WO2024124586A1 - 电池单体、电池、用电设备及电池单体的制造方法 - Google Patents

电池单体、电池、用电设备及电池单体的制造方法 Download PDF

Info

Publication number
WO2024124586A1
WO2024124586A1 PCT/CN2022/139795 CN2022139795W WO2024124586A1 WO 2024124586 A1 WO2024124586 A1 WO 2024124586A1 CN 2022139795 W CN2022139795 W CN 2022139795W WO 2024124586 A1 WO2024124586 A1 WO 2024124586A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
segment
electrode
connecting section
cell according
Prior art date
Application number
PCT/CN2022/139795
Other languages
English (en)
French (fr)
Inventor
林传冬
林江
欧富明
王伟伟
薛飞
龚友来
王建磊
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/139795 priority Critical patent/WO2024124586A1/zh
Publication of WO2024124586A1 publication Critical patent/WO2024124586A1/zh

Links

Images

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery cell, a battery, an electrical device, and a method for manufacturing the battery cell.
  • the purpose of the present application is to provide a battery cell, a battery, an electrical device and a method for manufacturing the battery cell.
  • the battery cell has a high assembly efficiency.
  • the present application provides a battery cell, including an electrode assembly and an electrode lead-out piece, the electrode assembly including a body and a tab; the electrode lead-out piece is used to lead out the electrical energy of the electrode assembly, and the electrode lead-out piece includes a first part; wherein the tab includes a first connecting segment and a second connecting segment connected in sequence, the first connecting segment is connected to the body, the second connecting segment is bent relative to the first connecting segment, and at least one of the first connecting segment and the second connecting segment is connected to the first part.
  • the second connecting section is bent relative to the first connecting section, which can reduce the risk of interference between the pole ear and other components and improve assembly efficiency; on the other hand, it can reduce the risk of short circuit between the positive and negative poles of the battery cell 20, so that the battery cell has higher reliability.
  • the first connecting segment is connected to the first part, and the second connecting segment is located on a side of the first connecting segment facing away from the first part.
  • the second connecting section is located on the side of the first connecting section away from the first part, which can reasonably utilize the space on the side of the first connecting section away from the first part and facilitate the assembly of the electrode lead-out member and other components.
  • the second connecting segment is bounded to a side of the first connecting segment facing away from the first portion.
  • the second connecting section is bounded to the side of the first connecting section away from the first portion, reducing the risk of the second connecting section moving and interfering with other components, thereby reducing the impact of the second connecting section on the assembly of the battery cell.
  • the second connecting segment is connected to the first connecting segment.
  • the second connecting section is connected to the first connecting section, and no additional components are needed to constrain the first connecting section, thus reducing costs.
  • the second connecting section can be constrained, and the tab and the electrode lead-out piece can have a higher current capacity.
  • the first connecting segment and the second connecting segment are both electrically connected to the first portion.
  • the first connecting section and the second connecting section are both connected to the first portion, so that the electrode tab and the electrode lead-out piece have a higher current carrying capacity.
  • the first connecting segment and the second connecting segment are stacked.
  • the first connecting section and the second connecting section are stacked to rationally utilize the assembly space and reduce space occupancy.
  • the electrode tab includes a plurality of sub-electrode tabs stacked together, the plurality of sub-electrode tabs are connected to form a first connecting portion, and the first connecting portion is located in the first connecting section.
  • a plurality of sub-tabs are connected to form a first connection portion, which, on the one hand, is conducive to the bending of the second connection section; on the other hand, it is conducive to reducing the damage of the tab during welding with the electrode lead-out piece and improving the current carrying capacity of the tab.
  • the pole ear includes an overlapping area in which a plurality of sub-pole ears overlap each other and a staggered area in which the ends of the plurality of sub-pole ears are staggered with each other, the staggered area is connected to the body through the overlapping area, a part of the first connecting portion is located in the overlapping area, and another part of the first connecting portion is located in the staggered area.
  • a part of the first connecting portion is located in the overlapping area, and the other part of the first connecting portion is located in the staggered area.
  • the connection between the pole ear and the electrode lead-out piece can have a larger current flow capacity.
  • the dimension of the pole ear along its extension direction can be shorter, saving materials and manufacturing costs.
  • the first connection portion includes a first end connected to the main body and a second end connected to the second connection section.
  • the size of the first connection portion is L
  • the size of the portion of the first connection portion located in the staggered zone is L1, satisfying 0.2L ⁇ L1 ⁇ 0.5L.
  • the size of the portion of the first connection portion located in the staggered region meets the above range, which can not only make the connection between the pole tab and the electrode lead-out piece have a larger flow capacity, but also make the size of the pole tab along its extension direction shorter. If L1 is less than 0.2L, the size of the pole tab along its extension direction is longer, and the material is wasted; if L1 is greater than 0.5L, the size of the portion of the first connection portion located in the staggered region is larger, which affects the flow capacity of the connection between the pole tab and the electrode lead-out piece.
  • the first part has a first surface connected to the first connecting segment; the second connecting segment, the first connecting segment and the electrode lead-out member are connected to form a second connecting portion, and along a direction perpendicular to the first surface, a projection of the second connecting portion at least partially overlaps with a projection of the first connecting portion.
  • the projection of the second connecting part at least partially overlaps with the projection of the first connecting part, which facilitates the connection between the second connecting section, the first connecting section and the electrode lead-out piece, reduces the risk of sub-electrode ear rupture, and makes the connection between the electrode ear and the electrode lead-out piece have a higher current capacity.
  • a projection of the second connection portion falls within a projection of the first connection portion.
  • the projection of the second connecting portion falls within the projection of the first connecting portion, which can effectively reduce the risk of cracks or breakage caused by direct welding of the multi-layer sub-tabs.
  • the first connection portion includes a first end connected to the main body and a second end connected to the second connection section.
  • the size of the first connection portion is L
  • the size of the portion of the first connection portion located in the staggered zone is L1
  • the size of the second connection portion is L3, satisfying that L1 ⁇ L3 ⁇ L.
  • the size of the second connecting part meets the above range, and the second connecting part and the first connecting part have a large overlapping area, which facilitates the connection between the second connecting section, the first connecting section and the electrode lead-out member, and reduces the damage to the sub-pole ear during welding of the second connecting section, the first connecting section and the electrode lead-out member.
  • the first connecting portion includes a first end connected to the body and a second end connected to the second connecting segment, and along the direction from the first end to the second end, the midpoint of the second connecting portion coincides with the midpoint of the first connecting portion.
  • the midpoint of the second connecting portion coincides with the midpoint of the first connecting portion, which facilitates the connection between the second connecting section, the first connecting section and the electrode lead-out member.
  • a projection of the second connecting segment covers a projection of the first connecting portion.
  • the projection of the second connecting section covers the projection of the first connecting portion, which facilitates the connection between the second connecting section and the first connecting section.
  • the second connecting segment extends beyond the second connecting portion.
  • the second connecting section exceeds the second connecting portion, which can better fix the second connecting section.
  • the first connecting portion and/or the second connecting portion are formed by ultrasonic welding.
  • the first connecting portion and/or the second connecting portion are formed by ultrasonic welding, so that the respective connecting portions are firmly connected.
  • the battery cell further includes an electrode terminal, and the electrode lead-out member is a transition member connecting the electrode tab and the electrode terminal, or the electrode lead-out member is the electrode terminal.
  • the electrode lead-out piece when the electrode lead-out piece is a adapter connecting the electrode ear and the electrode terminal, it is convenient to transfer the electric energy of the electrode assembly to the electrode terminal; when the electrode lead-out piece is the electrode terminal, the structure is simple and it is convenient to extract the electric energy of the electrode assembly.
  • the electrode assembly is a laminated structure.
  • the electrode tab includes a plurality of sub-electrode tabs stacked together, and the heights of the plurality of sub-electrode tabs are equal.
  • the height of the sub-pole ear is along the extension direction of the pole ear, the sub-pole ear protrudes from the size of the body, and the heights of multiple sub-pole ears are equal, which is convenient for processing and manufacturing.
  • the tab extends from a first end face of the body, the first end face faces the first portion, and the tab further includes a root segment, the root segment connects the first connecting segment and the body, and the first connecting segment is bent relative to the root segment.
  • the first connecting section is connected to the body via the root section, and the first connecting section is bent relative to the root section, which can reasonably utilize the assembly space and improve the energy density of the battery cell.
  • the electrode assembly includes a first electrode assembly and a second electrode assembly, the first electrode assembly and the second electrode assembly are respectively provided with pole ears, the pole ears of the first electrode assembly and the pole ears of the second electrode assembly are connected to an electrode lead-out piece, and the second connecting section of the pole ear of the first electrode assembly and the second connecting section of the pole ear of the second electrode assembly extend in opposite directions.
  • the pole lug of the first electrode assembly and the pole lug of the second electrode assembly are connected to an electrode lead-out piece, so as to facilitate the transmission of current of the battery cell; the second connecting section of the pole lug of the first electrode assembly and the second connecting section of the pole lug of the second electrode assembly extend in opposite directions, so as to reduce the risk of interference between the pole lug of the first electrode assembly and the pole lug of the second electrode assembly.
  • an embodiment of the present application provides a battery, comprising a battery cell as provided in any of the above embodiments.
  • an embodiment of the present application provides an electrical device, including a battery cell as provided in any of the above embodiments or a battery as provided in any of the above embodiments, wherein the battery cell or the battery is used to provide electrical energy.
  • an embodiment of the present application provides a method for manufacturing a battery cell, comprising: gathering a plurality of stacked sub-tabs of an electrode assembly to form a tab, the tab comprising a first connecting segment and a second connecting segment connected in sequence, the first connecting segment being connected to the body of the electrode assembly; bending the second connecting segment relative to the first connecting segment; and connecting at least one of the second connecting segment and the first connecting segment to the first part of the electrode lead-out member.
  • the second connecting section is bent relative to the first connecting section, which can reduce the risk of interference between the pole ear and other components, facilitate the assembly of the battery cell, and improve the assembly efficiency; on the other hand, it can reduce the risk of short circuit between the positive and negative poles of the battery cell.
  • the battery cell manufactured using this manufacturing method has higher reliability.
  • multiple stacked sub-electrode ears of the electrode assembly are gathered, including: connecting the multiple sub-electrode ears to form a first connecting portion; bending the second connecting segment relative to the first connecting segment, including: bending the ear at one end of the first connecting portion away from the main body to form a second connecting segment.
  • multiple sub-electrode ears are connected to form a first connecting portion, so that the multiple sub-electrode ears have a compact structure, which is convenient for gathering the electrical energy of the multiple sub-electrode ears; the electrode ear is bent at one end of the first connecting portion away from the main body, which is convenient for bending the electrode ear.
  • connecting at least one of the second connecting segment and the first connecting segment to the first portion of the electrode lead-out member includes: connecting the second connecting segment, the first connecting portion, and the electrode lead-out member to form a second connecting portion.
  • the second connection section, the first connection part and the electrode lead-out piece are connected to form the second connection part, which can not only constrain the second connection section, but also enable the electrode tab and the electrode lead-out piece to have a higher current carrying capacity.
  • FIG1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
  • FIG2 is an exploded view of a battery provided in some embodiments of the present application.
  • FIG3 is an exploded view of a battery cell provided in some embodiments of the present application.
  • FIG4 is a cross-sectional view of a battery cell provided in some embodiments of the present application.
  • FIG5 is a schematic diagram of the positions of the second connecting section and the first connecting section provided in some embodiments of the present application.
  • FIG6 is a schematic diagram of the positions of the second connecting section and the first connecting section provided in some other embodiments of the present application.
  • FIG7 is a schematic diagram of a second connecting segment being bound to a first connecting segment provided by some embodiments of the present application.
  • FIG8 is a schematic diagram of the structure of a tab provided in some embodiments of the present application.
  • FIG9 is a schematic diagram of a projection of a second connection portion and a projection of a first connection portion provided in some embodiments of the present application;
  • FIG10 is a schematic diagram of sub-electrode tab heights provided in some embodiments of the present application.
  • FIG11 is a cross-sectional view of a battery cell provided in some other embodiments of the present application.
  • FIG12 is a schematic diagram of assembling two electrode assemblies and electrode lead-out members provided in some embodiments of the present application.
  • FIG13 is a schematic flow chart of a method for manufacturing a battery cell provided in some embodiments of the present application.
  • Marking description 100-battery; 10-box; 11-first sub-box; 12-second sub-box; 20-battery cell; 21-housing; 211-housing; 212-cover; 22-electrode assembly; 22a-first electrode assembly; 22b-second electrode assembly; 221-body; 2211-first end surface; 222-ear; 2221-first connecting section; 2222-second connecting section; 2223-sub-ear; 2224-overlapping area; 2225-staggered area; 2226-first bending section; 2227-root section; 2228-second bending section; 23-electrode lead-out member; 231-first portion; 2311-first surface; 2312-second surface; 24-first connecting portion; 241-first end; 242-second end; 25-second connecting portion; 26-electrode terminal; 200-controller; 300-motor; 1000-vehicle.
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups)
  • multiple sheets refers to more than two sheets (including two sheets).
  • the battery mentioned in the embodiments of the present application may include one or more battery cells to provide a single physical module with higher voltage and capacity.
  • the multiple battery cells are connected in series, in parallel or in mixed connection through electrical connectors.
  • the battery may be a battery module.
  • the multiple battery cells are arranged and fixed to form a battery module.
  • the battery may be a battery pack, which includes a case and battery cells, wherein the battery cells or battery modules are accommodated in the case.
  • the box body can be used as a part of the chassis structure of the vehicle.
  • part of the box body can become at least a part of the floor of the vehicle, or part of the box body can become at least a part of the cross beam and longitudinal beam of the vehicle.
  • the battery may be an energy storage device, which includes an energy storage container, an energy storage cabinet, etc.
  • the battery cell may be a secondary battery.
  • a secondary battery refers to a battery cell that can be continuously used by activating active materials by charging after the battery cell is discharged.
  • the battery cell can be a lithium ion battery, a sodium ion battery, a sodium lithium ion battery, a lithium metal battery, a sodium metal battery, a lithium sulfur battery, a magnesium ion battery, a nickel hydrogen battery, a nickel cadmium battery, a lead storage battery, etc., which is not limited in the embodiments of the present application.
  • a battery cell generally includes an electrode assembly.
  • the electrode assembly includes a positive electrode, a negative electrode, and a separator.
  • active ions such as lithium ions
  • the separator is set between the positive electrode and the negative electrode to prevent the positive and negative electrodes from short-circuiting, while allowing active ions to pass through.
  • the positive electrode may be a positive electrode sheet, and the positive electrode sheet may include a positive electrode current collector and a positive electrode active material disposed on at least one surface of the positive electrode current collector.
  • the positive electrode current collector has two surfaces facing each other in its thickness direction, and the positive electrode active material is disposed on either or both of the two facing surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil or a composite current collector.
  • the metal foil aluminum or stainless steel, stainless steel, copper, aluminum, nickel, carbon electrode, carbon, nickel or titanium, etc., treated with silver surface, may be used.
  • the composite current collector may include a polymer material base and a metal layer.
  • the composite current collector may be formed by forming a metal material (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy, etc.) on a polymer material substrate (such as a substrate of polypropylene, polyethylene terephthalate, polybutylene terephthalate, polystyrene, polyethylene, etc.).
  • the positive electrode active material may include at least one of the following materials: lithium-containing phosphates, lithium transition metal oxides, and their respective modified compounds.
  • the present application is not limited to these materials, and other conventional materials that can be used as positive electrode active materials for batteries may also be used.
  • the negative electrode may be a negative electrode sheet, and the negative electrode sheet may include a negative electrode current collector.
  • the negative electrode current collector may be a metal foil or a composite current collector.
  • the metal foil aluminum or stainless steel treated with silver, stainless steel, copper, aluminum, nickel, carbon electrode, carbon, nickel or titanium, etc. may be used.
  • the negative electrode current collector has two surfaces opposite to each other in its thickness direction, and the negative electrode active material is disposed on any one or both of the two opposite surfaces of the negative electrode current collector.
  • the negative electrode active material may adopt the negative electrode active material for the battery known in the art.
  • the negative electrode active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials and lithium titanate, etc.
  • the silicon-based material may be selected from at least one of elemental silicon, silicon oxide compounds, silicon-carbon composites, silicon-nitrogen composites and silicon alloys.
  • the tin-based material may be selected from at least one of elemental tin, tin oxide compounds and tin alloys.
  • the present application is not limited to these materials, and other traditional materials that can be used as negative electrode active materials for batteries may also be used. These negative electrode active materials may be used alone or in combination of two or more.
  • the separator is a separator.
  • the present application has no particular limitation on the type of separator, and any known separator with a porous structure having good chemical stability and mechanical stability can be selected.
  • the main material of the separator can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene, polyvinylidene fluoride, and ceramic.
  • the separator can be a single-layer film or a multi-layer composite film, without special restrictions. When the separator is a multi-layer composite film, the materials of each layer can be the same or different, without special restrictions.
  • the separator can be a separate component located between the positive and negative electrodes, or it can be attached to the surface of the positive and negative electrodes.
  • the separator is a solid electrolyte, which is disposed between the positive electrode and the negative electrode and serves to transmit ions and isolate the positive and negative electrodes.
  • the electrode assembly is a wound structure, wherein the positive electrode sheet and the negative electrode sheet are wound into the wound structure.
  • the electrode assembly is a laminate structure.
  • the battery cell may include a housing.
  • the housing is used to encapsulate components such as the electrode assembly and the electrolyte.
  • the housing may be a steel housing, an aluminum housing, a plastic housing (such as polypropylene), a composite metal housing (such as a copper-aluminum composite housing), or an aluminum-plastic film.
  • the housing includes an end cap and a shell, the shell is provided with an opening, and the end cap closes the opening to form a closed space for accommodating substances such as the electrode assembly and the electrolyte.
  • the shell may be provided with one or more openings.
  • One or more end caps may also be provided.
  • At least one electrode terminal is disposed on the housing, and the electrode terminal is electrically connected to the electrode tab of the electrode assembly.
  • the electrode terminal may be directly connected to the electrode tab, or may be indirectly connected to the electrode tab through an adapter.
  • the electrode terminal may be disposed on the end cap, or may be disposed on the housing.
  • an explosion-proof valve is provided on the housing, and the explosion-proof valve is used to release the internal pressure of the battery cell.
  • the battery cell may be a cylindrical battery cell, a prismatic battery cell, a soft-pack battery cell or a battery cell of other shapes
  • the prismatic battery cell includes a square-shell battery cell, a blade-shaped battery cell, a multi-prismatic battery, and the multi-prismatic battery is, for example, a hexagonal battery, etc., and there is no particular limitation in the embodiment of the present application.
  • the embodiment of the present application takes a square-shell battery cell as an example.
  • the electrode assembly includes a body and a tab, and the tab extends from the end of the body.
  • the tab in order to facilitate the connection between the tab and the electrode lead-out piece, the tab protrudes from the body larger along the extension direction of the tab, that is, the height of the tab is higher.
  • the tab After the tab is connected to the electrode assembly, the tab has a redundant part. During the assembly process of the battery cell, the redundant part of the tab is easy to interfere with other parts (such as the outer shell, the body, etc.), affecting the assembly efficiency of the battery cell.
  • the inventor designed a technical solution after in-depth research, bending the end of the pole ear away from the body, thereby reducing the impact of the pole ear on the assembly of the battery cell and improving the assembly efficiency.
  • the battery disclosed in the embodiment of the present application can be used in, but not limited to, electrical equipment such as vehicles, ships or aircraft.
  • the power supply system of the electrical equipment can be composed of the battery cells and batteries disclosed in the present application.
  • the embodiment of the present application provides an electric device using a battery as a power source
  • the electric device may be, but is not limited to, a mobile phone, a tablet computer, a laptop computer, an electric toy, an electric tool, an electric bicycle, an electric motorcycle, an electric car, a ship, a spacecraft, etc.
  • the electric toy may include a fixed or mobile electric toy, for example, a game console, an electric car toy, an electric ship toy, an electric airplane toy, etc.
  • the spacecraft may include an airplane, a rocket, a space shuttle, a spacecraft, etc.
  • Vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 100 is arranged inside the vehicle 1000, and the battery 100 can be arranged at the bottom, head or tail of the vehicle 1000.
  • the battery 100 can be used to power the vehicle 1000.
  • the battery 100 can be used as an operating power source for the vehicle 1000, for the circuit system of the vehicle 1000, such as for the working power requirements during the startup, navigation and operation of the vehicle 1000.
  • the vehicle 1000 may further include a controller 200 and a motor 300 , wherein the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, to meet the power requirements of starting, navigating, and driving the vehicle 1000 .
  • the battery 100 can not only serve as an operating power source for the vehicle 1000, but also serve as a driving power source for the vehicle 1000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000.
  • FIG. 2 is an exploded view of a battery provided in some embodiments of the present application.
  • the battery 100 includes a box 10 and a battery cell 20, and the battery cell 20 is contained in the box 10.
  • the box 10 is used to provide a storage space for the battery cell 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first sub-box 11 and a second sub-box 12, and the first sub-box 11 and the second sub-box 12 cover each other, and the first sub-box 11 and the second sub-box 12 jointly define a storage space for accommodating the battery cell 20.
  • the second sub-box 12 can be a hollow structure with one end open, and the first sub-box 11 can be a plate-like structure.
  • the first sub-box 11 covers the open side of the second sub-box 12, so that the first sub-box 11 and the second sub-box 12 jointly define a storage space; the first sub-box 11 and the second sub-box 12 can also be hollow structures with one side open, and the open side of the first sub-box 11 covers the open side of the second sub-box 12.
  • the battery 100 there may be multiple battery cells 20, and the multiple battery cells 20 may be connected in series, in parallel, or in a mixed connection.
  • a mixed connection means that the multiple battery cells 20 are both connected in series and in parallel.
  • the multiple battery cells 20 may be directly connected in series, in parallel, or in a mixed connection, and then the whole formed by the multiple battery cells 20 is accommodated in the box 10; of course, the battery 100 may also be a battery module formed by connecting multiple battery cells 20 in series, in parallel, or in a mixed connection, and then the multiple battery modules are connected in series, in parallel, or in a mixed connection to form a whole, and accommodated in the box 10.
  • the battery 100 may also include other structures, for example, the battery 100 may also include a busbar component for realizing electrical connection between the multiple battery cells 20.
  • FIG. 3 is an exploded view of a battery cell provided in some embodiments of the present application.
  • a battery cell 20 includes a housing 21, an electrode assembly 22, and other functional components.
  • the housing 21 includes a shell 211 and a cover 212, wherein the shell 211 has an opening, and the cover 212 closes the opening to isolate the internal environment of the battery cell 20 from the external environment.
  • the shell 211 is a component used to cooperate with the cover 212 to form the internal environment of the battery cell 20, wherein the formed internal environment can be used to accommodate the electrode assembly 22, the electrolyte and other components.
  • the shell 211 and the cover 212 can be independent components.
  • the shell 211 can be of various shapes and sizes. Specifically, the shape of the shell 211 can be determined according to the specific shape and size of the electrode assembly 22.
  • the material of the shell 211 can be various, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., and the embodiment of the present application does not impose any special restrictions on this.
  • the embodiment of the present application takes the shell 211 as a rectangular parallelepiped as an example.
  • the cover 212 refers to a component that covers the opening of the shell 211 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the cover 212 can be adapted to the shape of the shell 211 to match the shell 211.
  • the cover 212 can be made of a material with a certain hardness and strength (such as aluminum alloy), so that the cover 212 is not easily deformed when squeezed and collided, so that the battery cell 20 can have a higher structural strength and the safety performance can also be improved.
  • Functional components such as electrode terminals 26 can be provided on the cover 212. The electrode terminal 26 can be used to electrically connect to the electrode assembly 22 for outputting or inputting electrical energy of the battery cell 20.
  • the material of the cover 212 can also be a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., and the embodiment of the present application does not impose special restrictions on this.
  • an insulating structure can also be provided on the inner side of the cover 212, and the insulating structure can be used to isolate the electrical connection components in the shell 211 from the cover 212 to reduce the risk of short circuit.
  • the insulating structure may be plastic, rubber, or the like.
  • the parts of the positive electrode sheet and the negative electrode sheet with active materials constitute the body 221 of the electrode assembly 22, and the parts of the positive electrode sheet and the negative electrode sheet without active materials each constitute a tab 222.
  • the positive electrode tab and the negative electrode tab may be located together at one end of the body or respectively at both ends of the body.
  • FIG. 4 is a cross-sectional view of a battery cell provided in some embodiments of the present application.
  • the present application provides a battery cell 20, which includes an electrode assembly 22 and an electrode lead-out member 23.
  • the electrode assembly 22 includes a body 221 and a tab 222; the electrode lead-out member 23 is used to lead out the electrical energy of the electrode assembly 22, and the electrode lead-out member 23 includes a first portion 231.
  • the tab 222 includes a first connecting segment 2221 and a second connecting segment 2222 connected in sequence, the first connecting segment 2221 is connected to the body 221, the second connecting segment 2222 is bent relative to the first connecting segment 2221, and at least one of the first connecting segment 2221 and the second connecting segment 2222 is connected to the first portion 231.
  • the tab 222 extends from the body 221, and the second connecting section 2222 is located at an end of the tab 222 away from the body 221.
  • the end of the tab 222 connected to the body 221 may be the head end of the tab 222
  • the end of the tab 222 away from the body 221 may be the end of the tab 222
  • the second connecting section 2222 may be located at the end relative to the first connecting section 2221.
  • the direction indicated by the letter U is the extending direction of the tab 222 .
  • the first portion 231 is a portion of the electrode lead-out member 23 used for connecting to the electrode tab 222 .
  • the first portion 231 is electrically connected to the electrode tab 222 to guide the electrical energy of the electrode assembly 22 to the electrode lead-out member 23 .
  • the electrode lead-out member 23 is used to guide the electric energy of the electrode assembly 22 to the outside of the battery cell 20 .
  • At least one of the first connecting segment 2221 and the second connecting segment 2222 is connected to the first part 231.
  • the first connecting segment 2221 may be connected to the first part 231
  • the second connecting segment 2222 may be connected to the first part 231
  • both the first connecting segment 2221 and the second connecting segment 2222 may be connected to the first part 231.
  • the second connecting segment 2222 is bent relative to the first connecting segment 2221 , that is, the end of the tab 222 is bent relative to the first connecting segment 2221 .
  • the second connecting segment 2222 is bent 180 degrees relative to the first connecting segment 2221 .
  • the second connecting section 2222 is bent relative to the first connecting section 2221, that is, the end of the pole ear 222 is bent.
  • it can reduce the risk of interference between the pole ear 222 and other components (such as the outer shell, the pole ear 222 of another electrode assembly 22, etc.), thereby reducing the influence of the pole ear 222 on the assembly of the electrode cell 20 and improving the assembly efficiency; on the other hand, it can reduce the risk of short circuit between the positive and negative electrodes of the battery cell 20 and improve the reliability of the battery cell.
  • Figure 5 is a schematic diagram of the positions of the second connecting segment and the first connecting segment provided in some embodiments of the present application.
  • the second connecting segment 2222 can be located on the side of the first part 231 that is away from the first connecting segment 2221, that is, the second connecting segment 2222 can be bent relative to the first connecting segment 2221 toward the side of the first part 231 that is away from the first connecting segment 2221.
  • the second connecting section 2222 may be bound to the side of the first portion 231 away from the first connecting section 2221.
  • the second connecting section 2222 may be connected to the first portion 231, or the second connecting section 2222 and the first connecting section 2221 may be respectively connected to opposite sides of the first portion 231.
  • the first portion 231 may have a first surface 2311 facing the body 221 and a second surface 2312 away from the body 221, the second connecting section 2222 may be connected to the second surface 2312, and the first connecting section 2221 may be connected to the first surface 2311.
  • Figure 6 is a schematic diagram of the positions of the second connecting segment and the first connecting segment provided in some other embodiments of the present application.
  • the first connecting segment 2221 is connected to the first portion 231
  • the second connecting segment 2222 is located on a side of the first connecting segment 2221 away from the first portion 231.
  • the first connecting section 2221 is connected to the first portion 231 , and the electrical energy of the electrode assembly 22 is transferred to the first portion 231 via the first connecting section 2221 and is led out via the electrode lead-out member 23 .
  • the second connecting section 2222 is bent toward the side of the first connecting section 2221 facing away from the first portion 231 , so that the second connecting section 2222 is located on the side of the first connecting section 2221 facing away from the first portion 231 .
  • the second connecting section 2222 is located on the side of the first connecting section 2221 away from the first part 231, which can reasonably utilize the space on the side of the first connecting section 2221 away from the first part 231 and facilitate the assembly of the electrode lead-out member 23 with other components.
  • Figure 7 is a schematic diagram of the second connecting segment being bound to the first connecting segment provided in some embodiments of the present application.
  • the second connecting segment 2222 is bound to a side of the first connecting segment 2221 away from the first portion 231.
  • the second connecting section 2222 is restrained to the side of the first connecting section 2221 away from the first part 231.
  • the second connecting section 2222 can be restrained to the side of the first connecting section 2221 away from the first part 231 by a restraining member.
  • the restraining member can be a tape, and the tape restrains the second connecting section 2222 to the side of the first connecting section 2221 away from the first part 231; or, the restraining member can be a component arranged in the outer shell 21 of the battery cell 20, such as an insulating member, a bracket, etc.; or the second connecting section 2222 can be welded to the first connecting section 2221 to restrain the second connecting section 2222.
  • the restraint member may limit the movement of the second connection segment 2222 relative to the electrode lead-out member 23 .
  • the second connecting section 2222 is bounded to the side of the first connecting section 2221 away from the first portion 231 , reducing the risk of the second connecting section 2222 interfering with other components, thereby reducing the impact of the second connecting section 2222 on the assembly of the battery cell 20 .
  • the second connection segment 2222 is connected to the first connection segment 2221.
  • the second connection segment 2222 is connected to the first connection segment 2221, and the second connection segment 2222 is welded to the first connection segment 2221, or the second connection segment 2222 is connected to the first connection segment 2221 through a fixing member (such as tape, conductive adhesive, etc.).
  • the restraining member and the fixing member may be the same component or different components.
  • the second connecting segment 2222 may be connected to the first portion 231 through the first connecting segment 2221 .
  • the second connecting segment 2222 , the first connecting segment 2221 and the first portion 231 are welded together.
  • the second connecting section 2222 is connected to the first connecting section 2221, and no additional components are needed to constrain the first connecting section 2221, which facilitates manufacturing and reduces costs.
  • the second connecting section 2222 can be electrically connected to the first connecting section 2221.
  • the second connecting section 2222 is connected to the first connecting section 2221 , which can not only realize the constraint on the second connecting section 2222 , but also enable the electrode tab 222 and the electrode lead-out member 23 to have a higher current carrying capacity.
  • the first connecting segment 2221 and the second connecting segment 2222 are both electrically connected to the first portion 231 .
  • the first connecting segment 2221 and the second connecting segment 2222 are both electrically connected to the first part 231.
  • the first connecting segment 2221 and the second connecting segment 2222 are electrically connected to the opposite sides of the first part 231 respectively; or the second connecting segment 2222 is electrically connected to the first part 231 through the first connecting segment 2221.
  • the second connecting segment 2222, the first connecting segment 2221 and the first part 231 are stacked and welded together.
  • the first connecting section 2221 and the second connecting section 2222 are both electrically connected to the first portion 231 , so that the electrode tab 222 and the electrode lead-out member 23 have a higher current carrying capacity.
  • the first connecting segment 2221 and the second connecting segment 2222 are stacked.
  • the first portion 231 may have a first surface 2311 facing the body 221, and the first connecting segment 2221 and the second connecting segment 2222 may be stacked in a direction intersecting the first surface 2311.
  • the first connecting segment 2221 and the second connecting segment 2222 may be stacked in a direction perpendicular to the first surface 2311. That is, the first portion 231, the first connecting segment 2221 and the second connecting segment 2222 may be stacked, for example, the second connecting segment 2222, the first connecting segment 2221 and the first portion 231 may be arranged in parallel.
  • the first connecting section 2221 and the second connecting section 2222 are stacked to rationally utilize the assembly space and reduce space occupancy.
  • the tab 222 includes a plurality of stacked sub-tabs 2223, which are connected to form a first connecting portion 24, and the first connecting portion 24 is located in the first connecting section 2221.
  • Multiple sub-pole ears 2223 are stacked and connected to form a first connecting portion 24. On the one hand, this is beneficial to the bending of the second connecting section 2222; on the other hand, it is beneficial to reduce the damage of the pole ear 222 during the welding process with the electrode lead-out piece 23, thereby improving the current carrying capacity of the pole ear 222.
  • the pole ear 222 includes an overlapping area 2224 in which a plurality of sub-pole ears 2223 overlap each other and a staggered area 2225 in which the ends of the plurality of sub-pole ears 2223 are staggered from each other, and the staggered area 2225 is connected to the main body 221 through the overlapping area 2224, a portion of the first connecting portion 24 is located in the overlapping area 2224, and another portion of the first connecting portion 24 is located in the staggered area 2225.
  • the staggered area 2225 is connected to the body 221 through the overlapping area 2224 , a portion of the first connecting portion 24 is located in the overlapping area 2224 , another portion of the first connecting portion 24 is located in the staggered area 2225 , and the second connecting end is located in the staggered area 2225 .
  • the multiple sub-pole ears 2223 are gathered and connected to form a first connecting portion 24, so that the ends of the multiple sub-pole ears 2223 away from the main body 221 form a staggered area 2225, and the parts of the multiple sub-pole ears 2223 close to the main body 221 form an overlapping area 2224, and the staggered area 2225 is connected to the main body 221 through the overlapping area 2224.
  • a part of the first connection part 24 is located in the overlapping area 2224, and the other part of the first connection part 24 is located in the staggered area 2225.
  • the connection between the pole ear 222 and the electrode lead-out piece 23 can have a larger current flow capacity.
  • the dimension of the pole ear 222 along its extension direction can be shorter, saving materials and manufacturing costs.
  • the electrode lead-out member 23 and the tab 222 are arranged in the Y direction, and the body 221 and the tab 222 are arranged in the X1 direction.
  • the first connecting section 2221 is bent relative to the body 221 so that the electrode lead-out member 23 and the body 221 are arranged in the Y direction, that is, the first end surface 2211 of the body 221 extending from the tab 222 faces the first portion 231 .
  • the first connection portion 24 includes a first end 241 connected to the main body 221 and a second end 242 connected to the second connection section 2222.
  • the size of the first connection portion 24 is L
  • the size of the portion of the first connection portion 24 located in the staggered area 2225 is L1, satisfying 0.2L ⁇ L1 ⁇ 0.5L.
  • the first end 241 is closer to the body 221, and the second end 242 is closer to the second connecting section 2222.
  • the direction indicated by the letter X1 in the figure may be the direction from the first end 241 to the second end 242.
  • a direction (X1 direction) from the first end 241 to the second end 242 may be parallel to the first surface 2311 .
  • L1 may be 0.2L, 0.3L, 0.4L or 0.5L.
  • the size of the portion of the first connecting portion 24 located in the staggered region 2225 satisfies the above range, which can not only make the connection between the pole tab 222 and the electrode lead-out member 23 have a larger flow capacity, but also make the size of the pole tab 222 along its extension direction shorter. If L1 is less than 0.2L, the size of the pole tab 222 along its extension direction is longer, and the material is wasted; if L1 is greater than 0.5L, the size of the portion of the first connecting portion 24 located in the staggered region 2225 is larger, which affects the flow capacity of the connection between the pole tab 222 and the electrode lead-out member 23.
  • connection between the electrode tab 222 and the electrode lead-out member 23 can have a larger current flow capacity, and the dimension of the electrode tab 222 along its extension direction can be shorter.
  • L1 may be 0.3L, 0.31L, 0.32L, 0.33L, 0.34L, 0.35L, 0.36L, 0.37L, 0.38L, 0.39L or 0.4L.
  • the first portion 231 has a first surface 2311 connected to the first connection segment 2221; the second connection segment 2222, the first connection segment 2221 and the electrode lead-out member 23 are connected to form the second connection portion 25, and along the direction perpendicular to the first surface 2311 (Y direction), the projection of the second connection portion 25 at least partially overlaps with the projection of the first connection portion 24.
  • the direction indicated by the letter Y in the figure is a direction perpendicular to the first surface 2311 .
  • the first surface 2311 is a surface of the first portion 231 for connecting with the first connecting section 2221.
  • the first surface 2311 may be disposed facing the body 221.
  • the second connecting section 2222 is connected to the first surface 2311 through the first connecting section 2221 to form a second connecting portion 25 .
  • the projection of the second connection portion 25 may partially overlap with the projection of the first connection portion 24 , and the projection of the second connection portion 25 may completely overlap with the projection of the first connection portion 24 .
  • the first connection portion 24 connects the plurality of sub-electrode tabs 2223 , and the projection of the second connection portion 25 at least partially overlaps with the projection of the first connection portion 24 , so as to facilitate welding of the second connection segment 2222 , the first connection portion 24 and the electrode lead-out member 23 .
  • the second connecting portion 25 does not overlap with the first connecting portion 24 , when the second connecting segment 2222 , the first connecting segment 2221 and the electrode lead-out member 23 are welded, some of the multiple sub-tabs 2223 may be easily damaged, thereby reducing the current flow capacity of the connection between the tab 222 and the electrode lead-out member 23 .
  • the projection of the second connecting part 25 at least partially overlaps with the projection of the first connecting part 24, which facilitates the connection between the second connecting section 2222, the first connecting section 2221 and the electrode lead-out member 23, reduces the risk of rupture of the sub-pole ear 2223, and makes the connection between the pole ear 222 and the electrode lead-out member 23 have a higher current flow capacity.
  • the projection of the second connection portion 25 falls within the projection of the first connection portion 24 .
  • the projection of the second connection portion 25 falls into the projection of the first connection portion 24 , that is, the projection of the second connection portion 25 is less than or equal to the projection of the first connection portion 24 , so that the projection of the second connection portion 25 completely overlaps with the projection of the first connection portion 24 .
  • the second connecting section 2222 is located in the staggered area 2225, a part of the first connecting portion 24 is located in the overlapping area 2224, and the other part of the first connecting portion 24 is located in the staggered area 2225, after the second connecting section 2222 is bent relative to the first connecting section 2221 on the side of the first connecting section 2221 that is away from the first part 231, the second connecting section 2222 is connected to the first connecting section 2221, and the thickness of the second connecting section 2222 and the first connecting section 2221 are compensated in the stacking direction, so that the difference in thickness after the second connecting section 2222 and the first connecting section 2221 overlap is small.
  • the thickness of the connection between the second connecting section 2222, the first connecting section 2221 and the electrode lead-out member 23 mentioned in the embodiment of the present application refers to the size of the second connecting section 2222, the first connecting section 2221 and the electrode lead-out member 23 in the stacking direction after they are stacked.
  • the projection of the second connecting portion 25 falls within the projection of the first connecting portion 24 , which can effectively reduce the risk of cracks or breakage caused by direct welding of the multi-layer sub-electrode tabs 2223 .
  • the first connection portion 24 includes a first end 241 connected to the body 221 and a second end 242 connected to the second connection section 2222.
  • the size of the first connection portion 24 is L
  • the size of the portion of the first connection portion 24 located in the staggered area 2225 is L1
  • the size of the second connection portion 25 is L3, satisfying that L1 ⁇ L3 ⁇ L.
  • the first end 241 and the second end 242 are two opposite ends of the first connecting portion 24 along the extending direction of the pole ear 222 .
  • the first end 241 is used to connect to the body 221
  • the second end 242 is used to connect to the second connecting section 2222 .
  • the size L3 of the second connection portion 25 is smaller than the size L of the first connection portion 24
  • the size L3 of the second connection portion 25 is larger than the size L1 of the portion of the first connection portion 24 located in the staggered area 2225 .
  • the size of the second connecting portion 25 satisfies the above range, and the second connecting portion 25 and the first connecting portion 24 have a large overlapping area, which facilitates the connection between the second connecting segment 2222, the first connecting segment 2221 and the electrode lead-out member 23, and reduces the damage to the sub-pole ear 2223 during welding of the second connecting segment 2222, the first connecting segment 2221 and the electrode lead-out member 23.
  • the first connecting portion 24 includes a first end 241 connected to the main body 221 and a second end 242 connected to the second connecting segment 2222.
  • the midpoint of the second connecting portion 25 coincides with the midpoint of the first connecting portion 24.
  • the distances from the midpoint of the second connection portion 25 to both ends of the second connection portion 25 are equal, and the distances from the midpoint of the first connection portion 24 to both ends of the first connection portion 24 are equal.
  • the midpoint of the second connection portion 25 coincides with the midpoint of the first connection portion 24 , which facilitates the connection between the second connection segment 2222 , the first connection segment 2221 and the electrode lead-out member 23 .
  • a projection of the second connecting segment 2222 covers a projection of the first connecting portion 24 .
  • the projection of the second connecting section 2222 covers the projection of the first connecting portion 24 , which facilitates the connection between the second connecting section 2222 and the first connecting section 2221 .
  • the second connecting segment 2222 exceeds the second connecting portion 25 .
  • the free end of the second connecting segment 2222 may be an end of the second connecting segment 2222 away from the first connecting segment 2221.
  • the second connecting segment 2222 is located on a side of the first connecting segment 2221 away from the first portion 231 and the second connecting segment 2222 is connected to the first connecting segment 2221, along the direction from the second end 242 to the first end 241 (the X2 direction), one end of the second connecting segment 2222 is connected to the first connecting segment 2221, and the other end of the second connecting segment 2222 is a free end.
  • the second connecting section 2222 exceeds the second connecting portion 25 , which means that, along the direction from the second end 242 to the first end 241 , an end of the second connecting section 2222 away from the first connecting section 2221 exceeds the second connecting portion 25 .
  • the tab 222 may further include a first bending section 2226 , the first connecting section 2221 and the second connecting section 2222 are connected via the first bending section 2226 , and the end of the second connecting section 2222 away from the first connecting section 2221 may be the end of the second connecting section 2222 away from the first bending section 2226 .
  • the second connecting section 2222 extends beyond the second connecting portion 25 , so that the second connecting section 2222 can be better fixed.
  • the first connection portion 24 and/or the second connection portion 25 are formed by ultrasonic welding.
  • the first connection portion 24 and/or the second connection portion 25 are formed by ultrasonic welding, so that the respective connection points are firmly connected.
  • the battery cell 20 further includes an electrode terminal 26
  • the electrode lead-out member 23 is a transition piece connecting the electrode tab 222 and the electrode terminal 26 , or the electrode lead-out member 23 is the electrode terminal 26 .
  • the electrode lead-out piece 23 is a connecting piece connecting the electrode ear 222 and the electrode terminal 26, it is convenient to transfer the electric energy of the electrode assembly 22 to the electrode terminal 26; when the electrode lead-out piece 23 is the electrode terminal 26, the structure is simple and it is convenient to lead out the electric energy of the electrode assembly 22.
  • the electrode lead-out member 23 When the electrode lead-out member 23 is a transition member, the electrode lead-out member 23 further includes a second portion (not shown in the figure), which is used to connect the electrode terminal 26.
  • the second portion can be bent relative to the first portion 231 to facilitate connection with the electrode terminal 26.
  • the electrode assembly 22 is a laminated structure.
  • the electrode assembly 22 is a laminated structure, in which the positive electrode sheet, the separator and the negative electrode sheet are stacked.
  • the tab 222 includes a plurality of sub-tabs 2223 that are stacked, and the heights of the plurality of sub-tabs 2223 are equal.
  • FIG. 10 is a schematic diagram of the height of a sub-electrode ear provided in some embodiments of the present application.
  • the size indicated by the letter Z is the height of a sub-electrode ear 2223 .
  • the height of the sub-pole lug 2223 is the size of the sub-pole lug 2223 protruding from the main body 221 along the extension direction of the pole lug 222 when the pole lug 222 is in the unfolded (unbent) state.
  • the heights of multiple sub-pole lugs 2223 are equal, which is convenient for processing and manufacturing.
  • the pole ear 222 extends from the first end surface 2211 of the main body 221, and the first end surface 2211 faces the first portion 231.
  • the pole ear 222 also includes a root segment 2227, and the root segment 2227 connects the first connecting segment 2221 and the main body 221.
  • the first connecting segment 2221 is bent relative to the root segment 2227.
  • the first end surface 2211 is a surface of the body 221 close to the first portion 231 , and the tab 222 extends from the first end surface 2211 .
  • the pole tab 222 may further include a second bending segment 2228 , and the second bending segment 2228 connects the root segment 2227 and the first connecting segment 2221 .
  • the first connection segment 2221 may be connected to the first portion 231
  • the second connection segment 2222 may be located on a side of the first connection segment 2221 away from the first portion 231
  • the second connection segment 2222 , the first connection segment 2221 and the electrode lead-out member 23 are connected.
  • the first connecting segment 2221 is connected to the body 221 via the root segment 2227 , and the first connecting segment 2221 is bent relative to the root segment 2227 , which can reasonably utilize the assembly space and improve the energy density of the battery cell 20 .
  • Figure 11 is a cross-sectional view of a battery cell provided in some other embodiments of the present application
  • Figure 12 is a schematic diagram of the assembly of two electrode assemblies and electrode lead-out members provided in some embodiments of the present application.
  • the electrode assembly 22 includes a first electrode assembly 22a and a second electrode assembly 22b, the first electrode assembly 22a and the second electrode assembly 22b are respectively provided with a tab 222, the tab 222 of the first electrode assembly 22a and the tab 222 of the second electrode assembly 22b are connected to an electrode lead-out member 23, and the second connecting section 2222 of the tab 222 of the first electrode assembly 22a and the second connecting section 2222 of the tab 222 of the second electrode assembly 22b extend in opposite directions.
  • the first connecting segment 2221 of the pole lug 222 of the first electrode assembly 22a and the first connecting segment 2221 of the pole lug 222 of the second electrode assembly 22b are connected to the first part 231 of an electrode assembly 22, and the second connecting segment 2222 of the pole lug 222 of the first electrode assembly 22a and the second connecting segment 2222 of the pole lug 222 of the second electrode assembly 22b extend in directions away from each other, thereby reducing the risk of interference between the pole lug 222 of the first electrode assembly 22a and the pole lug 222 of the second electrode assembly 22b.
  • the tab 222 of the first electrode assembly 22 a and the tab 222 of the second electrode assembly 22 b are connected to an electrode lead-out member 23 , so as to facilitate the transmission of the current of the battery cell 20 .
  • the embodiments of the present application further provide a battery 100, which includes the battery cell 20 provided in any of the above embodiments.
  • an electrical device which includes a battery cell 20 provided in any of the above embodiments or a battery 100 provided in any of the above embodiments, and the battery cell 20 or the battery 100 is used to provide electrical energy.
  • the power-consuming device may be any of the above-mentioned devices or systems using the battery 100 .
  • the battery cell 20, the battery 100 and the electrical equipment according to the embodiment of the present application are described above.
  • the manufacturing method of the battery cell according to the embodiment of the present application will be described below.
  • FIG13 is a schematic flow chart of a method for manufacturing a battery cell provided in some embodiments of the present application. According to some embodiments of the present application, as shown in FIG13, the present application also provides a method for manufacturing a battery cell 400, the method for manufacturing a battery cell 400 comprising:
  • the tab 222 is bent to form a first connecting segment 2221 and a second connecting segment 2222 , so that the second connecting segment 2222 is bent relative to the first connecting segment 2221 .
  • the second connecting section 2222 is bent relative to the first connecting section 2221, which can reduce the risk of interference between the pole ear 222 and other components, facilitate the assembly of the battery cell 20, and improve the assembly efficiency; on the other hand, it can reduce the risk of short circuit between the positive and negative electrodes of the battery cell 20, and the battery cell 20 manufactured using this manufacturing method has higher reliability.
  • the multiple sub-pole ears 2223 stacked in the electrode assembly 22 are gathered, including: connecting the multiple sub-pole ears 2223 to form a first connecting portion 24; bending the second connecting segment 2222 relative to the first connecting segment 2221, including: bending the pole ear 222 at one end of the first connecting portion 24 away from the main body 221 to form a second connecting segment 2222.
  • multiple sub-pole ears 2223 are connected to form a first connecting portion 24, so that the multiple sub-pole ears 2223 have a compact structure, which is convenient for gathering the electrical energy of the multiple sub-pole ears 2223; the pole ear 222 is bent at one end of the first connecting portion 24 away from the main body 221, which is convenient for bending the pole ear 222.
  • connecting at least one of the second connecting segment 2222 and the first connecting segment 2221 to the first portion 231 of the electrode lead-out member 23 includes: connecting the second connecting segment 2222, the first connecting portion 24 and the electrode lead-out member 23 to form a second connecting portion 25.
  • the second connection section 2222, the first connection part 24 and the electrode lead-out member 23 are connected to form the second connection part 25, which can not only constrain the second connection section 2222, but also enable the tab 222 and the electrode lead-out member 23 to have a higher current capacity.
  • the embodiments of the present application provide a battery cell 20, which includes a shell 21, an electrode assembly 22, an electrode terminal 26 and an electrode lead-out member 23.
  • the shell 21 includes a shell 211 and a cover 212.
  • the shell 211 has an opening, and the cover 212 closes the opening to form a receiving space.
  • the electrode assembly 22 is disposed in the receiving space, and the electrode assembly 22 is a laminated structure.
  • the electrode assembly 22 includes a body 221 and a tab 222 extending from the body 221.
  • the pole lug 222 includes a plurality of stacked sub-pole lugs 2223, which are gathered and connected to form a first connecting portion 24.
  • the pole lug 222 includes an overlapping region 2224 where the sub-pole lugs 2223 overlap each other and a staggered region 2225 where the ends of the sub-pole lugs 2223 are staggered from each other.
  • the staggered region 2225 is connected to the body 221 through the overlapping region 2224.
  • a portion of the first connecting portion 24 is located in the overlapping region 2224, and another portion of the first connecting portion 24 is located in the staggered region 2225.
  • the pole tab 222 includes a root section 2227, a second bending section 2228, a first connecting section 2221, a first bending section 2226 and a second connecting section 2222 connected in sequence, the root section 2227 is connected to the body 221, the first connecting section 2221 is bent relative to the root section 2227, the second connecting section 2222 is bent relative to the first connecting section 2221, the second connecting section 2222 is located on the side of the first connecting section 2221 away from the first portion 231, and the second connecting section 2222, the first connecting section 2221 and the first portion 231 of the electrode lead-out member 23 are connected to form a second connecting portion 25.
  • the first portion 231 has a first surface 2311 facing the body 221, and along a direction perpendicular to the first surface 2311, the projection of the second connecting portion 25 falls into the projection of the first connecting portion 24.
  • the electrode terminal 26 is disposed on the cover 212, and the electrode lead-out member 23 connects the pole tab 222 and the electrode terminal 26.
  • the second connecting section 2222 is bent relative to the first connecting section 2221, and the second connecting section 2222 is connected to the side of the first connecting section 2221 that is away from the first part 231, thereby reducing the risk of interference between the pole ear 222 and other components and reducing the risk of short circuit between the positive and negative poles of the battery cell 20, so that the battery cell 20 has higher safety.

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例提供一种电池单体、电池、用电设备及电池单体的制造方法,属于电池技术领域。电池单体包括电极组件及电极引出件,电极组件包括本体和极耳;电极引出件用于将电极组件的电能导出,电极引出件包括第一部分;其中,极耳包括依次连接的第一连接段及第二连接段,第一连接段连接于本体,第二连接段相对于第一连接段弯折,第一连接段和第二连接段中的至少一者连接于第一部分。该电池单体具有较高的装配效率。

Description

电池单体、电池、用电设备及电池单体的制造方法 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池单体、电池、用电设备及电池单体的制造方法。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
电池的制造过程中,电池的装配效率是一个不可忽视的问题。因此,如何提高电池的装配效率,是电池技术中一个亟需解决的技术问题。
发明内容
本申请的目的在于提供一种电池单体、电池、用电设备及电池单体的制造方法。该电池单体具有较高的装配效率。
本申请是通过如下技术方案实现的:
第一方面,本申请提供了一种电池单体,包括电极组件及电极引出件,电极组件包括本体和极耳;电极引出件用于将电极组件的电能导出,电极引出件包括第一部分;其中,极耳包括依次连接的第一连接段及第二连接段,第一连接段连接于本体,第二连接段相对于第一连接段弯折,第一连接段和第二连接段中的至少一者连接于第一部分。
根据本申请实施例的电池单体,第二连接段相对于第一连接段弯折,能够降低极耳与其他部件干涉的风险,提高装配效率;另一方面,可以降低电池单体20的正负极接触短路的风险,使得电池单体具有较高的可靠性。
根据本申请的一些实施例,第一连接段连接于第一部分,第二连接段位于第一连接段的背离第一部分的一侧。
在上述方案中,第二连接段位于第一连接段的背离第一部分的一侧,能够合理利用第一连接段的背离第一部分的一侧的空间,便于电极引出件与其他部件的装配。
根据本申请的一些实施例,第二连接段束缚于第一连接段的背离第一部分的一侧。
在上述方案中,第二连接段束缚于第一连接段的背离第一部分的一侧,降低第二连接段移动而导致与其他部件干涉的风险,从而降低第二连接段对电池单体装配的影响。
根据本申请的一些实施例,第二连接段连接于第一连接段。
在上述方案中,第二连接段连接于第一连接段,不需要增加额外的部件约束第一连接段,降低成本。既能够实现对第二连接段的约束,又能够使得极耳与电极引出件具有较高的过流能力。
根据本申请的一些实施例,第一连接段和第二连接段均电连接于第一部分。
在上述方案中,第一连接段和第二连接段均连接于第一部分,使得极耳与电极引出件具有较高的过流能力。
根据本申请的一些实施例,第一连接段和第二连接段层叠设置。
在上述方案中,第一连接段和第二连接段层叠设置,合理利用装配空间,降低空间占用。
根据本申请的一些实施例,极耳包括层叠设置的多个子极耳,多个子极耳连接形成第一连接部,第一连接部位于第一连接段。
在上述方案中,多个子极耳连接形成第一连接部,一方面,有利于第二连接段弯折;另一方面,有利于减小极耳在与电极引出件焊接过程中的损伤,提高极耳的过流能力。
根据本申请的一些实施例,极耳包括多个子极耳相互重叠的重叠区和多个子极耳的端部相互错开的错层区,错层区通过重叠区连接于本体,第一连接部的一部分位于重叠区,第一连接部的另一部分位于错层区。
在上述方案中,第一连接部的一部分位于重叠区,第一连接部的另一部分位于错层区,一方面,使得极耳与电极引出件的连接处可以具有较大的过流能力,另一方面,极耳的沿其延伸方向的尺寸可以较短,节约材料,节省制造成本。
根据本申请的一些实施例,第一连接部包括与本体连接的第一端和与第二连接段连接的第二端,沿第一端至第二端的方向,第一连接部的尺寸为L,第一连接部位于错层区的部分的尺寸为L1,满足,0.2L≤L1≤0.5L。
在上述方案中,第一连接部位于错层区的部分的尺寸满足上述范围,既能使得极耳与电极引出件的连接处可以具有较大的过流能力,又使得极耳的沿其延伸方向的尺寸可以较短。如果L1小于0.2L,则极耳的沿其延伸方向的尺寸较长,材料浪费;如果L1大于0.5L,则第一连接部位于错层区的部分的尺寸较大,影响极耳与电极引出件的连接处的过流能力。
根据本申请的一些实施例,第一部分具有与第一连接段连接的第一表面;第二连接段、第一连接段与电极引出件连接形成第二连接部,沿垂直于第一表面的方向,第二连接部的投影与第一连接部的投影至少部分重叠。
在上述方案中,第二连接部的投影与第一连接部的投影至少部分重叠,便于实现第二连接段、第一连接段及电极引出件的连接,降低子极耳破裂的风险,使得极耳与电极引出件的连接处具有较高的过流能力。
根据本申请的一些实施例,沿垂直于第一表面的方向,第二连接部的投影落入第一连接部的投影。
在上述方案中,第二连接部的投影落入第一连接部的投影,可以有效降低多层子极耳直接焊接产生的裂纹或断裂的风险。
根据本申请的一些实施例,第一连接部包括与本体连接的第一端和与第二连接段连接的第二端,沿第一端至第二端的方向,第一连接部的尺寸为L,第一连接部位于错层区的部分的尺寸为L1,第二连接部的尺寸为L3,满足,L1<L3<L。
在上述方案中,第二连接部的尺寸满足上述范围,第二连接部与第一连接部具有较大的重叠面积,便于实现第二连接段、第一连接段及电极引出件的连接,降低第二连接段、第一连接段及电极引出件焊接时对子极耳的损伤。
根据本申请的一些实施例,第一连接部包括与本体连接的第一端和与第二连接段连接的第二端,沿第一端至第二端的方向,第二连接部的中点与第一连接部的中点重合。
在上述方案中,第二连接部的中点与第一连接部的中点重合,便于实现第二连接段、第一连接段及电极引出件的连接。
根据本申请的一些实施例,沿垂直于第一表面的方向,第二连接段的投影覆盖第一连接部的投影。
在上述方案中,第二连接段的投影覆盖第一连接部的投影,便于第二连接段与第一连接段的连接。
根据本申请的一些实施例,沿第二连接段与第一连接段连接的一端指向第二连接段的自由端的方向,第二连接段超出第二连接部。
在上述方案中,第二连接段超出第二连接部,能够更好地固定第二连接段。
根据本申请的一些实施例,第一连接部和/或第二连接部通过超声波焊接形成。
在上述方案中,第一连接部和/或第二连接部通过超声波焊接形成,使得各自的连接处连接牢固。
根据本申请的一些实施例,电池单体还包括电极端子,电极引出件为连接极耳和电极端子的转接件,或,电极引出件为电极端子。
在上述方案中,当电极引出件为连接极耳和电极端子的转接件时,便于将电极组件的电能传递至电极端子;当电极引出件为电极端子时,结构简单,便于将电极组件的电能导出。
根据本申请的一些实施例,电极组件为叠片式结构。
在上述方案中,在叠片过程中对极片进行检测时,若一个或多个极片出现缺陷时,可以对其剔除报废,报废成本较低。
根据本申请的一些实施例,极耳包括层叠设置的多个子极耳,多个子极耳的高度相等。
在上述方案中,子极耳的高度为沿极耳的延伸方向,子极耳凸出于本体的尺寸,多个子极耳的高度相等,便于加工制造。
根据本申请的一些实施例,极耳从本体的第一端面延伸出,第一端面朝向第一部分,极耳还包括根部段,根部段连接第一连接段及本体,第一连接段相对于根部段弯折。
在上述方案中,第一连接段与本体通过根部段连接,第一连接段相对于根部段弯折,可以合理利用装配空间,提高电池单体的能量密度。
根据本申请的一些实施例,电极组件包括第一电极组件和第二电极组件,第一电极组件和第二电极组件分别设有极耳,第一电极组件的极耳和第二电极组件的极耳连接于一个电极引出件,第一电极组件的极耳的第二连接段与第二电极组件的极耳的第二连接段朝相背离的方向延伸。
在上述方案中,第一电极组件的极耳和第二电极组件的极耳连接于一个电极引出件,便于实现电池单体的电流的传递;第一电极组件的极耳的第二连接段与第二电极组件的极耳的第二连接段朝相背离的方向延伸,降低第一电极组件的极耳和第二电极组件的极耳干涉的风险。
第二方面,本申请实施例提供了一种电池,包括如上述任一实施例提供的电池单体。
第三方面,本申请实施例提供了一种用电设备,包括如上述任一实施例提供的电池单体或如上述任一实施例提供的电池,电池单体或电池用于提供电能。
第四方面,本申请实施例提供了一种电池单体的制造方法,包括:将电极组件的层叠设置的多个子极耳收拢以形成极耳,极耳包括依次连接第一连接段及第二连接段,第一连接段连接于电极组件的本体;将第二连接段相对于第一连接段弯折;将第二连接段和第一连接段中的至少一者连接于电极引出件的第一部分。
根据本申请实施例的电池单体的制造方法,将第二连接段相对于第一连接段弯折,能够降低极耳与其他部件干涉的风险,便于电池单体的装配,提高装配效率;另一方面,可以降低电池单体的正负极接触短路的风险,采用该制造方法制得的电池单体具有较高的可靠性。
根据本申请的一些实施例,将电极组件的层叠设置的多个子极耳收拢,包括:将多个子极耳连接形成第一连接部;将第二连接段相对于第一连接段弯折,包括:在第一连接部的远离本体的一端折弯极耳,以形成第二连接段。
在上述方案中,将多个子极耳连接形成第一连接部,使得多个子极耳结构紧凑,便于将多个子极耳的电能汇聚;在第一连接部的远离本体的一端折弯极耳,便于弯折极耳。
根据本申请的一些实施例,将第二连接段和第一连接段中的至少一者连接于电极引出件的第一部分,包括:将第二连接段、第一连接部和电极引出件连接形成第二连接部。
在上述方案中,将第二连接段、第一连接部和电极引出件连接形成第二连接部,既能够实现对第二连接段的约束,又能够使得极耳与电极引出件具有较高的过流能力。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的***图;
图3为本申请一些实施例提供的电池单体的***图;
图4为本申请一些实施例提供的电池单体的剖视图;
图5为本申请一些实施例提供的第二连接段与第一连接段的位置示意图;
图6为本申请另一些实施例提供的第二连接段与第一连接段的位置示意图;
图7为本申请一些实施例提供的第二连接段束缚于第一连接段的示意图;
图8为本申请一些实施例提供的极耳的结构示意图;
图9为本申请一些实施例提供的第二连接部的投影和第一连接部的投影的示意图;
图10为本申请一些实施例提供的子极耳高度的示意图;
图11为本申请另一些实施例提供的电池单体的剖视图;
图12为本申请一些实施例提供的两个电极组件与电极引出件的装配示意图;
图13为本申请一些实施例提供的电池单体的制造方法的示意性流程图;
在附图中,附图并未按照实际的比例绘制。
标记说明:100-电池;10-箱体;11-第一子箱体;12-第二子箱体;20-电池单体;21-外壳;211-壳体;212-盖体;22-电极组件;22a-第一电极组件;22b-第二电极组件;221-本体;2211-第一端面;222-极耳;2221-第一连接段;2222-第二连接段;2223-子极耳;2224-重叠区;2225-错层区;2226-第一弯折段;2227-根部段;2228-第二弯折段; 23-电极引出件;231-第一部分;2311-第一表面;2312-第二表面;24-第一连接部;241-第一端;242-第二端;25-第二连接部;26-电极端子;200-控制器;300-马达;1000-车辆。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限定本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请的实施例所提到的电池可以包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。电池单体有多个时,多个电池单体通过电连接件串联、并联或混联。
在一些实施例中,电池可以为电池模块,电池单体有多个时,多个电池单体排列并固定形成一个电池模块。
在一些实施例中,电池可以为电池包,电池包包括箱体和电池单体,电池单体或电池模块容纳于箱体中。
在一些实施例中,箱体可以作为车辆的底盘结构的一部分。例如,箱体的部分可以成为车辆的地板的至少一部分,或者,箱体的部分可以成为车辆的横梁和纵梁的至少一部分。
在一些实施例中,电池可以为储能装置。储能装置包括储能集装箱、储能电柜 等。
本申请实施例中,电池单体可以为二次电池,二次电池是指在电池单体放电后可通过充电的方式使活性材料激活而继续使用的电池单体。
电池单体可以为锂离子电池、钠离子电池、钠锂离子电池、锂金属电池、钠金属电池、锂硫电池、镁离子电池、镍氢电池、镍镉电池、铅蓄电池等,本申请实施例对此并不限定。
电池单体一般包括电极组件。电极组件包括正极、负极以及隔离件。在电池单体充放电过程中,活性离子(例如锂离子)在正极和负极之间往返嵌入和脱出。隔离件设置在正极和负极之间,可以起到防止正负极短路的作用,同时可以使活性离子通过。
在一些实施例中,正极可以为正极片,正极片可以包括正极集流体以及设置在正极集流体至少一个表面的正极活性材料。
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极活性材料设置在正极集流体相对的两个表面的任意一者或两者上。
作为示例,正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用银表面处理的铝或不锈钢、不锈钢、铜、铝、镍、炭精电极、碳、镍或钛等。复合集流体可包括高分子材料基层和金属层。复合集流体可通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子材料基材(如聚丙烯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚苯乙烯、聚乙烯等的基材)上而形成。
作为示例,正极活性材料可包括以下材料中的至少一种:含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。
在一些实施例中,负极可以为负极片,负极片可以包括负极集流体。
作为示例,负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用银表面处理的铝或不锈钢、不锈钢、铜、铝、镍、炭精电极、用碳、镍或钛等。
在一些实施例中,负极集流体具有在其自身厚度方向相对的两个表面,负极活性材料设置在负极集流体相对的两个表面中的任意一者或两者上。
作为示例,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。
在一些实施方式中,隔离件为隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
作为示例,隔离膜的主要材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯,陶瓷中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。隔离件可以是单独的一个部件位于正负极之间,也可以附着在正负极的表面。
在一些实施方式中,隔离件为固态电解质。固态电解质设于正极和负极之间, 同时起到传输离子和隔离正负极的作用。
在一些实施方式中,电极组件为卷绕结构。正极片、负极片卷绕成卷绕结构。
在一些实施方式中,电极组件为叠片结构。
在一些实施方式中,电池单体可以包括外壳。外壳用于封装电极组件及电解质等部件。外壳可以为钢壳、铝壳、塑料壳(如聚丙烯)、复合金属壳(如铜铝复合外壳)或铝塑膜等。
在一些实施方式中,外壳包括端盖和壳体,壳体设有开口,端盖封闭开口以形成用于容纳电极组件和电解质等物质的密闭空间。壳体可设有一个或多个开口。端盖也可设置一个或者多个。
在一些实施方式中,外壳上设置有至少一个电极端子,电极端子与电极组件的极耳电连接。电极端子可以与极耳直接连接,也可以通过转接件与极耳间接连接。电极端子可以设置于端盖上,也可以设置在壳体上。
在一些实施方式中,外壳上设置有防爆阀。防爆阀用于泄放电池单体的内部压力。
作为示例,电池单体可以为圆柱形电池单体、棱柱电池单体、软包电池单体或其它形状的电池单体,棱柱电池单体包括方壳电池单体、刀片形电池单体、多棱柱电池,多棱柱电池例如为六棱柱电池等,本申请实施例没有特别的限制。请参见图3,本申请实施例以方壳电池单体为例。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的装配效率。
电极组件包括本体和极耳,极耳从本体的端部延伸出,相关技术中,为了便于极耳与电极引出件的连接,沿极耳的延伸方向,极耳凸出本体的尺寸较大,也即,极耳的高度较高,在极耳与电极组件连接后,极耳具有冗余部分,在电池单体的装配过程中,极耳的冗余部分容易与其他部件(如外壳、本体等)干涉,影响电池单体的装配效率。
鉴于此,为了解决极耳的冗余部分引发电池单体的装配效率的问题,发明人经过深入研究,设计了一种技术方案,将极耳的远离本体的一端弯折,从而降低极耳对电池单体的装配的影响,提高装配效率。
本申请实施例公开的电池可以但不限用于车辆、船舶或飞行器等用电设备中。可以使用具备本申请公开的电池单体、电池等组成该用电设备的电源***。
本申请实施例提供一种使用电池作为电源的用电设备,用电设备可以为但不限于手机、平板电脑、笔记本电脑、电动玩具、电动工具、电动自行车、电动摩托车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路***,例如用于车辆1000的启动、导航和运行时的工作用电需求。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池的***图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一子箱体11和第二子箱体12,第一子箱体11与第二子箱体12相互盖合,第一子箱体11和第二子箱体12共同限定出用于容纳电池单体20的容纳空间。第二子箱体12可以为一端开口的空心结构,第一子箱体11可以为板状结构,第一子箱体11盖合于第二子箱体12的开口侧,以使第一子箱体11与第二子箱体12共同限定出容纳空间;第一子箱体11和第二子箱体12也可以是均为一侧开口的空心结构,第一子箱体11的开口侧盖合于第二子箱体12的开口侧。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
请参照图3,图3为本申请一些实施例提供的电池单体的***图。如图3所示,电池单体20包括外壳21、电极组件22及其他功能性部件。外壳21包括壳体211和盖体212,壳体211具有开口,盖体212封闭开口,以将电池单体20的内部环境与外部环境隔绝。
壳体211是用于配合盖体212以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件22、电解液以及其他部件。壳体211和盖体212可以是独立的部件。壳体211可以是多种形状和多种尺寸的。具体地,壳体211的形状可以根据电极组件22的具体形状和尺寸大小来确定。壳体211的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。本申请实施例以壳体211为长方体形为例介绍。
盖体212是指盖合于壳体211的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,盖体212的形状可以与壳体211的形状相适应以配合壳体211。可选地,盖体212可以由具有一定硬度和强度的材质(如铝合金)制成,这样,盖体212在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。盖体212上可以设置有如电极端子26等的功能性部件。电极端子26可以用于与电极组件22电连接,以用于输出或输入电池单体20的电能。盖体212的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在盖体212的内侧还可以设置有绝缘结构,绝缘结构可以用于隔离壳体211内的电连接部件与盖体212,以降低短路的风险。示例性的,绝缘结构可以是塑料、橡胶等。
正极极片和负极极片具有活性物质的部分构成电极组件22的本体221,正极极片和负极极片不具有活性物质的部分各自构成极耳222。正极极耳和负极极耳可以 共同位于主体部的一端或是分别位于本体的两端。
请参照图4,图4为本申请一些实施例提供的电池单体的剖视图。根据本申请的一些实施例,本申请提供了一种电池单体20,该电池单体20包括电极组件22及电极引出件23。电极组件22包括本体221和极耳222;电极引出件23用于将电极组件22的电能导出,电极引出件23包括第一部分231。其中,极耳222包括依次连接的第一连接段2221及第二连接段2222,第一连接段2221连接于本体221,第二连接段2222相对于第一连接段2221弯折,第一连接段2221和第二连接段2222中的至少一者连接于第一部分231。
极耳222从本体221延伸出,第二连接段2222位于极耳222的远离本体221的一端。沿极耳222的延伸方向,或在极耳222的展开状态下,极耳222的连接于本体221的一端可以为极耳222的首端,极耳222的远离本体221的一端可以为极耳222的末端,第二连接段2222可以相对于第一连接段2221位于末端。
图中,字母U所指示的方向为极耳222的延伸方向。
第一部分231为电极引出件23的用于与极耳222连接的部分,通过第一部分231与极耳222电连接,以将电极组件22的电能引导至电极引出件23。
电极引出件23用于将电极组件22的电能引导至电池单体20外部。
第一连接段2221和第二连接段2222中的至少一者连接于第一部分231,可以为第一连接段2221连接于第一部分231,也可以为第二连接段2222连接于第一部分231,还可以为第一连接段2221和第二连接段2222均连接于第一部分231。
第二连接段2222相对于第一连接段2221弯折,也即,极耳222的末端相对于第一连接段2221弯折。
作为示例,参照图4,第二连接段2222相对于第一连接段2221弯折180度。
根据本申请实施例的电池单体20,第二连接段2222相对于第一连接段2221弯折,也即,极耳222的末端弯折,一方面,能够降低极耳222与其他部件(如外壳、另一电极组件22的极耳222等)干涉的风险,从而降低极耳222对电极单体20的装配的影响,提高装配效率;另一方面,可以降低电池单体20的正负极接触短路的风险,提高电池单体可靠性。
请参照图5,图5为本申请一些实施例提供的第二连接段与第一连接段的位置示意图,在一些实施例中,第二连接段2222可以位于第一部分231的背离第一连接段2221的一侧,也即,第二连接段2222可以朝向第一部分231的背离第一连接段2221的一侧相对于第一连接段2221弯折。
此种情况下,第二连接段2222可以束缚于第一部分231的背离第一连接段2221的一侧。第二连接段2222可以连接于第一部分231,或者,第二连接段2222和第一连接段2221可以分别连接于第一部分231的相对的两侧。例如,如图5所示,第一部分231可以具有面向本体221的第一表面2311和背离本体221的第二表面2312,第二连接段2222可以连接于第二表面2312,第一连接段2221可以连接于第一表面2311。
请参照图6,图6为本申请另一些实施例提供的第二连接段与第一连接段的位置示意图。根据本申请的一些实施例,第一连接段2221连接于第一部分231,第二连接段2222位于第一连接段2221的背离第一部分231的一侧。
第一连接段2221连接于第一部分231,电极组件22的电能经由第一连接段2221传递至第一部分231,经由电极引出件23导出。
第二连接段2222朝向第一连接段2221的背离第一部分231的一侧弯折, 使得第二连接段2222位于第一连接段2221的背离第一部分231的一侧。
在上述方案中,第二连接段2222位于第一连接段2221的背离第一部分231的一侧,能够合理利用第一连接段2221的背离第一部分231的一侧的空间,便于电极引出件23与其他部件的装配。
请参照图7,图7为本申请一些实施例提供的第二连接段束缚于第一连接段的示意图。根据本申请的一些实施例,第二连接段2222束缚于第一连接段2221的背离第一部分231的一侧。
第二连接段2222束缚于第一连接段2221的背离第一部分231的一侧,可以为第二连接段2222通过约束件束缚于第一连接段2221的背离第一部分231的一侧,例如,约束件可以为胶带,胶带将第二连接段2222束缚于第一连接段2221的背离第一部分231的一侧;或者,约束件可以为设置于电池单体20的外壳21内的部件,如绝缘件、支架等;也可以为第二连接段2222焊接于第一连接段2221以束缚第二连接段2222。
约束件可以限制第二连接段2222相对于电极引出件23移动。
在上述方案中,第二连接段2222束缚于第一连接段2221的背离第一部分231的一侧,降低第二连接段2222而导致与其他部件干涉的风险,从而降低第二连接段2222对电池单体20装配的影响。
请参照图7,根据本申请的一些实施例,第二连接段2222连接于第一连接段2221。第二连接段2222连接于第一连接段2221,可以为第二连接段2222焊接于第一连接段2221,也可以为第二连接段2222通过固定件(如胶带、导电胶等)连接于第一连接段2221。
约束件和固定件可以为相同的部件,也可以为不同的部件。
第二连接段2222可以通过第一连接段2221连接于第一部分231,例如,第二连接段2222、第一连接段2221和第一部分231焊接于一体。
在上述方案中,第二连接段2222连接于第一连接段2221,不需要增加额外的部件约束第一连接段2221,方便制造且降低成本。一些实施例中,第二连接段2222可以电连接于第一连接段2221。
在上述方案中,第二连接段2222连接于第一连接段2221,既能够实现对第二连接段2222的约束,又能够使得极耳222与电极引出件23具有较高的过流能力。
请参照图5和图7,根据本申请的一些实施例,第一连接段2221和第二连接段2222均电连接于第一部分231。
第一连接段2221和第二连接段2222均电连接于第一部分231,可以为第一连接段2221和第二连接段2222分别电连接于第一部分231的相对的两侧;也可以为第二连接段2222通过第一连接段2221电连接于第一部分231,例如,第二连接段2222、第一连接段2221及第一部分231层叠设置且焊接于一体。
在上述方案中,第一连接段2221和第二连接段2222均电连接于第一部分231,使得极耳222与电极引出件23具有较高的过流能力。
请参照图5和图7,根据本申请的一些实施例,第一连接段2221和第二连接段2222层叠设置。
第一部分231可以具有面向本体221的第一表面2311,第一连接段2221和第二连接段2222可以沿与第一表面2311相交的方向层叠设置,可选地,第一连接段2221和第二连接段2222可以沿垂直于第一表面2311的方向层叠设置。也即,第一部分231、第一连接段2221及第二连接段2222可以层叠设置,例如,第二连接段2222、 第一连接段2221及第一部分231平行设置。
在上述方案中,第一连接段2221和第二连接段2222层叠设置,合理利用装配空间,降低空间占用。
请参照图8,图8为本申请一些实施例提供的极耳的结构示意图。根据本申请的一些实施例,极耳222包括层叠设置的多个子极耳2223,多个子极耳2223连接形成第一连接部24,第一连接部24位于第一连接段2221。
多个子极耳2223层叠设置,多个子极耳2223连接形成第一连接部24,一方面,有利于第二连接段2222弯折;另一方面,有利于减小极耳222在与电极引出件23焊接过程中的损伤,提高极耳222的过流能力。
请参照图8,根据本申请的一些实施例,极耳222包括多个子极耳2223相互重叠的重叠区2224和多个子极耳2223的端部相互错开的错层区2225,错层区2225通过重叠区2224连接于本体221,第一连接部24的一部分位于重叠区2224,第一连接部24的另一部分位于错层区2225。
错层区2225通过重叠区2224连接于本体221,第一连接部24的一部分位于重叠区2224,第一连接部24的另一部分位于错层区2225,第二连接端位于错层区2225。
多个子极耳2223收拢后连接形成第一连接部24,使得多个子极耳2223的远离本体221的一端形成错层区2225,多个子极耳2223的靠近本体221的部分形成重叠区2224,错层区2225通过重叠区2224连接于本体221。
在上述方案中,第一连接部24的一部分位于重叠区2224,第一连接部24的另一部分位于错层区2225,一方面,使得极耳222与电极引出件23的连接处可以具有较大的过流能力,另一方面,极耳222的沿其延伸方向的尺寸可以较短,节约材料,节省制造成本。
如图8所示,电池单体20成品中,电极引出件23与极耳222在Y方向上排列,本体221与极耳222在X1方向上排列。或者,如图7所示,在电池单体20装配时,将第一连接段2221相对于本体221弯折,使得电极引出件23与本体221在Y方向上排列,也即,本体221的延伸出极耳222的第一端面2211朝向第一部分231。
请参照图8,根据本申请的一些实施例,第一连接部24包括与本体221连接的第一端241和与第二连接段2222连接的第二端242,沿第一端241至第二端242的方向(X1),第一连接部24的尺寸为L,第一连接部24位于错层区2225的部分的尺寸为L1,满足,0.2L≤L1≤0.5L。
沿极耳222的延伸方向,第一端241更靠近本体221,第二端242更靠近第二连接段2222。如图8所示,图中字母X1所指示的方向可以为第一端241至第二端242的方向。
可选地,第一端241至第二端242的方向(X1方向)可以与第一表面2311平行。
可选地,L1可以为0.2L、0.3L、0.4L或0.5L。
当第一连接段2221连接于第一部分231时,第一连接部24位于错层区2225的部分的尺寸满足上述范围,既能使得极耳222与电极引出件23的连接处可以具有较大的过流能力,又使得极耳222的沿其延伸方向的尺寸可以较短。如果L1小于0.2L,则极耳222的沿其延伸方向的尺寸较长,材料浪费;如果L1大于0.5L,则第一连接部24位于错层区2225的部分的尺寸较大,影响极耳222与电极引出件23的连接处的过流能力。
根据本申请的一些实施例,0.3L≤L1≤0.4L。
相较于0.2L≤L1≤0.5L,当0.3L≤L1≤0.4L时,极耳222与电极引出件23的连接处可以具有较大的过流能力,极耳222的沿其延伸方向的尺寸可以较短。
可选地,L1可以为0.3L、0.31L、0.32L、0.33L、0.34L、0.35L、0.36L、0.37L、0.38L、0.39L或0.4L。
请参照图4和图8,并进一步参照图9,图9为本申请一些实施例提供的第二连接部的投影和第一连接部的投影的示意图。根据本申请的一些实施例,第一部分231具有与第一连接段2221连接的第一表面2311;第二连接段2222、第一连接段2221与电极引出件23连接形成第二连接部25,沿垂直于第一表面2311的方向(Y方向),第二连接部25的投影与第一连接部24的投影至少部分重叠。
图中字母Y所指示的方向为垂直于第一表面2311的方向。
第一表面2311为第一部分231的用于与第一连接段2221连接的表面。可选地,第一表面2311可以面向本体221设置。
第二连接段2222通过第一连接段2221连接于第一表面2311,以形成第二连接部25。
沿垂直于第一表面2311的方向,第二连接部25的投影与第一连接部24的投影可以部分重叠,第二连接部25的投影与第一连接部24的投影可以全部重叠。
第一连接部24将多个子极耳2223连接,第二连接部25的投影与第一连接部24的投影至少部分重叠,以便于第二连接段2222、第一连接部24及电极引出件23焊接。
如果第二连接部25与第一连接部24不重叠,当第二连接段2222、第一连接段2221及电极引出件23焊接时,则容易导致多个子极耳2223中部分子极耳2223损坏,降低极耳222与电极引出件23的连接处的过流能力。
在上述方案中,第二连接部25的投影与第一连接部24的投影至少部分重叠,便于实现第二连接段2222、第一连接段2221及电极引出件23的连接,降低子极耳2223破裂的风险,使得极耳222与电极引出件23的连接处具有较高的过流能力。
请参照图9,根据本申请的一些实施例,沿垂直于第一表面2311的方向(Y方向),第二连接部25的投影落入第一连接部24的投影。
沿垂直于第一表面2311的方向,第二连接部25的投影落入第一连接部24的投影,也即,第二连接部25的投影小于或等于第一连接部24的投影,使得第二连接部25的投影与第一连接部24的投影全部重叠。
由于第二连接段2222位于错层区2225,第一连接部24的一部分位于重叠区2224,第一连接部24的另一部分位于错层区2225,第二连接段2222朝向第一连接段2221的背离第一部分231的一侧相对于第一连接段2221折弯后,第二连接段2222连接于第一连接段2221,第二连接段2222与第一连接段2221在层叠方向上的厚度补偿,使得第二连接段2222与第一连接段2221重叠后的厚度差异较小。
需要指出的是,本申请实施例提及的第二连接段2222、第一连接段2221及电极引出件23连接处的厚度是指,第二连接段2222、第一连接段2221及电极引出件23层叠后,三者在层叠方向上的尺寸。
在上述方案中,第二连接部25的投影落入第一连接部24的投影,可以有效降低多层子极耳2223直接焊接产生的裂纹或断裂的风险。
请参照图8,根据本申请的一些实施例,第一连接部24包括与本体221连接的第一端241和与第二连接段2222连接的第二端242,沿第一端241至第二端242 的方向(X1方向),第一连接部24的尺寸为L,第一连接部24位于错层区2225的部分的尺寸为L1,第二连接部25的尺寸为L3,满足,L1<L3<L。
第一端241和第二端242为第一连接部24的沿极耳222的延伸方向的相对的两端,第一端241用于连接本体221,第二端242用于连接第二连接段2222。
沿垂直于第一表面2311的方向观察,沿第一端241至第二端242的方向,第二连接部25的尺寸L3小于第一连接部24的尺寸L,且第二连接部25的尺寸L3大于第一连接部24位于错层区2225的部分的尺寸L1。
在上述方案中,第二连接部25的尺寸满足上述范围,第二连接部25与第一连接部24具有较大的重叠面积,便于实现第二连接段2222、第一连接段2221及电极引出件23的连接,降低第二连接段2222、第一连接段2221及电极引出件23焊接时对子极耳2223的损伤。
根据本申请的一些实施例,第一连接部24包括与本体221连接的第一端241和与第二连接段2222连接的第二端242,沿第一端241至第二端242的方向(X1方向),第二连接部25的中点与第一连接部24的中点重合。
沿第一端241至第二端242的方向,第二连接部25的中点到第二连接部25的两端的距离相等,第一连接部24的中点到第一连接部24的两端的距离相等。
在上述方案中,第二连接部25的中点与第一连接部24的中点重合,便于实现第二连接段2222、第一连接段2221及电极引出件23的连接。
请参照图8,根据本申请的一些实施例,沿垂直于第一表面2311的方向(Y方向),第二连接段2222的投影覆盖第一连接部24的投影。
在上述方案中,第二连接段2222的投影覆盖第一连接部24的投影,便于第二连接段2222与第一连接段2221的连接。
请参照图8根据本申请的一些实施例,沿第二连接段2222与第一连接段2221连接的一端指向第二连接段2222的自由端的方向,第二连接段2222超出第二连接部25。
第二连接段2222的自由端可以为第二连接段2222的远离第一连接段2221的一端。在第二连接段2222位于第一连接段2221的背离第一部分231的一侧、第二连接段2222连接于第一连接段2221的实施例中,沿第二端242至第一端241的方向(X2方向),第二连接段2222的一端连接第一连接段2221,第二连接段2222的另一端为自由端。
第二连接段2222超出第二连接部25是指,沿第二端242至第一端241的方向,第二连接段2222的远离第一连接段2221的一端超出第二连接部25。
极耳222还可以包括第一弯折段2226,第一连接段2221与第二连接段2222通过第一弯折段2226连接,第二连接段2222的远离第一连接段2221的一端可以为,第二连接段2222的远离第一弯折段2226的一端。
在上述方案中,第二连接段2222超出第二连接部25,能够更好地固定第二连接段2222。
根据本申请的一些实施例,第一连接部24和/或第二连接部25通过超声波焊接形成。
在上述方案中,第一连接部24和/或第二连接部25通过超声波焊接形成,使得各自的连接处连接牢固。
根据本申请的一些实施例,电池单体20还包括电极端子26,电极引出件23为连接极耳222和电极端子26的转接件,或,电极引出件23为电极端子26。
在上述方案中,当电极引出件23为连接极耳222和电极端子26的转接件时,便于将电极组件22的电能传递至电极端子26;当电极引出件23为电极端子26时,结构简单,便于将电极组件22的电能导出。
当电极引出件23为转接件时,电极引出件23还包括第二部分(图中未示出),第二部分用于连接电极端子26。第二部分可以相对于第一部分231弯折,以便于与电极端子26连接。
根据本申请的一些实施例,电极组件22为叠片式结构。
电极组件22为叠片式结构,正极极片、隔膜及负极极片层叠设置。
在上述方案中,在叠片过程中对极片进行检测时,若一个或多个极片出现缺陷时,可以对其剔除报废,报废成本较低。
根据本申请的一些实施例,极耳222包括层叠设置的多个子极耳2223,多个子极耳2223的高度相等。
请参照图10,图10为本申请一些实施例提供的子极耳高度的示意图,图中,字母Z所指示的尺寸为一个子极耳2223的高度。
在上述方案中,子极耳2223的高度为极耳222处于展开(未弯折)状态时,沿极耳222的延伸方向,子极耳2223凸出于本体221的尺寸,多个子极耳2223的高度相等,便于加工制造。
请参照图4和图11,根据本申请的一些实施例,极耳222从本体221的第一端面2211延伸出,第一端面2211朝向第一部分231,极耳222还包括根部段2227,根部段2227连接第一连接段2221及本体221,第一连接段2221相对于根部段2227弯折。
第一端面2211为本体221的靠近第一部分231的表面,极耳222从第一端面2211延伸出。
极耳222还可以包括第二弯折段2228,第二弯折段2228连接根部段2227和第一连接段2221。
第一连接段2221可以连接于第一部分231,第二连接段2222可以位于第一连接段2221的背离第一部分231的一侧,第二连接段2222、第一连接段2221及电极引出件23连接。
在上述方案中,第一连接段2221与本体221通过根部段2227连接,第一连接段2221相对于根部段2227弯折,可以合理利用装配空间,提高电池单体20的能量密度。
请参照图11和图12,图11为本申请另一些实施例提供的电池单体的剖视图,图12为本申请一些实施例提供的两个电极组件与电极引出件的装配示意图。根据本申请的一些实施例,电极组件22包括第一电极组件22a和第二电极组件22b,第一电极组件22a和第二电极组件22b分别设有极耳222,第一电极组件22a的极耳222和第二电极组件22b的极耳222连接于一个电极引出件23,第一电极组件22a的极耳222的第二连接段2222与第二电极组件22b的极耳222的第二连接段2222朝相背离的方向延伸。
第一电极组件22a的极耳222的第一连接段2221和第二电极组件22b的极耳222的第一连接段2221连接于一个电极组件22的第一部分231,第一电极组件22a的极耳222的第二连接段2222和第二电极组件22b的极耳222的第二连接段2222朝相互背离的方向延伸,降低第一电极组件22a的极耳222与第二电极组件22b的极耳222相互干涉的风险。
在上述方案中,第一电极组件22a的极耳222和第二电极组件22b的极耳222连接于一个电极引出件23,便于实现电池单体20的电流的传递。
根据本申请的一些实施例,本申请实施例还提供了一种电池100,该电池100包括上述任一实施例提供的电池单体20。
根据本申请的一些实施例,本申请实施例还提供了一种用电设备,该用电设备包括上述任一实施例提供的电池单体20或上述任一实施例提供的电池100,电池单体20或电池100用于提供电能。
用电设备可以为上述任一应用电池100的设备或***。
上文描述了本申请实施例的电池单体20、电池100及用电设备,下面将描述本申请实施例的电池单体的制造方法,其中未详细描述的部分可参见前述各实施例。
图13为本申请一些实施例提供的电池单体的制造方法的示意性流程图。根据本申请实施例的一些实施例,如图13所示,本申请还提供了一种电池单体的制造方法400,该电池单体的制造方法400包括:
S410,将电极组件22的层叠设置的多个子极耳2223收拢以形成极耳222,极耳222包括依次连接第一连接段2221及第二连接段2222,第一连接段2221连接于电极组件22的本体221;
S420,将第二连接段2222相对于第一连接段2221弯折;
S430,将第二连接段2222和第一连接段2221中的至少一者连接于电极引出件23的第一部分231。
将极耳222折弯形成第一连接段2221和第二连接段2222,以使得第二连接段2222相对于第一连接段2221弯折。
根据本申请实施例的电池单体的制造方法400,将第二连接段2222相对于第一连接段2221弯折,能够降低极耳222与其他部件干涉的风险,便于电池单体20的装配,提高装配效率;另一方面,可以降低电池单体20的正负极接触短路的风险,采用该制造方法制得的电池单体20具有较高的可靠性。
根据本申请的一些实施例,将电极组件22的层叠设置的多个子极耳2223收拢,包括:将多个子极耳2223连接形成第一连接部24;将第二连接段2222相对于第一连接段2221弯折,包括:在第一连接部24的远离本体221的一端折弯极耳222,以形成第二连接段2222。
在上述方案中,将多个子极耳2223连接形成第一连接部24,使得多个子极耳2223结构紧凑,便于将多个子极耳2223的电能汇聚;在第一连接部24的远离本体221的一端折弯极耳222,便于弯折极耳222。
根据本申请的一些实施例,将第二连接段2222和第一连接段2221中的至少一者连接于电极引出件23的第一部分231,包括:将第二连接段2222、第一连接部24和电极引出件23连接形成第二连接部25。
在上述方案中,将第二连接段2222、第一连接部24和电极引出件23连接形成第二连接部25,既能够实现对第二连接段2222的约束,又能够使得极耳222与电极引出件23具有较高的过流能力。
根据本申请的一些实施例,请参照图3至图13,本申请实施例提供了一种电池单体20,该电池单体20包括外壳21、电极组件22、电极端子26及电极引出件23。外壳21包括壳体211和盖体212,壳体211具有开口,盖体212封闭开口,以形成容纳空间。电极组件22设置于容纳空间内,电极组件22为叠片式结构。电极组件22包括本体221和从本体221的延伸出的极耳222。极耳222包括层叠设置的多个子 极耳2223,多个子极耳2223收拢连接形成第一连接部24,极耳222包括多个子极耳2223相互重叠的重叠区2224和多个子极耳2223的端部相互错开的错层区2225,错层区2225通过重叠区2224连接于本体221,第一连接部24的一部分位于重叠区2224,第一连接部24的另一部分位于错层区2225。极耳222包括依次连接的根部段2227、第二弯折段2228、第一连接段2221、第一弯折段2226及第二连接段2222,根部段2227连接于本体221,第一连接段2221相对于根部段2227弯折,第二连接段2222相对于第一连接段2221弯折,第二连接段2222位于第一连接段2221的背离第一部分231的一侧,第二连接段2222、第一连接段2221及电极引出件23的第一部分231连接形成第二连接部25。第一部分231具有面向本体221的第一表面2311,沿垂直于第一表面2311的方向,第二连接部25的投影落入第一连接部24的投影。电极端子26设置于盖体212,电极引出件23连接极耳222与电极端子26。
根据本申请实施例的电池单体20,第二连接段2222相对于第一连接段2221弯折,第二连接段2222连接于第一连接段2221的背离第一部分231的一侧,降低极耳222与其他部件干涉的风险,降低电池单体20的正负极接触短路的风险,使得电池单体20具有较高的安全性。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (26)

  1. 一种电池单体,包括:
    电极组件,包括本体和极耳;
    电极引出件,用于将所述电极组件的电能导出,所述电极引出件包括第一部分;
    其中,所述极耳包括依次连接的第一连接段及第二连接段,所述第一连接段连接于所述本体,所述第二连接段相对于所述第一连接段弯折,所述第一连接段和所述第二连接段中的至少一者连接于所述第一部分。
  2. 根据权利要求1所述的电池单体,其中,所述第一连接段连接于所述第一部分,所述第二连接段位于所述第一连接段的背离所述第一部分的一侧。
  3. 根据权利要求1或2所述的电池单体,其中,所述第二连接段束缚于所述第一连接段的背离所述第一部分的一侧。
  4. 根据权利要求3所述的电池单体,其中,所述第二连接段连接于所述第一连接段。
  5. 根据权利要求1-4中任一项所述的电池单体,其中,所述第一连接段和所述第二连接段均电连接于所述第一部分。
  6. 根据权利要求1-5中任一项所述的电池单体,其中,所述第一连接段和所述第二连接段层叠设置。
  7. 根据权利要求1-6中任一项所述的电池单体,其中,所述极耳包括层叠设置的多个子极耳,所述多个子极耳连接形成第一连接部,所述第一连接部位于所述第一连接段。
  8. 根据权利要求7所述的电池单体,其中,所述极耳包括所述多个子极耳相互重叠的重叠区和所述多个子极耳的端部相互错开的错层区,所述错层区通过所述重叠区连接于所述本体,所述第一连接部的一部分位于所述重叠区,所述第一连接部的另一部分位于所述错层区。
  9. 根据权利要求8所述的电池单体,其中,所述第一连接部包括与所述本体连接的第一端和与所述第二连接段连接的第二端,沿所述第一端至所述第二端的方向,所述第一连接部的尺寸为L,所述第一连接部位于所述错层区的部分的尺寸为L1,满足,0.2L≤L1≤0.5L。
  10. 根据权利要求7-9中任一项所述的电池单体,其中,所述第一部分具有与所述第一连接段连接第一表面;
    所述第二连接段、所述第一连接段与所述电极引出件连接形成第二连接部,沿垂直于所述第一表面的方向,所述第二连接部的投影与所述第一连接部的投影至少部分重叠。
  11. 根据权利要求10所述的电池单体,其中,沿垂直于所述第一表面的方向,所述第二连接部的投影落入所述第一连接部的投影。
  12. 根据权利要求10或11所述的电池单体,其中,所述第一连接部包括与所述本体连接的第一端和与所述第二连接段连接的第二端,沿所述第一端至所述第二端的方向,所述第一连接部的尺寸为L,所述第一连接部位于所述错层区的部分的尺寸为L1,所述第二连接部的尺寸为L3,满足,L1<L3<L。
  13. 根据权利要求10-12中任一项所述的电池单体,其中,所述第一连接部包括与所述本体连接的第一端和与所述第二连接段连接的第二端,沿所述第一端至所述第二端的方向,所述第二连接部的中点与所述第一连接部的中点重合。
  14. 根据权利要求10-13中任一项所述的电池单体,其中,沿所述第二连接段与所述第一连接段连接的一端指向第二连接段的自由端的方向,所述第二连接段超出所述第二连接部。
  15. 根据权利要求10-14中任一项所述的电池单体,其中,沿垂直于所述第一表面的方向,所述第二连接段的投影覆盖所述第一连接部的投影。
  16. 根据权利要求10-15中任一项所述的电池单体,其中,所述第一连接部和/或所述第二连接部通过超声波焊接形成。
  17. 根据权利要求1-16中任一项所述的电池单体,其中,所述电池单体还包括电极端子,所述电极引出件为连接所述极耳和所述电极端子的转接件,或,所述电极引出件为所述电极端子。
  18. 根据权利要求1-17中任一项所述的电池单体,其中,所述电极组件为叠片式结构。
  19. 根据权利要求1-18中任一项所述的电池单体,其中,所述极耳包括层叠设置的多个子极耳,所述多个子极耳的高度相等。
  20. 根据权利要求1-19中任一项所述的电池单体,其中,所述极耳从所述本体的第一端面延伸出,所述第一端面朝向所述第一部分,所述极耳还包括根部段,所述根部段连接所述第一连接段及所述本体,所述第一连接段相对于所述根部段弯折。
  21. 根据权利要求2-20中任一项所述的电池单体,其中,所述电极组件包括第一电极组件和第二电极组件,所述第一电极组件和所述第二电极组件分别设有所述极耳,所述第一电极组件的所述极耳和所述第二电极组件的所述极耳连接于一个所述电极引出件,所述第一电极组件的所述极耳的所述第二连接段与所述第二电极组件的所述极耳的所述第二连接段朝相背离的方向延伸。
  22. 一种电池,包括如权利要求1-21中任一项所述的电池单体。
  23. 一种用电设备,包括如权利要求1-21中任一项所述的电池单体或如权利要求22所述的电池,所述电池单体或电池用于提供电能。
  24. 一种电池单体的制造方法,包括:
    将电极组件的层叠设置的多个子极耳收拢以形成极耳,所述极耳包括依次连接第一连接段及第二连接段,所述第一连接段连接于所述电极组件的本体;
    将所述第二连接段相对于所述第一连接段弯折;
    将所述第二连接段和所述第一连接段中的至少一者连接于电极引出件的第一部分。
  25. 根据权利要求24所述的电池单体的制造方法,其中,所述将电极组件的层叠设置的多个子极耳收拢,包括:
    将所述多个子极耳连接形成第一连接部;
    将所述第二连接段相对于所述第一连接段弯折,包括:
    在所述第一连接部的远离所述本体的一端折弯所述极耳,以形成第二连接段。
  26. 根据权利要求25所述的电池单体的制造方法,其中,所述将所述第二连接段和所述第一连接段中的至少一者连接于电极引出件的第一部分,包括:
    将所述第二连接段、所述第一连接部和所述电极引出件连接形成第二连接部。
PCT/CN2022/139795 2022-12-16 2022-12-16 电池单体、电池、用电设备及电池单体的制造方法 WO2024124586A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/139795 WO2024124586A1 (zh) 2022-12-16 2022-12-16 电池单体、电池、用电设备及电池单体的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/139795 WO2024124586A1 (zh) 2022-12-16 2022-12-16 电池单体、电池、用电设备及电池单体的制造方法

Publications (1)

Publication Number Publication Date
WO2024124586A1 true WO2024124586A1 (zh) 2024-06-20

Family

ID=91484290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139795 WO2024124586A1 (zh) 2022-12-16 2022-12-16 电池单体、电池、用电设备及电池单体的制造方法

Country Status (1)

Country Link
WO (1) WO2024124586A1 (zh)

Similar Documents

Publication Publication Date Title
EP4131631A1 (en) Electrode assembly, battery cell, battery and power-consuming apparatus
CN218939957U (zh) 极片、电池单体、电极组件、电池及用电设备
CN215989141U (zh) 电池单体、电池以及用电装置
EP4102606A1 (en) Electrode assembly, battery cell, battery, and power-consuming device
US20230238540A1 (en) Electrode assembly, battery cell, battery, and method and device for manufacturing electrode assembly
CN115413379A (zh) 电极组件、电池单体、电池及电极组件的制造方法和设备
CN214411248U (zh) 电极组件、电池单体、电池以及用电设备
WO2024109411A1 (zh) 电池及用电设备
CN220172186U (zh) 电极组件、电池单体、电池及用电设备
WO2023168954A1 (zh) 电芯、电芯的制造方法、电池单体、电池及用电设备
CN217507578U (zh) 电极组件、电池单体、电池和用电设备
WO2024124586A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法
CN116470241A (zh) 电极组件、电池单体、电池及用电设备
CN218414630U (zh) 极片、电极组件、电池单体、电池及用电装置
CN220895733U (zh) 电池单体、电池、用电设备及储能装置
WO2023045490A1 (zh) 电极组件及制造方法和***、电池单体、电池和用电装置
CN217788485U (zh) 电极组件、电池单体、电池及用电设备
WO2024055144A1 (zh) 转接部件、电池单体、电池及用电装置
WO2024031353A1 (zh) 极片、电极组件、电池单体、电池及用电设备
CN220774523U (zh) 电池单体、电池及用电设备
CN215869570U (zh) 电池单体、电池以及用电装置
CN220895732U (zh) 壳体、端盖、电池单体、电池、用电设备及储能装置
WO2024082138A1 (zh) 电池单体、电池及用电设备
CN220895734U (zh) 电池单体、电池、用电设备及储能装置
WO2024040503A1 (zh) 电极组件、制备方法、电池单体、电池及用电装置