WO2024119641A1 - 一种城市污水再生利用耦合多源能量的提取*** - Google Patents

一种城市污水再生利用耦合多源能量的提取*** Download PDF

Info

Publication number
WO2024119641A1
WO2024119641A1 PCT/CN2023/080366 CN2023080366W WO2024119641A1 WO 2024119641 A1 WO2024119641 A1 WO 2024119641A1 CN 2023080366 W CN2023080366 W CN 2023080366W WO 2024119641 A1 WO2024119641 A1 WO 2024119641A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
water
utilization
source
heat
Prior art date
Application number
PCT/CN2023/080366
Other languages
English (en)
French (fr)
Inventor
郑兴灿
尚巍
张钰婷
孙永利
李鹏峰
夏琼琼
郭亚琼
杨敏
隋克俭
马换梅
陈轶
顾淼
Original Assignee
中国市政工程华北设计研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国市政工程华北设计研究总院有限公司 filed Critical 中国市政工程华北设计研究总院有限公司
Publication of WO2024119641A1 publication Critical patent/WO2024119641A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • F02B2043/106Hydrogen obtained by electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to the technical field of sewage resource energy recovery and utilization, and in particular relates to an urban sewage recycling and utilization coupled multi-source energy extraction system.
  • domestic and foreign sewage treatment plants mainly achieve energy saving and consumption reduction, energy self-balance and even energy output in sewage treatment plants by recovering organic matter chemical energy and potential heat energy in sewage, using renewable energy (wind energy, solar energy, etc.), and upgrading sewage regeneration processes and systems.
  • Patent CN113800631A proposes a comprehensive energy utilization system and method for solar energy for sewage treatment plants.
  • the heat generated by the photovoltaic system is provided to the sewage anaerobic treatment device and the plant area for heating.
  • the generated biogas is used for power generation to meet the user's electricity demand, and the waste heat or sewage heat pump supplements the heating system.
  • the invention patent with publication number CN109972161A constructs a distributed power generation and hydrogen production system based on sewage treatment plants, which uses wind and solar complementary power generation to generate electricity to achieve water electrolysis to produce hydrogen and oxygen.
  • sewage source heat energy and organic chemical energy in sewage.
  • the coordinated use of renewable energy, surplus electricity and other multi-power energy sources to electrolyze recycled water to produce hydrogen can form a multi-energy pathway mutual feedback system for sewage treatment plants, and realize the construction of energy output plants with multi-energy coordinated utilization for medium- and long-term low-carbon operation.
  • the above patents can extract and utilize part of the energy in sewage, however, a large number of energy points in sewage still need to be developed, energy utilization methods need to be further expanded, and comprehensive utilization methods of electrolysis by-products still need to be explored.
  • the purpose of the present invention is to provide a system for extracting urban sewage recycling coupled with multi-source energy, which can meet the important demand for the transformation of sewage treatment from single reduction of pollutants to coupled pollution reduction and carbon reduction and production capacity.
  • purifying sewage through the efficient extraction and diversified utilization of sewage thermal energy, enhanced extraction of organic matter and electrochemical efficient methane production, multi-power source complementary electrolysis of recycled water to produce hydrogen and by-product utilization technology research, an energy-type sewage regeneration full-process reaction system is constructed, which can transform energy from disordered dissipation to an orderly state of aggregation, and finally realize the efficient conversion of sewage and sludge into resource energy production.
  • the technical solution adopted in the embodiment of the present invention is: a system for extracting urban sewage recycling coupled with multi-source energy, including a low-carbon sewage treatment system, a sludge treatment system, a heat extraction and utilization system, an efficient methane production system, an electrolysis recycled water hydrogen production and by-product utilization system and a cogeneration system;
  • the low-carbon sewage treatment system comprises a grid, a grit chamber, a carbon source collection unit, a primary sedimentation tank, a biofilm denitrification device, a deep phosphorus removal device and a disinfection device, which are arranged in sequence; the carbon source collection unit is connected to the sludge treatment system;
  • the water outlet of the low-carbon sewage treatment system is connected to the heat energy extraction and utilization system, and the heat energy extracted by the heat energy extraction and utilization system is used by the heating unit of the sludge treatment system;
  • the water outlet of the low-carbon sewage treatment system is also connected to the inlet of the electrolysis of recycled water to produce hydrogen and by-product utilization system, and the outlet of the electrolysis of recycled water to produce hydrogen and by-product utilization system is respectively connected to the cogeneration system and the low-carbon sewage treatment system;
  • the sludge treatment system is connected to the high-efficiency methanogenesis system, the high-efficiency methanogenesis system is connected to the electrolysis of recycled water to produce hydrogen and by-product utilization system, and the gas outlet ends of the high-efficiency methanogenesis system and the electrolysis of recycled water to produce hydrogen and by-product utilization system are connected to the cogeneration system;
  • the heat energy extraction and utilization system and the cogeneration system are connected to the cold and heat source utilization end, the cold and heat source utilization end includes heating and cooling inside and/or outside the factory, and the surplus electricity of the cogeneration system is connected to the power grid.
  • the sludge treatment system includes a hydrolysis acid production unit, an anaerobic digestion unit, a sludge drying unit and a sludge incineration unit which are arranged in sequence; the hydrolysis acid production unit, the anaerobic digestion unit and the sludge drying unit are respectively provided with a heat source access port, and the heat source access port is connected to the heat energy extraction and utilization system.
  • the heat energy extraction and utilization system includes a heat energy extraction unit and a heat energy utilization unit;
  • the heat energy extraction unit comprises a water source heat pump unit and an internal/external cold and heat source user end which are arranged in sequence, and the cold/heat source output port of the water source heat pump unit is respectively connected to the inlet port of the internal/external cold and heat source user end;
  • the heat energy utilization unit is used for secondary extraction of heat energy from the qualified water from the low-carbon sewage treatment system, wherein the heat energy extracted in the primary stage is used for heating the hydrolysis acid production unit and the anaerobic digestion unit in the sludge treatment system, and the heat energy extracted in the secondary stage is used for heating the sludge drying unit in the sludge treatment system; in addition, the heat end extracted by the water source heat pump unit is used for heating inside/outside the factory, and the cold end is used for ventilation, refrigeration, dehumidification and deodorization inside/outside the factory.
  • the efficient methanogenic system comprises a biogas collection unit and a biogas purification unit, wherein the biogas collection unit comprises a hydrolysis acid production unit and an anaerobic digestion unit shared with the sludge treatment system, and also comprises a biogas storage device;
  • the outlet of the biogas collection unit is connected to the cogeneration system
  • the organic matter in the hydrolysis acid production unit comes from the organic matter enriched in the carbon source collection unit in the low-carbon sewage treatment system;
  • the biogas purification unit produces hydrogen by electrolyzing regenerated water, and the hydrogen produced by the by-product utilization system electrolyzing regenerated water is supplemented into the anaerobic digestion unit.
  • the hydrolysis acid generation unit strengthens the hydrolysis acid generation by one or more methods including coupling with biological carriers, applying electric field, and membrane concentration.
  • the electrolysis of recycled water to produce hydrogen and by-product utilization system comprises a double-membrane pure water production unit, a multi-power source power supply unit, an electrolysis of recycled water to produce hydrogen unit, a gas storage unit and a by-product utilization unit which are arranged in sequence;
  • the double-membrane pure water unit is composed of ultrafiltration and reverse osmosis processes, and is provided with a water inlet, a water outlet and a concentrated liquid collection device; the water inlet of the double-membrane pure water unit is connected to the water outlet of the low-carbon sewage treatment system, and the water outlet of the double-membrane pure water unit is connected to the electrolysis regeneration water hydrogen production unit;
  • the multi-power source power supply unit is linked by a solar power generation device and a power grid power supply system, or the multi-power source power supply unit uses wind power generation;
  • the electrolysis regeneration water hydrogen production unit is provided with a first hydrogen output port and a first oxygen output port, and the first hydrogen output port and the first oxygen output port are respectively connected to the gas storage unit;
  • the gas storage unit is provided with a second hydrogen output port and a second oxygen output port, the second hydrogen output port is connected to the biogas purification unit and the cogeneration system in the high-efficiency methanogenesis system, and the second oxygen output port is connected to the ozone preparation device;
  • the concentrated liquid collecting device is connected to the chlorine disinfectant preparation unit, and the concentrated liquid collected by the concentrated liquid collecting device is used for the preparation of chlorine disinfectant;
  • the chlorine disinfectant preparation unit is connected to the disinfection device in the low-carbon sewage regeneration system.
  • the cogeneration system comprises a biogas generator set, a waste heat boiler, and a flue gas purification device which are arranged in sequence, and the front inlet of the biogas generator set is connected to the hydrogen output port of the biogas collection unit and the gas storage unit;
  • the cogeneration system utilizes the biogas generated by the anaerobic digestion unit and the hydrogen generated by the electrolysis regeneration water hydrogen production unit to generate electricity through combustion.
  • part of the heat energy generated by the cogeneration system is used for heating the HVAC system in the factory or the surrounding residents, and the other part of the heat energy is connected to the adsorption chiller for cooling and transported to the refrigeration equipment in the factory or the surrounding residential areas through the cooling pipe.
  • the heat energy connected to the adsorption chiller is medium temperature (100-180°C) heat.
  • part of the electricity generated by the cogeneration system is provided to electrical equipment in the plant/external HVAC system, and the remaining electricity is fed into the power grid.
  • the urban sewage recycling and utilization coupling multi-source energy extraction system of the present invention constructs an energy-based sewage recycling system that integrates carbon source enrichment and extraction, thermal energy, chemical energy, hydrogen energy and multi-source energy efficient recovery, and comprehensive utilization of by-products. It fully taps the extractable and utilizeable energy in sewage and sludge, and while ensuring the quality of effluent, establishes a full treatment process capacity and energy utilization technology system, forming a new sewage energy utilization model that can be replicated, promoted, and modularized, thereby maximizing the energy utilization efficiency of sewage treatment plants and effectively reducing carbon footprints.
  • the thermal energy and chemical energy production and utilization layout provided by the present invention can reasonably propose a sewage recycling technology route that couples the extraction and layout of thermal energy and chemical energy according to different regions, seasons, treatment processes and energy conditions, so as to achieve efficient extraction and diversified utilization of sewage thermal energy and organic chemical energy.
  • the recycled water production capacity approach provided by the present invention combines the technology of electrolyzing recycled water to produce hydrogen using multiple energy sources such as renewable energy and surplus electricity, realizes the coupling of solar energy, biomass energy, and traditional electric energy, promotes the efficient use of recycled water and energy conversion, and expands a new approach to recycled water production capacity.
  • FIG1 is a schematic diagram of the structure of a system for urban sewage recycling coupled with multi-source energy extraction in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the working process of the urban sewage recycling coupled multi-source energy extraction system in FIG. 1 .
  • a system for extracting urban sewage recycling coupled with multi-source energy includes a low-carbon sewage treatment system, a sludge treatment system, a heat energy extraction and utilization system, a high-efficiency methane production system, an electrolysis recycled water hydrogen production and by-product utilization system, and a cogeneration system;
  • the low-carbon sewage treatment system includes a grid 11, a grit chamber 12, a carbon source collection unit 13, a primary sedimentation tank 14, a biofilm denitrification device 15, a deep phosphorus removal device 16, and a disinfection device 17, which are arranged in sequence;
  • the carbon source collection unit 13 is connected to the sludge treatment system to promote the recycling of carbon sources;
  • the hydraulic retention time of the grit chamber should not be less than 9 minutes.
  • the biofilm method includes but is not limited to the coupling of anaerobic ammonium oxidation and A/O, and the coupling of nitrite and anaerobic ammonium oxidation.
  • the water outlet of the low-carbon sewage treatment system is connected to the heat energy extraction and utilization system, and the heat energy extracted by the heat energy extraction and utilization system is used by the heating unit of the sludge treatment system;
  • the water outlet of the low-carbon sewage treatment system is also connected to the inlet of the electrolysis of recycled water hydrogen production and by-product utilization system, and the outlet of the electrolysis of recycled water hydrogen production and by-product utilization system is respectively connected to the cogeneration system and the low-carbon sewage treatment system;
  • the sludge treatment system is connected with the high-efficiency methanogenesis system to promote the recycling of carbon sources.
  • the high-efficiency methanogenesis system is connected with the electrolysis of recycled water to produce hydrogen and the by-product utilization system.
  • the gas outlets of the high-efficiency methanogenesis system and the electrolysis of recycled water to produce hydrogen and the by-product utilization system are connected with the cogeneration system.
  • the methane produced by the high-efficiency methanogenesis system and the hydrogen 42 produced by the electrolysis of recycled water to produce hydrogen and the by-product utilization system enter the cogeneration system to generate heat and electricity.
  • the heat energy extraction and utilization system and the cogeneration system are connected to the cold and heat source utilization end, which includes heating and cooling inside and/or outside the factory.
  • the surplus electricity of the cogeneration system is connected to the power grid.
  • the sludge treatment system includes a hydrolysis acid production unit 31, an anaerobic digestion unit 32, a sludge drying unit 33 and a sludge incineration unit 34 which are arranged in sequence; the hydrolysis acid production unit 31, the anaerobic digestion unit 32 and the sludge drying unit 33 are respectively provided with a heat source access port, and the heat source access port is connected to the heat energy extraction and utilization system.
  • the hydrolysis and acid production temperature is 10-40°C
  • the anaerobic digestion temperature is 30-60°C
  • the sludge drying temperature is 70-90°C;
  • the heat energy extraction and utilization system includes a heat energy extraction unit and a heat energy utilization unit;
  • the heat energy extraction unit includes a water source heat pump unit 21 and an internal/external cold and heat source user end 22 arranged in sequence, and the cold/heat source output port of the water source heat pump unit 21 is connected to the inlet of the internal/external cold and heat source user end 22 respectively;
  • the heat energy utilization unit is used for secondary extraction of heat energy from the qualified water from the low-carbon sewage treatment system, wherein the heat energy (40-70°C) extracted in the first stage is used for heating the hydrolysis acid production unit 31 and the anaerobic digestion unit 32 in the sludge treatment system, and the heat energy (80-90°C) extracted in the second stage is used for heating the sludge drying unit 33 in the sludge treatment system; in addition, the hot end extracted by the water source heat pump unit 21 is used for internal/external heating, and the cold end is used for internal/external ventilation, refrigeration, dehumidification and deodorization, etc., thereby realizing the recovery of heat energy in sewage.
  • the outlet temperature of the qualified water after the heat is extracted is reduced, and the discharge into the environment is beneficial to the inhibition of algae in the water body.
  • the high-efficiency methanogenic system includes a biogas collection unit and a biogas purification unit, wherein the biogas collection unit includes a hydrolysis acid production unit 31 and an anaerobic digestion unit 32 shared with the sludge treatment system, and also includes a biogas storage device 35, which is specifically a biogas tank in the embodiment;
  • the outlet of the biogas collection unit is connected to the cogeneration system
  • the organic matter in the hydrolysis acid production unit 31 comes from the organic matter enriched in the carbon source collection unit in the low-carbon sewage treatment system.
  • the hydrolysis acid production unit 31 strengthens the hydrolysis acid production by one or more methods including coupling biological carriers, external electric fields, and membrane concentration;
  • the biogas purification unit produces hydrogen through electrolysis of recycled water and the by-product utilization system produces hydrogen through electrolysis of recycled water, which is then supplemented into the anaerobic digestion unit 32;
  • the anaerobic digestion unit 32 strengthens anaerobic fermentation through electrochemical reaction, induces the production of hydrogen-type methanogens by promoting electron transfer, and improves the methane yield (80%-100%);
  • the biogas purification unit refers to the process of adding hydrogen produced by electrolysis of recycled water to the anaerobic digestion process.
  • the electrons provided by the hydrogen are conducive to the production of hydrogenotrophic methanogens, thereby enhancing the reduction of carbon dioxide to methane in the anaerobic fermentation process to increase the methane yield.
  • the electrolytic regeneration water hydrogen production and by-product utilization system comprises a double-membrane pure water production unit 18, a multi-power source power supply unit, an electrolytic regeneration water hydrogen production unit 41, a gas storage unit (including a hydrogen storage unit 43 and an oxygen storage unit 44) and a by-product utilization unit, which are arranged in sequence.
  • the by-product utilization unit comprises an ozone production device 45 and a chlorine disinfectant production device, and the chlorine disinfectant production device comprises an anion resin 46 and an RO concentrated water electrolysis 47;
  • the double membrane pure water production unit 18 is composed of ultrafiltration (UF) and reverse osmosis (RO) processes, and the double membrane pure water production unit 18 is provided with a water inlet, a water outlet and a concentrate collection device; the water inlet of the double membrane pure water production unit 18 is connected to the water outlet of the low-carbon sewage treatment system, and the water outlet of the double membrane pure water production unit 18 is connected to the electrolysis regeneration water hydrogen production unit 41; the double membrane method is used when performing electrolysis hydrogen production; when electrolyzing water, the effluent of the disinfection device 17 of the low-carbon sewage treatment system enters the double membrane pure water production unit 18, and a part of the effluent of the double membrane pure water production unit 18 enters the electrolysis regeneration water hydrogen production unit 41, and the other part is regenerated water; the concentrate enters the chlorine disinfectant preparation unit, passes through anion exchange resin and electrolysis to form chlorine disinfectant, and the chlorine disinfectant enters the disinfection device 17 of the low-carbon sewage treatment system;
  • the multi-power source power supply unit is linked by a solar power generation device and a power grid power supply system.
  • solar power generation is used to provide power
  • the power grid is used to provide peak and valley electricity at night; or the multi-power source power supply unit uses wind power generation, especially in the southeast coastal areas, coastal islands, and areas with rich wind resources such as Northwest, North China, and Northeast China. Wind power generation can be used;
  • the electrolysis regenerated water hydrogen production unit 41 is provided with a first hydrogen output port and a first oxygen output port, and the first hydrogen output port and the first oxygen output port are respectively connected to the gas storage unit;
  • the gas storage unit is provided with a second hydrogen output port and a second oxygen output port, the second hydrogen output port is connected to the biogas purification unit and the cogeneration system in the high-efficiency methanogenesis system, the second oxygen output port is connected to the ozone preparation device 45, and the byproduct utilization unit uses the oxygen generated by the electrolysis regeneration water hydrogen production unit 41 to prepare ozone;
  • the concentrated liquid collecting device is connected to the chlorine disinfectant preparation unit, and the concentrated liquid collected by the concentrated liquid collecting device is used for the preparation of the chlorine disinfectant;
  • the chlorine disinfectant preparation unit is connected to the disinfection device in the low-carbon sewage regeneration system.
  • the cogeneration system includes a biogas generator set 51, a waste heat boiler 52, and a flue gas purification device 53 which are arranged in sequence, and the front inlet of the biogas generator set 51 is connected to the hydrogen output port of the biogas collection unit and the gas storage unit;
  • the cogeneration system uses the biogas produced by the anaerobic digestion unit 32 and the hydrogen produced by the electrolytic regenerated water hydrogen production unit 41 to generate electricity through combustion.
  • Part of the heat energy generated by the cogeneration system is used for heating the HVAC system in the factory or surrounding residents, and the other part of the medium-temperature heat energy (100-180°C) is connected to the adsorption chiller for cooling and transported through the cooling pipe to the refrigeration equipment in the factory or surrounding residential areas.
  • Part of the electricity generated by the cogeneration system is supplied to the electrical equipment in the plant/external HVAC system, and the remaining electricity is fed into the power grid.
  • the present invention couples the extraction and utilization of internal energy in sewage treatment plants with the conversion and utilization of external renewable energy to construct a low-carbon, green sewage treatment synchronous production capacity system that deeply integrates and comprehensively utilizes thermal energy, chemical energy, and hydrogen energy, thereby effectively reducing carbon footprint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明涉及一种城市污水再生利用耦合多源能量的提取***,包括:低碳污水处理***、污泥处理***、热能提取及利用***、高效产甲烷***、电解再生水制氢及副产物利用***和热电联产***,低碳污水处理***出水口与热能提取及利用***、电解再生水制氢及副产物利用***连接;热能提取及利用***与污泥处理***、厂内/外冷热源用户端连接;高效产甲烷***与污泥处理***、热电联产***连接;电解再生水制氢及副产物利用***与高效产甲烷***、热电联产***连接;热电联产***与厂内外用热单元连接。本发明构建了一种集热能、化学能、氢能深度融合与综合利用的低碳、绿色污水处理同步产能***,有效降低碳足迹。

Description

一种城市污水再生利用耦合多源能量的提取*** 技术领域
本发明属于污水资源能源回收利用技术领域,具体涉及一种城市污水再生利用耦合多源能量的提取***。
背景技术
近年来,世界各国对低碳社会的建设越来越重视,各行各业在高效、低碳、清洁发展方面做出重大战略调整。目前,各国污水处理行业纷纷寻求新的绿色低碳转型路径。在城市污水处理***运行过程中,水资源和能源关系紧密,能源的使用渗透在污水处理的各个环节,如何在不同等级再生水利用前提下,耦合多源能量的提取及利用是实现节能降耗的关键点。2010年荷兰发布了面向2030年的污水处理发展路线图,提出“NEWs框架”,意在打造营养物回收、能源生产和再生水回用三位一体的可持续污水处理设施,从而实现构建可持续社会的长期愿景。美国水环境研究基金(WERF)制定了至2030年美国所有污水处理厂均要实现碳中和运行的目标。2013年美国希博伊根污水处理厂从开源和节流两方面入手,几乎逼近其运行“能源零消耗”的目标。新加坡开发了基于“双膜法”工艺的NEWater路线,将生活污水及工业废水转化为满足世界卫生组织标准的新生水,作为工业用水和间接饮用水源补给,可以满足新加坡未来55%的用水需求。我国《“十四五”城镇污水处理及资源化利用发展规划》中明确,在特定流域、干旱缺水地区建设污水资源化利用示范城市,规划建设配套基础设施,实现再生水规模化利用,建设资源能源标杆再生水厂。宜兴概念厂有机质协同处理中心,利用污水中的污泥与外部蓝藻、餐厨垃圾、秸秆等协同发酵产生沼气发电,基本实现概念厂能源自给。目前,国内外污水处理厂主要通过回收污水中有机质化学能和潜在热能、利用可再生能源(风能、太阳能等)以及升级改造污水再生工艺和***等方式实现污水处理厂节能降耗、能量自平衡甚至能量输出。
公开号为CN111875152A的发明专利通过强化预处理、碳磷回收、高效复合脱氮、深度处理和热能回收单元,构建了一种能实现资源和能源回收转化的污水处理***,在产出高品质回用水的同时能够回收污水中的热能。专利CN113800631A提出一种太阳能用于污水处理厂的综合能源利用***及方法,通过光伏***产生热量提供给污水厌氧处理装置和厂区供暖,产生的沼气用于发电以满足用户用电需求,余热或污水热泵补充供暖***。公开号为CN109972161A的发明专利构建一种基于污水处理厂的分布式发电制氢***,利用风光互补发电产生电能以实现电解水制氢和氧气。污水中存在着丰富的污水源热能、有机质化学能,此外协同利用可再生能源、富余电力等多动力能源电解再生水制氢,能够形成污水处理厂多能源途径互馈***,实现面向中远期低碳运行的多能源协同利用的能量输出型工厂的构建。上述专利中能够将污水中部分能源进行提取利用,然而污水中大量的能源点仍需开发,能量利用途径有待进一步拓展,电解副产物综合利用途径仍需探索。
综上,我国正处于能源绿色低碳转型发展的关键时期,实现污水处理厂向能源化、清洁化、低碳化转型将是新一轮重大变革。污水作为资源、能源的重要载体,构建与现有污水再生工艺融合升级的同步产能***,实现污水处理厂热能、有机质化学能、氢能多能源深度融合与综合利用具有极为显著的应用前景,能够为我国污水处理行业面向中远期的低碳发展提供技术支撑。
发明内容
本发明的目的是提供一种城市污水再生利用耦合多源能量的提取***,能够实现污水处理由污染物单一削减向减污降碳产能耦合转变的重大需求,在污水净化的同时,通过开展污水热能高效提取与多元利用、有机质强化提取与电化学高效产甲烷、多动力源互补电解再生水制氢及副产物利用技术研究,构建能源型污水再生全流程反应***,能够将能量由无序耗散转化为有序汇集的状态,最终实现污水、污泥向资源能源生产高效转化。
为实现以上技术目的,本发明实施例采用的技术方案是:一种城市污水再生利用耦合多源能量的提取***,包括低碳污水处理***、污泥处理***、热能提取及利用***、高效产甲烷***、电解再生水制氢及副产物利用***和热电联产***;
所述低碳污水处理***包括依次设置的格栅、沉砂池、碳源收集单元、初沉池、生物膜法脱氮装置、深度除磷装置以及消毒装置;所述碳源收集单元与所述污泥处理***连接;
所述低碳污水处理***的出水口与所述热能提取及利用***连接,所述热能提取及利用***提取的热能供所述污泥处理***的加热单元使用;所述低碳污水处理***出水口还与所述电解再生水制氢及副产物利用***的进口连接,所述电解再生水制氢及副产物利用***的出口分别与所述热电联产***及低碳污水处理***连接;
所述污泥处理***与高效产甲烷***连接,所述高效产甲烷***与所述电解再生水制氢及副产物利用***连接,所述高效产甲烷***和电解再生水制氢及副产物利用***的气体出口端与热电联产***连接;
所述热能提取及利用***和热电联产***与冷热源利用端连接,所述冷热源利用端包括厂内和/或厂外供热及制冷,所述热电联产***的余电接入电网。
进一步地,所述污泥处理***包括依次设置的水解产酸单元、厌氧消化单元、污泥干化单元以及污泥焚烧单元;所述水解产酸单元、厌氧消化单元及污泥干化单元分别设置有热源接入口,所述热源接入口与所述热能提取及利用***连接。
进一步地,所述热能提取及利用***包括热能提取单元与热能利用单元;
所述热能提取单元包括依次设置的水源热泵机组和厂内/外冷热源用户端,所述水源热泵机组的冷/热源输出口分别与厂内/外冷热源用户端的入口连接;
所述热能利用单元用于对来自所述低碳污水处理***的达标水进行热能二级提取,其中一级提取的热能用于所述污泥处理***中水解产酸单元、厌氧消化单元的加热,二级提取的热能用于所述污泥处理***中污泥干化单元的加热;此外,通过水源热泵机组提取的热端供厂内/外供暖使用,冷端用于厂内/外通风、制冷、除湿除臭。
进一步地,所述高效产甲烷***包括沼气收集单元与沼气提纯单元,所述沼气收集单元包括与所述污泥处理***共用的水解产酸单元和厌氧消化单元,还包括沼气储存装置;
所述沼气收集单元的出口与所述热电联产***连接;
所述水解产酸单元中的有机质来源于所述低碳污水处理***中碳源收集单元中富集的有机质; 
所述沼气提纯单元通过电解再生水制氢及副产物利用***电解再生水产生的氢气补充到所述厌氧消化单元中。 
进一步地,所述水解产酸单元通过耦合生物载体、外加电场、膜浓缩在内的一种或几种方法强化水解产酸。
进一步地,所述电解再生水制氢及副产物利用***包括依次设置的双膜制纯水单元、多动力源供电单元、电解再生水制氢单元、气体储存单元及副产物利用单元;
所述双膜制纯水单元由超滤和反渗透工艺组成,双膜制纯水单元设置有进水口、出水口和浓液收集装置;所述双膜制纯水单元的进水口与所述低碳污水处理***的出水口连接,所述双膜制纯水单元的出水口与所述电解再生水制氢单元连接;
所述多动力源供电单元由太阳能发电装置与电网供电***联动,或者所述多动力源供电单元采用风力发电;
所述电解再生水制氢单元设置有第一氢气输出口和第一氧气输出口,所述第一氢气输出口和第一氧气输出口分别与所述气体储存单元连接;
所述气体储存单元设置有第二氢气输出口和第二氧气输出口,所述第二氢气输出口与所述高效产甲烷***中的沼气提纯单元和热电联产***连接,所述第二氧气输出口与臭氧制备装置连接;
所述浓液收集装置与氯消毒剂制备单元连接,所述浓液收集装置收集的浓液用于氯消毒剂的制备;
所述氯消毒剂制备单元与所述低碳污水再生***中的消毒装置连接。
进一步地,所述热电联产***包括依次设置的沼气发电机组、余热锅炉、烟气净化装置,所述沼气发电机组的前端入口与所述沼气收集单元及气体储存单元的氢气输出口连接;
所述热电联产***利用所述厌氧消化单元产生的沼气和电解再生水制氢单元产生的氢气进行燃烧发电。
进一步地,所述热电联产***产生的一部分热能用于厂内或周边居民暖通***供热使用,另一部分热能接入吸附式制冷机进行制冷,并随制冷管输送至厂内或周边居民区的制冷设备中。其中接入吸附式制冷机的热能是中等温度(100-180℃)的热量。
进一步地,所述热电联产***产生的电力一部分提供给厂内/外暖通***的用电设备,另一部分余电并入电网。
本发明实施例提供的技术方案带来的有益效果是:
1. 本发明的城市污水再生利用耦合多源能量的提取***,通过构建集碳源富集提取、热能、化学能、氢能多源能量高效回收、副产物综合利用的能源型污水再生***,充分挖掘污水、污泥中可提取利用能源,在保障出水品质的同时,建立全处理过程产能、用能技术体系,形成可复制、可推广、可模块化的污水能源利用新模式,实现污水处理厂能量利用效益最大化,有效降低碳足迹。
2. 本发明提供的热能及化学能产用布局,能够针对不同地域、季节、处理工艺以及能源条件,合理提出耦合热能、化学能提取与布局的污水再生利用技术路线,实现污水热能和有机质化学能的高效提取及多元利用。
3. 本发明提供的再生水产能途径,结合可再生能源、富余电力等多动力能源电解再生水制氢技术,实现了太阳能、生物质能、传统电能的耦合,促进了再生水的高效利用及能源的转化,拓展了再生水产能的新途径。
附图说明
图1是本发明实施例中城市污水再生利用耦合多源能量提取***的构成示意图。
图2是图1中城市污水再生利用耦合多源能量提取***的工作流程示意图。
附图标记说明:11-格栅;12-沉砂池;13-碳源收集单元;14-初沉池;15-生物膜法脱氮装置;16-深度除磷装置;17-消毒装置;18-双膜制纯水单元;21-水源热泵机组;22-厂内/外冷热源用户端;31-水解产酸单元;32-厌氧消化单元;33-污泥干化单元;34-污泥焚烧单元;35-沼气罐;41-电解再生水制氢单元;42-氢气;43-氢气存储单元;44-氧气存储单元;45-臭氧制备装置;46-阴离子树脂;47-RO浓水电解;51-沼气发电机组;52-余热锅炉;53-烟气净化装置;54-厂内/外供热及制冷***。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
如图1所示,一种城市污水再生利用耦合多源能量的提取***,包括低碳污水处理***、污泥处理***、热能提取及利用***、高效产甲烷***、电解再生水制氢及副产物利用***和热电联产***;
如图2所示,低碳污水处理***包括依次设置的格栅11、沉砂池12、碳源收集单元13、初沉池14、生物膜法脱氮装置15、深度除磷装置16以及消毒装置17;碳源收集单元13与污泥处理***连接,促进碳源回收利用;
其中沉砂池的水力停留时间不宜低于9 min,生物膜法包括但不仅限于厌氧氨氧化与A/O的耦合、亚硝化与厌氧氨氧化的耦合;
低碳污水处理***的出水口与热能提取及利用***连接,热能提取及利用***提取的热能供污泥处理***的加热单元使用;低碳污水处理***出水口还与电解再生水制氢及副产物利用***的进口连接,电解再生水制氢及副产物利用***的出口分别与热电联产***及低碳污水处理***连接;
污泥处理***与高效产甲烷***连接,促进碳源回收利用,高效产甲烷***与电解再生水制氢及副产物利用***连接,高效产甲烷***和电解再生水制氢及副产物利用***的气体出口端与热电联产***连接,高效产甲烷***产生的甲烷与电解再生水制氢及副产物利用***产生的氢气42进入热电联产***产生热能与电能;
热能提取及利用***和热电联产***与冷热源利用端连接,冷热源利用端包括厂内和/或厂外供热及制冷,热电联产***的余电接入电网。
污泥处理***包括依次设置的水解产酸单元31、厌氧消化单元32、污泥干化单元33以及污泥焚烧单元34;水解产酸单元31、厌氧消化单元32及污泥干化单元33分别设置有热源接入口,热源接入口与热能提取及利用***连接。
其中水解产酸温度为10-40℃,厌氧消化温度为30-60℃,污泥干化温度为70-90℃;
热能提取及利用***包括热能提取单元与热能利用单元;
其中热能提取单元包括依次设置的水源热泵机组21和厂内/外冷热源用户端22,水源热泵机组21的冷/热源输出口分别与厂内/外冷热源用户端22的入口连接;
热能利用单元用于对来自低碳污水处理***的达标水进行热能二级提取,其中一级提取的热能(40-70℃)用于污泥处理***中水解产酸单元31、厌氧消化单元32的加热,二级提取的热能(80-90℃)用于污泥处理***中污泥干化单元33的加热;此外,通过水源热泵机组21提取的热端供厂内/外供暖使用,冷端用于厂内/外通风、制冷、除湿除臭等,实现了污水中热能的回收,被提取热量后的达标水出水温度降低,排放到环境中有利于水体抑藻。
高效产甲烷***包括沼气收集单元与沼气提纯单元,其中,沼气收集单元包括与污泥处理***共用的水解产酸单元31和厌氧消化单元32,还包括沼气储存装置35,沼气储存装置35在实施例中具体为沼气罐;
沼气收集单元的出口与热电联产***连接;
水解产酸单元31中的有机质来源于低碳污水处理***中碳源收集单元中富集的有机质,水解产酸单元31通过耦合生物载体、外加电场、膜浓缩在内的一种或几种方法强化水解产酸;
沼气提纯单元通过电解再生水制氢及副产物利用***电解再生水产生的氢气补充到厌氧消化单元32中; 
厌氧消化单元32通过电化学反应强化厌氧发酵,通过促进电子转移诱导氢型甲烷菌产生,提高甲烷产率(80%-100%);
沼气提纯单元是指通过电解再生水产生的氢气补充到厌氧消化工艺中,氢气提供的电子有利于氢营养型甲烷菌产生,从而强化厌氧发酵过程中的二氧化碳还原生成甲烷,以提高甲烷的产率。
电解再生水制氢及副产物利用***包括依次设置的双膜制纯水单元18、多动力源供电单元、电解再生水制氢单元41、气体储存单元(包括氢气存储单元43及氧气存储单元44)及副产物利用单元,副产物利用单元包括臭氧制备装置45和氯消毒剂制备装置,所述氯消毒剂制备装置包括阴离子树脂46和RO浓水电解47;
双膜制纯水单元18由超滤(UF)和反渗透(RO)工艺组成,双膜制纯水单元18设置有进水口、出水口和浓液收集装置;双膜制纯水单元18的进水口与低碳污水处理***的出水口连接,双膜制纯水单元18的出水口与电解再生水制氢单元41连接;进行电解制氢时采用双膜法;电解水时,低碳污水处理***的消毒装置17的出水进入双膜制纯水单元18,双膜制纯水单元18的出水一部分进入电解再生水制氢单元41,另一部分为再生水;浓水进入氯消毒剂制备单元,经过阴离子交换树脂及电解形成氯消毒剂,氯消毒剂进入低碳污水处理***的消毒装置17;
多动力源供电单元由太阳能发电装置与电网供电***联动,光照充足时采用太阳能发电提供电源动力,夜晚采用电网提供峰谷电;或者多动力源供电单元采用风力发电,特别是在我国东南沿海地区、沿海岛屿以及西北、华北、东北等具有丰富风力资源的地区,可采用风力发电;
电解再生水制氢单元41设置有第一氢气输出口和第一氧气输出口,第一氢气输出口和第一氧气输出口分别与气体储存单元连接;
气体储存单元设置有第二氢气输出口和第二氧气输出口,第二氢气输出口与高效产甲烷***中的沼气提纯单元和热电联产***连接,第二氧气输出口与臭氧制备装置45连接,副产物利用单元利用电解再生水制氢单元41产生的氧气制备臭氧;
浓液收集装置与氯消毒剂制备单元连接,浓液收集装置收集的浓液用于氯消毒剂的制备;
氯消毒剂制备单元与低碳污水再生***中的消毒装置连接。
进一步地,热电联产***包括依次设置的沼气发电机组51、余热锅炉52、烟气净化装置53,沼气发电机组51的前端入口与沼气收集单元及气体储存单元的氢气输出口连接;
热电联产***利用厌氧消化单元32产生的沼气和电解再生水制氢单元41产生的氢气进行燃烧发电。
热电联产***产生的一部分热能用于厂内或周边居民暖通***供热使用,另一部分中等温度(100-180℃)的热能接入吸附式制冷机进行制冷,并随制冷管输送至厂内或周边居民区的制冷设备中。
热电联产***产生的电力一部分提供给厂内/外暖通***的用电设备,另一部分余电并入电网。
本发明通过将污水处理厂内在能源的提取利用与外部可再生能源转化利用耦合,构建集热能、化学能、氢能深度融合与综合利用的低碳、绿色污水处理同步产能***,有效降低碳足迹。
以上所述具体实施例仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进或替换,这些改进或替换应该视为本发明的保护范围。

Claims (8)

  1. 一种城市污水再生利用耦合多源能量的提取***,其特征在于,包括低碳污水处理***、污泥处理***、热能提取及利用***、高效产甲烷***、电解再生水制氢及副产物利用***和热电联产***;
    所述低碳污水处理***包括依次设置的格栅(11)、沉砂池(12)、碳源收集单元(13)、初沉池(14)、生物膜法脱氮装置(15)、深度除磷装置(16)以及消毒装置(17);所述碳源收集单元(13)与所述污泥处理***连接;
    所述低碳污水处理***的出水口与所述热能提取及利用***连接;所述低碳污水处理***出水口还与所述电解再生水制氢及副产物利用***的进口连接,所述电解再生水制氢及副产物利用***的出口分别与所述热电联产***及低碳污水处理***连接;
    所述污泥处理***与高效产甲烷***连接,所述高效产甲烷***与所述电解再生水制氢及副产物利用***连接,所述高效产甲烷***和电解再生水制氢及副产物利用***的气体出口端与热电联产***连接;
    所述热能提取及利用***包括热能提取单元与热能利用单元,所述热能提取单元用于对来自所述低碳污水处理***的达标水进行热能二级提取;
    所述热能提取及利用***提取的热能供所述污泥处理***的加热单元使用:所述热能利用单元一级提取的热能用于所述污泥处理***中水解产酸单元(31)、厌氧消化单元(32)的加热,二级提取的热能用于所述污泥处理***中污泥干化单元(33)的加热;
    所述热能提取及利用***和热电联产***与冷热源利用端连接,所述冷热源利用端包括厂内和/或厂外供热及制冷,所述热电联产***的余电接入电网;
    所述高效产甲烷***包括沼气收集单元与沼气提纯单元,所述沼气收集单元包括与所述污泥处理***共用的水解产酸单元(31)和厌氧消化单元(32),还包括沼气储存装置(35);所述沼气提纯单元通过电解再生水制氢及副产物利用***电解再生水产生的氢气补充到所述厌氧消化单元(32)中;所述沼气收集单元的出口与所述热电联产***连接;
    所述水解产酸单元(31)中的有机质来源于所述低碳污水处理***中碳源收集单元(13)中富集的有机质;
    所述电解再生水制氢及副产物利用***包括依次设置的双膜制纯水单元(18)、多动力源供电单元、电解再生水制氢单元(41)、气体储存单元及副产物利用单元;
    所述双膜制纯水单元(18)设置有进水口、出水口和浓液收集装置,所述浓液收集装置与氯消毒剂制备单元连接,所述浓液收集装置收集的浓液用于氯消毒剂的制备,所述氯消毒剂制备单元与所述低碳污水再生***中的消毒装置连接,浓液进入所述氯消毒剂制备单元,经过阴离子交换树脂及电解形成氯消毒剂。
  2. 根据权利要求1所述的城市污水再生利用耦合多源能量的提取***,其特征在于,所述污泥处理***包括依次设置的水解产酸单元(31)、厌氧消化单元(32)、污泥干化单元(33)以及污泥焚烧单元(34);所述水解产酸单元(31)、厌氧消化单元(32)及污泥干化单元(33)分别设置有热源接入口,所述热源接入口与所述热能提取及利用***连接。
  3. 根据权利要求1所述的城市污水再生利用耦合多源能量的提取***,其特征在于,所述热能提取单元包括依次设置的水源热泵机组(21)和厂内/外冷热源用户端(22),所述水源热泵机组(21)的冷/热源输出口分别与厂内/外冷热源用户端(22)的入口连接;
    通过所述水源热泵机组(21)提取的热端供厂内/外供暖使用,冷端用于厂内/外通风、制冷、除湿除臭。
  4. 根据权利要求1或2所述的城市污水再生利用耦合多源能量的提取***,其特征在于,所述水解产酸单元(31)通过耦合生物载体、外加电场、膜浓缩在内的一种或几种方法强化水解产酸。
  5. 根据权利要求1所述的城市污水再生利用耦合多源能量的提取***,其特征在于,所述双膜制纯水单元(18)由超滤和反渗透工艺组成;所述双膜制纯水单元(18)的进水口与所述低碳污水处理***的出水口连接,所述双膜制纯水单元(18)的出水口与所述电解再生水制氢单元(41)连接;
    所述多动力源供电单元由太阳能发电装置与电网供电***联动,或者所述多动力源供电单元采用风力发电;
    所述电解再生水制氢单元(41)设置有第一氢气输出口和第一氧气输出口,所述第一氢气输出口和第一氧气输出口分别与所述气体储存单元连接;
    所述气体储存单元设置有第二氢气输出口和第二氧气输出口,所述第二氢气输出口与所述高效产甲烷***中的沼气提纯单元和热电联产***连接,所述第二氧气输出口与臭氧制备装置(45)连接。
  6. 根据权利要求1所述的城市污水再生利用耦合多源能量的提取***,其特征在于,所述热电联产***包括依次设置的沼气发电机组(51)、余热锅炉(52)及烟气净化装置(53),所述沼气发电机组(51)的前端入口与所述沼气收集单元及气体储存单元的氢气输出口连接;
    所述热电联产***利用所述厌氧消化单元(32)产生的沼气和电解再生水制氢单元(41)产生的氢气进行燃烧发电。
  7. 根据权利要求1所述的城市污水再生利用耦合多源能量的提取***,其特征在于,所述热电联产***产生的一部分热能用于厂内或周边居民暖通***供热使用,另一部分热能接入吸附式制冷机进行制冷,并随制冷管输送至厂内或周边居民区的制冷设备中。
  8. 根据权利要求1所述的城市污水再生利用耦合多源能量的提取***,其特征在于,所述热电联产***产生的电力一部分提供给厂内/外暖通***的用电设备,另一部分余电并入电网。
PCT/CN2023/080366 2022-12-05 2023-03-09 一种城市污水再生利用耦合多源能量的提取*** WO2024119641A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211546457.3A CN115611479B (zh) 2022-12-05 2022-12-05 一种城市污水再生利用耦合多源能量的提取***
CN202211546457.3 2022-12-05

Publications (1)

Publication Number Publication Date
WO2024119641A1 true WO2024119641A1 (zh) 2024-06-13

Family

ID=84880761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080366 WO2024119641A1 (zh) 2022-12-05 2023-03-09 一种城市污水再生利用耦合多源能量的提取***

Country Status (2)

Country Link
CN (1) CN115611479B (zh)
WO (1) WO2024119641A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115611479B (zh) * 2022-12-05 2023-04-07 中国市政工程华北设计研究总院有限公司 一种城市污水再生利用耦合多源能量的提取***
CN117985906A (zh) * 2024-04-07 2024-05-07 上海复洁环保科技股份有限公司 一种污水处理厂的制氢、储氢及热电联供***及工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2259673A1 (en) * 1999-01-14 2000-07-14 Andrey Levin Method and apparatus for anaerobic digestion of organic wastes
CN102603140A (zh) * 2012-03-19 2012-07-25 同济大学 污泥两相回流加热强化厌氧消化工艺
US20140217015A1 (en) * 2011-09-26 2014-08-07 Evoqua Water Technologies Llc Use of primary sludge for carbon source in an aerated-anoxic bioreactor system
KR20180079783A (ko) * 2017-01-02 2018-07-11 한국산업기술시험원 바이오 가스 플랜트 유용자원 회수시스템 및 이를 이용한 유용자원 회수방법
CN113998834A (zh) * 2021-09-29 2022-02-01 中国电建集团华东勘测设计研究院有限公司 城市污水综合处理及高效再利用***
CN114149143A (zh) * 2021-12-03 2022-03-08 中车环境科技有限公司 一种低碳污水处理***
CN115611479A (zh) * 2022-12-05 2023-01-17 中国市政工程华北设计研究总院有限公司 一种城市污水再生利用耦合多源能量的提取***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103755082B (zh) * 2014-01-21 2015-07-01 西安西热水务环保有限公司 一种离子交换树脂再生废水资源回收***及方法
CN104154546B (zh) * 2014-08-29 2016-05-25 凤阳海泰科能源环境管理服务有限公司 一种污泥资源化利用***及方法
CN104891737B (zh) * 2015-05-25 2017-06-06 东华大学 一种强化化工废水水解酸化的方法
CN106316004B (zh) * 2016-11-07 2017-09-01 江西盖亚环保科技有限公司 一种高浓度有机废水直接深度净化的方法
CN113546951A (zh) * 2021-07-13 2021-10-26 东方电气集团东方锅炉股份有限公司 适于氢能开发利用的填埋场治理和循环利用方法及***
CN113636734B (zh) * 2021-09-06 2022-11-18 广州大学 一种载铁掺氮复合碳材料联合热水解预处理强化剩余污泥厌氧消化产甲烷效能的方法
CN114314937A (zh) * 2022-01-14 2022-04-12 临涣水务股份有限公司 一种水厂反渗透浓水制备次氯酸钠方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2259673A1 (en) * 1999-01-14 2000-07-14 Andrey Levin Method and apparatus for anaerobic digestion of organic wastes
US20140217015A1 (en) * 2011-09-26 2014-08-07 Evoqua Water Technologies Llc Use of primary sludge for carbon source in an aerated-anoxic bioreactor system
CN102603140A (zh) * 2012-03-19 2012-07-25 同济大学 污泥两相回流加热强化厌氧消化工艺
KR20180079783A (ko) * 2017-01-02 2018-07-11 한국산업기술시험원 바이오 가스 플랜트 유용자원 회수시스템 및 이를 이용한 유용자원 회수방법
CN113998834A (zh) * 2021-09-29 2022-02-01 中国电建集团华东勘测设计研究院有限公司 城市污水综合处理及高效再利用***
CN114149143A (zh) * 2021-12-03 2022-03-08 中车环境科技有限公司 一种低碳污水处理***
CN115611479A (zh) * 2022-12-05 2023-01-17 中国市政工程华北设计研究总院有限公司 一种城市污水再生利用耦合多源能量的提取***

Also Published As

Publication number Publication date
CN115611479B (zh) 2023-04-07
CN115611479A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2024119641A1 (zh) 一种城市污水再生利用耦合多源能量的提取***
CN208471684U (zh) 一种光催化-微生物燃料电池污水处理复合装置
JPH06169783A (ja) 微生物学的エネルギー及び有用物質の生産方法及び装置
CN103708693B (zh) 一种城市污水处理所产生污泥的消解***及方法
CN104710066A (zh) 一种非并网多能源协同供电的污水处理及能量回收方法
CN106086923B (zh) 一种耦合co2资源化利用的制氢储能装置
CN201458895U (zh) 宾馆和居民小区污水的集成式处理装置
CN216957473U (zh) 一种含有储能功能的核电厂灵活性综合利用装置***
CN114477612A (zh) 一种污水厂污水和污泥制氢、加氢的闭合***及工艺方法
CN212655633U (zh) 一种基于城市污水处理厂的综合能源***
CN201620045U (zh) 基于风光互补的应急供水***
CN208952462U (zh) 一种利用污水厂可再生能源实现四联供的供能***
CN216273626U (zh) 一种污水厂污水和污泥制氢、加氢的闭合***
CN106167327A (zh) 污水发电自净***及方法
CN114149143A (zh) 一种低碳污水处理***
CN114032563A (zh) 一种基于波浪能供电的海上固体氧化物电解池共电解***
CN212375112U (zh) 一种基于分散式污水处理***的综合能源***
CN201141666Y (zh) 可再生能源空调***
CN113151850A (zh) 一种高效的制氢***
CN108101211B (zh) 一种基于微生物燃料电池的畜禽废水处理***
CN217903163U (zh) 一种热电联供***
CN108928913B (zh) 一种基于燃气发电机组和压缩式热泵的ic反应器加热***
CN220136129U (zh) 一种污水厂零碳处理***
CN202063808U (zh) 光伏太阳能驱动的小型生活污水回用装置
CN215856362U (zh) 一种高效的制氢***

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112023000209

Country of ref document: DE