WO2024124458A1 - Harq进程处理方法、装置、设备、存储介质及产品 - Google Patents

Harq进程处理方法、装置、设备、存储介质及产品 Download PDF

Info

Publication number
WO2024124458A1
WO2024124458A1 PCT/CN2022/139141 CN2022139141W WO2024124458A1 WO 2024124458 A1 WO2024124458 A1 WO 2024124458A1 CN 2022139141 W CN2022139141 W CN 2022139141W WO 2024124458 A1 WO2024124458 A1 WO 2024124458A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq process
pusch
harq
puschs
value
Prior art date
Application number
PCT/CN2022/139141
Other languages
English (en)
French (fr)
Inventor
付喆
林亚男
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/139141 priority Critical patent/WO2024124458A1/zh
Publication of WO2024124458A1 publication Critical patent/WO2024124458A1/zh

Links

Images

Definitions

  • the present application relates to the field of wireless communication technology, and in particular to a HARQ process processing method, device, equipment, storage medium and product.
  • Hybrid Automatic Repeat reQuest is a technology that combines forward error correction coding and automatic repeat request.
  • the embodiments of the present application provide a HARQ process processing method, apparatus, device, storage medium and product.
  • the technical solution is as follows:
  • an embodiment of the present application provides a HARQ process processing method, the method is performed by a terminal device, and the method includes:
  • a hybrid automatic repeat request HARQ process of at least one PUSCH among a plurality of physical uplink shared channels PUSCH is determined; and among the process numbers of the HARQ processes of the plurality of PUSCHs, at least one process number is different from the other process numbers.
  • an embodiment of the present application provides a HARQ process processing device, the device comprising:
  • the processing module is used to determine a hybrid automatic repeat request HARQ process of at least one PUSCH among multiple physical uplink shared channels PUSCH; among the process numbers of the HARQ processes of the multiple PUSCHs, at least one process number is different from the other process numbers.
  • an embodiment of the present application provides a terminal device, the terminal device comprising a processor, a memory, and a transceiver;
  • the processor is used to determine a hybrid automatic repeat request HARQ process of at least one PUSCH among multiple physical uplink shared channels PUSCH; among the process numbers of the HARQ processes of the multiple PUSCHs, at least one process number is different from the other process numbers.
  • an embodiment of the present application further provides a computer-readable storage medium, in which a computer program is stored.
  • the computer program is loaded and executed by a processor to implement the above-mentioned HARQ process processing method.
  • a computer program product or a computer program is provided, the computer program product or the computer program including computer instructions, the computer instructions being stored in a computer-readable storage medium.
  • a processor of a terminal device or a network-side device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the terminal device or the network-side device executes the above-mentioned HARQ process processing method.
  • a computer program which includes computer instructions.
  • a processor of a terminal device or a network side device executes the computer instructions, so that the terminal device or the network side device executes the above-mentioned HARQ process processing method.
  • a chip is provided, wherein the chip is used to execute the above-mentioned HARQ process processing method.
  • the terminal device can determine the HARQ process of at least one PUSCH to coordinate the process numbers of the HARQ processes of multiple PUSCHs, thereby avoiding the failure of sending the Media Access Control (MAC) packet data unit (PDU) in the HARQ process that needs to be used/reserved due to the use of the same HARQ process by adjacent or similar PUSCHs, thereby improving transmission efficiency.
  • MAC Media Access Control
  • PDU packet data unit
  • FIG1 is a schematic diagram of the architecture of a communication system involved in an embodiment of the present application.
  • FIG2 is a schematic diagram of a transmission cycle involved in the present application.
  • FIG3 is a flow chart of a HARQ process processing method provided by an embodiment of the present application.
  • FIG4 is a flowchart of a HARQ process processing method provided by an embodiment of the present application.
  • FIG5 is a schematic diagram of a HARQ process number shown in an exemplary embodiment of the present application.
  • FIG6 is a schematic diagram of a HARQ process number shown in an exemplary embodiment of the present application.
  • FIG7 is a block diagram of a HARQ process processing device provided by an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of a device provided in one embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art can appreciate that with the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • Fig. 1 shows a schematic diagram of a communication system involved in an exemplary embodiment of the present application.
  • the communication system includes a network side device 110 and a terminal device 120, and/or a terminal device 120 and a terminal device 130, which are not limited in the present application.
  • the network side device 110 in the present application provides a wireless communication function
  • the network side device 110 includes but is not limited to: an evolved node B (eNB), a radio network controller (RNC), a node B (NB), a base station controller (BSC), a base transceiver station (BTS), a home base station (e.g., Home Evolved Node B, or Home Node B, HNB), a baseband unit (BBU), an access point (AP) in a wireless fidelity (Wi-Fi) system, a wireless relay node, a wireless backhaul node, a transmission point (TP) or a transmission and reception point (TRP), etc., and can also be a fifth generation (5G) mobile communication system.
  • eNB evolved node B
  • RNC radio network controller
  • NB node B
  • BSC base station controller
  • BTS base transceiver station
  • HNB home base station
  • BBU baseband unit
  • AP access point
  • Wi-Fi wireless fidelity
  • BBU baseband unit
  • DU distributed unit
  • B5G Fifth Generation
  • 6G 6th Generation
  • CN core network
  • fronthaul, backhaul radio access network
  • RAN radio access network
  • the terminal device 120 and/or the terminal device 130 in the present application are also called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent, and user device.
  • the terminal includes but is not limited to: handheld devices, wearable devices, vehicle-mounted devices and Internet of Things devices, such as: mobile phones, tablet computers, e-book readers, laptop computers, desktop computers, televisions, game consoles, mobile Internet devices (MID), augmented reality (AR) terminals, virtual reality (VR) terminals and mixed reality (MR) terminals, wearable devices, handles, electronic tags, controllers, wireless terminals in industrial control (Industrial Control), wireless terminals in self-driving (Self Driving), wireless terminals in remote medical care (Remote Medical), wireless terminals in smart grid (Smart Grid) and so on.
  • MID mobile Internet devices
  • AR augmented reality
  • VR virtual reality
  • MR mixed reality
  • Wireless terminals in transportation safety wireless terminals in smart city, wireless terminals in smart home, wireless terminals in remote medical surgery, cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, Personal Digital Assistant (PDA), TV set-top box (STB), Customer Premise Equipment (CPE), etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • STB TV set-top box
  • CPE Customer Premise Equipment
  • the network side device 110 and the terminal device 120 communicate with each other through a certain air interface technology, such as a Uu interface.
  • a certain air interface technology such as a Uu interface.
  • uplink communication refers to sending signals to the network side device 110
  • downlink communication refers to sending signals to the terminal device 120.
  • the terminal device 120 and the terminal device 130 communicate with each other through a certain air interface technology, such as a Uu interface.
  • the first sideline communication refers to sending signals to the terminal device 130; the second sideline communication refers to sending signals to the terminal device 120.
  • the terminal device 120 and the terminal device 130 are both within the network coverage and are located in the same cell, or the terminal device 120 and the terminal device 130 are both within the network coverage but are located in different cells, or the terminal device 120 is within the network coverage but the terminal device 130 is outside the network coverage.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G mobile communication system New Radio (NR) system, NR system evolution system, LTE-based access to unlicensed spectrum (LTE-U) system, NR-based access to unlicensed spectrum (NR-U) system, terrestrial communication network (NTN) system, non-terrestrial communication network (NTN) system, wireless local area network (WLAN), wireless fidelity (Wi-Fi), cellular Internet of Things system, cellular passive Internet of Things system, and can
  • the technical solution provided in the embodiments of the present application can also be applied to machine type communication (MTC), long term evolution technology for machine-to-machine communication (LTE-M), device to device (D2D) network, machine to machine (M2M) network, Internet of Things (IoT) network or other networks.
  • MTC machine type communication
  • LTE-M long term evolution technology for machine-to-machine communication
  • D2D device to device
  • M2M machine to machine
  • IoT Internet of Things
  • the IoT network can include, for example, the Internet of Things.
  • the communication mode in the Internet of Things system is collectively referred to as vehicle to other devices (Vehicle to X, V2X, X can represent anything), for example, the V2X can include: vehicle to vehicle (V2V) communication, vehicle to infrastructure (V2I) communication, vehicle to pedestrian communication (V2P) or vehicle to network (V2N) communication, etc.
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • NR uplink supports semi-static periodic transmission mode, namely configured grant PUSCH transmission, which includes two types:
  • Type-1 CG After the Radio Resource Control (RRC) configures the transmission parameters, it takes effect without the need for Downlink Control Information (DCI) activation;
  • RRC Radio Resource Control
  • type-2 CG After RRC configures the transmission parameters, they need to be activated by DCI to take effect.
  • CG supports symbol-level cycles of 2 symbols/7 symbols and slot-level cycles of ⁇ 1, 2, 4, 5, 8, 10, 16, 20, 32, 40... ⁇ .
  • PUSCH is transmitted once in one CG cycle (i.e., there is only one PUSCH occasion).
  • HARQ Process ID [floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes;
  • HARQ Process ID [floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2;
  • CURRENT_symbol (SFN ⁇ numberOfSlotsPerFrame ⁇ numberOfSymbolsPerSlot+slot number in the frame ⁇ numberOfSymbolsPerSlot+symbol number in the slot), and numberOfSlotsPerFrame and numberOfSymbolsPerSlot refer to the number of consecutive slots per frame and the number of consecutive symbols per slot, respectively as specified in TS 38.211.
  • NR introduces CG uplink control information (UCI) to support the transmission of CG PUSCH on unlicensed bands.
  • the HARQ process number carried by CG PUSCH transmitted on unlicensed bands is no longer determined based on the occupied time domain self-resources.
  • the UE embeds CG-UCI information in the transmitted CG PUSCH to inform the base station of the HARQ process number, redundant version information and new data indication information carried by the current CG PUSCH, as shown in the following parameters in Table 1:
  • the last item is used to indicate whether the subsequent resources of the channel occupancy time (Channel Occupancy Time, COT) where the current CG PUSCH is located can be shared for downlink transmission.
  • COT Channel Occupancy Time
  • XR Extended Reality
  • CG cloud game
  • the services studied in this project include augmented reality (AR)/virtual reality (VR)/cloud gaming, etc.
  • AR augmented reality
  • VR virtual reality
  • One of the main services of XR/CG is the video stream service, and its arrival rate (measured in fps, fps, i.e. frame per second) can be 30fps, 60fps, 90fps, 120fps, then the corresponding video stream period is ⁇ 33.33ms, 16.67ms, 11.11ms, 8.33ms ⁇ .
  • the characteristics of XR data include: the data packet size is variable and the average is large. Taking AR/VR with a data rate of 100Mbps as an example, the average uplink data packet is 20833 bytes, the maximum is 31250 bytes, and the minimum is 10417 bytes. That is, the size of the data packet to be transmitted in each cycle is between [10417 bytes, 31250 bytes]. In an actual system with a bandwidth of 100M, transmitting a 20833-byte data packet requires approximately 4 time slots of transmission resources.
  • 3GPP has confirmed that it supports configuring multiple PUSCH occasions in a CG cycle for transmitting XR large data packets. Furthermore, when the amount of data in a certain cycle is relatively small and does not need to occupy all pre-configured multiple PUSCH occasions, the UE can dynamically notify the base station of the PUSCH occasions that are not used this week. The base station can reallocate the unused PUSCH occasions to other UEs for data transmission, thereby improving system efficiency.
  • Occasion 1 carries HARQ process X
  • Occasion 2 immediately reuses process X, and new data is loaded into the buffer of the process.
  • the data transmitted in Occasion 1 is cleared, and the data transmitted in Occasion 1 cannot support HARQ retransmission.
  • the solution shown in the embodiment of the present application provides a solution for determining the HARQ process of multiple PUSCHs, which can avoid the failure of MAC PDU transmission in the HARQ process that needs to be used/reserved due to adjacent or similar PUSCHs using the same HARQ process, thereby improving transmission efficiency.
  • This solution is applicable to CG transmission, dynamic uplink grant (DG) transmission, and DG+CG transmission.
  • a CG period has one or more CG transmission opportunities or CG PUSCHs. Also, there are one or more CG configurations, and different CG configurations correspond to different CG indexes.
  • multiple DG PUSCH transmissions are scheduled within a period of time or in one DCI.
  • the period of time is independent of the CG period.
  • the period of time can be one or more CG periods.
  • the period of time is independent of the CG period.
  • the period of time can be one or more CG periods.
  • a DCI schedules one or more DG PUSCH transmissions and activates or indicates one or more CG PUSCH transmissions.
  • the activated or indicated CG PUSCH can be for one or more CG periods.
  • the DCI schedules one or more DG PUSCH transmissions.
  • the one or more CG PUSCHs that exist may be of one or more CG periods.
  • the one or more CG PUSCHs that exist may be of the same CG index or of different CG indices.
  • FIG. 3 shows a flow chart of a HARQ process processing method provided by an embodiment of the present application, which method may be executed by a terminal device, wherein the terminal device may be the terminal device 120 or the terminal device 130 in the network architecture shown in FIG. 1 .
  • the method may include the following steps:
  • Step 301 Determine a hybrid automatic repeat request HARQ process of at least one PUSCH among a plurality of physical uplink shared channels PUSCH.
  • At least one process number is different from the other process numbers.
  • At least one process number is the same as the other process numbers.
  • the terminal device can determine the HARQ process of at least one PUSCH to control the process numbers of the HARQ processes of multiple PUSCHs, thereby avoiding the failure of MAC PDU sending in the HARQ process that needs to be used/reserved due to the use of the same HARQ process by adjacent or similar PUSCHs, thereby improving transmission efficiency.
  • FIG. 4 shows a flow chart of a HARQ process processing method provided by an embodiment of the present application, which method can be interactively executed by a terminal device and a network side device; wherein the terminal device and the network side device can be the network side device 110 and the terminal device 120 (or the terminal device 130) in the network architecture shown in FIG. 1.
  • the method can include the following steps:
  • Step 401 The network side device sends configuration information to the terminal device; the terminal device receives the configuration information.
  • the above configuration information is used for CG and/or DG transmission, or, the above configuration information is used for HARQ process determination.
  • the configuration information includes configuration authorization CG configuration and/or dynamic uplink authorization DG configuration.
  • a CG period of the CG configuration includes one or more CG PUSCH opportunities.
  • the configuration information includes:
  • the available HARQ process or HARQ process range includes:
  • the number of HARQ processes and/or the HARQ process offset is the number of HARQ processes and/or the HARQ process offset.
  • the number of HARQ processes and/or the HARQ process offset are for all CG opportunities of the uplink resource configuration; or, the number of HARQ processes and/or the HARQ process offset are for specific CG opportunities of each period of the uplink resource configuration.
  • the configuration information is configured via a radio resource control (RRC) reconfiguration message.
  • RRC radio resource control
  • the above configuration information is configured through RRC reconfiguration.
  • the above configuration information includes available UL resources within a period of time, and optionally, the available UL resources include multiple UL resources.
  • the above configuration information includes CG configuration.
  • a CG period of the CG configuration includes one or more CG PUSCH occasions.
  • the above configuration information includes available HARQ processes or HARQ process ranges.
  • it includes the number of HARQ processes and/or HARQ process offset.
  • the above HARQ process or HARQ process range, or the number of HARQ processes and/or HARQ process offset is for all CG occasions of the above UL resource configuration (such as CG), or for specific CG occasions of each cycle of the above UL resource configuration (such as CG) (such as the first CG occasion of each CG cycle).
  • Step 402 The network side device sends first indication information to the terminal device; the terminal device receives the first indication information.
  • step 402 is an optional step.
  • the first indication information is carried by a radio resource control RRC message, a medium access control MAC control element CE, or downlink control information DCI.
  • Step 403 The terminal device determines the HARQ process of at least one PUSCH among the multiple PUSCHs according to the above configuration information and/or the first indication information.
  • At least one process number is different from the other process numbers.
  • At least one process number is the same as the other process numbers.
  • determining a hybrid automatic repeat request HARQ process of at least one PUSCH among a plurality of physical uplink shared channels PUSCHs includes:
  • the HARQ process of at least one PUSCH among the multiple PUSCHs is determined.
  • the terminal device determines the HARQ process of at least one PUSCH among the multiple PUSCHs in the following cases:
  • Multiple PUSCH occasions are configured or exist, or multiple PUSCH occasions are configured or exist for a service cycle or a CG cycle, or multiple PUSCH occasions are activated/scheduled within a period of time or for a DCI, or multiple CG cycles are configured and multiple CG occasions exist for a period of time/a cycle, or at least one of the HARQ process numbers used by multiple PUSCH occasions is different, or at least two of the multiple PUSCH occasions need to transmit different data or MAC PDUs, or the amount of service data or the amount of data to be transmitted or the amount of data related to a specific service or the amount of data related to a specific logical channel (Logical Channel, LCH) or Logical Channel Group (Logical Channel Group, LCG) or PDU session or Quality of Service (Quality of Service, QoS) flow or Data Radio Bearer (DRB) is greater than or equal to a first threshold, or multiple PUSCH occasions are for a specific service or LCH or LCG or PDU session or QoS flow or DRB
  • the transmission interval of the multiple CG resources and/or DG resources is small, and two PUSCHs may use the same HARQ process, resulting in the failure of MAC PDU sending in the HARQ process that needs to be used/reserved.
  • the terminal device can comprehensively determine the HARQ process of at least one PUSCH in the HARQ processes of multiple CG resources and/or DG resources to avoid the situation where two PUSCHs in the HARQ processes of multiple CG resources and/or DG resources use the same HARQ process, resulting in the failure of MAC PDU sending in the HARQ process that needs to be used/reserved.
  • determining a HARQ process of at least one PUSCH among the plurality of PUSCHs comprises:
  • the HARQ process of a specific PUSCH among the multiple PUSCHs is determined using the second HARQ process calculation formula and the second factor.
  • the second HARQ process calculation formula may be a HARQ process calculation formula defined in the TS38.321 protocol.
  • the above-mentioned first HARQ process calculation formula may be a new HARQ process calculation formula proposed in the present application, or a variation of the above-mentioned second HARQ process calculation formula.
  • the HARQ process numbers of all PUSCHs in the multiple PUSCHs are determined by at least one of the second HARQ process calculation formula, the first HARQ process calculation formula, the second factor, and the first parameter.
  • the terminal device can determine the HARQ process numbers of all PUSCHs in multiple PUSCHs based on the second HARQ process calculation formula, the first HARQ process calculation formula, the second factor, the UE implementation, and at least one of the first parameters.
  • the terminal device may determine the HARQ process numbers of some PUSCHs among multiple PUSCHs based on the second HARQ process calculation formula, the first HARQ process calculation formula, the second factor, the UE implementation, and at least one of the first parameters.
  • whether to determine the HARQ process numbers of all PUSCHs in multiple PUSCHs based on at least one of the second HARQ process calculation formula, the first HARQ process calculation formula, the second factor, the UE implementation, and the first parameter can be predefined, or network configured, or network enabled/disabled, or network indicated, or meet conditions (for example, multiple PUSCH occasions are configured or exist, or multiple PUSCH occasions are configured or exist in a service cycle or a CG cycle, or multiple PUSCH occasions are activated/scheduled within a period of time or in a DCI, or multiple CG cycles are configured and there are multiple CG occasions in a period of time/a cycle, or at least one of the HARQ process numbers used by multiple PUSCH occasions is different, or at least two of the multiple PUSCH occasions need to transmit different data or MAC PDUs, or the amount of service data or the amount of data to be transmitted or the amount of data related to a specific service or the amount of data related to a specific LCH
  • the HARQ process numbers of some PUSCHs in multiple PUSCHs are determined according to at least one of the second HARQ process calculation formula, the first HARQ process calculation formula, the second factor, the UE implementation, and the first parameter, or the HARQ process numbers of some PUSCHs in multiple PUSCHs are determined according to the second HARQ process calculation formula, the first HARQ process calculation formula, the second factor, and which one or more of the first parameters are used to determine the HARQ process numbers of some PUSCHs in multiple PUSCHs, which may be predefined, or network configured, or network enabled/disabled, or network indicated, or satisfying conditions (for example, multiple PUSCH occasions are configured or exist, or multiple PUSCH occasions are configured or exist in a service cycle or a CG cycle, or within a period of time or a DCI activates/schedules multiple PUSCH occasions, or, multiple CG cycles are configured and there are multiple CG occasions in a period of time/a cycle, or, at least one of
  • determining a HARQ process of at least one PUSCH among the plurality of PUSCHs comprises:
  • a specific first parameter determines a HARQ process of a specific PUSCH among the multiple PUSCHs.
  • the HARQ process of a specific PUSCH among the multiple PUSCHs is determined according to the second HARQ process calculation formula and the second factor.
  • the above-mentioned specific PUSCH may be the first PUSCH among multiple PUSCHs.
  • the above-mentioned specific PUSCH may also be other PUSCHs except the first PUSCH among multiple PUSCHs, such as the last PUSCH or the second PUSCH and so on.
  • the method further comprises:
  • preconfiguration predefined or specified conditions, determine at least one HARQ process using the second HARQ process calculation formula, the first HARQ process calculation formula, the second factor and at least one of the first parameters.
  • the above-mentioned predefined or specified conditions may indicate under what circumstances the scheme shown in the embodiment of the present application is used to determine the HARQ process/process number of at least one PUSCH among multiple PUSCHs, or the above-mentioned predefined or specified conditions may indicate under what circumstances which parameters are used to determine the HARQ process/process number of at least one PUSCH among multiple PUSCHs.
  • the network indication, pre-configuration, pre-defined or specified condition may indicate that when multiple PUSCHs are configured, the terminal device uses the scheme shown in the embodiment of the present application to determine the HARQ process/process number of at least one PUSCH among the multiple PUSCHs; for another example, the network indication, pre-configuration, pre-defined or specified condition may indicate that when there are multiple PUSCHs in a CG, the terminal device uses the scheme shown in the embodiment of the present application to determine the HARQ process/process number of at least one PUSCH among the multiple PUSCHs; for another example, the network indication, pre-configuration, pre-defined or specified condition may indicate that when different CG opportunities in a CG cycle correspond to different HARQ processes, the terminal device uses the scheme shown in the embodiment of the present application to determine the HARQ process/process number of at least one PUSCH among the multiple PUSCHs; for another example, the network indication, pre-configuration, pre-defined or specified condition may indicate that when the first parameter or the second factor is
  • the first parameter is used to,
  • X is an integer greater than or equal to 1.
  • the function of the first parameter may include determining information of all PUSCHs among the multiple PUSCHs, or information of at least part of the PUSCHs among the multiple PUSCHs.
  • the first parameter is indicated by configuration information; the configuration information is used for CG transmission or HARQ process determination; or,
  • the first parameter is indicated by first indication information; or,
  • the first parameter is a predefined parameter.
  • the first parameter may be indicated or configured by one of RRC, MAC CE, or DCI.
  • the first parameter can be RRC configuration, DCI or MAC CE activation/deactivation.
  • the first parameter may be RRC configured, DCI or MAC CE adjusted.
  • the first parameter is also used to indicate the HARQ process or HARQ process usage range of other CG opportunities other than the specific CG opportunity of each cycle of the uplink resource configuration.
  • the above-mentioned first parameter is also used to indicate the HARQ process or HARQ process usage range of other DG opportunities other than the specific DG opportunity of each period of uplink resource configuration.
  • the above-mentioned first parameter is also used to indicate the HARQ process or HARQ process usage scope of other CG/DG opportunities other than the specific CG/DG opportunities in each period of uplink resource configuration.
  • the first parameter is a value interval or a value range.
  • the first parameter is a value offset.
  • the first parameter is a single value.
  • the first parameter is an interval or an offset between HARQ processes of every two adjacent PUSCHs in the multiple PUSCHs.
  • the first parameter is a HARQ process number of a specific PUSCH among multiple PUSCHs.
  • the first parameter is the process ID of the first PUSCH other than the specific PUSCH among the multiple PUSCHs; or,
  • the first parameter is a HARQ interval or offset of a first PUSCH other than a specific PUSCH among the multiple PUSCHs relative to the specific PUSCH; or,
  • the first parameter is a HARQ interval or offset of each PUSCH in a plurality of PUSCHs relative to a specific PUSCH; or,
  • the first parameter is the HARQ interval or offset of each PUSCH in the multiple PUSCHs relative to the previous X PUSCHs.
  • the interval or offset between two adjacent PUSCHs is the same first value; or,
  • an interval or an offset between two adjacent PUSCHs is the same second value.
  • the first value is indicated by a network, or the first value is a predefined value; or the second value is indicated by a network, or the second value is a predefined value.
  • the first parameter is a first value list.
  • the first value list is a value list of HARQ process intervals or offsets for multiple PUSCH opportunities; or, the first value list is a one-to-one mapping between PUSCH opportunities and HARQ process intervals or offsets; or, the first value list is a value list of HARQ process numbers for multiple PUSCH opportunities; or, the first value list is a one-to-one mapping between PUSCH opportunities and HARQ process numbers.
  • the first value list is an interval or offset between process numbers of each two adjacent PUSCHs in the plurality of PUSCHs; or,
  • the first value list is the process number of each PUSCH except the specific PUSCH in the multiple PUSCHs, and the interval or offset relative to the process number of the specific PUSCH; or,
  • the first value list is the interval or offset of the process number of each PUSCH except the specific PUSCH in the multiple PUSCHs relative to the process number of the first X HARQ processes; or,
  • the first value list is the process number of each PUSCH in the multiple PUSCHs except the specific PUSCH; or,
  • the first value list is the process number of each PUSCH in the plurality of PUSCHs.
  • the first value list is the process number of each PUSCH in the plurality of PUSCHs, the first value list is the process number of each PUSCH in the plurality of PUSCHs, the interval or offset relative to the process number of a specific PUSCH; or,
  • the first value list is the interval or offset of the process number of each PUSCH in multiple PUSCHs relative to the process numbers of the first X HARQ processes.
  • the first value list contains at least two values, and each of the at least two values corresponds to an interval or offset between HARQ processes for a PUSCH opportunity; or, the first value list contains at least two values, and each of the at least two values corresponds to a HARQ process number for a PUSCH opportunity.
  • the at least two values correspond to different value indexes.
  • the method further comprises:
  • the terminal device determines to activate or use at least one value in the first value list according to the second indication information; or,
  • the terminal device determines to deactivate or not use at least one value in the first value list according to the second indication information.
  • the second indication information is carried in downlink control information or MAC CE.
  • the first parameter includes at least two sets of second value lists.
  • each of the at least two sets of the second value lists corresponds to an interval or offset between HARQ processes for PUSCH opportunities; or, each of the at least two sets of the second value lists corresponds to a HARQ process number for PUSCH opportunities.
  • the second value list is a one-to-one mapping between PUSCH opportunities and HARQ process intervals or offsets; or, the second value list is a one-to-one mapping between PUSCH opportunities and HARQ numbers; or, the second value list is a HARQ process number value list for multiple PUSCH opportunities; or, the second value list is a one-to-one mapping between PUSCH opportunities and HARQ process numbers.
  • At least two sets of the second value lists correspond to different value list indexes.
  • the method further comprises:
  • the terminal device determines to activate or use at least one set of value lists among the at least two sets of second value lists according to the third indication information; or,
  • the terminal device determines to deactivate or not use at least one set of the value lists in the at least two sets of the second value lists according to the third indication information.
  • the third indication information is carried in downlink control information or MAC CE.
  • the second factor is related to at least one of:
  • Service characteristics For example, data volume size, data volume change, number of CG and/or DG configurations, number of CG and/or DG activated or used, number of resources, resource configuration cycle, number of resources in a cycle, number of resources in a period of time, resource spacing, number of cycles, current cycle order, number of CG resources in a cycle, number of available HARQ processes, HARQ process offset, maximum number of HARQ processes, HARQ interval or offset between HARQ of resources in a cycle.
  • the second factor is the value of the adjustment factor used in the calculation formula of the first HARQ process.
  • the second factor is the HARQ process calculation offset used when calculating the CG and/or DG positions in the HARQ calculation formula.
  • the second factor is predefined, or indicated by the network, or configured by the network, or determined by the terminal device.
  • the second factor is determined by the terminal device according to at least one of the following:
  • the HARQ process numbers of the other PUSCHs in the multiple PUSCHs except the specific PUSCH are the HARQ process number of the specific PUSCH plus a first value; or,
  • the HARQ process numbers of the other PUSCHs except the specific PUSCH in the multiple PUSCHs are the HARQ process numbers of the first X PUSCHs of the PUSCH plus a third value; or,
  • the HARQ process numbers of the other PUSCHs among the multiple PUSCHs except the specific PUSCH are increased or decreased by a second value according to the interval between the specific PUSCH; for example, the specific PUSCH is the first PUSCH, and the HARQ process numbers of the remaining PUSCHs increase starting from the first PUSCH.
  • the above-mentioned specific PUSCH is the first PUSCH among the multiple PUSCHs, then the HARQ process numbers of the second to nth PUSCHs in the multiple PUSCHs are respectively the HARQ process number of the first PUSCH + 1, + 2, + 3... + n-1.
  • the calculation formula of the first HARQ process is:
  • HARQ Process ID [floor(CURRENT_slot ⁇ 10/(numberOfSlotsPerFrame ⁇ periodicity))*N]modulo nrofHARQ-Processes;or,
  • HARQ Process ID [floor(CURRENT_symbol/periodicity)*N]modulo nrofHARQ-Processes;or,
  • HARQ Process ID ⁇ [floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2 ⁇ *N ⁇ modulo nrofHARQ-Processes;or,
  • HARQ Process ID ⁇ [floor(CURRENT_symbol/periodicity)]+harq-ProcID-Offset2 ⁇ *N ⁇ modulo nrofHARQ-Processes;
  • N is the second factor.
  • the second HARQ process calculation formula is:
  • HARQ Process ID [floor(CURRENT_slot ⁇ 10/(numberOfSlotsPerFrame ⁇ periodicity))]modulo nrofHARQ-Processes;or,
  • HARQ Process ID [floor(CURRENT_slot ⁇ 10/(numberOfSlotsPerFrame ⁇ periodicity))]modulo nrofHARQ-Processes+harq-ProcID-Offset; or,
  • HARQ Process ID [floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes; or,
  • HARQ Process ID [floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2.
  • CURRENT_slot is the current time slot number
  • numberOfSlotsPerFrame is the number of time slots contained in each frame
  • periodicity is the service cycle, resource transmission cycle or configuration cycle of transmission resources
  • nrofHARQ-Processes is the number of HARQ processes, the number of HARQ processes available for transmission resources or the number of HARQ processes applicable to transmission resources
  • CURRENT_symbol is the current symbol number
  • harq-ProcID-Offset2 is the available HARQ process offset, or is used to determine the range of HARQ processes available for transmission resources or rounding.
  • the method further comprises: taking a modulo of the HARQ process number of other PUSCHs except the specific PUSCH among the multiple PUSCHs; or,
  • the HARQ process number of a specific PUSCH among multiple PUSCHs is modulo.
  • the modulo operation is performed in the HARQ process calculation formula, or is performed outside the HARQ process calculation formula, or is performed after the result of the HARQ process calculation formula is calculated.
  • the above-mentioned modulo HARQ process numbers of other PUSCHs except the specific PUSCH among the multiple PUSCHs include: modulo the HARQ process numbers of other PUSCHs except the specific PUSCH by the number of HARQ processes, the number of HARQ processes available for transmission resources, or the number of HARQ processes applicable to transmission resources.
  • the terminal device can determine the HARQ process of at least one PUSCH so that among the process numbers of the HARQ processes of the multiple PUSCHs, at least one process number is the same as or different from the other process numbers, thereby avoiding the failure of MAC PDU sending in the HARQ process that needs to be used/reserved due to the use of the same HARQ process by adjacent or similar PUSCHs, thereby improving transmission efficiency.
  • the terminal device can determine, according to the first parameter, a HARQ process or HARQ process number (HARQ Process Identifier, HPI) corresponding to/available at least one CG PSUCH in the case where there are multiple CG PUSCH resources.
  • a HARQ process or HARQ process number HARQ Process Identifier, HPI
  • the first parameter is used to determine the HARQ process interval/offset of multiple CG PUSCHs, or to determine the HARQ process numbers of multiple CG PUSCHs, or to indicate the interval/offset of the HARQ process numbers of other CG PUSCHs for a specific PUSCH (such as the first CG PUSCH), or to indicate the interval/offset of the HARQ process numbers of the next CG PUSCH for a specific PUSCH (such as the previous CG PUSCH, or the first X CG PUSCHs).
  • the first parameter can be a value, a value list, or multiple sets of value lists.
  • the first parameter can be predefined or network configured (such as RRC).
  • the value list is a 1-to-1 mapping between CG PUSCH occasion and HARQ process interval/offset.
  • the specific implementation method can be as follows:
  • Step 1 The base station sends configuration information to the UE.
  • the configuration information is used for CG transmission or HARQ process determination.
  • it includes at least one of the following:
  • the above configuration information is configured through RRC reconfiguration.
  • the above configuration information includes available UL resources within a period of time.
  • the available UL resources include multiple UL resources.
  • the above configuration information includes CG configuration.
  • a CG period of the CG configuration includes one or more CG PUSCH occasions.
  • the above configuration information includes available HARQ processes or HARQ process ranges. Optionally, it includes the number of HARQ processes and/or HARQ process offset. Optionally, the above HARQ process or HARQ process range, or the number of HARQ processes and/or HARQ process offset, is for all CG occasions of the above UL resource configuration (such as CG), or for specific CG occasions of each cycle of the above UL resource configuration (such as CG) (such as the first CG occasion of each CG cycle).
  • the interval/offset between the HARQ processes of multiple CG occasions, or a period of CG occasions is determined to be the same or different.
  • the configuration information, or the first indication information indicates a first parameter.
  • the first parameter may also be predefined.
  • the first indication information may be carried via RRC/MAC CE/DCI.
  • the first parameter is used to indicate the HARQ process or HARQ process usage range of other CG occasions other than the specific CG occasion of each cycle of the UL resource configuration (such as CG).
  • the HARQ process or HARQ process usage range may be the HARQ process number and/or offset.
  • the specific CG occasion is the first CG occasion of the current CG cycle or each CG cycle.
  • the first parameter is used to determine the HARQ process interval/offset of multiple CG PUSCHs, or to determine the HARQ process numbers of multiple CG PUSCHs, or to indicate the interval/offset of the HARQ process numbers of other CG PUSCHs for a specific PUSCH (such as the first CG PUSCH), or to indicate the interval/offset of the HARQ process numbers of the next CG PUSCH for a specific PUSCH (such as the previous CG PUSCH, or the first X CG PUSCHs).
  • the first parameter can be a value.
  • the first parameter is A.
  • the HARQ process of the first CG occasion is K (as calculated using the HARQ process calculation formula, or directly indicated by the network), and the HARQ process numbers of the two CG occasions after the first CG occasion are K+A and K+2A respectively.
  • the first parameter gives the HARQ process number of the first PUSCH (called PUSCH M) other than a specific CG PUSCH (such as the first CG PUSCH, called PUSCH A), or the HARQ process interval/offset of the above PUSCH M for a specific CG PUSCH.
  • the HARQ process offset between other CG PUSCHs, and between other CG PUSCHs and PUSCH M is the same value (the above value can be indicated by the network (such as RRC/MAC CE/DCI) or predefined).
  • the HARQ process number of a specific PUSCH (such as the first CG PUSCH, or PUSCH A) is calculated according to the HARQ process calculation formula, or is indicated by the network (RRC/MAC CE/DCI).
  • the first parameter is M
  • the HARQ offset between PUSCHs is B.
  • a CG period has 4 CG occasions.
  • the HARQ process of the first CG occasion of a period is K.
  • the HARQ process numbers of all CG occasions in this cycle are K, K+M, K+M+B, K+M+2B.
  • the HARQ process numbers of all CG occasions in this cycle are K, M, M+B, M+2B.
  • the first parameter is a list of values.
  • the above list of values is a 1-to-1 mapping between CG PUSCH occasion and HARQ process interval/offset.
  • the first parameter is A, B, and C.
  • the HARQ process of the first CG occasion is K (as calculated using the HARQ process calculation formula, or directly indicated by the network), and the HARQ process numbers of the two CG occasions after the first CG occasion are K+A, K+B, and K+C respectively.
  • the first parameter is A, B, and C.
  • the HARQ process of the first CG occasion is K (as calculated using the HARQ process calculation formula, or directly indicated by the network), and the HARQ process numbers of the two CG occasions after the first CG occasion are K+A, K+A+B, and K+A+B+C respectively.
  • the first parameter is A, B, and C.
  • the HARQ process of the first CG occasion is K (as calculated using the HARQ process calculation formula, or directly indicated by the network), and the HARQ process numbers of the two CG occasions after the first CG occasion are A, B, and C respectively.
  • the first parameter takes the value of A, B, C, and D.
  • the HARQ process numbers of all CG occasions are A, B, C, and D respectively.
  • the first parameter is a list of values.
  • the above value list identifies multiple values, and different values correspond to different intervals/offsets between HARQ processes of CG occasions.
  • the network instructs the user through DCI/MAC CE which value in the above value list to activate or use, or instructs the user to deactivate or not use at least one value in the above value list.
  • the first parameter takes the value of A, B, or C.
  • the network instructs the UE to use a HARQ offset value of B, and it is assumed that there are 4 CG occasions in a CG cycle.
  • the HARQ process of the first CG occasion is K (as calculated using the HARQ process calculation formula, or directly indicated by the network), and the HARQ process numbers of the two CG occasions after the first CG occasion are K+B and K+2B respectively.
  • the first parameter is a list of multiple sets of values.
  • the above multiple sets of value lists and different rounding lists are used to identify different intervals/offsets between HARQ processes for CG occasions.
  • the network instructs the user to activate or use a set of value lists, or instructs the user to deactivate or not use a set or sets of value lists through DCI/MAC CE.
  • the value list index is used to indicate the above information.
  • Each set of value list is a 1-to-1 mapping between CG PUSCH occasion and HARQ process interval/offset.
  • the first parameter value is index1: ⁇ A, B, C ⁇ , index2: ⁇ D, E, F ⁇ .
  • DCI instructs the UE to use the value list of index2.
  • the HARQ process of the first CG occasion is K (as calculated using the HARQ process calculation formula, or directly indicated by the network), and the HARQ process numbers of the two CG occasions after the first CG occasion are K+D, K+E, and K+F respectively.
  • the first parameter value is index1: ⁇ A, B, C ⁇ , index2: ⁇ D, E, F ⁇ .
  • DCI instructs the UE to use the value list of index2.
  • the HARQ process of the first CG occasion is K (as calculated using the HARQ process calculation formula, or directly indicated by the network), and the HARQ process numbers of the two CG occasions after the first CG occasion are K+D, K+D+E, and K+D+E+F respectively.
  • Step 2 The UE determines the HARQ process number according to the configuration and/or indication information in step 1, or determines the HARQ process number of at least one CG occasion in one/each CG period, or determines the HARQ process number of multiple UL transmission occasions within a period of time.
  • at least one of the following is included:
  • the UE uses the above-mentioned first parameter, or uses the HARQ process calculation formula (defined in the existing 38321) + the first parameter, or uses the first HARQ process calculation formula, or uses the first HARQ process calculation formula + the first parameter to determine the HARQ process number of the CG occasion.
  • the HARQ process number of the first CG occasion of each cycle is determined using the existing HARQ process calculation formula (defined in existing 38321). It can also be calculated according to the above method of Example 2. It can also be determined according to the existing HARQ process calculation formula (defined in existing 38321) + the first parameter. It can also be determined according to the first parameter.
  • the HARQ process number of all CG resources can be determined by using the existing HARQ process calculation formula (defined in existing 38321), the first HARQ process calculation formula, and at least one of the first parameter.
  • this HARQ process calculation formula to calculate the HARQ process number of the first CG occasion in a certain cycle.
  • HARQ Process ID [floor(CURRENT_symbol/periodicity)] modulo nrofHARQ-Processes+A. (Then, the process number can be further modulo, or not modulo. Optionally, it can be modulo with respect to nrofHARQ-Processes).
  • HARQ Process ID [floor(CURRENT_symbol/periodicity)+A] modulo nrofHARQ-Processes.
  • HARQ Process ID ⁇ [floor(CURRENT_symbol/periodicity)] modulo nrofHARQ-Processes+A ⁇ modulo nrofHARQ-Processes.
  • Figure 5 shows a schematic diagram of HARQ process numbers shown in an exemplary embodiment of the present application.
  • a cycle T contains at least 3 CG/DG opportunities, and the HARQ process numbers of the three CG/DG opportunities increase sequentially.
  • a method for determining the HARQ process number of each PUSCH resource is given. It is used to avoid the problem of the corresponding MAC PDU flushing when the above HARQ process is used when the data in a certain HARQ process has not been successfully transmitted or needs to be saved.
  • the above embodiment 1 can be used alone or in combination with the following embodiment 2.
  • the terminal device can determine the HARQ process or HARQ process number of a specific first CG PUSCH (which can be the above-mentioned specific PUSCH) when there are multiple CG PUSCH resources.
  • the UE may determine the HARQ process or HARQ process number of the first CG PUSCH using the first HARQ process calculation formula, or determine the HARQ process or HARQ process number of the first CG PUSCH based on the second factor.
  • the second factor may be indicated or configured by the network (RRC/MAC CE/DCI) or determined by the UE.
  • the specific implementation method can be as follows:
  • Step 1 The base station sends configuration information to the UE.
  • the configuration information is used for CG transmission or HARQ process determination.
  • it includes at least one of the following:
  • the above configuration information is configured through RRC reconfiguration.
  • the above configuration information includes that the available UL resources include multiple UL resources within a period of time.
  • the above configuration information includes CG configuration.
  • a CG period of the CG configuration includes one or more CG PUSCH occasions.
  • the above configuration information includes available HARQ processes or HARQ process ranges. Optionally, it includes the number of HARQ processes and/or HARQ process offset. Optionally, the above HARQ process or HARQ process range or the number of HARQ processes and/or HARQ process offset is for all CG occasions of the above UL resource configuration (such as CG), or for specific CG occasions of each cycle of the above UL resource configuration (such as CG) (such as the first CG occasion of each CG cycle).
  • the above-mentioned configuration information, or the second indication information indicates the second factor, or instructs the UE to use the first HARQ process calculation formula.
  • the above-mentioned second indication information, or the second factor, or the indication information instructing the UE to use the first HARQ process calculation formula may be carried via RRC/MAC CE/DCI.
  • the second indication information may be related to the second factor.
  • the second factor may be predefined, or indicated by the network, or preconfigured by the network, or enabled/disabled by the network.
  • the second indication information, or the indication information instructing the UE to use the first HARQ process calculation formula may be predefined, or indicated by the network, or preconfigured by the network, or enabled/disabled by the network.
  • calculation formula for the first HARQ process may be predefined, or may be defined in the formula.
  • the second indication information or the second factor is related to at least one of the following: service characteristics, data volume, data volume change, number of CG configurations (or CG index), number of resources, resource configuration cycle, number of resources in a cycle, resource spacing, number of cycles (or the current cycle number), (maximum) number of CG resources in the cycle, number of available HARQ processes, HARQ process offset, maximum number of HARQ processes, and HARQ interval (offset) between HARQ of resources in a cycle.
  • the second indication information or the second factor is the value of the adjustment factor used in the first HARQ process calculation formula, or the second factor is the HARQ process calculation offset used when calculating the CG position in the existing HARQ calculation formula.
  • the second indication information or the second factor is a parameter used in a calculation formula for the second HARQ process.
  • the above-mentioned second factor may also be determined by the UE.
  • the UE determines it based on the (maximum) number of CG resources in the CG cycle, the resource spacing (i.e., the maximum number of CG resources between the two first CGs of adjacent cycles), the maximum number of processes, the corresponding service characteristics, the corresponding data volume, the change in data volume, the number of CG configurations (or CG index), the number of CG activations or uses, the number of resources, the resource configuration cycle, the number of resources in a cycle, the number of resources in a period of time, the number of cycles (or the current cycle), the number of available HARQ processes, the HARQ process offset, and at least one of the HARQ intervals (offsets) between the HARQs of resources in a cycle.
  • the resource spacing i.e., the maximum number of CG resources between the two first CGs of adjacent cycles
  • the maximum number of processes i.e., the maximum number of CG resources between
  • Step 2 The UE determines the HARQ process number according to the configuration and/or indication information in step 1, or determines the HARQ process number of at least one CG occasion in one/each CG period, or determines the HARQ process number of multiple UL transmission occasions within a period of time.
  • at least one of the following is included:
  • the UE determines the HARQ process number of at least one PUSCH.
  • the calculation formula of the first HARQ process is at least one of the following:
  • HARQ Process ID [floor(CURRENT_slot ⁇ 10/(numberOfSlotsPerFrame ⁇ periodicity))*N]modulo nrofHARQ-Processes;
  • HARQ Process ID ⁇ [floor(CURRENT_symbol/periodicity)] ⁇ *N ⁇ modulo nrofHARQ-Processes;
  • HARQ Process ID ⁇ [floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes ⁇ *N ⁇ modulo nrofHARQ-Processes;
  • HARQ Process ID ⁇ [floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+ harq-ProcID-Offset2 ⁇ *N ⁇ modulo nrofHARQ-Processes;
  • HARQ Process ID ⁇ [floor(CURRENT_symbol/periodicity)]+harq-ProcID-Offset2 ⁇ *N ⁇ modulo nrofHARQ-Processes.
  • d)UE uses the first HARQ process calculation formula to determine the HARQ process or HARQ process number of the first CG PUSCH.
  • HARQ Process ID [floor(CURRENT_slot ⁇ 10/(numberOfSlotsPerFrame ⁇ periodicity))*N]modulo nrofHARQ-Processes.
  • N is the second factor.
  • HARQ Process ID ⁇ [floor(CURRENT_symbol/periodicity)] ⁇ *N ⁇ modulo nrofHARQ-Processes.
  • N is the second factor.
  • HARQ Process ID ⁇ [floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes ⁇ *N ⁇ modulo nrofHARQ-Processes.
  • N is the second factor.
  • HARQ Process ID ⁇ [floor(CURRENT_symbol/periodicity)] modulo nrofHARQ-Processes+harq-ProcID-Offset2 ⁇ *N ⁇ modulo nrofHARQ-Processes.
  • N is the second factor.
  • HARQ Process ID ⁇ [floor(CURRENT_symbol/periodicity)]+harq-ProcID-Offset2 ⁇ *N ⁇ modulo nrofHARQ-Processes.
  • N is the second factor.
  • e)UE determines the HARQ process or HARQ process number of the first CG PUSCH.
  • the UE determines the HARQ process or HARQ process number of the first CG PUSCH based on the second factor.
  • the UE uses the first HARQ process calculation formula, or the existing HARQ process calculation formula to determine the HARQ process or HARQ process number of the above-mentioned first CG PUSCH.
  • the UE uses the first HARQ process calculation formula to determine the HARQ process or HARQ process number of the above-mentioned first CG PUSCH, please refer to c) or d).
  • the UE uses an existing HARQ process calculation formula to determine the HARQ process or HARQ process number of the first CG PUSCH, which may be as follows:
  • the HARQ process number of a certain CG cycle is calculated to be M.
  • the HARQ process number of the first CG occurrence of the cycle is: M*N
  • N is the second indication information or the second factor (optionally, N is the (maximum) number of occurrences allocated to a CG cycle.
  • it is necessary to take a modulus of M*N for example, ⁇ M*N ⁇ modulo nrofHARQ-Processes, to obtain the HARQ process number of the first occurrence of each CG cycle.
  • the HARQ process number of a CG cycle is calculated to be M.
  • the HARQ process number of the first CG occasion of the cycle is: M+K*N, where N is the second indication information or the second factor (optionally, N is the (maximum) number of occasions allocated to a CG cycle - 1, or N is the resource spacing.).
  • N 3, and the determined HARQ process number of the first occasion of each CG cycle is 0, 4, 8, 12).
  • M 3 and the determined HARQ process number of the first occasion of each CG cycle is 0, 4, 8, 12.
  • M 3 and the determined HARQ process number of the first occasion of each CG cycle is 0, 4, 8, 12.
  • M 3 and the determined HARQ process number of the first occasion of each CG cycle is 0, 4, 8, 12.
  • the HARQ process number of other occasions in the cycle is the HARQ process number of the first CG PUSCH of the cycle + (K-1)*1.
  • K is the number of PUSCHs in this cycle.
  • the HARQ process number of other occasions in the cycle is the HARQ process number of the first CG PUSCH of the cycle + (K-1)*Q (where K is the number of PUSCHs in this cycle, and Q can be a fixed value, a predefined value, or a network indication value).
  • the HARQ process number of other occasions in the cycle is the HARQ process number of the first CG PUSCH of the cycle + 1.
  • the HARQ process number of other occasions in the cycle is the HARQ process number of the first CG PUSCH of the cycle + Q (Q can be a fixed value, a predefined value, or a network indication value).
  • the HARQ process number of each PUSCH is the HARQ process number of the previous PUSCH of this PUSCH in the cycle + 1.
  • the HARQ process number of each PUSCH is the HARQ process number of the previous PUSCH of this PUSCH in the cycle + Q (where Q can be a fixed value, a predefined value, or a network indication value).
  • the HARQ process number of other occasions in the cycle is calculated according to the method of embodiment 1.
  • Example 2 and Example 1 may be used separately or individually.
  • Example 2 and Example 1 may be used in combination.
  • Figure 6 shows a schematic diagram of the HARQ process number shown in an exemplary embodiment of the present application.
  • a period T contains at least 3 CG/DG opportunities
  • the HARQ process number Y of the first CG/DG opportunity is determined according to the scheme shown in Example 2.
  • the HARQ process numbers of other CG/DG opportunities can be determined according to the scheme shown in Example 1.
  • a method for determining the HARQ process of the first CG PUSCH is given. Based on the HARQ process determination result of the first CG PUSCH, the HARQ process numbers of other CG PUSCHs can be further determined.
  • FIG. 7 shows a block diagram of a HARQ process processing device provided by an embodiment of the present application; the device may be used to execute the various steps performed by the terminal device in the embodiment shown in FIG. 3 or FIG. 4 .
  • the device may include:
  • the processing module 701 is configured to determine a hybrid automatic repeat request HARQ process of at least one PUSCH among a plurality of physical uplink shared channels PUSCH.
  • At least one process number is different from the other process numbers; or, among the process numbers of the multiple PUSCH HARQ processes, at least one process number is the same as the other process numbers.
  • the processing module 701 is used to determine the HARQ process of at least one PUSCH among the multiple PUSCHs when the multiple PUSCHs include at least two CG resources and/or DG resources belonging to the same cycle, or when the multiple PUSCHs include at least two CG resources and/or DG resources within a time period of a specified length.
  • the processing module 701 is configured to determine the HARQ process of at least one PUSCH among the multiple PUSCHs using a first parameter; or
  • the HARQ process of a specific PUSCH among the multiple PUSCHs is determined using a second HARQ process calculation formula and a second factor.
  • the HARQ process numbers of all PUSCHs in the multiple PUSCHs are determined by at least one of the second HARQ process calculation formula, the first HARQ process calculation formula, the second factor, and the first parameter.
  • the processing module 701 is configured to determine the HARQ process of a specific PUSCH among the multiple PUSCHs according to a second HARQ process calculation formula; or,
  • a specific first parameter determines a HARQ process of a specific PUSCH among the multiple PUSCHs.
  • the HARQ process of a specific PUSCH among the multiple PUSCHs is determined according to the second HARQ process calculation formula and the second factor.
  • the processing module 701 is used to determine whether to use at least one of the second HARQ process calculation formula, the first HARQ process calculation formula, the second factor and the first parameter to determine at least one HARQ process according to a network indication, preconfiguration, predefined or specified condition; or,
  • preconfiguration determine to use at least one of the second HARQ process calculation formula, the first HARQ process calculation formula, the second factor and the first parameter to determine at least one HARQ process.
  • the first parameter is used to:
  • the first parameter is indicated by configuration information; the configuration information is used for CG transmission or HARQ process determination; or,
  • the first parameter is indicated by first indication information; or,
  • the first parameter is a predefined parameter.
  • the configuration information includes: available uplink resources within a period of time, and the available uplink resources include one or more uplink resources.
  • the configuration information includes configuration authorization CG configuration and/or dynamic uplink authorization DG configuration.
  • a CG period of the CG configuration includes one or more CG PUSCH opportunities.
  • the configuration information includes: an available HARQ process or an available HARQ process range.
  • the available HARQ process or HARQ process range includes:
  • the number of HARQ processes and/or the HARQ process offset is the number of HARQ processes and/or the HARQ process offset.
  • the number of HARQ processes and/or the HARQ process offset are for all CG opportunities of uplink resource configuration; or, the number of HARQ processes and/or the HARQ process offset are for specific CG opportunities of each period of uplink resource configuration.
  • the configuration information is configured via a radio resource control (RRC) reconfiguration message.
  • RRC radio resource control
  • the first parameter is also used to:
  • the first indication information is carried by a radio resource control RRC message, a media access control MAC control element CE, or downlink control information DCI.
  • the first parameter is a single value.
  • the first parameter is an interval or an offset between HARQ processes of every two adjacent PUSCHs in the multiple PUSCHs.
  • the first parameter is a HARQ process number of a specific PUSCH among the multiple PUSCHs.
  • the first parameter is the process ID of the first PUSCH among the multiple PUSCHs except the specific PUSCH; or,
  • the first parameter is a HARQ interval or an offset of a first PUSCH other than a specific PUSCH among the multiple PUSCHs relative to the specific PUSCH; or,
  • the first parameter is a HARQ interval or offset of each PUSCH in the multiple PUSCHs relative to the specific PUSCH;
  • the first parameter is a HARQ interval or an offset of each PUSCH in the multiple PUSCHs relative to the previous X PUSCHs.
  • an interval or an offset between two adjacent PUSCHs is the same first value
  • an interval or an offset between two adjacent PUSCHs is the same second value.
  • the first value is indicated by a network, or the first value is a predefined value; or the second value is indicated by a network, or the second value is a predefined value.
  • the first parameter is a first value list.
  • the first value list is a value list of HARQ process intervals or offsets of multiple PUSCH opportunities; or,
  • the first value list is a one-to-one mapping between PUSCH opportunities and HARQ process intervals or offsets; or,
  • the first value list is a value list of HARQ process numbers of multiple PUSCH opportunities.
  • the first value list is a one-to-one mapping between PUSCH opportunities and HARQ process numbers.
  • the first value list is the interval or offset between the process numbers of each two adjacent PUSCHs in the plurality of PUSCHs; or,
  • the first value list is the process number of each PUSCH except the specific PUSCH in the multiple PUSCHs, and the interval or offset relative to the process number of the specific PUSCH; or,
  • the first value list is the interval or offset of the process number of each PUSCH except the specific PUSCH in the multiple PUSCHs relative to the process numbers of the first X HARQ processes; or,
  • the first value list is the process number of each PUSCH in the multiple PUSCHs except the specific PUSCH; or, the first value list is the process number of each PUSCH in the multiple PUSCHs; or,
  • the first value list is the process number of each PUSCH in the multiple PUSCHs.
  • the first value list is the process number of each PUSCH in the multiple PUSCHs, and the interval or offset relative to the process number of a specific PUSCH; or,
  • the first value list is the process number of each PUSCH in the multiple PUSCHs, and the interval or offset relative to the process numbers of the first X HARQ processes.
  • the first value list contains at least two values, and each of the at least two values corresponds to an interval or offset between HARQ processes for a PUSCH opportunity; or, the first value list contains at least two values, and each of the at least two values corresponds to a HARQ process number for a PUSCH opportunity.
  • the at least two values correspond to different value indexes.
  • the processing module 701 is further configured to determine, according to the second indication information, to activate or use at least one value in the first value list; or,
  • the second indication information is carried in downlink control information or MAC CE.
  • the first parameter includes at least two sets of second value lists.
  • each set of the second value lists in at least two sets of the second value lists corresponds to an interval or offset between HARQ processes for PUSCH opportunities; or, each set of the second value lists in at least two sets of the second value lists corresponds to a HARQ process number for PUSCH opportunities.
  • the second value list is a one-to-one mapping between PUSCH opportunities and HARQ process intervals or offsets; or, the second value list is a one-to-one mapping between PUSCH opportunities and HARQ numbers; or, the second value list is a HARQ process number value list for multiple PUSCH opportunities; or, the second value list is a one-to-one mapping between PUSCH opportunities and HARQ process numbers.
  • At least two sets of the second value lists correspond to different value list indexes.
  • the processing module 701 is further configured to determine, according to the third indication information, to activate or use at least one of the at least two sets of the second value lists; or
  • the third indication information is carried in downlink control information or MAC CE.
  • the second factor is related to at least one of the following:
  • Service characteristics For example, data volume size, data volume change, number of CG and/or DG configurations, number of CG and/or DG activated or used, number of resources, resource configuration cycle, number of resources in a cycle, number of resources in a period of time, resource spacing, number of cycles, current cycle order, number of CG resources in a cycle, number of available HARQ processes, HARQ process offset, maximum number of HARQ processes, HARQ interval or offset between HARQ of resources in a cycle.
  • the second factor is the value of the adjustment factor used in the calculation formula of the first HARQ process.
  • the second factor is the HARQ process calculation offset used when calculating the CG and/or DG positions in the HARQ calculation formula.
  • the second factor is predefined, or indicated by the network, or configured by the network, or determined by the terminal device.
  • the second factor is determined by the terminal device according to at least one of the following:
  • Service characteristics For example, data volume size, data volume change, number of CG and/or DG configurations, number of CG and/or DG activated or used, number of resources, resource configuration cycle, number of resources in a cycle, number of resources in a period of time, resource spacing, number of cycles, current cycle order, number of CG resources in a cycle, number of available HARQ processes, HARQ process offset, maximum number of HARQ processes, HARQ interval or offset between HARQ of resources in a cycle.
  • the HARQ process numbers of the other PUSCHs in the multiple PUSCHs except the specific PUSCH are the HARQ process number of the specific PUSCH plus a first value; or,
  • the HARQ process numbers of the other PUSCHs among the multiple PUSCHs except the specific PUSCH are the HARQ process numbers of the first X PUSCHs of the PUSCH plus a third value; or,
  • the HARQ process numbers of the other PUSCHs among the multiple PUSCHs except the specific PUSCH are increased or decreased by a second value according to the interval between them and the specific PUSCH.
  • the calculation formula of the first HARQ process is:
  • HARQ Process ID [floor(CURRENT_slot ⁇ 10/(numberOfSlotsPerFrame ⁇ periodicity))*N]modulo nrofHARQ-Processes;or,
  • HARQ Process ID [floor(CURRENT_symbol/periodicity)*N]modulo nrofHARQ-Processes;or,
  • HARQ Process ID ⁇ [floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2 ⁇ *N ⁇ modulo nrofHARQ-Processes;or,
  • HARQ Process ID ⁇ [floor(CURRENT_symbol/periodicity)]+harq-ProcID-Offset2 ⁇ *N ⁇ modulo nrofHARQ-Processes;
  • N is the second factor.
  • the calculation formula of the second HARQ process is:
  • HARQ Process ID [floor(CURRENT_slot ⁇ 10/(numberOfSlotsPerFrame ⁇ periodicity))]modulo nrofHARQ-Processes;or,
  • HARQ Process ID [floor(CURRENT_slot ⁇ 10/(numberOfSlotsPerFrame ⁇ periodicity))]modulo nrofHARQ-Processes+harq-ProcID-Offset; or,
  • HARQ Process ID [floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes; or,
  • HARQ Process ID [floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2.
  • the processing module 701 is further configured to take a modulus of the HARQ process numbers of other PUSCHs except the specific PUSCH among the multiple PUSCHs; or
  • a modulo HARQ process number of a specific PUSCH among the multiple PUSCHs is taken.
  • the modulo operation the modulo operation
  • FIG8 shows a schematic diagram of the structure of a device 800 provided in an embodiment of the present application.
  • the device 800 may include: a processor 801 , a receiver 802 , a transmitter 803 , a memory 804 and a bus 805 .
  • the processor 801 includes one or more processing cores.
  • the processor 801 executes various functional applications and information processing by running software programs and modules.
  • the receiver 802 and the transmitter 803 may be implemented as a communication component, which may be a communication chip, which may also be called a transceiver.
  • the memory 804 is connected to the processor 801 via a bus 805 .
  • the memory 804 may be used to store a computer program, and the processor 801 may be used to execute the computer program to implement each step performed by the terminal in the above method embodiment.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, and the volatile or non-volatile storage device includes but is not limited to: a magnetic disk or optical disk, an electrically erasable programmable read-only memory, an erasable programmable read-only memory, a static access memory, a read-only memory, a magnetic memory, a flash memory, and a programmable read-only memory.
  • the above-mentioned device can be implemented as a terminal device or a network side device in the above-mentioned various method embodiments.
  • the device includes a processor, a memory, and a transceiver (the transceiver may include a receiver and a transmitter, the receiver is used to receive information, and the transmitter is used to send information);
  • the processor is used to determine a hybrid automatic repeat request HARQ process of at least one PUSCH among multiple physical uplink shared channels PUSCH.
  • the steps executed by the above-mentioned transceiver and processor can refer to all or part of the steps executed by the terminal device in the embodiments shown in the above-mentioned Figures 3 or 4, and will not be repeated here.
  • An embodiment of the present application also provides a computer-readable storage medium, in which a computer program is stored.
  • the computer program is loaded and executed by a processor to implement the various steps performed by a terminal device or a network side device in the method shown in Figure 3 or Figure 4 above.
  • the present application also provides a computer program product or a computer program, which includes a computer instruction stored in a computer-readable storage medium.
  • the processor of the terminal device or the network side device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the terminal device or the network side device performs the various steps performed by the terminal device or the network side device in the method shown in FIG. 3 or FIG. 4 above.
  • the present application also provides a computer program, which includes computer instructions, which are stored in a computer-readable storage medium.
  • the processor of the terminal device or the network side device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the terminal device or the network side device performs the various steps performed by the terminal device or the network side device in the method shown in Figure 3 or Figure 4 above.
  • the present application also provides a chip, which is used in a terminal.
  • the chip can execute each step of the method shown in Figure 3 or Figure 4 above, which is executed by the terminal device or the network side device.
  • Computer-readable media include computer storage media and communication media, wherein the communication media include any media that facilitates the transmission of a computer program from one place to another.
  • the storage medium can be any available medium that a general or special-purpose computer can access.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

一种HARQ进程处理方法、装置、设备、存储介质及产品,属于无线通信技术领域。方法包括:确定多个物理上行共享信道PUSCH中的至少一个PUSCH的混合自动重传请求HARQ进程(301)。该方案可以避免因为相邻或相近的PUSCH使用相同的HARQ进程而导致的需要使用/保留的HARQ进程中的MACPDU发送失败的情况,提高传输效率。

Description

HARQ进程处理方法、装置、设备、存储介质及产品 技术领域
本申请涉及无线通信技术领域,特别涉及一种HARQ进程处理方法、装置、设备、存储介质及产品。
背景技术
混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)是一种将前向纠错编码和自动重传请求相结合而形成的技术。
相关技术中,当一个授权配置(Configured Grant,CG)周期有一个CG资源,或者,一个CG周期有多个CG资源的情况下,每个CG资源位置存在对应的HARQ进程。
发明内容
本申请实施例提供了一种HARQ进程处理方法、装置、设备、存储介质及产品。所述技术方案如下:
一方面,本申请实施例提供了一种HARQ进程处理方法,所述方法由终端设备执行,所述方法包括:
确定多个物理上行共享信道PUSCH中的至少一个PUSCH的混合自动重传请求HARQ进程;所述多个PUSCH的HARQ进程的进程号中,至少一个进程号与其它进程号不同。
又一方面,本申请实施例提供了一种HARQ进程处理装置,所述装置包括:
处理模块,用于确定多个物理上行共享信道PUSCH中的至少一个PUSCH的混合自动重传请求HARQ进程;所述多个PUSCH的HARQ进程的进程号中,至少一个进程号与其它进程号不同。
另一方面,本申请实施例提供了一种终端设备,所述终端设备包括处理器、存储器和收发器;
所述处理器,用于确定多个物理上行共享信道PUSCH中的至少一个PUSCH的混合自动重传请求HARQ进程;所述多个PUSCH的HARQ进程的进程号中,至少一个进程号与其它进程号不同。
又一方面,本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述HARQ进程处理方法。
另一方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。终端设备或网络侧设备的处理器从计算机可读存储介质读取计算机指令,处理器执行该计算机指令,使得该终端设备或网络侧设备执行上述HARQ进程处理方法。
另一方面,提供了一种计算机程序,所述计算机程序包括计算机指令,终端设备或网络侧设备的处理器执行所述计算机指令,使得所述终端设备或网络侧设备执行上述的HARQ进程处理方法。
另一方面,提供了一种芯片,所述芯片用于执行上述的HARQ进程处理方法。
本申请实施例提供的技术方案可以带来如下有益效果:对于多个PUSCH,终端设备可以确定该至少一个PUSCH的HARQ进程,以协调多个PUSCH的HARQ进程的进程号,从而可以避免因为相邻或相近的PUSCH使用相同的HARQ进程而导致的需要使用/保留的HARQ进程中的媒体接入控制(Media Access Control,MAC)分组数据单元(Packet Data Unit,PDU)发送失败的情况,提高传输效率。
附图说明
图1是本申请一个实施例涉及的通信***的架构示意图;
图2是本申请涉及的传输周期示意图;
图3是本申请一个实施例提供的HARQ进程处理方法的流程图;
图4是本申请一个实施例提供的HARQ进程处理方法的流程图;
图5是本申请一示例性实施例示出的HARQ进程号示意图;
图6是本申请一示例性实施例示出的HARQ进程号示意图;
图7是本申请一个实施例提供的HARQ进程处理装置的框图;
图8是本申请一个实施例提供的设备的结构示意图。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本申请示例性实施例涉及的通信***的示意图。该通信***包括网络侧设备110与终端设备120,和/或终端设备120与终端设备130,本申请对此不作限定。
本申请中的网络侧设备110提供无线通信功能,该网络侧设备110包括但不限于:演进型节点B(Evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home Evolved Node B,或Home Node B,HNB)、基带单元(Baseband Unit,BBU)、无线保真(Wireless Fidelity,Wi-Fi)***中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(Transmission Point,TP)或者发送接收点(Transmission and Reception Point,TRP)等,还可以为第五代(5th Generation,5G)移动通信***中的下一代节点B(Next Generation Node B,gNB)或传输点(TRP或TP),或者,为5G***中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU)或分布式单元(Distributed Unit,DU)等,或者超5代移动通信***(Beyond Fifth Generation,B5G)、第六代(6th Generation,6G)移动通信***中的基站等,或者核心网(Core Network,CN)、前传(Fronthaul)、回传(Backhaul)、无线接入网(Radio Access Network,RAN)、网络切片等,或者终端设备的服务小区、主小区(Primary Cell,PCell)、主辅小区(Primary Secondary Cell,PSCell)、特殊小区(Special Cell,SpCell)、辅小区(Secondary Cell,SCell)、邻小区等。
本申请中的终端设备120和/或终端设备130,或称用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置。该终端包括但不限于:手持设备、可穿戴设备、车载设备和物联网设备等,例如:手机、平板电脑、电子书阅读器、膝上便携计算机、台式计算机、电视机、游戏机、移动互联网设备(Mobile Internet Device,MID)、增强现实(Augmented Reality,AR)终端、虚拟现实(Virtual Reality,VR)终端和混合现实(Mixed Reality,MR)终端、可穿戴设备、手柄、电子标签、控制器、工业控制(Industrial Control)中的无线终端、自动驾驶(Self Driving)中的无线终端、远程医疗(Remote Medical)中的无线终端、智能电网(Smart Grid)中的无线终端、运输安全(Transportation Safety)中的无线终端、智慧城市(Smart City)中的无线终端、智慧家庭(Smart Home)中的无线终端、远程手术(Remote Medical Surgery)中的无线终端、蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、电视机顶盒(Set Top Box,STB)、用户驻地设备(Customer Premise Equipment,CPE)等。
网络侧设备110与终端设备120之间通过某种空口技术互相通信,例如Uu接口。示例性的,网络侧设备110与终端设备120之间存在两种通信场景:上行通信场景与下行通信场景。其中,上行通信是指向网络侧设备110发送信号;下行通信是指向终端设备120发送信号。终端设备120与终端设备130之间通过某种空口技术互相通信,例如Uu接口。在一些实施例中,终端设备120与终端设备130之间存在两种通信场景:第一侧行通信场景与第二侧行通信场景。第一侧行通信是指向终端设备130发送信号;第二侧行通信是指向终端设备120发送信号。终端设备120与终端设备130均在网络覆盖范围内且位于相同的小区,或者终端设备120与终端设备130均在网络覆盖范围内但位于不同的小区,或者终端设备120在网络覆盖范围内但终端设备130在网络覆盖范围外。
本申请中实施例提供的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)***、先进的长期演进(Advanced Long Term Evolution,LTE-A)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***、5G移动通信***、新空口(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、地面通信网络(Terrestrial Networks,NTN)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,Wi-Fi)、蜂窝物联网***、蜂窝无源物联网***,也可以适用于5G NR***后续的演进***,还可以适用于B5G、6G以及后续的演进***。本申请的一些实施例中,“NR”也可以称为5G NR***或者5G***。其中,5G移动通信***可以包括非独立组网(Non-Standalone,NSA)和/或独立组网(Standalone,SA)。
本申请中实施例提供的技术方案还可以应用于机器类通信(Machine Type Communication,MTC)、机器间通信长期演进技术(Long Term Evolution-Machine,LTE-M)、设备到设备(Device to Device,D2D)网络、机器到机器(Machine to Machine,M2M)网络、物联网(Internet of Things,IoT)网络或者其他网 络。其中,IoT网络例如可以包括车联网。其中,车联网***中的通信方式统称为车到其他设备(Vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(Vehicle to Vehicle,V2V)通信、车辆与基础设施(Vehicle to Infrastructure,V2I)通信、车辆与行人之间的通信(Vehicle to Pedestrian,V2P)或车辆与网络(Vehicle to Network,V2N)通信等。
1)CG PUSCH
NR上行支持半静态的周期传输方式,即configured grant PUSCH transmission,具体包括两种类型:
type-1 CG:无线资源控制(Radio Resource Control,RRC)配置传输参数后,不需要下行控制信息(Downlink Control Information,DCI)激活即生效;
type-2 CG:RRC配置传输参数后,需要DCI激活后生效。
CG支持2 symbol/7 symbol的symbol级别的周期,以及{1,2,4,5,8,10,16,20,32,40…}slot级别的周期。在NR R15/16/17中,一个CG周期内传输一次PUSCH(即只有一个PUSCH occasion)。
CG PUSCH所承载的HARQ进程的编号是根据本次CG PUSCH所占用的第一个时域符号源根据如下两个公式中的一个确定的:
HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes;
HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2;
where CURRENT_symbol=(SFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot+slot number in the frame×numberOfSymbolsPerSlot+symbol number in the slot),and numberOfSlotsPerFrame and numberOfSymbolsPerSlot refer to the number of consecutive slots per frame and the number of consecutive symbols per slot,respectively as specified in TS 38.211。
2)CG-UCI
NR为支持在非授权频带上传输CG PUSCH引入了CG上行控制信息(Uplink Control Information,UCI)。在非授权频带上传输的CG PUSCH,其承载的HARQ进程编号不再根据占用的时域自资源确定。UE在发送的CG PUSCH中嵌入CG-UCI信息以通知基站当前CG PUSCH承载的HARQ进程编号、冗余版本信息和新数据指示信息,具体如下述表1所示的参数:
表1
Figure PCTCN2022139141-appb-000001
其中,最后一项用于表示当前CG PUSCH所在的信道占用时间(Channel Occupancy Time,COT)后续资源是否可以共享给下行传输。
3)扩展现实XR
在3GPP RAN#88e次会议,通过名为“eXtended Reality(XR)and cloud game(CG)evaluations for NR”的研究项目,该项目所研究的业务包括增强现实技术(Augmented Reality,AR)/虚拟现实(Virtual Reality,VR)/云游戏Cloud gaming等,XR/CG的一项主要业务即为视频流(video stream)业务,其到达速率(以fps衡量,fps,即frame per second)可以为30fps、60fps、90fps、120fps,那么对应的video stream的周期为{33.33ms,16.67ms,11.11ms,8.33ms}。
XR数据的特定包括:数据包大小可变且均值较大。以数据率为100Mbps的AR/VR为例,其上行数据包均值为20833 bytes,最大值为31250 bytes,最小值为10417 bytes。即每个周期内待传输的数据包的大小在[10417 bytes,31250 bytes]之间。在100M带宽的实际***中,传输一个20833 bytes的数据包大约需要占用4个时隙中的传输资源。
目前3GPP确定支持在一个CG周期内配置多个PUSCH occasions用于传输XR大数据包。进一步的,当某个周期内的数据量相对较小,不需要占用全部预配置多个PUSCH occasions时,UE可动态的通知基站本周内不使用的PUSCH occasion。基站可以将未使用的PUSCH occasion重新分配给其他UE进行数据传输,从而提高***效率。
当一个周期内配置了多个PUSCH occasion时,若沿用现有的授权载波上CG PUSCH的工作机制(即公式HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes),那么一个周期内的多个PUSCH occasion对应的CURRENT_symbol除以周期并进行取整后的得数是相同的,从而导致连续的PUSCH occasion对应相同的HARQ进程编号。请参考图2,其示出了本申请涉及的传输周期示意图,以图2为例,occasion 1中承载HARQ进程X,occasion 2立即重用了进行X,进该进程的buffer中装入了新数据,occasion 1中传输的数据被清除,则occasion 1中传输的数据无法支持HARQ重传。
本申请实施例所示的方案,提供一种确定多个PUSCH的HARQ进程的方案,可以避免因为相邻或相近的PUSCH使用相同的HARQ进程而导致的需要使用/保留的HARQ进程中的MAC PDU发送失败的情况,提高传输效率。
本方案适用于CG传输的情况,也可适用于动态上行授权(Dynamic Uplink Grant,DG)传输的情况,也可以适用于DG+CG传输的情况。
例如,一个CG周期存在多个CG传输机会,或多个CG PUSCH。
例如,一个CG周期存在一个或多个CG传输机会或CG PUSCH。并且,存在一个或多个CG配置,不同CG配置对应不同的CG index(索引)。
例如,一段时间内或一个DCI调度了多个DG PUSCH传输。
例如,一段时间内,存在一个DCI调度了一个或多个DG PUSCH传输,同时激活或指示了一个或多个CG PUSCH传输。可选的,一段时间与CG周期无关。可选的,一段时间可以为一个或多个CG周期。
例如,一段时间内,存在一个或多个CG PUSCH传输,同时,DCI调度了一个或多个DG PUSCH传输。可选的,一段时间与CG周期无关。可选的,一段时间可以为一个或多个CG周期。
例如,一个DCI调度了一个或多个DG PUSCH传输,同时激活或指示了一个或多个CG PUSCH传输。可选的,激活或指示的CG PUSCH可以是一个或多个CG周期的。
例如,存在一个或多个CG PUSCH传输,并且,DCI调度了一个或多个DG PUSCH传输。可选的,存在的一个或多个CG PUSCH可以是一个或多个CG周期的。可选的,存在的一个或多个CG PUSCH可以是一个CG index的,也可以是不同CG index的。
请参考图3,其示出了本申请一个实施例提供的HARQ进程处理方法的流程图,该方法可以由终端设备执行,其中,上述该终端设备可以是图1所示的网络架构中的终端设备120或终端设备130。该方法可以包括如下几个步骤:
步骤301,确定多个物理上行共享信道PUSCH中的至少一个PUSCH的混合自动重传请求HARQ进程。
其中,该多个PUSCH的HARQ进程的进程号中,至少一个进程号与其它进程号不同。
或者,该多个PUSCH的HARQ进程的进程号中,至少一个进程号与其它进程号相同。
综上所述,对于多个PUSCH,终端设备可以确定该至少一个PUSCH的HARQ进程,以控制多个PUSCH的HARQ进程的进程号,从而可以避免因为相邻或相近的PUSCH使用相同的HARQ进程而导致的需要使 用/保留的HARQ进程中的MAC PDU发送失败的情况,提高传输效率。
请参考图4,其示出了本申请一个实施例提供的HARQ进程处理方法的流程图,该方法可以由终端设备和网络侧设备交互执行;其中,上述终端设备和网络侧设备可以是图1所示的网络架构中的网络侧设备110、终端设备120(或者终端设备130)。如图4所示,该方法可以包括如下几个步骤:
步骤401,网络侧设备向终端设备发送配置信息;终端设备接收该配置信息。
在一些实施例中,上述配置信息用于CG和/或DG传输,或者,述配置信息用于HARQ进程确定。
在一些实施例中,该配置信息包括配置授权CG配置和/或动态上行授权DG配置。
在一些实施例中,该CG配置的一个CG周期包括一个或多个CG PUSCH机会。
在一些实施例中,该配置信息,包括:
可用的HARQ进程或可用的HARQ进程范围。
在一些实施例中,该可用的HARQ进程或HARQ进程范围,包括:
HARQ进程数目和/或HARQ进程偏移量。
在一些实施例中,该HARQ进程数目和/或HARQ进程偏移量针对上行资源配置的所有CG机会;或者,该HARQ进程数目和/或HARQ进程偏移量针对上行资源配置的每个周期的特定CG机会。
在一些实施例中,该配置信息通过无线资源控制RRC重配置消息进行配置。
例如,上述配置信息通过RRC重配置配置。
例如,上述配置信息,包括一段时间内,可用UL资源,可选的,该可用UL资源包括多个UL资源。可选的,上述配置信息,包括CG配置。可选的,CG配置的一个CG周期包括一个或多个CG PUSCH occasion。
例如,上述配置信息,包括可用的HARQ进程或HARQ进程范围。可选的,包括HARQ进程数目和/或HARQ进程offset。可选的,上述HARQ进程或HARQ进程范围,或,HARQ进程数目和/或HARQ进程offset,是针对上述UL资源配置(如CG)的所有CG occasion的,或者,针对上述UL资源配置(如CG)的每个周期的特定CG occasion的(如每个CG周期的第一个CG occasion的)。
步骤402,网络侧设备向终端设备发送第一指示信息;终端设备接收该第一指示信息。
其中,该步骤402为可选步骤。
在一些实施例中,该第一指示信息由无线资源控制RRC消息、媒体访问控制MAC控制单元CE、或者下行控制信息DCI承载。
步骤403,终端设备根据上述配置信息和/或第一指示信息,确定多个PUSCH中的至少一个PUSCH的HARQ进程。
可选的,该多个PUSCH的HARQ进程的进程号中,至少一个进程号与其它进程号不同。
或者,该多个PUSCH的HARQ进程的进程号中,至少一个进程号与其它进程号相同。
在一些实施例中,该确定多个物理上行共享信道PUSCH中的至少一个PUSCH的混合自动重传请求HARQ进程,包括:
在该多个PUSCH中包含属于同一个周期内的至少两个CG资源和/或DG资源的情况下,或者,在该多个PUSCH中包含指定长度时间段内的至少两个CG资源和/或DG资源的情况下,确定该多个PUSCH中的至少一个PUSCH的HARQ进程。
或者,终端设备在以下情况下确定该多个PUSCH中的至少一个PUSCH的HARQ进程:
配置或存在多个PUSCH occasion,或者,一个业务周期或者一个CG周期配置或存在多个PUSCH occasion,或者,一段时间内或一个DCI激活/调度了多个的PUSCH occasion,或,配置了多个CG周期且一段时间/一个周期存在多个CG occasion,或,多个PUSCH occasion使用的HARQ进程号至少一个不同,或者,多个PUSCH occasion至少两个需要传输不同的数据或MAC PDU,或者,业务数据量或待传输数据量或与特定业务相关的数据量或与特定逻辑信道(Logical Channel,LCH)或逻辑信道组(Logical Channel Group,LCG)或PDU session或服务质量(Quality of Service,QoS)flow或数据无线承载(Data Radio Bearer,DRB)相关的数据量大于或等于第一门限,或者,多个PUSCH occasion针对特定业务或LCH或LCG或PDU session或QoS flow或DRB。
在本申请实施例中,在一个周期内包含多个CG资源和/或DG资源的情况下,或者,在一段时间内包含多个CG资源和/或DG资源的情况下,该多个CG资源和/或DG资源的传输间隔较小,可能会发生两个PUSCH使用相同的HARQ进程而导致的需要使用/保留的HARQ进程中的MAC PDU发送失败的情况,此时,终端设备可以综合确定多个CG资源和/或DG资源的HARQ进程中至少一个PUSCH的HARQ进程,以避免多个CG资源和/或DG资源的HARQ进程中两个PUSCH使用相同的HARQ进程而导致的需要使用/保留的HARQ进程中的MAC PDU发送失败的情况。
在一些实施例中,该确定该多个PUSCH中的至少一个PUSCH的HARQ进程,包括:
使用第一参数确定该多个PUSCH中的至少一个PUSCH的HARQ进程;或者,
使用第二HARQ进程计算公式和第一参数,确定该多个PUSCH中的至少一个PUSCH的HARQ进程;或者,
使用第一HARQ进程计算公式,确定该多个PUSCH中的至少一个PUSCH的HARQ进程;或者,
使用第一HARQ进程计算公式以及第一参数,确定多个PUSCH中的至少一个PUSCH的HARQ进程;
使用第二因素,确定多个PUSCH中的至少一个PUSCH的HARQ进程;或者,
使用第二HARQ进程计算公式和第二因素确定多个PUSCH中的特定PUSCH的HARQ进程。
其中,上述第二HARQ进程计算公式可以是TS38.321协议定义的HARQ进程计算公式。
上述第一HARQ进程计算公式可以是本申请提出的一种新的HARQ进程计算公式,或者,是上述第二HARQ进程计算公式的变种。
在一些实施例中,该多个PUSCH中所有PUSCH的HARQ进程号,由第二HARQ进程计算公式、第一HARQ进程计算公式、第二因素以及第一参数中的至少一项确定。
在本申请实施例中,终端设备可以根据第二HARQ进程计算公式、第一HARQ进程计算公式、第二因素、UE实现以及第一参数中的至少一项,确定多个PUSCH中全部PUSCH的HARQ进程号。
或者,终端设备可以根据第二HARQ进程计算公式、第一HARQ进程计算公式、第二因素、UE实现以及第一参数中的至少一项,确定多个PUSCH中部分PUSCH的HARQ进程号。
可选的,是否根据第二HARQ进程计算公式、第一HARQ进程计算公式、第二因素、UE实现以及第一参数中的至少一项,确定多个PUSCH中全部PUSCH的HARQ进程号,可以是预定义的,或,网络配置的,或网络enable/disabled的,或者,网络指示的,或者,满足条件(例如,配置或存在多个PUSCH occasion,或者,一个业务周期或者一个CG周期配置或存在多个PUSCH occasion,或者,一段时间内或一个DCI激活/调度了多个的PUSCH occasion,或,配置了多个CG周期且一段时间/一个周期存在多个CG occasion,或者,多个PUSCH occasion使用的HARQ进程号至少一个不同,或者,多个PUSCH occasion至少两个需要传输不同的数据或MAC PDU,或者,业务数据量或待传输数据量或与特定业务相关的数据量或与特定LCH或LCG或PDU session或QoS flow或DRB相关的数据量大于或等于第一门限,或者,针对特定业务或LCH或LCG或PDU session或QoS flow或DRB,等之一的情况下)执行的,或者,UE实现确定的。
可选的,根据第二HARQ进程计算公式、第一HARQ进程计算公式、第二因素、UE实现以及第一参数中的至少一项,确定多个PUSCH中部分PUSCH的HARQ进程号,或者,根据第二HARQ进程计算公式、第一HARQ进程计算公式、第二因素以及第一参数中哪一项或者哪几项,确定多个PUSCH中部分PUSCH的HARQ进程号,可以是预定义的,或,网络配置的,或网络enable/disabled的,或者,网络指示的,或者,满足条件(例如,配置或存在多个PUSCH occasion,或者,一个业务周期或者一个CG周期配置或存在多个PUSCH occasion,或者,一段时间内或一个DCI激活/调度了多个的PUSCH occasion,或,配置了多个CG周期且一段时间/一个周期存在多个CG occasion,或,多个PUSCH occasion使用的HARQ进程号至少一个不同,或者,多个PUSCH occasion至少两个需要传输不同的数据或MAC PDU,或者,业务数据量或待传输数据量或与特定业务相关的数据量或与特定LCH或LCG或PDU session或QoS flow或DRB相关的数据量大于或等于第一门限,或者,针对特定业务或LCH或LCG或PDU session或QoS flow或DRB,等之一的情况下)执行的,或者,UE实现确定的。
在一些实施例中,该确定该多个PUSCH中的至少一个PUSCH的HARQ进程,包括:
根据第二HARQ进程计算公式确定该多个PUSCH中特定PUSCH的HARQ进程;或者,
根据第二HARQ进程计算公式以及第一参数确定该多个PUSCH中的特定PUSCH的HARQ进程;或者,
特定第一参数确定该多个PUSCH中的特定PUSCH的HARQ进程;或者,
根据第一HARQ进程计算公式确定该多个PUSCH中的特定PUSCH的HARQ进程;或者,
根据第二因素确定该多个PUSCH中的特定PUSCH的HARQ进程;或者,
根据第二HARQ进程计算公式和第二因素确定多个PUSCH中的特定PUSCH的HARQ进程。
其中,上述特定PUSCH可以是多个PUSCH中的首个PUSCH。
或者,上述特定PUSCH也可以是多个PUSCH中除了首个PUSCH之外的其他PUSCH,比如最后一个PUSCH或者第二个PUSCH等等。
在一些实施例中,该方法还包括:
根据网络指示、预配置、预定义或者指定条件,确定是否使用第二HARQ进程计算公式、第一HARQ进程计算公式、第二因素以及第一参数中的至少一项,确定至少一个HARQ进程;或者,
根据网络指示、预配置、预定义或者指定条件,确定使用第二HARQ进程计算公式、第一HARQ进 程计算公式、第二因素以及第一参数中的至少一项,确定至少一个HARQ进程。
上述预定义或者指定条件可以指示在什么情况下,使用本申请实施例所示的方案确定多个PUSCH中的至少一个PUSCH的HARQ进程/进程号,或,上述预定义或者指定条件可以指示在什么情况下,确定用哪些参量确定多个PUSCH中的至少一个PUSCH的HARQ进程/进程号。
比如,网络指示、预配置、预定义或者指定条件,可以指示终端设备在配置了多个PUSCH时,使用本申请实施例所示的方案确定多个PUSCH中的至少一个PUSCH的HARQ进程/进程号;再比如,网络指示、预配置、预定义或者指定条件,可以指示终端设备在一个CG有多个PUSCH时,使用本申请实施例所示的方案确定多个PUSCH中的至少一个PUSCH的HARQ进程/进程号;再比如,网络指示、预配置、预定义或者指定条件,可以指示终端设备在一个CG周期中不同CG机会对应不同HARQ进程时,使用本申请实施例所示的方案确定多个PUSCH中的至少一个PUSCH的HARQ进程/进程号;再比如,比如指示网络指示、预配置、预定义或者指定条件,可以指示终端设备在第一参数或第二因素不可用(enable)的情况下,使用上述第一/第二HARQ进程计算公式确定多个PUSCH中的至少一个PUSCH的HARQ进程/进程号。
在一些实施例中,该第一参数用于,
确定该多个PUSCH的HARQ进程号的间隔或偏移量,或者,
确定该多个PUSCH的HARQ进程号,或者,
指示该多个PUSCH中除了特定PUSCH之外的其它PUSCH相对于该特定PUSCH的HARQ进程号的间隔或偏移量,或者,
指示第一PUSCH相对于该多个PUSCH中的特定PUSCH的HARQ进程号的间隔或偏移量,该第一PUSCH是该多个PUSCH中位于该特定PUSCH之后的PUSCH,或者,
指示多个PUSCH中除了特定PUSCH之外的其它PUSCH相对于其他PUSCH的前X个PUSCH的HARQ进程号的间隔或偏移量,或者,
指示多个PUSCH中的PUSCH相对于其前X个PUSCH的HARQ进程号的间隔或偏移量。
其中,上述X为大于或者等于1的整数。
可选的,该第一参数的作用可以包括确定该多个PUSCH中的全部的PUSCH的信息,或者,该多个PUSCH中的至少部分的PUSCH的信息。
在一些实施例中,该第一参数由配置信息指示;该配置信息用于CG传输或HARQ进程确定;或者,
该第一参数由第一指示信息指示;或者,
该第一参数为预定义的参数。
可选的,该第一参数可以是RRC,或MAC CE,或DCI之一指示或配置的。
可选的,该第一参数可以是RRC配置,DCI或MAC CE激活/去激活的。
可选的,该第一参数可以是RRC配置,DCI或MAC CE调整的。在一些实施例中,该第一参数,还用于指示上行资源配置的每个周期的特定CG机会之外的其他CG机会的HARQ进程或HARQ进程使用范围。
或者,上述第一参数,还用于指示上行资源配置的每个周期的特定DG机会之外的其他DG机会的HARQ进程或HARQ进程使用范围。
或者,上述第一参数,还用于指示上行资源配置的每个周期的特定CG/DG机会之外的其他CG/DG机会的HARQ进程或HARQ进程使用范围。
在一些实施例中,该第一参数为一个取值区间,或者取值范围。
在一些实施例中,该第一参数为一个取值偏移。
在一些实施例中,该第一参数为单个数值。
在一些实施例中,该第一参数为该多个PUSCH中每相邻两个PUSCH的HARQ进程之间的间隔或偏移量。
在一些实施例中,第一参数为多个PUSCH中特定PUSCH的HARQ进程号;或者,
第一参数为该多个PUSCH中除了特定PUSCH之外的首个PUSCH的进程号;或者,
该第一参数为该多个PUSCH中除了特定PUSCH之外的首个PUSCH相对于该特定PUSCH的HARQ间隔或者偏移量;或者,
第一参数为多个PUSCH中每个PUSCH相对于特定PUSCH的HARQ间隔或者偏移量;或者,
第一参数为多个PUSCH中每个PUSCH相对于其前X个PUSCH的HARQ间隔或者偏移量。
在一些实施例中,该多个PUSCH中除了特定PUSCH之外的各个PUSCH中,相邻两个PUSCH之间的间隔或者偏移量为相同的第一取值;或者,
多个PUSCH中的各个PUSCH中,相邻两个PUSCH之间的间隔或者偏移量为相同的第二取值。
在一些实施例中,该第一取值由网络指示,或者,该第一取值为预定义的取值;或者,第二取值由网络指示,或者,第二取值为预定义的取值。
在一些实施例中,该第一参数为第一取值列表。
在一些实施例中,第一取值列表是多个PUSCH机会的HARQ进程间隔或者偏移量的取值列表;或者,该第一取值列表是PUSCH机会与HARQ进程间隔或者偏移量之间的一对一映射;或者,第一取值列表是多个PUSCH机会的HARQ进程号的取值列表;或者,第一取值列表是PUSCH机会与HARQ进程号之间的一对一映射。
在一些实施例中,该第一取值列表是该多个PUSCH中每相邻两个PUSCH的进程号之间的间隔或者偏移量;或者,
该第一取值列表是该多个PUSCH中除了特定PUSCH之外的每个PUSCH的进程号,相对于该特定PUSCH的进程号的间隔或者偏移量;或者,
第一取值列表是多个PUSCH中除了特定PUSCH之外的每个PUSCH的进程号,相对于其前X个HARQ进程的进程号的间隔或者偏移量;或者,
该第一取值列表是该多个PUSCH中,除了特定PUSCH之外的各个PUSCH的进程号;或者,
第一取值列表是多个PUSCH中的每个PUSCH的进程号;或者,
第一取值列表是多个PUSCH中的每个PUSCH的进程号第一取值列表是多个PUSCH的每个PUSCH的进程号,相对于特定PUSCH的进程号的间隔或者偏移量;或者,
第一取值列表是多个PUSCH中每个PUSCH的进程号,相对于其前X个HARQ进程的进程号的间隔或者偏移量。
在一些实施例中,该第一取值列表中包含至少两个取值,且该至少两个取值中的每个取值对应一种针对PUSCH机会的HARQ进程之间的间隔或者偏移量;或者,第一取值列表中包含至少两个取值,且至少两个取值中的每个取值对应一种针对PUSCH机会的HARQ进程号。
在一些实施例中,该至少两个取值对应不同的取值索引。
在一些实施例中,该方法还包括:
该终端设备根据第二指示信息确定激活或者使用该第一取值列表中的至少一个取值;或者,
该终端设备根据第二指示信息确定去激活或者不使用该第一取值列表中的至少一个取值。
在一些实施例中,该第二指示信息承载于下行控制信息或者MAC CE。
在一些实施例中,该第一参数包括至少两套第二取值列表。
在一些实施例中,至少两套该第二取值列表中的每套该第二取值列表对应一种针对PUSCH机会的HARQ进程之间的间隔或者偏移量;或者,至少两套第二取值列表中的每套第二取值列表对应一种针对PUSCH机会的HARQ进程号。
在一些实施例中,该第二取值列表是PUSCH机会与HARQ进程间隔或者偏移量之间的一对一映射;或者,第二取值列表是PUSCH机会与HARQ号之间的一对一映射;或者,第二取值列表是多个PUSCH机会的HARQ进程号取值列表;或者,第二取值列表是PUSCH机会与HARQ进程号之间的一对一映射。
在一些实施例中,至少两套该第二取值列表对应不同的取值列表索引。
在一些实施例中,该方法还包括:
终端设备根据第三指示信息确定激活或者使用至少两套第二取值列表中的至少一套取值列表;或者,
终端设备根据第三指示信息确定去激活或者不使用至少两套该第二取值列表中的至少一套取值列表。
在一些实施例中,该第三指示信息承载于下行控制信息或者MAC CE。
在一些实施例中,该第二因素与以下至少一项相关:
业务特征、数据量大小、数据量变化、CG和/或DG配置个数、CG和/或DG激活或使用的个数、资源个数、资源配置周期、一个周期的资源个数、一段时间的资源个数、资源间距、周期数、当前周期次序、周期中的CG资源个数、可用HARQ进程数、HARQ进程偏移、最大HARQ进程数、一个周期的资源的HARQ之间的HARQ间隔或者偏移量。
在一些实施例中,该第二因素为第一HARQ进程计算公式中使用的调整因子的取值;或者,
该第二因素为针对HARQ计算公式中计算CG和/或DG位置时使用的HARQ进程计算偏移。
在一些实施例中,该第二因素为预定义的,或者,网络指示的,或者,网络配置的,或者,由该终端设备确定。
在一些实施例中,该第二因素由该终端设备根据以下至少一项确定:
业务特征、数据量大小、数据量变化、CG和/DG配置个数、CG和/DG配置个数、资源个数、资源配置周期、一个周期的资源个数、资源间距、周期数、当前周期次序、周期中的CG资源个数、可用HARQ进程数、HARQ进程偏移、最大HARQ进程数、一个周期的资源的HARQ之间的HARQ间隔或者偏移量。
在一些实施例中,该多个PUSCH中除了该特定PUSCH之外的其他PUSCH的HARQ进程号为该特定PUSCH的HARQ进程号加上第一数值;或者,
多个PUSCH中除了特定PUSCH之外的其他PUSCH的HARQ进程号为PUSCH的前X个PUSCH的HARQ进程号加上第三数值;或者,
该多个PUSCH中除了该特定PUSCH之外的其他PUSCH的HARQ进程号按照与该特定PUSCH之间的间隔递增或者递减第二数值;比如,特定PUSCH为首个PUSCH,其余PUSCH从首个PUSCH开始,HARQ进程号递增,例如,上述特定PUSCH为多个PUSCH中的第一个PUSCH,则多个PUSCH中第二至第n个PUSCH的HARQ进程号分别为第一个PUSCH的HARQ进程号+1、+2、+3...+n-1。
在一些实施例中,该第一HARQ进程计算公式为:
HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))*N]modulo nrofHARQ-Processes;或者,
HARQ Process ID=[floor(CURRENT_symbol/periodicity)*N]modulo nrofHARQ-Processes;或者,
HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2}*N}modulo nrofHARQ-Processes;或者,
HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]+harq-ProcID-Offset2}*N}modulo nrofHARQ-Processes;
其中,N为第二因素。
在一些实施例中,该第二HARQ进程计算公式为:
HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))]modulo nrofHARQ-Processes;或者,
HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))]modulo nrofHARQ-Processes+harq-ProcID-Offset;或者,
HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes;或者,
HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2。
其中,上述CURRENT_slot为当前时隙编号;numberOfSlotsPerFrame为每帧包含的时隙数量;periodicity为业务周期、资源传输周期或者传输资源的配置周期;nrofHARQ-Processes为HARQ进程数目、传输资源可用的HARQ进程数或者传输资源适用的HARQ进程数;CURRENT_symbol为当前符号编号;harq-ProcID-Offset2为可用HARQ进程偏移,或者,用于确定传输资源可用的HARQ进程范围或取整。
在一些实施例中,该方法还包括:对该多个PUSCH中,除了特定PUSCH之外的其他PUSCH的HARQ进程号取模;或者,
对多个PUSCH中的每个PUSCH的HARQ进程号取模;或者,
对多个PUSCH中的特定PUSCH的HARQ进程号取模。
在一些实施例中,取模操作,在HARQ进程计算公式中执行,或者在HARQ进程计算公式外执行,或者在HARQ进程计算公式计算的结果后执行。
可选的,上述对该多个PUSCH中,除了特定PUSCH之外的其他PUSCH的HARQ进程号取模,包括:通过HARQ进程数目、传输资源可用的HARQ进程数或者传输资源适用的HARQ进程数,对除了特定PUSCH之外的其他PUSCH的HARQ进程号取模。
综上所述,对于多个PUSCH,终端设备可以确定该至少一个PUSCH的HARQ进程,以使得多个PUSCH的HARQ进程的进程号中,至少一个进程号与其它进程号相同或不同,从而可以避免因为相邻或相近的PUSCH使用相同的HARQ进程而导致的需要使用/保留的HARQ进程中的MAC PDU发送失败的情况,提高传输效率。
实施例1
基于上述图3或图4所示的方案,在实施例1中,终端设备可以针对存在多个CG PUSCH资源的情况,根据第一参数,确定至少一个CG PSUCH对应的/可用的HARQ进程或HARQ进程号(HARQ Process Identifier,HPI)。
其中,第一参数用于确定多个CG PUSCH的HARQ进程间隔/offset,或者,用于确定多个CG PUSCH的HARQ进程号,或者,用于指示其他CG PUSCH针对特定PUSCH(如第一个CG PUSCH)的HARQ进程号的间隔/offset,或者,用于指示后一个CG PUSCH针对特定PUSCH(如前一个CG PUSCH,或者前X个CG PUSCH)的HARQ进程号的间隔/offset。第一参数可以是一个值,也可以是一个取值list,也可以是多套取值list。第一参数可以是预定义的,也可以是网络配置的(如RRC)。所述取值list,是一个 1-to-1 mapping between CG PUSCH occasion和HARQ进程间隔/offset。
具体实现方式可以如下:
步骤1,基站发送配置信息给UE。上述配置信息用于CG传输,或HARQ进程确定。可选的,包括以下至少之一:
a)上述配置信息通过RRC重配置配置。
b)上述配置信息,包括一段时间内,可用UL资源,可选的,该可用UL资源包括多个UL资源。可选的,上述配置信息,包括CG配置。可选的,CG配置的一个CG周期包括一个或多个CG PUSCH occasion。
c)上述配置信息,包括可用的HARQ进程或HARQ进程范围。可选的,包括HARQ进程数目和/或HARQ进程offset。可选的,上述HARQ进程或HARQ进程范围,或,HARQ进程数目和/或HARQ进程offset,是针对上述UL资源配置(如CG)的所有CG occasion的,或者,针对上述UL资源配置(如CG)的每个周期的特定CG occasion的(如每个CG周期的第一个CG occasion的)。
d)根据上述配置信息,或者,第一指示信息,确定的多个CG occasion,或者,一个周期的CG occasion的HARQ进程之间的间隔/offset是相同的,也可以是不同的。
e)上述配置信息,或者,第一指示信息,指示第一参数。可选的,上述第一参数,也可以是预定义的。可选的,上述第一指示信息可以通过RRC/MAC CE/DCI承载。
1)可选的,上述第一参数,用于指示上述UL资源配置(如CG)的每个周期的特定CG occasion之外的其他CG occasion的HARQ进程或HARQ进程使用范围。可选的,上述HARQ进程或HARQ进程使用范围,可以为HARQ进程number和/或offset。例如,上述特定CG occasion,为当前CG周期或者每个CG周期的第一个CG occasion的。
2)可选的,第一参数用于确定多个CG PUSCH的HARQ进程间隔/offset,或者,用于确定多个CG PUSCH的HARQ进程号,或者,用于指示其他CG PUSCH针对特定PUSCH(如第一个CG PUSCH)的HARQ进程号的间隔/offset,或者,用于指示后一个CG PUSCH针对特定PUSCH(如前一个CG PUSCH,或者前X个CG PUSCH)的HARQ进程号的间隔/offset。
3)可选的,第一参数可以是一个值。
例如,第一参数取值为A。假设一个CG周期有3个CG occasion。第一个CG occasion的HARQ进程为K(如利用HARQ进程计算公式计算的,或者,网络直接指示的),第一个CG occasion后的两个CG occasion的HARQ进程号分别为K+A,K+2A。
例如,第一参数给出除了特定CG PUSCH(如第一CG PUSCH,叫做PUSCH A)之外的首个PUSCH(叫做PUSCH M)的HARQ进程号,或者,上述PUSCH M针对特定CG PUSCH的HARQ进程间隔/offset。其他CG PUSCH之间,以及,其他CG PUSCH和PUSCH M之间的HARQ进程offset是相同的值(上述取值,可以是网络指示(如RRC/MAC CE/DCI)的,也可以是预定义的)。可选的,特定PUSCH(如第一个CG PUSCH,或PUSCH A)的HARQ进程号,是根据HARQ进程计算公式计算出来的,或者,是网络指示的(RRC/MAC CE/DCI)。作为一种实现方式,假设第一参数取值为M,PUSCH之间的HARQ offset为B。假设一个CG周期有4个CG occasion。某个周期的第一个CG occasion的HARQ进程为K。该周期的所有的CG occasion HARQ进程号分别为K,K+M,K+M+B,K+M+2B。或者,该周期的所有的CG occasion HARQ进程号分别为K,M,M+B,M+2B。
4)可选的,第一参数是一个取值list。
可选的,上述取值list,是一个1-to-1 mapping between CG PUSCH occasion和HARQ进程间隔/offset。
例如,第一参数取值为A,B,C。假设一个CG周期有4个CG occasion。第一个CG occasion的HARQ进程为K(如利用HARQ进程计算公式计算的,或者,网络直接指示的),第一个CG occasion后的两个CG occasion的HARQ进程号分别为K+A,K+B,K+C。
例如,第一参数取值为A,B,C。假设一个CG周期有4个CG occasion。第一个CG occasion的HARQ进程为K(如利用HARQ进程计算公式计算的,或者,网络直接指示的),第一个CG occasion后的两个CG occasion的HARQ进程号分别为K+A,K+A+B,K+A+B+C。
例如,第一参数取值为A,B,C。假设一个CG周期有4个CG occasion。第一个CG occasion的HARQ进程为K(如利用HARQ进程计算公式计算的,或者,网络直接指示的),第一个CG occasion后的两个CG occasion的HARQ进程号分别为A,B,C。
例如,第一参数取值为A,B,C,D。假设一个CG周期有4个CG occasion。所有CG occasion的HARQ进程号分别为A,B,C,D。
5)可选的,第一参数是一个取值list。
可选的,上述取值list,标识多种取值,不同取值针对CG occasion的HARQ进程之间的不同的间隔/offset。
可选的,不同取值,对应不同的index。
进一步的,网络通过DCI/MAC CE,指示用户激活或使用上述取值list中的哪一个取值,或者,指示用户去激活或不使用上述取值list中的至少一个取值。
例如,第一参数取值为A,B,C。网络指示UE使用的HARQ offset取值为B,则假设一个CG周期有4个CG occasion。第一个CG occasion的HARQ进程为K(如利用HARQ进程计算公式计算的,或者,网络直接指示的),第一个CG occasion后的两个CG occasion的HARQ进程号分别为K+B,K+2B。
6)可选的,第一参数是多套取值list。
可选的,上述多套取值list,不同的取整list用来标识针对CG occasion的HARQ进程之间的不同的间隔/offset。
可选的,不同的取值list,对应不同的取值list index。
进一步的,网络通过DCI/MAC CE,指示用户激活或使用那一套取值list,或者,指示用户去激活或不使用哪一套或哪几套取值list。可选的,使用取值list index来指示上述信息。
可选的,每套取值list,是一个1-to-1 mapping between CG PUSCH occasion和HARQ进程间隔/offset。
例如,第一参数取值为index1:{A,B,C},index2:{D,E,F}。假设一个CG周期有4个CG occasion。DCI指示UE使用index2的取值list。第一个CG occasion的HARQ进程为K(如利用HARQ进程计算公式计算的,或者,网络直接指示的),第一个CG occasion后的两个CG occasion的HARQ进程号分别为K+D,K+E,K+F。
例如,第一参数取值为index1:{A,B,C},index2:{D,E,F}。假设一个CG周期有4个CG occasion。DCI指示UE使用index2的取值list。第一个CG occasion的HARQ进程为K(如利用HARQ进程计算公式计算的,或者,网络直接指示的),第一个CG occasion后的两个CG occasion的HARQ进程号分别为K+D,K+D+E,K+D+E+F。
步骤2,UE根据步骤1中的配置和/或指示信息,确定HARQ进程号,或者,确定一个/每个CG周期的至少一个CG occasion的HARQ进程号,或者,确定一段时间内的多个UL传输occasion的HARQ进程号。可选的,包括以下至少之一:
a)当一个CG周期存在多于一个CG资源的情况下,UE使用上述第一参数,或者使用HARQ进程计算公式(现有38321定义的)+第一参数,或者,使用第一HARQ进程计算公式,或者,使用第一HARQ进程计算公式+第一参数,确定CG occasion的HARQ进程号。
b)上述HARQ进程号确定在MAC执行。
c)每个周期的首个CG occasion的HARQ进程号使用现有HARQ进程计算公式(现有38321定义的)确定的。也可以是根据实施例2上述方法计算的。也可以是根据现有HARQ进程计算公式(现有38321定义的)+第一参数确定的。也可以是根据第一参数确定的。
d)所有CG资源的HARQ进程号确定,可以使用现有HARQ进程计算公式(现有38321定义的),使用第一HARQ进程计算公式,和,第一参数至少之一确定。
e)UE确定的上述一个/每个CG周期的至少一个CG occasion的HARQ进程号,或者,确定的一段时间内的多个UL传输occasion的HARQ进程号,这些进程号之间的间隔/offset是相同的,也可以是不同的。
f)在根据第一参数确定至少一个CG occasion的HARQ进程的情况下,对获得的HARQ进程号需要执行取模,或者,不执行取模操作。
例如:
-利用此HARQ进程计算公式计算出某个周期的第一个CG occasion的HARQ进程号。
-HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes。
-该周期有2个CG occasion,第一参数为A。
该周期的第二个CG occasion的HARQ进程为HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+A。(而后,该进程号可以进一步取模,或,不取模。可选的,可以针对nrofHARQ-Processes取模)。或者,HARQ Process ID=[floor(CURRENT_symbol/periodicity)+A]modulo nrofHARQ-Processes。或者,HARQ Process ID={[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+A}modulo nrofHARQ-Processes。
请参考图5,其示出了本申请一示例性实施例示出的HARQ进程号示意图。如图5所示,一个周期T中包含至少3个CG/DG机会,且三次CG/DG机会的HARQ进程号依次增加。
通过本申请实施例所示的方案,当一个CG周期存在多个CG PUSCH传输资源的情况下,或者,一段时间内存在多个PUSCH传输资源的情况下,给出每个PUSCH资源的HARQ进程号的确定方法。用于避免某个HARQ进程中的数据尚未传输成功或还需要保存的情况下,使用上述HARQ进程,导致相应的MAC PDU flush的问题。上述实施例1可以单独使用,也可以结合下面的实施例2使用。
实施例2
基于上述图3或图4所示的方案,在实施例2中,终端设备针对存在多个CG PUSCH资源的情况,可以确定特定的首个CG PUSCH(可以是上述特定PUSCH)的HARQ进程或HARQ进程号。
比如,UE可以使用第一HARQ进程计算公式确定首个CG PUSCH的HARQ进程或HARQ进程号,或者,根据第二因素,确定首个CG PUSCH的HARQ进程或HARQ进程号。上述第二因素,可以是网络指示或配置的(RRC/MAC CE/DCI),也可以是UE确定的。
具体实现方式可以如下:
步骤1,基站发送配置信息给用UE。上述配置信息用于CG传输,或HARQ进程确定。可选的,包括以下至少之一:
a)上述配置信息通过RRC重配置配置。
b)上述配置信息,包括一段时间内,可用UL资源包括多个UL资源。可选的,上述配置信息,包括CG配置。可选的,CG配置的一个CG周期包括一个或多个CG PUSCH occasion。
c)上述配置信息,包括可用的HARQ进程或HARQ进程范围。可选的,包括HARQ进程数目和/或HARQ进程offset。可选的,上述HARQ进程或HARQ进程范围或,HARQ进程数目和/或HARQ进程offset,是针对上述UL资源配置(如CG)的所有CG occasion的,或者,针对上述UL资源配置(如CG)的每个周期的特定CG occasion的(如每个CG周期的第一个CG occasion的)。
d)上述配置信息,或者,第二指示信息,指示第二因素,或者指示UE使用第一HARQ进程计算公式。可选的,上述第二指示信息,或,第二因素,或,指示UE使用第一HARQ进程计算公式的指示信息,可以通过RRC/MAC CE/DCI承载。可选的,第二指示信息可以与第二因素有关。可选的,第二因素可以是预定义的,或网络指示的,或网络预配置的,或者网络enable/disable的。可选的,第二指示信息,或,指示UE使用第一HARQ进程计算公式的指示信息,可以是预定义的,或网络指示的,或网络预配置的,或者网络enable/disable的。
可选的,第一HARQ进程计算公式,或,第一HARQ进程计算公式中使用的参数,可以是预定义的,或者,也可以是在公式中定义好的。
可选的,第二指示信息或第二因素与以下至少之一相关:业务特征,数据量大小,数据量变化,CG配置个数(或CG index),资源个数,资源配置周期,一个周期的资源个数,资源间距,周期数(或当前为第几个周期),周期中的CG资源(最大)个数,可用HARQ进程数,HARQ进程偏移,最大HARQ进程数,一个周期的资源的HARQ之间的HARQ间隔(offset)。
可选的,第二指示信息或第二因素为第一HARQ进程计算公式中使用的调整因子的取值,或者,第二因素为针对现有HARQ计算公式中计算CG位置时使用的HARQ进程计算偏移。
可选的,第二指示信息或第二因素为第二HARQ进程计算公式中使用的参数。
可选的,上述第二因素,也可以是UE确定的。例如,UE根据CG周期中的CG资源(最大)个数,资源间距(即相邻周期的两个首CG之间间隔的CG资源最大个数),最大进程数,对应的业务特征,对应数据量大小,数据量变化,CG配置个数(或CG index),CG激活或使用个数,资源个数,资源配置周期,一个周期的资源个数,一段时间的资源个数,周期数(或当前为第几个周期),可用HARQ进程数,HARQ进程偏移,一个周期的资源的HARQ之间的HARQ间隔(offset)至少之一确定。比如,UE根据CG周期中的CG资源的个数或最大个数确定的。比如,UE根据资源间距确定的。又比如UE根据最大进程数和资源个数确定(如:最大进程数除以资源数=第二因素)。
步骤2,UE根据步骤1中的配置和/或指示信息,确定HARQ进程号,或者,确定一个/每个CG周期的至少一个CG occasion的HARQ进程号,或者,确定一段时间内的多个UL传输occasion的HARQ进程号。可选的,包括以下至少之一:
a)当一个CG周期存在多于一个CG资源的情况下,或者,一段时间存在多个UL PUSCH的情况下,UE确定至少一个PUSCH的HARQ进程号。
b)上述HARQ进程号确定在MAC执行。
c)可选的,第一HARQ进程计算公式为以下至少之一:
HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))*N]modulo nrofHARQ-Processes;
HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]}*N}modulo nrofHARQ-Processes;
HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes}*N}modulo nrofHARQ-Processes;
HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+ harq-ProcID-Offset2}*N}modulo nrofHARQ-Processes;
HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]+harq-ProcID-Offset2}*N}modulo nrofHARQ-Processes。
d)UE使用第一HARQ进程计算公式确定首个CG PUSCH的HARQ进程或HARQ进程号。
例如:HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))*N]modulo nrofHARQ-Processes。可选的,N为第二因素。
例如:HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]}*N}modulo nrofHARQ-Processes。可选的,N为第二因素。
例如:HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes}*N}modulo nrofHARQ-Processes。可选的,N为第二因素。
例如:HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2}*N}modulo nrofHARQ-Processes。可选的,N为第二因素。
例如:HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]+harq-ProcID-Offset2}*N}modulo nrofHARQ-Processes。可选的,N为第二因素。
e)UE确定首个CG PUSCH的HARQ进程或HARQ进程号。
可选的,UE根据第二因素,UE确定首个CG PUSCH的HARQ进程或HARQ进程号。
可选的,UE使用第一HARQ进程计算公式,或者,现有HARQ进程计算公式确定上述首个CG PUSCH的HARQ进程或HARQ进程号。
可选的,UE使用第一HARQ进程计算公式,确定上述首个CG PUSCH的HARQ进程或HARQ进程号,可以参考c)或d)。
可选的,UE使用现有HARQ进程计算公式,确定上述首个CG PUSCH的HARQ进程或HARQ进程号,可以如下:
假设:HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))]modulo nrofHARQ-Processes;或者,HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))]modulo nrofHARQ-Processes+harq-ProcID-Offset;或者,HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes;或者,HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2。或者,假设HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]+harq-ProcID-Offset2}*N}modulo nrofHARQ-Processes。根据上述公式之一或至少之一,计算出某个CG周期的HARQ进程号为M。则,该周期的首个CG occasion的HARQ进程号为:M*N,N为第二指示信息或第二因素(可选的,N为一个CG周期分配的occasion的(最大)数量。例如上述(最大)数量为N=4,确定出来的每个CG周期第一个occasion的HARQ进程号是0,4,8,12…)。可选的,需要对M*N取模,例如,{M*N}modulo nrofHARQ-Processes,方为每个CG周期第一个occasion的HARQ进程号。
假设:HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))]modulo nrofHARQ-Processes;或者,HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))]modulo nrofHARQ-Processes+harq-ProcID-Offset;或者,HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes;或者,HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2。或者,假设HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]+harq-ProcID-Offset2}*N}modulo nrofHARQ-Processes。根据上述公式之一或至少之一,计算出某个CG周期的HARQ进程号为M。则,该周期的首个CG occasion的HARQ进程号为:M+K*N,N为第二指示信息或第二因素(可选的,N为一个CG周期分配的occasion的(最大)数量-1,或者,N为资源间距。)。K为上述周期的周期index,或者,K=L(当前周期属于第L个CG周期)-1。例如,N=3,确定出来的每个CG周期第一个occasion的HARQ进程号是0,4,8,12…)。可选的,需要对M+K*N取模,例如,{M+K*N}modulo nrofHARQ-Processes,方为每个CG周期第一个occasion的HARQ进程号。
f)周期内其他occasion的HARQ进程号为该周期的首个CG PUSCH的HARQ进程号+(K-1)*1。其中,K为该PUSCH是本周期的第几个PUSCH。或者,周期内其他occasion的HARQ进程号为该周期的首个CG PUSCH的HARQ进程号+(K-1)*Q(其中,K为该PUSCH是本周期的第几个PUSCH,其中,Q可以为固定值,或预定义值,或网络指示值)。或者,周期内其他occasion的HARQ进程号为该周期的首个CG PUSCH的HARQ进程号+1。或者,周期内其他occasion的HARQ进程号为该周期的首个CG PUSCH的HARQ进程号+Q(Q可以为固定值,或预定义值,或网络指示值)。或者,针对周期内其他occasion,每个PUSCH的HARQ进程号为该周期的此PUSCH的前一个PUSCH的HARQ进程号+1。或者,针对周 期内其他occasion,每个PUSCH的HARQ进程号为该周期的此PUSCH的前一个PUSCH的HARQ进程号+Q(其中,Q可以为固定值,或预定义值,或网络指示值)。或者,周期内其他occasion的HARQ进程号为根据实施例1的方式计算出来的。
可选的,本申请文件中,实施例2和实施例1可以分别使用或单独使用。可选的,本申请文件中,实施例2和实施例1可以结合使用。请参考图6,其示出了本申请一示例性实施例示出的HARQ进程号示意图。如图6所示,一个周期T中包含至少3个CG/DG机会,第一个CG/DG机会的HARQ进程号Y根据实施例2所示的方案确定。可选的,其他CG/DG机会的HARQ进程号可以根据实施例1所示的方案确定。
通过本申请实施例所示的方案,当一个CG周期存在多个CG PUSCH传输资源的情况下,或者,一段时间内存在多个PUSCH传输资源的情况下,给出其中首个CG PUSCH的HARQ进程确定方式。根据上述首个CG PUSCH的HARQ进程确定结果,可以进一步确定其他CG PUSCH的HARQ进程号。
请参考图7,其示出了本申请一个实施例提供的HARQ进程处理装置的框图;该装置可以用于执行上述图3或图4所示的实施例中,由终端设备执行的各个步骤,如图7所示,该装置可以包括:
处理模块701,用于确定多个物理上行共享信道PUSCH中的至少一个PUSCH的混合自动重传请求HARQ进程。
在一些实施例中,所述多个PUSCH的HARQ进程的进程号中,至少一个进程号与其它进程号不同;或者,所述多个PUSCH的HARQ进程的进程号中,至少一个进程号与其它进程号相同。
在一些实施例中,所述处理模块701,用于在所述多个PUSCH中包含属于同一个周期内的至少两个CG资源和/或DG资源的情况下,或者,在所述多个PUSCH中包含指定长度时间段内的至少两个CG资源和/或DG资源的情况下,确定所述多个PUSCH中的至少一个PUSCH的HARQ进程。
在一些实施例中,所述处理模块701,用于,使用第一参数确定所述多个PUSCH中的至少一个PUSCH的HARQ进程;或者,
使用第二HARQ进程计算公式和第一参数,确定所述多个PUSCH中的至少一个PUSCH的HARQ进程;或者,
使用第一HARQ进程计算公式,确定所述多个PUSCH中的至少一个PUSCH的HARQ进程;或者,
使用第一HARQ进程计算公式以及第一参数,确定所述多个PUSCH中的至少一个PUSCH的HARQ进程;
使用第二因素,确定所述多个PUSCH中的至少一个PUSCH的HARQ进程;或者,
使用第二HARQ进程计算公式和第二因素确定所述多个PUSCH中的特定PUSCH的HARQ进程。
在一些实施例中,所述多个PUSCH中所有PUSCH的HARQ进程号,由第二HARQ进程计算公式、第一HARQ进程计算公式、第二因素以及第一参数中的至少一项确定。
在一些实施例中,所述处理模块701,用于根据第二HARQ进程计算公式确定所述多个PUSCH中特定PUSCH的HARQ进程;或者,
根据第二HARQ进程计算公式以及第一参数确定所述多个PUSCH中的特定PUSCH的HARQ进程;或者,
特定第一参数确定所述多个PUSCH中的特定PUSCH的HARQ进程;或者,
根据第一HARQ进程计算公式确定所述多个PUSCH中的特定PUSCH的HARQ进程;或者,
根据第二因素确定所述多个PUSCH中的特定PUSCH的HARQ进程;或者,
根据第二HARQ进程计算公式和第二因素确定所述多个PUSCH中的特定PUSCH的HARQ进程。
在一些实施例中,所述处理模块701,用于根据网络指示、预配置、预定义或者指定条件,确定是否使用第二HARQ进程计算公式、第一HARQ进程计算公式、第二因素以及第一参数中的至少一项,确定至少一个HARQ进程;或者,
根据网络指示、预配置、预定义或者指定条件,确定使用第二HARQ进程计算公式、第一HARQ进程计算公式、第二因素以及第一参数中的至少一项,确定至少一个HARQ进程。
在一些实施例中,所述第一参数用于,
确定所述多个PUSCH的HARQ进程号的间隔或偏移量,或者,
确定所述多个PUSCH的HARQ进程号,或者,
指示所述多个PUSCH中除了特定PUSCH之外的其它PUSCH相对于所述特定PUSCH的HARQ进程号的间隔或偏移量,或者,
指示第一PUSCH相对于所述多个PUSCH中的特定PUSCH的HARQ进程号的间隔或偏移量,所述第一PUSCH是所述多个PUSCH中位于所述特定PUSCH之后的PUSCH,或者,
指示所述多个PUSCH中除了特定PUSCH之外的其它PUSCH相对于所述其他PUSCH的前X个 PUSCH的HARQ进程号的间隔或偏移量,或者,
指示所述多个PUSCH中的PUSCH相对于其前X个PUSCH的HARQ进程号的间隔或偏移量。
在一些实施例中,所述第一参数由配置信息指示;所述配置信息用于CG传输或HARQ进程确定;或者,
所述第一参数由第一指示信息指示;或者,
所述第一参数为预定义的参数。
在一些实施例中,所述配置信息包括:一段时间内的可用上行资源,所述可用上行资源包括一至多个上行资源。
在一些实施例中,所述配置信息包括配置授权CG配置和/或动态上行授权DG配置。
在一些实施例中,所述CG配置的一个CG周期包括一个或多个CG PUSCH机会。
在一些实施例中,所述配置信息,包括:可用的HARQ进程或可用的HARQ进程范围。
在一些实施例中,所述可用的HARQ进程或HARQ进程范围,包括:
HARQ进程数目和/或HARQ进程偏移量。
在一些实施例中,所述HARQ进程数目和/或HARQ进程偏移量针对上行资源配置的所有CG机会;或者,所述HARQ进程数目和/或HARQ进程偏移量针对上行资源配置的每个周期的特定CG机会。
在一些实施例中,所述配置信息通过无线资源控制RRC重配置消息进行配置。
在一些实施例中,所述第一参数,还用于,
指示上行资源配置的每个周期的特定CG机会之外的其他CG机会的HARQ进程或HARQ进程使用范围。
在一些实施例中,所述第一指示信息由无线资源控制RRC消息、媒体访问控制MAC控制单元CE、或者下行控制信息DCI承载。
在一些实施例中,所述第一参数为单个数值。
在一些实施例中,所述第一参数为所述多个PUSCH中每相邻两个PUSCH的HARQ进程之间的间隔或偏移量。
在一些实施例中,所述第一参数为所述多个PUSCH中特定PUSCH的HARQ进程号;或者,
所述第一参数为所述多个PUSCH中除了特定PUSCH之外的首个PUSCH的进程号;或者,
所述第一参数为所述多个PUSCH中除了特定PUSCH之外的首个PUSCH相对于所述特定PUSCH的HARQ间隔或者偏移量;或者,
所述第一参数为所述多个PUSCH中每个PUSCH相对于所述特定PUSCH的HARQ间隔或者偏移量;
或者,
所述第一参数为所述多个PUSCH中每个PUSCH相对于其前X个PUSCH的HARQ间隔或者偏移量。
在一些实施例中,所述多个PUSCH中除了特定PUSCH之外的各个PUSCH中,相邻两个PUSCH之间的间隔或者偏移量为相同的第一取值;或者,
所述多个PUSCH中的各个PUSCH中,相邻两个PUSCH之间的间隔或者偏移量为相同的第二取值。
在一些实施例中,所述第一取值由网络指示,或者,所述第一取值为预定义的取值;或者,所述第二取值由网络指示,或者,所述第二取值为预定义的取值。
在一些实施例中,所述第一参数为第一取值列表。
在一些实施例中,所述第一取值列表是多个PUSCH机会的HARQ进程间隔或者偏移量的取值列表;或者,
所述第一取值列表是PUSCH机会与HARQ进程间隔或者偏移量之间的一对一映射;或者,
所述第一取值列表是多个PUSCH机会的HARQ进程号的取值列表;或者,
所述第一取值列表是PUSCH机会与HARQ进程号之间的一对一映射。
在一些实施例中,所述第一取值列表是所述多个PUSCH中每相邻两个PUSCH的进程号之间的间隔或者偏移量;或者,
所述第一取值列表是所述多个PUSCH中除了特定PUSCH之外的每个PUSCH的进程号,相对于所述特定PUSCH的进程号的间隔或者偏移量;或者,
所述第一取值列表是所述多个PUSCH中除了特定PUSCH之外的每个PUSCH的进程号,相对于其前X个HARQ进程的进程号的间隔或者偏移量;或者,
所述第一取值列表是所述多个PUSCH中,除了特定PUSCH之外的各个PUSCH的进程号;或者,所述第一取值列表是所述多个PUSCH中的每个PUSCH的进程号;或者,
所述第一取值列表是所述多个PUSCH中的每个PUSCH的进程号所述第一取值列表是所述多个PUSCH的每个PUSCH的进程号,相对于特定PUSCH的进程号的间隔或者偏移量;或者,
所述第一取值列表是所述多个PUSCH中每个PUSCH的进程号,相对于其前X个HARQ进程的进程号的间隔或者偏移量。
在一些实施例中,所述第一取值列表中包含至少两个取值,且所述至少两个取值中的每个取值对应一种针对PUSCH机会的HARQ进程之间的间隔或者偏移量;或者,所述第一取值列表中包含至少两个取值,且所述至少两个取值中的每个取值对应一种针对PUSCH机会的HARQ进程号。
在一些实施例中,所述至少两个取值对应不同的取值索引。
在一些实施例中,所述处理模块701,还用于根据第二指示信息确定激活或者使用所述第一取值列表中的至少一个取值;或者,
根据第二指示信息确定去激活或者不使用所述第一取值列表中的至少一个取值。
在一些实施例中,所述第二指示信息承载于下行控制信息或者MAC CE。
在一些实施例中,所述第一参数包括至少两套第二取值列表。
在一些实施例中,至少两套所述第二取值列表中的每套所述第二取值列表对应一种针对PUSCH机会的HARQ进程之间的间隔或者偏移量;或者,至少两套所述第二取值列表中的每套所述第二取值列表对应一种针对PUSCH机会的HARQ进程号。
在一些实施例中,所述第二取值列表是PUSCH机会与HARQ进程间隔或者偏移量之间的一对一映射;或者,所述第二取值列表是PUSCH机会与HARQ号之间的一对一映射;或者,所述第二取值列表是多个PUSCH机会的HARQ进程号取值列表;或者,所述第二取值列表是PUSCH机会与HARQ进程号之间的一对一映射。
在一些实施例中,至少两套所述第二取值列表对应不同的取值列表索引。
在一些实施例中,所述处理模块701,还用于根据第三指示信息确定激活或者使用至少两套所述第二取值列表中的至少一套取值列表;或者,
根据第三指示信息确定去激活或者不使用至少两套所述第二取值列表中的至少一套取值列表。
在一些实施例中,所述第三指示信息承载于下行控制信息或者MAC CE。
在一些实施例中,所述第二因素与以下至少一项相关:
业务特征、数据量大小、数据量变化、CG和/或DG配置个数、CG和/或DG激活或使用的个数、资源个数、资源配置周期、一个周期的资源个数、一段时间的资源个数、资源间距、周期数、当前周期次序、周期中的CG资源个数、可用HARQ进程数、HARQ进程偏移、最大HARQ进程数、一个周期的资源的HARQ之间的HARQ间隔或者偏移量。
在一些实施例中,所述第二因素为第一HARQ进程计算公式中使用的调整因子的取值;或者,
所述第二因素为针对HARQ计算公式中计算CG和/或DG位置时使用的HARQ进程计算偏移。
在一些实施例中,所述第二因素为预定义的,或者,网络指示的,或者,网络配置的,或者,由所述终端设备确定。
在一些实施例中,所述第二因素由所述终端设备根据以下至少一项确定:
业务特征、数据量大小、数据量变化、CG和/或DG配置个数、CG和/或DG激活或使用的个数、资源个数、资源配置周期、一个周期的资源个数、一段时间的资源个数、资源间距、周期数、当前周期次序、周期中的CG资源个数、可用HARQ进程数、HARQ进程偏移、最大HARQ进程数、一个周期的资源的HARQ之间的HARQ间隔或者偏移量。
在一些实施例中,所述多个PUSCH中除了所述特定PUSCH之外的其他PUSCH的HARQ进程号为所述特定PUSCH的HARQ进程号加上第一数值;或者,
所述多个PUSCH中除了所述特定PUSCH之外的其他PUSCH的HARQ进程号为所述PUSCH的前X个PUSCH的HARQ进程号加上第三数值;或者,
所述多个PUSCH中除了所述特定PUSCH之外的其他PUSCH的HARQ进程号按照与所述特定PUSCH之间的间隔递增或者递减第二数值。
在一些实施例中,所述第一HARQ进程计算公式为:
HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))*N]modulo nrofHARQ-Processes;或者,
HARQ Process ID=[floor(CURRENT_symbol/periodicity)*N]modulo nrofHARQ-Processes;或者,
HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2}*N}modulo nrofHARQ-Processes;或者,
HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]+harq-ProcID-Offset2}*N}modulo nrofHARQ-Processes;
其中,N为第二因素。
在一些实施例中,所述第二HARQ进程计算公式为:
HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))]modulo nrofHARQ-Processes;或者,
HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))]modulo nrofHARQ-Processes+harq-ProcID-Offset;或者,
HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes;或者,
HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2。
在一些实施例中,所述处理模块701,还用于对所述多个PUSCH中,除了特定PUSCH之外的其他PUSCH的HARQ进程号取模;或者,
对所述多个PUSCH中的每个PUSCH的HARQ进程号取模;或者,
对所述多个PUSCH中的特定PUSCH的HARQ进程号取模。
在一些实施例中,所述取模操作,
在HARQ进程计算公式中执行;或者,
以在HARQ进程计算公式外执行;或者,
在HARQ进程计算公式计算的结果后执行。
请参考图8,其示出了本申请一个实施例提供的设备800的结构示意图。该设备800可以包括:处理器801、接收器802、发射器803、存储器804和总线805。
处理器801包括一个或者一个以上处理核心,处理器801通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器802和发射器803可以实现为一个通信组件,该通信组件可以是一块通信芯片。该通信芯片也可以称为收发器。
存储器804通过总线805与处理器801相连。
存储器804可用于存储计算机程序,处理器801用于执行该计算机程序,以实现上述方法实施例中的终端执行的各个步骤。
此外,存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器,可擦除可编程只读存储器,静态随时存取存储器,只读存储器,磁存储器,快闪存储器,可编程只读存储器。
上述设备可以实现为上述各个方法实施例中的终端设备或者网络侧设备。
在示例性实施例中,所述设备包括处理器、存储器和收发器(该收发器可以包括接收器和发射器,接收器用于接收信息,发射器用于发送信息);
当上述设备实现为上述各个方法实施例中的终端设备时,
所述处理器,用于确定多个物理上行共享信道PUSCH中的至少一个PUSCH的混合自动重传请求HARQ进程。
其中,上述收发器和处理器执行的步骤可以参考上述图3或图4所示实施例中,由终端设备执行的全部或者部分步骤,此处不再赘述。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述图3或图4所示的方法中,由终端设备或网络侧设备执行的各个步骤。
本申请还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。终端设备或网络侧设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该终端设备或网络侧设备执行上述图3或图4所示的方法中,由终端设备或网络侧设备执行的各个步骤。
本申请还提供了一种计算机程序,该计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。终端设备或网络侧设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该终端设备或网络侧设备执行上述图3或图4所示的方法中,由终端设备或网络侧设备执行的各个步骤。
本申请还提供了一种芯片,该芯片用于终端中,该芯片可以执行上述图3或图4所示的方法中,由终端设备或网络侧设备执行的各个步骤。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者 作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (51)

  1. 一种HARQ进程处理方法,其特征在于,所述方法由终端执行,所述方法包括:
    确定多个物理上行共享信道PUSCH中的至少一个PUSCH的混合自动重传请求HARQ进程。
  2. 根据权利要求1所述的方法,其特征在于,
    所述多个PUSCH的HARQ进程的进程号中,至少一个进程号与其它进程号不同;或者,
    所述多个PUSCH的HARQ进程的进程号中,至少一个进程号与其它进程号相同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述确定多个物理上行共享信道PUSCH中的至少一个PUSCH的混合自动重传请求HARQ进程,包括:
    在所述多个PUSCH中包含属于同一个周期内的至少两个配置授权CG资源和/或动态上行授权DG资源的情况下,或者,在所述多个PUSCH中包含指定长度时间段内的至少两个CG资源和/或DG资源的情况下,确定所述多个PUSCH中的至少一个PUSCH的HARQ进程。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述确定所述多个PUSCH中的至少一个PUSCH的HARQ进程,包括:
    使用第一参数确定所述多个PUSCH中的至少一个PUSCH的HARQ进程;或者,
    使用第二HARQ进程计算公式和第一参数,确定所述多个PUSCH中的至少一个PUSCH的HARQ进程;或者,
    使用第一HARQ进程计算公式,确定所述多个PUSCH中的至少一个PUSCH的HARQ进程;或者,
    使用第一HARQ进程计算公式以及第一参数,确定所述多个PUSCH中的至少一个PUSCH的HARQ进程;
    使用第二因素,确定所述多个PUSCH中的至少一个PUSCH的HARQ进程;或者,
    使用第二HARQ进程计算公式和第二因素确定所述多个PUSCH中的特定PUSCH的HARQ进程。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述多个PUSCH中所有PUSCH的HARQ进程号,由第二HARQ进程计算公式、第一HARQ进程计算公式、第二因素以及第一参数中的至少一项确定。
  6. 根据权利要求1至4任一所述的方法,其特征在于,所述确定所述多个PUSCH中的至少一个PUSCH的HARQ进程,包括:
    根据第二HARQ进程计算公式确定所述多个PUSCH中特定PUSCH的HARQ进程;或者,
    根据第二HARQ进程计算公式以及第一参数确定所述多个PUSCH中的特定PUSCH的HARQ进程;或者,
    特定第一参数确定所述多个PUSCH中的特定PUSCH的HARQ进程;或者,
    根据第一HARQ进程计算公式确定所述多个PUSCH中的特定PUSCH的HARQ进程;或者,
    根据第二因素确定所述多个PUSCH中的特定PUSCH的HARQ进程;或者,
    根据第二HARQ进程计算公式和第二因素确定所述多个PUSCH中的特定PUSCH的HARQ进程。
  7. 根据权利要求4至6任一所述的方法,其特征在于,所述方法还包括:
    根据网络指示、预配置、预定义或者指定条件,确定是否使用第二HARQ进程计算公式、第一HARQ进程计算公式、第二因素以及第一参数中的至少一项,确定至少一个HARQ进程;或者,
    根据网络指示、预配置、预定义或者指定条件,确定使用第二HARQ进程计算公式、第一HARQ进程计算公式、第二因素以及第一参数中的至少一项,确定至少一个HARQ进程。
  8. 根据权利要求4至6任一所述的方法,其特征在于,所述第一参数用于,
    确定所述多个PUSCH的HARQ进程号的间隔或偏移量,或者,
    确定所述多个PUSCH的HARQ进程号,或者,
    指示所述多个PUSCH中除了特定PUSCH之外的其它PUSCH相对于所述特定PUSCH的HARQ进程号的间隔或偏移量,或者,
    指示第一PUSCH相对于所述多个PUSCH中的特定PUSCH的HARQ进程号的间隔或偏移量,所述 第一PUSCH是所述多个PUSCH中位于所述特定PUSCH之后的PUSCH,或者,
    指示所述多个PUSCH中除了特定PUSCH之外的其它PUSCH相对于所述其他PUSCH的前X个PUSCH的HARQ进程号的间隔或偏移量,或者,
    指示所述多个PUSCH中的PUSCH相对于其前X个PUSCH的HARQ进程号的间隔或偏移量。
  9. 根据权利要求4至8任一所述的方法,其特征在于,
    所述第一参数由配置信息指示;所述配置信息用于CG传输或HARQ进程确定;或者,
    所述第一参数由第一指示信息指示;或者,
    所述第一参数为预定义的参数。
  10. 根据权利要求9所述的方法,其特征在于,所述配置信息包括:
    一段时间内的可用上行资源,所述可用上行资源包括一至多个上行资源。
  11. 根据权利要求9或10所述的方法,其特征在于,所述配置信息包括配置授权CG配置和/或动态上行授权DG配置。
  12. 根据权利要求11所述的方法,其特征在于,所述CG配置的一个CG周期包括一个或多个CG PUSCH机会。
  13. 根据权利要求9至12所述的方法,其特征在于,所述配置信息,包括:
    可用的HARQ进程或可用的HARQ进程范围。
  14. 根据权利要求13所述的方法,其特征在于,所述可用的HARQ进程或HARQ进程范围,包括:
    HARQ进程数目和/或HARQ进程偏移量。
  15. 根据权利要求14所述的方法,其特征在于,
    所述HARQ进程数目和/或HARQ进程偏移量针对上行资源配置的所有CG机会;或者,
    所述HARQ进程数目和/或HARQ进程偏移量针对上行资源配置的每个周期的特定CG机会。
  16. 根据权利要求9至15任一所述的方法,其特征在于,所述配置信息通过无线资源控制RRC重配置消息进行配置。
  17. 根据权利要求9至16任一所述的方法,其特征在于,所述第一参数,还用于,
    指示上行资源配置的每个周期的特定CG机会之外的其他CG机会的HARQ进程或HARQ进程使用范围。
  18. 根据权利要求9所述的方法,其特征在于,所述第一指示信息由无线资源控制RRC消息、媒体访问控制MAC控制单元CE、或者下行控制信息DCI承载。
  19. 根据权利要求4至18任一所述的方法,其特征在于,所述第一参数为单个数值。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第一参数为所述多个PUSCH中每相邻两个PUSCH的HARQ进程之间的间隔或偏移量。
  21. 根据权利要求19所述的方法,其特征在于,
    所述第一参数为所述多个PUSCH中特定PUSCH的HARQ进程号;或者,
    所述第一参数为所述多个PUSCH中除了特定PUSCH之外的首个PUSCH的进程号;或者,
    所述第一参数为所述多个PUSCH中除了特定PUSCH之外的首个PUSCH相对于所述特定PUSCH的HARQ间隔或者偏移量;或者,
    所述第一参数为所述多个PUSCH中每个PUSCH相对于所述特定PUSCH的HARQ间隔或者偏移量;或者,
    所述第一参数为所述多个PUSCH中每个PUSCH相对于其前X个PUSCH的HARQ间隔或者偏移量。
  22. 根据权利要求21所述的方法,其特征在于,
    所述多个PUSCH中除了特定PUSCH之外的各个PUSCH中,相邻两个PUSCH之间的间隔或者偏移量为相同的第一取值;或者,
    所述多个PUSCH中的各个PUSCH中,相邻两个PUSCH之间的间隔或者偏移量为相同的第二取值。
  23. 根据权利要求22所述的方法,其特征在于,所述第一取值由网络指示,或者,所述第一取值为预定义的取值;或者,所述第二取值由网络指示,或者,所述第二取值为预定义的取值。
  24. 根据权利要求4至18任一所述的方法,其特征在于,所述第一参数为第一取值列表。
  25. 根据权利要求24所述的方法,其特征在于,
    所述第一取值列表是多个PUSCH机会的HARQ进程间隔或者偏移量的取值列表;或者,
    所述第一取值列表是PUSCH机会与HARQ进程间隔或者偏移量之间的一对一映射;或者,
    所述第一取值列表是多个PUSCH机会的HARQ进程号的取值列表;或者,
    所述第一取值列表是PUSCH机会与HARQ进程号之间的一对一映射。
  26. 根据权利要求25所述的方法,其特征在于,
    所述第一取值列表是所述多个PUSCH中每相邻两个PUSCH的进程号之间的间隔或者偏移量;或者,
    所述第一取值列表是所述多个PUSCH中除了特定PUSCH之外的每个PUSCH的进程号,相对于所述特定PUSCH的进程号的间隔或者偏移量;或者,
    所述第一取值列表是所述多个PUSCH中除了特定PUSCH之外的每个PUSCH的进程号,相对于其前X个HARQ进程的进程号的间隔或者偏移量;或者,
    所述第一取值列表是所述多个PUSCH中,除了特定PUSCH之外的各个PUSCH的进程号;或者,所述第一取值列表是所述多个PUSCH中的每个PUSCH的进程号;或者,
    所述第一取值列表是所述多个PUSCH中的每个PUSCH的进程号所述第一取值列表是所述多个PUSCH的每个PUSCH的进程号,相对于特定PUSCH的进程号的间隔或者偏移量;或者,
    所述第一取值列表是所述多个PUSCH中每个PUSCH的进程号,相对于其前X个HARQ进程的进程号的间隔或者偏移量。
  27. 根据权利要求25所述的方法,其特征在于,所述第一取值列表中包含至少两个取值,且所述至少两个取值中的每个取值对应一种针对PUSCH机会的HARQ进程之间的间隔或者偏移量;或者,所述第一取值列表中包含至少两个取值,且所述至少两个取值中的每个取值对应一种针对PUSCH机会的HARQ进程号。
  28. 根据权利要求27所述的方法,其特征在于,所述至少两个取值对应不同的取值索引。
  29. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    根据第二指示信息确定激活或者使用所述第一取值列表中的至少一个取值;或者,
    根据第二指示信息确定去激活或者不使用所述第一取值列表中的至少一个取值。
  30. 根据权利要求29所述的方法,其特征在于,所述第二指示信息承载于下行控制信息或者MAC CE。
  31. 根据权利要求4至18任一所述的方法,其特征在于,所述第一参数包括至少两套第二取值列表。
  32. 根据权利要求31所述的方法,其特征在于,
    至少两套所述第二取值列表中的每套所述第二取值列表对应一种针对PUSCH机会的HARQ进程之间的间隔或者偏移量;或者,至少两套所述第二取值列表中的每套所述第二取值列表对应一种针对PUSCH机会的HARQ进程号。
  33. 根据权利要求31所述的方法,其特征在于,所述第二取值列表是PUSCH机会与HARQ进程间隔或者偏移量之间的一对一映射;或者,所述第二取值列表是PUSCH机会与HARQ号之间的一对一映射;或者,所述第二取值列表是多个PUSCH机会的HARQ进程号取值列表;或者,所述第二取值列表是PUSCH机会与HARQ进程号之间的一对一映射。
  34. 根据权利要求31至33任一所述的方法,其特征在于,至少两套所述第二取值列表对应不同的取值列表索引。
  35. 根据权利要求32至34任一所述的方法,其特征在于,所述方法还包括:
    根据第三指示信息确定激活或者使用至少两套所述第二取值列表中的至少一套取值列表;或者,
    根据第三指示信息确定去激活或者不使用至少两套所述第二取值列表中的至少一套取值列表。
  36. 根据权利要求35所述的方法,其特征在于,所述第三指示信息承载于下行控制信息或者MAC CE。
  37. 根据权利要求6所述的方法,其特征在于,所述第二因素与以下至少一项相关:
    业务特征、数据量大小、数据量变化、CG和/或DG配置个数、CG和/或DG激活或使用的个数、资源个数、资源配置周期、一个周期的资源个数、一段时间的资源个数、资源间距、周期数、当前周期次序、周期中的CG资源个数、可用HARQ进程数、HARQ进程偏移、最大HARQ进程数、一个周期的资源的HARQ之间的HARQ间隔或者偏移量。
  38. 根据权利要求6所述的方法,其特征在于,
    所述第二因素为第一HARQ进程计算公式中使用的调整因子的取值;或者,
    所述第二因素为针对HARQ计算公式中计算CG和/或DG位置时使用的HARQ进程计算偏移。
  39. 根据权利要求6所述的方法,其特征在于,所述第二因素为预定义的,或者,网络指示的,或者,网络配置的,或者,由所述终端设备确定。
  40. 根据权利要求39所述的方法,其特征在于,所述第二因素由所述终端设备根据以下至少一项确定:
    业务特征、数据量大小、数据量变化、CG和/或DG配置个数、CG和/或DG激活或使用的个数、资源个数、资源配置周期、一个周期的资源个数、一段时间的资源个数、资源间距、周期数、当前周期次序、周期中的CG资源个数、可用HARQ进程数、HARQ进程偏移、最大HARQ进程数、一个周期的资源的HARQ之间的HARQ间隔或者偏移量。
  41. 根据权利要求6所述的方法,其特征在于,
    所述多个PUSCH中除了所述特定PUSCH之外的其他PUSCH的HARQ进程号为所述特定PUSCH的HARQ进程号加上第一数值;或者,
    所述多个PUSCH中除了所述特定PUSCH之外的其他PUSCH的HARQ进程号为所述PUSCH的前X个PUSCH的HARQ进程号加上第三数值;或者,
    所述多个PUSCH中除了所述特定PUSCH之外的其他PUSCH的HARQ进程号按照与所述特定PUSCH之间的间隔递增或者递减第二数值。
  42. 根据权利要求4至6任一所述的方法,其特征在于,所述第一HARQ进程计算公式为:
    HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))*N]modulo nrofHARQ-Processes;或者,
    HARQ Process ID=[floor(CURRENT_symbol/periodicity)*N]modulo nrofHARQ-Processes;或者,
    HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2}*N}modulo nrofHARQ-Processes;或者,
    HARQ Process ID={{[floor(CURRENT_symbol/periodicity)]+harq-ProcID-Offset2}*N}modulo nrofHARQ-Processes;
    其中,N为第二因素。
  43. 根据权利要求4至6任一所述的方法,其特征在于,所述第二HARQ进程计算公式为:
    HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))]modulo nrofHARQ-Processes;或者,
    HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))]modulo nrofHARQ-Processes+harq-ProcID-Offset;或者,
    HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes;或者,
    HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2。
  44. 根据权利要求1至43任一所述的方法,其特征在于,所述方法还包括:
    对所述多个PUSCH中,除了特定PUSCH之外的其他PUSCH的HARQ进程号取模;或者,
    对所述多个PUSCH中的每个PUSCH的HARQ进程号取模;或者,
    对所述多个PUSCH中的特定PUSCH的HARQ进程号取模。
  45. 根据权利要求44所述的方法,其特征在于,所述取模操作,
    在HARQ进程计算公式中执行;或者,
    以在HARQ进程计算公式外执行;或者,
    在HARQ进程计算公式计算的结果后执行。
  46. 一种HARQ进程处理装置,其特征在于,所述装置包括:
    处理模块,用于确定多个物理上行共享信道PUSCH中的至少一个PUSCH的混合自动重传请求HARQ进程。
  47. 一种终端设备,其特征在于,所述终端设备包括处理器、存储器和收发器;
    所述处理器,用于确定多个物理上行共享信道PUSCH中的至少一个PUSCH的混合自动重传请求HARQ进程。
  48. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至45任一项所述的HARQ进程处理方法。
  49. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中;终端设备或网络侧设备的处理器执行所述计算机指令,使得所述终端设备或网络侧设备执行如权利要求1至45任一项所述的HARQ进程处理方法。
  50. 一种计算机程序,其特征在于,所述计算机程序包括计算机指令,终端设备或网络侧设备的处理器执行所述计算机指令,使得所述终端设备或网络侧设备执行如权利要求1至45任一项所述的HARQ进程处理方法。
  51. 一种芯片,其特征在于,所述芯片用于执行如权利要求1至45任一项所述的HARQ进程处理方法。
PCT/CN2022/139141 2022-12-14 2022-12-14 Harq进程处理方法、装置、设备、存储介质及产品 WO2024124458A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/139141 WO2024124458A1 (zh) 2022-12-14 2022-12-14 Harq进程处理方法、装置、设备、存储介质及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/139141 WO2024124458A1 (zh) 2022-12-14 2022-12-14 Harq进程处理方法、装置、设备、存储介质及产品

Publications (1)

Publication Number Publication Date
WO2024124458A1 true WO2024124458A1 (zh) 2024-06-20

Family

ID=91484113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139141 WO2024124458A1 (zh) 2022-12-14 2022-12-14 Harq进程处理方法、装置、设备、存储介质及产品

Country Status (1)

Country Link
WO (1) WO2024124458A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104601305A (zh) * 2013-11-01 2015-05-06 重庆重邮信科通信技术有限公司 一种上行混合自动重传控制的方法和终端
CN108604953A (zh) * 2016-01-27 2018-09-28 华为技术有限公司 信息发送方法、信息接收方法、装置及***
CN111148262A (zh) * 2018-11-07 2020-05-12 维沃移动通信有限公司 一种数据传输方法、信息配置方法、终端及网络设备
CN112135357A (zh) * 2019-06-25 2020-12-25 夏普株式会社 用户设备、基站及其方法
CN113518350A (zh) * 2020-04-09 2021-10-19 维沃移动通信有限公司 调度方法和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104601305A (zh) * 2013-11-01 2015-05-06 重庆重邮信科通信技术有限公司 一种上行混合自动重传控制的方法和终端
CN108604953A (zh) * 2016-01-27 2018-09-28 华为技术有限公司 信息发送方法、信息接收方法、装置及***
CN111148262A (zh) * 2018-11-07 2020-05-12 维沃移动通信有限公司 一种数据传输方法、信息配置方法、终端及网络设备
WO2020093964A1 (zh) * 2018-11-07 2020-05-14 维沃移动通信有限公司 数据传输方法、信息配置方法、终端及网络设备
CN112135357A (zh) * 2019-06-25 2020-12-25 夏普株式会社 用户设备、基站及其方法
CN113518350A (zh) * 2020-04-09 2021-10-19 维沃移动通信有限公司 调度方法和设备

Similar Documents

Publication Publication Date Title
TWI770060B (zh) 可撓無線電服務5g nr資料傳輸
JP7248661B2 (ja) 通信方法、通信装置、およびデバイス
JP7002464B2 (ja) 無線システムにおけるユーザプレーンの処理
US11116035B2 (en) Wireless communication method using enhanced distributed channel access, and wireless communication terminal using same
US20210212104A1 (en) Methods and apparatuses for transmitting and configuring sidelink data
CN110621075B (zh) 一种传输数据的方法和装置
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及***
US20220104063A1 (en) Transmission of buffer status reports on multiple component carriers
JP2022520588A (ja) 送信動作および受信動作を実行するユーザ機器およびシステム
JP2022506704A (ja) 無線通信システムにおけるサブバンド基盤のチャンネルアクセス方法及び装置
KR20110004785A (ko) 공유 무선 자원을 이용한 기지국의 상향링크 수신 방법 및 단말기의 상향링크 송신 방법
WO2020057637A1 (zh) 无线调度的方法和装置
US20220124679A1 (en) Wireless resource allocation schemes in vehicle-to-everything (v2x) communication
EP3780806A1 (en) User equipment and scheduling device
CN115362752A (zh) 用于无线通信***中的基于设备到设备通信的基站和用户装备之间的链路的drx的方法和装置
US20230041484A1 (en) Receiver Assisted Directional Channel Sensing for NR-U
WO2021188715A2 (en) Scheduling sidelink transmission with relay
CN115606127A (zh) 用于改善语音覆盖的方法和装置
WO2020221011A1 (zh) 数据传输的方法和装置
EP4160964A1 (en) User equipment and base station involved in monitoring of a downlink control channel
WO2024124458A1 (zh) Harq进程处理方法、装置、设备、存储介质及产品
CN115245030A (zh) 用于在无线通信***中发送上行链路数据的方法及装置
WO2024119448A1 (zh) 用于无线传输的处理方法、装置、设备、存储介质及产品
WO2024138728A1 (zh) 侧行资源映射方法、装置、设备及存储介质
WO2024138348A1 (zh) 下行控制信息的指示方法、装置、设备及存储介质