WO2024121925A1 - Terminal floor forced deceleration device for elevator - Google Patents

Terminal floor forced deceleration device for elevator Download PDF

Info

Publication number
WO2024121925A1
WO2024121925A1 PCT/JP2022/044863 JP2022044863W WO2024121925A1 WO 2024121925 A1 WO2024121925 A1 WO 2024121925A1 JP 2022044863 W JP2022044863 W JP 2022044863W WO 2024121925 A1 WO2024121925 A1 WO 2024121925A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
speed
deceleration
forced deceleration
elevator
Prior art date
Application number
PCT/JP2022/044863
Other languages
French (fr)
Japanese (ja)
Inventor
勇来 齊藤
亮 前田
尚史 保立
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2022/044863 priority Critical patent/WO2024121925A1/en
Publication of WO2024121925A1 publication Critical patent/WO2024121925A1/en

Links

Images

Definitions

  • the present invention relates to a forced deceleration device for elevator terminal floors that uses a braking device to decelerate the elevator car in an emergency.
  • a buffer that corresponds to the rated speed of the elevator is installed at the bottom of the elevator shaft.
  • the length of the buffer increases, which means the depth of the shaft pit also increases.
  • the length of the buffer can be reduced by suppressing the speed at which the car collides with the buffer during an emergency stop.
  • the collision speed of such a car is suppressed by forcibly stopping the car using a terminal floor forced deceleration device when an abnormality occurs in the car's deceleration control at the lowest floor, i.e., the terminal floor.
  • Patent Document 1 The technology described in Patent Document 1 is known as a conventional technology related to a terminal floor forced deceleration device.
  • This elevator system includes a means for setting a first set speed that varies depending on the position of the car in the elevator shaft, a means for setting a second set speed that is faster than the first set speed and varies depending on the position of the car in the elevator shaft, a mechanical brake that operates when the elevator car speed exceeds the first set speed, and an emergency stop device that operates when the elevator car speed exceeds the second set speed.
  • a mechanical brake is activated. This brakes the car, thereby reducing the speed at which the car strikes the buffer.
  • the magnitude of the collision speed depends on the braking force of the mechanical brake, so when considering fluctuations in braking force due to aging, etc., the collision speed that the buffer must respond to becomes large.
  • the present invention provides a forced deceleration device for elevator terminal floors that can reduce the collision speed of the car against the buffer while braking the car with a mechanical brake during an emergency stop.
  • the elevator terminal floor forced deceleration device of the present invention cuts off the power supply to the hoist and activates the brake device to decelerate the car when the speed of the car of an elevator with a buffer installed at the bottom of the hoistway exceeds a predetermined overspeed threshold set according to the position of the car.
  • the device comprises an emergency stop device installed in the car, an electric actuator installed in the car for operating the emergency stop device, and a safety control device for operating the electric actuator, and the safety control device activates the electric actuator according to the deceleration of the car.
  • the collision speed of the car with the buffer can be reduced while still braking the car with a mechanical brake during an emergency stop.
  • FIG. 1 is a diagram showing the overall configuration of an elevator according to an embodiment of the present invention
  • 1 is a front view showing a mechanism section housed in a housing of an electric actuator in an embodiment, the electric actuator being in a standby state.
  • 1 is a front view showing a mechanism section housed in a housing of an electric actuator in an embodiment, the electric actuator being in an operating state.
  • FIG. 2 is a functional block diagram showing a configuration of a safety controller in the embodiment.
  • 4 is a flowchart showing a processing operation of a safety controller in the embodiment.
  • 1 is a graph illustrating an example of a relationship between car speed and position in an embodiment.
  • FIG. 1 is a diagram showing the overall configuration of an elevator according to an embodiment of the present invention.
  • a car 1 and a counterweight 2 are mechanically connected to one end and the other end of a main rope 3, respectively.
  • the main rope 3 is wound around a sheave provided on a hoist 4. This allows the car 1 and the counterweight 2 to be suspended in a hoistway provided in a building.
  • the embodiment is a so-called bucket-type elevator.
  • the hoist 4 is installed in a machine room provided above the hoistway.
  • a buffer 300 is provided at the bottom of the hoistway as a safety device.
  • the car 1 is movably engaged with the guide rail 5 via a guide device (e.g., a guide shoe) not shown. Therefore, the car 1 moves between the lowest floor FL1 and any of the other floors (FL2, etc.) while being guided by the guide rail 5.
  • a guide device e.g., a guide shoe
  • the car 1 moves between the lowest floor FL1 and any of the other floors (FL2, etc.) while being guided by the guide rail 5.
  • a general T-shaped guide rail is used as the guide rail 5.
  • the counterweight 2 moves while being guided by a guide rail for the counterweight not shown.
  • Normal operation of the car 1 is controlled by an elevator control device 6 that is installed in the machine room together with the hoist 4.
  • the hoist 4 is equipped with an AC motor such as a synchronous motor. This AC motor is driven and controlled by an inverter device equipped in the elevator control device 6, thereby controlling the speed and position of the car 1.
  • the elevator control device 6 controls the operation of the car 1 based on a detection signal from a rotation detector (e.g., a rotary encoder) (not shown) that detects the rotation of the hoist 4, and a detection signal from a position detection device that detects the position of the car 1 in the elevator shaft.
  • a rotation detector e.g., a rotary encoder
  • the position detection device is composed of, for example, a shielding plate fixed inside the elevator shaft and a photoelectric sensor provided in the car 1.
  • the hoist 4 is equipped with an electromagnetic brake device (not shown) as a brake device.
  • the elevator control device 6 controls the car 1 to decelerate toward the stop floor, and when the car 1 reaches the stop floor, the elevator control device 6 transitions the electromagnetic brake device from an open state to a braked state. This keeps the car 1 stopped.
  • a safety control device (100) (hereinafter, referred to as "safety controller 100") is installed on the top of the car 1.
  • the safety controller 100 has the function of controlling the emergency stop device 200 provided on the car 1 and the electromagnetic brake device provided on the hoist 4 to bring the car 1 to an emergency stop or forcibly decelerate the car 1 near the lowest floor FL1, i.e., the terminal floor.
  • the safety controller 100 is electrically connected to a position sensor 50 installed on the top of the car 1.
  • the position sensor 50 is composed of an image sensor (e.g., a CCD or CMOS sensor).
  • the position sensor 50 acquires a surface image of the guide rail 5, which is a stationary object in the elevator shaft.
  • a surface image of the tip of the T-shaped foot is acquired as the surface image of the guide rail 5.
  • the safety controller 100 measures the position and speed of the car 1 based on the surface image of the guide rail 5 acquired by the image sensor 9.
  • the safety controller 100 and the elevator control device 6 are electrically connected by a tail cord 7 so as to be able to communicate with each other and to be able to supply power to the safety controller 100 .
  • the safety controller 100 determines that the car 1 is overspeeding based on the detection signal from the position sensor 50, it activates the electromagnetic brake device or emergency stop device 200 provided on the hoist 4 to bring the car 1 to an emergency stop.
  • the safety controller 100 operates the electric actuator 10 to pull up the lifting rod 21, thereby operating the emergency stop device 200.
  • the emergency stop device 200 is a known emergency stop device having a wedge-shaped brake.
  • the electric actuator 10 is an electromagnetic actuator, and is disposed on the top of the car 1.
  • the electromagnetic actuator has a movable piece or movable rod that is operated by, for example, a solenoid or an electromagnet.
  • the electric actuator 10 operates when the position sensor 50 detects a predetermined overspeed state of the car 1. At this time, the lifting rod 21 is lifted by the drive mechanism (12, 16, 17, 18, etc.) connected to the operating lever 11. This causes the emergency stop device 200 to enter a braking state.
  • the emergency stop devices 200 are arranged on the left and right sides of the car 1.
  • Each emergency stop device 200 is equipped with a pair of brakes (not shown), which are movable between a braking position and a non-braking position, and clamp the guide rail 5 in the braking position. Furthermore, when the brakes rise relatively due to the descent of the car 1, a braking force is generated by the frictional force acting between the brakes and the guide rail 5. As a result, the emergency stop devices 200 are activated when the car 1 falls into an overspeeding state, and bring the car 1 to an emergency stop.
  • the elevator of the embodiment is equipped with a so-called ropeless governor system that does not use a governor rope, and when the ascent/descent speed of the car 1 exceeds the rated speed and reaches a first overspeed (e.g., a speed not exceeding 1.3 times the rated speed), the power supply of the hoisting machine 4 and the power supply of the elevator control device 6 that controls this drive device are cut off. Also, when the descent speed of the car 1 reaches a second overspeed (e.g., a speed not exceeding 1.4 times the rated speed), the electric operator 10 provided on the car 1 is electrically driven, and the emergency stop device 200 is operated to bring the car 1 to an emergency stop.
  • a first overspeed e.g., a speed not exceeding 1.3 times the rated speed
  • a second overspeed e.g., a speed not exceeding 1.4 times the rated speed
  • the electric operator 10 provided on the car 1 is electrically driven, and the emergency stop device 200 is operated to bring the car 1 to an emergency stop.
  • the ropeless governor system is composed of the aforementioned position sensor 50 and a safety controller 100 that determines the overspeed state of the car 1 based on the detection signal of the position sensor 50.
  • This safety controller 100 measures the speed of the car 1 based on the output signal of the position sensor 50, and when it determines that the measured speed has reached a first overspeed, it outputs a command signal to cut off the power supply of the hoist 4 and the power supply of the elevator control device 6 that controls the hoist 4.
  • the safety controller 100 determines that the measured speed has reached a second overspeed, it outputs a command signal to operate the electric actuator 10.
  • the operating lever 11 and the first operating piece 16 are connected to form a roughly T-shaped first link member.
  • the operating lever 11 and the first operating piece 16 form the head and foot of the T, respectively.
  • the roughly T-shaped first link member is rotatably supported by a crosshead (not shown) at the connection between the operating lever 11 and the first operating piece 16.
  • One end of a pair of lifting rods 21 is connected to the end of the first operating piece 16, which forms the foot of the T, on the opposite side to the connection between the operating lever 11 and the first operating piece 16.
  • the connecting piece 17 and the second operating piece 18 are connected to form a second link member that is approximately T-shaped.
  • the connecting piece 17 and the second operating piece 18 form the head and foot of the T, respectively.
  • the approximately T-shaped second link member is rotatably supported by a crosshead (not shown) at the connection between the connecting piece 17 and the second operating piece 18.
  • the other end (left side in the figure) of the pair of lifting rods 21 is connected to the end of the second operating piece 18, which forms the foot of the T, on the opposite side to the connection between the connecting piece 17 and the second operating piece 18.
  • the end of the operating lever 11 extending from the inside to the outside of the housing (reference number 30 in FIG. 2) and the end of the connecting piece 17 that is closest to the top of the car 1 are connected to one end (left side in FIG. 2) and the other end (right side in FIG. 2) of the drive shaft 12 lying on the car 1.
  • the drive shaft 12 slidably passes through a fixed part (reference number 14 in FIG. 2) that is fixed to the crosshead.
  • the drive shaft 12 also passes through a pressing member (reference number 15 in FIG. 2), which is fixed to the drive shaft 12.
  • the pressing member 15 (FIG. 2) is located on the second link member (connecting piece 17, second operating piece 18) side of the fixed part.
  • a driving spring reference number 13 in FIG. 2 that is an elastic body is located, and the drive shaft 12 is inserted into the drive spring 13 (FIG. 2).
  • FIG. 2 shows the mechanism stored in the housing 30 of the electric actuator 10 in the embodiment, and is a front view in the installed state of FIG. 1.
  • the emergency stop device 200 (FIG. 1) is in an inoperative state, and the electric actuator 10 is in a standby state. In other words, the elevator is in a normal operating state.
  • the armature 34 connected to the operating lever 11 is attracted to the excited electromagnet 35. This restricts the movement of the operating lever 11 against the biasing force of the drive spring 13 (compression spring).
  • the operating lever 11 is connected to the armature 34 via a bracket 38 that is rotatably mounted on the armature 34. At least the portion of the armature 34 that is attracted to the electromagnet 35 is made of a magnetic material.
  • a flexible cover member 32 is provided on the housing cover 31, which is the top surface of the housing 30, at an opening through which the operating lever 11 passes, to cover this opening.
  • the cover member 32 is made of a thin rubber material. Because the cover member 32 is flexible, the movement of the operating lever 11 is not impeded when the emergency stop device is activated.
  • the cover member 32 prevents dust and foreign objects from entering the housing 30 and adhering to or coming into contact with the mechanism. This improves the reliability of the operation of the electric actuator in the installation environment (such as inside the elevator shaft). This improves the reliability of the operation of the emergency stop device.
  • a plate-like member 33 is further provided on the operating lever 11.
  • the plate-like member 33 is fixed to the connection between the bracket 38 and the operating lever 11.
  • the flat surface of the plate-like member 33 is located within the housing 30, directly below the opening in the housing cover 31 through which the operating lever 11 passes and in the space around it, and covers the mechanism located directly below the opening. This prevents dust, foreign matter, etc. from adhering to or coming into contact with the mechanism even if dust, foreign matter, etc. enters the housing 30. This more reliably improves the reliability of the operation of the electric operating device in the installation environment (such as in a hoistway). This more reliably improves the reliability of the operation of the emergency stop device.
  • FIG. 3 shows the mechanism stored in the housing 30 of the electric actuator 10 in the embodiment, and is a front view in the installed state of FIG. 1.
  • the emergency stop device 200 (FIG. 1) is in a braking state, and the electric actuator 10 is in an operating state. In other words, the elevator system is stopped by the emergency stop device 200.
  • the armature 34 connected to the operating lever 11 moves in the direction of rotation of the operating lever 11.
  • the armature 34 is returned from the moving position (FIG. 3) to the standby position (FIG. 2) by a mechanism (36, 37, 40-42) not described in FIG. 2, as described below.
  • the electric actuator 10 has a feed screw 36 located on the flat surface of the substrate 40 to drive the armature 34.
  • the feed screw is rotatably supported by a first support member 41 and a second support member 42 fixed on the flat surface of the substrate 40.
  • the electromagnet 35 has a nut portion, which screws into the feed screw 36.
  • the feed screw 36 is rotated by a motor 37.
  • the motor 37 is driven to rotate the feed screw.
  • the rotating feed screw and the nut portion of the electromagnet 35 convert the rotation of the motor into linear movement of the electromagnet 35 along the axial direction of the feed screw.
  • the electromagnet 35 approaches the movement position of the armature 34 shown in FIG. 3, and the armature 34 is attracted to the electromagnet 35 due to the electromagnetic force of the electromagnet 35.
  • the direction of rotation of the motor 37 is reversed while continuing to excite the electromagnet 35, and the feed screw is reversed.
  • the armature 34 moves to the standby position together with the electromagnet 35.
  • the plate-like member 33 is fixed to the operating lever 11 within the space inside the housing 30, and therefore moves together with the operating lever 11. In other words, the plate-like member 33 does not interfere with the movement of the operating lever 11.
  • the plate-like member 33 and the operating lever 11 are fitted together without any gaps or are tightly connected with an adhesive or bonding material. Therefore, the plate-like member 33 and the operating lever 11 are connected to each other without any gaps at their connection points. Therefore, the plate-like member 33 reliably prevents dust, foreign matter, etc. from adhering to or coming into contact with the mechanism.
  • the terminal floor forced deceleration device is composed of an electromagnetic brake device and a safety controller 100 provided on the hoisting machine 4, and further includes an electric actuator 10 controlled by the safety controller 100, and an emergency stop device 200 operated by the electric actuator 10.
  • FIG. 4 is a functional block diagram showing the configuration of the safety controller 100 in the embodiment. Note that FIG. 4 shows the functions of the safety controller 100 related to forced deceleration at the final floor and emergency stop.
  • the safety controller 100 is composed of a computer system such as a microcomputer.
  • the computer system executes a predetermined program to function as each part.
  • the safety controller 100 includes a position detection unit 101, an overspeed threshold calculation unit 102, a first overspeed determination unit 103, a power cutoff unit 104, a speed detection unit 105, a second overspeed determination unit 106, an electric actuator operation unit 107, a deceleration calculation unit 108, and a deceleration determination unit 109.
  • the position detection unit 101 detects the position of the car 1 in the height direction of the elevator shaft based on the detection signal output by the position sensor 50 for detecting the position of the car 1.
  • an image sensor is used as the position sensor 50.
  • the position detection unit 101 detects the position of the car 1 by image processing the image of the exposed surface of the guide rail 5 acquired by the image sensor. For example, the position detection unit 101 calculates the image shift ⁇ d at two points in time (time t and time t+ ⁇ t: ⁇ t is, for example, a frame period) by an image correlation method. The position detection unit 101 calculates the travel distance d of the car 1 by sequentially accumulating ⁇ d calculated for each ⁇ t, and further calculates the position of the car 1 based on the travel distance d.
  • the overspeed threshold calculation unit 102 calculates the overspeed threshold, which is the reference speed of the car when the car 1 is brought to an emergency stop while in motion by stopping the hoist 4, according to the position of the car 1 detected by the position detection unit 101.
  • the overspeed threshold calculation unit 102 calculates the overspeed threshold by using a formula or table data that indicates the relationship between the position of the car 1 and the overspeed threshold.
  • the overspeed threshold Vth varies depending on the position of the car 1, but the value calculated by the formula increases as the car moves away from the lowest floor. Therefore, when the calculated value is equal to or greater than the above-mentioned first overspeed, the overspeed threshold calculation unit 102 sets the overspeed threshold to the first overspeed. When the calculated value is smaller than the first overspeed, the overspeed threshold calculation unit 102 sets the overspeed threshold to the calculated value.
  • the first overspeed determination unit 103 determines whether the speed of the car 1 detected by the speed detection unit 105 described below is greater than the overspeed threshold set by the overspeed threshold calculation unit.
  • the power cutoff unit 104 When the power cutoff unit 104 receives a determination result from the first overspeed determination unit 103 that the speed of the car 1 is greater than the overspeed threshold, it sends a signal commanding the cutting off of the power supply from the power source to the hoist 4. This stops the drive of the hoist 4, and the electromagnetic brake device equipped in the hoist 4 transitions from an open state to a braking state. Therefore, the car 1 comes to an emergency stop.
  • the AC motor provided in the hoisting machine 4 is driven at a variable speed by AC power from the inverter device.
  • the inverter device is connected to the power source for the drive via an electromagnetic contactor.
  • the inverter device converts the power from the power source for the drive into AC power for driving the AC motor.
  • the contacts of the electromagnetic contactor are opened by a signal from the power source cutoff unit 104, the power supply from the power source for the drive to the inverter device is cut off.
  • the speed detection unit 105 detects the speed of the car 1 based on the detection signal output by the position sensor 50.
  • the speed detection unit 105 detects the speed of the car 1 by image processing the image of the exposed surface of the guide rail 5 acquired by the position sensor 50, i.e., the image sensor.
  • the position detection unit 101 like the position detection unit, calculates the image shift ⁇ d at two points in time (time t and time t+ ⁇ t: ⁇ t is, for example, a frame period) by image correlation.
  • the second overspeed determination unit 106 determines whether the speed of the car 1 detected by the speed detection unit 105 is greater than a preset emergency stop activation threshold.
  • the emergency stop activation threshold is equal to the second overspeed value described above.
  • the electric actuator operating unit 107 When the electric actuator operating unit 107 receives a judgment result from the second overspeed judgment unit 106 that the speed of the car 1 is greater than the emergency stop operation threshold, it sends a signal commanding the operation of the electric actuator 10. This causes the electric actuator 10 to operate, and the emergency stop device 200 to operate. Therefore, the car 1 comes to an emergency stop.
  • the electric actuator actuation unit 107 also sends a signal to command the operation of the electric actuator 10 when it receives a judgment result from the deceleration judgment unit 109 described below.
  • the deceleration calculation unit 108 calculates the deceleration of the car 1 based on the speed (v) of the car 1 detected by the speed detection unit 105.
  • the calculated value of a is negative if car 1 is decelerating, and positive if car 1 is accelerating.
  • the deceleration determination unit 109 determines whether the deceleration calculated by the deceleration calculation unit 108 is smaller than a preset threshold value.
  • the deceleration determination unit 109 first determines whether the deceleration a calculated by the deceleration calculation unit 108 is negative, i.e., determines whether the car 1 is decelerating, and if it is decelerating, determines whether the magnitude (
  • the threshold value a th is set to the magnitude of the deceleration before the braking force of the electromagnetic brake device fluctuates due to aging or the like, that is, the standard value (a 0 described above).
  • the electric operator actuation unit 107 When the electric operator actuation unit 107 receives a determination result from the deceleration determination unit 109 that the magnitude of the deceleration of the car 1 is smaller than the threshold value a th , it sends out a signal to command the operation of the electric operator 10. This causes the electric operator 10 to operate, and the safety device 200 to operate, thereby suppressing the collision speed of the car 1 with the buffer 300.
  • the buffer 300 only needs to be able to handle the collision speed when a standard deceleration is obtained, without having to provide a margin to account for fluctuations in the braking force.
  • the magnitude of the collision speed depends on the braking force of the mechanical brake, so when considering fluctuations in braking force due to aging, etc., the collision speed that the buffer must respond to becomes large.
  • FIG. 5 is a flowchart showing the processing operation of the safety controller 100 in the embodiment. The following explanation will be given with reference to FIG. 4 as appropriate.
  • step S1 it determines whether the car 1 is descending.
  • the image acquired by the position sensor 50 is shifted downward and upward in the image frame in accordance with the ascent and descent of the car 1, respectively. Therefore, by setting the above-mentioned image shift ⁇ d to positive or negative depending on the direction of image shift, it is possible to determine whether the car 1 is ascending or descending depending on the positive or negative value of the speed detected by the speed detection unit 105.
  • the safety controller 100 determines whether the car 1 is descending using the second overspeed determination unit 106 that receives the speed detected by the speed detection unit 105 from the speed detection unit 105.
  • step S1 If the safety controller 100 determines that the car is not descending (NO in step S1), it executes step S1 again. If the safety controller 100 determines that the car is descending (YES in step S1), it then executes step S2.
  • step S3 the safety controller 100 uses the first overspeed determination unit 103 to determine whether the speed of the car 1 detected by the speed detection unit 105 is greater than the overspeed threshold (the above-mentioned V th ) calculated by the overspeed threshold calculation unit 102. If the safety controller 100 determines that the speed of the car 1 is greater than the overspeed threshold (YES in step S3), it then executes step S4. If the safety controller 100 determines that the speed of the car 1 is not greater than the overspeed threshold (NO in step S3), it executes step S1 again.
  • the overspeed threshold the above-mentioned V th
  • step S4 the safety controller 100 uses the power cutoff unit 104 to cut off the power supply from the drive power source to the hoist 4. After executing step S4, the safety controller 100 then executes step S5.
  • step S5 the safety controller 100 uses the deceleration calculation unit 108 to calculate the deceleration of the car 1 (above-mentioned a) based on the speed of the car 1 detected by the speed detection unit 105. After executing step S5, the safety controller then executes step S6.
  • step S6 the safety controller 100 uses the deceleration determination unit 109 to determine whether the magnitude of the deceleration of the car 1 calculated in step S5 is smaller than a predetermined threshold value (the above-mentioned a th ). If the safety controller 100 determines that the magnitude of the deceleration is smaller than the threshold value (YES in step S6), it then executes step S7. If the safety controller 100 determines that the magnitude of the deceleration is not smaller than the threshold value (NO in step S6), it executes step S6 again.
  • a predetermined threshold value the above-mentioned a th
  • step S7 the safety controller 100 operates the electric operator 10 by sending a signal commanding operation of the electric operator 10 using the electric operator operating unit 107.
  • the emergency stop device 200 is activated and the car 1 is brought to an emergency stop.
  • the safety controller 100 executes step S7 after step S6, the emergency stop device 200 is activated and the car 1 is braked, thereby suppressing the collision speed of the car 1 with the buffer 3001).
  • step S7 the safety controller executes step S7, it ends the series of processes.
  • FIG. 6 is a graph showing an example of the relationship between the speed and position of car 1 in the embodiment.
  • the speed and position of car 1 are denoted as "car speed” and "car position", respectively.
  • Figure 6 shows the stopping operation of car 1 at the terminal floor, i.e., the lowest floor.
  • the electric motor of the hoist 4 is controlled to decelerate, causing the car 1 to decelerate towards the lowest floor and stop at the lowest floor.
  • the safety controller 100 will cut off the power supply to the hoist 4 (see “power cutoff unit 104" in Figure 4 and step S4 in Figure 5).
  • the car 1 When the magnitude of the deceleration of the car 1 is maintained at the standard value (a 0 described above), the car 1 reaches the upper surface of the buffer at a speed equal to or lower than the allowable collision speed of the buffer.
  • the electric actuator 10 is activated and the emergency stop device 200 operates, causing the car 1 to reach the top surface of the buffer at a speed within the range of the buffer's allowable collision speed.
  • the emergency stop device is not activated, and the collision speed of the car against the buffer is suppressed by the braking force of the electromagnetic brake device. For this reason, a buffer with a large collision speed tolerance is applied, anticipating a decrease in deceleration due to fluctuations in the braking force of the electromagnetic brake device.
  • the present invention is not limited to the above-described embodiment, but includes various modified examples.
  • the above-described examples have been described in detail to clearly explain the present invention, and the present invention is not necessarily limited to having all of the configurations described.
  • the position sensor 50 may be an image sensor or a rotation detector (e.g., a rotary encoder) that is provided in the car and rotates with the movement of the car.
  • a rotation detector e.g., a rotary encoder
  • any sensor that can detect the movement of the car such as a speed sensor, may be used in place of the position sensor 50.
  • the position detection unit 101 detects the position by integrating the speed.
  • the electric actuator 10 may be provided on the top of the car 1, as well as on the side or bottom of the car 1.
  • the elevator may be a so-called machine room-less elevator, in which the hoist and elevator control device are installed inside the hoistway.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

Disclosed is a terminal floor forced deceleration device for an elevator with which the speed of the impact of a car with a buffer can be reduced even while braking the car by means of a mechanical brake during an emergency stop. The terminal floor forced deceleration device is configured so that, if the speed of a car (1) of an elevator provided with a buffer (300) at a bottom part of a shaft exceeds a prescribed excessive speed threshold that is set according to the position of the car, the supply of power to a hoisting machine (4) is cut and a brake device is operated to decelerate the car. The terminal floor forced deceleration device comprises: an emergency stop device (200) that is provided to the car; an electric operation apparatus (10) that is provided to the car, and that operates the emergency stop device; and a safety control device (100) that operates the electric operation apparatus. The safety control device operates the electric operation apparatus according to the deceleration of the car.

Description

エレベータの終端階強制減速装置Elevator terminal floor deceleration device
 本発明は、非常時にブレーキ装置によって乗りかごを減速させるエレベータの終端階強制減速装置に関する。 The present invention relates to a forced deceleration device for elevator terminal floors that uses a braking device to decelerate the elevator car in an emergency.
 エレベータの昇降路底部には、安全装置として、エレベータの定格速度に対応するバッファが設置される。定格速度が高くなると、バッファの長さが長くなる。このため、昇降路のピットの深さが深くなる。 As a safety device, a buffer that corresponds to the rated speed of the elevator is installed at the bottom of the elevator shaft. As the rated speed increases, the length of the buffer increases, which means the depth of the shaft pit also increases.
 乗りかごが非常停止時においてバッファに衝突する速度を抑制することにより、バッファの長さを低減できる。このような乗りかごの衝突速度は、最下階すなわち終端階において、乗りかごの減速制御に異常が発生した場合に、終端階強制減速装置によって乗りかごを強制的に停止させることによって、抑制される。 The length of the buffer can be reduced by suppressing the speed at which the car collides with the buffer during an emergency stop. The collision speed of such a car is suppressed by forcibly stopping the car using a terminal floor forced deceleration device when an abnormality occurs in the car's deceleration control at the lowest floor, i.e., the terminal floor.
 終端階強制減速装置に関する従来技術として、特許文献1に記載された技術が知られている。 The technology described in Patent Document 1 is known as a conventional technology related to a terminal floor forced deceleration device.
 この従来技術によるエレベータシステムは、昇降路内の乗りかごの位置に応じて異なる速度となる第1の設定速度を設定する手段と、この第1の設定速度よりも速度が大きく、昇降路内の乗りかごの位置に応じて異なる速度となる第2の設定速度を設定する手段と、エレベータの乗りかご速度が第1の設定速度を超えた速度となったとき作動する機械的ブレーキと、エレベータの乗りかご速度が第2の設定速度を超えた速度となったとき作動する非常止め装置を備える。 This elevator system according to the conventional technology includes a means for setting a first set speed that varies depending on the position of the car in the elevator shaft, a means for setting a second set speed that is faster than the first set speed and varies depending on the position of the car in the elevator shaft, a mechanical brake that operates when the elevator car speed exceeds the first set speed, and an emergency stop device that operates when the elevator car speed exceeds the second set speed.
 乗りかごが下降中に異常が発生して過速状態になり、乗りかごの速度が最下階近くの位置で第1の設定速度を超えると機械的ブレーキが作動する。これにより、乗りかごが制動されるので、乗りかごのバッファへの衝突速度が抑制される。 If an abnormality occurs while the car is descending, causing the car to overspeed and exceed the first set speed near the lowest floor, a mechanical brake is activated. This brakes the car, thereby reducing the speed at which the car strikes the buffer.
国際公開第2004/031064号International Publication No. 2004/031064
 上記従来技術では、衝突速度の大きさが機械的ブレーキの制動力に依存するため、経年変化などによる制動力の変動を考慮すると、バッファが対応すべき衝突速度が大きくなる。 In the above conventional technology, the magnitude of the collision speed depends on the braking force of the mechanical brake, so when considering fluctuations in braking force due to aging, etc., the collision speed that the buffer must respond to becomes large.
 そこで、本発明は、非常停止時に機械的ブレーキによって乗りかごを制動しながらも、バッファへの乗りかごの衝突速度を低減できるエレベータの終端階強制減速装置を提供する。 The present invention provides a forced deceleration device for elevator terminal floors that can reduce the collision speed of the car against the buffer while braking the car with a mechanical brake during an emergency stop.
 上記課題を解決するために、本発明によるエレベータの終端階強制減速装置は、昇降路の底部にバッファが設けられるエレベータの乗りかごの速度が、乗りかごの位置に応じて設定される所定の過速閾値を超えたら、巻上機への電力供給を遮断するとともにブレーキ装置を作動させて乗りかごを減速するものであって、乗りかごに設けられる非常止め装置と、乗りかごに設けられ、非常止め装置を動作させる電動操作器と、電動操作器を作動させる安全制御装置と、を備え、安全制御装置は、乗りかごの減速度に応じて電動操作器を作動させる。 In order to solve the above problems, the elevator terminal floor forced deceleration device of the present invention cuts off the power supply to the hoist and activates the brake device to decelerate the car when the speed of the car of an elevator with a buffer installed at the bottom of the hoistway exceeds a predetermined overspeed threshold set according to the position of the car. The device comprises an emergency stop device installed in the car, an electric actuator installed in the car for operating the emergency stop device, and a safety control device for operating the electric actuator, and the safety control device activates the electric actuator according to the deceleration of the car.
 本発明によれば、非常停止時に機械的ブレーキによって乗りかごを制動しながらも、バッファへの乗りかごの衝突速度を低減できる。 According to the present invention, the collision speed of the car with the buffer can be reduced while still braking the car with a mechanical brake during an emergency stop.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。  Problems, configurations and advantages other than those mentioned above will become clear from the description of the embodiments below.
実施例であるエレベータの全体構成を示す構成図である。1 is a diagram showing the overall configuration of an elevator according to an embodiment of the present invention; 実施例における電動操作器の筐体内に格納される機構部を示す正面図である。電動操作器は待機状態にある。1 is a front view showing a mechanism section housed in a housing of an electric actuator in an embodiment, the electric actuator being in a standby state. 実施例における電動操作器の筐体内に格納される機構部を示す正面図である。電動操作器は作動状態にある。1 is a front view showing a mechanism section housed in a housing of an electric actuator in an embodiment, the electric actuator being in an operating state. 実施例における安全コントローラの構成を示す機能ブロック図である。FIG. 2 is a functional block diagram showing a configuration of a safety controller in the embodiment. 実施例における安全コントローラの処理動作を示すフローチャートである。4 is a flowchart showing a processing operation of a safety controller in the embodiment. 実施例における乗りかごの速度および位置の間の関係の一例を示すグラフである。1 is a graph illustrating an example of a relationship between car speed and position in an embodiment.
 以下、本発明の実施形態について、下記の実施例により、図面を用いながら説明する。 The following describes an embodiment of the present invention with reference to the following examples and drawings.
 各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。 In each figure, the same reference numbers indicate the same components or components with similar functions.
 図1は、本発明の実施例であるエレベータの全体構成を示す構成図である。 FIG. 1 is a diagram showing the overall configuration of an elevator according to an embodiment of the present invention.
 図1に示すように、実施例においては、乗りかご1および釣合おもり2が、それぞれ主ロープ3の一端および他端に機械的に接続される。主ロープ3は、巻上機4が備えるシーブに巻き掛けられる。これにより、乗りかご1および釣合おもり2が、建築物に設けられる昇降路内に吊られる。すなわち、実施例は、いわゆる、つるべ式のエレベータである。実施例において、巻上機4は、昇降路上に設けられる機械室内に設置される。また、昇降路の底部には、安全装置として、バッファ300が設けられる。 As shown in FIG. 1, in the embodiment, a car 1 and a counterweight 2 are mechanically connected to one end and the other end of a main rope 3, respectively. The main rope 3 is wound around a sheave provided on a hoist 4. This allows the car 1 and the counterweight 2 to be suspended in a hoistway provided in a building. In other words, the embodiment is a so-called bucket-type elevator. In the embodiment, the hoist 4 is installed in a machine room provided above the hoistway. In addition, a buffer 300 is provided at the bottom of the hoistway as a safety device.
 巻上機4が備えるモータが回転して、シーブが回転駆動されると、主ロープ3が、シーブと主ロープ3との間の摩擦力によって直線的に駆動される。これにより、乗りかご1および釣合おもり2は、昇降路内を、互いに上下反対方向に移動する。 When the motor of the hoist 4 rotates and the sheave is rotated, the main rope 3 is driven linearly by the frictional force between the sheave and the main rope 3. As a result, the car 1 and the counterweight 2 move up and down in opposite directions to each other within the hoistway.
 乗りかご1は、図示しない案内装置(例えば、ガイドシュー)を介して、ガイドレール5に、移動可能に係合する。このため、乗りかご1は、ガイドレール5に案内されながら、最下階FL1および他の階床(FL2など)の内の任意の階床間で移動する。なお、実施例では、ガイドレール5として、一般的なT型ガイドレールが適用される。また、釣合おもり2は、図示されない釣合おもり用のガイドレールに案内されながら移動する。 The car 1 is movably engaged with the guide rail 5 via a guide device (e.g., a guide shoe) not shown. Therefore, the car 1 moves between the lowest floor FL1 and any of the other floors (FL2, etc.) while being guided by the guide rail 5. In the embodiment, a general T-shaped guide rail is used as the guide rail 5. The counterweight 2 moves while being guided by a guide rail for the counterweight not shown.
 乗りかご1の通常運転は、巻上機4とともに機械室内に設置されるエレベータ制御装置6によって制御される。巻上機4は、同期電動機などの交流電動機を備えている。この交流電動機が、エレベータ制御装置6が備えるインバータ装置によって駆動制御されることにより、乗りかご1は、速度および位置が制御される。エレベータ制御装置6は、巻上機4の回転を検出する、図示しない回転検出器(例えば、ロータリエンコーダ)の検出信号、および昇降路内における乗りかご1の位置を検出する位置検出装置の検出信号に基づいて、乗りかご1の運転を制御する。 Normal operation of the car 1 is controlled by an elevator control device 6 that is installed in the machine room together with the hoist 4. The hoist 4 is equipped with an AC motor such as a synchronous motor. This AC motor is driven and controlled by an inverter device equipped in the elevator control device 6, thereby controlling the speed and position of the car 1. The elevator control device 6 controls the operation of the car 1 based on a detection signal from a rotation detector (e.g., a rotary encoder) (not shown) that detects the rotation of the hoist 4, and a detection signal from a position detection device that detects the position of the car 1 in the elevator shaft.
 なお、位置検出装置は、例えば、昇降路内に固定される遮蔽板と、乗りかご1に設けられる光電センサとから構成される。 The position detection device is composed of, for example, a shielding plate fixed inside the elevator shaft and a photoelectric sensor provided in the car 1.
 巻上機4は、ブレーキ装置として図示しない電磁ブレーキ装置を備えている。乗りかご1が、エレベータ制御装置6によって、停止階に向かって減速制御されて、停止階に着床すると、エレベータ制御装置6は、電磁ブレーキ装置を開放状態から制動状態に遷移させる。これにより、乗りかご1の停止状態が保持される。 The hoist 4 is equipped with an electromagnetic brake device (not shown) as a brake device. The elevator control device 6 controls the car 1 to decelerate toward the stop floor, and when the car 1 reaches the stop floor, the elevator control device 6 transitions the electromagnetic brake device from an open state to a braked state. This keeps the car 1 stopped.
 乗りかご1の上部には、安全制御装置(100)(以下、「安全コントローラ100」と記す)が設置されている。安全コントローラ100は、乗りかご1に設けられる非常止め装置200や巻上機4が備える電磁ブレーキ装置を制御して、乗りかご1を非常停止させたり、最下階FL1すなわち終端階付近において乗りかご1を強制的に減速させたりする機能を有する。 A safety control device (100) (hereinafter, referred to as "safety controller 100") is installed on the top of the car 1. The safety controller 100 has the function of controlling the emergency stop device 200 provided on the car 1 and the electromagnetic brake device provided on the hoist 4 to bring the car 1 to an emergency stop or forcibly decelerate the car 1 near the lowest floor FL1, i.e., the terminal floor.
 安全コントローラ100は、乗りかご1の上部に設置される位置センサ50と電気的に接続されている。実施例では、位置センサ50は画像センサ(例えば、CCDやCMOSセンサなど)から構成される。位置センサ50は、昇降路内における静止物であるガイドレール5の表面画像を取得する。実施例では、ガイドレール5の表面画像として、T字の足部の先端部の表面画像が取得される。安全コントローラ100は、画像センサ9によって取得されるガイドレール5の表面画像に基づいて、乗りかご1の位置および速度を計測する。 The safety controller 100 is electrically connected to a position sensor 50 installed on the top of the car 1. In the embodiment, the position sensor 50 is composed of an image sensor (e.g., a CCD or CMOS sensor). The position sensor 50 acquires a surface image of the guide rail 5, which is a stationary object in the elevator shaft. In the embodiment, a surface image of the tip of the T-shaped foot is acquired as the surface image of the guide rail 5. The safety controller 100 measures the position and speed of the car 1 based on the surface image of the guide rail 5 acquired by the image sensor 9.
 安全コントローラ100とエレベータ制御装置6とは、テールコード7によって、通信可能に、また安全コントローラ100への電源供給可能なように、電気的に接続される。
The safety controller 100 and the elevator control device 6 are electrically connected by a tail cord 7 so as to be able to communicate with each other and to be able to supply power to the safety controller 100 .
 安全コントローラ100は、位置センサ50の検出信号に基づいて、乗りかご1が過速状態にあると判定すると、巻上機4が備える電磁ブレーキ装置もしくは非常止め装置200を動作させて、乗りかご1を非常停止させる。 When the safety controller 100 determines that the car 1 is overspeeding based on the detection signal from the position sensor 50, it activates the electromagnetic brake device or emergency stop device 200 provided on the hoist 4 to bring the car 1 to an emergency stop.
 安全コントローラ100は、電動操作器10を作動させることにより、引き上げロッド21を引き上げることにより、非常止め装置200を動作させる。なお、実施例において、非常止め装置200は、楔状の制動子を有する、公知技術による非常止め装置である。 The safety controller 100 operates the electric actuator 10 to pull up the lifting rod 21, thereby operating the emergency stop device 200. In the embodiment, the emergency stop device 200 is a known emergency stop device having a wedge-shaped brake.
 電動操作器10は、実施例では電磁操作器であり、乗りかご1の上部に配置される。電磁操作器は、例えば、ソレノイドもしくは電磁石によって作動する可動片もしくは可動杆を備えるものである。電動操作器10は、位置センサ50により乗りかご1の所定の過速状態を検出したときに作動する。このとき、操作レバー11に接続されている駆動機構(12,16,17,18など)により、引き上げロッド21が引き上げられる。これにより、非常止め装置200が制動状態となる。 In this embodiment, the electric actuator 10 is an electromagnetic actuator, and is disposed on the top of the car 1. The electromagnetic actuator has a movable piece or movable rod that is operated by, for example, a solenoid or an electromagnet. The electric actuator 10 operates when the position sensor 50 detects a predetermined overspeed state of the car 1. At this time, the lifting rod 21 is lifted by the drive mechanism (12, 16, 17, 18, etc.) connected to the operating lever 11. This causes the emergency stop device 200 to enter a braking state.
 非常止め装置200は、乗りかご1の左右に一台ずつ配置される。各非常止め装置200が備える図示しない一対の制動子は、制動位置および非制動位置の間で可動であり、制動位置においてガイドレール5を挟持し、さらに、乗りかご1の下降により相対的に上昇すると、制動子とガイドレール5との間に作用する摩擦力により制動力を生じる。これにより、非常止め装置200は、乗りかご1が過速状態に陥ったときに作動し、乗りかご1を非常停止させる。 The emergency stop devices 200 are arranged on the left and right sides of the car 1. Each emergency stop device 200 is equipped with a pair of brakes (not shown), which are movable between a braking position and a non-braking position, and clamp the guide rail 5 in the braking position. Furthermore, when the brakes rise relatively due to the descent of the car 1, a braking force is generated by the frictional force acting between the brakes and the guide rail 5. As a result, the emergency stop devices 200 are activated when the car 1 falls into an overspeeding state, and bring the car 1 to an emergency stop.
 実施例のエレベータは、ガバナロープを用いない、いわゆるロープレスガバナシステムを備えるものであり、乗りかご1の昇降速度が定格速度を超えて第1過速度(例えば、定格速度の1.3倍を超えない速度)に達すると、巻上機4の動力電源およびこの駆動装置を制御するエレベータ制御装置6の電源が遮断される。また、乗りかご1の下降速度が第2過速度(例えば、定格速度の1.4倍を超えない速度)に達すると、乗りかご1に設けられる電動操作器10が電気的に駆動され、非常止め装置200を作動させて、乗りかご1が非常停止される。 The elevator of the embodiment is equipped with a so-called ropeless governor system that does not use a governor rope, and when the ascent/descent speed of the car 1 exceeds the rated speed and reaches a first overspeed (e.g., a speed not exceeding 1.3 times the rated speed), the power supply of the hoisting machine 4 and the power supply of the elevator control device 6 that controls this drive device are cut off. Also, when the descent speed of the car 1 reaches a second overspeed (e.g., a speed not exceeding 1.4 times the rated speed), the electric operator 10 provided on the car 1 is electrically driven, and the emergency stop device 200 is operated to bring the car 1 to an emergency stop.
 実施例において、ロープレスガバナシステムは、前述の位置センサ50と、位置センサ50の検出信号に基づいて、乗りかご1の過速状態を判定する安全コントローラ100とから構成される。この安全コントローラ100は、位置センサ50の出力信号に基づいて乗りかご1の速度を計測し、計測される速度が第1過速度に達したと判定すると、巻上機4の動力電源および巻上機4を制御するエレベータ制御装置6の電源を遮断するための指令信号を出力する。また、安全コントローラ100は、計測される速度が第2過速度に達したと判定すると、電動操作器10を作動するための指令信号を出力する。 In the embodiment, the ropeless governor system is composed of the aforementioned position sensor 50 and a safety controller 100 that determines the overspeed state of the car 1 based on the detection signal of the position sensor 50. This safety controller 100 measures the speed of the car 1 based on the output signal of the position sensor 50, and when it determines that the measured speed has reached a first overspeed, it outputs a command signal to cut off the power supply of the hoist 4 and the power supply of the elevator control device 6 that controls the hoist 4. In addition, when the safety controller 100 determines that the measured speed has reached a second overspeed, it outputs a command signal to operate the electric actuator 10.
 非常止め装置200が備える一対の制動子が引き上げロッド21によって引き上げられると、一対の制動子がガイドレール5を挟持する。引き上げロッド21は、電動操作器10によって駆動される。 When the pair of brakes provided on the emergency stop device 200 are pulled up by the lifting rod 21, the pair of brakes clamp the guide rail 5. The lifting rod 21 is driven by the electric actuator 10.
 以下、電動操作器10の構成および動作について説明する。なお、図1を参照しながら説明するが、図1に示されていない細部については、適宜、図2を参照する。 The configuration and operation of the electric actuator 10 will be explained below. Note that the explanation will be given with reference to FIG. 1, but for details not shown in FIG. 1, refer to FIG. 2 as appropriate.
 図1に示すように、操作レバー11と第1の作動片16が連結され、略T字状の第1リンク部材が構成される。操作レバー11および第1の作動片16はそれぞれT字の頭部および足部を構成する。略T字状の第1リンク部材は、操作レバー11と第1の作動片16の連結部において、図示しないクロスヘッドに回動可能に支持される。T字の足部となる第1の作動片16における操作レバー11と第1の作動片16の連結部とは反対側の端部に、一対の引き上げロッド21の一方(図中左側)の端部が接続される。 As shown in FIG. 1, the operating lever 11 and the first operating piece 16 are connected to form a roughly T-shaped first link member. The operating lever 11 and the first operating piece 16 form the head and foot of the T, respectively. The roughly T-shaped first link member is rotatably supported by a crosshead (not shown) at the connection between the operating lever 11 and the first operating piece 16. One end of a pair of lifting rods 21 (on the left side in the figure) is connected to the end of the first operating piece 16, which forms the foot of the T, on the opposite side to the connection between the operating lever 11 and the first operating piece 16.
 接続片17と第2の作動片18が連結され、略T字状の第2リンク部材が構成される。接続片17および第2の作動片18はそれぞれT字の頭部および足部を構成する。略T字状の第2リンク部材は、接続片17と第2の作動片18の連結部において、図示しないクロスヘッドに回動可能に支持される。T字の足部となる第2の作動片18における接続片17と第2の作動片18の連結部とは反対側の端部に、一対の引き上げロッド21の他方(図中左側)の端部が接続される。 The connecting piece 17 and the second operating piece 18 are connected to form a second link member that is approximately T-shaped. The connecting piece 17 and the second operating piece 18 form the head and foot of the T, respectively. The approximately T-shaped second link member is rotatably supported by a crosshead (not shown) at the connection between the connecting piece 17 and the second operating piece 18. The other end (left side in the figure) of the pair of lifting rods 21 is connected to the end of the second operating piece 18, which forms the foot of the T, on the opposite side to the connection between the connecting piece 17 and the second operating piece 18.
 筐体(図2における符号30)の内部から外部に伸びる操作レバー11の端部と、接続片17の両端部の内、乗りかご1の上部に近い端部とが、それぞれ、乗りかご1上に横たわる駆動軸12の一端(図中左側)と他端(図中右側)とに接続される。駆動軸12は、クロスヘッドに固定される固定部(図2における符号14)を摺動可能に貫通している。また、駆動軸12は、押圧部材(図2における符号15)を貫通し、押圧部材は駆動軸12に固定されている。なお、押圧部材15(図2)は、固定部の第2リンク部材(接続片17、第2の作動片18)側に位置する。固定部14(図2)と押圧部材15(図2)の間に、弾性体である駆動ばね(図2における符号13)が位置し、駆動ばね13(図2)には駆動軸12が挿通される。 The end of the operating lever 11 extending from the inside to the outside of the housing (reference number 30 in FIG. 2) and the end of the connecting piece 17 that is closest to the top of the car 1 are connected to one end (left side in FIG. 2) and the other end (right side in FIG. 2) of the drive shaft 12 lying on the car 1. The drive shaft 12 slidably passes through a fixed part (reference number 14 in FIG. 2) that is fixed to the crosshead. The drive shaft 12 also passes through a pressing member (reference number 15 in FIG. 2), which is fixed to the drive shaft 12. The pressing member 15 (FIG. 2) is located on the second link member (connecting piece 17, second operating piece 18) side of the fixed part. Between the fixed part 14 (FIG. 2) and the pressing member 15 (FIG. 2), a driving spring (reference number 13 in FIG. 2) that is an elastic body is located, and the drive shaft 12 is inserted into the drive spring 13 (FIG. 2).
 電動操作器10が作動すると、すなわち実施例では電磁石への通電が遮断されると、駆動ばね13(図2)の付勢力に抗して操作レバー11の動きを拘束する電磁力が消失するので、押圧部材15(図2)に加わる駆動ばね13(図2)の付勢力によって、駆動軸12が長手方向に沿って駆動される。このため、第1リンク部材(操作レバー11、第1の作動片16)が回動するとともに、第2リンク部材(接続片17、第2の作動片18)が回動する。これにより、第1リンク部材の第1の作動片16に接続される一方の引き上げロッド21が駆動されて引き上げられるとともに、第2リンク部材の第2の作動片18に接続される他方の引き上げロッド21が駆動されて引き上げられる。 When the electric actuator 10 is operated, that is, in this embodiment, when the power supply to the electromagnet is cut off, the electromagnetic force that constrains the movement of the operating lever 11 against the biasing force of the drive spring 13 (Fig. 2) disappears, and the drive shaft 12 is driven along the longitudinal direction by the biasing force of the drive spring 13 (Fig. 2) applied to the pressing member 15 (Fig. 2). As a result, the first link member (operating lever 11, first operating piece 16) rotates, and the second link member (connecting piece 17, second operating piece 18) rotates. As a result, one of the lifting rods 21 connected to the first operating piece 16 of the first link member is driven and pulled up, and the other lifting rod 21 connected to the second operating piece 18 of the second link member is driven and pulled up.
 図2は、実施例における電動操作器10の筐体30内に格納される機構部を示し、図1の設置状態における正面図である。なお、図2において、非常止め装置200(図1)は非作動状態であり、電動操作器10は待機状態にある。すなわち、エレベータは、通常の運転状態である。 FIG. 2 shows the mechanism stored in the housing 30 of the electric actuator 10 in the embodiment, and is a front view in the installed state of FIG. 1. In FIG. 2, the emergency stop device 200 (FIG. 1) is in an inoperative state, and the electric actuator 10 is in a standby state. In other words, the elevator is in a normal operating state.
 図2に示すように、待機状態においては、操作レバー11に接続されるアマチュア34が、励磁されている電磁石35に吸引されている。これにより、駆動ばね13(圧縮ばね)の付勢力に抗して、操作レバー11の動きが拘束されている。なお、操作レバー11は、アマチュア34に回動可能に設けられるブラケット38を介して、アマチュア34に接続される。また、アマチュア34における少なくとも電磁石35と吸着する部分は磁性体からなる。 As shown in FIG. 2, in the standby state, the armature 34 connected to the operating lever 11 is attracted to the excited electromagnet 35. This restricts the movement of the operating lever 11 against the biasing force of the drive spring 13 (compression spring). The operating lever 11 is connected to the armature 34 via a bracket 38 that is rotatably mounted on the armature 34. At least the portion of the armature 34 that is attracted to the electromagnet 35 is made of a magnetic material.
 図2中における他の機構部(36,37,40-42)については、後述する(図3)。 The other mechanisms (36, 37, 40-42) in Figure 2 will be described later (Figure 3).
 実施例においては、筐体30の上面となる筐体カバー31において操作レバー11が挿通する開口部に、この開口部を覆う可撓性のカバー部材32が設けられる。例えば、カバー部材32は、薄板状のゴム材からなる。カバー部材32が可撓性を有するので、非常止め装置を作動させるときの操作レバー11の動きは妨げられない。 In this embodiment, a flexible cover member 32 is provided on the housing cover 31, which is the top surface of the housing 30, at an opening through which the operating lever 11 passes, to cover this opening. For example, the cover member 32 is made of a thin rubber material. Because the cover member 32 is flexible, the movement of the operating lever 11 is not impeded when the emergency stop device is activated.
 カバー部材32よって、筐体30内への塵埃や異物などが侵入して、機構部に付着したり接触したりすることが抑制される。これにより、設置環境(昇降路内など)における電動操作器の動作の信頼性が向上する。したがって、非常止め装置の動作の信頼性が向上する。 The cover member 32 prevents dust and foreign objects from entering the housing 30 and adhering to or coming into contact with the mechanism. This improves the reliability of the operation of the electric actuator in the installation environment (such as inside the elevator shaft). This improves the reliability of the operation of the emergency stop device.
 実施例においては、さらに、操作レバー11に、板状部材33が設けられる。板状部材33は、ブラケット38と操作レバー11の接続部に固定されている。板状部材33の平面部は、筐体30内において、筐体カバー31において操作レバー11が挿通する開口部の直下およびその周辺の空間内に位置するとともに、開口部直下に位置する機構部上を覆う。これにより、筐体30内へ塵埃や異物などが侵入しても、塵埃や異物などが機構部に付着したり接触したりすることが防止される。これにより、設置環境(昇降路内など)における電動操作器の動作の信頼性がより確実に向上する。したがって、非常止め装置の動作の信頼性がより確実に向上する。 In the embodiment, a plate-like member 33 is further provided on the operating lever 11. The plate-like member 33 is fixed to the connection between the bracket 38 and the operating lever 11. The flat surface of the plate-like member 33 is located within the housing 30, directly below the opening in the housing cover 31 through which the operating lever 11 passes and in the space around it, and covers the mechanism located directly below the opening. This prevents dust, foreign matter, etc. from adhering to or coming into contact with the mechanism even if dust, foreign matter, etc. enters the housing 30. This more reliably improves the reliability of the operation of the electric operating device in the installation environment (such as in a hoistway). This more reliably improves the reliability of the operation of the emergency stop device.
 図3は、実施例における電動操作器10の筐体30内に格納される機構部を示し、図1の設置状態における正面図である。なお、図3において、非常止め装置200(図1)は制動状態であり、電動操作器10は作動状態にある。すなわち、エレベータ装置は、非常止め装置200により停止された状態である。 FIG. 3 shows the mechanism stored in the housing 30 of the electric actuator 10 in the embodiment, and is a front view in the installed state of FIG. 1. In FIG. 3, the emergency stop device 200 (FIG. 1) is in a braking state, and the electric actuator 10 is in an operating state. In other words, the elevator system is stopped by the emergency stop device 200.
 安全コントローラ100からの指令信号により、電磁石35の励磁が停止されると、アマチュア34に作用する吸引力が消失するので、駆動ばね13の付勢力が開放されて駆動軸12が駆動される。駆動軸12が駆動されると、駆動軸12に接続される操作レバー11が第1の作動軸19の回りに回動し、連動して、操作レバー11に連結される第1の作動片16が第1の作動軸19の回りに回動する。これにより、第1の作動片に接続される引き上げロッド21が引き上げられる。 When the excitation of the electromagnet 35 is stopped by a command signal from the safety controller 100, the attractive force acting on the armature 34 disappears, and the biasing force of the drive spring 13 is released to drive the drive shaft 12. When the drive shaft 12 is driven, the operating lever 11 connected to the drive shaft 12 rotates around the first operating shaft 19, and in conjunction with this, the first operating piece 16 connected to the operating lever 11 rotates around the first operating shaft 19. As a result, the lifting rod 21 connected to the first operating piece is lifted.
 上述のように操作レバー11が回動すると、操作レバー11に接続されるアマチュア34は、操作レバー11の回動方向に沿って移動する。電動操作器10を図2に示したような待機状態に復帰させるためには、次に述べるように、図2で説明を省略した機構部(36,37,40-42)によって、アマチュア34を移動位置(図3)から待機時の位置(図2)に戻す。 When the operating lever 11 rotates as described above, the armature 34 connected to the operating lever 11 moves in the direction of rotation of the operating lever 11. To return the electric operating device 10 to the standby state shown in FIG. 2, the armature 34 is returned from the moving position (FIG. 3) to the standby position (FIG. 2) by a mechanism (36, 37, 40-42) not described in FIG. 2, as described below.
 図3に示すように、電動操作器10は、アマチュア34を駆動するために基板40の平面部上に位置する送りねじ36を有する。送りねじは、基板40の平面上に固定される第1の支持部材41および第2の支持部材42によって回転可能に支持される。電磁石35は、ナット部を備えており、このナット部が送りねじ36と螺合する。送りねじ36は、モータ37によって回転される。 As shown in FIG. 3, the electric actuator 10 has a feed screw 36 located on the flat surface of the substrate 40 to drive the armature 34. The feed screw is rotatably supported by a first support member 41 and a second support member 42 fixed on the flat surface of the substrate 40. The electromagnet 35 has a nut portion, which screws into the feed screw 36. The feed screw 36 is rotated by a motor 37.
 電動操作器10を待機状態に復帰させるには、まず、電磁石35を励磁しながら、モータ37を駆動して送りねじを回転させる。回転する送りねじと電磁石35が備えるナット部とによって、モータの回転が、送りねじの軸方向に沿った電磁石35の直線的移動に変換される。これにより、電磁石35は、図3に示すアマチュア34の移動位置に近づき、アマチュア34は、電磁石35による電磁力が作用して、電磁石35に吸着する。アマチュア34が電磁石35に吸着したら、電磁石35の励磁を継続しながら、モータ37の回転方向を逆にして、送りねじを逆転させる。これにより、アマチュア34は、電磁石35とともに、待機時の位置まで移動する。 To return the electric actuator 10 to the standby state, first, while exciting the electromagnet 35, the motor 37 is driven to rotate the feed screw. The rotating feed screw and the nut portion of the electromagnet 35 convert the rotation of the motor into linear movement of the electromagnet 35 along the axial direction of the feed screw. As a result, the electromagnet 35 approaches the movement position of the armature 34 shown in FIG. 3, and the armature 34 is attracted to the electromagnet 35 due to the electromagnetic force of the electromagnet 35. Once the armature 34 is attracted to the electromagnet 35, the direction of rotation of the motor 37 is reversed while continuing to excite the electromagnet 35, and the feed screw is reversed. As a result, the armature 34 moves to the standby position together with the electromagnet 35.
 実施例において、板状部材33は筐体30内の空間内で操作レバー11に固定されているので、操作レバー11とともに動く。すなわち、板状部材33は、操作レバー11の動きを妨げない。 In the embodiment, the plate-like member 33 is fixed to the operating lever 11 within the space inside the housing 30, and therefore moves together with the operating lever 11. In other words, the plate-like member 33 does not interfere with the movement of the operating lever 11.
 なお、実施例においては、板状部材33を操作レバー11に固定するために、板状部材33と操作レバー11は、隙間なく嵌め合わされたり、接着剤や接合材により密着接続されたりしている。このため、板状部材33と操作レバー11は、これらの接続部に間隙が生じることなく、互いに接続されている。したがって、板状部材33により、塵埃や異物などが機構部に付着したり接触したりすることが確実に防止される。 In the embodiment, in order to fix the plate-like member 33 to the operating lever 11, the plate-like member 33 and the operating lever 11 are fitted together without any gaps or are tightly connected with an adhesive or bonding material. Therefore, the plate-like member 33 and the operating lever 11 are connected to each other without any gaps at their connection points. Therefore, the plate-like member 33 reliably prevents dust, foreign matter, etc. from adhering to or coming into contact with the mechanism.
 次に、実施例のエレベータが備える終端階強制減速装置について説明する。 Next, we will explain the terminal floor forced deceleration device equipped in the elevator of the embodiment.
 本実施例において、終端階強制減速装置は、巻上機4が備える電磁ブレーキ装置および安全コントローラ100によって構成され、さらに、安全コントローラ100によって制御される電動操作器10と、電動操作器10によって作動される非常止め装置200とを含む。 In this embodiment, the terminal floor forced deceleration device is composed of an electromagnetic brake device and a safety controller 100 provided on the hoisting machine 4, and further includes an electric actuator 10 controlled by the safety controller 100, and an emergency stop device 200 operated by the electric actuator 10.
 図4は、実施例における安全コントローラ100の構成を示す機能ブロック図である。なお、図4は、終端階強制減速、並びに非常停止に関わる安全コントローラ100の機能を示す。 FIG. 4 is a functional block diagram showing the configuration of the safety controller 100 in the embodiment. Note that FIG. 4 shows the functions of the safety controller 100 related to forced deceleration at the final floor and emergency stop.
 なお、実施例において、安全コントローラ100は、マイクロコンピュータなどのコンピュータシステムから構成される。コンピュータシステムが、所定のプログラムを実行することにより、各部として機能する。 In the embodiment, the safety controller 100 is composed of a computer system such as a microcomputer. The computer system executes a predetermined program to function as each part.
 図4に示すように、安全コントローラ100は、位置検出部101、過速閾値計算部102、第1過速判定部103、電源遮断部104、速度検出部105、第2過速判定部106、電動操作器作動部107、減速度計算部108、減速度判定部109を備えている。 As shown in FIG. 4, the safety controller 100 includes a position detection unit 101, an overspeed threshold calculation unit 102, a first overspeed determination unit 103, a power cutoff unit 104, a speed detection unit 105, a second overspeed determination unit 106, an electric actuator operation unit 107, a deceleration calculation unit 108, and a deceleration determination unit 109.
 位置検出部101は、乗りかご1の位置を検出するための位置センサ50が出力する検出信号に基づいて、昇降路の高さ方向における乗りかご1の位置を検出する。 The position detection unit 101 detects the position of the car 1 in the height direction of the elevator shaft based on the detection signal output by the position sensor 50 for detecting the position of the car 1.
 実施例では、位置センサ50として画像センサが適用されている。 In this embodiment, an image sensor is used as the position sensor 50.
 位置検出部101は、画像センサが取得するガイドレール5の露出表面の画像を画像処理して、乗りかご1の位置を検出する。例えば、位置検出部101は、2時点(時刻tおよび時刻t+Δt:Δtは例えばフレーム周期)における画像のずれΔdを画像相関法によって算出する。位置検出部101は、Δtごとに算出されるΔdを逐次積算することにより乗りかご1の移動距離dを算出し、さらに移動距離dに基づいて乗りかご1の位置を算出する。 The position detection unit 101 detects the position of the car 1 by image processing the image of the exposed surface of the guide rail 5 acquired by the image sensor. For example, the position detection unit 101 calculates the image shift Δd at two points in time (time t and time t+Δt: Δt is, for example, a frame period) by an image correlation method. The position detection unit 101 calculates the travel distance d of the car 1 by sequentially accumulating Δd calculated for each Δt, and further calculates the position of the car 1 based on the travel distance d.
 過速閾値計算部102は、位置検出部101によって検出された乗りかご1の位置に応じて、巻上機4を停止させることにより走行中の乗りかご1を非常停止させる場合の乗りかごの基準速度となる過速閾値を計算する。 The overspeed threshold calculation unit 102 calculates the overspeed threshold, which is the reference speed of the car when the car 1 is brought to an emergency stop while in motion by stopping the hoist 4, according to the position of the car 1 detected by the position detection unit 101.
 過速閾値計算部102は、乗りかご1の位置と過速閾値との関係を表す数式もしくはテーブルデータを用いて、過速閾値を計算する。例えば、過速閾値Vthは、乗りかごの1の位置からバッファ300の上面までの距離L、巻上機4が備える電磁ブレーキ装置(図示せず)による減速度の大きさa(>0:標準値)、およびバッファ300への乗りかご1の衝突速度V(許容値)を用いて、数式「Vth=(2a・L+V 1/2」によって計算される。 The overspeed threshold calculation unit 102 calculates the overspeed threshold by using a formula or table data that indicates the relationship between the position of the car 1 and the overspeed threshold. For example, the overspeed threshold Vth is calculated by the formula "Vth = (2a0·L + Vc2)1/2" using the distance L from the position of the car 1 to the upper surface of the buffer 300, the magnitude of deceleration a0 (>0: standard value) caused by an electromagnetic brake device ( not shown) provided in the hoist 4, and the collision speed Vc (allowable value) of the car 1 with the buffer 300 .
 過速閾値Vthは、乗りかご1の位置によって変化するが、最下階から離れると、数式による計算値が大きくなる。そのため、過速閾値計算部102は、計算値が前述の第1過速度以上である場合は、過速閾値を第1過速度に設定する。計算値が第1過速度よりも小さい場合は、過速閾値計算部102は、過速閾値を計算値に設定する。 The overspeed threshold Vth varies depending on the position of the car 1, but the value calculated by the formula increases as the car moves away from the lowest floor. Therefore, when the calculated value is equal to or greater than the above-mentioned first overspeed, the overspeed threshold calculation unit 102 sets the overspeed threshold to the first overspeed. When the calculated value is smaller than the first overspeed, the overspeed threshold calculation unit 102 sets the overspeed threshold to the calculated value.
 第1過速判定部103は、後述する速度検出部105によって検出された乗りかご1の速度が、過速閾値計算部によって設定された過速閾値より大であるかを判定する。 The first overspeed determination unit 103 determines whether the speed of the car 1 detected by the speed detection unit 105 described below is greater than the overspeed threshold set by the overspeed threshold calculation unit.
 電源遮断部104は、第1過速判定部103から乗りかご1の速度が過速閾値より大であるという判定結果を受けると、動力用電源から巻上機4への電力供給の遮断を指令する信号を送出する。これにより、巻上機4の駆動が停止されるとともに、巻上機4が備える電磁ブレーキ装置が開放状態から制動状態へ遷移する。したがって、乗りかご1は非常停止する。 When the power cutoff unit 104 receives a determination result from the first overspeed determination unit 103 that the speed of the car 1 is greater than the overspeed threshold, it sends a signal commanding the cutting off of the power supply from the power source to the hoist 4. This stops the drive of the hoist 4, and the electromagnetic brake device equipped in the hoist 4 transitions from an open state to a braking state. Therefore, the car 1 comes to an emergency stop.
 なお、実施例では、巻上機4が備える交流電動機が、インバータ装置からの交流電力によって可変速駆動される。インバータ装置は、電磁コンタクタを介して動力用電源に接続される。インバータ装置は、動力用電源からの電力を、交流電動機を駆動するための交流電力に変換する。電源遮断部104からの信号により、電磁コンタクタの接点が開放されると、動力用電源からインバータ装置への電力供給が遮断される。 In the embodiment, the AC motor provided in the hoisting machine 4 is driven at a variable speed by AC power from the inverter device. The inverter device is connected to the power source for the drive via an electromagnetic contactor. The inverter device converts the power from the power source for the drive into AC power for driving the AC motor. When the contacts of the electromagnetic contactor are opened by a signal from the power source cutoff unit 104, the power supply from the power source for the drive to the inverter device is cut off.
 速度検出部105は、位置センサ50が出力する検出信号に基づいて、乗りかご1の速度を検出する。 The speed detection unit 105 detects the speed of the car 1 based on the detection signal output by the position sensor 50.
 速度検出部105は、位置センサ50すなわち画像センサが取得するガイドレール5の露出表面の画像を画像処理して、乗りかご1の速度を検出する。例えば、位置検出部101は、位置検出部と同様に、2時点(時刻tおよび時刻t+Δt:Δtは例えばフレーム周期)における画像のずれΔdを画像相関法によって算出する。さらに、速度検出部105は、算出された画像のずれΔdを用いて乗りかご1の速度(=Δd/Δt)を算出する。 The speed detection unit 105 detects the speed of the car 1 by image processing the image of the exposed surface of the guide rail 5 acquired by the position sensor 50, i.e., the image sensor. For example, the position detection unit 101, like the position detection unit, calculates the image shift Δd at two points in time (time t and time t+Δt: Δt is, for example, a frame period) by image correlation. Furthermore, the speed detection unit 105 calculates the speed of the car 1 (= Δd/Δt) using the calculated image shift Δd.
 第2過速判定部106は、速度検出部105によって検出された乗りかご1の速度が、予め設定される非常止め作動閾値より大であるかを判定する。非常止め作動閾値は、前述の第2過速度の値に等しい。 The second overspeed determination unit 106 determines whether the speed of the car 1 detected by the speed detection unit 105 is greater than a preset emergency stop activation threshold. The emergency stop activation threshold is equal to the second overspeed value described above.
 電動操作器作動部107は、第2過速判定部106から乗りかご1の速度が非常止め作動閾値より大であるという判定結果を受けると、電動操作器10の作動を指令する信号を送出する。これにより、電動操作器10が作動するので、非常止め装置200が動作する。したがって、乗りかご1は非常停止する。 When the electric actuator operating unit 107 receives a judgment result from the second overspeed judgment unit 106 that the speed of the car 1 is greater than the emergency stop operation threshold, it sends a signal commanding the operation of the electric actuator 10. This causes the electric actuator 10 to operate, and the emergency stop device 200 to operate. Therefore, the car 1 comes to an emergency stop.
 なお、電動操作器作動部107は、後述する減速度判定部109から判定結果を受けた時にも、電動操作器10の作動を指令する信号を送出する。 In addition, the electric actuator actuation unit 107 also sends a signal to command the operation of the electric actuator 10 when it receives a judgment result from the deceleration judgment unit 109 described below.
 減速度計算部108は、速度検出部105によって検出された乗りかご1の速度(v)に基づいて、乗りかご1の減速度を計算する。 The deceleration calculation unit 108 calculates the deceleration of the car 1 based on the speed (v) of the car 1 detected by the speed detection unit 105.
 時刻t,t(=t+Δt)間の画像のずれをΔdとし、時刻t,t(=t+Δt)間の画像のずれをΔdとすると、速度検出部105によって検出される乗りかご1の速度は、時刻tにおいてはΔd/Δt(=v)であり、時刻t2においてはΔd/Δt(=v)である。減速度計算部108は、v,vに基づいて減速度a(=(v-v)/Δt=(Δd-Δd)/(Δt))を算出する。なお、aの計算値は、乗りかご1が減速している場合は負となり、乗りかご1が増速している場合は正となる。 If the image shift between times t0 and t1 (= t0 +Δt) is Δd1 , and the image shift between times t1 and t2 (= t1 +Δt) is Δd2 , the speed of car 1 detected by the speed detection unit 105 is Δd1 /Δt (= v1 ) at time t1 , and Δd2 /Δt (= v2 ) at time t2. The deceleration calculation unit 108 calculates the deceleration a (=( v2 -v1 )/Δt=( Δd2 -Δd1 )/(Δt) 2 ) based on v1 and v2 . The calculated value of a is negative if car 1 is decelerating, and positive if car 1 is accelerating.
 減速度判定部109は、減速度計算部108によって計算された減速度が予め設定されている閾値よりも小であるかを判定する。減速度判定部109は、まず、減速度計算部108によって算出された減速度aが負であるかを判定し、すなわち乗りかご1が減速中であるかを判定し、減速中である場合、a(<0)の大きさ(|a|または-a)が、閾値ath(>0)よりも小であるかを判定する。 The deceleration determination unit 109 determines whether the deceleration calculated by the deceleration calculation unit 108 is smaller than a preset threshold value. The deceleration determination unit 109 first determines whether the deceleration a calculated by the deceleration calculation unit 108 is negative, i.e., determines whether the car 1 is decelerating, and if it is decelerating, determines whether the magnitude (|a| or −a) of a (<0) is smaller than a threshold value a th (>0).
 実施例において、閾値athとしては、経年変化などにより電磁ブレーキ装置の制動力が変動する前における減速度の大きさすなわち標準値(前述のa)が設定される。 In this embodiment, the threshold value a th is set to the magnitude of the deceleration before the braking force of the electromagnetic brake device fluctuates due to aging or the like, that is, the standard value (a 0 described above).
 電動操作器作動部107は、減速度判定部109から、乗りかご1の減速度の大きさが閾値athよりも小であるという判定結果を受けると、電動操作器10の作動を指令する信号を送出する。これにより、電動操作器10が作動するので、非常止め装置200が動作するので、バッファ300への乗りかご1の衝突速度が抑制される。 When the electric operator actuation unit 107 receives a determination result from the deceleration determination unit 109 that the magnitude of the deceleration of the car 1 is smaller than the threshold value a th , it sends out a signal to command the operation of the electric operator 10. This causes the electric operator 10 to operate, and the safety device 200 to operate, thereby suppressing the collision speed of the car 1 with the buffer 300.
 実施例によれば、電磁ブレーキ装置の制動力が経年変化などにより変動した場合に、非常止め装置200によってバッファ300への乗りかご1の衝突速度が抑制される。これにより、バッファ300は、制動力の変動を考慮した余裕を持たせることなく、標準的な減速度が得られる場合の衝突速度に対応できればよい。 According to the embodiment, if the braking force of the electromagnetic brake device fluctuates due to aging or the like, the collision speed of the car 1 with the buffer 300 is suppressed by the emergency stop device 200. As a result, the buffer 300 only needs to be able to handle the collision speed when a standard deceleration is obtained, without having to provide a margin to account for fluctuations in the braking force.
 上記従来技術では、衝突速度の大きさが機械的ブレーキの制動力に依存するため、経年変化などによる制動力の変動を考慮すると、バッファが対応すべき衝突速度が大きくなる。 In the above conventional technology, the magnitude of the collision speed depends on the braking force of the mechanical brake, so when considering fluctuations in braking force due to aging, etc., the collision speed that the buffer must respond to becomes large.
 図5は、実施例における安全コントローラ100の処理動作を示すフローチャートである。以下、図4を適宜参照しながら、説明する。 FIG. 5 is a flowchart showing the processing operation of the safety controller 100 in the embodiment. The following explanation will be given with reference to FIG. 4 as appropriate.
 安全コントローラ100は、処理を開始すると、ステップS1において、乗りかご1が下降中であるかを判定する。 When the safety controller 100 starts processing, in step S1 it determines whether the car 1 is descending.
 位置センサ50によって取得される画像は、乗りかご1の上昇および下降に応じて、画像フレーム中において、それぞれ下方向および上方向にずれる。したがって、上述した画像のずれΔdに、画像がずれる方向に応じて正負を設定すれば、速度検出部105によって検出される速度の正負に応じて、乗りかご1の上昇および下降が判定できる。実施例において、安全コントローラ100は、速度検出部105によって検出された速度を速度検出部105から受ける第2過速判定部106を用いて、乗りかご1が下降中であるかを判定する。 The image acquired by the position sensor 50 is shifted downward and upward in the image frame in accordance with the ascent and descent of the car 1, respectively. Therefore, by setting the above-mentioned image shift Δd to positive or negative depending on the direction of image shift, it is possible to determine whether the car 1 is ascending or descending depending on the positive or negative value of the speed detected by the speed detection unit 105. In the embodiment, the safety controller 100 determines whether the car 1 is descending using the second overspeed determination unit 106 that receives the speed detected by the speed detection unit 105 from the speed detection unit 105.
 安全コントローラ100は、乗りかごが下降中ではないと判定すると(ステップS1のNO)、再度、ステップS1を実行する。安全コントローラ100は、乗りかごが下降中であると判定すると(ステップS1のYES)、次に、ステップS2を実行する。 If the safety controller 100 determines that the car is not descending (NO in step S1), it executes step S1 again. If the safety controller 100 determines that the car is descending (YES in step S1), it then executes step S2.
 ステップS2において、安全コントローラ100は、第2過速判定部106を用いて、速度検出部105によって検出された乗りかご1の速度が、非常止め作動閾値(=第2過速度)より大であるかを判定する。安全コントローラ100は、乗りかご1の速度が、非常止め作動閾値より大であると判定すると(ステップS2のYES)、次に、ステップS7を実行する。安全コントローラ100は、乗りかご1の速度が、非常止め作動閾値より大ではないと判定すると(ステップS2のNO)、次に、ステップS3を実行する。 In step S2, the safety controller 100 uses the second overspeed determination unit 106 to determine whether the speed of the car 1 detected by the speed detection unit 105 is greater than the emergency stop activation threshold (= second overspeed). If the safety controller 100 determines that the speed of the car 1 is greater than the emergency stop activation threshold (YES in step S2), it then executes step S7. If the safety controller 100 determines that the speed of the car 1 is not greater than the emergency stop activation threshold (NO in step S2), it then executes step S3.
 ステップS3において、安全コントローラ100は、第1過速判定部103を用いて、速度検出部105によって検出された乗りかご1の速度が、過速閾値計算部102によって算出された過速閾値(前述のVth)より大であるかを判定する。安全コントローラ100は、乗りかご1の速度が、過速閾値より大であると判定すると(ステップS3のYES)、次に、ステップS4を実行する。安全コントローラ100は、乗りかご1の速度が、過速閾値より大ではないと判定すると(ステップS3のNO)、再度、ステップS1を実行する。 In step S3, the safety controller 100 uses the first overspeed determination unit 103 to determine whether the speed of the car 1 detected by the speed detection unit 105 is greater than the overspeed threshold (the above-mentioned V th ) calculated by the overspeed threshold calculation unit 102. If the safety controller 100 determines that the speed of the car 1 is greater than the overspeed threshold (YES in step S3), it then executes step S4. If the safety controller 100 determines that the speed of the car 1 is not greater than the overspeed threshold (NO in step S3), it executes step S1 again.
 ステップS4において、安全コントローラ100は、電源遮断部104を用いて、動力電源から巻上機4への電力供給を遮断する。安全コントローラ100は、ステップS4を実行すると、次にステップS5を実行する。 In step S4, the safety controller 100 uses the power cutoff unit 104 to cut off the power supply from the drive power source to the hoist 4. After executing step S4, the safety controller 100 then executes step S5.
 ステップS5において、安全コントローラ100は、減速度計算部108を用いて、速度検出部105によって検出された乗りかご1の速度に基づいて乗りかご1の減速度(前述のa)を算出する。安全コントローラは、ステップS5を実行すると、次にステップS6を実行する。 In step S5, the safety controller 100 uses the deceleration calculation unit 108 to calculate the deceleration of the car 1 (above-mentioned a) based on the speed of the car 1 detected by the speed detection unit 105. After executing step S5, the safety controller then executes step S6.
 ステップS6において、安全コントローラ100は、減速度判定部109を用いて、ステップS5において算出した乗りかご1の減速度の大きさが所定の閾値(前述のath)より小であるかを判定する。安全コントローラ100は、減速度の大きさが閾値より小であると判定すると(ステップS6のYES)、次に、ステップS7を実行する。安全コントローラ100は、減速度の大きさが閾値より小ではないと判定すると(ステップS6のNO)、再度、ステップS6を実行する。 In step S6, the safety controller 100 uses the deceleration determination unit 109 to determine whether the magnitude of the deceleration of the car 1 calculated in step S5 is smaller than a predetermined threshold value (the above-mentioned a th ). If the safety controller 100 determines that the magnitude of the deceleration is smaller than the threshold value (YES in step S6), it then executes step S7. If the safety controller 100 determines that the magnitude of the deceleration is not smaller than the threshold value (NO in step S6), it executes step S6 again.
 ステップS7において、安全コントローラ100は、電動操作器作動部107を用いて電動操作器10の作動を指令する信号を送出することにより、電動操作器10を作動させる。これにより、安全コントローラ100がステップS2の次にステップS7を実行する場合、非常止め装置200が作動して乗りかご1が非常停止される。また、安全コントローラ100がステップS6の次にステップS7を実行する場合、非常止め装置200が作動して乗りかご1が制動されるので、バッファ3001)への乗りかご1の衝突速度が抑制される。 In step S7, the safety controller 100 operates the electric operator 10 by sending a signal commanding operation of the electric operator 10 using the electric operator operating unit 107. As a result, when the safety controller 100 executes step S7 after step S2, the emergency stop device 200 is activated and the car 1 is brought to an emergency stop. Also, when the safety controller 100 executes step S7 after step S6, the emergency stop device 200 is activated and the car 1 is braked, thereby suppressing the collision speed of the car 1 with the buffer 3001).
 安全コントローラは、ステップS7を実行すると、一連の処理を終了する。 Once the safety controller executes step S7, it ends the series of processes.
 図6は、実施例における乗りかご1の速度および位置の間の関係の一例を示すグラフである。図6では、乗りかご1の速度および位置を、それぞれ、「かご速度」および「かご位置」と記す。 FIG. 6 is a graph showing an example of the relationship between the speed and position of car 1 in the embodiment. In FIG. 6, the speed and position of car 1 are denoted as "car speed" and "car position", respectively.
 なお、図6は、終端階すなわち最下階における乗りかご1の停止動作を示している。 Note that Figure 6 shows the stopping operation of car 1 at the terminal floor, i.e., the lowest floor.
 乗りかご1は、通常走行の場合、巻上機4が備える電動機の減速制御により、最下階に向かって減速して、最下階に停止する。 When the car 1 is running normally, the electric motor of the hoist 4 is controlled to decelerate, causing the car 1 to decelerate towards the lowest floor and stop at the lowest floor.
 乗りかご1は、異常発生の場合、減速されずに走行する。そのため、かご速度が過速閾値Vthを超えると、安全コントローラ100は、巻上機4の電源を遮断する(図4の「電源遮断部104」、図5のステップS4を参照)。 If an abnormality occurs, the car 1 will travel without slowing down. Therefore, if the car speed exceeds the overspeed threshold Vth, the safety controller 100 will cut off the power supply to the hoist 4 (see "power cutoff unit 104" in Figure 4 and step S4 in Figure 5).
 乗りかご1の減速度の大きさが標準値(前述のa)を維持している場合、乗りかご1は、バッファの衝突速度許容値以下の速度で、バッファの上面に到達する。 When the magnitude of the deceleration of the car 1 is maintained at the standard value (a 0 described above), the car 1 reaches the upper surface of the buffer at a speed equal to or lower than the allowable collision speed of the buffer.
 乗りかご1の減速度の大きさが、電磁ブレーキ装置の制動力の変動により、閾値(前述のath(=a))より小さくなっている場合、電動操作器10が作動して非常止め装置200が動作するので、乗りかご1は、バッファの衝突速度許容値の範囲内の速度で、バッファの上面に到達する。 If the magnitude of the deceleration of the car 1 becomes smaller than the threshold value (a th (=a 0 ) described above) due to fluctuations in the braking force of the electromagnetic brake device, the electric actuator 10 is activated and the emergency stop device 200 operates, causing the car 1 to reach the top surface of the buffer at a speed within the range of the buffer's allowable collision speed.
 これに対し、比較例では、非常止め装置は動作させず、電磁ブレーキ装置の制動力によって、バッファに対する乗りかごの衝突速度が抑制される。このため、電磁ブレーキ装置の制動力の変動による減速度の低下を見込んで、衝突速度許容値が大きなバッファが適用される。 In contrast, in the comparative example, the emergency stop device is not activated, and the collision speed of the car against the buffer is suppressed by the braking force of the electromagnetic brake device. For this reason, a buffer with a large collision speed tolerance is applied, anticipating a decrease in deceleration due to fluctuations in the braking force of the electromagnetic brake device.
 上述の実施例による終端階強制減速装置においては、終端階(最下階)において、乗りかご1の速度が、乗りかご1の位置に応じた過速閾値Vthを超えたら、巻上機4への電力供給を遮断するとともに、巻上機が備える電磁ブレーキ装置を作動させて乗りかごを減速し、乗りかごの減速度の大きさが所定の閾値ath(=標準値a)よりも小である場合、電動操作器10を作動させて非常止め装置200を動作させる。これにより、電磁ブレーキ装置の制動力が経年変化などにより変動しても、バッファへの乗りかごの衝突速度を抑制することができるしたがって、バッファの衝突速度許容値を低減することができる。 In the terminal floor forced deceleration device according to the above embodiment, when the speed of the car 1 at the terminal floor (lowest floor) exceeds an overspeed threshold Vth corresponding to the position of the car 1, the power supply to the hoist 4 is cut off and the electromagnetic brake device provided in the hoist is activated to decelerate the car, and when the magnitude of the deceleration of the car is smaller than a predetermined threshold ath (=standard value a0 ), the electric operator 10 is operated to operate the emergency stop device 200. As a result, even if the braking force of the electromagnetic brake device fluctuates due to aging or the like, the collision speed of the car with the buffer can be suppressed, and therefore the allowable collision speed value of the buffer can be reduced.
 なお、本発明は前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加、削除、他の構成への置き換えをすることが可能である。 The present invention is not limited to the above-described embodiment, but includes various modified examples. For example, the above-described examples have been described in detail to clearly explain the present invention, and the present invention is not necessarily limited to having all of the configurations described. In addition, it is possible to add or delete other configurations or replace some of the configurations of the examples with other configurations.
 例えば、位置センサ50としては、画像センサのほか、乗りかごに設けられ、乗りかごの移動とともに回転する回転検出器(例えば、ロータリーエンコーダ)を用いてもよい。また、乗りかごの移動を検出できるセンサ、例えば速度センサなどであれば、位置センサ50に替えて、用いることができる。速度センサを用いる場合、位置検出部101は、速度を積分して位置を検出する。 For example, the position sensor 50 may be an image sensor or a rotation detector (e.g., a rotary encoder) that is provided in the car and rotates with the movement of the car. Also, any sensor that can detect the movement of the car, such as a speed sensor, may be used in place of the position sensor 50. When a speed sensor is used, the position detection unit 101 detects the position by integrating the speed.
 電動操作器10は、乗りかご1の上部のほか、乗りかご1の側部や下部に設けられてもよい。 The electric actuator 10 may be provided on the top of the car 1, as well as on the side or bottom of the car 1.
 エレベータは、巻上機やエレベータ制御装置が昇降路内に設置される、いわゆる機械室レスエレベータでもよい。 The elevator may be a so-called machine room-less elevator, in which the hoist and elevator control device are installed inside the hoistway.
1…乗りかご、2…釣合おもり、3…主ロープ、4…巻上機、5…ガイドレール、6…エレベータ制御装置、7…テールコード、10…電動操作器、11…操作レバー、12…駆動軸、13…駆動ばね、14…固定部、15…押圧部材、16…作動片、17…接続片、18…作動片、19…作動軸、20…作動軸、21…引き上げロッド、30…筐体、31…筐体カバー、32…カバー部材、33…板状部材、34…アマチュア、35…電磁石、36…送りねじ、37…モータ、38…ブラケット、40…基板、41…支持部材、42…支持部材、50…位置センサ、100…安全コントローラ、101…位置検出部、102…過速閾値計算部、103…第1過速判定部、104…電源遮断部、105…速度検出部、106…第2過速判定部、107…電動操作器作動部、108…減速度計算部、109…減速度判定部、200…非常止め装置、300…バッファ 1...car, 2...counterweight, 3...main rope, 4...hoist, 5...guide rail, 6...elevator control device, 7...tail cord, 10...electric actuator, 11...operating lever, 12...drive shaft, 13...drive spring, 14...fixed portion, 15...pressure member, 16...operating piece, 17...connecting piece, 18...operating piece, 19...operating shaft, 20...operating shaft, 21...lifting rod, 30...casing, 31...casing cover, 32...cover member, 33...plate-shaped member, 34...armature, 3 5...electromagnet, 36...feed screw, 37...motor, 38...bracket, 40...board, 41...support member, 42...support member, 50...position sensor, 100...safety controller, 101...position detection unit, 102...overspeed threshold calculation unit, 103...first overspeed determination unit, 104...power cutoff unit, 105...speed detection unit, 106...second overspeed determination unit, 107...electrical actuator operation unit, 108...deceleration calculation unit, 109...deceleration determination unit, 200...emergency stop device, 300...buffer

Claims (9)

  1.  昇降路の底部にバッファが設けられるエレベータの乗りかごの速度が、前記乗りかごの位置に応じて設定される所定の過速閾値を超えたら、巻上機への電力供給を遮断するとともにブレーキ装置を作動させて前記乗りかごを減速する終端階強制減速装置において、
     前記乗りかごに設けられる非常止め装置と、
     前記乗りかごに設けられ、前記非常止め装置を動作させる電動操作器と、
     前記電動操作器を作動させる安全制御装置と、
    を備え、
     前記安全制御装置は、前記乗りかごの減速度に応じて前記電動操作器を作動させることを特徴とする終端階強制減速装置。
    A terminal floor forced deceleration device that cuts off power supply to a hoist and activates a brake device to decelerate an elevator car having a buffer at the bottom of a hoistway when the speed of the elevator car exceeds a predetermined overspeed threshold set according to the position of the elevator car,
    An emergency stop device provided in the car;
    An electric operating device provided in the car for operating the safety device;
    A safety control device that operates the electric actuator;
    Equipped with
    A terminal floor forced deceleration device characterized in that the safety control device operates the electric operator in accordance with the deceleration of the elevator car.
  2.  請求項1に記載の終端階強制減速装置において、
     前記安全制御装置は、前記減速度が所定の閾値より小であるときに、前記電動操作器を作動させることを特徴とする終端階強制減速装置。
    In the terminal stage forced deceleration device according to claim 1,
    The terminal floor forced deceleration device is characterized in that the safety control device activates the electric actuator when the deceleration is smaller than a predetermined threshold value.
  3.  請求項2に記載の終端階強制減速装置において、
     前記安全制御装置は、
     移動センサの検出信号に基づいて、前記乗りかごの前記位置を検出する位置検出部と、
     前記移動センサの前記検出信号に基づいて、前記乗りかごの前記速度を検出する速度検出部と、
     前記速度検出部によって検出される前記乗りかごの前記速度に基づいて、前記乗りかごの前記減速度を計算する減速度計算部と、
     前記減速度計算部によって計算される前記減速度が、前記所定の閾値より小であるかを判定する減速度判定部と、
    を備えることを特徴とする終端階強制減速装置。
    In the terminal stage forced deceleration device according to claim 2,
    The safety control device includes:
    A position detection unit that detects the position of the elevator car based on a detection signal of a movement sensor;
    A speed detection unit that detects the speed of the car based on the detection signal of the movement sensor;
    A deceleration calculation unit that calculates the deceleration of the car based on the speed of the car detected by the speed detection unit;
    a deceleration determination unit that determines whether the deceleration calculated by the deceleration calculation unit is smaller than the predetermined threshold value;
    A terminal floor forced deceleration device comprising:
  4.  請求項2に記載の終端階強制減速装置において、
     前記所定の閾値は、前記ブレーキ装置による前記減速度の標準値が設定されることを特徴とする終端階強制減速装置。
    In the terminal stage forced deceleration device according to claim 2,
    A terminal floor forced deceleration device, characterized in that the predetermined threshold value is set to a standard value of the deceleration by the brake device.
  5.  請求項1に記載の終端階強制減速装置において、
     前記安全制御装置は、
     前記乗りかごの前記位置に基づいて、前記過速閾値を計算する過速閾値計算部を備えることを特徴とする終端階強制減速装置。
    In the terminal stage forced deceleration device according to claim 1,
    The safety control device includes:
    A terminal floor forced deceleration device characterized by having an overspeed threshold calculation unit that calculates the overspeed threshold based on the position of the elevator.
  6.  請求項1に記載の終端階強制減速装置において、
     前記安全制御装置は、
     前記乗りかごの前記速度が、所定の第1過速度を超えたら、前記ブレーキ装置によって前記乗りかごを非常停止させ、
     前記乗りかごの前記速度が、所定の第2過速度を超えたら、前記非常止め装置によって前記乗りかごを非常停止させることを特徴とする終端階強制減速装置。
    In the terminal stage forced deceleration device according to claim 1,
    The safety control device includes:
    When the speed of the car exceeds a predetermined first overspeed, the car is brought to an emergency stop by the brake device;
    A terminal floor forced deceleration device characterized in that when the speed of the elevator car exceeds a predetermined second overspeed, the emergency stop device brings the elevator car to an emergency stop.
  7.  請求項1に記載の終端階強制減速装置において、
     前記エレベータは、前記乗りかごの通常運転を制御するエレベータ制御装置を備え、
     前記乗りかごは、前記通常運転において、前記エレベータ制御装置によって、停止階に向かって減速制御されることを特徴とする終端階強制減速装置。
    In the terminal stage forced deceleration device according to claim 1,
    The elevator includes an elevator control device that controls a normal operation of the elevator car,
    A terminal floor forced deceleration device characterized in that, during normal operation, the elevator car is controlled by the elevator control device to decelerate toward a stopping floor.
  8.  請求項1に記載の終端階強制減速装置において、
     前記電動操作器は、電磁石と、前記電磁石が消磁されると前記非常止め装置を駆動する機構部と、を備えることを特徴とする終端階強制減速装置。
    In the terminal stage forced deceleration device according to claim 1,
    The terminal floor forced deceleration device characterized in that the electric actuator includes an electromagnet and a mechanism that drives the emergency stop device when the electromagnet is demagnetized.
  9.  請求項3に記載の終端階強制減速装置において、
     前記移動センサは、画像センサであることを特徴とする終端階強制減速装置。
    In the terminal stage forced deceleration device according to claim 3,
    The terminal floor forced deceleration device is characterized in that the movement sensor is an image sensor.
PCT/JP2022/044863 2022-12-06 2022-12-06 Terminal floor forced deceleration device for elevator WO2024121925A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044863 WO2024121925A1 (en) 2022-12-06 2022-12-06 Terminal floor forced deceleration device for elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044863 WO2024121925A1 (en) 2022-12-06 2022-12-06 Terminal floor forced deceleration device for elevator

Publications (1)

Publication Number Publication Date
WO2024121925A1 true WO2024121925A1 (en) 2024-06-13

Family

ID=91378792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044863 WO2024121925A1 (en) 2022-12-06 2022-12-06 Terminal floor forced deceleration device for elevator

Country Status (1)

Country Link
WO (1) WO2024121925A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231355A (en) * 2003-01-30 2004-08-19 Mitsubishi Electric Corp Brake controller of elevator
WO2005115904A1 (en) * 2004-05-25 2005-12-08 Mitsubishi Denki Kabushiki Kaisha Emergency stop device of elevator
WO2007088599A1 (en) * 2006-02-01 2007-08-09 Mitsubishi Denki Kabushiki Kaisha Door device for elevator
JP2008056428A (en) * 2006-08-31 2008-03-13 Toshiba Elevator Co Ltd Elevator control device
JP2009091089A (en) * 2007-10-05 2009-04-30 Hitachi Ltd Elevator safe stop method and safe stop system
CN101927929A (en) * 2004-12-15 2010-12-29 三菱电机株式会社 Elevator emergency stop device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231355A (en) * 2003-01-30 2004-08-19 Mitsubishi Electric Corp Brake controller of elevator
WO2005115904A1 (en) * 2004-05-25 2005-12-08 Mitsubishi Denki Kabushiki Kaisha Emergency stop device of elevator
CN101927929A (en) * 2004-12-15 2010-12-29 三菱电机株式会社 Elevator emergency stop device
WO2007088599A1 (en) * 2006-02-01 2007-08-09 Mitsubishi Denki Kabushiki Kaisha Door device for elevator
JP2008056428A (en) * 2006-08-31 2008-03-13 Toshiba Elevator Co Ltd Elevator control device
JP2009091089A (en) * 2007-10-05 2009-04-30 Hitachi Ltd Elevator safe stop method and safe stop system

Similar Documents

Publication Publication Date Title
JP5247690B2 (en) Elevator safety device
EP1980519B1 (en) Door device for elevator
JP4709650B2 (en) Remote resettable ropeless emergency stop for elevators
US6564907B1 (en) Elevator having emergency stop device
JP5191907B2 (en) Elevator equipment
JP7292230B2 (en) Emergency stop device and elevator
JPWO2006103768A1 (en) Elevator equipment
WO2021166144A1 (en) Elevator device
EP1749785B1 (en) Elevator controller
JP2004224492A (en) Elevator device
WO2024121925A1 (en) Terminal floor forced deceleration device for elevator
JP7407936B2 (en) elevator equipment
CN114072344B (en) Elevator device
JP7319473B2 (en) elevator equipment
CN113879935A (en) Safety gear arrangement, elevator system and method for operating a safety gear of an elevator system
WO2023047561A1 (en) Elevator device
JPWO2002053485A1 (en) Elevator emergency braking system
EP1724225B1 (en) Emergency brake device of elevator
WO2023026423A1 (en) Elevator device
WO2023037538A1 (en) Elevator apparatus
WO2022201529A1 (en) Elevator apparatus
JP7505119B2 (en) Elevator Equipment
JP2023030908A (en) Elevator device