WO2024123023A1 - Piezoelectric linear motor using piezoelectric ceramic sintered body - Google Patents

Piezoelectric linear motor using piezoelectric ceramic sintered body Download PDF

Info

Publication number
WO2024123023A1
WO2024123023A1 PCT/KR2023/019842 KR2023019842W WO2024123023A1 WO 2024123023 A1 WO2024123023 A1 WO 2024123023A1 KR 2023019842 W KR2023019842 W KR 2023019842W WO 2024123023 A1 WO2024123023 A1 WO 2024123023A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
sintered body
moving axis
linear motor
ceramic sintered
Prior art date
Application number
PCT/KR2023/019842
Other languages
French (fr)
Korean (ko)
Inventor
윤만순
박영민
Original Assignee
에코디엠랩 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에코디엠랩 주식회사 filed Critical 에코디엠랩 주식회사
Publication of WO2024123023A1 publication Critical patent/WO2024123023A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Definitions

  • the present invention relates to a linear motor using a piezoelectric ceramic element, and particularly to a linear motor that can increase durability by inducing smooth reciprocating motion of a moving axis connected to the piezoelectric ceramic element and a carrier reciprocating on the moving axis.
  • a piezoelectric motor is a motor that uses the piezoelectric effect of piezoelectric ceramics to cause vibration by changes in an applied electric field.
  • Piezoelectric motors use frequencies in the ultrasonic range above 20 kHz, which cannot be detected by the human ear, and have the advantage of being able to operate noiselessly.
  • piezoelectric motors compared to regular electromagnetic motors, piezoelectric motors have a generating force of 3 kg ⁇ cm, a response speed of less than 0.1 ms, a size that is more than 10 times smaller, and a precision of less than 0.1 mm, so they are used to reduce digital camera zoom, auto-focusing, and hand tremor. It is widely used in applications that require high level torque and low speed, such as implementing prevention functions or driving the pickup lens of CD/DVD-ROM drives.
  • a piezoelectric linear motor using such a piezoelectric element has a structure in which displacement is obtained through the linear movement of the transporter by bonding a moving axis to piezoelectric ceramic and arranging a transporter capable of reciprocating motion on the transport axis. Due to the characteristics of the piezoelectric ceramic sintered body that generates ultrasonic waves in these piezoelectric linear motors, service life can be a very important quality.
  • the factors that have the greatest influence on the service life of a piezoelectric linear motor may be damage to the piezoelectric ceramic sintered body due to repetitive motion and damage to the moving axis due to repeated reciprocating motion of the carrier on the moving axis.
  • the purpose of the present invention is to increase durability and extend the service life of a piezoelectric linear motor using a piezoelectric ceramic sintered body.
  • the piezoelectric linear motor includes a piezoelectric ceramic sintered body made through ceramic injection molding, a moving shaft connected to the piezoelectric ceramic sintered body in a vertical direction, and a moving shaft inserted into the moving shaft. It includes a conveyor that moves on the moving axis, wherein the moving axis includes a fiber-shaped carbon material arranged in the longitudinal direction of the moving axis, and the surface of the transporter where the transporter comes into contact with the moving axis is a surface parallel to the longitudinal direction of the moving axis. Roughness can have directionality.
  • the piezoelectric ceramic sintered body may have a dome shape.
  • the surface roughness direction may depend on the direction of a machining groove created during cutting or drilling during a machining process to form the surface of the carrier.
  • the surface roughness directionality may depend on the forming direction during the forming process of forming the surface of the carrier.
  • the dome-shaped piezoelectric ceramic sintered body may include a dome-shaped body portion and an edge portion that is formed to integrally extend from an edge of the body portion and protrudes from the edge of the body portion.
  • the edge portion may have a vertical thickness that is different from the oscillation area of the body portion.
  • the durability of the piezoelectric ceramic sintered body is improved, and the moving shaft is not easily damaged even during repeated reciprocating movements of the carrier, so the service life can be extended.
  • FIG. 1 is a diagram showing the structure of a piezoelectric linear motor according to an embodiment of the present invention.
  • Figure 2 is a diagram showing the structure of a piezoelectric linear motor according to an embodiment of the present invention.
  • Figure 3 is a scanning electron microscope image observing the surface of a pressure wire ceramic sintered body according to the prior art and the surface of a piezoelectric ceramic sintered body according to the present invention.
  • Figure 4 is a diagram explaining a moving axis and a conveyor according to an embodiment of the present invention.
  • Figure 5 is a diagram explaining a moving axis and a conveyor according to an embodiment of the present invention.
  • Figure 6 is a diagram explaining a piezoelectric ceramic sintered body according to an embodiment of the present invention.
  • Figure 7 is an image showing longitudinal wear of the moving axis after driving the piezoelectric motor.
  • the piezoelectric linear motor according to the present invention includes a piezoelectric ceramic sintered body made through ceramic injection molding, a moving axis connected to the piezoelectric ceramic sintered body in a vertical direction, and a transporter disposed on the moving axis and moving on the moving axis,
  • the moving axis includes a fiber-shaped carbon material arranged in the longitudinal direction of the moving axis, and when the transporter is inserted into the moving axis, the surface of the transporter in contact with the moving axis has a surface roughness parallel to the longitudinal direction of the moving axis. It can have direction.
  • the volume of the piezoelectric ceramic sintered body changes depending on the electric field. This slight volume change in the piezoelectric ceramic sintered body is transmitted to the moving axis, causing the moving axis to make a linear reciprocating motion in the longitudinal direction, thereby enabling linear movement of the carrier disposed on the moving axis.
  • the piezoelectric sintered body may be a single sintered piezoelectric ceramic body, and an elastic body for amplifying displacement of the piezoelectric ceramic sintered body may be disposed on one or both sides of the piezoelectric ceramic sintered body.
  • FIG. 1 shows an example of a piezoelectric linear motor.
  • a piezoelectric linear motor generally consists of a piezoelectric sintered body 10, a moving shaft 30 connected to the piezoelectric sintered body 10, and a carrier 40 that reciprocates on the moving shaft 30.
  • the piezoelectric sintered body 20 may be made into a dome shape. As the piezoelectric sintered body 20 is made into a dome shape, it is possible to amplify the displacement due to a change in the volume of the piezoelectric ceramic.
  • piezoelectric ceramic sintered bodies were conventionally manufactured by molding and sintering ceramic powder and then machining them to meet specifications. Through machining, many fine cracks are formed on the surface, which causes damage from repeated volume changes in the piezoelectric ceramic. This happens.
  • the piezoelectric sintered body is manufactured through ceramic injection molding.
  • Ceramic injection molding is a manufacturing process in which a mixture of a small amount of polymer and piezoelectric ceramic is mixed to produce a molded body through injection molding and then sintered to produce a finished product. Since no machining is performed on the surface, micro cracks caused by machining are prevented. As it is not formed, the durability of the sintered body can be increased.
  • Figure 3(a) shows a photograph of the surface of a piezoelectric ceramic sintered body obtained by machining, and fine cracks are observed on the surface.
  • the piezoelectric ceramic sintered body made through injection molding it is possible to obtain a surface without micro cracks, as shown in FIG. 3(b).
  • the moving shaft is made of a carbon material with high lubricity.
  • the fiber-type carbon material disposed in the longitudinal direction of the moving shaft minimizes friction with the carrier that reciprocates in the longitudinal direction of the moving shaft, thereby enabling smooth transfer of the carrier even by slight vibration of the piezoelectric ceramic sintered body.
  • the transporter makes a reciprocating motion on the moving axis containing fiber-shaped carbon material arranged in the longitudinal direction, and the surface where the transporter comes into contact with the moving axis is constantly in friction.
  • Figure 7 is a photograph of the state of the moving axis after driving the piezoelectric linear motor for a certain period of time.
  • the white line at the center of the moving axis indicates that the surface of the moving axis is worn due to friction with the transporter. Because this continuous friction occurs, it is important that the surface of the carrier in contact with the moving axis slides without getting caught with the fiber-shaped carbon material arranged in the longitudinal direction of the moving axis.
  • the surface of the surface in contact with the moving axis of the transporter has a surface roughness direction parallel to the longitudinal direction of the moving axis.
  • Surface roughness directionality may appear during the manufacturing process of the conveyor.
  • the transporter can be made in bulk by machining a hole into which the moving axis is inserted, or by forming a plate.
  • the transporter 40 is connected through a ring 43 or a bolt connection, and includes two semicircular recesses 44a and 44b. It may be composed of pieces 41a and 41b.
  • the concave portions 44a and 44b are created through machining, and the surface roughness direction of the concave portion created through machining is preferably parallel to the longitudinal direction (d) of the moving axis 30.
  • Figure 4 shows that the transporter is made by dividing it into two pieces, but the transporter can also be made by making a machining hole in one piece.
  • the transporter 50 may be made by joining two plates 51a and 51b (see Figure 5).
  • the plate made in this way can be brought into close contact with concave parts (51a, 51b) made to contact the moving axis, and the surfaces of these concave parts (51a, 51b) come into contact with the surface of the moving axis and slide.
  • the surface roughness direction of the concave portions 51a and 51b is preferably parallel to the longitudinal direction d.
  • the surface roughness direction formed on the surface of the plates 51a and 51b is formed during the forming process of the plate. Therefore, it is desirable to manufacture the transporter 50 taking into account the surface roughness direction of the sheet material produced during molding.
  • the dome-shaped piezoelectric ceramic sintered body may include a dome-shaped body portion and an edge portion that is formed to integrally extend from an edge of the body portion and protrudes from the edge of the body portion.
  • the dome-shaped piezoelectric ceramic sintered body 20 includes a dome-shaped body portion 21 and an edge portion 22.
  • the entire body portion 21 has the same vertical thickness (h 1 ).
  • the vertical thickness refers to the piezoelectric element in the vertical direction from the surface in contact with the inner surface when the surface of the piezoelectric ceramic sintered body facing the focus where ultrasonic waves is focused is referred to as the inner surface and the opposite surface, that is, the surface to which the moving axis is coupled, is referred to as the outer surface. It means thickness.
  • the edge portion 22 that protrudes and extends from the edge of the body portion 21 is made of the same piezoelectric material as the body portion 21 and serves to suppress spurious vibration.
  • This edge portion 22 is formed with a vertical thickness (h 2 ) having a frequency different from the resonance (or anti-resonance) frequency when the thickness of the body portion vibrates, so as not to cause resonance (or anti-resonance) when the body portion 51 vibrates. Therefore, it is desirable to have a thickness that prevents imaginary vibration.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

The objective of the present invention is to increase the durability and extend the service life of a piezoelectric linear motor using a piezoelectric ceramic sintered body. In order to achieve the objective, the piezoelectric linear motor according to the present invention comprises: a piezoelectric ceramic sintered body made through ceramic injection molding; a moving shaft attached to the piezoelectric ceramic sintered body in a vertical direction; and a transporter which is inserted into the moving shaft and moves on the moving shaft, wherein the moving shaft includes fiber-shaped carbon materials arranged in the longitudinal direction of the moving shaft, and the surface of the transporter in contact with the moving shaft when the transporter is inserted into the moving shaft may have a surface roughness direction parallel to the longitudinal direction of the moving shaft.

Description

압전 세라믹 소결체를 이용한 압전 선형 모터Piezoelectric linear motor using piezoelectric ceramic sintered body
본 발명은 압전 세라믹 소자를 이용한 선형 모터에 관한 것으로, 특히 압전 세라믹 소자에 연결되는 이동축과 이러한 이동축 위에서 왕복 운동하는 이송자의 원활한 왕복 운동을 유도하여 내구성을 높일 수 있는 선형 모터에 관한 것이다.The present invention relates to a linear motor using a piezoelectric ceramic element, and particularly to a linear motor that can increase durability by inducing smooth reciprocating motion of a moving axis connected to the piezoelectric ceramic element and a carrier reciprocating on the moving axis.
압전 모터는 인가된 전계의 변화에 의해 진동을 일으키는 압전 세라믹의 압전 효과를 이용한 모터이다. 압전 모터는 인간의 귀로 감지될 수 없는 20 kHz 이상의 초음파 영역의 주파수를 이용하며, 무소음으로 작동될 수 있는 장점을 가진다.A piezoelectric motor is a motor that uses the piezoelectric effect of piezoelectric ceramics to cause vibration by changes in an applied electric field. Piezoelectric motors use frequencies in the ultrasonic range above 20 kHz, which cannot be detected by the human ear, and have the advantage of being able to operate noiselessly.
특히, 압전 모터는 통상의 전자기식 모터와 비교하여 발생력이 3kg·cm, 반응속도가 0.1ms 이하이고 크기가 10배 이상 작으며 그 정밀도가 0.1mm 이하이므로, 디지털 카메라의 줌, 오토 포커싱 및 손떨림 방지 기능의 구현이나 CD/DVD-ROM 드라이브의 픽업 렌즈 구동 등과 같이 고레벨의 토크와 저속을 필요로 하는 응용 부분에 광범위하게 이용되고 있다. In particular, compared to regular electromagnetic motors, piezoelectric motors have a generating force of 3 kg·cm, a response speed of less than 0.1 ms, a size that is more than 10 times smaller, and a precision of less than 0.1 mm, so they are used to reduce digital camera zoom, auto-focusing, and hand tremor. It is widely used in applications that require high level torque and low speed, such as implementing prevention functions or driving the pickup lens of CD/DVD-ROM drives.
최근에는 이러한 압전 세라믹을 이용하여 이송자를 선형으로 이동시키는 압전 선형 모터가 개발되었다. 이러한 압전 소자를 이용한 압전 선형 모터는 압전 세라믹에 이동축을 접합하고 이러한 이동축 선상을 왕복운동할 수 있는 이송자를 배치함으로써 이송자의 선형 운동을 통해 변위를 얻게되는 구조이다. 이러한 압전 선형 모터에서 초음파를 발생시키는 압전 세라믹 소결체의 특성상 사용 수명은 매우 중요한 품질이 될 수 있다.Recently, a piezoelectric linear motor that moves a carrier linearly using piezoelectric ceramics has been developed. A piezoelectric linear motor using such a piezoelectric element has a structure in which displacement is obtained through the linear movement of the transporter by bonding a moving axis to piezoelectric ceramic and arranging a transporter capable of reciprocating motion on the transport axis. Due to the characteristics of the piezoelectric ceramic sintered body that generates ultrasonic waves in these piezoelectric linear motors, service life can be a very important quality.
압전 선형 모터에서 사용 수명에 가장 큰 영향을 미치는 인자는 반복 운동에 따른 압전 세라믹 소결체의 손상과 이동축 상에서의 이송자의 반복되는 왕복 운동에 의한 이동축의 손상이 될 수 있다. The factors that have the greatest influence on the service life of a piezoelectric linear motor may be damage to the piezoelectric ceramic sintered body due to repetitive motion and damage to the moving axis due to repeated reciprocating motion of the carrier on the moving axis.
본 발명은 압전 세라믹 소결체를 이용한 압전 선형 모터에서 내구성을 높여 사용 수명을 연장하는 것을 목적으로 한다.The purpose of the present invention is to increase durability and extend the service life of a piezoelectric linear motor using a piezoelectric ceramic sintered body.
상기와 같은 목적을 달성하기 위해, 본 발명에 따른 압전 선형 모터는 세라믹 사출 성형을 통해 만들어지는 압전 세라믹 소결체, 상기 압전 세라믹 소결체에 수직 방향으로 연결되는 이동축 및 상기 이동축에 삽입되어 상기 이동축 상에서 이동하는 이송자를 포함하고, 상기 이동축은 상기 이동축의 길이방향으로 배열된 화이버 형태의 탄소 물질을 포함하고, 상기 이송자가 상기 이동축과 맞닿는 상기 이송자의 표면은 상기 이동축의 길이방향과 평행한 표면 거칠기 방향성을 가질 수 있다.In order to achieve the above object, the piezoelectric linear motor according to the present invention includes a piezoelectric ceramic sintered body made through ceramic injection molding, a moving shaft connected to the piezoelectric ceramic sintered body in a vertical direction, and a moving shaft inserted into the moving shaft. It includes a conveyor that moves on the moving axis, wherein the moving axis includes a fiber-shaped carbon material arranged in the longitudinal direction of the moving axis, and the surface of the transporter where the transporter comes into contact with the moving axis is a surface parallel to the longitudinal direction of the moving axis. Roughness can have directionality.
또한 본 발명에 따른 압전 선형 모터에서 상기 압전 세라믹 소결체는 돔 형상일 수 있다. Additionally, in the piezoelectric linear motor according to the present invention, the piezoelectric ceramic sintered body may have a dome shape.
또한, 본 발명에 따른 압전 선형 모터에서 상기 표면 거칠기 방향성은 상기 이송자의 표면을 형성하는 기계 가공 공정 중 절삭 또는 드릴 가공 시 만들어지는 가공 홈의 방향에 따를 수 있다. Additionally, in the piezoelectric linear motor according to the present invention, the surface roughness direction may depend on the direction of a machining groove created during cutting or drilling during a machining process to form the surface of the carrier.
또한, 본 발명에 따른 압전 선형 모터에서 상기 표면 거칠기 방향성은 상기 이송자의 표면을 형성하는 성형 공정 중 성형 방향에 따를 수 있다. Additionally, in the piezoelectric linear motor according to the present invention, the surface roughness directionality may depend on the forming direction during the forming process of forming the surface of the carrier.
또한, 본 발명에 따른 압전 선형 모터에서 상기 돔 형상의 압전 세라믹 소결체는 돔 형상인 몸체부와 상기 몸체부의 가장자리로부터 일체로 연장되도록 형성되어 상기 몸체부의 가장자리에 돌출 형성된 테두리부를 포함할 수 있다. Additionally, in the piezoelectric linear motor according to the present invention, the dome-shaped piezoelectric ceramic sintered body may include a dome-shaped body portion and an edge portion that is formed to integrally extend from an edge of the body portion and protrudes from the edge of the body portion.
또한, 본 발명에 따른 압전 선형 모터에서 상기 테두리부는 상기 몸체부의 발진영역과 상이한 수직 두께를 가질 수 있다. Additionally, in the piezoelectric linear motor according to the present invention, the edge portion may have a vertical thickness that is different from the oscillation area of the body portion.
본 발명에 따른 압전 선형 모터는 압전 세라믹 소결체의 내구성이 향상되고, 이송자의 반복되는 왕복 운동에도 이동축의 손상이 쉽게 일어나지 않아 사용 수명이 연장될 수 있게 된다. In the piezoelectric linear motor according to the present invention, the durability of the piezoelectric ceramic sintered body is improved, and the moving shaft is not easily damaged even during repeated reciprocating movements of the carrier, so the service life can be extended.
도 1은 본 발명의 일 실시예에 따른 압전 선형 모터의 구조를 나타내는 도면이다.1 is a diagram showing the structure of a piezoelectric linear motor according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 압전 선형 모터의 구조를 나타내는 도면이다.Figure 2 is a diagram showing the structure of a piezoelectric linear motor according to an embodiment of the present invention.
도 3은 종래 기술에 따른 압선 세라믹 소결체의 표면과 본 발명에 따른 압전 세라믹 소결체의 표면을 관찰한 주사전자현미경 이미지이다.Figure 3 is a scanning electron microscope image observing the surface of a pressure wire ceramic sintered body according to the prior art and the surface of a piezoelectric ceramic sintered body according to the present invention.
도 4는 본 발명의 일 실시예에 따른 이동축과 이송자를 설명하는 도면이다.Figure 4 is a diagram explaining a moving axis and a conveyor according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 이동축과 이송자를 설명하는 도면이다.Figure 5 is a diagram explaining a moving axis and a conveyor according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 압전 세라믹 소결체를 설명하는 도면이다.Figure 6 is a diagram explaining a piezoelectric ceramic sintered body according to an embodiment of the present invention.
도 7은 압전 모터 구동 후 이동축의 길이방향 마모를 나타내는 이미지이다. Figure 7 is an image showing longitudinal wear of the moving axis after driving the piezoelectric motor.
본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. In addition, when a part is said to 'include' a certain component, this does not mean that other components are excluded, but that it can further include other components, unless specifically stated to the contrary.
본 발명에 따른 압전 선형 모터는 세라믹 사출 성형을 통해 만들어지는 압전 세라믹 소결체, 상기 압전 세라믹 소결체에 수직 방향으로 연결되는 이동축 및 상기 이동축 상에 배치되어 상기 이동축 상에서 이동하는 이송자를 포함하고, 상기 이동축은 상기 이동축의 길이방향으로 배열된 화이버 형태의 탄소 물질을 포함하고, 상기 이송자가 상기 이동축에 삽입되었을 때 상기 이동축과 맞닿는 상기 이송자의 표면은 상기 이동축의 길이방향과 평행한 표면 거칠기 방향성을 가질 수 있다.The piezoelectric linear motor according to the present invention includes a piezoelectric ceramic sintered body made through ceramic injection molding, a moving axis connected to the piezoelectric ceramic sintered body in a vertical direction, and a transporter disposed on the moving axis and moving on the moving axis, The moving axis includes a fiber-shaped carbon material arranged in the longitudinal direction of the moving axis, and when the transporter is inserted into the moving axis, the surface of the transporter in contact with the moving axis has a surface roughness parallel to the longitudinal direction of the moving axis. It can have direction.
압전 세라믹 소결체는 전기장에 따라 부피 변화가 일어나게 된다. 이러한 압전 세라믹 소결체에서의 미세한 부피 변화는 이동축으로 전달되어 이동축이 길이 방향으로 선형 왕복 운동을 하게 되고 이에 따라 이동축 상에 배치되는 이송자의 선형 운동을 가능하게 한다. 압전 소결체는 압전 세라믹 단일 소결체일 수 있고, 압전 세라믹 소결체에 변위를 증폭하기 위한 탄성체 등이 압전 세라믹 소결체의 어느 한면 또는 양쪽면에 모두 배치될 수도 있다. The volume of the piezoelectric ceramic sintered body changes depending on the electric field. This slight volume change in the piezoelectric ceramic sintered body is transmitted to the moving axis, causing the moving axis to make a linear reciprocating motion in the longitudinal direction, thereby enabling linear movement of the carrier disposed on the moving axis. The piezoelectric sintered body may be a single sintered piezoelectric ceramic body, and an elastic body for amplifying displacement of the piezoelectric ceramic sintered body may be disposed on one or both sides of the piezoelectric ceramic sintered body.
도 1은 압전 선형 모터의 예를 나타낸다. 상술한 바와 같이 압전 선형 모터는 일반적으로 압전 소결체(10)와 이러한 압전 소결체(10)에 연결되는 이동축(30) 및 이동축(30) 상에서 왕복운동하는 이송자(40)로 이루어진다. Figure 1 shows an example of a piezoelectric linear motor. As described above, a piezoelectric linear motor generally consists of a piezoelectric sintered body 10, a moving shaft 30 connected to the piezoelectric sintered body 10, and a carrier 40 that reciprocates on the moving shaft 30.
한편, 도 2에서와 같이 압전 소결체(20)는 돔 형상으로 만들어질 수 있는데, 돔 형상으로 만들어짐에 따라 압전 세라믹의 부피 변화에 따른 변위를 증폭시킬 수 있게 된다. Meanwhile, as shown in FIG. 2, the piezoelectric sintered body 20 may be made into a dome shape. As the piezoelectric sintered body 20 is made into a dome shape, it is possible to amplify the displacement due to a change in the volume of the piezoelectric ceramic.
이러한 압전 선형 모터의 사용 수명에 가장 큰 영향을 미치는 것은 우선 미세한 부피 변화를 통해 초음파를 발생시키는 압전 세라믹 소결체의 손상이다.What has the greatest impact on the service life of these piezoelectric linear motors is damage to the piezoelectric ceramic sintered body, which generates ultrasonic waves through minute volume changes.
이러한 압전 세라믹 소결체는 종래에 세라믹 분말을 성형하고 소결한 후 규격에 맞도록 기계 가공을 통해 제조하였는데, 기계 가공을 통해 표면에 많은 미세 크랙이 형성되고 이는 압전 세라믹의 반복되는 부피 변화에서 파손의 원인이 된다. These piezoelectric ceramic sintered bodies were conventionally manufactured by molding and sintering ceramic powder and then machining them to meet specifications. Through machining, many fine cracks are formed on the surface, which causes damage from repeated volume changes in the piezoelectric ceramic. This happens.
이와 비교해 본 발명에서는 압전 소결체를 세라믹 사출 성형을 통해 제조하게 된다. 세라믹 사출 성형은 소량의 폴리머와 압전 세라믹이 혼합된 혼합물을 사출 성형을 통해 성형체를 제조한 후 이를 소결하여 완성품을 제조하는 제조 공정으로 표면에 기계 가공을 수행하지 않기 때문에 기계 가공에 의한 미세 크랙이 형성되지 않음에 따라 소결체의 내구성을 높일 수 있게 된다. In comparison, in the present invention, the piezoelectric sintered body is manufactured through ceramic injection molding. Ceramic injection molding is a manufacturing process in which a mixture of a small amount of polymer and piezoelectric ceramic is mixed to produce a molded body through injection molding and then sintered to produce a finished product. Since no machining is performed on the surface, micro cracks caused by machining are prevented. As it is not formed, the durability of the sintered body can be increased.
종래의 기계 가공에 의한 소결체의 표면과 본 발명에 따른 사출 성형에 의한 소결체의 표면 사진은 도 3에서 나타내었다. 도 3(a)는 기계 가공에 의한 압전 세라믹 소결체의 표면 사진을 나타내는데 표면에 미세한 크랙이 관찰된다. 하지만, 사출 성형을 통해 만들어진 압전 세라믹 소결체에서는 도 3(b)에서와 같이 미세 크랙이 없는 표면을 얻을 수 있게 된다.Photographs of the surface of the sintered body obtained by conventional machining and the surface of the sintered body obtained by injection molding according to the present invention are shown in Figure 3. Figure 3(a) shows a photograph of the surface of a piezoelectric ceramic sintered body obtained by machining, and fine cracks are observed on the surface. However, in the piezoelectric ceramic sintered body made through injection molding, it is possible to obtain a surface without micro cracks, as shown in FIG. 3(b).
한편, 압전 선형 모터의 내구성에 영향을 미치는 또 다른 인자는 이동축의 손상이다. 이동축 위에서 반복되는 이송자의 왕복 운동으로 이동축이 파손되어 이송자의 왕복 운동이 어려워질 수 있다.Meanwhile, another factor that affects the durability of piezoelectric linear motors is damage to the moving axis. The repeated reciprocating motion of the transporter on the moving axis may damage the moving axis, making the reciprocating motion of the transporter difficult.
이러한 파손을 막기 위해 이동축은 윤활성이 높은 탄소 물질로 만들어지는 것이 바람직하다. 특히, 이동축의 길이방향으로 배치되는 화이버 형태의 탄소 물질은 이동축의 길이방향으로 왕복운동하게 되는 이송자와의 마찰을 최소화함으로써 압전 세라믹 소결체의 미세한 진동에 의해서도 이송자의 원활한 이송을 가능하게 할 수 있다. To prevent such damage, it is desirable that the moving shaft is made of a carbon material with high lubricity. In particular, the fiber-type carbon material disposed in the longitudinal direction of the moving shaft minimizes friction with the carrier that reciprocates in the longitudinal direction of the moving shaft, thereby enabling smooth transfer of the carrier even by slight vibration of the piezoelectric ceramic sintered body.
이러한 길이 방향으로 배열된 화이버 형태의 탄소 물질을 포함하는 이동축 상에서 이송자는 왕복 운동을 하게 되는데, 이러한 이송자가 이동축과 맞닿는 표면은 지속적으로 마찰이 이루어지게 된다. 도 7은 압전 선형 모터를 일정 시간 구동시킨 후 이동축의 상태를 관찰한 사진으로 이동축의 중심에 나타나는 흰색의 줄은 이송자와의 마찰에 의해 이동축의 표면이 마모된 상태를 나타낸다. 이러한 지속적인 마찰이 일어나기 때문에 이동축과 맞닿은 이송자의 표면은 이동축의 길이 방향으로 배열된 화이버 형태의 탄소 물질과 걸림 없이 미끄러지는 것이 중요하다. The transporter makes a reciprocating motion on the moving axis containing fiber-shaped carbon material arranged in the longitudinal direction, and the surface where the transporter comes into contact with the moving axis is constantly in friction. Figure 7 is a photograph of the state of the moving axis after driving the piezoelectric linear motor for a certain period of time. The white line at the center of the moving axis indicates that the surface of the moving axis is worn due to friction with the transporter. Because this continuous friction occurs, it is important that the surface of the carrier in contact with the moving axis slides without getting caught with the fiber-shaped carbon material arranged in the longitudinal direction of the moving axis.
그런데, 이러한 이송자 표면의 거칠기 방향이 이동축의 길이 방향과 평행하지 않으면 이동축의 길이 방향을 따라 미끄러지는 이송자의 구동에서 길이 방향으로 배열된 화이버 형태의 탄소 물질과 마찰이 심하게 일어나게 되고 이러한 심한 마찰은 이동축의 조기 파손 원인이 된다. However, if the roughness direction of the surface of the transporter is not parallel to the longitudinal direction of the moving axis, severe friction occurs with the fiber-shaped carbon material arranged in the longitudinal direction during the drive of the transporter sliding along the longitudinal direction of the moving axis, and this severe friction occurs during the driving of the transporter sliding along the longitudinal direction of the moving axis. This can cause premature damage to the shaft.
이러한 마찰을 방지하기 위해 이송자의 이동축과 맞닿은 면의 표면은 이동축의 길이 방향과 평행한 표면 거칠기 방향성을 가지는 것이 바람직하다. 표면 거칠기 방향성은 이송자의 제조 공정 중 나타날 수 있다. In order to prevent such friction, it is desirable that the surface of the surface in contact with the moving axis of the transporter has a surface roughness direction parallel to the longitudinal direction of the moving axis. Surface roughness directionality may appear during the manufacturing process of the conveyor.
이송자는 벌크 상태에서 기계 가공을 통해 이동축이 삽입되는 홀을 만들거나, 판재의 성형을 통해 만들어질 수 있다.The transporter can be made in bulk by machining a hole into which the moving axis is inserted, or by forming a plate.
우선 이송자가 기계 가공을 통해 만들어지는 경우의 일 실시예는 도 4에서 나타내었다. 이송자(40)에서 이동축(30)이 삽입되는 홀(42)을 형성하기 위해 이송자(40)는 링(43) 또는 볼트 연결 등을 통해 연결되고 반원형 오목부(44a, 44b)를 포함하는 두 개의 피스(41a, 41b)로 이루어질 수 있다. 여기서 오목부(44a, 44b)는 기계 가공을 통해 만들어지게 되는데, 기계 가공을 통해 만들어지는 오목부의 표면 거칠기 방향성은 이동축(30)의 길이 방향(d)과 평행한 것이 바람직하다. 거칠기 방향성이 길이 방향(d)과 평행함에 따라 이송자(40)의 왕복 운동 시에 이동축(30)에 포함되는 길이 방향(d)으로 배열되는 화이버 형상의 탄소 물질의 손상을 최소화하여 이동축의 손상을 줄여줄 수 있게 된다.First, an embodiment in which the conveyor is made through machining is shown in FIG. 4. In order to form a hole 42 in the transporter 40 into which the moving axis 30 is inserted, the transporter 40 is connected through a ring 43 or a bolt connection, and includes two semicircular recesses 44a and 44b. It may be composed of pieces 41a and 41b. Here, the concave portions 44a and 44b are created through machining, and the surface roughness direction of the concave portion created through machining is preferably parallel to the longitudinal direction (d) of the moving axis 30. As the roughness direction is parallel to the longitudinal direction (d), damage to the fiber-shaped carbon material arranged in the longitudinal direction (d) included in the moving axis 30 is minimized during the reciprocating motion of the transporter 40, thereby minimizing damage to the moving axis. can be reduced.
도 4에서는 두 개의 피스로 나누어져서 이송자가 만들어지는 것을 나타내었지만, 하나에서 가공 홀을 만들어 이송자를 만들 수도 있다. Figure 4 shows that the transporter is made by dividing it into two pieces, but the transporter can also be made by making a machining hole in one piece.
또한, 본 발명의 또 다른 실시예에서 이송자(50)는 두 개의 판재(51a, 51b)를 맞대어 만들어질 수도 있다(도 5 참조). 이렇게 만들어지는 판재는 이동축에 맞닿도록 오목부(51a, 51b)가 만들어져 밀착될 수 있는데, 이러한 오목부(51a, 51b)의 표면은 이동축의 표면과 맞닿아 미끄러지게 된다. 오목부(51a, 51b)의 표면 거칠기 방향성은 길이 방향(d)과 평행한 것이 바람직한데, 이러한 판재(51a, 51b)이 표면에 형성되는 표면 거칠기 방향성은 판재의 성형 공정에서 형성된다. 따라서, 성형시에 만들어지는 판재의 표면 거칠 방향성을 고려하여 이송자(50)를 제조하는 것이 바람직하다. Additionally, in another embodiment of the present invention, the transporter 50 may be made by joining two plates 51a and 51b (see Figure 5). The plate made in this way can be brought into close contact with concave parts (51a, 51b) made to contact the moving axis, and the surfaces of these concave parts (51a, 51b) come into contact with the surface of the moving axis and slide. The surface roughness direction of the concave portions 51a and 51b is preferably parallel to the longitudinal direction d. The surface roughness direction formed on the surface of the plates 51a and 51b is formed during the forming process of the plate. Therefore, it is desirable to manufacture the transporter 50 taking into account the surface roughness direction of the sheet material produced during molding.
한편, 돔 형상의 압전 세라믹 소결체는 돔 형상인 몸체부와 상기 몸체부의 가장자리로부터 일체로 연장되도록 형성되어 상기 몸체부의 가장자리에 돌출 형성된 테두리부를 포함할 수 있다. Meanwhile, the dome-shaped piezoelectric ceramic sintered body may include a dome-shaped body portion and an edge portion that is formed to integrally extend from an edge of the body portion and protrudes from the edge of the body portion.
도 6에서 도시된 바와 같이 돔 형상의 압전 세라믹 소결체(20)는 돔 형상인 몸체부(21)와 테두리부(22)를 포함한다. As shown in FIG. 6, the dome-shaped piezoelectric ceramic sintered body 20 includes a dome-shaped body portion 21 and an edge portion 22.
여기서, 몸체부(21)는 전체가 동일한 수직 두께(h1)를 갖는 것이 바람직하다. 본 명세서에서 수직 두께는 압전 세라믹 소결체에서 초음파가 집속되는 초점을 향한 면을 내면이라 하고 그 반대면, 즉 이동축이 결합되는 면을 외면이라 할 때, 내면에 접하는 면으로부터 수직 방향에서의 압전 소자 두께를 의미한다. Here, it is preferable that the entire body portion 21 has the same vertical thickness (h 1 ). In this specification, the vertical thickness refers to the piezoelectric element in the vertical direction from the surface in contact with the inner surface when the surface of the piezoelectric ceramic sintered body facing the focus where ultrasonic waves is focused is referred to as the inner surface and the opposite surface, that is, the surface to which the moving axis is coupled, is referred to as the outer surface. It means thickness.
이러한 몸체부(21)의 가장자리로부터 연장되어 돌출 형성되는 테두리부(22)는 몸체부(21)와 동종의 압전 재질로 형성되어, 가짜진동(spurious vibration)을 억제하는 역할을 한다. 이러한 테두리부(22)는 몸체부의 두께 진동 시 공진(혹은 반공진) 주파수와 다른 주파수를 갖는 수직 두께(h2)로 형성되어 몸체부(51) 진동시 공진(혹은, 반공진)을 일으키지 않도록 하여 허수진동을 방지하는 두께로 형성되는 것이 바람직하다. The edge portion 22 that protrudes and extends from the edge of the body portion 21 is made of the same piezoelectric material as the body portion 21 and serves to suppress spurious vibration. This edge portion 22 is formed with a vertical thickness (h 2 ) having a frequency different from the resonance (or anti-resonance) frequency when the thickness of the body portion vibrates, so as not to cause resonance (or anti-resonance) when the body portion 51 vibrates. Therefore, it is desirable to have a thickness that prevents imaginary vibration.

Claims (6)

  1. 세라믹 사출 성형을 통해 만들어지는 압전 세라믹 소결체;Piezoelectric ceramic sintered body made through ceramic injection molding;
    상기 압전 세라믹 소결체에 수직 방향으로 연결되는 이동축; 및a moving shaft connected to the piezoelectric ceramic sintered body in a vertical direction; and
    상기 이동축 상에 배치되어 상기 이동축 상에서 이동하는 이송자를 포함하고,It includes a transporter disposed on the moving axis and moving on the moving axis,
    상기 이동축은 상기 이동축의 길이방향으로 배열된 화이버 형태의 탄소 물질을 포함하고,The moving axis includes a fiber-shaped carbon material arranged in the longitudinal direction of the moving axis,
    상기 이송자가 상기 이동축과 맞닿는 상기 이송자의 표면은 상기 이동축의 길이방향과 평행한 표면 거칠기 방향성을 가지는, 압전 선형 모터.A piezoelectric linear motor wherein the surface of the transporter, where the transporter contacts the moving axis, has a surface roughness direction parallel to the longitudinal direction of the moving axis.
  2. 제 1 항에 있어서,According to claim 1,
    상기 압전 세라믹 소결체는 돔 형상인, 압전 선형 모터.A piezoelectric linear motor, wherein the piezoelectric ceramic sintered body is dome-shaped.
  3. 제 1 항에 있어서,According to claim 1,
    상기 표면 거칠기 방향성은 상기 이송자의 표면을 형성하는 기계 가공 공정 중 절삭 또는 드릴 가공 시 만들어지는 가공 홈의 방향에 따르는, 압전 선형 모터.A piezoelectric linear motor, wherein the surface roughness direction depends on the direction of a machining groove made during cutting or drilling during a machining process to form the surface of the carrier.
  4. 제 1 항에 있어서,According to claim 1,
    상기 표면 거칠기 방향성은 상기 이송자의 표면을 형성하는 성형 공정 중 성형 방향에 따르는, 압전 선형 모터.The piezoelectric linear motor, wherein the surface roughness directionality is dependent on the forming direction during the forming process forming the surface of the carrier.
  5. 제 2 항에 있어서,According to claim 2,
    상기 돔 형상의 압전 세라믹 소결체는 돔 형상인 몸체부와, The dome-shaped piezoelectric ceramic sintered body includes a dome-shaped body portion,
    상기 몸체부의 가장자리로부터 일체로 연장되도록 형성되어 상기 몸체부의 가장자리에 돌출 형성된 테두리부를 포함하는, 압전 선형 모터.A piezoelectric linear motor comprising an edge portion formed to extend integrally from an edge of the body portion and protruding from an edge of the body portion.
  6. 제 5 항에 있어서,According to claim 5,
    상기 테두리부는 상기 몸체부의 발진영역과 상이한 수직 두께를 가지는, 압전 선형 모터.The piezoelectric linear motor wherein the edge portion has a vertical thickness different from that of the oscillation area of the body portion.
PCT/KR2023/019842 2022-12-09 2023-12-05 Piezoelectric linear motor using piezoelectric ceramic sintered body WO2024123023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0171365 2022-12-09
KR1020220171365A KR20240086138A (en) 2022-12-09 2022-12-09 Piezoelectric Linear Motor Using Piezoelectric Ceramic Sintered Body

Publications (1)

Publication Number Publication Date
WO2024123023A1 true WO2024123023A1 (en) 2024-06-13

Family

ID=91379781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/019842 WO2024123023A1 (en) 2022-12-09 2023-12-05 Piezoelectric linear motor using piezoelectric ceramic sintered body

Country Status (2)

Country Link
KR (1) KR20240086138A (en)
WO (1) WO2024123023A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060106462A (en) * 2005-04-08 2006-10-12 재단법인서울대학교산학협력재단 Ultrasonic motor manufacturing method and ultrasonic motor manufactured by the method
KR101198636B1 (en) * 2011-07-27 2012-11-07 주식회사 아이비기술 Apparatus for linear actuator in linear motor
KR20200030055A (en) * 2017-06-12 2020-03-19 마이크로파인 머티리얼즈 테크날로지즈 피티이 엘티디 Cost-effective high bending rigid connector and piezoelectric actuator made of it
CN112838782A (en) * 2021-01-07 2021-05-25 歌尔股份有限公司 Piezoelectric motor
US20220058304A1 (en) * 2019-04-26 2022-02-24 Nsk Ltd. Friction Design Method and Surface Roughness Control Method for Sliding Member and Production Method for Sliding Mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060106462A (en) * 2005-04-08 2006-10-12 재단법인서울대학교산학협력재단 Ultrasonic motor manufacturing method and ultrasonic motor manufactured by the method
KR101198636B1 (en) * 2011-07-27 2012-11-07 주식회사 아이비기술 Apparatus for linear actuator in linear motor
KR20200030055A (en) * 2017-06-12 2020-03-19 마이크로파인 머티리얼즈 테크날로지즈 피티이 엘티디 Cost-effective high bending rigid connector and piezoelectric actuator made of it
US20220058304A1 (en) * 2019-04-26 2022-02-24 Nsk Ltd. Friction Design Method and Surface Roughness Control Method for Sliding Member and Production Method for Sliding Mechanism
CN112838782A (en) * 2021-01-07 2021-05-25 歌尔股份有限公司 Piezoelectric motor

Also Published As

Publication number Publication date
KR20240086138A (en) 2024-06-18

Similar Documents

Publication Publication Date Title
US7978421B2 (en) Camera module
KR100951910B1 (en) Focusing device and imaging device
US20080084620A1 (en) Lens driving device
EP2330460A1 (en) Dust removing device and dust removing method
WO2024123023A1 (en) Piezoelectric linear motor using piezoelectric ceramic sintered body
CN106059384B (en) Vibration wave motor
KR20150115845A (en) Piezoelectric material, piezoelectric element, and electronic equipment
WO2010151022A2 (en) Dome-shaped piezoelectric linear motor
WO2002031385A1 (en) Magnetic fluid seal device
JP2009151273A (en) Lens module
US20100220404A1 (en) Piezoelectric actuator device, image pickup unit and mobile terminal apparatus
US20080258579A1 (en) Driving device capable of reducing height thereof
JP2012233971A (en) Manufacturing method for image pickup apparatus
KR101045996B1 (en) Piezoelectric linear motor
KR101234952B1 (en) Lens driving mechanism for digital camera
KR101028881B1 (en) piezoelectric linear motor
CA1066345A (en) Linear piezoelectric actuator with liner controlling frictional wear
WO2022214084A1 (en) Periscopic photographing module and variable-focus photographing module
WO2022228111A1 (en) Camera module
CN115695992A (en) Actuator for camera
CN1992483A (en) Axial actuating device with elastic coupling part
JP2007114748A (en) Lens module
WO2012147320A1 (en) Imaging device and method for manufacturing imaging device
JP2004270927A (en) Vibration control member and its manufacturing method
JP2008289351A (en) Drive device