WO2024122241A1 - Resin composition, kit, pellets, molded article, and method for producing molded article - Google Patents

Resin composition, kit, pellets, molded article, and method for producing molded article Download PDF

Info

Publication number
WO2024122241A1
WO2024122241A1 PCT/JP2023/039866 JP2023039866W WO2024122241A1 WO 2024122241 A1 WO2024122241 A1 WO 2024122241A1 JP 2023039866 W JP2023039866 W JP 2023039866W WO 2024122241 A1 WO2024122241 A1 WO 2024122241A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
pigment
resin
molded article
Prior art date
Application number
PCT/JP2023/039866
Other languages
French (fr)
Japanese (ja)
Inventor
大雅 土岐
章人 岡元
Original Assignee
グローバルポリアセタール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローバルポリアセタール株式会社 filed Critical グローバルポリアセタール株式会社
Priority to JP2024504790A priority Critical patent/JP7459414B1/en
Publication of WO2024122241A1 publication Critical patent/WO2024122241A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a resin composition, a kit, a pellet, a molded article, and a method for manufacturing a molded article.
  • the present invention relates to a resin composition whose main component is a polyamide resin.
  • Polyamide resin a typical engineering plastic, is easy to process and has excellent mechanical properties, electrical properties, heat resistance, and other physical and chemical properties. For this reason, it is widely used in vehicle parts, electrical and electronic equipment parts, and other precision equipment parts. Recently, parts with complex shapes have also begun to be manufactured from polyamide resin. For example, various welding techniques, such as adhesive welding, vibration welding, ultrasonic welding, hot plate welding, injection welding, and laser welding, are used to bond parts with hollow parts such as intake manifolds.
  • Laser welding is a method of joining two resin parts by contacting and welding a resin part (hereinafter sometimes referred to as a "transmissive resin part") that is transparent to laser light (also called non-absorbent or weakly absorbent) with a resin part (hereinafter sometimes referred to as an "absorbent resin part”) that is absorbent to laser light.
  • this method irradiates the joining surface with laser light from the transmissive resin part side, and melts and joins the absorbing resin part that forms the joining surface with the energy of the laser light.
  • Laser welding does not produce abrasion powder or burrs, and causes little damage to the product.
  • polyamide resin itself is a material with a relatively high laser transmittance, so processing polyamide resin products using laser welding technology has recently been attracting attention.
  • the transparent resin member is usually molded from a light-transmitting resin composition.
  • a light-transmitting resin composition Patent Document 1 describes a polyamide resin composition that contains 25 to 50 mass% of a semi-aromatic polyamide resin, 3 to 20 mass% of a bromine-based flame retardant, 1.5 to 10 mass% of zinc stannate, and a light-transmitting dye.
  • a light-transmitting resin composition containing a black dye in a polyamide resin has been studied.
  • a light-transmitting resin composition may cause migration of the black dye depending on the material of the mating member or adjacent member.
  • a pigment instead of a dye to make the light-transmitting resin composition.
  • sink marks may occur on the surface
  • the welding strength during laser welding may be poor.
  • black molded product transparent resin member
  • the present invention has an object to solve the above problems, and to provide a resin composition capable of providing a black molded article having high light transmittance, excellent laser welding strength, and suppressed sink marks on the surface, as well as a kit, pellets, molded article, and a method for producing the molded article.
  • the present inventors have conducted research and found that the above problems can be solved by using a specific polyamide resin and a specific pigment. Specifically, the above problems were solved by the following means.
  • a polyamide resin and a pigment are included, the polyamide resin contains diamine-derived structural units and dicarboxylic acid-derived structural units, 70 mol % or more of the diamine-derived structural units are derived from xylylenediamine, and 70 mol % or more of the dicarboxylic acid-derived structural units are derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms;
  • the resin composition, wherein the pigment comprises Pigment Violet 29 and Pigment Green 36.
  • ⁇ 2> The resin composition according to ⁇ 1>, wherein the xylylenediamine includes paraxylylenediamine, and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms includes sebacic acid.
  • ⁇ 3> The resin composition according to ⁇ 1> or ⁇ 2>, further comprising a reinforcing filler in an amount of 20 to 60% by mass in the resin composition.
  • ⁇ 4> The resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein the total amount of Pigment Violet 29 and Pigment Green 36 is 0.05 to 0.30 mass% in the resin composition.
  • ⁇ 5> The resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein a mass ratio of Pigment Violet 29 to Pigment Green 36 is 10 to 90:90 to 10, when the total amount of Pigment Violet 29 and Pigment Green 36 is 100 parts by mass.
  • ⁇ 6> The total amount of the Pigment Violet 29 and Pigment Green 36 in the resin composition is 0.05 to 0.30% by mass
  • ⁇ 5> The resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein a mass ratio of Pigment Violet 29 to Pigment Green 36 is 10 to 90:90 to 10, when the total amount of Pigment Violet 29 and Pigment Green 36 is 100 parts by mass.
  • the xylylenediamine includes p-xylylenediamine, and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms includes sebacic acid,
  • the resin composition contains a reinforcing filler in an amount of 20 to 60% by mass,
  • the total amount of the Pigment Violet 29 and Pigment Green 36 in the resin composition is 0.05 to 0.30% by mass, When the total amount of Pigment Violet 29 and Pigment Green 36 is 100 parts by mass, the mass ratio of Pigment Violet 29 to Pigment Green 36 is 10 to 90:90 to 10.
  • ⁇ 9> The resin composition according to any one of ⁇ 1> to ⁇ 8>, wherein the resin composition has a light transmittance of 25% or more at a wavelength of 940 nm when molded into a test piece having a thickness of 1.5 mm.
  • the resin composition is molded into a test piece having a thickness of 1.5 mm, and the surface roughness Rv value after irradiation with a total energy input of 34.3 J in diode laser welding is less than 40 ⁇ m.
  • the resin composition according to any one of ⁇ 1> to ⁇ 9> The resin composition according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 11> A kit comprising the resin composition according to any one of ⁇ 1> to ⁇ 10> and a light-absorbing resin composition containing a thermoplastic resin and a light-absorbing dye.
  • ⁇ 12> Pellets of the resin composition according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 13> A molded article formed from the resin composition according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 14> A molded article formed from the pellets according to ⁇ 12>.
  • ⁇ 15> The molded article according to ⁇ 13> or ⁇ 14>, which is an advanced driver assistance system (ADAS)-related part.
  • ADAS advanced driver assistance system
  • ⁇ 16> The molded article according to any one of ⁇ 13> to ⁇ 15>, which is an in-vehicle camera part.
  • a method for producing a molded article comprising laser welding a molded article formed from the resin composition according to any one of ⁇ 1> to ⁇ 10> and a molded article formed from a light-absorbing resin composition containing a thermoplastic resin and a light-absorbing dye.
  • the present invention makes it possible to provide a resin composition capable of producing black molded products with high light transmittance, excellent laser welding strength, and reduced surface sink marks, as well as kits, pellets, molded products, and a method for manufacturing molded products.
  • the present embodiment is an example for explaining the present invention, and the present invention is not limited to the present embodiment.
  • the word "to” is used to mean that the numerical values before and after it are included as the lower limit and upper limit.
  • various physical properties and characteristic values are those at 23° C. unless otherwise specified.
  • the weight average molecular weight and number average molecular weight are values calculated in terms of polystyrene measured by GPC (gel permeation chromatography).
  • the number average molecular weight can be measured according to the description in paragraph 0047 of JP2018-165298A, the contents of which are incorporated herein by reference.
  • the melting point (Tm) is a value measured by differential scanning calorimetry (DSC) in accordance with ISO 11357. Specifically, it can be measured as described in paragraph 0036 of WO 2016/084475, the contents of which are incorporated herein by reference. If the measurement methods, etc. described in the standards shown in this specification vary from year to year, they will be based on the standards as of January 1, 2022, unless otherwise specified.
  • the resin composition of this embodiment contains a polyamide resin and a pigment, the polyamide resin being composed of diamine-derived structural units and dicarboxylic acid-derived structural units, 70 mol % or more of the diamine-derived structural units being derived from xylylenediamine, 70 mol % or more of the dicarboxylic acid-derived structural units being derived from ⁇ , ⁇ -straight-chain aliphatic dicarboxylic acid having 9 to 20 carbon atoms, and the pigment containing Pigment Violet 29 and Pigment Green 36.
  • This composition makes it possible to obtain a resin composition that can provide a black molded product with high light transmittance, excellent laser welding strength, and reduced sink marks on the surface. In particular, it is possible to increase the light transmittance at wavelengths of 900 to 1100 nm.
  • the resin composition of the present embodiment contains a polyamide resin (hereinafter sometimes referred to as a "xylylenediamine-based polyamide resin" in this specification) that contains diamine-derived structural units and dicarboxylic acid-derived structural units, in which 70 mol % or more of the diamine-derived structural units are derived from xylylenediamine, and 70 mol % or more of the dicarboxylic acid-derived structural units are derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms.
  • a polyamide resin it is possible to increase the welding strength and also to suppress the occurrence of sink marks on the surface of a molded article.
  • the diamine-derived constituent units of the xylylenediamine-based polyamide resin are more preferably 75 mol% or more, even more preferably 80 mol% or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and particularly preferably 99 mol% or more, derived from xylylenediamine (preferably paraxylylenediamine and/or metaxylylenediamine).
  • the xylylenediamine is preferably paraxylylenediamine or metaxylylenediamine, and preferably contains at least paraxylylenediamine. Specifically, it is preferred that 0 to 100 mol % of the diamine-derived constituent units are meta-xylylenediamine-derived constituent units, and that 0 to 100 mol % of the diamine-derived constituent units are para-xylylenediamine-derived constituent units (however, the total of para-xylylenediamine and meta-xylylenediamine does not exceed 100 mol %), that 50 to 90 mol % of the diamine-derived constituent units are meta-xylylenediamine-derived constituent units, and that 50 to 10 mol % of the diamine-derived constituent units are para-xylylenediamine-derived constituent units, and it is even more preferred that 60 to 80 mol % of the diamine-derived constituent units are meta-xylylenediamine-derived constituent units, and that 40 to
  • the total of the constitutional units derived from paraxylylenediamine and the constitutional units derived from metaxylylenediamine preferably accounts for 80 mol % or more, more preferably 85 mol % or more, even more preferably 90 mol % or more, still more preferably 95 mol % or more, still more preferably 98 mol % or more, and still more preferably 99 mol % or more of the constitutional units derived from diamine.
  • the upper limit of the total of the constitutional units derived from paraxylylenediamine and the constitutional units derived from metaxylylenediamine is 100 mol %.
  • Diamines other than metaxylylenediamine and paraxylylenediamine that can be used as raw diamine components for xylylenediamine-based polyamide resins include aliphatic diamines such as tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, dodecamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, and 2,4,4-trimethylhexamethylenediamine, 1,3-bis( Examples of such diamines include alicyclic diamines such as bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis(4-aminocyclohex
  • the dicarboxylic acid-derived structural units of the xylylenediamine-based polyamide resin are preferably 75 mol% or more, more preferably 80 mol% or more, even more preferably 85 mol% or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and particularly preferably 99 mol% or more, derived from ⁇ , ⁇ -straight-chain aliphatic dicarboxylic acid having 9 to 20 carbon atoms (preferably ⁇ , ⁇ -straight-chain aliphatic dicarboxylic acid having 9 to 14 carbon atoms, and even more preferably sebacic acid).
  • Examples of the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms that can be used as the raw dicarboxylic acid component of the xylylenediamine-based polyamide resin include aliphatic dicarboxylic acids such as sebacic acid, undecanedioic acid, and dodecanedioic acid, and these can be used alone or in combination of two or more.
  • sebacic acid is preferred because it provides a polyamide resin with a melting point in a range suitable for molding.
  • a preferred embodiment of the xylylenediamine-based polyamide resin in this embodiment is one in which 50 mol % or more (preferably 70 mol % or more, more preferably 90 mol % or more) of the constitutional units derived from dicarboxylic acid are derived from sebacic acid.
  • dicarboxylic acid components other than the ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 9 to 20 carbon atoms include ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 8 or less carbon atoms such as adipic acid, phthalic acid compounds such as isophthalic acid, terephthalic acid, and orthophthalic acid, and isomers of naphthalene dicarboxylic acids such as 1,2-naphthalene dicarboxylic acid, 1,3-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 1,6-naphthalene dicarboxylic acid, 1,7-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 2,3-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, and 2,7-naphthal
  • the xylylenediamine-based polyamide resin preferably contains paraxylylenediamine as the xylylenediamine and contains sebacic acid as the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms.
  • the xylylenediamine-based polyamide resin is mainly composed of diamine-derived structural units and dicarboxylic acid-derived structural units, but does not completely exclude other structural units, and may, of course, contain structural units derived from lactams such as ⁇ -caprolactam and laurolactam, and aliphatic aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid.
  • the main component means that, among the structural units constituting the xylylenediamine-based polyamide resin, the total number of diamine-derived structural units and dicarboxylic acid-derived structural units is the largest among all structural units.
  • the total of the diamine-derived structural units and dicarboxylic acid-derived structural units in the xylylenediamine-based polyamide resin preferably accounts for 90% by mass or more of the total structural units, more preferably accounts for 95% by mass or more, even more preferably accounts for 97% by mass or more, and even more preferably accounts for 99% by mass or more.
  • the melting point of the xylylenediamine-based polyamide resin is preferably 150 to 350°C, more preferably 180 to 330°C, even more preferably 200 to 330°C, and even more preferably 200 to 320°C.
  • the lower limit of the number average molecular weight (Mn) of the xylylenediamine-based polyamide resin is preferably 6,000 or more, more preferably 8,000 or more, and even more preferably 10,000 or more, and is preferably 35,000 or less, more preferably 30,000 or less, even more preferably 25,000 or less, and even more preferably 20,000 or less. Within such ranges, the heat resistance, elastic modulus, dimensional stability, and moldability are improved.
  • the content of the xylylenediamine-based polyamide resin in the resin composition of this embodiment is preferably 30% by mass or more in the resin composition, more preferably 40% by mass or more, even more preferably 45% by mass or more, even more preferably 50% by mass or more, even more preferably 55% by mass or more, and may be 60% by mass or more.
  • the reinforcing filler blending rate is suppressed to a certain extent, and the flowability balance tends to be easily adjusted.
  • the content of the xylylenediamine-based polyamide resin in the resin composition of this embodiment is preferably 95% by mass or less in the resin composition, more preferably 90% by mass or less, even more preferably 85% by mass or less, even more preferably 80% by mass or less, even more preferably 75% by mass or less, and may be 70% by mass or less.
  • the filler blending rate such as glass fiber is high, and high physical properties in terms of rigidity and strength tend to be easily obtained.
  • the resin composition of the present embodiment may contain only one type of xylylenediamine-based polyamide resin, or may contain two or more types. When two or more types are contained, the total amount is preferably in the above range.
  • the total of the polyamide resin and the reinforcing filler preferably accounts for 95 mass% or more of the resin composition, more preferably 96 mass% or more, even more preferably 97 mass% or more, and even more preferably 98 mass% or more.
  • the resin composition of the present embodiment may contain other polyamide resins without departing from the spirit of the present invention.
  • the other polyamide resin is not particularly limited, and any known polyamide resin can be used.
  • the polyamide resin may be an aliphatic polyamide resin or a semi-aromatic polyamide resin.
  • aliphatic polyamide resins include polyamide 4, polyamide 46, polyamide 6, polyamide 66, polyamide 666, polyamide 610, polyamide 11, polyamide 12, and the like.
  • semi-aromatic polyamide resins include terephthalic acid-based polyamide resins (polyamide 6T, polyamide 9T) and the like. When these other polyamide resins are contained, they are preferably contained in an amount of 0.1 to 10% by mass of the resin composition.
  • the resin composition of the present embodiment contains as pigments Pigment Violet 29 and Pigment Green 36.
  • Pigment Violet 29 and Pigment Green 36 By containing such pigments, a molded article having high blackness, excellent laser weldability, and suppressed occurrence of sink marks can be obtained.
  • the mass ratio of Pigment Violet 29 to Pigment Green 36 is preferably 10 to 90:90 to 10.
  • the mass ratio of Pigment Violet 29 to Pigment Green 36 is preferably 10 to 80:90 to 20, more preferably 10 to 77:90 to 23, even more preferably 10 to 75:90 to 25, and may be 15 to 75:85 to 25, or may be 20 to 75:80 to 25.
  • the content of Pigment Violet 29 in the resin composition of this embodiment is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, even more preferably 0.04% by mass or more, and even more preferably 0.05% by mass or more, based on 100% by mass of the resin composition.
  • the content of Pigment Violet 29 is preferably 0.4% by mass or less, more preferably 0.3% by mass or less, even more preferably 0.2% by mass or less, even more preferably 0.18% by mass or less, and even more preferably 0.15% by mass or less, based on 100% by mass of the resin composition.
  • the content of Pigment Green 36 in the resin composition of this embodiment is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, even more preferably 0.04% by mass or more, and even more preferably 0.05% by mass or more, based on 100% by mass of the resin composition.
  • the content of Pigment Green 36 is preferably 0.4% by mass or less, more preferably 0.3% by mass or less, even more preferably 0.2% by mass or less, even more preferably 0.18% by mass or less, and even more preferably 0.15% by mass or less, based on 100% by mass of the resin composition.
  • the total amount of Pigment Violet 29 and Pigment Green 36 in the resin composition of this embodiment is preferably 0.05% by mass or more, relative to 100% by mass of the resin composition. By making it equal to or more than the lower limit, the visual blackness tends to be further improved. Furthermore, the total amount of Pigment Violet 29 and Pigment Green 36 is preferably 0.5% by mass or less, more preferably 0.4% by mass or less, more preferably 0.3% by mass or less, and even more preferably 0.2% by mass or less, relative to 100% by mass of the resin composition. By making it equal to or less than the upper limit, the light transmittance tends to be improved while maintaining the visual blackness.
  • the resin composition of this embodiment may also contain colorants other than Pigment Violet 29 and Pigment Green 36, but preferably is substantially free of other colorants.
  • “Substantially free” means that the amount of colorants other than Pigment Violet 29 and Pigment Green 36 relative to the total amount of colorants is 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 1% by mass or less, even more preferably 0.1% by mass or less, and even more preferably 0.01% by mass or less.
  • the resin composition of the present embodiment preferably contains a reinforcing filler in a ratio of 20 to 60 mass% in the resin composition.
  • a reinforcing filler in a ratio of 20 to 60 mass% in the resin composition.
  • the reinforcing filler in the present embodiment does not include anything equivalent to a nucleating agent described later.
  • the reinforcing filler that can be used in the resin composition of the present embodiment has the effect of improving the mechanical properties of the resin composition obtained by blending it with the resin, and a commonly used reinforcing material for plastics can be used.
  • the reinforcing filler may be an organic or inorganic material, but an inorganic material is preferable, and a glass filler is more preferable.
  • the reinforcing filler can also be a fibrous reinforcing filler such as glass fiber, carbon fiber, basalt fiber, wollastonite, or potassium titanate fiber.
  • fillers such as granular or amorphous fillers such as calcium carbonate, titanium oxide, feldspar minerals, clay, organo clay, and glass beads; and scaly reinforcing materials such as glass flakes, mica, and graphite can also be used.
  • a fibrous filler particularly glass fiber.
  • glass fiber either a round cross-sectional shape or an irregular cross-sectional shape can be used. It is more preferable to use a reinforcing filler that has been surface-treated with a surface treatment agent such as a coupling agent. Glass fibers to which a surface treatment agent is attached are preferable because they have excellent durability, moist heat resistance, hydrolysis resistance, and heat shock resistance.
  • the glass filler is made of glass compositions such as A-glass, C-glass, E-glass, S-glass, R-glass, M-glass, and D-glass, with E-glass (alkali-free glass) being particularly preferred.
  • the glass filler used in the resin composition of the present embodiment is preferably glass fiber.
  • the glass fiber may be a single fiber or a plurality of single fibers twisted together.
  • the form of the glass fiber may be any of "glass roving" which is a single fiber or a plurality of single fibers twisted together and wound continuously, "chopped strand” which is cut to a length of 1 to 10 mm, and "milled fiber” which is pulverized to a length of 10 to 500 ⁇ m.
  • Such glass fibers are commercially available under the trade names "Glaslon Chopped Strand” and "Glaslon Milled Fiber” from Asahi Fiber Glass Co., Ltd. and "E Glass Fiber Chopped Strand” from Nippon Electric Glass Co., Ltd., and are easily available. Glass fibers of different forms can also be used in combination.
  • the glass fibers used in this embodiment may have a circular or noncircular cross section.
  • warping of the resulting molded product can be more effectively suppressed.
  • warping can be effectively suppressed by using a polyamide resin that crystallizes sufficiently even at low mold temperatures.
  • the content of the reinforcing filler in the resin composition of this embodiment is preferably 20% by mass or more, more preferably 25% by mass or more, and is preferably 60% by mass or less, more preferably 55% by mass or less, and may further be 50% by mass or less, 45% by mass or less, 40% by mass or less, or 35% by mass or less.
  • the resin composition of the present embodiment may contain only one type of reinforcing filler, or may contain two or more types. When two or more types are contained, the total amount is within the above range. Note that the content of the reinforcing filler in the present embodiment is intended to include the amount of the sizing agent and the surface treatment agent.
  • the resin composition of the present embodiment preferably contains at least one of copper iodide, potassium iodide, and cerium oxide, and more preferably contains at least one of copper iodide and potassium iodide.
  • copper iodide the heat resistance of the obtained molded product tends to be further improved.
  • potassium iodide a complex is easily formed in the polyamide resin, and decomposition of the resin tends to be more effectively suppressed. That is, by blending these components, it is possible to impart performance according to the application.
  • the proportion of copper iodide in the resin composition of this embodiment is preferably 0.01 mass% or more, and more preferably 0.02 mass% or more, and is preferably 2 mass% or less, more preferably 1 mass% or less, even more preferably 0.5 mass% or less, and even more preferably 0.3 mass% or less.
  • the resin composition of the present embodiment may contain only one type of copper iodide, or may contain two or more types. When two or more types are contained, the total amount is preferably in the above range.
  • the proportion of potassium iodide in the resin composition of this embodiment is preferably 0.01 mass% or more, more preferably 0.02 mass% or more, and is preferably 2 mass% or less, more preferably 1 mass% or less, even more preferably 0.5 mass% or less, and even more preferably 0.3 mass% or less.
  • the proportion of cerium oxide in the resin composition of this embodiment is preferably 0.01 mass% or more, more preferably 0.02 mass% or more, and is preferably 2 mass% or less, more preferably 1 mass% or less, even more preferably 0.5 mass% or less, and even more preferably 0.3 mass% or less.
  • the resin composition of the present embodiment may contain only one type of cerium oxide, or may contain two or more types. When two or more types are contained, the total amount is preferably in the above range.
  • the resin composition of the present embodiment may contain a release agent.
  • the release agent include aliphatic carboxylic acids, salts of aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, polysiloxane-based silicone oils, ketone waxes, and fatty acid amides.
  • aliphatic carboxylic acids, salts of aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, and fatty acid amides are preferred, and salts of aliphatic carboxylic acids and fatty acid amides are more preferred.
  • the release agent for details of the release agent, please refer to paragraphs 0055 to 0061 of JP2018-095706A, the contents of which are incorporated herein by reference.
  • the content thereof in the resin composition is preferably 0.05 to 3 mass %, more preferably 0.1 to 1 mass %, and even more preferably 0.2 to 0.8 mass %.
  • the resin composition of the present embodiment may contain only one type of release agent, or may contain two or more types. When two or more types are contained, the total amount is preferably in the above range.
  • the resin composition of the present embodiment may contain a nucleating agent.
  • a nucleating agent there are no particular limitations on the nucleating agent, so long as it remains unmelted during melt processing and can become a crystal nucleus during the cooling process. Among these, talc and calcium carbonate are preferred, and talc is more preferred.
  • the number average particle size of the nucleating agent has a lower limit of preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and even more preferably 3 ⁇ m or more.
  • the number average particle size of the nucleating agent has an upper limit of preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, even more preferably 28 ⁇ m or less, even more preferably 15 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the content of the nucleating agent in the resin composition of the present embodiment is preferably 0.01 to 1% by mass, more preferably 0.1% by mass or more, and more preferably 0.5% by mass or less.
  • the resin composition of the present embodiment may contain only one type of nucleating agent, or may contain two or more types. When two or more types are contained, the total amount is preferably in the above range.
  • the resin composition of the present embodiment may contain other components within the scope of the present invention, such as light stabilizers, antioxidants, ultraviolet absorbers, fluorescent brighteners, anti-dripping agents, antistatic agents, anti-fogging agents, anti-blocking agents, flow improvers, plasticizers, dispersants, antibacterial agents, and flame retardants.
  • the contents of the polyamide resin, the pigment, and other components blended as necessary are adjusted so that the total of each component is 100 mass %.
  • the total of the xylylenediamine polyamide resin, Pigment Violet 29, Pigment Green 36, reinforcing filler, copper iodide, potassium iodide, nucleating agent, and release agent accounts for 99 mass % or more of the resin composition.
  • the resin composition of this embodiment preferably has a high light transmittance at wavelengths of 940 to 1100 nm.
  • the light transmittance at a wavelength of 940 nm is preferably 25% or more, more preferably 29% or more.
  • the upper limit of the light transmittance at a wavelength of 940 nm of the test piece having a thickness of 1.5 mm is, for example, 90% or less, and may be 70% or less.
  • Such a high light transmittance is achieved by using Pigment Violet 29 and Pigment Green 36 in combination.
  • the resin composition of this embodiment is preferably excellent in blackness.
  • the L value is preferably less than 20, more preferably 19 or less, and even more preferably 18 or less.
  • the lower limit of the L value is ideally 0, but even if it is 1 or more, the required performance is sufficiently satisfied.
  • Such a high blackness is achieved by using Pigment Violet 29 and Pigment Green 36 in combination.
  • the resin composition of the present embodiment is preferably suppressed from generating sink marks.
  • the resin composition of the present embodiment is molded into a test piece having a thickness of 1.5 mm, and the surface roughness Rv value after irradiation with a total energy input of 34.3 J in diode laser welding is preferably less than 40 ⁇ m, more preferably 30 ⁇ m or less, even more preferably 20 ⁇ m or less, even more preferably 10 ⁇ m or less, even more preferably 5 ⁇ m or less, even more preferably 3 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the light transmittance, L value and maximum depth (Rv) are measured according to the description in the examples described later.
  • the method for producing the resin composition of the present embodiment is not particularly limited, but a method using a single-screw or twin-screw extruder having a vent port for volatilization as a kneader is preferred.
  • the xylylenediamine polyamide resin, Pigment Violet 29 and Pigment Green 36, and other additives to be mixed as necessary may be fed to the kneader all at once, or the polyamide resin components may be fed, and then the other blended components may be fed sequentially.
  • the reinforcing filler is preferably fed from the middle of the extruder in order to prevent it from being crushed during kneading.
  • the pigment may be a polyamide resin or the like that is prepared in advance as a master batch, and then kneaded with other components to obtain the resin composition in this embodiment.
  • the method for producing a molded product using the resin composition of this embodiment is not particularly limited, and molding methods commonly used for thermoplastic resins, such as injection molding, blow molding, extrusion molding, and press molding, can be applied.
  • the particularly preferred molding method is injection molding because of its good fluidity.
  • the resin composition of the present embodiment is preferably used for laser welding, in particular, as a light-transmitting resin composition for laser welding.
  • one embodiment of the resin composition of the present embodiment is in the form of pellets.
  • the molded article is preferably formed from a resin composition or pellets.
  • the resin composition of this embodiment and a light-absorbing resin composition containing a thermoplastic resin and a light-absorbing dye are preferably used as a kit for producing a molded article by laser welding. That is, the resin composition of the present embodiment included in the kit serves as a light-transmitting resin composition, and a molded article formed from such a light-transmitting resin composition serves as a transmissive resin member for laser light during laser welding, whereas a molded article formed from a light-absorbing resin composition serves as an absorptive resin member for laser light during laser welding.
  • the light absorbing resin composition used in this embodiment contains a thermoplastic resin and a light absorbing dye, and may further contain other components such as a reinforcing filler.
  • the thermoplastic resin include polyamide resin, olefin resin, vinyl resin, styrene resin, acrylic resin, polyphenylene ether resin, polyester resin, polycarbonate resin, polyacetal resin, etc., and from the viewpoint of good compatibility with the light-transmitting resin composition (the resin composition of the present embodiment), polyamide resin, polyester resin, and polycarbonate resin are particularly preferred, and polyamide resin is more preferred.
  • the thermoplastic resin may be one type or two or more types.
  • the type of polyamide resin used in the light absorbing resin composition is not limited, but the above-mentioned xylylenediamine polyamide resin is preferred.
  • the reinforcing filler include glass fillers (preferably glass fibers), carbon fibers, silica, alumina, carbon black, and fillers capable of absorbing laser light, such as inorganic powders coated with a material that absorbs laser light, with glass fibers being preferred.
  • the reinforcing filler is synonymous with the reinforcing filler that may be blended into the resin composition of the present embodiment, and the preferred range is also the same.
  • the content of the reinforcing filler is preferably 20 to 70% by mass, more preferably 25 to 60% by mass, and even more preferably 30 to 55% by mass.
  • the light absorbing dye includes a dye having an absorption wavelength in the range of the wavelength of the irradiated laser light, for example, in the range of 900 nm to 1100 nm in this embodiment.
  • the light absorbing dye also includes a dye having a transmittance of less than 30%, or even 10% or less, when mixed at 0.3 parts by mass with 100 parts by mass of a xylylenediamine-based polyamide resin and the light transmittance is measured by the measuring method described in the examples below.
  • light absorbing dyes include inorganic pigments (black pigments such as carbon black (e.g., acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black, etc.), red pigments such as iron oxide red, orange pigments such as molybdate orange, and white pigments such as titanium oxide), and organic pigments (yellow pigments, orange pigments, red pigments, blue pigments, green pigments, etc.).
  • black pigments such as carbon black (e.g., acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black, etc.)
  • red pigments such as iron oxide red
  • orange pigments such as molybdate orange
  • white pigments such as titanium oxide
  • organic pigments yellow pigments, orange pigments, red pigments, blue pigments, green pigments, etc.
  • two or more of these light absorbing dyes may be used in combination.
  • the content of the light absorbing dye is preferably 0.01 to 30 parts by mass per 100 parts
  • the above kit preferably has at least 80% by mass of the components in the resin composition, excluding the light-transmitting pigment and reinforcing filler, in common with the components in the light-absorbing resin composition, excluding the light-absorbing pigment and reinforcing filler, more preferably has at least 90% by mass of the components in common, and even more preferably has 95 to 100% by mass of the components in common.
  • a laser welding method will be described.
  • a molded article (transmissive resin member) formed from the resin composition of this embodiment and a molded article (absorbent resin member) formed from the light absorbing resin composition can be laser welded to produce a molded article (laser welded body).
  • the transmissive resin member and the absorbent resin member can be firmly welded without using an adhesive.
  • the shape of the member is not particularly limited, but since the members are joined together by laser welding, they usually have at least a surface contact area (flat surface, curved surface). In laser welding, the laser light transmitted through the transparent resin member is absorbed by the absorbing resin member, melts, and the two members are welded together.
  • the molded product formed from the resin composition of this embodiment has high transparency to laser light, so it can be preferably used as a transparent resin member.
  • the thickness of the member through which the laser light transmits can be appropriately determined taking into account the application, the composition of the resin composition, and other factors, and is, for example, 5 mm or less, preferably 4 mm or less.
  • the laser light source used for laser welding can be determined according to the transmission wavelength of the light of the light-transmitting dye, and a laser with a wavelength in the range of 900 to 1100 nm is preferable, and for example, a semiconductor laser or fiber laser can be used.
  • the parts to be welded of both are brought into contact with each other.
  • the welded parts of both are in surface contact, and they may be flat surfaces, curved surfaces, or a combination of flat surfaces and curved surfaces.
  • laser light is irradiated from the transparent resin member side.
  • a lens may be used to focus the laser light on the interface between the two. The focused beam passes through the transparent resin member and is absorbed near the surface of the absorbing resin member, generating heat and melting it.
  • the molded product in which the transmissive resin member and the absorptive resin member are welded in this manner has high weld strength. Note that the molded product in this embodiment is intended to include not only finished products and parts, but also members that form part of these products and parts.
  • the molded product obtained by laser welding in this embodiment can be applied to various applications, such as various storage containers, electrical and electronic equipment parts, office automation (OA) equipment parts, home appliance parts, machine mechanism parts, vehicle mechanism parts, etc.
  • OA office automation
  • it can be suitably used for food containers, pharmaceutical containers, oil and fat product containers, hollow vehicle parts (various tanks, intake manifold parts, camera housings, etc.), vehicle electrical parts (various control units, ignition coil parts, etc.), advanced driver assistance system (ADAS) related parts, motor parts, various sensor parts, connector parts, switch parts, breaker parts, relay parts, coil parts, transformer parts, lamp parts, etc.
  • the resin composition or kit of this embodiment is suitable for advanced driver assistance system (ADAS) related parts (particularly vehicle-mounted camera parts).
  • ADAS advanced driver assistance system
  • ADAS Advanced Driver Assistance Systems
  • cameras for image data
  • LIDAR and millimeter wave radar parts for distance data
  • GPS and odometer parts for position data
  • IMU Inertial Measurement Unit
  • ⁇ Talc> #5000S Micron White (CuI), manufactured by Hayashi Kasei Co., Ltd. Cuprous iodide (potassium iodide), manufactured by Nippon Chemical Industries Co., Ltd. Fujifilm Wako Pure Chemical Industries, Ltd.
  • ECS03T-756H Glass fiber, manufactured by Nippon Electric Glass Co., Ltd.
  • Red-purple pigment Paliogen Red violet K5411, Manufacturer: Color & Effect Japan Co., Ltd.
  • Green pigment Heliogen Green K9362, Manufacturer: Color & Effect Japan Co., Ltd. Purple pigment: Spectrescence Black K0087, Manufacturer: Color & Effect Japan Co., Ltd.
  • Perylene pigment Green pigment Heliogen Green K8730 (green): Manufacturer: Color & Effect Japan Co., Ltd., Copper phthalocyanine pigment
  • Pigment Green7 Black pigment Spectrescence Black K0088: Manufacturer: Color & Effect Japan Co., Ltd., Perylene pigment
  • the glass fiber was fed into the above-mentioned twin-screw extruder from the side of the extruder using a vibrating cassette weighing feeder (Kubota Corporation, CE-V-1B-MP), and melt-kneaded with the resin components, etc. to obtain resin composition pellets.
  • the temperature of the extruder was set to 280°C.
  • the resin composition pellets obtained above were dried at 80°C for 12 hours, and then test pieces for measuring light transmittance (ASTM D638 standard No. 4 dumbbell pieces, 1.5 mm thick) were prepared using an injection molding machine (manufactured by The Japan Steel Works, Ltd., J-50ADS).
  • the cylinder temperature was 260°C, and the mold surface temperature was 110°C.
  • the light transmittance was measured on the side of the test piece opposite the gate using a transmittance measuring device, and the light transmittance (unit: %) was measured at wavelengths of 940 nm and 1070 nm.
  • the transmittance measuring device used was UV-3600 manufactured by Shimadzu Corporation.
  • the absorbent resin member and the transmissive resin member obtained above were overlapped on the opposite side of the gate, and were welded using a diode laser welding machine (wavelength 940 nm) manufactured by Fine Devices.
  • the welding conditions were laser output: 30 W, number of scans: 5, feed rate: 70 (mm/s), and total energy input: 34.3 (J).
  • the Rv value of the surface of the transmissive resin member welded under these conditions was measured.
  • the Rv was measured according to the ISO-25178 standard.
  • the measurements were carried out using three-dimensional shape measuring instruments VR-3000 and VR-3200 manufactured by Keyence. Measurement conditions: The absorbent resin member and the transparent resin member, which are 1.5 mm thick No.
  • dumbbell pieces according to the ASTM D638 standard, were overlapped, and the measurement point, i.e., the Rv measurement range, was set to a linear range of 10 mm to the left and right from the center of the laser irradiation of the chuck part of the test piece.
  • the laser output conditions were selected as follows: beam diameter: 1.4 mm, output: 30 W, feed rate: 70 mm/s, energy density: 0.43 J/mm.
  • the maximum valley depth Rv value indicates the depth of the deepest valley in the contour curve in the reference length.
  • the molded articles formed from the resin composition of the present invention had high light transmittance, high tensile weld strength, and no sink marks were observed on the surface (Examples 1 to 10). Furthermore, the molded articles obtained had excellent blackness. In contrast, when pigments other than Pigment Violet 29 and Pigment Green 36 were used, sink marks were observed on the surface of the molded article, and the color of the molded article was not black (Comparative Examples 1 to 13).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: a resin composition that contains a polyamide resin and a pigment, the polyamide resin containing structural units derived from a diamine and structural units derived from a carboxylic acid, 70 mol% or more of the structural units derived from a diamine being derived from xylylene diamine, 70 mol% or more of the structural units derived from a carboxylic acid being derived from a C9-20 α,ω-linear aliphatic dicarboxylic acid, and the pigment containing Pigment Violet 29 and Pigment Green 36; a kit; pellets; a molded article; and a method for producing a molded article.

Description

樹脂組成物、キット、ペレット、成形品、および、成形品の製造方法Resin composition, kit, pellet, molded article, and method for manufacturing molded article
 本発明は、樹脂組成物、キット、ペレット、成形品、および、成形品の製造方法に関する。特に、ポリアミド樹脂を主要成分とする樹脂組成物に関する。 The present invention relates to a resin composition, a kit, a pellet, a molded article, and a method for manufacturing a molded article. In particular, the present invention relates to a resin composition whose main component is a polyamide resin.
 代表的なエンジニアリングプラスチックであるポリアミド樹脂は、加工が容易であり、さらに、機械的物性、電気特性、耐熱性、その他の物理的・化学的特性に優れている。このため、車両部品、電気・電子機器部品、その他の精密機器部品等に幅広く使用されている。最近では形状の複雑な部品もポリアミド樹脂で製造されるようになって来ており、例えば、インテークマニホールドのような中空部を有する部品などの接着には、各種溶着技術、例えば、接着剤溶着、振動溶着、超音波溶着、熱板溶着、射出溶着、レーザー溶着技術などが使用されている。 Polyamide resin, a typical engineering plastic, is easy to process and has excellent mechanical properties, electrical properties, heat resistance, and other physical and chemical properties. For this reason, it is widely used in vehicle parts, electrical and electronic equipment parts, and other precision equipment parts. Recently, parts with complex shapes have also begun to be manufactured from polyamide resin. For example, various welding techniques, such as adhesive welding, vibration welding, ultrasonic welding, hot plate welding, injection welding, and laser welding, are used to bond parts with hollow parts such as intake manifolds.
 しかしながら、接着剤による溶着は、硬化するまでの時間的ロスに加え、周囲の汚染などの環境負荷の問題がある。超音波溶着、熱板溶着などは、振動、熱による製品へのダメージや、摩耗粉やバリの発生により後処理が必要になるなどの問題が指摘されている。また、射出溶着は、特殊な金型や成形機が必要である場合が多く、さらに、材料の流動性が良くないと使用できないなどの問題がある。 However, welding with adhesives has problems such as the time lost until the adhesive hardens, as well as environmental impacts such as pollution of the surrounding area. Problems have been pointed out with ultrasonic welding and hot plate welding, such as damage to the product due to vibration and heat, and the need for post-processing due to the generation of wear powder and burrs. Injection welding also often requires special molds and molding machines, and furthermore cannot be used unless the material has good fluidity.
 一方、レーザー溶着は、レーザー光に対して透過性(非吸収性、弱吸収性とも言う)を有する樹脂部材(以下、「透過樹脂部材」ということがある)と、レーザー光に対して吸収性を有する樹脂部材(以下、「吸収樹脂部材」と言うことがある)とを接触し溶着して、両樹脂部材を接合させる方法である。具体的には、透過樹脂部材側からレーザー光を接合面に照射して、接合面を形成する吸収樹脂部材をレーザー光のエネルギーで溶融させ接合する方法である。レーザー溶着は、摩耗粉やバリの発生が無く、製品へのダメージも少なく、さらに、ポリアミド樹脂自体、レーザー透過率が比較的高い材料であることから、ポリアミド樹脂製品のレーザー溶着技術による加工が、最近注目されている。 Laser welding, on the other hand, is a method of joining two resin parts by contacting and welding a resin part (hereinafter sometimes referred to as a "transmissive resin part") that is transparent to laser light (also called non-absorbent or weakly absorbent) with a resin part (hereinafter sometimes referred to as an "absorbent resin part") that is absorbent to laser light. Specifically, this method irradiates the joining surface with laser light from the transmissive resin part side, and melts and joins the absorbing resin part that forms the joining surface with the energy of the laser light. Laser welding does not produce abrasion powder or burrs, and causes little damage to the product. Furthermore, polyamide resin itself is a material with a relatively high laser transmittance, so processing polyamide resin products using laser welding technology has recently been attracting attention.
 上記透過樹脂部材は、通常、光透過性樹脂組成物から成形される。このような光透過性樹脂組成物として、特許文献1には、半芳香族ポリアミド樹脂25~50質量%と、臭素系難燃剤3~20質量%と、錫酸亜鉛1.5~10質量%と、光透過性色素を含む、ポリアミド樹脂組成物が記載されている。 The transparent resin member is usually molded from a light-transmitting resin composition. As such a light-transmitting resin composition, Patent Document 1 describes a polyamide resin composition that contains 25 to 50 mass% of a semi-aromatic polyamide resin, 3 to 20 mass% of a bromine-based flame retardant, 1.5 to 10 mass% of zinc stannate, and a light-transmitting dye.
特開2020-012093号公報JP 2020-012093 A
 上述のように、ポリアミド樹脂に黒色染料を配合した光透過性樹脂組成物が検討されている。しかしながら、このような光透過性樹脂組成物は、相手部材や隣接部材の素材などによっては、配合している黒色染料の移染(マイグレーション、色移り、とも称される)が起こる。この問題を解決するために、染料に代えて、顔料を配合して、光透過性樹脂組成物とすることが考えられる。
 しかしながら、ポリアミド樹脂に顔料を配合すると、得られる成形品の光線透過率が劣ったり、表面にヒケが発生したり、レーザー溶着の際の溶着強度が劣る場合があることが分かった。また、そもそも、黒色の成形品(透過樹脂部材)が得られない場合もある。
 本発明は、かかる課題を解決することを目的とするものであって、光線透過率が高く、レーザー溶着強度に優れ、かつ、表面のヒケが抑制された黒色の成形品が提供可能な樹脂組成物、ならびに、キット、ペレット、成形品、および、成形品の製造方法を提供することを目的とする。
As described above, a light-transmitting resin composition containing a black dye in a polyamide resin has been studied. However, such a light-transmitting resin composition may cause migration of the black dye depending on the material of the mating member or adjacent member. In order to solve this problem, it is conceivable to use a pigment instead of a dye to make the light-transmitting resin composition.
However, it has been found that when a pigment is blended with a polyamide resin, the light transmittance of the resulting molded product may be poor, sink marks may occur on the surface, or the welding strength during laser welding may be poor. In addition, there are cases where a black molded product (transparent resin member) cannot be obtained in the first place.
The present invention has an object to solve the above problems, and to provide a resin composition capable of providing a black molded article having high light transmittance, excellent laser welding strength, and suppressed sink marks on the surface, as well as a kit, pellets, molded article, and a method for producing the molded article.
 上記課題のもと、本発明者が検討を行った結果、特定のポリアミド樹脂と特定の顔料を用いることにより、上記課題を解決しうることを見出した。
 具体的には、下記手段により、上記課題は解決された。
<1>ポリアミド樹脂と顔料を含み、
前記ポリアミド樹脂は、ジアミン由来の構成単位とジカルボン酸由来の構成単位を含み、ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の70モル%以上が炭素数9~20のα,ω-直鎖脂肪族ジカルボン酸に由来し、
前記顔料は、Pigment Violet29およびPigment Green36を含む、樹脂組成物。
<2>前記キシリレンジアミンがパラキシリレンジアミンを含み、前記炭素数9~20のα,ω-直鎖脂肪族ジカルボン酸がセバシン酸を含む、<1>に記載の樹脂組成物。
<3>さらに、強化フィラーを、樹脂組成物中、20~60質量%の割合で含む、<1>または<2>に記載の樹脂組成物。
<4>前記Pigment Violet29およびPigment Green36の総量が、樹脂組成物中、0.05~0.30質量%である、<1>~<3>のいずれか1つに記載の樹脂組成物。
<5>前記Pigment Violet29およびPigment Green36の合計を100質量部としたとき、Pigment Violet29とPigment Green36の質量比率が、10~90:90~10である、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>前記Pigment Violet29およびPigment Green36の総量が、樹脂組成物中、0.05~0.30質量%であり、
前記Pigment Violet29およびPigment Green36の合計を100質量部としたとき、Pigment Violet29とPigment Green36の質量比率が、10~90:90~10である、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7>レーザー溶着用である、<1>~<6>のいずれか1つに記載の樹脂組成物。
<8>前記キシリレンジアミンがパラキシリレンジアミンを含み、前記炭素数9~20のα,ω-直鎖脂肪族ジカルボン酸がセバシン酸を含み、
さらに、強化フィラーを、樹脂組成物中、20~60質量%の割合で含み、
前記Pigment Violet29およびPigment Green36の総量が、樹脂組成物中、0.05~0.30質量%であり、
前記Pigment Violet29およびPigment Green36の合計を100質量部としたとき、Pigment Violet29とPigment Green36の質量比率が、10~90:90~10である、
レーザー溶着用である、<1>~<7>のいずれか1つに記載の樹脂組成物。
<9>前記樹脂組成物を1.5mmの厚さの試験片に成形したときの、波長940nmにおける光線透過率が25%以上である、<1>~<8>のいずれか1つに記載の樹脂組成物。
<10>前記樹脂組成物を1.5mmの厚さの試験片に成形し、ダイオードレーザー溶着における総エネルギー投入量が34.3Jにおいて照射後の表面粗さRv値が40μm未満である、<1>~<9>のいずれか1つに記載の樹脂組成物。
<11><1>~<10>のいずれか1つに記載の樹脂組成物と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物とを有するキット。
<12><1>~<10>のいずれか1つに記載の樹脂組成物のペレット。
<13><1>~<10>のいずれか1つに記載の樹脂組成物から形成された成形品。
<14><12>に記載のペレットから形成された成形品。
<15>先進運転支援システム(ADAS)関連部品である、<13>または<14>に記載の成形品。
<16>車載カメラ部品である、<13>~<15>のいずれか1つに記載の成形品。
<17><1>~<10>のいずれか1つに記載の樹脂組成物から形成された成形品と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物から形成された成形品を、レーザー溶着させることを含む、成形品の製造方法。
In view of the above problems, the present inventors have conducted research and found that the above problems can be solved by using a specific polyamide resin and a specific pigment.
Specifically, the above problems were solved by the following means.
<1> A polyamide resin and a pigment are included,
the polyamide resin contains diamine-derived structural units and dicarboxylic acid-derived structural units, 70 mol % or more of the diamine-derived structural units are derived from xylylenediamine, and 70 mol % or more of the dicarboxylic acid-derived structural units are derived from an α,ω-linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms;
The resin composition, wherein the pigment comprises Pigment Violet 29 and Pigment Green 36.
<2> The resin composition according to <1>, wherein the xylylenediamine includes paraxylylenediamine, and the α,ω-linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms includes sebacic acid.
<3> The resin composition according to <1> or <2>, further comprising a reinforcing filler in an amount of 20 to 60% by mass in the resin composition.
<4> The resin composition according to any one of <1> to <3>, wherein the total amount of Pigment Violet 29 and Pigment Green 36 is 0.05 to 0.30 mass% in the resin composition.
<5> The resin composition according to any one of <1> to <4>, wherein a mass ratio of Pigment Violet 29 to Pigment Green 36 is 10 to 90:90 to 10, when the total amount of Pigment Violet 29 and Pigment Green 36 is 100 parts by mass.
<6> The total amount of the Pigment Violet 29 and Pigment Green 36 in the resin composition is 0.05 to 0.30% by mass,
<5> The resin composition according to any one of <1> to <5>, wherein a mass ratio of Pigment Violet 29 to Pigment Green 36 is 10 to 90:90 to 10, when the total amount of Pigment Violet 29 and Pigment Green 36 is 100 parts by mass.
<7> The resin composition according to any one of <1> to <6>, which is used for laser welding.
<8> The xylylenediamine includes p-xylylenediamine, and the α,ω-linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms includes sebacic acid,
Further, the resin composition contains a reinforcing filler in an amount of 20 to 60% by mass,
The total amount of the Pigment Violet 29 and Pigment Green 36 in the resin composition is 0.05 to 0.30% by mass,
When the total amount of Pigment Violet 29 and Pigment Green 36 is 100 parts by mass, the mass ratio of Pigment Violet 29 to Pigment Green 36 is 10 to 90:90 to 10.
The resin composition according to any one of <1> to <7>, which is for laser welding.
<9> The resin composition according to any one of <1> to <8>, wherein the resin composition has a light transmittance of 25% or more at a wavelength of 940 nm when molded into a test piece having a thickness of 1.5 mm.
<10> The resin composition is molded into a test piece having a thickness of 1.5 mm, and the surface roughness Rv value after irradiation with a total energy input of 34.3 J in diode laser welding is less than 40 μm. The resin composition according to any one of <1> to <9>.
<11> A kit comprising the resin composition according to any one of <1> to <10> and a light-absorbing resin composition containing a thermoplastic resin and a light-absorbing dye.
<12> Pellets of the resin composition according to any one of <1> to <10>.
<13> A molded article formed from the resin composition according to any one of <1> to <10>.
<14> A molded article formed from the pellets according to <12>.
<15> The molded article according to <13> or <14>, which is an advanced driver assistance system (ADAS)-related part.
<16> The molded article according to any one of <13> to <15>, which is an in-vehicle camera part.
<17> A method for producing a molded article, comprising laser welding a molded article formed from the resin composition according to any one of <1> to <10> and a molded article formed from a light-absorbing resin composition containing a thermoplastic resin and a light-absorbing dye.
 本発明により、光線透過率が高く、レーザー溶着強度に優れ、かつ、表面のヒケが抑制された黒色の成形品が提供可能な樹脂組成物、ならびに、キット、ペレット、成形品、および、成形品の製造方法を提供可能になった。 The present invention makes it possible to provide a resin composition capable of producing black molded products with high light transmittance, excellent laser welding strength, and reduced surface sink marks, as well as kits, pellets, molded products, and a method for manufacturing molded products.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
 本明細書において、重量平均分子量および数平均分子量は、特に述べない限り、GPC(ゲルパーミエーションクロマトグラフィ)法により測定したポリスチレン換算値である。
 本明細書において、数平均分子量は、特に述べない限り、特開2018-165298号公報の段落0047の記載に従って測定することができ、この内容は本明細書に組み込まれる。
 本明細書において、融点(Tm)は、特に述べない限り、示差走査熱量測定(DSC)に従い、ISO11357に準拠して、測定した値とする。具体的には、国際公開第2016/084475号の段落0036の記載に従って測定することができ、この内容は本明細書に組み込まれる。
 本明細書で示す規格で説明される測定方法等が年度によって異なる場合、特に述べない限り、2022年1月1日時点における規格に基づくものとする。
Hereinafter, an embodiment of the present invention (hereinafter, simply referred to as the present embodiment) will be described in detail. Note that the present embodiment is an example for explaining the present invention, and the present invention is not limited to the present embodiment.
In this specification, the word "to" is used to mean that the numerical values before and after it are included as the lower limit and upper limit.
In this specification, various physical properties and characteristic values are those at 23° C. unless otherwise specified.
In this specification, unless otherwise specified, the weight average molecular weight and number average molecular weight are values calculated in terms of polystyrene measured by GPC (gel permeation chromatography).
In this specification, unless otherwise specified, the number average molecular weight can be measured according to the description in paragraph 0047 of JP2018-165298A, the contents of which are incorporated herein by reference.
In this specification, unless otherwise specified, the melting point (Tm) is a value measured by differential scanning calorimetry (DSC) in accordance with ISO 11357. Specifically, it can be measured as described in paragraph 0036 of WO 2016/084475, the contents of which are incorporated herein by reference.
If the measurement methods, etc. described in the standards shown in this specification vary from year to year, they will be based on the standards as of January 1, 2022, unless otherwise specified.
 本実施形態の樹脂組成物は、ポリアミド樹脂と顔料を含み、前記ポリアミド樹脂は、ジアミン由来の構成単位とジカルボン酸由来の構成単位から構成され、ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の70モル%以上が炭素数9~20のα,ω-直鎖脂肪族ジカルボン酸に由来し、前記顔料は、Pigment Violet29をおよびPigment Green36を含むことを特徴とする。このような構成とすることにより、光線透過率が高く、レーザー溶着強度に優れ、かつ、表面のヒケが抑制された黒色の成形品が提供可能な樹脂組成物が得られる。特に、900~1100nm波長における光線透過率を高くすることができる。 The resin composition of this embodiment contains a polyamide resin and a pigment, the polyamide resin being composed of diamine-derived structural units and dicarboxylic acid-derived structural units, 70 mol % or more of the diamine-derived structural units being derived from xylylenediamine, 70 mol % or more of the dicarboxylic acid-derived structural units being derived from α,ω-straight-chain aliphatic dicarboxylic acid having 9 to 20 carbon atoms, and the pigment containing Pigment Violet 29 and Pigment Green 36. This composition makes it possible to obtain a resin composition that can provide a black molded product with high light transmittance, excellent laser welding strength, and reduced sink marks on the surface. In particular, it is possible to increase the light transmittance at wavelengths of 900 to 1100 nm.
<ポリアミド樹脂>
 本実施形態の樹脂組成物は、ジアミン由来の構成単位とジカルボン酸由来の構成単位を含み、ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の70モル%以上が炭素数9~20のα,ω-直鎖脂肪族ジカルボン酸に由来するポリアミド樹脂(以下、本明細書において、「キシリレンジアミン系ポリアミド樹脂」ということがある)を含む。このようなポリアミド樹脂を含むことにより、溶着強度を高くすることができ、また、成形品の表面のヒケの発生を抑制することができる。
<Polyamide resin>
The resin composition of the present embodiment contains a polyamide resin (hereinafter sometimes referred to as a "xylylenediamine-based polyamide resin" in this specification) that contains diamine-derived structural units and dicarboxylic acid-derived structural units, in which 70 mol % or more of the diamine-derived structural units are derived from xylylenediamine, and 70 mol % or more of the dicarboxylic acid-derived structural units are derived from an α,ω-linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms. By containing such a polyamide resin, it is possible to increase the welding strength and also to suppress the occurrence of sink marks on the surface of a molded article.
 キシリレンジアミン系ポリアミド樹脂のジアミン由来の構成単位は、より好ましくは75モル%以上、さらに好ましくは80モル%以上、一層好ましくは90モル%以上、より一層好ましくは95モル%以上、特に一層好ましくは99モル%以上が、キシリレンジアミン(好ましくはパラキシリレンジアミンおよび/またはメタキシリレンジアミン)に由来する。 The diamine-derived constituent units of the xylylenediamine-based polyamide resin are more preferably 75 mol% or more, even more preferably 80 mol% or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and particularly preferably 99 mol% or more, derived from xylylenediamine (preferably paraxylylenediamine and/or metaxylylenediamine).
 キシリレンジアミンは、パラキシリレンジアミンおよびメタキシリレンジアミンが好ましく、少なくともパラキシリレンジアミンを含むことが好ましい。
 具体的には、ジアミン由来の構成単位の0~100モル%がメタキシリレンジアミン由来の構成単位であり、ジアミン由来の構成単位の0~100モル%がパラキシリレンジアミン由来の構成単位であることが好ましく(但し、パラキシリレンジアミンおよびメタキシリレンジアミンの合計が100モル%を超えることはない)、ジアミン由来の構成単位の50~90モル%がメタキシリレンジアミン由来の構成単位であり、前記ジアミン由来の構成単位の50~10モル%がパラキシリレンジアミン由来の構成単位であることがより好ましく、ジアミン由来の構成単位の60~80モル%がメタキシリレンジアミン由来の構成単位であり、前記ジアミン由来の構成単位の40~20モル%がパラキシリレンジアミン由来の構成単位であることがさらに好ましい。
 キシリレンジアミン系ポリアミド樹脂は、パラキシリレンジアミン由来の構成単位とメタキシリレンジアミン由来の構成単位の合計が、ジアミン由来の構成単位の好ましくは80モル%以上、より好ましくは85モル%以上、さらに好ましくは90モル%以上、一層好ましくは95モル%以上、より一層好ましくは98モル%以上、さらに一層好ましくは99モル%以上を占めることが好ましい。前記パラキシリレンジアミン由来の構成単位とメタキシリレンジアミン由来の構成単位の合計の上限は100モル%である。
The xylylenediamine is preferably paraxylylenediamine or metaxylylenediamine, and preferably contains at least paraxylylenediamine.
Specifically, it is preferred that 0 to 100 mol % of the diamine-derived constituent units are meta-xylylenediamine-derived constituent units, and that 0 to 100 mol % of the diamine-derived constituent units are para-xylylenediamine-derived constituent units (however, the total of para-xylylenediamine and meta-xylylenediamine does not exceed 100 mol %), that 50 to 90 mol % of the diamine-derived constituent units are meta-xylylenediamine-derived constituent units, and that 50 to 10 mol % of the diamine-derived constituent units are para-xylylenediamine-derived constituent units, and it is even more preferred that 60 to 80 mol % of the diamine-derived constituent units are meta-xylylenediamine-derived constituent units, and that 40 to 20 mol % of the diamine-derived constituent units are para-xylylenediamine-derived constituent units.
In the xylylenediamine-based polyamide resin, the total of the constitutional units derived from paraxylylenediamine and the constitutional units derived from metaxylylenediamine preferably accounts for 80 mol % or more, more preferably 85 mol % or more, even more preferably 90 mol % or more, still more preferably 95 mol % or more, still more preferably 98 mol % or more, and still more preferably 99 mol % or more of the constitutional units derived from diamine. The upper limit of the total of the constitutional units derived from paraxylylenediamine and the constitutional units derived from metaxylylenediamine is 100 mol %.
 キシリレンジアミン系ポリアミド樹脂の原料ジアミン成分として用いることができるメタキシリレンジアミンおよびパラキシリレンジアミン以外のジアミンとしては、テトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチル-ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環式ジアミン、ビス(4-アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン等を例示することができ、1種または2種以上を混合して使用できる。 Diamines other than metaxylylenediamine and paraxylylenediamine that can be used as raw diamine components for xylylenediamine-based polyamide resins include aliphatic diamines such as tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, dodecamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, and 2,4,4-trimethylhexamethylenediamine, 1,3-bis( Examples of such diamines include alicyclic diamines such as bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis(4-aminocyclohexyl)methane, 2,2-bis(4-aminocyclohexyl)propane, bis(aminomethyl)decalin, and bis(aminomethyl)tricyclodecane; and diamines having an aromatic ring such as bis(4-aminophenyl)ether, paraphenylenediamine, and bis(aminomethyl)naphthalene. These can be used alone or in combination of two or more.
 一方、キシリレンジアミン系ポリアミド樹脂のジカルボン酸由来の構成単位は、好ましくは75モル%以上、より好ましくは80モル%以上、さらに好ましくは85モル%以上、一層好ましくは90モル%以上、より一層好ましくは95モル%以上、特に一層好ましくは99モル%以上が、炭素数が9~20のα,ω-直鎖脂肪族ジカルボン酸(好ましくは炭素数9~14のα,ω-直鎖脂肪族ジカルボン酸、さらに好ましくはセバシン酸)に由来する。 On the other hand, the dicarboxylic acid-derived structural units of the xylylenediamine-based polyamide resin are preferably 75 mol% or more, more preferably 80 mol% or more, even more preferably 85 mol% or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and particularly preferably 99 mol% or more, derived from α,ω-straight-chain aliphatic dicarboxylic acid having 9 to 20 carbon atoms (preferably α,ω-straight-chain aliphatic dicarboxylic acid having 9 to 14 carbon atoms, and even more preferably sebacic acid).
 キシリレンジアミン系ポリアミド樹脂の原料ジカルボン酸成分として用いるのに好ましい炭素数9~20のα,ω-直鎖脂肪族ジカルボン酸としては、例えば、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示でき、1種または2種以上を混合して使用できるが、これらの中でもポリアミド樹脂の融点が成形加工するのに適切な範囲となることから、セバシン酸が好ましい。
 本実施形態におけるキシリレンジアミン系ポリアミド樹脂の好ましい一実施形態としてジカルボン酸由来の構成単位の50モル%以上(好ましくは70モル%以上、より好ましくは90モル%以上)がセバシン酸に由来するものが例示される。
Examples of the α,ω-linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms that can be used as the raw dicarboxylic acid component of the xylylenediamine-based polyamide resin include aliphatic dicarboxylic acids such as sebacic acid, undecanedioic acid, and dodecanedioic acid, and these can be used alone or in combination of two or more. Among these, sebacic acid is preferred because it provides a polyamide resin with a melting point in a range suitable for molding.
A preferred embodiment of the xylylenediamine-based polyamide resin in this embodiment is one in which 50 mol % or more (preferably 70 mol % or more, more preferably 90 mol % or more) of the constitutional units derived from dicarboxylic acid are derived from sebacic acid.
 上記炭素数9~20のα,ω-直鎖脂肪族ジカルボン酸以外のジカルボン酸成分としては、アジピン酸等の炭素数8以下のα,ω-直鎖脂肪族ジカルボン酸、イソフタル酸、テレフタル酸、オルソフタル酸等のフタル酸化合物、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸といったナフタレンジカルボン酸の異性体等を例示することができ、1種または2種以上を混合して使用できる。 Examples of dicarboxylic acid components other than the α,ω-linear aliphatic dicarboxylic acids having 9 to 20 carbon atoms include α,ω-linear aliphatic dicarboxylic acids having 8 or less carbon atoms such as adipic acid, phthalic acid compounds such as isophthalic acid, terephthalic acid, and orthophthalic acid, and isomers of naphthalene dicarboxylic acids such as 1,2-naphthalene dicarboxylic acid, 1,3-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 1,6-naphthalene dicarboxylic acid, 1,7-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 2,3-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, and 2,7-naphthalene dicarboxylic acid, and these can be used alone or in combination of two or more kinds.
 本実施形態におけるキシリレンジアミン系ポリアミド樹脂は、前記キシリレンジアミンがパラキシリレンジアミンを含み、前記炭素数9~20のα,ω-直鎖脂肪族ジカルボン酸がセバシン酸を含むことが好ましい。 In the present embodiment, the xylylenediamine-based polyamide resin preferably contains paraxylylenediamine as the xylylenediamine and contains sebacic acid as the α,ω-linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms.
 なお、キシリレンジアミン系ポリアミド樹脂は、ジアミン由来の構成単位とジカルボン酸由来の構成単位を主成分として構成されるが、これら以外の構成単位を完全に排除するものではなく、ε-カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類由来の構成単位を含んでいてもよいことは言うまでもない。ここで主成分とは、キシリレンジアミン系ポリアミド樹脂を構成する構成単位のうち、ジアミン由来の構成単位とジカルボン酸由来の構成単位の合計数が全構成単位のうち最も多いことをいう。本実施形態では、キシリレンジアミン系ポリアミド樹脂における、ジアミン由来の構成単位とジカルボン酸由来の構成単位の合計は、全構成単位の90質量%以上を占めることが好ましく、95質量%以上を占めることがより好ましく、97質量%以上を占めることがさらに好ましく、99質量%以上を占めることが一層好ましい。 The xylylenediamine-based polyamide resin is mainly composed of diamine-derived structural units and dicarboxylic acid-derived structural units, but does not completely exclude other structural units, and may, of course, contain structural units derived from lactams such as ε-caprolactam and laurolactam, and aliphatic aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid. Here, the main component means that, among the structural units constituting the xylylenediamine-based polyamide resin, the total number of diamine-derived structural units and dicarboxylic acid-derived structural units is the largest among all structural units. In this embodiment, the total of the diamine-derived structural units and dicarboxylic acid-derived structural units in the xylylenediamine-based polyamide resin preferably accounts for 90% by mass or more of the total structural units, more preferably accounts for 95% by mass or more, even more preferably accounts for 97% by mass or more, and even more preferably accounts for 99% by mass or more.
 キシリレンジアミン系ポリアミド樹脂の融点は、150~350℃であることが好ましく、180~330℃であることがより好ましく、200~330℃であることがさらに好ましく、200~320℃であることが一層好ましい。 The melting point of the xylylenediamine-based polyamide resin is preferably 150 to 350°C, more preferably 180 to 330°C, even more preferably 200 to 330°C, and even more preferably 200 to 320°C.
 キシリレンジアミン系ポリアミド樹脂は、数平均分子量(Mn)の下限が、6,000以上であることが好ましく、8,000以上であることがより好ましく、10,000以上であることがさらに好ましく、また、35,000以下が好ましく、30,000以下がより好ましく、25,000以下がさらに好ましく、20,000以下が一層好ましい。このような範囲であると、耐熱性、弾性率、寸法安定性、成形加工性がより良好となる。 The lower limit of the number average molecular weight (Mn) of the xylylenediamine-based polyamide resin is preferably 6,000 or more, more preferably 8,000 or more, and even more preferably 10,000 or more, and is preferably 35,000 or less, more preferably 30,000 or less, even more preferably 25,000 or less, and even more preferably 20,000 or less. Within such ranges, the heat resistance, elastic modulus, dimensional stability, and moldability are improved.
 本実施形態の樹脂組成物におけるキシリレンジアミン系ポリアミド樹脂の含有量は、樹脂組成物中、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、45質量%以上であることがさらに好ましく、50質量%以上であることが一層好ましく、55質量%以上であることがより一層好ましく、60質量%以上であってもよい。前記下限値以上とすることにより、強化フィラー配合率をある程度抑えることで流動性バランスを整えやすい傾向にある。また、本実施形態の樹脂組成物におけるキシリレンジアミン系ポリアミド樹脂の含有量は、樹脂組成物中、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましく、80質量%以下であることが一層好ましく、75質量%以下であることがより一層好ましく、70質量%以下であってもよい。前記上限値以下とすることにより、ガラス繊維等のフィラー配合率が高くなり、剛性や強度面で高い物性値が得られやすい傾向にある。
 本実施形態の樹脂組成物は、キシリレンジアミン系ポリアミド樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本実施形態の樹脂組成物は、ポリアミド樹脂と強化フィラーの合計が樹脂組成物の95質量%以上を占めることが好ましく、96質量%以上を占めることがより好ましく、97質量%以上を占めることがさらに好ましく、98質量%以上を占めることが一層好ましい。
The content of the xylylenediamine-based polyamide resin in the resin composition of this embodiment is preferably 30% by mass or more in the resin composition, more preferably 40% by mass or more, even more preferably 45% by mass or more, even more preferably 50% by mass or more, even more preferably 55% by mass or more, and may be 60% by mass or more. By making it equal to or more than the lower limit, the reinforcing filler blending rate is suppressed to a certain extent, and the flowability balance tends to be easily adjusted. In addition, the content of the xylylenediamine-based polyamide resin in the resin composition of this embodiment is preferably 95% by mass or less in the resin composition, more preferably 90% by mass or less, even more preferably 85% by mass or less, even more preferably 80% by mass or less, even more preferably 75% by mass or less, and may be 70% by mass or less. By making it equal to or less than the upper limit, the filler blending rate such as glass fiber is high, and high physical properties in terms of rigidity and strength tend to be easily obtained.
The resin composition of the present embodiment may contain only one type of xylylenediamine-based polyamide resin, or may contain two or more types. When two or more types are contained, the total amount is preferably in the above range.
In addition, in the resin composition of this embodiment, the total of the polyamide resin and the reinforcing filler preferably accounts for 95 mass% or more of the resin composition, more preferably 96 mass% or more, even more preferably 97 mass% or more, and even more preferably 98 mass% or more.
 本実施形態の樹脂組成物は、本発明の趣旨を逸脱しない範囲で、他のポリアミド樹脂を含んでいてもよい。
 他のポリアミド樹脂としては、特に定めるものではなく、公知のポリアミド樹脂を用いることができる。ポリアミド樹脂は、脂肪族ポリアミド樹脂であっても、半芳香族ポリアミド樹脂であってもよい。
 脂肪族ポリアミド樹脂としては、ポリアミド4、ポリアミド46、ポリアミド6、ポリアミド66、ポリアミド666、ポリアミド610、ポリアミド11、ポリアミド12等が例示される。
 半芳香族ポリアミド樹脂としては、テレフタル酸系ポリアミド樹脂(ポリアミド6T、ポリアミド9T)などが例示される。
 これらの他のポリアミド樹脂は、含まれる場合、樹脂組成物の0.1~10質量%の割合で含まれることが好ましい。
The resin composition of the present embodiment may contain other polyamide resins without departing from the spirit of the present invention.
The other polyamide resin is not particularly limited, and any known polyamide resin can be used. The polyamide resin may be an aliphatic polyamide resin or a semi-aromatic polyamide resin.
Examples of aliphatic polyamide resins include polyamide 4, polyamide 46, polyamide 6, polyamide 66, polyamide 666, polyamide 610, polyamide 11, polyamide 12, and the like.
Examples of semi-aromatic polyamide resins include terephthalic acid-based polyamide resins (polyamide 6T, polyamide 9T) and the like.
When these other polyamide resins are contained, they are preferably contained in an amount of 0.1 to 10% by mass of the resin composition.
<顔料>
 本実施形態の樹脂組成物は、顔料として、Pigment Violet29およびPigment Green36を含む。このような顔料を含むことにより、黒色度が高く、レーザー溶着性に優れ、かつ、ヒケの発生が抑制された成形品が得られる。
 特に、Pigment Violet29およびPigment Green36の合計を100質量部としたとき、Pigment Violet29とPigment Green36の質量比率を、10~90:90~10とすることが好ましい。このような構成とすることにより、黒色度に顕著に優れ、かつ、ヒケの発生がより効果的に抑制され、さらに、900~1100nmの範囲に渡って光線透過率が高い成形品が得られる。前記Pigment Violet29とPigment Green36の質量比率は、10~80:90~20であることが好ましく、10~77:90~23であることがより好ましく、10~75:90~25であることがさらに一層好ましく、15~75:85~25であってもよく、20~75:80~25であってもよい。
<Pigments>
The resin composition of the present embodiment contains as pigments Pigment Violet 29 and Pigment Green 36. By containing such pigments, a molded article having high blackness, excellent laser weldability, and suppressed occurrence of sink marks can be obtained.
In particular, when the total of Pigment Violet 29 and Pigment Green 36 is 100 parts by mass, the mass ratio of Pigment Violet 29 to Pigment Green 36 is preferably 10 to 90:90 to 10. By adopting such a constitution, a molded article having a remarkably excellent blackness, more effectively suppressing the occurrence of sink marks, and high light transmittance over the range of 900 to 1100 nm can be obtained. The mass ratio of Pigment Violet 29 to Pigment Green 36 is preferably 10 to 80:90 to 20, more preferably 10 to 77:90 to 23, even more preferably 10 to 75:90 to 25, and may be 15 to 75:85 to 25, or may be 20 to 75:80 to 25.
 本実施形態の樹脂組成物におけるPigment Violet29の含有量は、樹脂組成物100質量%に対し、0.01質量%以上であることが好ましく、0.02質量%以上であることがより好ましく、0.04質量%以上であることがさらに好ましく、0.05質量%以上であることがさらに好ましい。また、前記Pigment Violet29の含有量は、樹脂組成物100質量%に対し、0.4質量%以下であることが好ましく、0.3質量%以下であることがより好ましく、0.2質量%以下であることがさらに好ましく、0.18質量%以下であることが一層好ましく、0.15質量%以下であることがより一層好ましい。前記上限値以下とすることにより、目視での黒味をより効果的に保持できる傾向にある。
 本実施形態の樹脂組成物におけるPigment Green36の含有量は、樹脂組成物100質量%に対し、0.01質量%以上であることが好ましく、0.02質量%以上であることがより好ましく、0.04質量%以上であることがさらに好ましく、0.05質量%以上であることがさらに好ましい。また、前記Pigment Green36の含有量は、樹脂組成物100質量%に対し、0.4質量%以下であることが好ましく、0.3質量%以下であることがより好ましく、0.2質量%以下であることがさらに好ましく、0.18質量%以下であることが一層好ましく、0.15質量%以下であることがより一層好ましい。前記上限値以下とすることにより、目視での黒味をより効果的に保持できる傾向にある。
The content of Pigment Violet 29 in the resin composition of this embodiment is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, even more preferably 0.04% by mass or more, and even more preferably 0.05% by mass or more, based on 100% by mass of the resin composition. The content of Pigment Violet 29 is preferably 0.4% by mass or less, more preferably 0.3% by mass or less, even more preferably 0.2% by mass or less, even more preferably 0.18% by mass or less, and even more preferably 0.15% by mass or less, based on 100% by mass of the resin composition. By making it equal to or less than the upper limit, there is a tendency that the visual blackness can be more effectively maintained.
The content of Pigment Green 36 in the resin composition of this embodiment is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, even more preferably 0.04% by mass or more, and even more preferably 0.05% by mass or more, based on 100% by mass of the resin composition. The content of Pigment Green 36 is preferably 0.4% by mass or less, more preferably 0.3% by mass or less, even more preferably 0.2% by mass or less, even more preferably 0.18% by mass or less, and even more preferably 0.15% by mass or less, based on 100% by mass of the resin composition. By making it equal to or less than the upper limit, there is a tendency that visual blackness can be more effectively maintained.
 本実施形態の樹脂組成物におけるPigment Violet29およびPigment Green36の総量は、樹脂組成物100質量%に対し、0.05質量%以上であることが好ましい。前記下限値以上とすることにより、目視での黒味がより向上する傾向にある。また、前記Pigment Violet29およびPigment Green36の総量は、樹脂組成物100質量%に対し、0.5質量%以下であることが好ましく、0.4質量%以下であることがより好ましく、0.3質量%以下であることがより好ましく、0.2質量%以下であることがさらに好ましい。前記上限値以下とすることにより、目視での黒味を保持した上で光線透過率が向上する傾向にある。 The total amount of Pigment Violet 29 and Pigment Green 36 in the resin composition of this embodiment is preferably 0.05% by mass or more, relative to 100% by mass of the resin composition. By making it equal to or more than the lower limit, the visual blackness tends to be further improved. Furthermore, the total amount of Pigment Violet 29 and Pigment Green 36 is preferably 0.5% by mass or less, more preferably 0.4% by mass or less, more preferably 0.3% by mass or less, and even more preferably 0.2% by mass or less, relative to 100% by mass of the resin composition. By making it equal to or less than the upper limit, the light transmittance tends to be improved while maintaining the visual blackness.
 本実施形態の樹脂組成物は、また、Pigment Violet29およびPigment Green36以外の着色剤を含んでいてもよいが、他の着色剤を実質的に含まないことが好ましい。実質的に含まないとは、着色剤の総量に対する、Pigment Violet29およびPigment Green36以外の着色剤の量が、10質量%以下であることをいい、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましく、0.1質量%以下であることが一層好ましく、0.01質量%以下であることがより一層好ましい。 The resin composition of this embodiment may also contain colorants other than Pigment Violet 29 and Pigment Green 36, but preferably is substantially free of other colorants. "Substantially free" means that the amount of colorants other than Pigment Violet 29 and Pigment Green 36 relative to the total amount of colorants is 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less, even more preferably 1% by mass or less, even more preferably 0.1% by mass or less, and even more preferably 0.01% by mass or less.
<強化フィラー>
 本実施形態の樹脂組成物は、強化フィラーを樹脂組成物中、20~60質量%の割合で含むことが好ましい。強化フィラーを前記割合で含むことにより、得られる成形品について高い機械的強度を達成できる。尚、本実施形態における強化フィラーには後述する核剤に相当するものは含まないものとする。
 本実施形態の樹脂組成物で用いる含有され得る強化フィラーとしては、樹脂に配合することにより得られる樹脂組成物の機械的性質を向上させる効果を有するものであり、常用のプラスチック用強化材を用いることができる。強化フィラーは、有機物であっても、無機物であってもよいが、無機物が好ましく、ガラスフィラーがより好ましい。強化フィラーは、また、好ましくはガラス繊維、炭素繊維、玄武岩繊維、ウォラストナイト、チタン酸カリウム繊維等の繊維状の強化フィラーを用いることができる。また、炭酸カルシウム、酸化チタン、長石系鉱物、クレー、有機化クレー、ガラスビーズ等の粒状または無定形の充填剤等の充填剤;ガラスフレーク、マイカ、グラファイト等の鱗片状の強化材を用いることもできる。中でも、機械的強度、剛性および耐熱性の点から、繊維状の充填剤、特にはガラス繊維を用いることが好ましい。ガラス繊維としては、丸型断面形状または異型断面形状のいずれをも用いることができる。
 強化フィラーは、カップリング剤等の表面処理剤によって、表面処理されたものを用いることがより好ましい。表面処理剤が付着したガラス繊維は、耐久性、耐湿熱性、耐加水分解性、耐ヒートショック性に優れるので好ましい。
<Reinforcing filler>
The resin composition of the present embodiment preferably contains a reinforcing filler in a ratio of 20 to 60 mass% in the resin composition. By containing the reinforcing filler in the above ratio, high mechanical strength can be achieved for the obtained molded product. Note that the reinforcing filler in the present embodiment does not include anything equivalent to a nucleating agent described later.
The reinforcing filler that can be used in the resin composition of the present embodiment has the effect of improving the mechanical properties of the resin composition obtained by blending it with the resin, and a commonly used reinforcing material for plastics can be used. The reinforcing filler may be an organic or inorganic material, but an inorganic material is preferable, and a glass filler is more preferable. The reinforcing filler can also be a fibrous reinforcing filler such as glass fiber, carbon fiber, basalt fiber, wollastonite, or potassium titanate fiber. In addition, fillers such as granular or amorphous fillers such as calcium carbonate, titanium oxide, feldspar minerals, clay, organo clay, and glass beads; and scaly reinforcing materials such as glass flakes, mica, and graphite can also be used. Among them, from the viewpoints of mechanical strength, rigidity, and heat resistance, it is preferable to use a fibrous filler, particularly glass fiber. As the glass fiber, either a round cross-sectional shape or an irregular cross-sectional shape can be used.
It is more preferable to use a reinforcing filler that has been surface-treated with a surface treatment agent such as a coupling agent. Glass fibers to which a surface treatment agent is attached are preferable because they have excellent durability, moist heat resistance, hydrolysis resistance, and heat shock resistance.
 ガラスフィラーは、Aガラス、Cガラス、Eガラス、Sガラス、Rガラス、Mガラス、Dガラスなどのガラス組成からなり、特に、Eガラス(無アルカリガラス)が好ましい。 The glass filler is made of glass compositions such as A-glass, C-glass, E-glass, S-glass, R-glass, M-glass, and D-glass, with E-glass (alkali-free glass) being particularly preferred.
 本実施形態の樹脂組成物に用いるガラスフィラーは、上述の通り、ガラス繊維が好ましい。ガラス繊維は、単繊維または単繊維を複数本撚り合わせたものであってもよい。
 ガラス繊維の形態は、単繊維や単繊維を複数本撚り合わせたものを連続的に巻き取った「ガラスロービング」、長さ1~10mmに切りそろえた「チョップドストランド」、長さ10~500μmに粉砕した「ミルドファイバー」などのいずれであってもよい。かかるガラス繊維としては、旭ファイバーグラス社より、「グラスロンチョップドストランド」や「グラスロンミルドファイバー」の、日本電気硝子社製より、「Eガラスファイバーチョップドストランド」の商品名で市販されており、容易に入手可能である。ガラス繊維は、形態が異なるものを併用することもできる。
As described above, the glass filler used in the resin composition of the present embodiment is preferably glass fiber. The glass fiber may be a single fiber or a plurality of single fibers twisted together.
The form of the glass fiber may be any of "glass roving" which is a single fiber or a plurality of single fibers twisted together and wound continuously, "chopped strand" which is cut to a length of 1 to 10 mm, and "milled fiber" which is pulverized to a length of 10 to 500 μm. Such glass fibers are commercially available under the trade names "Glaslon Chopped Strand" and "Glaslon Milled Fiber" from Asahi Fiber Glass Co., Ltd. and "E Glass Fiber Chopped Strand" from Nippon Electric Glass Co., Ltd., and are easily available. Glass fibers of different forms can also be used in combination.
 また、本実施形態で用いるガラス繊維は、断面が円形であっても、非円形であってもよい。断面が非円形であるガラス繊維を用いることにより、得られる成形品の反りをより効果的に抑制することができる。また、本実施形態では、断面が円形であるガラス繊維を用いても、金型温度が低くても結晶化が十分に進行するポリアミド樹脂を用いることで反りを効果的に抑制することができる。 The glass fibers used in this embodiment may have a circular or noncircular cross section. By using glass fibers with a noncircular cross section, warping of the resulting molded product can be more effectively suppressed. In this embodiment, even if glass fibers with a circular cross section are used, warping can be effectively suppressed by using a polyamide resin that crystallizes sufficiently even at low mold temperatures.
 本実施形態の樹脂組成物における強化フィラーの含有量は、樹脂組成物中、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、また、60質量%以下であることが好ましく、55質量%以下であることがより好ましく、さらには、50質量%以下、45質量%以下、40質量%以下、35質量%以下であってもよい。
 本実施形態の樹脂組成物は、強化フィラーを1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合は、合計量が上記範囲となる。なお、本実施形態における強化フィラーの含有量には、集束剤および表面処理剤の量を含める趣旨である。
The content of the reinforcing filler in the resin composition of this embodiment is preferably 20% by mass or more, more preferably 25% by mass or more, and is preferably 60% by mass or less, more preferably 55% by mass or less, and may further be 50% by mass or less, 45% by mass or less, 40% by mass or less, or 35% by mass or less.
The resin composition of the present embodiment may contain only one type of reinforcing filler, or may contain two or more types. When two or more types are contained, the total amount is within the above range. Note that the content of the reinforcing filler in the present embodiment is intended to include the amount of the sizing agent and the surface treatment agent.
<ヨウ化銅、ヨウ化カリウムおよび酸化セリウム>
 本実施形態の樹脂組成物は、ヨウ化銅、ヨウ化カリウムおよび酸化セリウムの少なくとも1種を含むことが好ましく、ヨウ化銅およびヨウ化カリウムの少なくとも1種を含むことがより好ましい。ヨウ化銅を含むことにより、得られる成形品の耐熱性がより向上する傾向にある。また、ヨウ化カリウムを含むことにより、ポリアミド樹脂中で錯体を形成しやすくなり、樹脂の分解をより効果的に抑制できる傾向にある。すなわち、これらの成分を配合することにより、用途に応じた性能を付与することが可能になる。
<Copper iodide, potassium iodide and cerium oxide>
The resin composition of the present embodiment preferably contains at least one of copper iodide, potassium iodide, and cerium oxide, and more preferably contains at least one of copper iodide and potassium iodide. By containing copper iodide, the heat resistance of the obtained molded product tends to be further improved. In addition, by containing potassium iodide, a complex is easily formed in the polyamide resin, and decomposition of the resin tends to be more effectively suppressed. That is, by blending these components, it is possible to impart performance according to the application.
 本実施形態の樹脂組成物におけるヨウ化銅の割合は、樹脂組成物中、0.01質量%以上であることが好ましく、0.02質量%以上であることがより好ましく、また、2質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましく、0.3質量%以下であることが一層好ましい。
 本実施形態の樹脂組成物は、ヨウ化銅を1種のみ含んでいても、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 本実施形態の樹脂組成物におけるヨウ化カリウムの割合は、樹脂組成物中、0.01質量%以上であることが好ましく、0.02質量%以上であることがより好ましく、また、2質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましく、0.3質量%以下であることが一層好ましい。
 本実施形態の樹脂組成物における酸化セリウムの割合は、樹脂組成物中、樹脂組成物中、0.01質量%以上であることが好ましく、0.02質量%以上であることがより好ましく、また、2質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましく、0.3質量%以下であることが一層好ましい。
 本実施形態の樹脂組成物は、酸化セリウムを、1種のみ含んでいても、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The proportion of copper iodide in the resin composition of this embodiment is preferably 0.01 mass% or more, and more preferably 0.02 mass% or more, and is preferably 2 mass% or less, more preferably 1 mass% or less, even more preferably 0.5 mass% or less, and even more preferably 0.3 mass% or less.
The resin composition of the present embodiment may contain only one type of copper iodide, or may contain two or more types. When two or more types are contained, the total amount is preferably in the above range.
The proportion of potassium iodide in the resin composition of this embodiment is preferably 0.01 mass% or more, more preferably 0.02 mass% or more, and is preferably 2 mass% or less, more preferably 1 mass% or less, even more preferably 0.5 mass% or less, and even more preferably 0.3 mass% or less.
The proportion of cerium oxide in the resin composition of this embodiment is preferably 0.01 mass% or more, more preferably 0.02 mass% or more, and is preferably 2 mass% or less, more preferably 1 mass% or less, even more preferably 0.5 mass% or less, and even more preferably 0.3 mass% or less.
The resin composition of the present embodiment may contain only one type of cerium oxide, or may contain two or more types. When two or more types are contained, the total amount is preferably in the above range.
<離型剤>
 本実施形態の樹脂組成物は、離型剤を含んでいてもよい。
 離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸の塩、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15,000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイル、ケトンワックス、脂肪酸アミドなどが挙げられ、脂肪族カルボン酸、脂肪族カルボン酸の塩、脂肪族カルボン酸とアルコールとのエステル、脂肪酸アミドが好ましく、脂肪族カルボン酸の塩および脂肪酸アミドがより好ましい。
 離型剤の詳細は、特開2018-095706号公報の段落0055~0061の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本実施形態の樹脂組成物が離型剤を含む場合、その含有量は、樹脂組成物中、0.05~3質量%であることが好ましく、0.1~1質量%であることがより好ましく、0.2~0.8質量%であることがさらに好ましい。
 本実施形態の樹脂組成物は、離型剤を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<Release Agent>
The resin composition of the present embodiment may contain a release agent.
Examples of the release agent include aliphatic carboxylic acids, salts of aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, polysiloxane-based silicone oils, ketone waxes, and fatty acid amides. Of these, aliphatic carboxylic acids, salts of aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, and fatty acid amides are preferred, and salts of aliphatic carboxylic acids and fatty acid amides are more preferred.
For details of the release agent, please refer to paragraphs 0055 to 0061 of JP2018-095706A, the contents of which are incorporated herein by reference.
When the resin composition of the present embodiment contains a release agent, the content thereof in the resin composition is preferably 0.05 to 3 mass %, more preferably 0.1 to 1 mass %, and even more preferably 0.2 to 0.8 mass %.
The resin composition of the present embodiment may contain only one type of release agent, or may contain two or more types. When two or more types are contained, the total amount is preferably in the above range.
<核剤>
 本実施形態の樹脂組成物は、核剤を含んでいてもよい。
 核剤は、溶融加工時に未溶融であり、冷却過程において結晶の核となり得るものであれば、特に限定されないが、中でもタルクおよび炭酸カルシウムが好ましく、タルクがより好ましい。
 核剤の数平均粒子径は、下限値が、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、3μm以上であることがより好ましい。核剤の数平均粒子径は、上限値が、40μm以下であることが好ましく、30μm以下であることがより好ましく、28μm以下であることが一層好ましく、15μm以下であることがより一層好ましく、10μm以下であることがさらに一層好ましい。
<Nucleating agent>
The resin composition of the present embodiment may contain a nucleating agent.
There are no particular limitations on the nucleating agent, so long as it remains unmelted during melt processing and can become a crystal nucleus during the cooling process. Among these, talc and calcium carbonate are preferred, and talc is more preferred.
The number average particle size of the nucleating agent has a lower limit of preferably 0.1 μm or more, more preferably 1 μm or more, and even more preferably 3 μm or more.The number average particle size of the nucleating agent has an upper limit of preferably 40 μm or less, more preferably 30 μm or less, even more preferably 28 μm or less, even more preferably 15 μm or less, and even more preferably 10 μm or less.
 本実施形態の樹脂組成物における核剤の割合は、0.01~1質量%であることが好ましく、0.1質量%以上であることがより好ましく、また、0.5質量%以下であることがより好ましい。
 本実施形態の樹脂組成物は、核剤を、1種のみ含んでいても、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The content of the nucleating agent in the resin composition of the present embodiment is preferably 0.01 to 1% by mass, more preferably 0.1% by mass or more, and more preferably 0.5% by mass or less.
The resin composition of the present embodiment may contain only one type of nucleating agent, or may contain two or more types. When two or more types are contained, the total amount is preferably in the above range.
<他の成分>
 本実施形態の樹脂組成物は、本発明の趣旨を逸脱しない範囲で他の成分を含んでいてもよい。このような添加剤としては、光安定剤、酸化防止剤、紫外線吸収剤、蛍光増白剤、滴下防止剤、帯電防止剤、防曇剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤、難燃剤などが挙げられる。
 なお、本実施形態の樹脂組成物は、各成分の合計が100質量%となるように、ポリアミド樹脂、および、顔料、ならびに、必要に応じ配合される他の成分の含有量等が調整される。本実施形態では、キシリレンジアミン系ポリアミド樹脂、Pigment Violet29およびPigment Green36、強化フィラー、ヨウ化銅、ヨウ化カリウム、核剤、離型剤の合計が樹脂組成物の99質量%以上を占める態様が例示される。
<Other Ingredients>
The resin composition of the present embodiment may contain other components within the scope of the present invention, such as light stabilizers, antioxidants, ultraviolet absorbers, fluorescent brighteners, anti-dripping agents, antistatic agents, anti-fogging agents, anti-blocking agents, flow improvers, plasticizers, dispersants, antibacterial agents, and flame retardants.
In the resin composition of this embodiment, the contents of the polyamide resin, the pigment, and other components blended as necessary are adjusted so that the total of each component is 100 mass %. In this embodiment, the total of the xylylenediamine polyamide resin, Pigment Violet 29, Pigment Green 36, reinforcing filler, copper iodide, potassium iodide, nucleating agent, and release agent accounts for 99 mass % or more of the resin composition.
<樹脂組成物の物性>
 本実施形態の樹脂組成物は、波長940~1100nmにおける光線透過率が高いことが好ましい。例えば、本実施形態の樹脂組成物を1.5mmの厚さの試験片に成形したときの、波長940nmにおける光線透過率が25%以上であることが好ましく、29%以上であることがより好ましい。前記1.5mmの厚さの試験片の波長940nmにおける光線透過率の上限は、例えば、90%以下であり、70%以下であってもよい。このような高い光線透過率は、Pigment Violet29およびPigment Green36を併用することによって達成される。
 本実施形態の樹脂組成物は、黒色度に優れていることが好ましい。例えば、本実施形態の樹脂組成物を1.5mmの厚さの試験片に成形したときの、L値が20未満であることが好ましく、19以下であることがより好ましく、18以下であることがさらに好ましい。前記L値の下限は0が理想であるが、1以上であっても十分に要求性能を満たす。このような高い黒色度は、Pigment Violet29およびPigment Green36を併用することによって達成される。
 本実施形態の樹脂組成物は、ヒケが抑制されていることが好ましい。例えば、本実施形態の樹脂組成物を1.5mmの厚さの試験片に成形し、ダイオードレーザー溶着における総エネルギー投入量が34.3Jにおいて照射後の表面粗さRv値が40μm未満であることが好ましく、30μm以下であることがより好ましく、20μm以下であることがさらに好ましく、10μm以下であることが一層好ましく、5μm以下であることがより一層好ましく、3μm以下であることがさらに一層好ましく、1μm以下であることが特に一層好ましい。
 上記光線透過率、L値および最大深さ(Rv)は、後述する実施例の記載に従って測定される。
<Physical Properties of Resin Composition>
The resin composition of this embodiment preferably has a high light transmittance at wavelengths of 940 to 1100 nm. For example, when the resin composition of this embodiment is molded into a test piece having a thickness of 1.5 mm, the light transmittance at a wavelength of 940 nm is preferably 25% or more, more preferably 29% or more. The upper limit of the light transmittance at a wavelength of 940 nm of the test piece having a thickness of 1.5 mm is, for example, 90% or less, and may be 70% or less. Such a high light transmittance is achieved by using Pigment Violet 29 and Pigment Green 36 in combination.
The resin composition of this embodiment is preferably excellent in blackness. For example, when the resin composition of this embodiment is molded into a test piece having a thickness of 1.5 mm, the L value is preferably less than 20, more preferably 19 or less, and even more preferably 18 or less. The lower limit of the L value is ideally 0, but even if it is 1 or more, the required performance is sufficiently satisfied. Such a high blackness is achieved by using Pigment Violet 29 and Pigment Green 36 in combination.
The resin composition of the present embodiment is preferably suppressed from generating sink marks. For example, the resin composition of the present embodiment is molded into a test piece having a thickness of 1.5 mm, and the surface roughness Rv value after irradiation with a total energy input of 34.3 J in diode laser welding is preferably less than 40 μm, more preferably 30 μm or less, even more preferably 20 μm or less, even more preferably 10 μm or less, even more preferably 5 μm or less, even more preferably 3 μm or less, and particularly preferably 1 μm or less.
The light transmittance, L value and maximum depth (Rv) are measured according to the description in the examples described later.
<樹脂組成物の製造方法>
 本実施形態の樹脂組成物の製造方法は、特に制限されないが、ベント口から脱揮できる設備を有する単軸または2軸の押出機を混練機として使用する方法が好ましい。上記キシリレンジアミン系ポリアミド樹脂、Pigment Violet29およびPigment Green36、ならびに、必要に応じて配合される他の添加剤を、混練機に一括して供給してもよいし、ポリアミド樹脂成分を供給した後、他の配合成分を順次供給してもよい。強化フィラーは、混練時に破砕するのを抑制するため、押出機の途中から供給することが好ましい。また、各成分から選ばれた2種以上の成分を予め混合、混練しておいてもよい。
 本実施形態では、顔料は、ポリアミド樹脂等で、マスターバッチ化したものをあらかじめ調製した後、他の成分と混練して、本実施形態における樹脂組成物を得てもよい。
<Method of producing resin composition>
The method for producing the resin composition of the present embodiment is not particularly limited, but a method using a single-screw or twin-screw extruder having a vent port for volatilization as a kneader is preferred. The xylylenediamine polyamide resin, Pigment Violet 29 and Pigment Green 36, and other additives to be mixed as necessary may be fed to the kneader all at once, or the polyamide resin components may be fed, and then the other blended components may be fed sequentially. The reinforcing filler is preferably fed from the middle of the extruder in order to prevent it from being crushed during kneading. Two or more components selected from each component may be mixed and kneaded in advance.
In this embodiment, the pigment may be a polyamide resin or the like that is prepared in advance as a master batch, and then kneaded with other components to obtain the resin composition in this embodiment.
 本実施形態の樹脂組成物を用いた成形品の製造方法は、特に制限されず、熱可塑性樹脂について一般に使用されている成形方法、すなわち、射出成形、中空成形、押出成形、プレス成形などの成形方法を適用することができる。この場合、特に好ましい成形方法は、流動性の良さから、射出成形である。射出成形に当たっては、樹脂温度を250~310℃にコントロールするのが好ましい。 The method for producing a molded product using the resin composition of this embodiment is not particularly limited, and molding methods commonly used for thermoplastic resins, such as injection molding, blow molding, extrusion molding, and press molding, can be applied. In this case, the particularly preferred molding method is injection molding because of its good fluidity. During injection molding, it is preferable to control the resin temperature to 250 to 310°C.
<用途>
 本実施形態の樹脂組成物は、レーザー溶着用、特に、レーザー溶着用の光透過性樹脂組成物として好ましく用いられる。
 また、本実施形態の樹脂組成物の一実施形態はペレットである。
 また、本実施形態においては、成形品は、樹脂組成物ないしペレットから形成されることが好ましい。
<Applications>
The resin composition of the present embodiment is preferably used for laser welding, in particular, as a light-transmitting resin composition for laser welding.
Moreover, one embodiment of the resin composition of the present embodiment is in the form of pellets.
In the present embodiment, the molded article is preferably formed from a resin composition or pellets.
<キット>
 本実施形態の樹脂組成物と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物とは、レーザー溶着による成形品の製造のためのキットとして好ましく用いられる。
 すなわち、キットに含まれる本実施形態の樹脂組成物は、光透過性樹脂組成物としての役割を果たし、かかる光透過性樹脂組成物から形成された成形品は、レーザー溶着の際のレーザー光に対する透過樹脂部材となる。一方、光吸収性樹脂組成物から形成された成形品は、レーザー溶着の際のレーザー光に対する吸収樹脂部材となる。
<Kit>
The resin composition of this embodiment and a light-absorbing resin composition containing a thermoplastic resin and a light-absorbing dye are preferably used as a kit for producing a molded article by laser welding.
That is, the resin composition of the present embodiment included in the kit serves as a light-transmitting resin composition, and a molded article formed from such a light-transmitting resin composition serves as a transmissive resin member for laser light during laser welding, whereas a molded article formed from a light-absorbing resin composition serves as an absorptive resin member for laser light during laser welding.
<<光吸収性樹脂組成物>>
 本実施形態で用いる光吸収性樹脂組成物は、熱可塑性樹脂と光吸収性色素とを含む。さらに、強化フィラー等の他の成分を含んでいてもよい。
 熱可塑性樹脂は、ポリアミド樹脂、オレフィン系樹脂、ビニル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリフェニレンエーテル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等が例示され、光透過性樹脂組成物(本実施形態の樹脂組成物)との相溶性が良好な点から、特に、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂が好ましく、ポリアミド樹脂がさらに好ましい。また、熱可塑性樹脂は1種であってもよいし、2種以上であってもよい。
 光吸収性樹脂組成物に用いるポリアミド樹脂としては、その種類等を定めるものではないが、上述のキシリレンジアミン系ポリアミド樹脂が好ましい。
 強化フィラーは、ガラスフィラー(好ましくはガラス繊維)、炭素繊維、シリカ、アルミナ、カーボンブラックおよびレーザーを吸収する材料をコートした無機粉末等のレーザー光を吸収しうるフィラーが例示され、ガラス繊維が好ましい。強化フィラーは、上記本実施形態の樹脂組成物に配合してもよい強化フィラーと同義であり、好ましい範囲も同様である。強化フィラーの含有量は、好ましくは20~70質量%であり、より好ましくは25~60質量%であり、さらに好ましくは30~55質量%である。
 光吸収性色素としては、照射するレーザー光波長の範囲、例えば、本実施形態では、波長900nm~1100nmの範囲に吸収波長を持つ色素が含まれる。また、光吸収性色素には、例えば、キシリレンジアミン系ポリアミド樹脂100質量部に対し、0.3質量部配合し、後述する実施例に記載の測定方法で光線透過率を測定したときに、透過率が30%未満、さらには、10%以下となる色素が含まれる。
 光吸収性色素の具体例としては、無機顔料(カーボンブラック(例えば、アセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックなど)などの黒色顔料、酸化鉄赤などの赤色顔料、モリブデートオレンジなどの橙色顔料、酸化チタンなどの白色顔料)、有機顔料(黄色顔料、橙色顔料、赤色顔料、青色顔料、緑色顔料など)などが挙げられる。なかでも、無機顔料は一般に隠ぺい力が強く好ましく、黒色顔料がさらに好ましい。これらの光吸収性色素は2種以上組み合わせて使用してもよい。光吸収性色素の含有量は、キシリレンジアミン系ポリアミド樹脂100質量部に対し0.01~30質量部であることが好ましい。
<<Light-absorbing resin composition>>
The light absorbing resin composition used in this embodiment contains a thermoplastic resin and a light absorbing dye, and may further contain other components such as a reinforcing filler.
Examples of the thermoplastic resin include polyamide resin, olefin resin, vinyl resin, styrene resin, acrylic resin, polyphenylene ether resin, polyester resin, polycarbonate resin, polyacetal resin, etc., and from the viewpoint of good compatibility with the light-transmitting resin composition (the resin composition of the present embodiment), polyamide resin, polyester resin, and polycarbonate resin are particularly preferred, and polyamide resin is more preferred. The thermoplastic resin may be one type or two or more types.
The type of polyamide resin used in the light absorbing resin composition is not limited, but the above-mentioned xylylenediamine polyamide resin is preferred.
Examples of the reinforcing filler include glass fillers (preferably glass fibers), carbon fibers, silica, alumina, carbon black, and fillers capable of absorbing laser light, such as inorganic powders coated with a material that absorbs laser light, with glass fibers being preferred. The reinforcing filler is synonymous with the reinforcing filler that may be blended into the resin composition of the present embodiment, and the preferred range is also the same. The content of the reinforcing filler is preferably 20 to 70% by mass, more preferably 25 to 60% by mass, and even more preferably 30 to 55% by mass.
The light absorbing dye includes a dye having an absorption wavelength in the range of the wavelength of the irradiated laser light, for example, in the range of 900 nm to 1100 nm in this embodiment. The light absorbing dye also includes a dye having a transmittance of less than 30%, or even 10% or less, when mixed at 0.3 parts by mass with 100 parts by mass of a xylylenediamine-based polyamide resin and the light transmittance is measured by the measuring method described in the examples below.
Specific examples of light absorbing dyes include inorganic pigments (black pigments such as carbon black (e.g., acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black, etc.), red pigments such as iron oxide red, orange pigments such as molybdate orange, and white pigments such as titanium oxide), and organic pigments (yellow pigments, orange pigments, red pigments, blue pigments, green pigments, etc.). Among these, inorganic pigments are generally preferred because of their strong hiding power, and black pigments are more preferred. Two or more of these light absorbing dyes may be used in combination. The content of the light absorbing dye is preferably 0.01 to 30 parts by mass per 100 parts by mass of the xylylenediamine-based polyamide resin.
 上記キットは、樹脂組成物中の光透過性色素および強化フィラーを除く成分と、光吸収性樹脂組成物中の光吸収性色素および強化フィラーを除く成分について、80質量%以上が共通することが好ましく、90質量%以上が共通することがより好ましく、95~100質量%が共通することが一層好ましい。 The above kit preferably has at least 80% by mass of the components in the resin composition, excluding the light-transmitting pigment and reinforcing filler, in common with the components in the light-absorbing resin composition, excluding the light-absorbing pigment and reinforcing filler, more preferably has at least 90% by mass of the components in common, and even more preferably has 95 to 100% by mass of the components in common.
<<レーザー溶着方法>>
 次に、レーザー溶着方法について説明する。本実施形態では、本実施形態の樹脂組成物から形成された成形品(透過樹脂部材)と、上記光吸収性樹脂組成物から形成された成形品(吸収樹脂部材)を、レーザー溶着させて成形品(レーザー溶着体)を製造することができる。レーザー溶着することによって透過樹脂部材と吸収樹脂部材を、接着剤を用いずに、強固に溶着することができる。
 部材の形状は特に制限されないが、部材同士をレーザー溶着により接合して用いるため、通常、少なくとも面接触箇所(平面、曲面)を有する形状である。レーザー溶着では、透過樹脂部材を透過したレーザー光が、吸収樹脂部材に吸収されて、溶融し、両部材が溶着される。本実施形態の樹脂組成物から形成される成形品は、レーザー光に対する透過性が高いので、透過樹脂部材として好ましく用いることができる。ここで、レーザー光が透過する部材の厚み(レーザー光が透過する部分におけるレーザー透過方向の厚み)は、用途、樹脂組成物の組成その他を勘案して、適宜定めることができるが、例えば5mm以下であり、好ましくは4mm以下である。
<<Laser welding method>>
Next, a laser welding method will be described. In this embodiment, a molded article (transmissive resin member) formed from the resin composition of this embodiment and a molded article (absorbent resin member) formed from the light absorbing resin composition can be laser welded to produce a molded article (laser welded body). By laser welding, the transmissive resin member and the absorbent resin member can be firmly welded without using an adhesive.
The shape of the member is not particularly limited, but since the members are joined together by laser welding, they usually have at least a surface contact area (flat surface, curved surface). In laser welding, the laser light transmitted through the transparent resin member is absorbed by the absorbing resin member, melts, and the two members are welded together. The molded product formed from the resin composition of this embodiment has high transparency to laser light, so it can be preferably used as a transparent resin member. Here, the thickness of the member through which the laser light transmits (thickness in the laser transmission direction at the part through which the laser light transmits) can be appropriately determined taking into account the application, the composition of the resin composition, and other factors, and is, for example, 5 mm or less, preferably 4 mm or less.
 レーザー溶着に用いるレーザー光源としては、光透過性色素の光の透過波長に応じて定めることができ、波長900~1100nmの範囲のレーザーが好ましく、例えば、半導体レーザーまたはファイバーレーザーが利用できる。 The laser light source used for laser welding can be determined according to the transmission wavelength of the light of the light-transmitting dye, and a laser with a wavelength in the range of 900 to 1100 nm is preferable, and for example, a semiconductor laser or fiber laser can be used.
 より具体的には、例えば、透過樹脂部材と吸収樹脂部材を溶着する場合、まず、両者の溶着する箇所同士を相互に接触させる。この時、両者の溶着箇所は面接触が望ましく、平面同士、曲面同士、または平面と曲面の組み合わせであってもよい。次いで、透過樹脂部材側からレーザー光を照射する。この時、必要によりレンズを利用して両者の界面にレーザー光を集光させてもよい。その集光ビームは、透過樹脂部材中を透過し、吸収樹脂部材の表面近傍で吸収されて発熱し溶融する。次にその熱は熱伝導によって透過樹脂部材にも伝わって溶融し、両者の界面に溶融プールを形成し、冷却後、両者が接合する。
 このようにして透過樹脂部材と吸収樹脂部材を溶着された成形品は、高い溶着強度を有する。なお、本実施形態における成形品とは、完成品や部品の他、これらの一部分を成す部材も含む趣旨である。
More specifically, for example, when welding a transparent resin member and an absorbing resin member, first, the parts to be welded of both are brought into contact with each other. At this time, it is preferable that the welded parts of both are in surface contact, and they may be flat surfaces, curved surfaces, or a combination of flat surfaces and curved surfaces. Next, laser light is irradiated from the transparent resin member side. At this time, if necessary, a lens may be used to focus the laser light on the interface between the two. The focused beam passes through the transparent resin member and is absorbed near the surface of the absorbing resin member, generating heat and melting it. Next, the heat is transmitted to the transparent resin member by thermal conduction and melts it, forming a molten pool at the interface between the two, and after cooling, the two are joined together.
The molded product in which the transmissive resin member and the absorptive resin member are welded in this manner has high weld strength. Note that the molded product in this embodiment is intended to include not only finished products and parts, but also members that form part of these products and parts.
 本実施形態でレーザー溶着して得られた成形品は、種々の用途、例えば、各種保存容器、電気・電子機器部品、オフィスオートメート(OA)機器部品、家電機器部品、機械機構部品、車両機構部品などに適用できる。特に、食品用容器、薬品用容器、油脂製品容器、車両用中空部品(各種タンク、インテークマニホールド部品、カメラ筐体など)、車両用電装部品(各種コントロールユニット、イグニッションコイル部品など)、先進運転支援システム(ADAS)関連部品、モーター部品、各種センサー部品、コネクター部品、スイッチ部品、ブレーカー部品、リレー部品、コイル部品、トランス部品、ランプ部品などに好適に用いることができる。特に、本実施形態の樹脂組成物またはキットは、先進運転支援システム(ADAS)関連部品(特に車載カメラ部品)に適している。
 ADAS(先進運転支援システム)に用いられる関連部品としては、画像データ用カメラ、距離データ用のライダーやミリ波レーダ部品、位置データ用のGPSやオドメーター部品、速度、加速度、姿勢データ用のIMU(Inertial Measurement Unit: 慣性計測ユニット)部品などが挙げられる。
The molded product obtained by laser welding in this embodiment can be applied to various applications, such as various storage containers, electrical and electronic equipment parts, office automation (OA) equipment parts, home appliance parts, machine mechanism parts, vehicle mechanism parts, etc. In particular, it can be suitably used for food containers, pharmaceutical containers, oil and fat product containers, hollow vehicle parts (various tanks, intake manifold parts, camera housings, etc.), vehicle electrical parts (various control units, ignition coil parts, etc.), advanced driver assistance system (ADAS) related parts, motor parts, various sensor parts, connector parts, switch parts, breaker parts, relay parts, coil parts, transformer parts, lamp parts, etc. In particular, the resin composition or kit of this embodiment is suitable for advanced driver assistance system (ADAS) related parts (particularly vehicle-mounted camera parts).
Related parts used in ADAS (Advanced Driver Assistance Systems) include cameras for image data, LIDAR and millimeter wave radar parts for distance data, GPS and odometer parts for position data, and IMU (Inertial Measurement Unit) parts for speed, acceleration, and attitude data.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
The present invention will be described in more detail below with reference to examples. The materials, amounts, ratios, processing contents, processing procedures, etc. shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
If the measuring instruments used in the examples are difficult to obtain due to discontinuation or the like, measurements can be made using other instruments with equivalent performance.
1.原料
<ポリアミド樹脂>
MP10:メタキシリレンジアミン/パラキシリレンジアミン(M/P)モル比=7:3、下記合成例に従って合成した。
<<MP10の合成例(M/Pモル比=7:3)>>
 セバシン酸を窒素雰囲気下の反応缶内で加熱溶解した後、内容物を撹拌しながら、パラキシリレンジアミン(三菱ガス化学社製)とメタキシリレンジアミン(三菱ガス化学社製)のモル比が3:7の混合ジアミンを、加圧(0.35MPa)下でジアミンとセバシン酸とのモル比が約1:1になるように徐々に滴下しながら、温度を235℃まで上昇させた。滴下終了後、60分間反応を継続し、分子量1,000以下の成分量を調整した。反応終了後、内容物をストランド状に取り出し、ペレタイザーにてペレット化し、ポリアミド樹脂(MP10)を得た。
1. Raw material <Polyamide resin>
MP10: metaxylylenediamine/paraxylylenediamine (M/P) molar ratio = 7:3, synthesized according to the following synthesis example.
<<Synthesis Example of MP10 (M/P molar ratio = 7:3)>>
Sebacic acid was dissolved by heating in a reaction vessel under a nitrogen atmosphere, and then a mixed diamine of paraxylylenediamine (manufactured by Mitsubishi Gas Chemical Co., Ltd.) and metaxylylenediamine (manufactured by Mitsubishi Gas Chemical Co., Ltd.) in a molar ratio of 3:7 was gradually added dropwise under pressure (0.35 MPa) so that the molar ratio of diamine to sebacic acid became about 1:1, while the temperature was raised to 235°C. After the dropwise addition was completed, the reaction was continued for 60 minutes to adjust the amount of components with a molecular weight of 1,000 or less. After the reaction was completed, the contents were taken out in the form of strands and pelletized with a pelletizer to obtain a polyamide resin (MP10).
<タルク>
#5000S:林化成社製、ミクロンホワイト
<ヨウカダイイチドウ(CuI)>
日本化学産業社製、ヨウ化第一銅
<ヨウ化カリウム>
富士フイルム和光純薬社製
<Talc>
#5000S: Micron White (CuI), manufactured by Hayashi Kasei Co., Ltd.
Cuprous iodide (potassium iodide), manufactured by Nippon Chemical Industries Co., Ltd.
Fujifilm Wako Pure Chemical Industries, Ltd.
<強化フィラー>
ECS03T-756H:日本電気硝子(株)製、ガラス繊維
<Reinforcing filler>
ECS03T-756H: Glass fiber, manufactured by Nippon Electric Glass Co., Ltd.
<顔料>
赤紫系顔料色素: Paliogen Red violet K5411、製造元:カラー&エフェクトジャパン(株)            
緑系顔料色素: Heliogen Green K9362、製造元:カラー&エフェクトジャパン(株)紫系顔料色素:Spectrasence Black K0087:製造元:カラー&エフェクトジャパン株式会社、ペリレン顔料
緑系顔料色素:Heliogen Green K8730(緑色):製造元:カラー&エフェクトジャパン株式会社、銅フタロシアニン顔料、Pigment Green7
黒系顔料色素:Spectrasence Black K0088:製造元:カラー&エフェクトジャパン株式会社、ペリレン顔料
<Pigments>
Red-purple pigment: Paliogen Red violet K5411, Manufacturer: Color & Effect Japan Co., Ltd.
Green pigment: Heliogen Green K9362, Manufacturer: Color & Effect Japan Co., Ltd. Purple pigment: Spectrescence Black K0087, Manufacturer: Color & Effect Japan Co., Ltd., Perylene pigment Green pigment: Heliogen Green K8730 (green): Manufacturer: Color & Effect Japan Co., Ltd., Copper phthalocyanine pigment, Pigment Green7
Black pigment: Spectrescence Black K0088: Manufacturer: Color & Effect Japan Co., Ltd., Perylene pigment
実施例1~10、比較例1~13
<コンパウンド>
 後述する下記表1~4に示す組成となるように(表1~4の各成分は質量部表記である)、ガラス繊維以外の成分をそれぞれ秤量し、ドライブレンドした後、二軸押出機(芝浦機械社製、TEM26SS)のスクリュー根元から2軸スクリュー式カセットウェイングフィーダ(クボタ社製、CE-W-1-MP)を用いて投入した。また、ガラス繊維については振動式カセットウェイングフィーダ(クボタ社製、CE-V-1B-MP)を用いて押出機のサイドから上述の二軸押出機に投入し、樹脂成分等と溶融混練し、樹脂組成物ペレットを得た。押出機の温度設定は、280℃とした。
Examples 1 to 10, Comparative Examples 1 to 13
<Compound>
The components other than the glass fiber were weighed and dry-blended so as to obtain the compositions shown in Tables 1 to 4 below (each component in Tables 1 to 4 is expressed in parts by mass), and then the components were fed into a twin-screw extruder (Shibaura Machine Co., Ltd., TEM26SS) from the screw root using a twin-screw cassette weighing feeder (Kubota Corporation, CE-W-1-MP). The glass fiber was fed into the above-mentioned twin-screw extruder from the side of the extruder using a vibrating cassette weighing feeder (Kubota Corporation, CE-V-1B-MP), and melt-kneaded with the resin components, etc. to obtain resin composition pellets. The temperature of the extruder was set to 280°C.
<光線透過率>
 上記で得られた樹脂組成物ペレットを、80℃12時間、乾燥した後、射出成形機(日本製鋼所社製、J-50ADS)を用いて、光線透過率測定用の試験片(ASTM D638規格4号ダンベル片、1.5mm厚)を作製した。シリンダー温度は260℃、金型表面温度は110℃とした。
 光線透過率は、上記試験片の反ゲート側について、透過率測定機を用いて測定し、波長940nm及び1070nmおける光線透過率(単位:%)を測定した。
 透過率測定機は、島津製作所製 UV-3600を用いた。
<Light transmittance>
The resin composition pellets obtained above were dried at 80°C for 12 hours, and then test pieces for measuring light transmittance (ASTM D638 standard No. 4 dumbbell pieces, 1.5 mm thick) were prepared using an injection molding machine (manufactured by The Japan Steel Works, Ltd., J-50ADS). The cylinder temperature was 260°C, and the mold surface temperature was 110°C.
The light transmittance was measured on the side of the test piece opposite the gate using a transmittance measuring device, and the light transmittance (unit: %) was measured at wavelengths of 940 nm and 1070 nm.
The transmittance measuring device used was UV-3600 manufactured by Shimadzu Corporation.
<Rv値(最大谷深さ)>
 上記で得られた樹脂組成物ペレットを、80℃で12時間乾燥した後、射出成形機(日本製鋼所社製、J-50ADS)を用いて、ASTM D638規格1.5mm厚4号ダンベル片(透過樹脂部材)を作製した。シリンダー温度は260℃、金型表面温度は110℃とした。
 また、吸収樹脂部材は、各実施例または比較例の樹脂組成物から顔料を除き、代わりに、カーボンブラックマスターバッチをカーボンブラックの量が樹脂組成物に対し0.6質量%となるように配合し、他は同様に行って、ASTM D638規格1.5mm厚4号ダンベル片(光吸収樹脂部材)を作製した。
 上記で得られた吸収樹脂部材と透過樹脂部材の反ゲート側を重ね合わせ、ファインデバイス製ダイオードレーザー溶着加工機(波長940nm)で溶着を行った。溶着条件は、レーザー出力:30W スキャン回数:5回 送り速度:70(mm/s) 総エネルギー投入量:34.3(J)とした。この条件で溶着した透過樹脂部材の表面のRv値を測定した。
 Rvの測定は、ISO-25178規格に従って測定した。
 測定に際し、キーエンス製、三次元形状測定VR-3000およびVR-3200を用いて測定した。
測定条件
 ASTM D638規格の1.5mm厚4号ダンベル片である吸収樹脂部材と透過樹脂部材を重ね合わせ、試験片のチャック部分のレーザー照射中心部から左右10mmの直線範囲を測定箇所すなわちRv測定範囲とした。また、レーザー出力条件は、ビーム径:1.4mm、出力:30W、送り速度;70mm/s、エネルギー密度:0.43J/mmを選択した。
 なお、Rv値は最大谷深さとは基準長さにおける輪郭曲線の中で、最も深い谷の深さを示したものを指す。
<Rv value (maximum valley depth)>
The resin composition pellets obtained above were dried at 80°C for 12 hours, and then an ASTM D638 standard 1.5 mm thick No. 4 dumbbell piece (transparent resin member) was produced using an injection molding machine (manufactured by Japan Steel Works, Ltd., J-50ADS). The cylinder temperature was 260°C, and the mold surface temperature was 110°C.
In addition, for the light-absorbing resin member, a 1.5 mm thick No. 4 dumbbell piece (light-absorbing resin member) according to ASTM D638 standard was prepared in the same manner, except that the pigment was removed from the resin composition of each Example or Comparative Example and a carbon black master batch was mixed instead so that the amount of carbon black was 0.6 mass % relative to the resin composition.
The absorbent resin member and the transmissive resin member obtained above were overlapped on the opposite side of the gate, and were welded using a diode laser welding machine (wavelength 940 nm) manufactured by Fine Devices. The welding conditions were laser output: 30 W, number of scans: 5, feed rate: 70 (mm/s), and total energy input: 34.3 (J). The Rv value of the surface of the transmissive resin member welded under these conditions was measured.
The Rv was measured according to the ISO-25178 standard.
The measurements were carried out using three-dimensional shape measuring instruments VR-3000 and VR-3200 manufactured by Keyence.
Measurement conditions: The absorbent resin member and the transparent resin member, which are 1.5 mm thick No. 4 dumbbell pieces according to the ASTM D638 standard, were overlapped, and the measurement point, i.e., the Rv measurement range, was set to a linear range of 10 mm to the left and right from the center of the laser irradiation of the chuck part of the test piece. The laser output conditions were selected as follows: beam diameter: 1.4 mm, output: 30 W, feed rate: 70 mm/s, energy density: 0.43 J/mm.
The maximum valley depth Rv value indicates the depth of the deepest valley in the contour curve in the reference length.
<引張溶着強さ>
 ジーエルサイエンス社製テンシロンRTF-2350(ロードセル50kN)を用いて、<Rv値(最大谷深さ)>で作製した溶着接合片の引張溶着強さを測定した。引張試験速度は5mm/minとした。
 単位は、Nで示した。
<Tensile weld strength>
The tensile weld strength of the welded joint pieces was measured using a Tensilon RTF-2350 (load cell 50 kN) manufactured by GL Sciences Inc. The tensile test speed was 5 mm/min.
The unit is indicated as N.
<目視での色味>
 目視により色味を観察した。観察は、5人の専門家が行い、多数決で決定した。
<Visual color>
The color tone was visually observed by five experts, and the results were determined by majority vote.
 上記結果から明らかなとおり、本発明の樹脂組成物から形成された成形品は、光線透過率が高く、かつ、引張溶着強さが高く、また、表面にヒケが認められなかった(実施例1~10)。さらに、黒色度に優れた成形品が得られた。
 これに対し、Pigment Violet29およびPigment Green36以外の顔料を用いた場合、成形品の表面にヒケが認められたり、成形品の色味が黒くなかった(比較例1~13)。
As is clear from the above results, the molded articles formed from the resin composition of the present invention had high light transmittance, high tensile weld strength, and no sink marks were observed on the surface (Examples 1 to 10). Furthermore, the molded articles obtained had excellent blackness.
In contrast, when pigments other than Pigment Violet 29 and Pigment Green 36 were used, sink marks were observed on the surface of the molded article, and the color of the molded article was not black (Comparative Examples 1 to 13).

Claims (17)

  1. ポリアミド樹脂と顔料を含み、
    前記ポリアミド樹脂は、ジアミン由来の構成単位とジカルボン酸由来の構成単位を含み、ジアミン由来の構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸由来の構成単位の70モル%以上が炭素数9~20のα,ω-直鎖脂肪族ジカルボン酸に由来し、
    前記顔料は、Pigment Violet29およびPigment Green36を含む、樹脂組成物。
    Contains polyamide resin and pigment,
    the polyamide resin contains diamine-derived structural units and dicarboxylic acid-derived structural units, 70 mol % or more of the diamine-derived structural units are derived from xylylenediamine, and 70 mol % or more of the dicarboxylic acid-derived structural units are derived from an α,ω-linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms;
    The resin composition, wherein the pigment comprises Pigment Violet 29 and Pigment Green 36.
  2. 前記キシリレンジアミンがパラキシリレンジアミンを含み、前記炭素数9~20のα,ω-直鎖脂肪族ジカルボン酸がセバシン酸を含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the xylylenediamine includes paraxylylenediamine, and the α,ω-linear aliphatic dicarboxylic acid having 9 to 20 carbon atoms includes sebacic acid.
  3. さらに、強化フィラーを、樹脂組成物中、20~60質量%の割合で含む、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2 further comprises a reinforcing filler in an amount of 20 to 60 mass % in the resin composition.
  4. 前記Pigment Violet29およびPigment Green36の総量が、樹脂組成物中、0.05~0.30質量%である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the total amount of Pigment Violet 29 and Pigment Green 36 in the resin composition is 0.05 to 0.30 mass%.
  5. 前記Pigment Violet29およびPigment Green36の合計を100質量部としたとき、Pigment Violet29とPigment Green36の質量比率が、10~90:90~10である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the mass ratio of Pigment Violet 29 to Pigment Green 36 is 10-90:90-10 when the total of Pigment Violet 29 and Pigment Green 36 is 100 parts by mass.
  6. 前記Pigment Violet29およびPigment Green36の総量が、樹脂組成物中、0.05~0.30質量%であり、
    前記Pigment Violet29およびPigment Green36の合計を100質量部としたとき、Pigment Violet29とPigment Green36の質量比率が、10~90:90~10である、請求項1または2に記載の樹脂組成物。
    The total amount of the Pigment Violet 29 and Pigment Green 36 in the resin composition is 0.05 to 0.30% by mass,
    3. The resin composition according to claim 1, wherein the mass ratio of Pigment Violet 29 to Pigment Green 36 is 10 to 90:90 to 10 when the total of Pigment Violet 29 and Pigment Green 36 is 100 parts by mass.
  7. レーザー溶着用である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, which is used for laser welding.
  8. 前記キシリレンジアミンがパラキシリレンジアミンを含み、前記炭素数9~20のα,ω-直鎖脂肪族ジカルボン酸がセバシン酸を含み、
    さらに、強化フィラーを、樹脂組成物中、20~60質量%の割合で含み、
    前記Pigment Violet29およびPigment Green36の総量が、樹脂組成物中、0.05~0.30質量%であり、
    前記Pigment Violet29およびPigment Green36の合計を100質量部としたとき、Pigment Violet29とPigment Green36の質量比率が、10~90:90~10である、
    レーザー溶着用である、請求項1に記載の樹脂組成物。
    The xylylenediamine includes p-xylylenediamine, and the C9-C20 α,ω-linear aliphatic dicarboxylic acid includes sebacic acid,
    Further, the resin composition contains a reinforcing filler in an amount of 20 to 60% by mass,
    The total amount of the Pigment Violet 29 and Pigment Green 36 in the resin composition is 0.05 to 0.30% by mass,
    When the total amount of Pigment Violet 29 and Pigment Green 36 is 100 parts by mass, the mass ratio of Pigment Violet 29 to Pigment Green 36 is 10 to 90:90 to 10.
    The resin composition according to claim 1, which is used for laser welding.
  9. 前記樹脂組成物を1.5mmの厚さの試験片に成形したときの、波長940nmにおける光線透過率が25%以上である、請求項1、2または8に記載の樹脂組成物。 The resin composition according to claim 1, 2 or 8, wherein the light transmittance at a wavelength of 940 nm is 25% or more when the resin composition is molded into a test piece having a thickness of 1.5 mm.
  10. 前記樹脂組成物を1.5mmの厚さの試験片に成形し、ダイオードレーザー溶着における総エネルギー投入量が34.3Jにおいて照射後の表面粗さRv値が40μm未満である、請求項1、2または8に記載の樹脂組成物。 The resin composition according to claim 1, 2 or 8, which is molded into a test piece having a thickness of 1.5 mm, and has a surface roughness Rv value of less than 40 μm after irradiation with a total energy input of 34.3 J in diode laser welding.
  11. 請求項1、2または8に記載の樹脂組成物と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物とを有するキット。 A kit comprising the resin composition according to claim 1, 2 or 8 and a light-absorbing resin composition comprising a thermoplastic resin and a light-absorbing dye.
  12. 請求項1、2または8に記載の樹脂組成物のペレット。 Pellets of the resin composition according to claim 1, 2 or 8.
  13. 請求項1、2または8に記載の樹脂組成物から形成された成形品。 A molded article formed from the resin composition according to claim 1, 2 or 8.
  14. 請求項12に記載のペレットから形成された成形品。 A molded article formed from the pellets according to claim 12.
  15. 先進運転支援システム(ADAS)関連部品である、請求項14に記載の成形品。 The molded article according to claim 14, which is an advanced driver assistance system (ADAS)-related part.
  16. 車載カメラ部品である、請求項14に記載の成形品。 The molded product according to claim 14, which is an in-vehicle camera part.
  17. 請求項1、2または8に記載の樹脂組成物から形成された成形品と、熱可塑性樹脂と光吸収性色素とを含む光吸収性樹脂組成物から形成された成形品を、レーザー溶着させることを含む、成形品の製造方法。 A method for producing a molded article, comprising laser welding a molded article formed from the resin composition according to claim 1, 2 or 8 and a molded article formed from a light-absorbing resin composition containing a thermoplastic resin and a light-absorbing dye.
PCT/JP2023/039866 2022-12-06 2023-11-06 Resin composition, kit, pellets, molded article, and method for producing molded article WO2024122241A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024504790A JP7459414B1 (en) 2022-12-06 2023-11-06 Resin composition, kit, pellet, molded product, and method for producing molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022195196 2022-12-06
JP2022-195196 2022-12-06

Publications (1)

Publication Number Publication Date
WO2024122241A1 true WO2024122241A1 (en) 2024-06-13

Family

ID=91378901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039866 WO2024122241A1 (en) 2022-12-06 2023-11-06 Resin composition, kit, pellets, molded article, and method for producing molded article

Country Status (1)

Country Link
WO (1) WO2024122241A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532349A (en) * 2004-04-14 2007-11-15 ビーエーエスエフ アクチェンゲゼルシャフト How to weld plastic parts together using laser radiation
JP2018202861A (en) * 2017-05-31 2018-12-27 オリヱント化学工業株式会社 Laser welding article and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532349A (en) * 2004-04-14 2007-11-15 ビーエーエスエフ アクチェンゲゼルシャフト How to weld plastic parts together using laser radiation
JP2018202861A (en) * 2017-05-31 2018-12-27 オリヱント化学工業株式会社 Laser welding article and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6803855B2 (en) Polyamide resin composition, kit, manufacturing method of molded product and molded product
WO2020149398A1 (en) Resin composition, molded article, kit, and method for producing molded article
JP6691771B2 (en) Polyamide resin composition, kit, method for producing molded article, molded article and method for producing polyamide resin composition
JPWO2019216368A1 (en) Resin composition, kit, method for producing resin composition, method for producing molded article and molded article
JP7492517B2 (en) Resin composition, molded article, kit, and method for manufacturing molded article
JP7197350B2 (en) POLYAMIDE RESIN COMPOSITION, KIT, MOLDED PRODUCT MANUFACTURING METHOD AND MOLDED PRODUCT
JP6872986B2 (en) Molded products, kits and manufacturing methods for molded products
JP6941488B2 (en) Resin composition, kit, manufacturing method of molded product and molded product
CN111936580B (en) Polyamide resin composition and molded article
JP7459414B1 (en) Resin composition, kit, pellet, molded product, and method for producing molded product
WO2024122241A1 (en) Resin composition, kit, pellets, molded article, and method for producing molded article
JP7387470B2 (en) Resin composition, kit, method for producing molded products, and molded products
WO2021241382A1 (en) Light-transmitting resin composition for laser welding, molded article, kit, and method for producing molded article
JP2023168132A (en) Resin composition, molded article, kit, and method for producing molded article
CN115667415B (en) Light-transmitting resin composition for laser welding, composition combination, molded article, and method for producing molded article
JP2021188029A (en) Light transmissive resin composition for laser welding, molded article, kit and method for manufacturing molded article
JP2023168133A (en) Resin composition, molded article, kit, and method for producing molded article
CN113717519A (en) Light-transmitting resin composition for laser welding, molded article, composition combination, and method for producing molded article
WO2021241380A1 (en) Permeable resin composition for laser welding, kit, molded article, and method for producing molded article
WO2022044697A1 (en) Resin composition, kit, molded article, and molded article manufacturing method