WO2024121946A1 - Device for automatically switching refrigerant recovery operation, and refrigerant recovery device - Google Patents

Device for automatically switching refrigerant recovery operation, and refrigerant recovery device Download PDF

Info

Publication number
WO2024121946A1
WO2024121946A1 PCT/JP2022/044946 JP2022044946W WO2024121946A1 WO 2024121946 A1 WO2024121946 A1 WO 2024121946A1 JP 2022044946 W JP2022044946 W JP 2022044946W WO 2024121946 A1 WO2024121946 A1 WO 2024121946A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection port
refrigerant
recovery
liquid
gas
Prior art date
Application number
PCT/JP2022/044946
Other languages
French (fr)
Japanese (ja)
Inventor
康敬 落合
善宏 堂岸
明徳 大上
秀基 ▲高▼橋
Original Assignee
三菱電機株式会社
三菱電機ビルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ビルソリューションズ株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/044946 priority Critical patent/WO2024121946A1/en
Publication of WO2024121946A1 publication Critical patent/WO2024121946A1/en

Links

Images

Definitions

  • This disclosure relates to an automatic refrigerant recovery operation switching device that switches refrigerant recovery operation when recovering refrigerant from a refrigerant recovery device such as a refrigeration cycle device, and a refrigerant recovery device.
  • Refrigeration cycle devices such as refrigeration equipment or air conditioners operate by circulating a refrigerant sealed in a refrigerant circuit and exchanging heat with a fluid such as air or water to heat or cool the fluid.
  • Some refrigerants have a high global warming potential. If released into the atmosphere, these refrigerants can cause global warming and other issues. For this reason, when moving a refrigeration cycle device containing a refrigerant or replacing equipment, it is necessary to recover the refrigerant so that it is not released into the atmosphere. For this reason, a refrigerant recovery device has been proposed that recovers refrigerant from a refrigerant recovery device such as a refrigeration cycle device (see, for example, Patent Document 1).
  • Methods of recovering refrigerant from a refrigerant recovery device such as a refrigeration cycle device using a refrigerant recovery device include liquid recovery, which recovers liquid refrigerant (liquid refrigerant), and gas recovery, which recovers gaseous refrigerant (gas refrigerant).
  • liquid recovery which recovers liquid refrigerant (liquid refrigerant)
  • gas recovery which recovers gaseous refrigerant (gas refrigerant).
  • gas recovery takes time to recover refrigerant because the refrigerant recovery device stops when the temperature and pressure of the recovery cylinder rises, and when the temperature of the accumulator in the refrigeration cycle device drops, the refrigerant becomes sluggish in the refrigeration oil, making it difficult for the refrigerant to evaporate.
  • liquid recovery can shorten the recovery time compared to gas recovery.
  • the gas refrigerant that ultimately remains in the refrigerant circuit of the refrigeration cycle device cannot be recovered by liquid recovery. For this reason, it is necessary to change from liquid recovery to gas recovery.
  • the connection methods of the connection hoses that connect to the refrigerant circuit, etc. are different for liquid recovery and gas recovery.
  • to reconnect the connection hose it is necessary to recover the refrigerant inside the connection hose and vacuum it. This makes the work performed by the worker complicated and the recovery work takes time. Also, there is a possibility of mistakes occurring during the work.
  • the switch from liquid recovery to gas recovery is performed by the worker, the worker needs to monitor the timing of the switch. This places a heavy burden on the worker.
  • the objective of the present invention is to realize an automatic refrigerant recovery operation switching device and a refrigerant recovery device that can automatically recover refrigerant easily while shortening the time required.
  • the refrigerant recovery operation automatic switching device disclosed herein is a refrigerant recovery operation automatic switching device that switches the flow path of the refrigerant in a refrigeration cycle device when the refrigerant in the refrigeration cycle device is recovered into a cylinder by driving a recovery machine, and includes a high-pressure connection port that communicates with a high-pressure side connection port of the high-pressure side piping of the refrigeration cycle device, a low-pressure connection port that communicates with a low-pressure side connection port of the low-pressure side piping of the refrigeration cycle device, a suction connection port that connects with the suction port of the recovery machine, a discharge connection port that connects with the discharge port of the recovery machine, a liquid connection port that connects with the liquid port of the cylinder, a gas connection port that connects with the gas port of the cylinder, and a gas connection port that connects with the suction connection port in a liquid recovery mode in which liquid refrigerant in the refrigeration cycle device is recovered.
  • the refrigeration cycle device includes a flow path that connects the high-pressure connection port and the low-pressure connection port, and connects the high-pressure connection port and the liquid connection port, and a switching unit that switches the flow path to a flow path that connects the high-pressure connection port and the low-pressure connection port with the suction connection port and connects the discharge connection port and the liquid connection port in a gas recovery mode in which gas refrigerant is recovered from the refrigeration cycle device, and a control device that switches the flow path in the switching unit.
  • the control device has a determination unit that determines whether to switch from the gas recovery mode to the liquid recovery mode when it determines that the temperature in the liquid reservoir of the refrigeration cycle device is lower than a set temperature, and a switching processing unit that performs a process of switching the flow path in the switching unit when the determination unit determines to switch.
  • the refrigerant recovery device disclosed herein is equipped with the above-mentioned automatic refrigerant recovery operation switching device and recovery machine.
  • the disclosed refrigerant recovery operation automatic switching device and refrigerant recovery device can switch between gas recovery and liquid recovery simply by switching the switching valve. This makes it easy to perform refrigerant recovery using both gas recovery and liquid recovery. This eliminates the need to reconnect the connection hose, shortens the recovery work time, and reduces the release of refrigerant into the atmosphere.
  • the high-pressure connection port and the low-pressure connection port are connected to the refrigeration cycle device, and refrigerant can be recovered using the high-pressure connection port and the low-pressure connection port. This increases the refrigerant recovery speed in gas recovery and further reduces the recovery time.
  • switching from gas recovery to liquid recovery can be performed automatically depending on the temperature of the liquid reservoir in the refrigeration cycle device, there is no need for an operator to keep checking, and the burden on the operator can be reduced.
  • Embodiment 1. 1 is a diagram showing the configuration of a refrigerant recovery system centered around a refrigerant recovery operation automatic switching device 100 according to embodiment 1.
  • the refrigerant recovery operation automatic switching device 100 is connected to an outdoor unit 200, a recovery machine 300, and a cylinder 400.
  • the refrigerant recovery operation automatic switching device 100, the recovery machine 300, and the cylinder 400 are devices that recover refrigerant, and the outdoor unit 200 is a device to be refrigerant recovered.
  • the outdoor unit 200 is a device that is connected to an indoor unit (not shown) by piping and constitutes a refrigeration cycle device having a refrigerant circuit.
  • the outdoor unit 200 is filled with the refrigerant to be recovered.
  • the outdoor unit 200 has a compressor 230, an outdoor heat exchanger 240, and an accumulator 250.
  • the compressor 230 compresses the refrigerant that it draws in and discharges it.
  • the outdoor heat exchanger 240 also exchanges heat between the refrigerant and the outdoor air.
  • the outdoor heat exchanger 240 functions as an evaporator, it evaporates and vaporizes the refrigerant.
  • it when it functions as a condenser, it condenses and liquefies the refrigerant, thereby performing supercooling.
  • the accumulator 250 is installed on the refrigerant intake side of the compressor 230.
  • the accumulator 250 is a container that passes gas refrigerant and stores liquid refrigerant.
  • the outdoor unit 200 of the first embodiment has, in particular, a high-pressure side connection port 210 and a low-pressure side connection port 220.
  • the high-pressure side connection port 210 is installed on the high-pressure side pipe that is the high-pressure side of the refrigerant circuit, and connects the outside to the inside of the pipe via the connected connection hose.
  • the low-pressure side connection port 220 is installed on the low-pressure side pipe that is the low-pressure side of the refrigerant circuit, and connects the outside to the inside of the pipe via the connected connection hose.
  • the recovery machine 300 is a device that has a power source for recovering refrigerant.
  • the recovery machine 300 has an intake port 310 and an exhaust port 320.
  • the intake port 310 is used for passing fluids such as refrigerant that are sucked into the recovery machine 300.
  • the exhaust port 320 is used for passing fluids that flow out of the recovery machine 300.
  • the cylinder 400 is a recovery container that recovers the refrigerant.
  • the cylinder 400 has a liquid port 410 and a gas port 420. Liquid refrigerant flows in through the liquid port 410. Gas, such as gas refrigerant, passes through the gas port 420.
  • the temperature measuring device 500 is attached, for example, to the underside of the accumulator 250, and measures the temperature T(n) of the accumulator 250 at time n. The temperature measuring device 500 sends a signal including data on the measured temperature T(n) of the accumulator 250 at time n to the control device 80 of the refrigerant recovery operation automatic switching device 100, which will be described later.
  • the refrigerant recovery operation automatic switching device 100 is a device that switches the flow path of fluids such as refrigerant between a gas recovery mode in which gas is recovered and a liquid recovery mode in which liquid is recovered.
  • the refrigerant recovery operation automatic switching device 100 is connected to various devices via connection hoses, and has connection ports (connection ports) that communicate fluids and a switching unit 70 that switches the flow path.
  • the refrigerant recovery operation automatic switching device 100 in embodiment 1 has, as connection ports, a high-pressure connection port 10, a low-pressure connection port 20, a suction connection port 30, a discharge connection port 40, a liquid connection port 50, and a gas connection port 60.
  • the refrigerant recovery operation automatic switching device 100 in embodiment 1 also has, as switching unit 70, a first four-way valve 71 and a second four-way valve 72.
  • the high-pressure connection port 10 is connected via a connection hose to a high-pressure side connection port 210 installed on the high-pressure side piping of the outdoor unit 200, and is a port that communicates with the inside of the refrigerant circuit.
  • the low-pressure connection port 20 is connected via a connection hose to a low-pressure side connection port 220 installed on the low-pressure side piping of the outdoor unit 200, and is a port that communicates with the inside of the refrigerant circuit.
  • the control device 80 is a device that controls the operation of the refrigerant recovery operation automatic switching device 100.
  • the control device 80 performs processing to switch the switching unit 70, and performs control related to automatic operation to automatically switch from the gas recovery mode to the liquid recovery mode.
  • the control device 80 has a judgment unit 81, a temperature calculation unit 82, a switching processing unit 83, a clock unit 84, and a memory unit 85.
  • the judgment unit 81 performs judgment processing in automatic operation, such as mode judgment and switching judgment.
  • the temperature calculation unit 82 judges the temperature T(n) at time n in the accumulator 250 from the temperature signal sent from the temperature measurement device 500.
  • the temperature calculation unit 82 also performs calculations related to temperature change based on the data of the temperature T(n) at time n. Furthermore, the switching processing unit 83 performs processing to switch from the gas recovery mode to the liquid recovery mode based on the judgment of the judgment unit 81. Also, the clock unit 84 performs timekeeping. And the memory unit 85 stores data related to the processing performed by the control device 80.
  • the control device 80 has a microcomputer as hardware.
  • the microcomputer has an arithmetic processing device such as a CPU (Central Processing Unit).
  • the microcomputer also has an I/O port that manages the input and output of various signals.
  • the microcomputer also has a timer that keeps time. Therefore, the microcomputer is a device that realizes the functions of the judgment unit 81, temperature calculation unit 82, switching processing unit 83, and timing unit 84 described above.
  • the control device 80 may be composed of a dedicated control device (hardware) that realizes the functions of the judgment unit 81, temperature calculation unit 82, etc.
  • the control device 80 also has, as hardware, a volatile storage device (not shown) such as a random access memory (RAM) that can temporarily store data, and a non-volatile auxiliary storage device (not shown) such as a flash memory. These storage devices realize the functions of the storage unit 85 described above.
  • the storage unit 85 has program data that is the processing procedure to be performed by the control arithmetic processing unit of the microcomputer. The arithmetic processing unit of the microcomputer then executes processing based on the program data.
  • the storage unit 85 also stores data such as the set threshold value used by the judgment unit 81 when making a judgment.
  • the set threshold value, etc. are set in advance through experiments, etc.
  • FIG. 2 is a diagram showing the fluid flow relationship in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 according to embodiment 1.
  • FIG. 3 is a diagram showing the fluid flow relationship in the liquid recovery mode of the refrigerant recovery operation automatic switching device 100 according to embodiment 1.
  • the first four-way valve 71 and the second four-way valve 72 are switching valves that switch the connection ports that are connected in the liquid recovery mode and the gas recovery mode. As shown in FIG. 2, in the gas recovery mode, the first four-way valve 71 works in conjunction with the second four-way valve 72 described later to connect the low pressure connection port 20 to the suction connection port 30 and connect the discharge connection port 40 to the liquid connection port 50. Also, as shown in FIG.
  • the first four-way valve 71 connects the high pressure connection port 10 to the liquid connection port 50 and connects the low pressure connection port 20 to the discharge connection port 40.
  • the second four-way valve 72 cooperates with the first four-way valve 71 to connect the high-pressure connection port 10 to the suction connection port 30 and close the gas connection port 60.
  • the second four-way valve 72 connects the suction connection port 30 to the gas connection port 60.
  • the control device 80, the equipment in the outdoor unit 200, and the temperature measuring device 500 are not shown (the same applies to the following figures explaining the flow of fluid).
  • the recovery machine 300 When the recovery machine 300 is driven, the fluid is sucked in through the suction connection port 30. The suction of the recovery machine 300 sucks the refrigerant from the connection port of the outdoor unit 200 and flows out. The refrigerant that flows out of the outdoor unit 200 passes through the high-pressure connection port 10 and the low-pressure connection port 20 in the refrigerant recovery operation automatic switching device 100.
  • the refrigerant passes through the first four-way valve 71 and the second four-way valve 72 and flows out from the suction connection port 30.
  • the refrigerant that flows out from the suction connection port 30 passes through the recovery machine 300 and flows in from the discharge connection port 40.
  • the refrigerant that flows in from the discharge connection port 40 passes through the first four-way valve 71, flows out from the liquid connection port 50, and is collected in the cylinder 400.
  • the fluid that passes through the gas connection port 60 is sucked in through the suction connection port 30. Also, when the recovery machine 300 is driven, the fluid that passes through the gas connection port 60 passes through the second four-way valve 72 and is sucked into the recovery machine 300 through the suction connection port 30.
  • FIG. 4 is a diagram illustrating the change over time in the amount of refrigerant recovered due to mode switching in embodiment 1.
  • (A) shows the change over time in the amount of refrigerant recovered when gas recovery mode is continued.
  • (B) shows the change over time in the amount of refrigerant recovered when switching from gas recovery mode to liquid recovery mode when the temperature of accumulator 250 reaches an arbitrarily set temperature.
  • gas recovery liquid refrigerant remaining in accumulator 250, etc. cannot be recovered in liquid form, and the pressure in the refrigerant circuit drops, and gas refrigerant that has evaporated from the liquid refrigerant is recovered.
  • the recovery speed gradually decreases. This is because, for example, the temperature of the accumulator 250 decreases due to the latent heat of vaporization caused by the evaporation of the liquid refrigerant, which reduces the density of the recovered gas refrigerant, and the liquid refrigerant becomes less likely to evaporate from the oil stored together with the liquid refrigerant in the accumulator 250.
  • the control device 80 switches the switching unit 70 from gas recovery operation to liquid recovery operation based on the temperature of the accumulator 250 in the outdoor unit 200. Therefore, the refrigerant recovery operation automatic switching device 100 can automatically switch from gas recovery mode to liquid recovery mode without an operator having to perform the switching operation.
  • FIG. 5 is a diagram showing the flow of control during automatic recovery operation of the refrigerant recovery operation automatic switching device 100 according to the first embodiment.
  • the processing related to the automatic recovery operation is performed by each part of the control device 80.
  • the control device 80 performs the processing related to this control at 10 second intervals based on the timing of the timing unit 84. Therefore, the control device 80 determines the weight of the cylinder 400 at 10 second intervals.
  • the determination unit 81 of the control device 80 determines whether the refrigerant recovery operation automatic switching device 100 is operating in the gas recovery mode (step S1). If the determination unit 81 determines that the refrigerant recovery operation automatic switching device 100 is not operating in the gas recovery mode, it returns to step S1 and repeats the process.
  • the temperature calculation unit 82 of the control device 80 obtains the temperature T(n) of the accumulator 250 at time n from the temperature signal of the temperature measurement device 500 (step S2). The temperature calculation unit 82 then calculates the difference ⁇ T(n) between the data of temperature T(n) and a preset temperature threshold Tset (step S3).
  • the temperature threshold Tset is set, for example, to the saturated evaporation temperature of the refrigerant to be recovered.
  • the determination unit 81 determines whether ⁇ T(n) ⁇ 0 (step S4). If the determination unit 81 determines that ⁇ T(n) ⁇ 0 is not true, the control device 80 returns to step S1 and repeats the process. On the other hand, if the determination unit 81 determines that ⁇ T(n) ⁇ 0, the switching processing unit 83 of the control device 80 performs a process of switching from the gas recovery mode to the liquid recovery mode (step S5).
  • the high-pressure connection port 10 and the low-pressure connection port 20 are connected to the outdoor unit 200.
  • the refrigerant from the outdoor unit 200 passes through the high-pressure connection port 10 and the low-pressure connection port 20 and can be recovered. Therefore, the recovery speed of the gas refrigerant can be approximately twice that of the liquid recovery.
  • the refrigerant recovery operation automatic switching device 100 can switch between the gas recovery mode and the liquid recovery mode by switching with the switching unit 70. Therefore, there is no need to perform work such as reconnecting the connection hose, and switching can be easily performed, thereby shortening the recovery time.
  • the refrigerant recovery operation automatic switching device 100 since the refrigerant recovery operation automatic switching device 100 does not need to reconnect the connection hose between the gas recovery mode and the liquid recovery mode, it is possible to reduce the release of refrigerant into the atmosphere when the connection hose is removed. In addition, since there is no need to reconnect the connection hose, it is possible to reduce connection failures and prevent a reduction in the amount of refrigerant recovered in the cylinder 400 due to insufficient vacuuming.
  • the switching unit 70 is a first four-way valve 71 and a second four-way valve 72. Therefore, the refrigerant recovery operation automatic switching device 100 can be constructed inexpensively using four-way valves that are widely available on the market.
  • the control device 80 determines the temperature T(n) of the accumulator 250 at time n measured by the temperature measuring device 500. Then, when the control device 80 determines that the temperature T(n) is lower than a preset temperature threshold value Tset, it switches the switching unit 70 so that the mode changes from gas recovery mode to liquid recovery mode. Therefore, the refrigerant recovery operation automatic switching device 100 can automatically switch from gas recovery mode to liquid recovery mode without an operator having to perform the switching operation. This reduces the burden on the operator.
  • the refrigerant recovery operation automatic switching device 100 determines whether to switch the switching unit 70 based on the temperature T(n) of the accumulator 250 at time n, but this is not limited to the above.
  • the switching unit 70 may determine whether to switch based on the temperature of another liquid reservoir, such as a receiver (not shown) installed in the refrigerant circuit, and recover the refrigerant in the liquid reservoir.
  • FIG. 6 is a diagram showing the configuration of a refrigerant recovery system centered around a refrigerant recovery operation automatic switching device 100 according to embodiment 2.
  • devices and the like having the same reference numerals as those in Fig. 1 realize the same functions as those described in embodiment 1.
  • the refrigerant recovery operation automatic switching device 100 in embodiment 2 has a first four-way valve 71 and a first three-way valve 73 as a switching unit 70.
  • FIG. 7 is a diagram showing the fluid flow relationship in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 according to the second embodiment.
  • FIG. 8 is a diagram showing the fluid flow relationship in the liquid recovery mode of the refrigerant recovery operation automatic switching device 100 according to the second embodiment.
  • the first four-way valve 71 communicates the low pressure connection port 20 with the suction connection port 30 and communicates the discharge connection port 40 with the liquid connection port 50 in the gas recovery mode.
  • the first four-way valve 71 communicates the high pressure connection port 10 with the liquid connection port 50 and communicates the low pressure connection port 20 with the discharge connection port 40 in the liquid recovery mode.
  • FIG. 7 is a diagram showing the fluid flow relationship in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 according to the second embodiment.
  • the first four-way valve 71 communicates the low pressure connection port 20 with the suction connection port 30 and communicates the discharge connection port 40 with the liquid connection port 50 in the gas recovery mode.
  • the first four-way valve 71
  • the first three-way valve 73 communicates the high pressure connection port 10 with the suction connection port 30 in the gas recovery mode. As shown in FIG. 8, the first three-way valve 73 communicates the suction connection port 30 with the gas connection port 60 in the liquid recovery mode.
  • the flow of fluid in the refrigerant recovery operation automatic switching device 100 in the gas recovery mode will be described with reference to FIG. 7.
  • the recovery device 300 When the recovery device 300 is driven, fluid is sucked in through the suction connection port 30.
  • the suction of the recovery device 300 causes the refrigerant to be sucked in through the connection port of the outdoor unit 200 and flow out.
  • the refrigerant flowing out from the outdoor unit 200 passes through the high-pressure connection port 10 and the low-pressure connection port 20 in the refrigerant recovery operation automatic switching device 100.
  • the refrigerant further passes through the first four-way valve 71 and the first three-way valve 73 and flows out from the suction connection port 30.
  • the refrigerant flowing out from the suction connection port 30 passes through the recovery device 300 and flows in from the discharge connection port 40.
  • the refrigerant flowing in from the discharge connection port 40 passes through the first four-way valve 71 and flows out from the liquid connection port 50 and is recovered in the cylinder 400.
  • the refrigerant recovery operation automatic switching device 100 in embodiment 2 uses the first four-way valve 71 and the first three-way valve 73 as the switching unit 70. Therefore, in addition to the effects described in embodiment 1, the refrigerant recovery operation automatic switching device 100 can be configured inexpensively using four-way valves and three-way valves that are widely supplied on the market.
  • FIG. 9 is a diagram showing the configuration of a refrigerant recovery system centered around a refrigerant recovery operation automatic switching device 100 according to embodiment 3.
  • devices and the like having the same reference numerals as those in Fig. 1 and Fig. 6 realize the same functions as those described in embodiments 1 and 2.
  • the refrigerant recovery operation automatic switching device 100 in embodiment 3 has a first three-way valve 73, a second three-way valve 74, and a third three-way valve 75 as a switching unit 70.
  • FIG. 10 is a diagram showing the fluid flow relationship in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 according to embodiment 3.
  • FIG. 11 is a diagram showing the fluid flow relationship in the liquid recovery mode of the refrigerant recovery operation automatic switching device 100 according to embodiment 3.
  • the first three-way valve 73 connects the high-pressure connection port 10 to the suction connection port 30 in the gas recovery mode.
  • the first three-way valve 73 connects the suction connection port 30 to the gas connection port 60 in the liquid recovery mode.
  • the second three-way valve 74 connects the low-pressure connection port 20 to the suction connection port 30 in the gas recovery mode.
  • FIG. 10 is a diagram showing the fluid flow relationship in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 according to embodiment 3.
  • the first three-way valve 73 connects the high-pressure connection port 10 to the suction connection port 30 in the gas recovery mode.
  • the first three-way valve 73 connects the suction connection port 30 to the gas connection port 60 in
  • the second three-way valve 74 connects the high-pressure connection port 10 to the liquid connection port 50 in the liquid recovery mode.
  • the third three-way valve 75 connects the discharge connection port 40 to the liquid connection port 50 in the gas recovery mode.
  • the third three-way valve 75 connects the low pressure connection port 20 and the discharge connection port 40.
  • the flow of fluid in the refrigerant recovery operation automatic switching device 100 in the gas recovery mode will be described with reference to FIG. 10.
  • the recovery device 300 When the recovery device 300 is driven, fluid is sucked in through the suction connection port 30.
  • the suction of the recovery device 300 causes the refrigerant to be sucked in through the connection port of the outdoor unit 200 and flow out.
  • the refrigerant flowing out from the outdoor unit 200 passes through the high-pressure connection port 10 and the low-pressure connection port 20 in the refrigerant recovery operation automatic switching device 100. Furthermore, the refrigerant passes through the first three-way valve 73 and the second three-way valve 74 and flows out from the suction connection port 30.
  • the refrigerant flowing out from the suction connection port 30 passes through the recovery device 300 and flows in from the discharge connection port 40.
  • the refrigerant flowing in from the discharge connection port 40 passes through the third three-way valve 75 and flows out from the liquid connection port 50, and is recovered in the cylinder 400.
  • the refrigerant recovery operation automatic switching device 100 in embodiment 3 has the first three-way valve 73, the second three-way valve 74, and the third three-way valve 75 as the switching unit 70. Therefore, in addition to the effects described in embodiment 1, the refrigerant recovery operation automatic switching device 100 can be configured inexpensively using four-way valves and three-way valves, which are widely supplied on the market.
  • Fig. 12 is a diagram showing the configuration of a refrigerant recovery system centered around a refrigerant recovery operation automatic switching device 100 according to embodiment 4.
  • devices and the like having the same reference numerals as those in Fig. 1 and Fig. 6 realize the same functions as those described in embodiment 1 and embodiment 2.
  • the refrigerant recovery operation automatic switching device 100 in embodiment 4 has a six-way valve 76 and an on-off valve 77 as a switching unit 70.
  • FIG. 13 is a diagram showing the flow relationship of fluids in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 according to the fourth embodiment.
  • FIG. 14 is a diagram showing the flow relationship of fluids in the liquid recovery mode of the refrigerant recovery operation automatic switching device 100 according to the fourth embodiment.
  • the six-way valve 76 communicates the high-pressure connection port 10 with the suction connection port 30, communicates the low-pressure connection port 20 with the suction connection port 30, and communicates the discharge connection port 40 with the liquid connection port 50 in the gas recovery mode.
  • FIG. 13 is a diagram showing the flow relationship of fluids in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 according to the fourth embodiment.
  • the six-way valve 76 communicates the high-pressure connection port 10 with the liquid connection port 50, communicates the low-pressure connection port 20 with the discharge connection port 40, and communicates the suction connection port 30 with the gas connection port 60 in the liquid recovery mode.
  • the opening and closing valve 77 closes in the gas recovery mode so that the fluid does not pass through the gas connection port 60.
  • the opening and closing valve 77 opens in the liquid recovery mode.
  • the flow of fluid in the refrigerant recovery operation automatic switching device 100 in the gas recovery mode will be described with reference to FIG. 13.
  • the recovery device 300 When the recovery device 300 is driven, the fluid is sucked in through the suction connection port 30.
  • the suction of the recovery device 300 causes the refrigerant to be sucked in through the connection port of the outdoor unit 200 and flow out.
  • the refrigerant flowing out from the outdoor unit 200 passes through the high-pressure connection port 10 and the low-pressure connection port 20 in the refrigerant recovery operation automatic switching device 100.
  • the refrigerant further passes through the six-way valve 76 and flows out from the suction connection port 30.
  • the refrigerant flowing out from the suction connection port 30 passes through the recovery device 300 and flows in from the discharge connection port 40.
  • the refrigerant flowing in from the discharge connection port 40 passes through the six-way valve 76 and flows out from the liquid connection port 50 and is recovered in the cylinder 400. At this time, the opening and closing valve 77 is closed, so no fluid passes through the gas connection port 60.
  • the refrigerant recovery operation automatic switching device 100 in embodiment 4 uses the six-way valve 76 and the on-off valve 77 as the switching unit 70. Therefore, in addition to the effects described in embodiment 1, the refrigerant recovery operation automatic switching device 100 can reduce the number of components related to switching.
  • FIG. 15 is a diagram showing the configuration of a refrigerant recovery system centered on a refrigerant recovery device 110 according to embodiment 5.
  • the devices and the like having the same reference numerals as those in FIG. 1 have the same functions as those described in embodiment 1.
  • the refrigerant recovery device 110 in embodiment 5 is composed of the devices of the refrigerant recovery operation automatic switching device 100 and the recovery machine 300 described in embodiment 1 and the like.
  • FIG. 15 does not show the suction connection port 30 and the discharge connection port 40 as functions for connecting to external devices.
  • the refrigerant recovery device 110 has connection ports through which fluid passes and is connected to devices related to recovery.
  • the refrigerant recovery device 110 in embodiment 5 has a recovery compressor 330, a recovery three-way valve 340, and a condenser 350.
  • the recovery compressor 330 discharges the sucked gas refrigerant.
  • the recovery three-way valve 340 is a valve that switches between passing refrigerant through the condenser 350 when performing gas recovery and bypassing the condenser 350 when performing liquid recovery.
  • the condenser 350 is a heat exchanger that condenses and liquefies the gas refrigerant when performing gas recovery, and causes the liquid refrigerant to flow out from the liquid connection port 50.
  • FIG. 16 is a diagram showing the flow relationship of fluids in the gas recovery mode of the refrigerant recovery device 110 according to the fifth embodiment.
  • the flow of fluids in the gas recovery mode will be described with reference to FIG. 16.
  • the recovery compressor 330 When the recovery compressor 330 is driven, the refrigerant is sucked in from the connection port of the outdoor unit 200 and flows out.
  • the refrigerant flowing out from the outdoor unit 200 passes through the high-pressure connection port 10 and the low-pressure connection port 20 in the refrigerant recovery device 110.
  • the refrigerant then passes through the first four-way valve 71 and the second four-way valve 72, and further flows into the condenser 350 via the recovery compressor 330 and the recovery device three-way valve 340.
  • the refrigerant that flows into the condenser 350 is condensed and liquefied, flows out from the liquid connection port 50, and is recovered in the cylinder 400. At this time, no fluid passes through the gas connection port 60.
  • FIG. 17 is a diagram showing the flow relationship of fluids in the liquid recovery mode of the refrigerant recovery device 110 according to the fifth embodiment. Based on FIG. 17, the flow of fluids in the liquid recovery mode will be described.
  • the recovery compressor 330 When the recovery compressor 330 is driven, the fluid that passes through the gas connection port 60 connected to the gas port 420 of the cylinder 400 via a connection hose passes through the second four-way valve 72 and is sucked into the recovery compressor 330 via the suction connection port 30. Then, the fluid discharged from the recovery compressor 330 passes through the recovery machine three-way valve 340 and the first four-way valve 71 and flows out from the low-pressure connection port 20.
  • the fluid that flows out from the low-pressure connection port 20 passes through the piping and pushes the refrigerant out of the outdoor unit 200.
  • the pushed-out refrigerant flows in from the high-pressure connection port 10, passes through the first four-way valve 71, and flows out from the liquid connection port 50.
  • the refrigerant that flows out from the liquid connection port 50 is recovered in the cylinder 400.
  • the refrigerant recovery device 110 in embodiment 5 has a recovery compressor 330 and a condenser 350 that function as a recovery machine 300, and converts gas refrigerant into liquid refrigerant and recovers it in the cylinder 400. This eliminates the need for connection ports, etc., and reduces the amount of equipment required for refrigerant recovery.

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

The present invention comprises: a high pressure connection port that communicates with a high pressure-side connection opening of a high pressure-side pipe of a refrigeration cycle device; a low pressure connection port that communicates with a low pressure-side connection opening of a low pressure-side pipe of the refrigeration cycle device; a suction connection port that connects to a suction opening of a recovery machine; a discharge connection port that connects to a discharge opening of the recovery machine; a liquid connection port that connects to a liquid opening of a cylinder; a gas connection port that connects to a gas opening of the cylinder; a switching unit that switches between a flow passage of a liquid recovery mode in which liquid refrigerant within the refrigeration cycle device is recovered and a flow passage of a gas recovery mode in which gas refrigerant within the refrigeration cycle device is recovered; and a control device that performs the switching of the flow passage of the switching unit. The control device includes: a determination unit that determines a switch from the gas recovery mode to the liquid recovery mode on the basis of the temperature of a liquid reservoir of the refrigeration cycle device; and a switching processing unit that performs a flow passage switching process of the switching unit.

Description

冷媒回収運転自動切替装置および冷媒回収装置Refrigerant recovery operation automatic switching device and refrigerant recovery device
 この開示は、冷凍サイクル装置などの被冷媒回収装置内の冷媒を回収するときの冷媒回収運転を切替える冷媒回収運転自動切替装置および冷媒回収装置に係るものである。 This disclosure relates to an automatic refrigerant recovery operation switching device that switches refrigerant recovery operation when recovering refrigerant from a refrigerant recovery device such as a refrigeration cycle device, and a refrigerant recovery device.
 冷凍装置または空気調和装置などの冷凍サイクル装置は、冷媒回路内に封入された冷媒を循環させて、空気または水などの流体との熱交換を行い、流体を加熱または冷却する運転を行う。ここで、冷媒には、地球温暖化係数が高い種類のものがある。このような冷媒は、大気に放出されると、地球温暖化などの原因となる。このため、冷媒が封入された冷凍サイクル装置を移動または機器の交換などを行う際、冷媒を大気に放出しないように回収する必要がある。そこで、冷凍サイクル装置などの被冷媒回収装置から冷媒を回収する冷媒回収装置が提案されている(たとえば、特許文献1参照)。 Refrigeration cycle devices such as refrigeration equipment or air conditioners operate by circulating a refrigerant sealed in a refrigerant circuit and exchanging heat with a fluid such as air or water to heat or cool the fluid. Some refrigerants have a high global warming potential. If released into the atmosphere, these refrigerants can cause global warming and other issues. For this reason, when moving a refrigeration cycle device containing a refrigerant or replacing equipment, it is necessary to recover the refrigerant so that it is not released into the atmosphere. For this reason, a refrigerant recovery device has been proposed that recovers refrigerant from a refrigerant recovery device such as a refrigeration cycle device (see, for example, Patent Document 1).
特開2005-249297号公報JP 2005-249297 A
 冷媒回収装置を用いて冷凍サイクル装置などの被冷媒回収装置から冷媒を回収する方法として、液体状の冷媒(液冷媒)を回収する液回収と気体状の冷媒(ガス冷媒)を回収するガス回収とがある。以下、被冷媒回収装置が冷凍サイクル装置であるものとして説明する。ガス回収は、冷凍サイクル装置内の全ての冷媒を1つの手順で回収できる。このため、ガス回収による回収を行うことが多い。ただし、ガス回収は、回収用のボンベの温度および圧力が上がると冷媒回収装置が停止すること、冷凍サイクル装置が有するアキュムレータの温度が低下すると冷凍機油への冷媒寝込みが発生して冷媒が蒸発し難くなることなどの理由から、冷媒回収に時間がかかる。  Methods of recovering refrigerant from a refrigerant recovery device such as a refrigeration cycle device using a refrigerant recovery device include liquid recovery, which recovers liquid refrigerant (liquid refrigerant), and gas recovery, which recovers gaseous refrigerant (gas refrigerant). The following description assumes that the refrigerant recovery device is a refrigeration cycle device. With gas recovery, all of the refrigerant in the refrigeration cycle device can be recovered in a single procedure. For this reason, recovery by gas recovery is often performed. However, gas recovery takes time to recover refrigerant because the refrigerant recovery device stops when the temperature and pressure of the recovery cylinder rises, and when the temperature of the accumulator in the refrigeration cycle device drops, the refrigerant becomes sluggish in the refrigeration oil, making it difficult for the refrigerant to evaporate.
 一方、液回収は、ガス回収よりも回収時間を短くすることができる。ただし、冷凍サイクル装置の冷媒回路内に最終的に残ったガス冷媒は、液回収では回収することができない。このため、液回収からガス回収に変更する必要がある。しかし、液回収とガス回収とでは、冷媒回路などに接続する接続ホースの接続方法が異なる。また、接続ホースを接続しなおすには、接続ホース内の冷媒回収および真空引きが必要となる。このため、作業者が行う作業が煩雑になり、回収作業時間がかかる。また、作業に際し、ミスが生じる可能性がある。また、液回収からガス回収への切替を作業者が行うため、作業者が切替のタイミングを監視する必要がある。このため、作業者の負荷が大きかった。 On the other hand, liquid recovery can shorten the recovery time compared to gas recovery. However, the gas refrigerant that ultimately remains in the refrigerant circuit of the refrigeration cycle device cannot be recovered by liquid recovery. For this reason, it is necessary to change from liquid recovery to gas recovery. However, the connection methods of the connection hoses that connect to the refrigerant circuit, etc. are different for liquid recovery and gas recovery. Also, to reconnect the connection hose, it is necessary to recover the refrigerant inside the connection hose and vacuum it. This makes the work performed by the worker complicated and the recovery work takes time. Also, there is a possibility of mistakes occurring during the work. Also, since the switch from liquid recovery to gas recovery is performed by the worker, the worker needs to monitor the timing of the switch. This places a heavy burden on the worker.
 また、冷凍サイクル装置の要素部品であるアキュムレータなどのように、回収が難しい液ため容器内に液冷媒が存在する状態でガス回収を継続すると、冷媒回路内の温度および圧力が低下して、冷媒回収のスピードが低下してしまい、冷媒回収に時間がかかる。冷媒回収スピードを改善するには、ガス回収から液回収に運転を切替えて、一度低くなった圧力を回復させることが有効である。しかしながら、ガス回収から液回収への切替は作業者が手動で行っていた。このため、作業員が、ガス回収の運転中、常時、冷媒回路の温度を確認することになり、作業員の負荷が大きかった。 In addition, if gas recovery is continued when liquid refrigerant is present in a container that is difficult to recover, such as an accumulator, which is an element of a refrigeration cycle device, the temperature and pressure in the refrigerant circuit will drop, slowing down the speed of refrigerant recovery and making it take time to recover the refrigerant. To improve the speed of refrigerant recovery, it is effective to switch operation from gas recovery to liquid recovery and restore the pressure that has been reduced. However, switching from gas recovery to liquid recovery was performed manually by the operator. This meant that the operator had to constantly check the temperature of the refrigerant circuit during gas recovery operation, which placed a heavy burden on the operator.
 以上より、時間を短縮しつつ、容易に冷媒を自動的に回収することができる冷媒回収運転自動切替装置および冷媒回収装置を実現することを目的とする。 The objective of the present invention is to realize an automatic refrigerant recovery operation switching device and a refrigerant recovery device that can automatically recover refrigerant easily while shortening the time required.
 この開示に係る冷媒回収運転自動切替装置は、冷凍サイクル装置内の冷媒を、回収機を駆動してボンベに回収するときの冷媒の流路切替を行う冷媒回収運転自動切替装置であって、冷凍サイクル装置の高圧側配管が有する高圧側接続口と連通する高圧接続ポートと、冷凍サイクル装置の低圧側配管が有する低圧側接続口と連通する低圧接続ポートと、回収機の吸引口と接続する吸入接続ポートと、回収機の吐出口と接続する吐出接続ポートと、ボンベの液体口と接続する液体接続ポートと、ボンベの気体口と接続する気体接続ポートと、冷凍サイクル装置内の液冷媒を回収する液回収モードにおいて、気体接続ポートと吸入接続ポートとを連通させ、吐出接続ポートと低圧接続ポートとを連通させ、高圧接続ポートと液体接続ポートとを連通させる流路と、冷凍サイクル装置内のガス冷媒を回収するガス回収モードにおいて、高圧接続ポートおよび低圧接続ポートと吸入接続ポートとを連通させ、吐出接続ポートと液体接続ポートとを連通させる流路とに切替える切替部と、切替部における流路の切替を行う制御装置とを備え、制御装置は、冷凍サイクル装置が有する液溜めにおける温度が設定温度より低いと判定すると、ガス回収モードから液回収モードへの切替を判定する判定部と、判定部が切替を判定すると、切替部における流路の切替処理を行う切替処理部とを有するものである。 The refrigerant recovery operation automatic switching device disclosed herein is a refrigerant recovery operation automatic switching device that switches the flow path of the refrigerant in a refrigeration cycle device when the refrigerant in the refrigeration cycle device is recovered into a cylinder by driving a recovery machine, and includes a high-pressure connection port that communicates with a high-pressure side connection port of the high-pressure side piping of the refrigeration cycle device, a low-pressure connection port that communicates with a low-pressure side connection port of the low-pressure side piping of the refrigeration cycle device, a suction connection port that connects with the suction port of the recovery machine, a discharge connection port that connects with the discharge port of the recovery machine, a liquid connection port that connects with the liquid port of the cylinder, a gas connection port that connects with the gas port of the cylinder, and a gas connection port that connects with the suction connection port in a liquid recovery mode in which liquid refrigerant in the refrigeration cycle device is recovered. The refrigeration cycle device includes a flow path that connects the high-pressure connection port and the low-pressure connection port, and connects the high-pressure connection port and the liquid connection port, and a switching unit that switches the flow path to a flow path that connects the high-pressure connection port and the low-pressure connection port with the suction connection port and connects the discharge connection port and the liquid connection port in a gas recovery mode in which gas refrigerant is recovered from the refrigeration cycle device, and a control device that switches the flow path in the switching unit. The control device has a determination unit that determines whether to switch from the gas recovery mode to the liquid recovery mode when it determines that the temperature in the liquid reservoir of the refrigeration cycle device is lower than a set temperature, and a switching processing unit that performs a process of switching the flow path in the switching unit when the determination unit determines to switch.
 また、この開示に係る冷媒回収装置は、上記の冷媒回収運転自動切替装置と回収機とを備えるものである。 The refrigerant recovery device disclosed herein is equipped with the above-mentioned automatic refrigerant recovery operation switching device and recovery machine.
 以上のように、開示に係る冷媒回収運転自動切替装置および冷媒回収装置は、切替弁を切替えるだけでガス回収と液回収とを切替えることができる。このため、ガス回収と液回収とを併用した冷媒回収を容易に行うことができる。このため、接続ホースを接続し直すなどをする必要がなく、回収作業の時間を短縮し、冷媒の大気放出を削減することができる。また、高圧接続ポートおよび低圧接続ポートが冷凍サイクル装置と連通しており、高圧接続ポートおよび低圧接続ポートを用いて冷媒を回収することができる。このため、ガス回収における冷媒の回収速度を速くし、さらに回収時間を短縮することができる。また、冷凍サイクル装置における液溜めの温度により、ガス回収から液回収への切替を自動で行うことができるため、作業員が確認し続ける必要がなく、作業員の負荷を少なくすることができる。 As described above, the disclosed refrigerant recovery operation automatic switching device and refrigerant recovery device can switch between gas recovery and liquid recovery simply by switching the switching valve. This makes it easy to perform refrigerant recovery using both gas recovery and liquid recovery. This eliminates the need to reconnect the connection hose, shortens the recovery work time, and reduces the release of refrigerant into the atmosphere. In addition, the high-pressure connection port and the low-pressure connection port are connected to the refrigeration cycle device, and refrigerant can be recovered using the high-pressure connection port and the low-pressure connection port. This increases the refrigerant recovery speed in gas recovery and further reduces the recovery time. In addition, since switching from gas recovery to liquid recovery can be performed automatically depending on the temperature of the liquid reservoir in the refrigeration cycle device, there is no need for an operator to keep checking, and the burden on the operator can be reduced.
実施の形態1に係る冷媒回収運転自動切替装置100を中心とする冷媒回収システムの構成を示す図である。A diagram showing the configuration of a refrigerant recovery system centered on a refrigerant recovery operation automatic switching device 100 in embodiment 1. 実施の形態1に係る冷媒回収運転自動切替装置100のガス回収モードにおける流体の流通関係を示す図である。A diagram showing the fluid flow relationship in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 in embodiment 1. 実施の形態1に係る冷媒回収運転自動切替装置100の液回収モードにおける流体の流通関係を示す図である。A diagram showing the fluid flow relationship in the liquid recovery mode of the refrigerant recovery operation automatic switching device 100 in embodiment 1. 実施の形態1に係るモード切替による冷媒回収量の時間変化を説明する図である。A figure explaining the change over time in the amount of refrigerant recovered due to mode switching in embodiment 1. 実施の形態1に係る冷媒回収運転自動切替装置100の自動回収運転における制御の流れを示す図である。A diagram showing the control flow during automatic recovery operation of the refrigerant recovery operation automatic switching device 100 in embodiment 1. 実施の形態2に係る冷媒回収運転自動切替装置100を中心とする冷媒回収システムの構成を示す図である。A diagram showing the configuration of a refrigerant recovery system centered on a refrigerant recovery operation automatic switching device 100 in embodiment 2. 実施の形態2に係る冷媒回収運転自動切替装置100のガス回収モードにおける流体の流通関係を示す図である。A diagram showing the fluid flow relationship in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 in embodiment 2. 実施の形態2に係る冷媒回収運転自動切替装置100の液回収モードにおける流体の流通関係を示す図である。A diagram showing the fluid flow relationship in the liquid recovery mode of the refrigerant recovery operation automatic switching device 100 of embodiment 2. 実施の形態3に係る冷媒回収運転自動切替装置100を中心とする冷媒回収システムの構成を示す図である。A diagram showing the configuration of a refrigerant recovery system centered on a refrigerant recovery operation automatic switching device 100 in embodiment 3. 実施の形態3に係る冷媒回収運転自動切替装置100のガス回収モードにおける流体の流通関係を示す図である。A diagram showing the fluid flow relationship in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 of embodiment 3. 実施の形態3に係る冷媒回収運転自動切替装置100の液回収モードにおける流体の流通関係を示す図である。A diagram showing the fluid flow relationship in the liquid recovery mode of the refrigerant recovery operation automatic switching device 100 of embodiment 3. 実施の形態4に係る冷媒回収運転自動切替装置100を中心とする冷媒回収システムの構成を示す図である。A diagram showing the configuration of a refrigerant recovery system centered on a refrigerant recovery operation automatic switching device 100 in embodiment 4. 実施の形態4に係る冷媒回収運転自動切替装置100のガス回収モードにおける流体の流通関係を示す図である。A diagram showing the fluid flow relationship in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 according to embodiment 4. 実施の形態4に係る冷媒回収運転自動切替装置100の液回収モードにおける流体の流通関係を示す図である。A diagram showing the fluid flow relationship in the liquid recovery mode of the refrigerant recovery operation automatic switching device 100 of embodiment 4. 実施の形態5に係る冷媒回収装置110を中心とする冷媒回収システムの構成を示す図である。A diagram showing the configuration of a refrigerant recovery system centered on a refrigerant recovery device 110 relating to embodiment 5. 実施の形態5に係る冷媒回収装置110のガス回収モードにおける流体の流通関係を示す図である。A diagram showing the fluid flow relationship in the gas recovery mode of the refrigerant recovery device 110 of embodiment 5. 実施の形態5に係る冷媒回収装置110の液回収モードにおける流体の流通関係を示す図である。A diagram showing the fluid flow relationship in the liquid recovery mode of the refrigerant recovery device 110 of embodiment 5.
 以下、実施の形態に係る冷媒回収運転自動切替装置などについて、図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、圧力および温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態および動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。 The refrigerant recovery operation automatic switching device and the like according to the embodiment will be described below with reference to the drawings. In the following drawings, the same reference numerals are used to denote the same or equivalent parts, and are common throughout the embodiments described below. In addition, the size relationship between the components in the drawings may differ from the actual relationship. The configuration of the components shown in the entire specification is merely an example, and is not limited to the configuration described in the specification. In particular, the combination of components is not limited to the combination in each embodiment, and components described in other embodiments can be applied to other embodiments. In addition, the high and low values of pressure and temperature are not determined in relation to absolute values, but are determined relatively in the state and operation of the device. In addition, when multiple similar devices are distinguished by subscripts, the subscripts may be omitted when there is no need to distinguish or identify them.
実施の形態1.
 図1は、実施の形態1に係る冷媒回収運転自動切替装置100を中心とする冷媒回収システムの構成を示す図である。冷媒回収運転自動切替装置100は、室外機200、回収機300およびボンベ400と接続する。冷媒回収運転自動切替装置100、回収機300およびボンベ400は、冷媒を回収する装置となり、室外機200は、被冷媒回収装置となる。
Embodiment 1.
1 is a diagram showing the configuration of a refrigerant recovery system centered around a refrigerant recovery operation automatic switching device 100 according to embodiment 1. The refrigerant recovery operation automatic switching device 100 is connected to an outdoor unit 200, a recovery machine 300, and a cylinder 400. The refrigerant recovery operation automatic switching device 100, the recovery machine 300, and the cylinder 400 are devices that recover refrigerant, and the outdoor unit 200 is a device to be refrigerant recovered.
 室外機200は、室内機(図示せず)と配管接続して冷媒回路を有する冷凍サイクル装置を構成する機器である。室外機200は、回収される冷媒が封入されている。室外機200は、圧縮機230、室外熱交換器240およびアキュムレータ250を有する。圧縮機230は、吸入した冷媒を圧縮して吐出する。また、室外熱交換器240は、冷媒と室外の空気との熱交換を行う。室外熱交換器240は、蒸発器として機能するときは、冷媒を蒸発させ、気化させる。一方、凝縮器として機能するときは、冷媒を凝縮して液化させ、過冷却を行う。そして、アキュムレータ250は、圧縮機230の冷媒吸入側に設置される。アキュムレータ250は、ガス冷媒を通過させ、液冷媒を溜める容器である。実施の形態1の室外機200は、特に、高圧側接続口210および低圧側接続口220を有する。高圧側接続口210は、冷媒回路において高圧側となる高圧側配管に設置され、接続された接続ホースを介して、外部と配管内とを連通させる。また、低圧側接続口220は、冷媒回路において低圧側となる低圧側配管に設置され、接続された接続ホースを介して、外部と配管内とを連通させる。 The outdoor unit 200 is a device that is connected to an indoor unit (not shown) by piping and constitutes a refrigeration cycle device having a refrigerant circuit. The outdoor unit 200 is filled with the refrigerant to be recovered. The outdoor unit 200 has a compressor 230, an outdoor heat exchanger 240, and an accumulator 250. The compressor 230 compresses the refrigerant that it draws in and discharges it. The outdoor heat exchanger 240 also exchanges heat between the refrigerant and the outdoor air. When the outdoor heat exchanger 240 functions as an evaporator, it evaporates and vaporizes the refrigerant. On the other hand, when it functions as a condenser, it condenses and liquefies the refrigerant, thereby performing supercooling. The accumulator 250 is installed on the refrigerant intake side of the compressor 230. The accumulator 250 is a container that passes gas refrigerant and stores liquid refrigerant. The outdoor unit 200 of the first embodiment has, in particular, a high-pressure side connection port 210 and a low-pressure side connection port 220. The high-pressure side connection port 210 is installed on the high-pressure side pipe that is the high-pressure side of the refrigerant circuit, and connects the outside to the inside of the pipe via the connected connection hose. The low-pressure side connection port 220 is installed on the low-pressure side pipe that is the low-pressure side of the refrigerant circuit, and connects the outside to the inside of the pipe via the connected connection hose.
 回収機300は、冷媒を回収する動力などを有する機器である。回収機300は、吸引口310および吐出口320を有する。吸引口310は、回収機300に吸入される冷媒などの流体が通過する。また、吐出口320は、回収機300から流出する流体が通過する。 The recovery machine 300 is a device that has a power source for recovering refrigerant. The recovery machine 300 has an intake port 310 and an exhaust port 320. The intake port 310 is used for passing fluids such as refrigerant that are sucked into the recovery machine 300. The exhaust port 320 is used for passing fluids that flow out of the recovery machine 300.
 また、ボンベ400は、冷媒を回収する回収容器である。ボンベ400は、液体口410と気体口420とを有する。液体口410からは、液冷媒が流入する。また、気体口420からは、ガス冷媒などの気体が通過する。また、温度計測装置500は、たとえば、アキュムレータ250の下面に取り付けられ、アキュムレータ250の時刻nにおける温度T(n)を計測する。温度計測装置500は、計測したアキュムレータ250の時刻nにおける温度T(n)のデータ含む信号を、後述する冷媒回収運転自動切替装置100の制御装置80に送る。 The cylinder 400 is a recovery container that recovers the refrigerant. The cylinder 400 has a liquid port 410 and a gas port 420. Liquid refrigerant flows in through the liquid port 410. Gas, such as gas refrigerant, passes through the gas port 420. The temperature measuring device 500 is attached, for example, to the underside of the accumulator 250, and measures the temperature T(n) of the accumulator 250 at time n. The temperature measuring device 500 sends a signal including data on the measured temperature T(n) of the accumulator 250 at time n to the control device 80 of the refrigerant recovery operation automatic switching device 100, which will be described later.
 冷媒回収運転自動切替装置100は、ガス回収を行うガス回収モードと液回収を行う液回収モードとで、冷媒などの流体の流路切替を行う装置である。冷媒回収運転自動切替装置100は、接続ホースを介して、各種機器と接続され、流体を連通させる接続ポート(接続口)と流路を切替える切替部70とを有する。実施の形態1における冷媒回収運転自動切替装置100は、接続ポートとして、高圧接続ポート10、低圧接続ポート20、吸入接続ポート30、吐出接続ポート40、液体接続ポート50および気体接続ポート60を有する。また、実施の形態1における冷媒回収運転自動切替装置100は、切替部70として、第1四方弁71および第2四方弁72を有する。 The refrigerant recovery operation automatic switching device 100 is a device that switches the flow path of fluids such as refrigerant between a gas recovery mode in which gas is recovered and a liquid recovery mode in which liquid is recovered. The refrigerant recovery operation automatic switching device 100 is connected to various devices via connection hoses, and has connection ports (connection ports) that communicate fluids and a switching unit 70 that switches the flow path. The refrigerant recovery operation automatic switching device 100 in embodiment 1 has, as connection ports, a high-pressure connection port 10, a low-pressure connection port 20, a suction connection port 30, a discharge connection port 40, a liquid connection port 50, and a gas connection port 60. The refrigerant recovery operation automatic switching device 100 in embodiment 1 also has, as switching unit 70, a first four-way valve 71 and a second four-way valve 72.
 高圧接続ポート10は、室外機200が有する高圧側配管に設置された高圧側接続口210と接続ホースを介して接続され、冷媒回路内と連通するポートである。また、低圧接続ポート20は、室外機200が有する低圧側配管に設置された低圧側接続口220と接続ホースを介して接続され、冷媒回路内と連通するポートである。 The high-pressure connection port 10 is connected via a connection hose to a high-pressure side connection port 210 installed on the high-pressure side piping of the outdoor unit 200, and is a port that communicates with the inside of the refrigerant circuit. The low-pressure connection port 20 is connected via a connection hose to a low-pressure side connection port 220 installed on the low-pressure side piping of the outdoor unit 200, and is a port that communicates with the inside of the refrigerant circuit.
 さらに、吸入接続ポート30は、回収機300の吸引口310と接続ホースを介して接続されるポートである。また、吐出接続ポート40は、回収機300の吐出口320と接続ホースを介して接続されるポートである。 Furthermore, the suction connection port 30 is a port that is connected to the suction port 310 of the recovery machine 300 via a connection hose. Furthermore, the discharge connection port 40 is a port that is connected to the discharge port 320 of the recovery machine 300 via a connection hose.
 また、液体接続ポート50は、ボンベ400の液体口410と接続ホースを介して接続されるポートである。液体接続ポート50は、主として、ボンベ400に回収される液冷媒が通過する。そして、気体接続ポート60は、ボンベ400の気体口420と接続ホースを介して接続されるポートである。気体接続ポート60は、主として、ボンベ400に回収されるガス冷媒が通過する。 The liquid connection port 50 is a port that is connected to the liquid port 410 of the cylinder 400 via a connection hose. The liquid connection port 50 is mainly passed through by the liquid refrigerant that is recovered in the cylinder 400. The gas connection port 60 is a port that is connected to the gas port 420 of the cylinder 400 via a connection hose. The gas connection port 60 is mainly passed through by the gas refrigerant that is recovered in the cylinder 400.
 制御装置80は、冷媒回収運転自動切替装置100の運転を制御する装置である。ここでは、特に、制御装置80は、切替部70を切替える処理を行い、ガス回収モードから液回収モードに自動的に切替える自動運転に係る制御を行う。制御装置80は、判定部81、温度演算部82、切替処理部83、計時部84および記憶部85を有する。判定部81は、モード判定、切替判定など、自動運転における判定処理を行う。温度演算部82は、温度計測装置500から送られた温度信号からアキュムレータ250内の時刻nにおける温度T(n)を判定する。また、温度演算部82は、時刻nにおける温度T(n)のデータに基づいて、温度変化に係る演算を行う。さらに、切替処理部83は、判定部81の判定に基づき、ガス回収モードから液回収モードに切替える処理を行う。また、計時部84は、計時を行う。そして、記憶部85は、制御装置80が行う処理に係るデータを記憶する。 The control device 80 is a device that controls the operation of the refrigerant recovery operation automatic switching device 100. Here, in particular, the control device 80 performs processing to switch the switching unit 70, and performs control related to automatic operation to automatically switch from the gas recovery mode to the liquid recovery mode. The control device 80 has a judgment unit 81, a temperature calculation unit 82, a switching processing unit 83, a clock unit 84, and a memory unit 85. The judgment unit 81 performs judgment processing in automatic operation, such as mode judgment and switching judgment. The temperature calculation unit 82 judges the temperature T(n) at time n in the accumulator 250 from the temperature signal sent from the temperature measurement device 500. The temperature calculation unit 82 also performs calculations related to temperature change based on the data of the temperature T(n) at time n. Furthermore, the switching processing unit 83 performs processing to switch from the gas recovery mode to the liquid recovery mode based on the judgment of the judgment unit 81. Also, the clock unit 84 performs timekeeping. And the memory unit 85 stores data related to the processing performed by the control device 80.
 ここで、制御装置80は、ハードウェアとして、マイクロコンピュータを有する。マイクロコンピュータは、たとえば、CPU(Central Processing Unit)などの演算処理装置を有する。また、マイクロコンピュータは、各種信号の入出力を管理するI/Oポートを有する。さらに、マイクロコンピュータは、計時を行うタイマなども有する。したがって、マイクロコンピュータは、前述した判定部81、温度演算部82、切替処理部83および計時部84の機能を実現する装置である。ただし、これに限定するものではなく、制御装置80が、判定部81および温度演算部82などの機能を実現する制御専用の機器(ハードウェア)で構成されていてもよい。 Here, the control device 80 has a microcomputer as hardware. The microcomputer has an arithmetic processing device such as a CPU (Central Processing Unit). The microcomputer also has an I/O port that manages the input and output of various signals. The microcomputer also has a timer that keeps time. Therefore, the microcomputer is a device that realizes the functions of the judgment unit 81, temperature calculation unit 82, switching processing unit 83, and timing unit 84 described above. However, this is not limited to this, and the control device 80 may be composed of a dedicated control device (hardware) that realizes the functions of the judgment unit 81, temperature calculation unit 82, etc.
 また、制御装置80は、ハードウェアとして、たとえば、データを一時的に記憶できるランダムアクセスメモリ(RAM)などの揮発性記憶装置(図示せず)およびフラッシュメモリなどの不揮発性の補助記憶装置(図示せず)を有する。これらの記憶装置は、前述した記憶部85の機能を実現する。記憶部85は、マイクロコンピュータが有する制御演算処理装置が行う処理手順をプログラムとしたデータを有する。そして、マイクロコンピュータの演算処理装置がプログラムのデータに基づく処理を実行する。また、記憶部85は、判定部81が判定を行う際に利用する設定閾値のデータなどを記憶する。設定閾値などは、実験などによって、あらかじめ設定される。 The control device 80 also has, as hardware, a volatile storage device (not shown) such as a random access memory (RAM) that can temporarily store data, and a non-volatile auxiliary storage device (not shown) such as a flash memory. These storage devices realize the functions of the storage unit 85 described above. The storage unit 85 has program data that is the processing procedure to be performed by the control arithmetic processing unit of the microcomputer. The arithmetic processing unit of the microcomputer then executes processing based on the program data. The storage unit 85 also stores data such as the set threshold value used by the judgment unit 81 when making a judgment. The set threshold value, etc. are set in advance through experiments, etc.
 図2は、実施の形態1に係る冷媒回収運転自動切替装置100のガス回収モードにおける流体の流通関係を示す図である。また、図3は、実施の形態1に係る冷媒回収運転自動切替装置100の液回収モードにおける流体の流通関係を示す図である。第1四方弁71および第2四方弁72は、液回収モードとガス回収モードとにおいて、連通する接続ポートの切替を行う切替弁である。第1四方弁71は、図2に示すように、ガス回収モードにおいて、後述する第2四方弁72と連携して、低圧接続ポート20と吸入接続ポート30とを連通させ、吐出接続ポート40と液体接続ポート50とを連通させる。また、第1四方弁71は、図3に示すように、液回収モードにおいて、高圧接続ポート10と液体接続ポート50とを連通させ、低圧接続ポート20と吐出接続ポート40とを連通させる。また、第2四方弁72は、図2に示すように、ガス回収モードにおいて、前述した第1四方弁71と連携して、高圧接続ポート10と吸入接続ポート30とを連通させ、気体接続ポート60を閉止させる。また、第2四方弁72は、図3に示すように、液回収モードにおいて、吸入接続ポート30と気体接続ポート60とを連通させる。 2 is a diagram showing the fluid flow relationship in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 according to embodiment 1. FIG. 3 is a diagram showing the fluid flow relationship in the liquid recovery mode of the refrigerant recovery operation automatic switching device 100 according to embodiment 1. The first four-way valve 71 and the second four-way valve 72 are switching valves that switch the connection ports that are connected in the liquid recovery mode and the gas recovery mode. As shown in FIG. 2, in the gas recovery mode, the first four-way valve 71 works in conjunction with the second four-way valve 72 described later to connect the low pressure connection port 20 to the suction connection port 30 and connect the discharge connection port 40 to the liquid connection port 50. Also, as shown in FIG. 3, in the liquid recovery mode, the first four-way valve 71 connects the high pressure connection port 10 to the liquid connection port 50 and connects the low pressure connection port 20 to the discharge connection port 40. As shown in FIG. 2, in the gas recovery mode, the second four-way valve 72 cooperates with the first four-way valve 71 to connect the high-pressure connection port 10 to the suction connection port 30 and close the gas connection port 60. As shown in FIG. 3, in the liquid recovery mode, the second four-way valve 72 connects the suction connection port 30 to the gas connection port 60.
 図2に基づき、ガス回収モードにおける冷媒回収運転自動切替装置100の流体の流れについて説明する。図2では、流体の流れを説明しやすくするため、制御装置80、室外機200内の機器および温度計測装置500は記載していない(以下、流体の流れを説明する図において同じ)。回収機300が駆動すると、流体が吸入接続ポート30を介して吸引される。回収機300の吸引によって、室外機200の接続口から冷媒が吸引され、流出する。室外機200から流出した冷媒は、冷媒回収運転自動切替装置100において、高圧接続ポート10および低圧接続ポート20を通過する。さらに、冷媒は、第1四方弁71および第2四方弁72を通過し、吸入接続ポート30から流出する。吸入接続ポート30から流出した冷媒は、回収機300を通過して、吐出接続ポート40から流入する。吐出接続ポート40から流入した冷媒は、第1四方弁71を通過して液体接続ポート50から流出し、ボンベ400に回収される。 With reference to FIG. 2, the flow of fluid in the refrigerant recovery operation automatic switching device 100 in the gas recovery mode will be described. In FIG. 2, in order to make it easier to explain the flow of fluid, the control device 80, the equipment in the outdoor unit 200, and the temperature measuring device 500 are not shown (the same applies to the following figures explaining the flow of fluid). When the recovery machine 300 is driven, the fluid is sucked in through the suction connection port 30. The suction of the recovery machine 300 sucks the refrigerant from the connection port of the outdoor unit 200 and flows out. The refrigerant that flows out of the outdoor unit 200 passes through the high-pressure connection port 10 and the low-pressure connection port 20 in the refrigerant recovery operation automatic switching device 100. Furthermore, the refrigerant passes through the first four-way valve 71 and the second four-way valve 72 and flows out from the suction connection port 30. The refrigerant that flows out from the suction connection port 30 passes through the recovery machine 300 and flows in from the discharge connection port 40. The refrigerant that flows in from the discharge connection port 40 passes through the first four-way valve 71, flows out from the liquid connection port 50, and is collected in the cylinder 400.
 次に、図3に基づき、液回収モードにおける冷媒回収運転自動切替装置100の流体の流れについて説明する。回収機300が駆動すると、回収機300から流体が吐出される。吐出された流体は、第1四方弁71を通過し、低圧接続ポート20から流出する。低圧接続ポート20から流出した流体は、配管を通過して、室外機200から冷媒を押し出す。押し出された冷媒は、高圧接続ポート10から流入し、第1四方弁71を通過して、液体接続ポート50から流出する。液体接続ポート50から流出した冷媒は、ボンベ400に回収される。また、回収機300が駆動すると、気体接続ポート60を通過した流体が吸入接続ポート30を介して吸引される。また、回収機300が駆動すると、気体接続ポート60を通過した流体が第2四方弁72を通過し、吸入接続ポート30を介して回収機300に吸引される。 Next, the flow of fluid in the automatic refrigerant recovery operation switching device 100 in the liquid recovery mode will be described with reference to FIG. 3. When the recovery machine 300 is driven, a fluid is discharged from the recovery machine 300. The discharged fluid passes through the first four-way valve 71 and flows out from the low-pressure connection port 20. The fluid that flows out from the low-pressure connection port 20 passes through the piping and pushes the refrigerant out of the outdoor unit 200. The pushed-out refrigerant flows in from the high-pressure connection port 10, passes through the first four-way valve 71, and flows out from the liquid connection port 50. The refrigerant that flows out from the liquid connection port 50 is recovered in the cylinder 400. Also, when the recovery machine 300 is driven, the fluid that passes through the gas connection port 60 is sucked in through the suction connection port 30. Also, when the recovery machine 300 is driven, the fluid that passes through the gas connection port 60 passes through the second four-way valve 72 and is sucked into the recovery machine 300 through the suction connection port 30.
 図4は、実施の形態1に係るモード切替による冷媒回収量の時間変化を説明する図である。図4における(A)は、ガス回収モードを継続した場合の冷媒回収量の時間変化を示す。また、(B)は、ガス回収モードからアキュムレータ250の温度が任意に設定した設定温度となったときに、液回収モードに切替えて回収した場合の冷媒回収量の時間変化を示す。ガス回収では、アキュムレータ250などに残っている液冷媒を、液状態のまま回収することができず、冷媒回路内の圧力が低下して、液冷媒が蒸発したガス冷媒を回収することになる。 FIG. 4 is a diagram illustrating the change over time in the amount of refrigerant recovered due to mode switching in embodiment 1. In FIG. 4, (A) shows the change over time in the amount of refrigerant recovered when gas recovery mode is continued. Also, (B) shows the change over time in the amount of refrigerant recovered when switching from gas recovery mode to liquid recovery mode when the temperature of accumulator 250 reaches an arbitrarily set temperature. In gas recovery, liquid refrigerant remaining in accumulator 250, etc. cannot be recovered in liquid form, and the pressure in the refrigerant circuit drops, and gas refrigerant that has evaporated from the liquid refrigerant is recovered.
 図4の(A)に示すように、ガス回収の運転を継続すると、回収スピード(重量変化)が徐々に低下していくことがわかる。これは、たとえば、液冷媒が蒸発することによる蒸発潜熱によってアキュムレータ250の温度が低下し、回収されるガス冷媒の密度が低下すること、アキュムレータ250内の液冷媒とともに貯留している油から液冷媒が蒸発し難くなることなどによる。 As shown in Figure 4 (A), as the gas recovery operation continues, the recovery speed (weight change) gradually decreases. This is because, for example, the temperature of the accumulator 250 decreases due to the latent heat of vaporization caused by the evaporation of the liquid refrigerant, which reduces the density of the recovered gas refrigerant, and the liquid refrigerant becomes less likely to evaporate from the oil stored together with the liquid refrigerant in the accumulator 250.
 一方、図4の(B)に示すように、一度、ガス回収モードから液回収モードに切り替えることで、冷媒回路内における圧力が回復する。このため、回収スピードの低下を抑制することができる。結果として、アキュムレータ250内の温度が低いときに、冷媒の流路を変更することで、ガス回収を継続した(A)の場合よりも、回収時間が短縮していることがわかる。 On the other hand, as shown in FIG. 4 (B), by switching from gas recovery mode to liquid recovery mode once, the pressure in the refrigerant circuit is restored. This makes it possible to suppress a decrease in recovery speed. As a result, it can be seen that by changing the refrigerant flow path when the temperature inside the accumulator 250 is low, the recovery time is shorter than in the case of (A), in which gas recovery was continued.
 以上のことから、ガス回収モードにおいて、制御装置80が、室外機200内におけるアキュムレータ250の温度に基づいて、ガス回収運転から液回収運転に切替部70の切替を行う。このため、作業者が切替作業を行うことなく、冷媒回収運転自動切替装置100は、ガス回収モードから液回収モードに、自動で、切替を行うことができる。 As a result of the above, in gas recovery mode, the control device 80 switches the switching unit 70 from gas recovery operation to liquid recovery operation based on the temperature of the accumulator 250 in the outdoor unit 200. Therefore, the refrigerant recovery operation automatic switching device 100 can automatically switch from gas recovery mode to liquid recovery mode without an operator having to perform the switching operation.
 図5は、実施の形態1に係る冷媒回収運転自動切替装置100の自動回収運転における制御の流れを示す図である。ここで、自動回収運転に係る処理は、制御装置80の各部が行う。特に限定するものではないが、制御装置80は、計時部84の計時に基づいて、10秒間隔で本制御に係る処理を行うものとする。したがって、制御装置80は、10秒間隔でボンベ400の重量を判定する。 FIG. 5 is a diagram showing the flow of control during automatic recovery operation of the refrigerant recovery operation automatic switching device 100 according to the first embodiment. Here, the processing related to the automatic recovery operation is performed by each part of the control device 80. Although not particularly limited, the control device 80 performs the processing related to this control at 10 second intervals based on the timing of the timing unit 84. Therefore, the control device 80 determines the weight of the cylinder 400 at 10 second intervals.
 まず、制御装置80の判定部81は、冷媒回収運転自動切替装置100がガス回収モードで運転しているかどうかを判定する(ステップS1)。判定部81は、冷媒回収運転自動切替装置100がガス回収モードで運転していないと判定すると、ステップS1に戻って処理を繰り返す。 First, the determination unit 81 of the control device 80 determines whether the refrigerant recovery operation automatic switching device 100 is operating in the gas recovery mode (step S1). If the determination unit 81 determines that the refrigerant recovery operation automatic switching device 100 is not operating in the gas recovery mode, it returns to step S1 and repeats the process.
 一方、判定部81が、冷媒回収運転自動切替装置100がガス回収モードで運転していると判定すると、制御装置80の温度演算部82は、温度計測装置500の温度信号により、時刻nにおけるアキュムレータ250の温度T(n)を取得する(ステップS2)。そして、温度演算部82は、温度T(n)のデータとあらかじめ設定した温度閾値Tsetとの差ΔT(n)を算出する(ステップS3)。ここで、温度閾値Tsetは、たとえば、回収対象の冷媒における飽和蒸発温度などに設定する。 On the other hand, when the determination unit 81 determines that the refrigerant recovery operation automatic switching device 100 is operating in gas recovery mode, the temperature calculation unit 82 of the control device 80 obtains the temperature T(n) of the accumulator 250 at time n from the temperature signal of the temperature measurement device 500 (step S2). The temperature calculation unit 82 then calculates the difference ΔT(n) between the data of temperature T(n) and a preset temperature threshold Tset (step S3). Here, the temperature threshold Tset is set, for example, to the saturated evaporation temperature of the refrigerant to be recovered.
 判定部81は、ΔT(n)≦0であるかどうかを判定する(ステップS4)。判定部81がΔT(n)≦0でないと判定すると、制御装置80は、ステップS1に戻って処理を繰り返す。一方、判定部81がΔT(n)≦0であると判定すると、制御装置80の切替処理部83は、ガス回収モードから液回収モードに切替える処理を行う(ステップS5)。 The determination unit 81 determines whether ΔT(n)≦0 (step S4). If the determination unit 81 determines that ΔT(n)≦0 is not true, the control device 80 returns to step S1 and repeats the process. On the other hand, if the determination unit 81 determines that ΔT(n)≦0, the switching processing unit 83 of the control device 80 performs a process of switching from the gas recovery mode to the liquid recovery mode (step S5).
 以上のように、冷媒回収運転自動切替装置100によれば、高圧接続ポート10および低圧接続ポート20が室外機200と連通する。そして、ガス回収モードのときには、室外機200からの冷媒が高圧接続ポート10および低圧接続ポート20を通過し、回収することができる。このため、ガス冷媒の回収速度を液回収の約2倍にすることができる。また、冷媒回収運転自動切替装置100は、切替部70で切替を行うことでガス回収モードと液回収モードとを切替えることができる。このため、接続ホースを接続し直すなどの作業を行う必要がなく、容易に切替を行うことができ、回収時間を短縮することができる。また、冷媒回収運転自動切替装置100では、ガス回収モードと液回収モードとで接続ホースを接続し直す必要がないので、接続ホースを取り外した際における冷媒の大気放出を削減することができる。また、接続ホースを接続し直す必要がないことで、接続不良などを少なくすることができ、真空引き不十分によるボンベ400への回収量の削減を防ぐことができる。そして、実施の形態1における冷媒回収運転自動切替装置100は、切替部70が第1四方弁71および第2四方弁72である。このため、市場での供給量が多い四方弁を用いて、冷媒回収運転自動切替装置100を安価に構成することができる。 As described above, according to the refrigerant recovery operation automatic switching device 100, the high-pressure connection port 10 and the low-pressure connection port 20 are connected to the outdoor unit 200. In the gas recovery mode, the refrigerant from the outdoor unit 200 passes through the high-pressure connection port 10 and the low-pressure connection port 20 and can be recovered. Therefore, the recovery speed of the gas refrigerant can be approximately twice that of the liquid recovery. In addition, the refrigerant recovery operation automatic switching device 100 can switch between the gas recovery mode and the liquid recovery mode by switching with the switching unit 70. Therefore, there is no need to perform work such as reconnecting the connection hose, and switching can be easily performed, thereby shortening the recovery time. In addition, since the refrigerant recovery operation automatic switching device 100 does not need to reconnect the connection hose between the gas recovery mode and the liquid recovery mode, it is possible to reduce the release of refrigerant into the atmosphere when the connection hose is removed. In addition, since there is no need to reconnect the connection hose, it is possible to reduce connection failures and prevent a reduction in the amount of refrigerant recovered in the cylinder 400 due to insufficient vacuuming. In the refrigerant recovery operation automatic switching device 100 in the first embodiment, the switching unit 70 is a first four-way valve 71 and a second four-way valve 72. Therefore, the refrigerant recovery operation automatic switching device 100 can be constructed inexpensively using four-way valves that are widely available on the market.
 また、実施の形態1の冷媒回収運転自動切替装置100によれば、制御装置80が温度計測装置500の計測によるアキュムレータ250の時刻nにおける温度T(n)を判定する。そして、制御装置80は、温度T(n)があらかじめ設定された温度閾値Tsetより低いと判定すると、ガス回収モードから液回収モードとなるように、切替部70の切替を行う。このため、作業者が切替作業を行うことなく、冷媒回収運転自動切替装置100は、ガス回収モードから液回収モードに、自動で、切替を行うことができる。したがって、作業員の負荷を少なくすることができる。 Furthermore, according to the refrigerant recovery operation automatic switching device 100 of embodiment 1, the control device 80 determines the temperature T(n) of the accumulator 250 at time n measured by the temperature measuring device 500. Then, when the control device 80 determines that the temperature T(n) is lower than a preset temperature threshold value Tset, it switches the switching unit 70 so that the mode changes from gas recovery mode to liquid recovery mode. Therefore, the refrigerant recovery operation automatic switching device 100 can automatically switch from gas recovery mode to liquid recovery mode without an operator having to perform the switching operation. This reduces the burden on the operator.
 ここで、実施の形態1においては、冷媒回収運転自動切替装置100は、アキュムレータ250の時刻nにおける温度T(n)に基づいて切替部70の切替を判定するものとしたが、この限りではない。たとえば、冷媒回路内に設置されたレシーバ(図示せず)など、他の液溜めの温度により、切替部70の切替を判定し、液溜め内における冷媒の回収をはかってもよい。 In the first embodiment, the refrigerant recovery operation automatic switching device 100 determines whether to switch the switching unit 70 based on the temperature T(n) of the accumulator 250 at time n, but this is not limited to the above. For example, the switching unit 70 may determine whether to switch based on the temperature of another liquid reservoir, such as a receiver (not shown) installed in the refrigerant circuit, and recover the refrigerant in the liquid reservoir.
実施の形態2.
 図6は、実施の形態2に係る冷媒回収運転自動切替装置100を中心とする冷媒回収システムの構成を示す図である。図6において、図1と同じ符号を付している機器などについては、実施の形態1で説明したことと同様の機能を実現する。実施の形態2における冷媒回収運転自動切替装置100は、切替部70として、第1四方弁71および第1三方弁73を有する。
Embodiment 2.
Fig. 6 is a diagram showing the configuration of a refrigerant recovery system centered around a refrigerant recovery operation automatic switching device 100 according to embodiment 2. In Fig. 6, devices and the like having the same reference numerals as those in Fig. 1 realize the same functions as those described in embodiment 1. The refrigerant recovery operation automatic switching device 100 in embodiment 2 has a first four-way valve 71 and a first three-way valve 73 as a switching unit 70.
 図7は、実施の形態2に係る冷媒回収運転自動切替装置100のガス回収モードにおける流体の流通関係を示す図である。また、図8は、実施の形態2に係る冷媒回収運転自動切替装置100の液回収モードにおける流体の流通関係を示す図である。第1四方弁71は、図7に示すように、ガス回収モードにおいて、低圧接続ポート20と吸入接続ポート30とを連通させ、吐出接続ポート40と液体接続ポート50とを連通させる。また、第1四方弁71は、図8に示すように、液回収モードにおいて、高圧接続ポート10と液体接続ポート50とを連通させ、低圧接続ポート20と吐出接続ポート40とを連通させる。また、第1三方弁73は、図7に示すように、ガス回収モードにおいて、高圧接続ポート10と吸入接続ポート30とを連通させる。また、第1三方弁73は、図8に示すように、液回収モードにおいて、吸入接続ポート30と気体接続ポート60とを連通させる。 FIG. 7 is a diagram showing the fluid flow relationship in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 according to the second embodiment. FIG. 8 is a diagram showing the fluid flow relationship in the liquid recovery mode of the refrigerant recovery operation automatic switching device 100 according to the second embodiment. As shown in FIG. 7, the first four-way valve 71 communicates the low pressure connection port 20 with the suction connection port 30 and communicates the discharge connection port 40 with the liquid connection port 50 in the gas recovery mode. As shown in FIG. 8, the first four-way valve 71 communicates the high pressure connection port 10 with the liquid connection port 50 and communicates the low pressure connection port 20 with the discharge connection port 40 in the liquid recovery mode. As shown in FIG. 7, the first three-way valve 73 communicates the high pressure connection port 10 with the suction connection port 30 in the gas recovery mode. As shown in FIG. 8, the first three-way valve 73 communicates the suction connection port 30 with the gas connection port 60 in the liquid recovery mode.
 図7に基づき、ガス回収モードにおける冷媒回収運転自動切替装置100の流体の流れについて説明する。回収機300が駆動すると、流体が吸入接続ポート30を介して吸引される。回収機300の吸引によって、室外機200の接続口から冷媒が吸引され、流出する。室外機200から流出した冷媒は、冷媒回収運転自動切替装置100において、高圧接続ポート10および低圧接続ポート20を通過する。さらに、冷媒は、第1四方弁71および第1三方弁73を通過し、吸入接続ポート30から流出する。吸入接続ポート30から流出した冷媒は、回収機300を通過して、吐出接続ポート40から流入する。吐出接続ポート40から流入した冷媒は、第1四方弁71を通過して液体接続ポート50から流出し、ボンベ400に回収される。 The flow of fluid in the refrigerant recovery operation automatic switching device 100 in the gas recovery mode will be described with reference to FIG. 7. When the recovery device 300 is driven, fluid is sucked in through the suction connection port 30. The suction of the recovery device 300 causes the refrigerant to be sucked in through the connection port of the outdoor unit 200 and flow out. The refrigerant flowing out from the outdoor unit 200 passes through the high-pressure connection port 10 and the low-pressure connection port 20 in the refrigerant recovery operation automatic switching device 100. The refrigerant further passes through the first four-way valve 71 and the first three-way valve 73 and flows out from the suction connection port 30. The refrigerant flowing out from the suction connection port 30 passes through the recovery device 300 and flows in from the discharge connection port 40. The refrigerant flowing in from the discharge connection port 40 passes through the first four-way valve 71 and flows out from the liquid connection port 50 and is recovered in the cylinder 400.
 次に、図8に基づき、液回収モードにおける冷媒回収運転自動切替装置100の流体の流れについて説明する。回収機300が駆動すると、回収機300から流体が吐出される。吐出された流体は、第1四方弁71を通過し、低圧接続ポート20から流出する。低圧接続ポート20から流出した流体は、配管を通過して、室外機200から冷媒を押し出す。押し出された冷媒は、高圧接続ポート10から流入し、第1四方弁71を通過して、液体接続ポート50から流出する。液体接続ポート50から流出した冷媒は、ボンベ400に回収される。また、回収機300が駆動すると、気体接続ポート60を通過した流体が第1三方弁73を通過し、吸入接続ポート30を介して回収機300に吸引される。 Next, the flow of fluid in the refrigerant recovery operation automatic switching device 100 in the liquid recovery mode will be described with reference to FIG. 8. When the recovery machine 300 is driven, fluid is discharged from the recovery machine 300. The discharged fluid passes through the first four-way valve 71 and flows out from the low-pressure connection port 20. The fluid that flows out from the low-pressure connection port 20 passes through the piping and pushes the refrigerant out of the outdoor unit 200. The pushed-out refrigerant flows in from the high-pressure connection port 10, passes through the first four-way valve 71, and flows out from the liquid connection port 50. The refrigerant that flows out from the liquid connection port 50 is recovered in the cylinder 400. In addition, when the recovery machine 300 is driven, the fluid that passes through the gas connection port 60 passes through the first three-way valve 73 and is sucked into the recovery machine 300 via the suction connection port 30.
 以上のように、実施の形態2における冷媒回収運転自動切替装置100は、第1四方弁71および第1三方弁73を切替部70とするものである。このため、実施の形態1において説明した効果に加え、冷媒回収運転自動切替装置100は、市場での供給量が多い四方弁および三方弁を用いて安価な構成とすることができる。 As described above, the refrigerant recovery operation automatic switching device 100 in embodiment 2 uses the first four-way valve 71 and the first three-way valve 73 as the switching unit 70. Therefore, in addition to the effects described in embodiment 1, the refrigerant recovery operation automatic switching device 100 can be configured inexpensively using four-way valves and three-way valves that are widely supplied on the market.
実施の形態3.
 図9は、実施の形態3に係る冷媒回収運転自動切替装置100を中心とする冷媒回収システムの構成を示す図である。図9において、図1および図6と同じ符号を付している機器などについては、実施の形態1および実施の形態2で説明したことと同様の機能を実現する。実施の形態3における冷媒回収運転自動切替装置100は、切替部70として、第1三方弁73、第2三方弁74および第3三方弁75を有する。
Embodiment 3.
Fig. 9 is a diagram showing the configuration of a refrigerant recovery system centered around a refrigerant recovery operation automatic switching device 100 according to embodiment 3. In Fig. 9, devices and the like having the same reference numerals as those in Fig. 1 and Fig. 6 realize the same functions as those described in embodiments 1 and 2. The refrigerant recovery operation automatic switching device 100 in embodiment 3 has a first three-way valve 73, a second three-way valve 74, and a third three-way valve 75 as a switching unit 70.
 図10は、実施の形態3に係る冷媒回収運転自動切替装置100のガス回収モードにおける流体の流通関係を示す図である。また、図11は、実施の形態3に係る冷媒回収運転自動切替装置100の液回収モードにおける流体の流通関係を示す図である。第1三方弁73は、図10に示すように、ガス回収モードにおいて、高圧接続ポート10と吸入接続ポート30とを連通させる。また、第1三方弁73は、図11に示すように、液回収モードにおいて、吸入接続ポート30と気体接続ポート60とを連通させる。さらに、第2三方弁74は、図10に示すように、ガス回収モードにおいて、低圧接続ポート20と吸入接続ポート30とを連通させる。また、第2三方弁74は、図11に示すように、液回収モードにおいて、高圧接続ポート10と液体接続ポート50とを連通させる。そして、第3三方弁75は、図10に示すように、ガス回収モードにおいて、吐出接続ポート40と液体接続ポート50とを連通させる。また、第3三方弁75は、図11に示すように、液回収モードにおいて、低圧接続ポート20と吐出接続ポート40とを連通させる。 10 is a diagram showing the fluid flow relationship in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 according to embodiment 3. FIG. 11 is a diagram showing the fluid flow relationship in the liquid recovery mode of the refrigerant recovery operation automatic switching device 100 according to embodiment 3. As shown in FIG. 10, the first three-way valve 73 connects the high-pressure connection port 10 to the suction connection port 30 in the gas recovery mode. As shown in FIG. 11, the first three-way valve 73 connects the suction connection port 30 to the gas connection port 60 in the liquid recovery mode. As shown in FIG. 10, the second three-way valve 74 connects the low-pressure connection port 20 to the suction connection port 30 in the gas recovery mode. As shown in FIG. 11, the second three-way valve 74 connects the high-pressure connection port 10 to the liquid connection port 50 in the liquid recovery mode. As shown in FIG. 10, the third three-way valve 75 connects the discharge connection port 40 to the liquid connection port 50 in the gas recovery mode. In addition, as shown in FIG. 11, in the liquid recovery mode, the third three-way valve 75 connects the low pressure connection port 20 and the discharge connection port 40.
 図10に基づき、ガス回収モードにおける冷媒回収運転自動切替装置100の流体の流れについて説明する。回収機300が駆動すると、流体が吸入接続ポート30を介して吸引される。回収機300の吸引によって、室外機200の接続口から冷媒が吸引され、流出する。室外機200から流出した冷媒は、冷媒回収運転自動切替装置100において、高圧接続ポート10および低圧接続ポート20を通過する。さらに、冷媒は、第1三方弁73および第2三方弁74を通過し、吸入接続ポート30から流出する。吸入接続ポート30から流出した冷媒は、回収機300を通過して、吐出接続ポート40から流入する。吐出接続ポート40から流入した冷媒は、第3三方弁75を通過して液体接続ポート50から流出し、ボンベ400に回収される。 The flow of fluid in the refrigerant recovery operation automatic switching device 100 in the gas recovery mode will be described with reference to FIG. 10. When the recovery device 300 is driven, fluid is sucked in through the suction connection port 30. The suction of the recovery device 300 causes the refrigerant to be sucked in through the connection port of the outdoor unit 200 and flow out. The refrigerant flowing out from the outdoor unit 200 passes through the high-pressure connection port 10 and the low-pressure connection port 20 in the refrigerant recovery operation automatic switching device 100. Furthermore, the refrigerant passes through the first three-way valve 73 and the second three-way valve 74 and flows out from the suction connection port 30. The refrigerant flowing out from the suction connection port 30 passes through the recovery device 300 and flows in from the discharge connection port 40. The refrigerant flowing in from the discharge connection port 40 passes through the third three-way valve 75 and flows out from the liquid connection port 50, and is recovered in the cylinder 400.
 次に、図11に基づき、液回収モードにおける冷媒回収運転自動切替装置100の流体の流れについて説明する。回収機300が駆動すると、回収機300から流体が吐出される。吐出された流体は、第3三方弁75を通過し、低圧接続ポート20から流出する。低圧接続ポート20から流出した流体は、配管を通過して、室外機200から冷媒を押し出す。押し出された冷媒は、高圧接続ポート10から流入し、第2三方弁74を通過して、液体接続ポート50から流出する。液体接続ポート50から流出した冷媒は、ボンベ400に回収される。また、回収機300が駆動すると、気体接続ポート60を通過した流体が第1三方弁73を通過し、吸入接続ポート30を介して回収機300に吸引される。 Next, the flow of fluid in the automatic refrigerant recovery operation switching device 100 in the liquid recovery mode will be described with reference to FIG. 11. When the recovery machine 300 is driven, fluid is discharged from the recovery machine 300. The discharged fluid passes through the third three-way valve 75 and flows out from the low-pressure connection port 20. The fluid that flows out from the low-pressure connection port 20 passes through the piping and pushes the refrigerant out of the outdoor unit 200. The pushed-out refrigerant flows in from the high-pressure connection port 10, passes through the second three-way valve 74, and flows out from the liquid connection port 50. The refrigerant that flows out from the liquid connection port 50 is recovered in the cylinder 400. In addition, when the recovery machine 300 is driven, the fluid that passes through the gas connection port 60 passes through the first three-way valve 73 and is sucked into the recovery machine 300 via the suction connection port 30.
 以上のように、実施の形態3における冷媒回収運転自動切替装置100は、第1三方弁73、第2三方弁74および第3三方弁75を切替部70とするものである。このため、冷媒回収運転自動切替装置100は、実施の形態1において説明した効果に加え、市場での供給量が多い四方弁および三方弁を用いて安価な構成とすることができる。 As described above, the refrigerant recovery operation automatic switching device 100 in embodiment 3 has the first three-way valve 73, the second three-way valve 74, and the third three-way valve 75 as the switching unit 70. Therefore, in addition to the effects described in embodiment 1, the refrigerant recovery operation automatic switching device 100 can be configured inexpensively using four-way valves and three-way valves, which are widely supplied on the market.
実施の形態4.
 図12は、実施の形態4に係る冷媒回収運転自動切替装置100を中心とする冷媒回収システムの構成を示す図である。図12において、図1および図6と同じ符号を付している機器などについては、実施の形態1および実施の形態2で説明したことと同様の機能を実現する。実施の形態4における冷媒回収運転自動切替装置100は、切替部70として、六方弁76および開閉弁77を有する。
Embodiment 4.
Fig. 12 is a diagram showing the configuration of a refrigerant recovery system centered around a refrigerant recovery operation automatic switching device 100 according to embodiment 4. In Fig. 12, devices and the like having the same reference numerals as those in Fig. 1 and Fig. 6 realize the same functions as those described in embodiment 1 and embodiment 2. The refrigerant recovery operation automatic switching device 100 in embodiment 4 has a six-way valve 76 and an on-off valve 77 as a switching unit 70.
 図13は、実施の形態4に係る冷媒回収運転自動切替装置100のガス回収モードにおける流体の流通関係を示す図である。また、図14は、実施の形態4に係る冷媒回収運転自動切替装置100の液回収モードにおける流体の流通関係を示す図である。六方弁76は、図13に示すように、ガス回収モードにおいて、高圧接続ポート10と吸入接続ポート30とを連通させ、低圧接続ポート20と吸入接続ポート30とを連通させ、吐出接続ポート40と液体接続ポート50とを連通させる。また、六方弁76は、図14に示すように、液回収モードにおいて、高圧接続ポート10と液体接続ポート50とを連通させ、低圧接続ポート20と吐出接続ポート40とを連通させ、吸入接続ポート30と気体接続ポート60とを連通させる。また、開閉弁77は、ガス回収モードにおいて、流体が気体接続ポート60を通過しないように閉止する。開閉弁77は、液回収モードにおいては開放する。 FIG. 13 is a diagram showing the flow relationship of fluids in the gas recovery mode of the refrigerant recovery operation automatic switching device 100 according to the fourth embodiment. FIG. 14 is a diagram showing the flow relationship of fluids in the liquid recovery mode of the refrigerant recovery operation automatic switching device 100 according to the fourth embodiment. As shown in FIG. 13, the six-way valve 76 communicates the high-pressure connection port 10 with the suction connection port 30, communicates the low-pressure connection port 20 with the suction connection port 30, and communicates the discharge connection port 40 with the liquid connection port 50 in the gas recovery mode. As shown in FIG. 14, the six-way valve 76 communicates the high-pressure connection port 10 with the liquid connection port 50, communicates the low-pressure connection port 20 with the discharge connection port 40, and communicates the suction connection port 30 with the gas connection port 60 in the liquid recovery mode. In addition, the opening and closing valve 77 closes in the gas recovery mode so that the fluid does not pass through the gas connection port 60. The opening and closing valve 77 opens in the liquid recovery mode.
 図13に基づき、ガス回収モードにおける冷媒回収運転自動切替装置100の流体の流れについて説明する。回収機300が駆動すると、流体が吸入接続ポート30を介して吸引される。回収機300の吸引によって、室外機200の接続口から冷媒が吸引され、流出する。室外機200から流出した冷媒は、冷媒回収運転自動切替装置100において、高圧接続ポート10および低圧接続ポート20を通過する。さらに、冷媒は、六方弁76を通過し、吸入接続ポート30から流出する。吸入接続ポート30から流出した冷媒は、回収機300を通過して、吐出接続ポート40から流入する。吐出接続ポート40から流入した冷媒は、六方弁76を通過して液体接続ポート50から流出し、ボンベ400に回収される。このとき、開閉弁77が閉止しているので、気体接続ポート60は、流体が通過しない。 The flow of fluid in the refrigerant recovery operation automatic switching device 100 in the gas recovery mode will be described with reference to FIG. 13. When the recovery device 300 is driven, the fluid is sucked in through the suction connection port 30. The suction of the recovery device 300 causes the refrigerant to be sucked in through the connection port of the outdoor unit 200 and flow out. The refrigerant flowing out from the outdoor unit 200 passes through the high-pressure connection port 10 and the low-pressure connection port 20 in the refrigerant recovery operation automatic switching device 100. The refrigerant further passes through the six-way valve 76 and flows out from the suction connection port 30. The refrigerant flowing out from the suction connection port 30 passes through the recovery device 300 and flows in from the discharge connection port 40. The refrigerant flowing in from the discharge connection port 40 passes through the six-way valve 76 and flows out from the liquid connection port 50 and is recovered in the cylinder 400. At this time, the opening and closing valve 77 is closed, so no fluid passes through the gas connection port 60.
 次に、図14に基づき、液回収モードにおける冷媒回収運転自動切替装置100の流体の流れについて説明する。回収機300が駆動すると、回収機300から流体が吐出される。吐出された流体は、六方弁76を通過し、低圧接続ポート20から流出する。低圧接続ポート20から流出した流体は、配管を通過して、室外機200から冷媒を押し出す。押し出された冷媒は、高圧接続ポート10から流入し、六方弁76を通過して、液体接続ポート50から流出する。液体接続ポート50から流出した冷媒は、ボンベ400に回収される。また、回収機300が駆動すると、気体接続ポート60を通過した流体が、開閉弁77および六方弁76を通過し、吸入接続ポート30を介して回収機300に吸引される。 Next, the flow of fluid in the automatic refrigerant recovery operation switching device 100 in the liquid recovery mode will be described with reference to FIG. 14. When the recovery machine 300 is driven, fluid is discharged from the recovery machine 300. The discharged fluid passes through the six-way valve 76 and flows out from the low-pressure connection port 20. The fluid that flows out from the low-pressure connection port 20 passes through the piping and pushes the refrigerant out of the outdoor unit 200. The pushed-out refrigerant flows in from the high-pressure connection port 10, passes through the six-way valve 76, and flows out from the liquid connection port 50. The refrigerant that flows out from the liquid connection port 50 is recovered in the cylinder 400. In addition, when the recovery machine 300 is driven, the fluid that passes through the gas connection port 60 passes through the on-off valve 77 and the six-way valve 76, and is sucked into the recovery machine 300 via the suction connection port 30.
 以上のように、実施の形態4における冷媒回収運転自動切替装置100は、六方弁76および開閉弁77を切替部70とするものである。このため、冷媒回収運転自動切替装置100は、実施の形態1において説明した効果に加え、切替に係る構成部品を少なくすることができる。 As described above, the refrigerant recovery operation automatic switching device 100 in embodiment 4 uses the six-way valve 76 and the on-off valve 77 as the switching unit 70. Therefore, in addition to the effects described in embodiment 1, the refrigerant recovery operation automatic switching device 100 can reduce the number of components related to switching.
実施の形態5.
 図15は、実施の形態5に係る冷媒回収装置110を中心とする冷媒回収システムの構成を示す図である。図15において、図1と同じ符号を付している機器などについては、実施の形態1で説明したことと同様の機能を実現する。実施の形態5における冷媒回収装置110は、実施の形態1などで説明した冷媒回収運転自動切替装置100と回収機300とが有する機器で構成される。ここで、実施の形態1などで説明した冷媒回収運転自動切替装置100が冷媒回収装置110内にあるため、図15では、外部機器との接続する機能としての吸入接続ポート30および吐出接続ポート40は図示していない。ただし、回収に係る機器などと接続して流体が通過する接続ポートは有する。
Embodiment 5.
FIG. 15 is a diagram showing the configuration of a refrigerant recovery system centered on a refrigerant recovery device 110 according to embodiment 5. In FIG. 15, the devices and the like having the same reference numerals as those in FIG. 1 have the same functions as those described in embodiment 1. The refrigerant recovery device 110 in embodiment 5 is composed of the devices of the refrigerant recovery operation automatic switching device 100 and the recovery machine 300 described in embodiment 1 and the like. Here, since the refrigerant recovery operation automatic switching device 100 described in embodiment 1 and the like is inside the refrigerant recovery device 110, FIG. 15 does not show the suction connection port 30 and the discharge connection port 40 as functions for connecting to external devices. However, the refrigerant recovery device 110 has connection ports through which fluid passes and is connected to devices related to recovery.
 実施の形態5における冷媒回収装置110は、回収用圧縮機330、回収機三方弁340および凝縮器350を有する。回収用圧縮機330は、吸引したガス冷媒を吐出する。回収機三方弁340は、ガス回収を行う際に凝縮器350に冷媒を通過させ、液回収を行う際に凝縮器350をバイパスさせる切替を行う弁である。凝縮器350は、ガス回収を行う際、ガス冷媒を凝縮液化し、液冷媒を液体接続ポート50から流出させる熱交換器である。 The refrigerant recovery device 110 in embodiment 5 has a recovery compressor 330, a recovery three-way valve 340, and a condenser 350. The recovery compressor 330 discharges the sucked gas refrigerant. The recovery three-way valve 340 is a valve that switches between passing refrigerant through the condenser 350 when performing gas recovery and bypassing the condenser 350 when performing liquid recovery. The condenser 350 is a heat exchanger that condenses and liquefies the gas refrigerant when performing gas recovery, and causes the liquid refrigerant to flow out from the liquid connection port 50.
 図16は、実施の形態5に係る冷媒回収装置110のガス回収モードにおける流体の流通関係を示す図である。図16に基づき、ガス回収モードにおける流体の流れについて説明する。回収用圧縮機330が駆動すると、室外機200の接続口から冷媒が吸引され、流出する。室外機200から流出した冷媒は、冷媒回収装置110において、高圧接続ポート10および低圧接続ポート20を通過する。そして、冷媒は、第1四方弁71および第2四方弁72を通過し、さらに、回収用圧縮機330および回収機三方弁340を介して凝縮器350に流入する。凝縮器350に流入した冷媒は、凝縮液化し、液体接続ポート50から流出し、ボンベ400に回収される。このとき、気体接続ポート60は、流体が通過しない。 FIG. 16 is a diagram showing the flow relationship of fluids in the gas recovery mode of the refrigerant recovery device 110 according to the fifth embodiment. The flow of fluids in the gas recovery mode will be described with reference to FIG. 16. When the recovery compressor 330 is driven, the refrigerant is sucked in from the connection port of the outdoor unit 200 and flows out. The refrigerant flowing out from the outdoor unit 200 passes through the high-pressure connection port 10 and the low-pressure connection port 20 in the refrigerant recovery device 110. The refrigerant then passes through the first four-way valve 71 and the second four-way valve 72, and further flows into the condenser 350 via the recovery compressor 330 and the recovery device three-way valve 340. The refrigerant that flows into the condenser 350 is condensed and liquefied, flows out from the liquid connection port 50, and is recovered in the cylinder 400. At this time, no fluid passes through the gas connection port 60.
 図17は、実施の形態5に係る冷媒回収装置110の液回収モードにおける流体の流通関係を示す図である。図17に基づき、液回収モードにおける流体の流れについて説明する。回収用圧縮機330が駆動すると、ボンベ400の気体口420と接続ホースを介して接続された気体接続ポート60を通過した流体が第2四方弁72を通過し、吸入接続ポート30を介して回収用圧縮機330に吸引される。そして、回収用圧縮機330から吐出した流体は、回収機三方弁340および第1四方弁71を通過し、低圧接続ポート20から流出する。低圧接続ポート20から流出した流体は、配管を通過して、室外機200から冷媒を押し出す。押し出された冷媒は、高圧接続ポート10から流入し、第1四方弁71を通過して、液体接続ポート50から流出する。液体接続ポート50から流出した冷媒は、ボンベ400に回収される。 17 is a diagram showing the flow relationship of fluids in the liquid recovery mode of the refrigerant recovery device 110 according to the fifth embodiment. Based on FIG. 17, the flow of fluids in the liquid recovery mode will be described. When the recovery compressor 330 is driven, the fluid that passes through the gas connection port 60 connected to the gas port 420 of the cylinder 400 via a connection hose passes through the second four-way valve 72 and is sucked into the recovery compressor 330 via the suction connection port 30. Then, the fluid discharged from the recovery compressor 330 passes through the recovery machine three-way valve 340 and the first four-way valve 71 and flows out from the low-pressure connection port 20. The fluid that flows out from the low-pressure connection port 20 passes through the piping and pushes the refrigerant out of the outdoor unit 200. The pushed-out refrigerant flows in from the high-pressure connection port 10, passes through the first four-way valve 71, and flows out from the liquid connection port 50. The refrigerant that flows out from the liquid connection port 50 is recovered in the cylinder 400.
 以上のように、実施の形態5における冷媒回収装置110によれば、回収機300として機能する回収用圧縮機330および凝縮器350を有し、ガス冷媒を液冷媒にしてボンベ400に回収するようにした。このため、接続ポートなどが不要となり、冷媒回収に必要な機器を少なくすることができる。 As described above, the refrigerant recovery device 110 in embodiment 5 has a recovery compressor 330 and a condenser 350 that function as a recovery machine 300, and converts gas refrigerant into liquid refrigerant and recovers it in the cylinder 400. This eliminates the need for connection ports, etc., and reduces the amount of equipment required for refrigerant recovery.
 10 高圧接続ポート、20 低圧接続ポート、30 吸入接続ポート、40 吐出接続ポート、50 液体接続ポート、60 気体接続ポート、70 切替部、71 第1四方弁、72 第2四方弁、73 第1三方弁、74 第2三方弁、75 第3三方弁、76 六方弁、77 開閉弁、80 制御装置、81 判定部、82 温度演算部、83 切替処理部、84 計時部、85 記憶部、100 冷媒回収運転自動切替装置、200 室外機、210 高圧側接続口、220 低圧側接続口、230 圧縮機、240 室外熱交換器、250 アキュムレータ、300 回収機、310 吸引口、320 吐出口、330 回収用圧縮機、340 回収機三方弁、350 凝縮器、400 ボンベ、410 液体口、420 気体口、500 温度計測装置。 10 high pressure connection port, 20 low pressure connection port, 30 suction connection port, 40 discharge connection port, 50 liquid connection port, 60 gas connection port, 70 switching unit, 71 first four-way valve, 72 second four-way valve, 73 first three-way valve, 74 second three-way valve, 75 third three-way valve, 76 six-way valve, 77 on-off valve, 80 control device, 81 determination unit, 82 temperature calculation unit, 83 switching processing unit, 84 timing unit, 85 Memory unit, 100 Refrigerant recovery operation automatic switching device, 200 Outdoor unit, 210 High pressure side connection port, 220 Low pressure side connection port, 230 Compressor, 240 Outdoor heat exchanger, 250 Accumulator, 300 Recovery machine, 310 Suction port, 320 Discharge port, 330 Recovery compressor, 340 Recovery machine three-way valve, 350 Condenser, 400 Cylinder, 410 Liquid port, 420 Gas port, 500 Temperature measuring device.

Claims (7)

  1.  冷凍サイクル装置内の冷媒を、回収機を駆動してボンベに回収するときの前記冷媒の流路切替を行う冷媒回収運転自動切替装置であって、
     前記冷凍サイクル装置の高圧側配管が有する高圧側接続口と連通する高圧接続ポートと、
     前記冷凍サイクル装置の低圧側配管が有する低圧側接続口と連通する低圧接続ポートと、
     前記回収機の吸引口と接続する吸入接続ポートと、
     前記回収機の吐出口と接続する吐出接続ポートと、
     前記ボンベの液体口と接続する液体接続ポートと、
     前記ボンベの気体口と接続する気体接続ポートと、
     前記冷凍サイクル装置内の液冷媒を回収する液回収モードにおいて、前記気体接続ポートと前記吸入接続ポートとを連通させ、前記吐出接続ポートと前記低圧接続ポートとを連通させ、前記高圧接続ポートと前記液体接続ポートとを連通させる流路と、前記冷凍サイクル装置内のガス冷媒を回収するガス回収モードにおいて、前記高圧接続ポートおよび前記低圧接続ポートと前記吸入接続ポートとを連通させ、前記吐出接続ポートと前記液体接続ポートとを連通させる流路とに切替える切替部と、
     前記切替部における前記流路の切替を行う制御装置とを備え、
     前記制御装置は、
     前記冷凍サイクル装置が有する液溜めにおける温度が設定温度より低いと判定すると、前記ガス回収モードから前記液回収モードへの切替を判定する判定部と、
     前記判定部が切替を判定すると、前記切替部における前記流路の切替処理を行う切替処理部とを有する冷媒回収運転自動切替装置。
    A refrigerant recovery operation automatic switching device that switches a flow path of a refrigerant in a refrigeration cycle device when the refrigerant is recovered into a cylinder by driving a recovery machine,
    A high-pressure connection port communicating with a high-pressure side connection port of a high-pressure side pipe of the refrigeration cycle device;
    A low pressure connection port communicating with a low pressure side connection port of a low pressure side piping of the refrigeration cycle device;
    A suction connection port connected to a suction port of the recovery machine;
    A discharge connection port connected to the discharge port of the recovery machine;
    a liquid connection port for connecting with the liquid port of the cylinder;
    a gas connection port for connecting to the gas port of the cylinder;
    a switching unit which switches between a flow path that communicates the gas connection port with the suction connection port, that communicates the discharge connection port with the low pressure connection port, and that communicates the high pressure connection port with the liquid connection port in a liquid recovery mode in which liquid refrigerant is recovered from within the refrigeration cycle apparatus, and a flow path which communicates the high pressure connection port and the low pressure connection port with the suction connection port, and that communicates the discharge connection port with the liquid connection port in a gas recovery mode in which gas refrigerant is recovered from within the refrigeration cycle apparatus;
    A control device that switches the flow path in the switching unit,
    The control device includes:
    a determination unit that determines whether to switch from the gas recovery mode to the liquid recovery mode when it is determined that the temperature in a liquid reservoir of the refrigeration cycle apparatus is lower than a set temperature;
    A refrigerant recovery operation automatic switching device having a switching processing unit that performs switching processing of the flow path in the switching unit when the determination unit determines to switch.
  2.  前記切替部は、2つの四方弁を有する請求項1に記載の冷媒回収運転自動切替装置。 The refrigerant recovery operation automatic switching device according to claim 1, wherein the switching unit has two four-way valves.
  3.  前記切替部は、1つの四方弁と1つの三方弁とを有する請求項1に記載の冷媒回収運転自動切替装置。 The refrigerant recovery operation automatic switching device according to claim 1, wherein the switching unit has one four-way valve and one three-way valve.
  4.  前記切替部は、3つの三方弁を有する請求項1に記載の冷媒回収運転自動切替装置。 The refrigerant recovery operation automatic switching device according to claim 1, wherein the switching unit has three three-way valves.
  5.  前記切替部は、1つの六方弁を有する請求項1に記載の冷媒回収運転自動切替装置。 The refrigerant recovery operation automatic switching device according to claim 1, wherein the switching unit has one six-way valve.
  6.  請求項1~請求項5のいずれか一項に記載の冷媒回収運転自動切替装置と回収機とを備える冷媒回収装置。 A refrigerant recovery device comprising the automatic refrigerant recovery operation switching device and a recovery machine according to any one of claims 1 to 5.
  7.  前記回収機は、前記冷媒を圧縮する圧縮機と、前記冷媒を凝縮する凝縮器とを有する請求項6に記載の冷媒回収装置。 The refrigerant recovery device according to claim 6, wherein the recovery machine has a compressor that compresses the refrigerant and a condenser that condenses the refrigerant.
PCT/JP2022/044946 2022-12-06 2022-12-06 Device for automatically switching refrigerant recovery operation, and refrigerant recovery device WO2024121946A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044946 WO2024121946A1 (en) 2022-12-06 2022-12-06 Device for automatically switching refrigerant recovery operation, and refrigerant recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044946 WO2024121946A1 (en) 2022-12-06 2022-12-06 Device for automatically switching refrigerant recovery operation, and refrigerant recovery device

Publications (1)

Publication Number Publication Date
WO2024121946A1 true WO2024121946A1 (en) 2024-06-13

Family

ID=91378877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044946 WO2024121946A1 (en) 2022-12-06 2022-12-06 Device for automatically switching refrigerant recovery operation, and refrigerant recovery device

Country Status (1)

Country Link
WO (1) WO2024121946A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053076A (en) * 2002-07-17 2004-02-19 Mitsubishi Electric Building Techno Service Co Ltd Refrigerant collecting device of refrigeration air-conditioning apparatus
JP2005249297A (en) * 2004-03-04 2005-09-15 Daikin Ind Ltd Refrigerant collecting device, refrigerant collection connecting device and refrigerant collecting method
JP2015075272A (en) * 2013-10-09 2015-04-20 株式会社富士通ゼネラル Air conditioner
JP2020186841A (en) * 2019-05-13 2020-11-19 三菱電機ビルテクノサービス株式会社 Refrigerant recovery system and refrigerant recovery control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053076A (en) * 2002-07-17 2004-02-19 Mitsubishi Electric Building Techno Service Co Ltd Refrigerant collecting device of refrigeration air-conditioning apparatus
JP2005249297A (en) * 2004-03-04 2005-09-15 Daikin Ind Ltd Refrigerant collecting device, refrigerant collection connecting device and refrigerant collecting method
JP2015075272A (en) * 2013-10-09 2015-04-20 株式会社富士通ゼネラル Air conditioner
JP2020186841A (en) * 2019-05-13 2020-11-19 三菱電機ビルテクノサービス株式会社 Refrigerant recovery system and refrigerant recovery control method

Similar Documents

Publication Publication Date Title
EP3205955A1 (en) Air conditioner
EP2354724B1 (en) Air conditioner and method for controlling air conditioner
JP5234167B2 (en) Leakage diagnostic device
US11340000B2 (en) Method for handling fault mitigation in a vapour compression system
GB2564312A (en) Refrigeration device
EP3252402B1 (en) Heat pump
KR20090033830A (en) Air conditioner
US11149999B2 (en) Refrigeration cycle apparatus having foreign substance release control
JP2016003848A (en) Air conditioning system and control method for the same
GB2585418A (en) Refrigeration air conditioner
US20150285518A1 (en) Air-conditioning apparatus
EP3361190B1 (en) Refrigeration cycle device and control method for determination of leaks in bypass valve of refrigeration cycle device
US20170276391A1 (en) Air-conditioning apparatus
JP2017072284A (en) Refrigerant recovery device
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
CN108954501B (en) Air conditioner
JP6902390B2 (en) Refrigeration cycle equipment
JP5306450B2 (en) Refrigeration air conditioner and refrigerant filling method thereof
JP2002147907A (en) Refrigerating plant
WO2024121946A1 (en) Device for automatically switching refrigerant recovery operation, and refrigerant recovery device
US20200049383A1 (en) Refrigeration cycle device
JP6762422B2 (en) Refrigeration cycle equipment
WO2024121945A1 (en) Refrigerant recovery operation automatic switching apparatus, and refrigerant recovery apparatus
WO2017119105A1 (en) Air-conditioning device
JP2003106687A (en) Refrigerator