WO2024119514A1 - 一种集成装置、冷却***、冷却方法和终端 - Google Patents

一种集成装置、冷却***、冷却方法和终端 Download PDF

Info

Publication number
WO2024119514A1
WO2024119514A1 PCT/CN2022/138128 CN2022138128W WO2024119514A1 WO 2024119514 A1 WO2024119514 A1 WO 2024119514A1 CN 2022138128 W CN2022138128 W CN 2022138128W WO 2024119514 A1 WO2024119514 A1 WO 2024119514A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrated device
temperature
heat exchange
cooling
exchange medium
Prior art date
Application number
PCT/CN2022/138128
Other languages
English (en)
French (fr)
Inventor
彭耀锋
吴斌
刘超鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/138128 priority Critical patent/WO2024119514A1/zh
Publication of WO2024119514A1 publication Critical patent/WO2024119514A1/zh

Links

Images

Definitions

  • the present application relates to the field of electronic equipment, and in particular to an integrated device, a cooling system, a cooling method and a terminal.
  • SoC system-level chip
  • Traditional natural heat dissipation or air cooling cannot meet the heat dissipation requirements of SoC, and liquid cooling is required.
  • the coolant temperature is lower than the ambient temperature, there is a risk of condensation causing a short circuit in the circuit board.
  • the air humidity is high or the ambient temperature is low, there is also a risk of condensation causing a short circuit in the circuit board.
  • the present application provides an integrated device, a cooling system, a cooling method and a terminal, which are used to prevent condensation from causing a short circuit in a circuit board.
  • an embodiment of the present application provides an integrated device, the integrated device includes a circuit board, a first temperature sensor and a humidity sensor, the first temperature sensor is used to measure temperature, the first humidity sensor is used to measure humidity, the temperature and humidity are used to obtain the dew point temperature of the environment inside the integrated device, and the dew point temperature is used to determine the cooling method of the integrated device.
  • the dew point temperature is related to the temperature and humidity of the environment, and the dew point temperature of the environment can be obtained by measuring the temperature and humidity of the environment. If there is a risk of condensation when using liquid cooling to cool the integrated device at the dew point temperature of the current environment, other cooling methods are used to dissipate heat from the integrated device to avoid condensation that may cause a short circuit in the circuit board.
  • the integrated device further includes a first processing module, the first processing module is used to calculate the dew point temperature according to temperature and humidity, and the integrated device determines a cooling method according to the dew point temperature to avoid condensation.
  • the first temperature sensor is located on the circuit board.
  • the first temperature sensor is integrated on the circuit board and is used to measure temperature to obtain the ambient dew point temperature.
  • the humidity sensor is located on the circuit board.
  • the humidity sensor is integrated on the circuit board and is used to measure humidity to obtain the ambient dew point temperature.
  • the integrated device further includes a cold plate and a second temperature sensor, the cold plate is used for heat exchange of the integrated device, and the second temperature sensor is used to measure the temperature of the cold plate.
  • the cold plate is used for heat exchange of the integrated device and is a part with condensation risk.
  • the second temperature sensor measures the temperature of the cold plate to more accurately determine the condensation risk. When the temperature of the cold plate is higher than the dew point temperature, there is no condensation risk. When the temperature of the cold plate is lower than the dew point temperature, there is a condensation risk.
  • the cooling method of the integrated device can be determined accordingly.
  • the integrated device provided in the embodiment of the present application measures temperature and humidity through a temperature sensor and a humidity sensor, calculates the dew point temperature through the measured temperature and humidity, determines the condensation risk according to the dew point temperature, and selects a suitable cooling method to avoid the condensation risk.
  • the solution provided in the present application enables the integrated device to only require an IP52 protection level, does not require a breathable valve, a dispensing seal, and a reversible hygroscopic material, and reduces the manufacturing cost of the integrated device. Since it is not necessary to seal the integrated module, and it is not necessary to spray a waterproof coating on the circuit board of the integrated device, the integrated device provided in the embodiment of the present application is easy to disassemble and has strong maintainability.
  • the embodiment of the present application provides a cooling system, the cooling system includes an integrated device, a cooling pipeline, a valve, and a heat exchange medium as described in any one of the first aspects.
  • the cooling pipeline is used to circulate the heat exchange medium
  • the heat exchange medium is used to dissipate heat from the integrated device
  • the valve is used to control the switch of the cooling pipeline.
  • the integrated device When the valve is open, the heat exchange medium flows in the cooling pipeline, and the integrated device is in a liquid cooling state; when the valve is closed, the heat exchange medium does not flow in the cooling pipeline, and the integrated device is in other cooling states such as natural cooling or air cooling. That is to say, at this time, the integrated device uses natural cooling or air cooling and other cooling methods to dissipate heat.
  • the cooling system further includes a second processing module, and when the temperature of the heat exchange medium is higher than the dew point temperature, or the temperature of the heat exchange medium is higher than the sum of the dew point temperature and a first threshold value, the second processing module is used to control the valve to open.
  • the second processing module is used to control the valve to open.
  • the first threshold value is related to the performance of the temperature and/or humidity sensor.
  • the temperature and humidity measured by the temperature sensor and the humidity sensor may have errors.
  • the first threshold value is set to prevent the measured dew point temperature from being lower than the actual dew point temperature, thereby preventing the risk of condensation from being misjudged as no risk of condensation, and causing the integrated device to be in a liquid cooling state and generate condensation.
  • the valve when the temperature of the heat exchange medium is not higher than the dew point temperature, or the temperature of the heat exchange medium is not higher than the sum of the dew point temperature and the first threshold, the valve is closed.
  • the temperature of the heat exchange medium does not meet the condition, there is a risk of condensation, and the valve is closed to put the integrated device in other heat dissipation states such as natural heat dissipation or air cooling to prevent condensation.
  • the cooling system further includes a third temperature sensor, and the third temperature sensor is used to measure the temperature of the heat exchange medium. According to the measured temperature of the heat exchange medium, the condensation risk can be judged and the cooling method of the integrated device can be determined.
  • an embodiment of the present application provides a cooling method, which is applied to a cooling system, wherein the cooling system includes an integrated device, a cooling pipeline, a valve, and a heat exchange medium.
  • the cooling system includes an integrated device, a cooling pipeline, a valve, and a heat exchange medium.
  • the valve is opened, the heat exchange medium circulates in the cooling pipeline, and the heat exchange medium dissipates heat for the integrated device.
  • the temperature of the heat exchange medium is low.
  • the circulation of the heat exchange medium has the risk of condensation for the heat dissipation of the integrated device.
  • the temperature of the heat exchange medium rises to above the dew point temperature, and the valve is opened to allow the heat exchange medium to circulate in the cooling pipeline to dissipate heat for the integrated device without generating condensation.
  • an embodiment of the present application provides a cooling method, which is applied to a cooling system, wherein the cooling system includes an integrated device, a cooling pipeline, a valve, and a heat exchange medium.
  • the external ambient temperature of the integrated device is obtained, and when the external ambient temperature of the integrated device is lower than a second threshold, the valve is closed.
  • the ambient temperature is lower than the second threshold, other heat dissipation methods such as natural heat dissipation or air cooling can meet the heat dissipation requirements of the integrated device, and the valve is closed so that the heat exchange medium cannot circulate in the cooling pipeline, and there is no risk of condensation.
  • the valve when the ambient temperature is not lower than the second threshold value, the power-on time of the integrated device is longer than the first time length, the valve is opened, the heat exchange medium flows through the cooling pipeline, and the heat exchange then dissipates heat for the integrated device.
  • the ambient temperature is not lower than the second threshold value, natural heat dissipation or other heat dissipation methods such as air cooling cannot meet the heat dissipation requirements of the integrated device, and liquid cooling is required for the integrated device.
  • the temperature of the heat exchange medium rises to above the dew point temperature, the valve is opened to allow the heat exchange medium to flow through the cooling pipeline, and the integrated device is dissipated without generating condensation.
  • an embodiment of the present application provides a cooling method, which is applied to an integrated device, wherein the integrated device includes a circuit board, a first temperature sensor, and a humidity sensor.
  • the first temperature sensor is used to measure temperature
  • the first humidity sensor is used to measure humidity.
  • the temperature and humidity are used to obtain the dew point temperature of the environment inside the integrated device, and the dew point temperature is used to determine the cooling method of the integrated device.
  • an embodiment of the present application provides a cooling method, which is applied to a cooling system, wherein the cooling system comprises the integrated device, cooling pipeline, valve and heat exchange medium described in any one of the first aspects.
  • the cooling pipeline is used to circulate the heat exchange medium
  • the heat exchange medium is used to dissipate heat for the integrated device
  • the valve is used to control the switch of the cooling pipeline.
  • the valve When the valve is open, the heat exchange medium circulates in the cooling pipeline, and the integrated device is in a liquid cooling state; when the valve is closed, the heat exchange medium does not circulate in the cooling pipeline, and the integrated device is in other cooling states such as natural cooling or air cooling.
  • an embodiment of the present application provides a terminal, the terminal comprising the integrated device or cooling system according to any one of the first aspect or the second aspect.
  • the terminal is a vehicle.
  • an embodiment of the present application provides a computer-readable storage medium, which, when executed on a computer or a processor, enables the method described in any one of the third aspect, the fourth aspect, the fifth aspect or the sixth aspect to be executed.
  • FIG. 1 is a schematic diagram of a usage scenario of the integrated device.
  • FIG. 2 is a schematic diagram of an integrated device provided in the present application.
  • FIG. 3 is another schematic diagram of the integrated device provided in the present application.
  • FIG. 4 is another schematic diagram of the integrated device provided in the present application.
  • FIG. 5 is another schematic diagram of the integrated device provided in the present application.
  • FIG6 is another schematic diagram of the integrated device provided in the present application.
  • FIG. 7 is another schematic diagram of the integrated device provided in the present application.
  • FIG8 is a schematic diagram of a cooling system provided in the present application.
  • FIG. 9 is another schematic diagram of the cooling system provided in the present application.
  • FIG. 10 is a schematic diagram of the cooling system provided in the present application applied to a vehicle.
  • FIG. 11 is another schematic diagram of the cooling system provided in the present application.
  • FIG. 12 is a schematic flow chart of a cooling method provided in the present application.
  • FIG. 13 is another schematic flow chart of the cooling method provided in the present application.
  • FIG. 14 is another schematic flow chart of the cooling method provided in the present application.
  • the integrated device mentioned in the embodiments of the present application can be an intelligent driving module, an in-vehicle entertainment module, a vehicle control module, a mobile data center (MDC), a cockpit domain controller (CDC), a vehicle domain controller (Vehicle Domain Controller) or other module units encapsulated with integrated circuits, such as an electronic control unit (ECU), a telematics box (Tbox), an industrial personal computer (IPC), etc.
  • the integrated device in the embodiments of the present application can be used in various fields such as intelligent driving, intelligent transportation, intelligent manufacturing, intelligent control, and environmental monitoring, and can complete one or more functions of data processing, automatic control, information collection, simulation calculation, and target recognition.
  • Circuit board can also be called circuit board, PCB board, FPC circuit board, printed circuit board, main board, etc.
  • Circuit board is a printed board with point connections and printed components on the substrate according to a predetermined design. Its function is to form a predetermined circuit connection when electronic parts are installed. It is the substrate and key interconnection part on which electronic parts are installed.
  • the circuit board is installed in the integrated device, and the whole formed by the circuit board and the electronic parts integrated on the board is the core of the integrated device to realize its function.
  • a temperature sensor (Temperature transducer) is a sensor that can sense temperature and convert it into a usable output signal.
  • Humidity sensor Humanity transducer is a sensor that can sense temperature and convert it into a usable output signal.
  • Heat exchange medium can also be called heat transfer medium, heat exchange medium, etc. It is used to transfer heat from one place to another. It is generally gas or liquid, such as air, water, oil, etc. It can also be phase change material or liquid metal, or it can be nanofluid formed by metal or non-metal nanoparticles dispersed in the fluid medium.
  • Dew point temperature also known as dew point, refers to the temperature at which the gaseous water in the air reaches saturation and condenses into liquid water under a fixed air pressure. At this temperature, it condenses into dew when it touches the solid surface, so it is called the dew point temperature.
  • the dew point is related to temperature and humidity.
  • the dew point and the air temperature are the same.
  • a movable part that can be used to open, close or partially block one or more openings or channels to allow liquid flow, air flow or other loose substances to flow out, block or be regulated.
  • the driving method it can be divided into manual valves, electric valves, hydraulic valves, pneumatic valves, etc.
  • a component used for heat exchange and heat dissipation in an integrated device or cooling system usually made of metal or non-metal materials with good thermal conductivity, such as copper, aluminum, carbon, etc.
  • the cold plate may be hollow for the heat exchange medium to flow, or it may be a solid structure with structures such as heat dissipation fins on it.
  • the cold plate may also be formed by deformation of the cooling pipeline, or may be a part of the cooling pipeline.
  • the cold plate is usually in contact with the heat generating part of the device to dissipate heat through heat exchange.
  • a cooling pipe may also be called a heat pipe, which is a heat transfer element in which a heat exchange medium flows and is used to quickly transfer the heat of a heat-generating object to the outside of the heat source.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”. "At least one” means one or more, and “plural” means two or more. "And/or” describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural. Unless otherwise specified, the character “/" generally indicates that the previous and next associated objects are in an "or” relationship. For example, A/B means: A or B.
  • At least one of the following items refers to any combination of these items, including any combination of single items or plural items.
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • first and second are used to distinguish multiple objects, and are not used to limit the size, content, order, timing, application scenario, priority or importance of the multiple objects.
  • first processing module and the second processing module can be the same processing module or different processing modules, and such names do not indicate the difference in structure, position, priority, application scenario or importance of the two processing modules.
  • connection may be a direct connection or an indirect connection; in addition, it may refer to an electrical connection or a communication connection; for example, the connection between two electrical components A and B may refer to a direct connection between A and B, or may refer to an indirect connection between A and B through other electrical components or a connection medium, so that electrical signals can be transmitted between A and B; for another example, the connection between two devices A and B may refer to a direct connection between A and B, or may refer to an indirect connection between A and B through other communication devices or communication media, as long as communication between A and B can be performed.
  • FIG 1 is a schematic diagram of a usage scenario of the integrated device.
  • the integrated device will generate heat during operation, and a heat exchange medium in the cooling pipeline is required to dissipate the heat to ensure that the integrated device does not shut down or even burn due to overheating.
  • the heat exchange medium absorbs heat in the integrated device, and the absorbed heat is released through the heat exchanger to achieve heat dissipation of the integrated device.
  • condensation may occur on the integrated device. If the condensation drips onto the circuit board of the integrated device, there will be a risk of short circuit.
  • Figure 2 is a schematic diagram of the integrated device provided by the present application, including a circuit board, a first temperature sensor and a humidity sensor.
  • the first temperature sensor and the humidity sensor are located in the integrated device.
  • the first temperature sensor and the humidity sensor are used to measure the temperature and humidity in the integrated device, and obtain the dew point temperature through the temperature and humidity.
  • the cooling method of the integrated device is determined according to the dew point temperature. If there is a risk of condensation when the integrated device is cooled by liquid cooling at the current dew point temperature, other cooling methods are used to dissipate the heat of the integrated device to avoid condensation and short-circuiting the integrated device.
  • the first temperature sensor and the humidity sensor can be different sensors, or they can be temperature and humidity sensors that can measure temperature and humidity in one.
  • Figure 3 is a schematic diagram of the integrated device provided by the present application.
  • the temperature and humidity sensor is both a first temperature sensor and a humidity sensor.
  • the first temperature sensor is integrated on the circuit board.
  • the humidity sensor is integrated on the circuit board.
  • Figure 4 is a schematic diagram of an integrated device provided in the present application, and also includes a first processing module, the first processing module is connected to the first temperature sensor and the humidity sensor, and the first processing module is used to calculate the dew point temperature based on the temperature and humidity data.
  • the first processing module is integrated on a circuit board.
  • the dew point temperature may be calculated by the Goff-Grech equation, or by the Magras formula, or may be obtained by looking up a table, etc., and the present application does not limit this.
  • the processing module may include one or more processors. It should be understood that in the embodiments of the present application, the processor is described as a processor for the convenience of explaining the calculation function. In the specific implementation process, the processor may include a device with a calculation function.
  • At least one processor may include one or more of the following devices: a central processing unit (CPU), an application processor (AP), a time-to-digital converter (TDC), a filter, a graphics processing unit (GPU), a microprocessor (MPU), an application specific integrated circuit (ASIC), an image signal processor (ISP), a digital signal processor (DSP), a field programmable gate array (FPGA), a complex programmable logic device (CPLD), a coprocessor (assisting the central processing unit to complete corresponding processing and applications), a microcontroller unit (MCU), and/or a neural-network processing unit (NPU), etc.
  • CPU central processing unit
  • AP application processor
  • TDC time-to-digital converter
  • FDC time-to-digital converter
  • filter a filter processing unit
  • GPU graphics processing unit
  • MPU microprocessor
  • ASIC application specific integrated circuit
  • ISP image signal processor
  • DSP digital signal processor
  • FPGA field programmable gate array
  • CPLD complex
  • the processing module may be located inside or outside the integrated device.
  • the processing module may include multiple components, some of which are located inside the integrated device, and some of which are located outside the integrated device.
  • the processing module may include a digital-to-analog conversion module, a filtering module, and an output module, wherein the digital-to-analog conversion module and the filtering module are located inside the integrated device, and the output module is located outside the integrated device.
  • FIG. 5 is a schematic diagram of an integrated device provided in the present application.
  • the integrated device also includes a cold plate, which is used for heat exchange in the integrated device and is a part with condensation risk.
  • a cold plate which is used for heat exchange in the integrated device and is a part with condensation risk.
  • the cooling method of the integrated device can be determined based on this.
  • the integrated device adopts natural heat dissipation, air cooling or other heat dissipation methods.
  • the integrated device adopts liquid cooling.
  • FIG6 is a schematic diagram of an integrated device provided by the present application, wherein the integrated device further includes a cold plate and a second temperature sensor, and the integrated device further includes a cold plate, and the cold plate is used for heat exchange of the integrated device.
  • the cold plate is a part with condensation risk. When the temperature of the cold plate is higher than the dew point temperature, there is no condensation risk. When the temperature of the cold plate is lower than the dew point temperature, there is a condensation risk.
  • the cooling method of the integrated device can be determined based on this. When there is a condensation risk, the integrated device adopts other heat dissipation methods such as natural heat dissipation or air cooling. When there is no condensation risk, the integrated device adopts liquid cooling.
  • the second temperature sensor and the first temperature sensor can be the same temperature sensor or different temperature sensors, and this name does not mean that the two temperature sensors are different in structure, position, priority, application scenario or importance.
  • FIG. 7 is a schematic diagram of an integrated device provided in an embodiment of the present application, wherein the integrated device includes a housing, a circuit board, a chip, a temperature sensor, a humidity sensor, and a cold plate.
  • the chip is the main heat source in the integrated device, and the cold plate is connected to the chip to dissipate heat.
  • the housing surrounds electronic components such as the circuit board and acts as a package.
  • the cold plate can be hollow to circulate a heat exchange medium, or it can be a solid structure.
  • the cold plate and the heat-generating part of the integrated device can be in direct contact, or can be connected to the heat-generating part of the integrated device through other heat-conducting media.
  • the heat-conducting medium can be a thermal pad, thermal grease, etc.
  • the heat-conducting medium can fill the gap between the cold plate and the chip, which is beneficial to improving the heat conduction efficiency. It can also provide a certain degree of protection for the chip, provide a buffer between the cold plate and the chip, and prevent the cold plate from damaging the chip during assembly or use.
  • the integrated device provided in the embodiment of the present application measures temperature and humidity through a temperature sensor and a humidity sensor, calculates the dew point temperature through the measured temperature and humidity, determines the condensation risk according to the dew point temperature, and selects a suitable cooling method to avoid the condensation risk.
  • the solution provided in the present application requires only an IP52 protection level for the integrated device, does not require a breathable valve, a dispensing seal, and a reversible hygroscopic material, and reduces the manufacturing cost of the integrated device. Since there is no need to seal the integrated module, and there is no need to spray a waterproof coating on the circuit board of the integrated device, the integrated device provided in the embodiment of the present application is easy to disassemble and has strong maintainability. And since there is no need to spray a waterproof coating on the circuit board, the heat dissipation performance of the circuit board is good, which is conducive to the integrated device to obtain better performance.
  • the present application provides a cooling system.
  • the cooling pipeline is used to circulate the heat exchange medium, and the heat exchange medium is used to dissipate heat for the integrated device.
  • the valve is used to control the switch of the cooling pipeline. When the valve is open, the heat exchange medium circulates in the cooling pipeline, and the integrated device is in a liquid cooling state; when the valve is closed, the heat exchange medium does not circulate in the cooling pipeline, and the integrated device is in other cooling states such as natural cooling or air cooling.
  • the switch of the valve is determined according to the cooling method required by the integrated device. When there is no condensation risk in the integrated device, the valve is opened and the integrated device is in a liquid cooling state. When there is a condensation risk, the valve is closed, and the integrated device is in other cooling states such as natural cooling or air cooling, so as to avoid condensation.
  • FIG. 9 is a schematic diagram of a cooling system provided by the present application, wherein the cooling system further comprises a second processing module, and the second processing module is connected to a valve, and when the temperature of the heat exchange medium is higher than the dew point temperature, or the temperature of the heat exchange medium is higher than the sum of the dew point temperature and the first threshold value, the second processing module controls the valve to open.
  • the second processing module and the first processing module may be the same processing module or different processing modules, and such a name does not indicate the difference in structure, location, priority, application scenario or importance of the two processing modules.
  • the cooling system is applied to a vehicle.
  • FIG10 provides a schematic diagram of a cooling system applied to a vehicle for an embodiment of the present application, including an electric drive circuit and a battery circuit, in which a heat exchange medium flows.
  • the direction of the arrow in the figure is the flow direction of the heat exchange medium, and the heat is dissipated to the outside through the heat exchanger and circulates in different circuits.
  • the initial temperature of the heat exchange medium is low.
  • the valve is closed to put the integrated device in a cooling mode such as natural heat dissipation or air cooling.
  • the heat of the power battery and the motor causes the heat exchange temperature in the circuit to rise, and there is no risk of condensation.
  • the valve is opened to put the integrated device in a liquid cooling mode.
  • a pump is used to drive the heat exchange medium to flow in the circuit.
  • the first threshold is related to the performance of the temperature and/or humidity sensor.
  • the temperature and humidity measured by the temperature sensor and the humidity sensor may have errors.
  • the first threshold is set to prevent the measured dew point temperature from being lower than the actual dew point temperature, which is misjudged as no condensation risk and causes the integrated device to be in a liquid cooling state to generate condensation.
  • the first threshold is related to a dew point calculation method. Different dew point calculation methods have different error ranges. Setting the first threshold can avoid misjudgment of condensation risk caused by errors and improve the reliability of anti-condensation.
  • the valve when the temperature of the heat exchange medium is not higher than the dew point temperature, or the temperature of the heat exchange medium is not higher than the sum of the dew point temperature and the first threshold value, the valve is closed.
  • the temperature of the heat exchange medium does not meet the condition, there is a risk of condensation, and the valve is closed to put the integrated device in other heat dissipation states such as natural heat dissipation or air cooling to prevent condensation.
  • FIG. 11 is a schematic diagram of a cooling system provided by the present application, wherein the cooling system further includes a third temperature sensor, and the third temperature sensor is used to measure the temperature of the heat exchange medium. According to the measured temperature of the heat exchange medium, the condensation risk can be determined and the cooling method of the integrated device can be determined.
  • the heat exchange medium first flows through the third temperature sensor and then flows through the valve.
  • the present application provides a cooling method. Please refer to FIG. 12, which is a flow chart of the cooling method provided by the present application, which is applied to a cooling system.
  • the cooling system may be a cooling system as shown in any one of FIG. 8, FIG. 9, and FIG. 11.
  • the cooling system includes an integrated device, which may be an integrated device, a cooling pipeline, a valve, and a heat exchange medium as shown in any one of FIG. 2-FIG. 7.
  • the process is performed according to the following steps: the first step, S1201, the integrated device is powered on, and the valve remains closed; the second step, S1202, after the integrated device is powered on for a first time, the valve is opened, the heat exchange medium flows in the cooling pipeline, and the heat exchange medium dissipates heat for the integrated device; the third step, S1203, the valve remains open, and the valve is closed after the integrated device is powered off.
  • the integrated device is powered on, the temperature of the heat exchange medium is low. At this time, the circulation of the heat exchange medium has the risk of condensation on the heat dissipation of the integrated device.
  • the temperature of the heat exchange medium reaches above the dew point temperature, and the valve is opened to allow the heat exchange medium to flow in the cooling pipeline to dissipate heat for the integrated device without condensation.
  • the first duration is related to the user of the cooling system, such as a vehicle.
  • the structure, performance, and operating conditions of the user will affect the first duration. For example, when the cooling system is applied to a vehicle, after a vehicle with a higher heat generation is started, the temperature of the heat exchange medium will quickly rise to a temperature range without condensation risk, and the first duration required is shorter than that of a vehicle with a lower heat generation; for another example, when the vehicle is traveling at high speed, the heat generation is higher, and the first duration is shorter than the first duration when traveling at a low speed.
  • the cooling system is installed in a vehicle. After the vehicle is started, the temperature of the heat exchange medium rises. After a first period of time, the temperature of the heat exchange medium rises to a level without condensation risk. The valve opens, and the heat exchange medium flows through the cooling pipeline, putting the integrated device in a liquid cooling state.
  • the present application provides a cooling method. Please refer to FIG. 13, which is a flow chart of the cooling method provided by the present application, and is applied to a cooling system.
  • the cooling system may be a cooling system as shown in any one of FIG. 8, FIG. 9, and FIG. 11.
  • the cooling system includes an integrated device, and the integrated device may be an integrated device as shown in any one of FIG. 2-FIG. 7, a cooling pipeline valve, and a heat exchange medium.
  • the process is performed according to the following steps: the first step, S1301, the integrated device is powered on, and the valve remains closed; the second step, S1302, determines whether the ambient temperature of the integrated device is lower than the second threshold value, if so, executes step S1301; if not, executes the third step, step S1303, after the integrated device is powered on for a first period of time, the valve opens; the fourth step, S1304, the valve remains open, and the valve closes after the integrated device is powered off.
  • the integrated device when the ambient temperature is not lower than the second threshold value, the integrated device is powered on for a time longer than the first time, the valve is opened, the heat exchange medium flows through the cooling pipeline, and the heat exchange then dissipates heat for the integrated device.
  • the ambient temperature is not lower than the second threshold value, other heat dissipation methods such as natural heat dissipation or air cooling cannot meet the heat dissipation requirements of the integrated device, and the integrated device needs to be liquid cooled.
  • the integrated device When the integrated device is powered on for a time longer than the first time, the temperature of the heat exchange medium rises above the dew point temperature, the valve is opened to allow the heat exchange medium to flow through the cooling pipeline, and the integrated device is cooled without condensation.
  • the second threshold value is related to the structure of the cooling system and the performance of the integrated device. If the cooling system can provide heat dissipation without the circulation of the heat exchange medium, the second threshold value in this case is higher than the second threshold value of the cooling system with poor heat dissipation effect without the circulation of the heat exchange medium; if the integrated device itself has a low heat generation, or the integrated device has a good tolerance to high temperatures, its second threshold value is higher than the second threshold value in the case of an integrated device with a large heat generation or poor tolerance to high temperatures.
  • the embodiment of the present application provides a cooling method, which is applied to an integrated device, wherein the integrated device includes a circuit board, a first temperature sensor and a humidity sensor.
  • the first temperature sensor is used to measure temperature
  • the first humidity sensor is used to measure humidity.
  • the temperature and humidity are used to obtain the dew point temperature of the environment inside the integrated device, and the dew point temperature is used to determine the cooling method of the integrated device.
  • the present application provides a cooling method in an embodiment.
  • FIG. 14 is a flow chart of the cooling method provided by the present application, and is applied to a cooling system.
  • the cooling system may be a cooling system as shown in any one of FIG. 8, FIG. 9, and FIG. 11.
  • the cooling system includes an integrated device as described in any one of the first aspects, such as an integrated device as shown in any one of FIG. 2 to FIG. 7, a cooling pipeline, a valve, and a heat exchange medium.
  • the cooling pipeline is used to circulate the heat exchange medium, and the heat exchange medium is used to dissipate heat for the integrated device.
  • the valve is used to control the switch of the cooling pipeline.
  • the heat exchange medium circulates in the cooling pipeline, and the integrated device is in a liquid cooling state; when the valve is closed, the heat exchange medium does not circulate in the cooling pipeline, and the integrated device is in other cooling states such as natural cooling or air cooling.
  • the process is carried out according to the following steps: the first step, S1401, the integrated device is powered on, and the valve remains closed; the second step, S1402, the temperature and humidity sensors measure the temperature and humidity to determine the dew point temperature; the third step, S1403, determines whether the temperature of the heat exchange medium is higher than the dew point temperature or the temperature of the heat exchange medium is higher than the sum of the dew point temperature and the first threshold value, if not, execute step S1401; if so, execute the fourth step, S1404, the valve remains open, and the valve is closed after the integrated device is powered off.
  • An embodiment of the present application provides a terminal, the terminal comprising the integrated device or cooling system according to any one of the first aspect or the second aspect.
  • the terminal is a vehicle.
  • An embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium is executed on a computer or a processor, the cooling method described in any one of the embodiments of the present application is executed.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another device, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place or distributed in multiple different places. Some or all of the units may be selected according to actual needs to achieve the purpose of the present embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请实施例提供一种集成装置、冷却***、冷却方法和终端,其中集成装置包括第一电路板、温度传感器和湿度传感器,通过温度传感器和湿度传感器测得的温度和湿度,计算集成装置内环境的露点温度,根据露点温度选择集成装置的冷却方式,以避免产生凝露。冷却***包括集成装置、冷却管路、阀和热交换介质,通过阀的开关控制热交换介质是否在冷却管路中流通,控制集成装置的冷却方式,避免产生凝露,防止电路板发生短路。本申请所提供的方案使集成装置只需要IP52防护等级,不需要透气阀、点胶密封和可逆吸湿材料,不需要在电路板上喷涂防水涂层,降低了集成装置的制造和维护成本,拆卸方便,电路板的散热性能好,有利于集成装置获得更好的性能。

Description

一种集成装置、冷却***、冷却方法和终端 技术领域
本申请涉及电子设备领域,尤其涉及一种集成装置、冷却***、冷却方法和终端。
背景技术
随着自动驾驶等级越来越高,车载智能模块上的***级芯片,SoC(System on Chip)的算力和功耗也越来越高,传统的自然散热或风冷散热无法满足SoC的散热要求,需要对其进行液冷散热。当冷却液温度低于环境温度时,有产生凝露导致电路板短路的风险,另外当空气湿度较大或环境温度较低时,也有产生凝露的导致电路板短路的风险。
发明内容
本申请提供一种集成装置、冷却***、冷却方法和终端,用于防止产生凝露使电路板短路。
第一方面,本申请实施例提供了一种集成装置,所述集成装置包括电路板,第一温度传感器和湿度传感器,所述第一温度传感器用于测量温度,所述第一湿度传感器用于测量湿度,所述温度和湿度用于获取集成装置内环境的露点温度,所述露点温度用于确定所述集成装置的冷却方式。露点温度和环境的温度和湿度有关,通过测量环境温度和湿度可得到环境的露点温度。若在当前环境的露点温度下,采用液冷对集成装置进行冷却有凝露风险,则采用其他冷却方式对集成装置进行散热,以避免产生凝露使电路板发生短路。
在第一方面的一种可能的实施方式中,所述集成装置还包括第一处理模块,所述第一处理模块用于根据温度和湿度计算所述露点温度,所述集成装置根据露点温度确定冷却方式,以避免产生凝露。
在第一方面的一种可能的实施方式中,所述第一温度传感器位于所述电路板上。第一温度传感器集成于所述电路板上,用于测量温度,以获取环境露点温度。
在第一方面的一种可能的实施方式中,所述湿度传感器位于所述电路板上。湿度传感器集成于所述电路板上,用于测量湿度,以获取环境露点温度。
在第一方面的一种可能的实施方式中,所述集成装置还包括冷板和第二温度传感器,所述冷板用于集成装置的热交换,所述第二温度传感器用于测量冷板的温度。冷板用于集成装置进行热交换,是有凝露风险的部位,第二温度传感器测量冷板温度,可更准确的判断凝露风险,当冷板温度高于露点温度,无凝露风险,当冷板温度低于露点温度,有凝露风险,可以据此决定集成装置的冷却方式。
本申请实施例所提供的集成装置通过温度传感器和湿度传感器测量温度和湿度,通过测得的温度和湿度计算露点温度,根据露点温度判断凝露风险,选择合适的冷却方式规避凝露风险。本申请所提供的方案使集成装置只需要IP52防护等级,不需要透气阀、点胶密封和可逆吸湿材料,降低了集成装置的制造成本。由于不需要对集成模 块进行密封,也不需要在集成装置的电路板上喷涂防水涂层,本申请实施例所提供及集成装置拆卸方便,可维护性强。并且由于电路板上无需喷涂防水涂层,电路板的散热性能好,有利于集成装置获得更好的性能。第二方面,本申请实施例提供了一种冷却***,所述冷却***包括第一方面中任一项所述的集成装置、冷却管路、阀和热交换介质。所述冷却管路用于流通所述热交换介质,所述热交换介质用于对所述集成装置进行散热,所述阀用于控制所述冷却管路的开关。当阀打开时,热交换介质在冷却管路中流通,集成装置处于液冷散热状态;当阀关闭,热交换介质不在冷却管路中流通,集成装置处于自然散热或风冷散热等其他散热状态,也就是说,此时集成装置采用自然散热或者风冷散热等冷却方式进行散热。
在第二方面的一种可能的实施方式中,所述冷却***还包括第二处理模块,当热交换介质温度高于所述露点温度,或热交换介质温度高于所述露点温度与第一阈值的和时,所述第二处理模块用于将控制所述阀打开。当热交换介质温度高于所述露点温度,或热交换介质温度高于所述露点温度与第一阈值的和时,不会产生凝露,阀打开使热交换介质在冷却管路中流通,对集成装置进行散热,保证集成装置正常运行。
在第二方面的一种可能的实施方式中,所述第一阈值与温度和/或湿度传感器性能有关。温度传感器和湿度传感器测得的温度和湿度可能有误差,为了保证集成装置中不产生凝露,所以设置第一阈值,防止测得露点温度低于实际露点温度,误判为无凝露风险,使集成装置处于液冷状态产生凝露。
在第二方面的一种可能的实施方式中,当热交换介质温度不高于所述露点温度,或热交换介质温度不高于所述露点温度和第一阈值的和时,所述阀关闭。当热交换介质温度不满足条件时,有凝露风险,所述阀关闭使集成装置处于自然散热或风冷状态等其他散热状态,防止产生凝露。
在第二方面的一种可能的实施方式中,所述冷却***还包括第三温度传感器,所述第三温度传感器用于测量所述热交换介质的温度。根据测量得到的热交换介质温度,可判断凝露风险,确定集成装置的冷却方式。
第三方面,本申请实施例提供了一种冷却方法,应用于冷却***,所述冷却***包括集成装置、冷却管路、阀和热交换介质。在所述集成装置上电第一时长后,所述阀打开,所述热交换介质在冷却管路中流通,所述热交换介质对集成装置进行散热。当集成装置上电时,所述热交换介质温度低,此时热交换介质流通对集成装置散热有产生凝露的风险,经过第一时长后,热交换介质温度上升至露点温度以上,阀打开使热交换介质在冷却管路中流通,对所述集成装置进行散热,不会产生凝露。
第四方面,本申请实施例提供了一种冷却方法,应用于冷却***,所述冷却***包括集成装置、冷却管路、阀和热交换介质。获取集成装置外界环境温度,当所述集成装置外界环境温度低于第二阈值,所述阀关闭。当环境温度低于第二阈值时,自然散热或风冷散热等其他散热方式可满足集成装置的散热需求,阀关闭使热交换介质不能在冷却管路中流通,没有凝露风险。
在第四方面的一种可能的实施方式中,当环境温度不低于第二阈值,所述集成装置上电时长大于第一时长,所述阀打开,所述冷却管路流通所述热交换介质,所述热交换接着对所述集成装置进行散热。当环境温度不低于第二阈值,自然散热或风冷散 热等其他散热方式不能满足集成装置的散热需求,需要对集成装置进行液冷散热,当集成装置上电时长大于第一时长,所述热交换介质温度上升至露点温度以上,阀打开使热交换介质在冷却管路中流通,对所述集成装置进行散热,不会产生凝露。
第五方面,本申请实施例提供了一种冷却方法,应用于集成装置,所述集成装置包括电路板、第一温度传感器和湿度传感器。所述第一温度传感器用于测量温度,所述第一湿度传感器用于测量湿度,所述温度和湿度用于获取集成装置内环境的露点温度,所述露点温度用于确定所述集成装置的冷却方式。
第六方面,本申请实施例提供了一种冷却方法,应用于冷却***,所述冷却***包括第一方面中任一项所述的集成装置、冷却管路、阀和热交换介质。所述冷却管路用于流通所述热交换介质,所述热交换介质用于对所述集成装置进行散热,所述阀用于控制所述冷却管路的开关。当阀打开时,热交换介质在冷却管路中流通,集成装置处于液冷散热状态;当阀关闭,热交换介质不在冷却管路中流通,集成装置处于自然散热或风冷散热等其他散热状态。
第七方面,本申请实施例提供了一种终端,所述终端包括第一方面或第二方面任一项所述的集成装置或冷却***。可选的,所述终端为车辆。
第八方面,本申请实施例提供一种计算机可读存储介质,当所述计算机可读存储介质在计算机或处理器上执行时,使第三方面、第四方面、第五方面或第六方面中任一项所述方法被执行。
关于第五方面、第六方面、第七方面和第八方面所对应的实施方式所带来的实施效果可参考第一方面和第二方面的各种实施方式的介绍,在此不再重复。
附图说明
图1为集成装置的一种使用场景示意图。
图2为本申请提供的集成装置的一种示意图。
图3为本申请提供的集成装置的另一种示意图。
图4为本申请提供的集成装置的另一种示意图。
图5为本申请提供的集成装置的另一种示意图。
图6为本申请提供的集成装置的另一种示意图。
图7为本申请提供的集成装置的另一种示意图。
图8为本申请提供的冷却***的一种示意图。
图9为本申请提供的冷却***的另一种示意图。
图10为本申请提供的冷却***应用于车辆的一种示意图。
图11为本申请提供的冷却***的另一种示意图。
图12为本申请提供的冷却方法的一种流程示意图。
图13为本申请提供的冷却方法的另一种流程示意图。
图14为本申请提供的冷却方法的另一种流程示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
为了便于理解,以下示例地给出了部分与本申请实施例相关概念的说明以供参考。如下所述:
1.集成装置
本申请实施例中提到的集成装置可以是车载领域的智能驾驶模块、车载娱乐模块、车辆控制模块,移动数据中心(Mobile Data Center,MDC)、智能座舱域控制器(Cockpit Domain Controller,CDC)、整车域控制器(Vehicle Domain Controller)或其他封装有集成电路的模块单元,如电子控制单元(Electronic Control Unit,ECU),远程通信终端(Telematics Box.Tbox),,工业控制计算机(Industrial Personal Computer,IPC)等。本申请实施例中的集成装置能够使用在智能驾驶、智能运输、智能制造、智能控制、环境监测等各种领域,能够完成数据处理、自动控制、信息采集、仿真计算、目标识别等中的一项或者多项功能。
2.电路板
电路板还可称为线路板、PCB板、FPC线路板、印刷线路板、主板等。电路板是在基材上按照预定设计形成点间连接以及印制元件的印制板,其功能是时电子零件形成预定的电路连接,是电子零件装在的基板和关键互连件。
电路板安装于集成装置中,电路板及板上所集成的电子零件形成的整体是集成装置实现其功能的核心。
3.温度传感器
温度传感器(Temperature transducer)是指能够感受温度并转换成可用输出信号的传感器。
4.湿度传感器(Humidity transducer)是指能够感受温度并转换成可用输出信号的传感器。
湿度传感器
5.热交换介质
热交换介质还可称为传热介质、换热工质等,用于将热量从一个地方转移到另一个地方,一般为气体或者液体,如空气、水、油等,也可以是相变材料或液态金属,还可以是也由金属或者非金属纳米颗粒分散到流体介质中形成的纳米流体。
6.露点温度
露点温度又称露点(Dew point),是指在固定气压之下,空气中所含的气态水达到饱和而凝结成液态水所需达到的温度,在此温度下,沾在固体表面时候凝结为露,因此称为露点温度。
在固定气压下,露点与温度和湿度有关,当空气中的水蒸气达到饱和时,露点和气温相同。
7.阀
一种活动部件,利用该部件可开、关或部分挡住一个或多个开口或通道,使液流、气流或其他松散物质可以流出、堵住或得到调节的一种装置。按驱动方式,可分为手动阀、电动阀、液压阀、气压阀等。
8.冷板
集成装置或冷却***中,用于进行热交换散热的部件,通常由导热性能好的金属 或者非金属材料制成,如铜、铝,碳等。冷板可能中空,供热交换介质流通,也可能为实体结构,其上可能有散热鳍片等结构。
冷板也可由冷却管路的变形形成,也可是冷却管路的一部分,冷板通常和装置中的发热部分相接触,通过热交换对其进行散热。
9.冷却管路
冷却管路还可称为热管,一种传热元件,其中流通有热交换介质,用于将发热物体的热量迅速传递到热源外。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。如无特殊说明,字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或,a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、应用场景、优先级或者重要程度等。例如,第一处理模块和第二处理模块,可以是同一个处理模块,也可以是不同的处理模块,且,这种名称也并不是表示这两个处理模块的结构、位置、优先级、应用场景或者重要程度等的不同。
本申请实施例中,“连接”可以是直接连接或间接连接;此外,可以指电连接或通信连接;例如,两个电学元件A与B连接,可以指A与B直接连接,或者可以指A与B之间通过其它电学元件或连接介质间接连接,使得A与B之间可以进行电信号传输;再如,两个设备A与B连接,可以指A与B直接连接,或者可以指A与B之间通过其它通信设备或通信介质间接连接,只要使得A与B之间可以进行通信即可。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,各个实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
请参考图1,图1为集成装置的一种使用场景示意图,集成装置在运行过程中会发热,需要冷却管路中热交换介质对其进行散热,以保证集成装置不过热停机甚至烧毁。热交换介质在集成装置中吸收热量,其吸收的热量通过换热器释放,以实现对集成装置的散热。当热交换介质温度低于露点温度时,集成装置上可能会产生凝露,凝露如果滴落在集成装置的电路板上就会产生短路风险。
为此,本申请提供了一种集成装置,请参考图2,图2为本申请提供的集成装置 的一种示意图,包括电路板、第一温度传感器和湿度传感器。所述第一温度传感器和湿度传感器位于集成装置内。第一温度传感器和湿度传感器用于测量集成装置内的温度和湿度,并通过温度和湿度获取露点温度,根据露点温度确定所述集成装置的冷却方式,若当前露点温度下,采用液冷对集成装置进行冷却有凝露风险,则采用其他冷却方式对集成装置进行散热,以避免产生凝露使集成装置发生短路。可选的,第一温度传感器和湿度传感器可以为不同传感器,也可以为能测量温度和湿度一体的温湿度传感器,请参考图3,为本申请提供的集成装置的一种示意图,所述温湿度传感器既是第一温度传感器,也是湿度传感器。
一种可能的实施方式,所述第一温度传感器集成在所述电路板上。
一种可能的实施方式,所述湿度传感器集成在所述电路板上。
一种可能的实施方式,请参考图4,为本申请提供的一种集成装置示意图,还包括第一处理模块,第一处理模块与第一温度传感器和湿度传感器相连接,所述第一处理模块用于根据温度和湿度数据计算所述露点温度。
一种可能的实施方式,第一处理模块集成在电路板上。
可选的,露点温度可通过戈夫-格雷奇方程式计算,或通过马格拉斯公式计算,也可通过查表等形式获得,本申请对此不做限制。处理模块可以包含一个或者多个处理器。应理解,本申请实施例中为了方便说明计算功能故描述为处理器,在具体实施过程中,处理器可以包含具有计算功能的装置。例如,至少一个处理器可以包含以下装置中的一项或者多项:中央处理器(central processing unit,CPU)、应用处理器(application processor,AP)、时间数字转换器(Time-to-Digital Converter,TDC)、滤波器、图形处理器(graphics processing unit,GPU)、微处理器(microprocessor unit,MPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、图像信号处理器(image signal processor,ISP)、数字信号处理器(digital signal processor,DSP)、现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)、复杂可编程逻辑器件(Complex programmable logic device,CPLD)、协处理器(协助中央处理器完成相应处理和应用)、微控制单元(Microcontroller Unit,MCU)、和/或神经网络处理器(neural-network processing unit,NPU)等。
可选的,处理模块可以位于集成装置内部,也可以位于集成装置外部。
或者一些可能的设计中,处理模块可以包含多个部件,部分部件位于集成装置内部,部分部件位于集成装置外部。示例性地,处理模块可以包含数模转换模块、滤波模块和输出模块,其中数模转换模块、滤波模块位于集成装置内部,而输出模块位于集成装置外部。
一种可能的实施方式,请参考图5,为本申请提供的集成装置的一种示意图,所述集成装置还包括冷板,所述冷板用于用于集成装置进行热交换,是有凝露风险的部位,当冷板温度高于露点温度,无凝露风险,当冷板温度低于露点温度,有凝露风险,可以据此决定集成装置的冷却方式,当有凝露风险时候,集成装置采用自然散热或风冷散热等其他散热方式,当无凝露风险时,集成装置采用液冷散热方式。
一种可能的实施方式,请参考图6,为本申请为本申请提供的集成装置的一种示意图,所述集成装置还包括冷板和第二温度传感器,所述集成装置还包括冷板,所述 冷板用于集成装置热交换。冷板是有凝露风险的部位,当冷板温度高于露点温度,无凝露风险,当冷板温度低于露点温度,有凝露风险,可以据此决定集成装置的冷却方式,当有凝露风险时候,集成装置采用自然散热或风冷散热等其他散热方式,当无凝露风险时,集成装置采用液冷散热方式。第二温度传感器和第一温度传感器,可以是同一个温度传感器,也可以是不同的温度传感器,且,这种名称也并不是表示这两个温度传感器的结构、位置、优先级、应用场景或者重要程度等的不同。
一种可能的实施方式,请参考图7,为本申请实施例提供的一种集成装置的示意图,集成装置包括外壳、电路板、芯片、温度传感器、湿度传感器和冷板。芯片是集成装置中的主要热源,冷板和芯片相连接,对其进行散热。所述外壳将电路板等电子元件包围,起封装作用。可选的,冷板可以为中空,以流通热交换介质,也可是实心结构。冷板和集成装置中发热部分可以直接相接触,也可通过其他热传导介质与集成装置中发热部分相连接。可选的,热传导介质可以是导热垫、导热硅脂等,热传导介质可填补冷板和芯片间的间隙,有利于提高导热效率,也可对芯片提供一定的保护作用,在冷板和芯片间提供缓冲,防止冷板在组装或使用中损坏芯片。
本申请实施例所提供的集成装置通过温度传感器和湿度传感器测量温度和湿度,通过测得的温度和湿度计算露点温度,根据露点温度判断凝露风险,选择合适的冷却方式规避凝露风险。本申请所提供的方案使集成装置只需要IP52防护等级,不需要透气阀、点胶密封和可逆吸湿材料,降低了集成装置的制造成本。由于不需要对集成模块进行密封,也不需要在集成装置的电路板上喷涂防水涂层,本申请实施例所提供及集成装置拆卸方便,可维护性强。并且由于电路板上无需喷涂防水涂层,电路板的散热性能好,有利于集成装置获得更好的性能。
本申请提供了一种冷却***,请参考8,为本申请提供的冷却***的一种示意图,包括第一方面中任一项所述的集成装置、冷却管路、阀和热交换介质。所述冷却管路用于流通所述热交换介质,所述热交换介质用于对所述集成装置进行散热,所述阀用于控制所述冷却管路的开关。当阀打开时,热交换介质在冷却管路中流通,集成装置处于液冷散热状态;当阀关闭,热交换介质不在冷却管路中流通,集成装置处于自然散热或风冷散热等其他散热状态。阀的开关根据集成装置所需要的冷却方式确定,当集成装置无凝露风险时,阀打开,集成装置处于液冷散热状态,当存在凝露风险,阀关闭,集成装置处于自然散热或风冷散热等其他散热状态,以此避免产生凝露。
一种可能的实施方式,请参考图9,为本申请提供的冷却***的一种示意图,所述冷却***还包括第二处理模块,第二处理模块与阀相连接,当热交换介质温度高于露点温度,或热交换介质温度高于露点温度与第一阈值的和时,所述第二处理模块控制所述阀打开。当热交换介质温度高于所述露点温度,或热交换介质温度高于所述露点温度与第一阈值的和时,不会产生凝露,阀打开使热交换介质在冷却管路中流通, 对集成装置进行散热,保证集成装置正常运行。第二处理模块和第一处理模块,可以是同一个处理模块,也可以是不同的处理模块,且,这种名称也并不是表示这两个处理模块的结构、位置、优先级、应用场景或者重要程度等的不同。
一种可能的实施方式,冷却***应用于车辆,请参考图10,为本申请实施例提供冷却***应用于车辆的一种示意图,包括电驱回路和电池回路,回路中流通有热交换介质,图中箭头方向为热交换介质流动方向,热量通过换热器向外界耗散和在不同回路中流通。车辆启动时,初始热交换介质温度较低,此时通入集成装置中有产生凝露的风险,故阀关闭,使集成装置处于自然散热或风冷散热等散热方式。当车辆运行一段时间,动力电池和电机发热使回路中热交换温度上升,不会产生凝露风险,阀打开,使集成装置处于液冷散热方式。泵用于驱动热交换介质在回路中流动。
可选的,所述第一阈值与温度和/或湿度传感器的性能有关,温度传感器和湿度传感器性能有关,温度传感器和湿度传感器测得的温度和湿度可能有误差,为了保证集成装置中不产生凝露,提高防凝露的可靠性,所以设置第一阈值,防止测得露点温度低于实际露点温度,误判为无凝露风险,使集成装置处于液冷状态产生凝露。
可选的,所述第一阈值与露点的计算方法有关,不同的露点计算方法有不同的误差范围,设置第一阈值可避免误差造成的对凝露风险的误判,提升防凝露的可靠性。
一种可能的实施方式,当热交换介质温度不高于所述露点温度,或热交换介质温度不高于所述露点温度与第一阈值的和时,所述阀关闭。当热交换介质温度不满足条件时,有凝露风险,所述阀关闭使集成装置处于自然散热或风冷状态等其他散热状态,防止产生凝露。
一种可能的实施方式,请参考图11,为本申请提供的冷却***的一种示意图,所述冷却***还包括第三温度传感器,所述第三温度传感器用于测量热交换介质的温度。根据测量得到的热交换介质温度,可判断凝露风险,确定集成装置的冷却方式。所述热交换介质先流经第三温度传感器,后流经所述阀。
本申请实施例提供了一种冷却方法,请参考图12,为本申请提供的冷却方法的一种流程示意图,应用于冷却***,所述冷却***可以是如图8、图9、图11中任一项所示的冷却***,所述冷却***包括集成装置,所述集成装置可以是如图2-图7中任一项所示的集成装置、冷却管路、阀和热交换介质。所述流程按如下步骤进行,第一步,S1201,集成装置上电,阀保持关闭;第二步,S1202,在所述集成装置上电第一时长后,所述阀打开,所述热交换介质在冷却管路中流通,所述热交换介质对集成装置进行散热;第三步,S1203,阀保持开启,集成装置下点后,阀关闭。当集成装置上电时,所述热交换介质温度低,此时热交换介质流通对集成装置散热有产生凝露的风险,经过第一时长后,热交换介质温度达到露点温度以上,阀打开使热交换介质在冷却管路中流通,对所述集成装置进行散热,不会产生凝露。
一种可能的实施方式中,第一时长同冷却***的使用对象,例如车辆,有关。使用对象的结构、性能,工况都会对所述第一时长产生影响。例如,当冷却***应用于车辆,发热量较高的车辆启动后,会使热交换介质温度迅速上升至无凝露风险的温度区间,其所需要的第一时长较发热量较低的车辆短;再例如车辆行驶于高速工况时, 发热量较高,其第一时长相比于低速行驶时的第一时长短。
一种可能的实施方式中,冷却***安装于车辆,在车辆启动后,热交换介质温度上升,当经过第一时长后,热交换介质温度升至无凝露风险,所述阀打开,热交换介质经冷却管路流通,使所述集成装置处于液冷状态。
本申请提供一种冷却方法,请参考图13,为本申请提供的冷却方法的一种流程示意图,应用于冷却***,所述冷却***可以是如图8、图9、图11中任一项所示的冷却***,所述冷却***包括集成装置,所述集成装置可以是如图2-图7中任一项所示的集成装置、冷却管路阀和热交换介质。所述流程按如下步骤进行,第一步,S1301,集成装置上电,阀保持关闭;第二步,S1302,判断集成装置所处环境温度是否低于第二阈值,若是,则执行步骤S1301;若不是,执行第三步,步骤S1303,集成装置上电第一时长后,阀打开;第四步,S1304,阀保持开启,集成装置下电后,阀关闭。当环境温度低于第二阈值时,自然散热或风冷散热等其他散热方式可满足集成装置的散热需求,阀关闭使热交换介质不能在冷却管路中流通,没有凝露风险。
一种可能的实施方式,当环境温度不低于第二阈值,所述集成装置上电时长大于第一时长,所述阀打开,所述冷却管路流通所述热交换介质,所述热交换接着对所述集成装置进行散热。当环境温度不低于第二阈值,自然散热或风冷散热等其他散热方式不能满足集成装置的散热需求,需要对集成装置进行液冷散热,当集成装置上电时长大于第一时长,所述热交换介质温度上升至露点温度以上,阀打开使热交换介质在冷却管路中流通,对所述集成装置进行散热,不会产生凝露。所述第二阈值与冷却***的结构和集成装置性能有关,若冷却***在无热交换介质流通的情况下,也可提供散热效果,则该情况下第二阈值高于无热交换介质流通散热效果差的冷却***的第二阈值;若集成装置自身发热量较低,或集成装置对高温耐受性较好,其第二阈值相比于发热量大或对高温耐受性差的集成装置的情况下的第二阈值高。
本申请实施例提供了一种冷却方法,应用于集成装置,所述集成装置包括电路板、第一温度传感器和湿度传感器。所述第一温度传感器用于测量温度,所述第一湿度传感器用于测量湿度,所述温度和湿度用于获取集成装置内环境的露点温度,所述露点温度用于确定所述集成装置的冷却方式。
本申请实施例提供了一种冷却方法,请参考图14,为本申请提供的冷却方法的一种流程示意图,应用于冷却***,所述冷却***可以是如图8、图9、图11中任一项所示的冷却***,所述冷却***包括第一方面中任一项所述的集成装置,如图2-图7中任一项所示的集成装置、冷却管路、阀和热交换介质。所述冷却管路用于流通所述热交换介质,所述热交换介质用于对所述集成装置进行散热,所述阀用于控制所述冷却管路的开关。当阀打开时,热交换介质在冷却管路中流通,集成装置处于液冷散热状态;当阀关闭,热交换介质不在冷却管路中流通,集成装置处于自然散热或风冷散热等其他散热状态。所述流程按如下步骤进行,第一步,S1401,集成装置上电,阀保持关闭;第二步,S1402,温、湿度传感器测量温度和湿度,确定露点温度;第三步,S1403,判断热交换介质温度是否高于露点温度或热交换介质温度高于露点温度与第一阈值的和,若不是,执行步骤S1401;若是,执行第四步,S1404,阀保持开启,集成装置下电后,阀关闭。
本申请实施例提供了一种终端,所述终端包括第一方面或第二方面任一项所述的集成装置或冷却***。可选的,所述终端为车辆。
本申请实施例提供一种计算机可读存储介质,当所述计算机可读存储介质在计算机或处理器上执行时,使本申请实施例中任一项所述冷却方法被执行。
关于冷却方法和终端的技术效果可参考集成装置、冷却***、冷却方法的各种实施方式的介绍,在此不再重复。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种集成装置,其特征在于,所述集成装置包括电路板,第一温度传感器和湿度传感器,
    所述第一温度传感器用于测量温度,
    所述湿度传感器用于测量湿度,
    所述温度和湿度用于获取集成装置内环境的露点温度,
    所述露点温度用于确定所述集成装置的冷却方式。
  2. 根据权利要求1所述的集成装置,其特征在于,所述集成装置还包括第一处理模块,
    所述第一处理模块用于根据温度和湿度数据计算所述露点温度。
  3. 根据权利要求1-2中任一项所述的集成装置,其特征在于,所述第一温度传感器位于所述电路板上。
  4. 根据权利要求1-3中任一项所述的集成装置,其特征在于,所述湿度传感器位于所述电路板上。
  5. 根据权利要求1-4中任一项所述的集成装置,其特征在于,所述集成装置还包括冷板和/或第二温度传感器,
    所述冷板用于集成装置的热交换,
    所述第二温度传感器用于测量冷板的温度。
  6. 一种冷却***,其特征在于,包括权利要求1-5中任一项所述的集成装置、冷却管路、阀和热交换介质,
    所述冷却管路用于流通所述热交换介质,
    所述热交换介质用于对所述集成装置进行散热,
    所述阀用于控制所述冷却管路的开关。
  7. 根据权利要求6所述的冷却***,其特征在于,所述冷却***还包括第二处理模块,
    所述集成装置的冷却方式包括:
    当热交换介质温度高于所述露点温度,或热交换介质温度高于所述露点温度与第一阈值的和时,所述第二处理模块用于,控制所述阀打开。
  8. 根据权利要求7所述的冷却***,其特征在于,所述第一阈值与温度和/或湿度传感器精度有关。
  9. 根据权利要求6-8中任一项所述的冷却***,其特征在于,当热交换介质温 度不高于所述露点温度,或热交换介质温度不高于所述露点温度与第一阈值的和时,所述阀关闭。
  10. 根据权利要求6-9中任一项所述的冷却***,其特征在于,所述冷却***还包括第三温度传感器,
    所述第三温度传感器用于测量所述热交换介质的温度。
  11. 一种冷却方法,应用于冷却***,所述冷却***包括,集成装置,冷却管路,热交换介质,阀,其特征在于,
    对所述集成装置上电,
    在所述集成装置上电第一时长后,所述阀打开,
    所述冷却管路流通所述热交换介质,
    所述热交换介质对集成装置进行散热。
  12. 一种冷却方法,应用于冷却***,所述冷却***包括,集成装置,冷却管路,阀,热交换介质,其特征在于,
    获取集成装置所处环境温度,
    当所述环境温度低于第二阈值,所述阀关闭。
  13. 根据权利要求12所述的冷却方法,其特征在于,
    当所述环境温度不低于第二阈值,若所述集成装置上电时长大于第一时长,
    所述阀打开,
    所述冷却管路流通所述热交换介质,
    所述热交换介质对所述集成装置进行散热。
  14. 一种冷却方法,应用于集成装置,所述集成装置包括,电路板,第一温度传感器和湿度传感器,其特征在于,
    所述第一温度传感器测量温度,
    所述湿度传感器测量湿度,
    根据所述温度和湿度获取集成装置内环境的露点温度,
    根据所述露点温度确定所述集成装置的冷却方式。
  15. 根据权利要求14所述的冷却方法,其特征在于,所述集成装置还包括第一处理模块,
    所述第一处理模块根据温度数据和湿度数据计算所述露点温度。
  16. 根据权利要求14-15任一项所述的冷却方法,其特征在于,所述第一温度传感器位于所述电路板上。
  17. 根据权利要求14-16任一项所述的冷却方法,其特征在于,所述湿度传感器位于所述电路板上。
  18. 根据权利要求14-17中任一项所述的冷却方法,其特征在于,所述集成装置还包括冷板和/或第二温度传感器,
    所述冷板实现集成装置的热交换,
    所述第二温度传感器测量所述冷板的温度数据。
  19. 一种冷却方法,应用于冷却***,所述冷却***包括权利要求1-5中任一项所述的集成装置,冷却管路,阀和热交换介质,
    所述冷却管路流通所述热交换介质,
    所述热交换介质对所述集成装置进行散热,
    所述阀控制所述冷却管路的开关。
  20. 根据权利要求19所述的冷却方法,其特征在于,所述冷却***还包括第二处理模块,当热交换介质温度高于所述露点温度,或热交换介质温度高于所述露点温度和第一阈值的和时,第二处理模块控制所述阀打开。
  21. 根据权利要求20所述的冷却方法,其特征在于,所述第一阈值与温度传感器和/或湿度传感器精度有关。
  22. 根据权利要求19-21中任一项所述的冷却方法,其特征在于,
    当热交换介质温度不高于所述露点温度,或热交换介质温度不高于所述露点温度和第一阈值的和时,所述阀关闭。
  23. 根据权利要求19-22中任一项所述的冷却方法,其特征在于,所述冷却***还包括第三温度传感器,
    所述第三温度传感器测量所述热交换介质温度。
  24. 一种终端,其特征在于,所述终端包括权利要求1-5、6-10中任一项所述的集成装置或冷却***。
  25. 根据权利要求24所述的终端,其特征在于,所述终端为车辆。
  26. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序在计算机或处理器上执行时,使得权利要求11-23中任一项所述的方法被执行。
PCT/CN2022/138128 2022-12-09 2022-12-09 一种集成装置、冷却***、冷却方法和终端 WO2024119514A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/138128 WO2024119514A1 (zh) 2022-12-09 2022-12-09 一种集成装置、冷却***、冷却方法和终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/138128 WO2024119514A1 (zh) 2022-12-09 2022-12-09 一种集成装置、冷却***、冷却方法和终端

Publications (1)

Publication Number Publication Date
WO2024119514A1 true WO2024119514A1 (zh) 2024-06-13

Family

ID=91378396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138128 WO2024119514A1 (zh) 2022-12-09 2022-12-09 一种集成装置、冷却***、冷却方法和终端

Country Status (1)

Country Link
WO (1) WO2024119514A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000912A (en) * 1995-10-09 1999-12-14 Ebara Corporation Method of liquid-cooling an inverter device
JP2004171835A (ja) * 2002-11-18 2004-06-17 Ebara Ballard Corp 燃料電池装置
CN207994008U (zh) * 2018-01-30 2018-10-19 中航锂电(洛阳)有限公司 一种电池包液冷装置、电池包及车辆
CN210778890U (zh) * 2019-09-12 2020-06-16 北汽福田汽车股份有限公司 电池冷却集成***及电动车
KR20200108815A (ko) * 2018-03-20 2020-09-21 김기용 결로방지용 복합냉방 시스템과 복합냉방 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000912A (en) * 1995-10-09 1999-12-14 Ebara Corporation Method of liquid-cooling an inverter device
JP2004171835A (ja) * 2002-11-18 2004-06-17 Ebara Ballard Corp 燃料電池装置
CN207994008U (zh) * 2018-01-30 2018-10-19 中航锂电(洛阳)有限公司 一种电池包液冷装置、电池包及车辆
KR20200108815A (ko) * 2018-03-20 2020-09-21 김기용 결로방지용 복합냉방 시스템과 복합냉방 방법
CN210778890U (zh) * 2019-09-12 2020-06-16 北汽福田汽车股份有限公司 电池冷却集成***及电动车

Similar Documents

Publication Publication Date Title
JP4512296B2 (ja) 可搬型情報処理装置の液冷システム
CN204968334U (zh) 散热***
CN107454797B (zh) 一种用于高热流电子器件散热的泵驱两相回路装置
US20030184941A1 (en) Cooling device
CN105702647B (zh) 一种实现高负荷cpu强化散热功能的纳米喷雾装置及其方法
WO2023272473A1 (zh) 散热装置和电子设备
WO2024119514A1 (zh) 一种集成装置、冷却***、冷却方法和终端
WO2021114376A1 (zh) 一种服务器液冷散热器
CN206024386U (zh) 一种充电桩液冷电子散热装置
CN105429906A (zh) 一种采用温感监控实现交换机散热降噪的方法
CN207488942U (zh) 笔记本电脑散热***
TWM514714U (zh) 散熱系統
CN1458687A (zh) 半导体元件冷却装置及其控制方法
CN212256243U (zh) 一种计算机cpu散热器
CN107943250A (zh) 笔记本电脑散热***
CN109511250B (zh) 散热装置和电子设备
CN206532238U (zh) 水冷式散热装置
CN206582547U (zh) 一种智能感应对流散热式led控制模组
CN205581763U (zh) 一种电脑机箱散热装置
CN108776527B (zh) 相变材料和液冷相结合的计算机中央处理器散热装置
CN207440722U (zh) 一种新型计算机主机散热装置
CN208999950U (zh) 一种具有防尘降噪功能的散热装置
CN208400075U (zh) 一种微型嵌入式工业控制计算机
CN207457969U (zh) 一种服务器液冷装置
US20070064394A1 (en) Heat dissipating system