待校正能量值,获取所述第二采集设备采集到的各脉冲信号的能量值,以得到标准能量值。
在其中一个实施例中,第一采集设备配置为对当前的脉冲信号采集完毕时,输出触发信号至所述第二采集设备,以指示所述第二采集设备保留当前采集到的脉冲信号。
在其中一个实施例中,本实施例提供的能量校正装置还包括比较单元,所述比较单元配置为用于获取对应于所述第一采集设备的采样阈值并根据所述采样阈值设定比较阈值;当所述脉冲信号的目标参数值大于所述比较阈值,则输出所述脉冲信号至所述第一采集设备和所述第二采集设备,并输出触发信号至所述第二采集设备,以指示所述第二采集设备保留当前采集到的脉冲信号。
在其中一个实施例中,所述比较阈值大于所述采样阈值。
在其中一个实施例中,所述第一采集设备包括MVT采集设备,所述采样阈值为所述MVT采集设备的最高采样阈值。
在其中一个实施例中,所述第二采集设备包括示波器。
在其中一个实施例中,为实现根据各脉冲信号的所述待校正能量值和所述标准能量值,获取能量校正函数,第二获取模块400配置为用于根据各脉冲信号的待校正能量值和标准能量值,获取所述待校正能量值关于所述标准能量值的散点图;根据所述散点图中各个位置点的分布规律,获取能量校正函数。
在其中一个实施例中,第二获取模块400进一步包括提取单元、求解单元以及验证单元,其中,提取单元配置为用于提取所述散点图中的若干目标位置点;求解单元配置为根据若干目标位置点的坐标,求解n次函数,其中n为不包括0的自然数,以得到拟合函数;验证单元配置为用于验证所述拟合函数是否符合预设要求,若不符合,则调整拟合函数直至符合预设要求,以最终符合预设要求的拟合函数作为能量校正函数。
在其中一个实施例中,所述目标位置点包括所述散点图中的若干走势点,所述若干走势点包括所述散点图中横坐标中不同位置所对应的若干重心点或中心点。
在其中一个实施例中,所述目标位置点包括所述散点图中的所有点。
在其中一个实施例中,验证单元进一步配置为:根据散点图中各位置点对应的待校正能量值与标准能量值,确定所述拟合函数的误差量;若所述误差量超出允许范围,则根据目标位置点的坐标继续求解n+1次函数,以得到新的拟合函数,依此类推,直至拟合函数的误差量位于允许范围内。
在其中一个实施例中,为实现根据散点图中各位置点对应的待校正能量值与标准能量值,确定所述拟合函数的误差量,验证单元进一步配置为:通过拟合函数对散点图中各位置点的待校正能量值进行校正,得到校正值;比对各位置点所对应的校正值与标准能量值;根据比对结果确定所述拟合函数的误差量。
上述能量校正装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种探测设备,该探测设备可以包括用来实现本申请前述实施例中所描述的能量校正装置的任意部件。例如,探测设备可以用过硬件、软件程序、固件或其组合实现。
在一个实施例中,提供了一种电子设备,包括存储器和处理器,存储器存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
图11为本申请一实施例提供的电子设备的结构示意图,该电子设备可以是服务器,其 内部结构图可以如图11所示。该电子设备包括通过***总线连接的处理器、存储器和网络接口。其中,该电子设备的处理器用于提供计算和控制能力。该电子设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作***、计算机程序和数据库。该内存储器为非易失性存储介质中的操作***和计算机程序的运行提供环境。该电子设备的数据库用于存储能量校正方法涉及到的各类数据。该电子设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种能量校正方法。
本领域技术人员可以理解,图11中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的电子设备的限定,具体的电子设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (27)

  1. 一种能量校正方法,其特征在于,所述能量校正方法包括:
    同步采集脉冲信号并分别获取各脉冲信号的待校正能量值和标准能量值;
    根据各脉冲信号的所述待校正能量值和所述标准能量值,获取能量校正函数;
    基于所述能量校正函数,对各脉冲信号的所述待校正能量值进行校正。
  2. 根据权利要求1所述的能量校正方法,其特征在于,所述同步采集脉冲信号并分别获取各脉冲信号的待校正能量值和标准能量值的步骤包括:
    控制第一采集设备和第二采集设备对脉冲信号进行同步采集;
    获取所述第一采集设备采集到的各脉冲信号的能量值,以得到待校正能量值,获取所述第二采集设备采集到的各脉冲信号的能量值,以得到标准能量值。
  3. 根据权利要求2所述的能量校正方法,其特征在于,所述控制第一采集设备和第二采集设备对脉冲信号进行同步采集的步骤包括:
    当所述第一采集设备对当前的脉冲信号采集完毕时,输出触发信号至所述第二采集设备,以指示所述第二采集设备保留当前采集到的脉冲信号。
  4. 根据权利要求2所述的能量校正方法,其特征在于,所述控制第一采集设备和第二采集设备对脉冲信号进行同步采集的步骤包括:
    获取对应于所述第一采集设备的采样阈值;
    根据所述采样阈值设定比较阈值;
    当所述脉冲信号的目标参数值大于所述比较阈值,则输出所述脉冲信号至所述第一采集设备和所述第二采集设备,并输出触发信号至所述第二采集设备,以指示所述第二采集设备保留当前采集到的脉冲信号。
  5. 根据权利要求4所述的能量校正方法,其特征在于,所述比较阈值大于所述采样阈值。
  6. 根据权利要求4所述的能量校正方法,其特征在于,所述第一采集设备包括MVT采集设备,所述采样阈值为所述MVT采集设备的最高采样阈值。
  7. 根据权利要求2-6中任一项所述的能量校正方法,其特征在于,所述第二采集设备包括示波器。
  8. 根据权利要求1所述的能量校正方法,其特征在于,所述根据各脉冲信号的所述待校正能量值和所述标准能量值,获取能量校正函数的步骤包括:
    根据各脉冲信号的待校正能量值和标准能量值,获取所述待校正能量值关于所述标准能 量值的散点图;
    根据所述散点图中各个位置点的分布规律,获取能量校正函数。
  9. 根据权利要求8所述的能量校正方法,其特征在于,所述根据所述散点图中各个位置点的分布规律,获取能量校正函数的步骤包括:
    提取所述散点图中的若干目标位置点;
    根据若干目标位置点的坐标,求解n次函数,其中n为不包括0的自然数,以得到拟合函数;
    验证所述拟合函数是否符合预设要求,若不符合,则调整n次函数为n+1次函数,直至得到的拟合函数符合预设要求,以最终符合预设要求的拟合函数作为能量校正函数。
  10. 根据权利要求9所述的能量校正方法,其特征在于,所述目标位置点包括所述散点图中的若干走势点,所述若干走势点包括所述散点图中横坐标中不同位置所对应的若干重心点或中心点。
  11. 根据权利要求9所述的能量校正方法,其特征在于,所述目标位置点包括所述散点图中的所有点。
  12. 根据权利要求9所述的能量校正方法,其特征在于,所述验证所述拟合函数是否符合预设要求,若不符合,则调整n次函数为n+1次函数,直至得到的拟合函数符合预设要求,以最终符合预设要求的拟合函数作为能量校正函数的步骤包括:
    根据散点图中各位置点对应的待校正能量值与标准能量值,确定所述拟合函数的误差量;
    若所述误差量超出允许范围,则根据目标位置点的坐标继续求解n+1次函数,以得到新的拟合函数,依此类推,直至拟合函数的误差量位于允许范围内。
  13. 根据权利要求12所述的能量校正方法,其特征在于,所述根据散点图中各位置点对应的待校正能量值与标准能量值,确定所述拟合函数的误差量的步骤包括:
    通过拟合函数对散点图中各位置点的待校正能量值进行校正,得到校正值;
    比对各位置点所对应的校正值与标准能量值;
    根据比对结果确定所述拟合函数的误差量。
  14. 一种能量校正装置,其特征在于,所述能量校正装置包括:
    第一获取模块,配置为用于同步采集脉冲信号并分别获取各脉冲信号的待校正能量值和标准能量值;
    第二获取模块,用于根据各脉冲信号的所述待校正能量值和所述标准能量值,获取能量 校正函数;
    校正模块,用于基于所述能量校正函数,对各脉冲信号的所述待校正能量值进行校正。
  15. 根据权利要求14所述的能量校正装置,其特征在于,为实现同步采集脉冲信号并分别获取各脉冲信号的待校正能量值和标准能量值,所述第一获取模块进一步配置为用于:
    控制第一采集设备和第二采集设备对脉冲信号进行同步采集;
    获取所述第一采集设备采集到的各脉冲信号的能量值,以得到待校正能量值,获取所述第二采集设备采集到的各脉冲信号的能量值,以得到标准能量值。
  16. 根据权利要求15所述的能量校正装置,其特征在于,所述第一采集设备配置为对当前的脉冲信号采集完毕时,输出触发信号至所述第二采集设备,以指示所述第二采集设备保留当前采集到的脉冲信号。
  17. 根据权利要求15所述的能量校正装置,其特征在于,所述能量校正装置还包括比较单元,所述比较单元配置为用于获取对应于所述第一采集设备的采样阈值并根据所述采样阈值设定比较阈值;当所述脉冲信号的目标参数值大于所述比较阈值,则输出所述脉冲信号至所述第一采集设备和所述第二采集设备,并输出触发信号至所述第二采集设备,以指示所述第二采集设备保留当前采集到的脉冲信号。
  18. 根据权利要求17所述的能量校正装置,其特征在于,所述比较阈值大于所述采样阈值。
  19. 根据权利要求17所述的能量校正装置,其特征在于,所述第一采集设备包括MVT采集设备,所述采样阈值为所述MVT采集设备的最高采样阈值。
  20. 根据权利要求15-19中任一项所述的能量校正装置,其特征在于,所述第二采集设备包括示波器。
  21. 根据权利要求14所述的能量校正装置,其特征在于,为实现根据各脉冲信号的所述待校正能量值和所述标准能量值,获取能量校正函数,所述第二获取模块配置为用于:
    根据各脉冲信号的待校正能量值和标准能量值,获取所述待校正能量值关于所述标准能量值的散点图;
    根据所述散点图中各个位置点的分布规律,获取能量校正函数。
  22. 根据权利要求21所述的能量校正装置,其特征在于,所述第二获取模块进一步包括:
    提取单元,配置为用于提取所述散点图中的若干目标位置点;
    求解单元,配置为根据若干目标位置点的坐标,求解n次函数,其中n为不包括0的自 然数,以得到拟合函数;
    验证单元,配置为用于验证所述拟合函数是否符合预设要求,若不符合,则调整n次函数为n+1次函数,直至得到的拟合函数符合预设要求,以最终符合预设要求的拟合函数作为能量校正函数。
  23. 根据权利要求22所述的能量校正装置,其特征在于,所述验证单元进一步配置为:
    根据散点图中各位置点对应的待校正能量值与标准能量值,确定所述拟合函数的误差量;
    若所述误差量超出允许范围,则根据目标位置点的坐标继续求解n+1次函数,以得到新的拟合函数,依此类推,直至拟合函数的误差量位于允许范围内。
  24. 根据权利要求23所述的能量校正装置,其特征在于,为实现根据散点图中各位置点对应的待校正能量值与标准能量值,确定所述拟合函数的误差量,所述验证单元进一步配置为:
    通过拟合函数对散点图中各位置点的待校正能量值进行校正,得到校正值;
    比对各位置点所对应的校正值与标准能量值;
    根据比对结果确定所述拟合函数的误差量。
  25. 一种电子设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至13中任一项所述的能量校正方法的步骤。
  26. 一种探测设备,其特征在于,包括:如权利要求14-24中任一项所述的能量校正装置。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至13中任一项所述的能量校正方法的步骤。
PCT/CN2023/135149 2022-12-17 2023-11-29 能量校正方法、装置、电子设备、探测设备及存储介质 WO2024125305A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211628341.4A CN115951392A (zh) 2022-12-17 2022-12-17 能量校正方法、装置、电子设备、探测设备及存储介质
CN202211628341.4 2022-12-17

Publications (1)

Publication Number Publication Date
WO2024125305A1 true WO2024125305A1 (zh) 2024-06-20

Family

ID=87285401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/135149 WO2024125305A1 (zh) 2022-12-17 2023-11-29 能量校正方法、装置、电子设备、探测设备及存储介质

Country Status (2)

Country Link
CN (1) CN115951392A (zh)
WO (1) WO2024125305A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115951392A (zh) * 2022-12-17 2023-04-11 苏州瑞派宁科技有限公司 能量校正方法、装置、电子设备、探测设备及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035122A (zh) * 2014-05-22 2014-09-10 沈阳东软医疗***有限公司 一种能量值的校正方法及装置
CN104337531A (zh) * 2013-07-25 2015-02-11 苏州瑞派宁科技有限公司 针对全数字pet***的在线能量符合方法及***
CN104382611A (zh) * 2014-11-13 2015-03-04 沈阳东软医疗***有限公司 光电倍增管输出能量的校正方法和装置
CN105030263A (zh) * 2015-07-22 2015-11-11 武汉数字派特科技有限公司 一种数字pet的能量反馈校正方法及***
CN105115994A (zh) * 2015-07-22 2015-12-02 武汉数字派特科技有限公司 一种数字pet能量参数化校正方法及***
CN105824817A (zh) * 2015-01-05 2016-08-03 苏州瑞派宁科技有限公司 一种闪烁脉冲的数字化方法
CN108288371A (zh) * 2017-12-15 2018-07-17 广州智光自动化有限公司 基于总线时分复用的电能量同步采样***
US20180321391A1 (en) * 2015-11-05 2018-11-08 Raycan Technology Co., Ltd. (Su Zhou) Method and system for real-time processing of pulse pile-up event
CN110811659A (zh) * 2019-10-17 2020-02-21 湖北锐世数字医学影像科技有限公司 时间数据处理方法、装置及***
CN115951392A (zh) * 2022-12-17 2023-04-11 苏州瑞派宁科技有限公司 能量校正方法、装置、电子设备、探测设备及存储介质

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104337531A (zh) * 2013-07-25 2015-02-11 苏州瑞派宁科技有限公司 针对全数字pet***的在线能量符合方法及***
US20160324498A1 (en) * 2013-07-25 2016-11-10 Raycan Technology Co., Ltd. (Su Zhou) On-line energy coincidence method and system for all-digital pet system
CN104035122A (zh) * 2014-05-22 2014-09-10 沈阳东软医疗***有限公司 一种能量值的校正方法及装置
CN104382611A (zh) * 2014-11-13 2015-03-04 沈阳东软医疗***有限公司 光电倍增管输出能量的校正方法和装置
CN105824817A (zh) * 2015-01-05 2016-08-03 苏州瑞派宁科技有限公司 一种闪烁脉冲的数字化方法
CN105030263A (zh) * 2015-07-22 2015-11-11 武汉数字派特科技有限公司 一种数字pet的能量反馈校正方法及***
CN105115994A (zh) * 2015-07-22 2015-12-02 武汉数字派特科技有限公司 一种数字pet能量参数化校正方法及***
US20180321391A1 (en) * 2015-11-05 2018-11-08 Raycan Technology Co., Ltd. (Su Zhou) Method and system for real-time processing of pulse pile-up event
CN108288371A (zh) * 2017-12-15 2018-07-17 广州智光自动化有限公司 基于总线时分复用的电能量同步采样***
CN110811659A (zh) * 2019-10-17 2020-02-21 湖北锐世数字医学影像科技有限公司 时间数据处理方法、装置及***
CN115951392A (zh) * 2022-12-17 2023-04-11 苏州瑞派宁科技有限公司 能量校正方法、装置、电子设备、探测设备及存储介质

Also Published As

Publication number Publication date
CN115951392A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2024125305A1 (zh) 能量校正方法、装置、电子设备、探测设备及存储介质
JP6875548B2 (ja) シンチレーションパルスデジタル信号のフィッティング方法
EP3796048B1 (en) Method and device for sampling pulse signal, and computer program medium
CN104977448A (zh) 具有高级触发能力的测试和测量仪器
US20230228803A1 (en) Machine learning model training using de-noised data and model prediction with noise correction
CN106201857B (zh) 测试用例的选取方法及装置
CN104700900B (zh) 一种存储器单粒子翻转效应的检测***及方法
CN111553111B (zh) 一种基于mcnp的数字仿核信号发生器
CN116203613A (zh) 闪烁脉冲的处理方法、装置、数字化设备及存储介质
Boghrati et al. On gamma-ray spectrometry pulses real time digital shaping and processing
Anker et al. A novel trigger based on neural networks for radio neutrino detectors
Faisal et al. A data processing system for real-time pulse processing and timing enhancement for nuclear particle detection systems
CN115980815A (zh) 闪烁脉冲的能量获取方法、装置、电子设备及存储介质
CN107807885A (zh) 任务信息显示方法及装置
Darby et al. Examination of Digital-Delay Rossi-$\alpha $ for 252Cf-Driven Highly Enriched Uranium Using Organic Scintillators
CN108616315B (zh) 功放输出功率检测方法、装置、计算机设备及存储介质
Reva et al. Computer methods of recognition and analysis of X-ray and gamma radiation parameters
Lingenfelter et al. Asymptotic source detection performance of gamma-ray imaging systems under model mismatch
Matej Digitalization of spectometric system for mixed field of fast neutrons and gamma radiation
Chernov et al. Shape-based event pileup separation in Troitsk nu-mass experiment
CN111309093B (zh) 一种理想波形模型的建立方法、装置、设备及存储介质
Garzón-Camacho et al. A fast readout electronic system for accurate spatial detection in ion beam tracking for the next generation of particle accelerators
Fang et al. Timing performance of organic scintillators for positron annihilation lifetime spectroscopy
Weiner et al. Estimating significance in observations of variable and transient gamma-ray sources
Ofodile et al. Modelling the recovery of pulse peak pileup for implementation in an FPGA for a nuclear spectroscopy system