WO2024119463A1 - 无线通信方法、装置、设备、存储介质及程序产品 - Google Patents

无线通信方法、装置、设备、存储介质及程序产品 Download PDF

Info

Publication number
WO2024119463A1
WO2024119463A1 PCT/CN2022/137834 CN2022137834W WO2024119463A1 WO 2024119463 A1 WO2024119463 A1 WO 2024119463A1 CN 2022137834 W CN2022137834 W CN 2022137834W WO 2024119463 A1 WO2024119463 A1 WO 2024119463A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
transmission block
information
timer
harq
Prior art date
Application number
PCT/CN2022/137834
Other languages
English (en)
French (fr)
Inventor
杜忠达
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/137834 priority Critical patent/WO2024119463A1/zh
Publication of WO2024119463A1 publication Critical patent/WO2024119463A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a wireless communication method, apparatus, device, storage medium, and program product.
  • the terminal device needs to use wireless resources for uplink data transmission.
  • the network device can configure a shared wireless resource pool for the terminal device, and the terminal device independently selects wireless resources from the wireless resource pool for uplink data transmission.
  • the embodiments of the present application provide a wireless communication method, apparatus, device, storage medium and program product.
  • the technical solution is as follows:
  • a wireless communication method comprising:
  • the terminal device uses the first wireless resource selected autonomously to send a first transmission block and HARQ information corresponding to the first transmission block to the network device, and indicates the identifier of the terminal device to the network device.
  • a wireless communication method comprising:
  • the network device receives a first transmission block and HARQ information corresponding to the first transmission block sent by a terminal device using a first wireless resource selected autonomously, and determines an identifier of the terminal device based on the received information.
  • a wireless communication device comprising:
  • the transceiver module is used to use the autonomously selected first wireless resource to send a first transmission block and HARQ information corresponding to the first transmission block to a network device, and indicate the identifier of the terminal device to the network device.
  • a wireless communication device comprising:
  • a receiving module is used to receive a first transmission block and HARQ information corresponding to the first transmission block sent by a terminal device using a first wireless resource selected autonomously, and determine an identifier of the terminal device based on the received information.
  • a communication device which includes a processor and a memory, wherein the memory stores a computer program, and the processor executes the computer program to implement the wireless communication method on the terminal device side or the wireless communication method on the network device side.
  • a computer-readable storage medium in which a computer program is stored.
  • the computer program is used to be executed by a processor to implement the wireless communication method on the terminal device side or the wireless communication method on the network device side.
  • a chip which includes a programmable logic circuit and/or program instructions.
  • the chip When the chip is running, it is used to implement the wireless communication method on the terminal device side mentioned above, or to implement the wireless communication method on the network device side mentioned above.
  • a computer program product which includes a computer program, and the computer program is stored in a computer-readable storage medium.
  • a processor reads and executes the computer program from the computer-readable storage medium to implement the above-mentioned wireless communication method on the terminal device side, or to implement the above-mentioned wireless communication method on the network device side.
  • a communication system comprising a terminal device and a network device, the terminal device being used to execute the wireless communication method on the terminal device side, and the network device being used to execute the wireless communication method on the network device side.
  • the terminal device autonomously selects wireless resources for data transmission
  • the terminal device uses the autonomously selected wireless resources to send a transmission block and the HARQ information corresponding to the transmission block to the network device
  • the terminal device indicates the identifier of the terminal device to the network device so that after receiving the transmission block, the network device can know which terminal device sent the transmission block, thereby ensuring that subsequent HARQ feedback can be executed smoothly and improving the reliability of data transmission in the event of potential conflicts.
  • FIG1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG2 is a flow chart of a wireless communication method provided by an embodiment of the present application.
  • FIG3 is a schematic diagram of explicit feedback provided by an exemplary embodiment of the present application.
  • FIG4 is a schematic diagram of explicit feedback provided by an exemplary embodiment of the present application.
  • FIG5 is a schematic diagram of implicit feedback provided by an exemplary embodiment of the present application.
  • FIG6 is a schematic diagram of implicit feedback provided by another exemplary embodiment of the present application.
  • FIG7 is a schematic diagram of timeout retransmission provided by an exemplary embodiment of the present application.
  • FIG8 is a schematic diagram of fallback retransmission provided by an exemplary embodiment of the present application.
  • FIG9 is a schematic diagram of monitoring retransmission provided by an exemplary embodiment of the present application.
  • FIG10 is a flowchart of a wireless communication method provided by another embodiment of the present application.
  • FIG11 is a block diagram of a wireless communication device provided by an embodiment of the present application.
  • FIG12 is a block diagram of a wireless communication device provided by an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a terminal device provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the structure of a network device provided in one embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art can appreciate that with the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the network architecture may include: a terminal device 10 , an access network device 20 and a core network device 30 .
  • the terminal device 10 may refer to a UE (User Equipment), an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a user agent or a user device.
  • UE User Equipment
  • the terminal device 10 may also be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in a 5GS (5th Generation System) or a terminal device in a future evolved PLMN (Public Land Mobile Network), etc., and the embodiments of the present application do not limit this.
  • the above-mentioned devices are collectively referred to as terminal devices.
  • terminal devices 10 The number of terminal devices 10 is usually multiple, and one or more terminal devices 10 can be distributed in a cell managed by each access network device 20.
  • terminal device and “UE” usually express the same meaning, and the two can be used interchangeably, but those skilled in the art can understand their meanings.
  • the access network device 20 is a device deployed in the access network to provide wireless communication functions for the terminal device 10.
  • the access network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, etc.
  • the names of devices with access network device functions may be different, for example, in the 5G NR system, they are called gNodeB or gNB. With the evolution of communication technology, the name "access network device" may change.
  • access network devices For the convenience of description, in the embodiments of the present application, the above-mentioned devices that provide wireless communication functions for the terminal device 10 are collectively referred to as access network devices.
  • a communication relationship can be established between the terminal device 10 and the core network device 30 through the access network device 20.
  • the access network device 20 may be one or more eNodeBs in EUTRAN (Evolved Universal Terrestrial Radio Access Network) or EUTRAN; in a 5G NR system, the access network device 20 may be one or more gNBs in RAN (Radio Access Network) or RAN.
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • gNB Radio Access Network
  • the core network device 30 is a device deployed in the core network.
  • the functions of the core network device 30 are mainly to provide user connection, user management and service bearing, and to provide an interface to the external network as a bearer network.
  • the core network device in the 5G NR system may include devices such as AMF (Access and Mobility Management Function) entity, UPF (User Plane Function) entity and SMF (Session Management Function) entity.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • SMF Session Management Function
  • the access network device 20 and the core network device 30 communicate with each other through some air interface technology, such as the NG interface in the 5G NR system.
  • the access network device 20 and the terminal device 10 communicate with each other through some air interface technology, such as the Uu interface.
  • the "5G NR system" in the embodiments of the present application may also be referred to as a 5G system or an NR system, but those skilled in the art may understand its meaning.
  • the technical solution described in the embodiments of the present application may be applicable to an LTE system, a 5G NR system, a subsequent evolution system of the 5G NR system, or other communication systems such as an NB-IoT (Narrow Band Internet of Things) system, and the present application does not limit this.
  • NB-IoT Narrow Band Internet of Things
  • a network device can provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) on a carrier used by the cell.
  • the cell can be a cell corresponding to a network device (for example, a base station).
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cells here may include: metro cells, micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a terminal device when a terminal device needs to send data, it needs to first send a scheduling request message to the network device.
  • the network device schedules the terminal device to send a PDU (Protocol Data Unit) based on the obtained scheduling request message.
  • the PDU includes the buffer scheduling information of the terminal device.
  • the network device schedules the terminal device to send data based on the obtained buffer scheduling information.
  • the wireless resources used by the terminal device to send the PDU for buffer information and the PDU for sending data packets are dedicated to the scheduled terminal device, so there is no wireless resource conflict.
  • this method will cause the user plane delay to increase, and the terminal device needs to have a handshake process with the network device before sending data. For applications where data packets arrive more continuously, the delay problem is not serious because the subsequently sent PDU can also carry buffer information. However, for some applications where data packets arrive discontinuously, the terminal device will send scheduling requests frequently, thereby introducing additional user plane delays.
  • the main starting point of the related technology is that when the terminal device sends a data packet, the wireless resources used must be exclusive, so as to avoid wireless resource conflicts between any two terminal devices in the same cell.
  • This starting point is very necessary when the network equipment covers a large area and the carrier frequency band used by the network equipment is relatively low, because such cells are often used for macro cells with a relatively large coverage area, and the number of terminal devices in the cell is often relatively large, so conflict resolution is very necessary.
  • new wireless communication systems will not only re-cultivate the wireless frequency resources that have been used before, but also often add new spectrum.
  • the 5G system will re-cultivate the frequency bands below 2GHz used in the 2G, 3G and 4G systems, and at the same time, the 5G system will widely deploy networks in new frequency bands, such as 3.5GHz.
  • 3.5GHz has a bandwidth of more than 100MHz in many countries.
  • operators have taken various measures to make the coverage of the 3.5GHz frequency band equivalent to that of the previous system, so as to make full use of the hardware and infrastructure of the original system.
  • not all frequency bands can adopt this approach.
  • millimeter waves can only cover hot spots. Due to the radio wave propagation characteristics of millimeter waves, they can only cover limited areas, such as a cell radius of tens of meters. The number of terminal devices served in a cell is much less than that served in a macro cell (approximately between hundreds of meters and tens of kilometers).
  • the probability of conflict between terminal devices when accessing the same wireless resource pool is greatly reduced. Even if a conflict occurs, some technical measures can be taken to enhance it, such as using the HARQ retransmission mechanism. Assuming that the current conflict probability of the wireless resource pool used by the terminal device is 10%, and the BLER (block error rate) of HARQ is also 10%, then the success rate of each transmission is 81% (90%*90%), and the failure rate is 19%. When the maximum number of retransmissions taken by a HARQ process is 2 times (including the initial transmission, a total of 3 times), the probability of not successfully transmitting after 3 transmissions is 0.6859%. This is mainly due to the small conflict probability of the wireless resource pool.
  • the present application provides a wireless communication method.
  • a terminal device autonomously selects wireless resources for data transmission
  • the terminal device uses the autonomously selected wireless resources to send a transmission block and HARQ information corresponding to the transmission block to a network device
  • the terminal device indicates an identifier of the terminal device to the network device, so that after receiving the transmission block, the network device can know which terminal device sent the transmission block, thereby ensuring that subsequent HARQ feedback can be executed smoothly, and improving the reliability of data transmission in the event of potential conflicts.
  • Figure 2 shows a flow chart of a wireless communication method provided by an embodiment of the present application.
  • the method can be applied to the network architecture shown in Figure 1, for example, each step can be performed by a terminal device.
  • the method may include the following steps:
  • Step 210 The terminal device uses the first wireless resource selected autonomously to send a first transmission block and HARQ information corresponding to the first transmission block to the network device, and indicates an identifier of the terminal device to the network device.
  • the first transport block includes user data.
  • a transport block (TB) refers to a unit of data transmission.
  • the HARQ information corresponding to the first transport block is used to control a HARQ process of the first transport block.
  • the HARQ information includes at least one of the following: HARQ process ID (identifier of the HARQ process), NDI (New Data Indicator), etc.
  • the HARQ process ID is also called the HARQ process Number, which is used to uniquely identify a HARQ process.
  • the HARQ information selectively carries the identifier of the HARQ process. Whether the HARQ information carries the identifier of the HARQ process is related to whether the wireless communication process performs retransmission of the outgoing block.
  • the HARQ information may not carry the identifier of the HARQ process. That is, assuming that the terminal device and the network device implement the agreement that only one HARQ process is performed for the transmission block, such as a HARQ process with an ID of 0, the HARQ process ID may be omitted in the HARQ information.
  • the terminal device and the network device implement more than one HARQ process for the agreed transmission block (sending and receiving the transmission block in the same way), and the HARQ information needs to carry the HARQ process ID.
  • the terminal device and the network device agree that data transmission needs to be retransmitted, and the HARQ information includes the identifier of the HARQ process.
  • NDI is used to indicate whether the scheduled data is an initial transmission or a retransmission.
  • NDI is represented by a 1-bit character. The flipping of NDI (e.g., 0 flips to 1, or 1 flips to 0) indicates that the HARQ process is the initial transmission of a new transmission block.
  • the transport block there is a one-to-one correspondence between the transport block and the HARQ information, that is, different transport blocks correspond to different HARQ information.
  • the HARQ information corresponding to the first transport block is generated by a MAC (Medium Access Control) layer of the terminal device.
  • the first wireless resource is a wireless resource independently selected by the terminal device and used to send the first transmission block and the HARQ information corresponding to the first transmission block.
  • the first wireless resource includes time domain resources and frequency domain resources, referred to as time-frequency resources.
  • the terminal device autonomously selects a first wireless resource from a wireless resource pool.
  • the wireless resource pool includes at least one wireless resource for wireless communication.
  • the wireless resource pool used by the terminal device is pre-configured or configured by a network device.
  • the network device configures the wireless resource pool to the terminal device through RRC (Radio Resource Control) signaling.
  • the wireless resource pool is shared by multiple terminal devices in the service cell corresponding to the network device. That is, any terminal device in the service cell corresponding to the network device can select wireless resources for uplink transmission from the wireless resource pool to improve resource utilization in the wireless resource pool.
  • the terminal device has a built-in machine learning algorithm, and the machine learning algorithm is used to determine whether the terminal device can use the wireless resources in the wireless resource pool to send a transmission block and HARQ information corresponding to the transmission block to the network device at a certain moment.
  • the method in which the terminal device determines to use the wireless resources in the wireless resource pool to send uplink data through a machine learning algorithm is called an autonomous transmission method. If the terminal device determines through a machine learning algorithm that the terminal device can use the autonomous transmission method to send uplink data at a certain moment, the terminal device selects a first wireless resource from the wireless resource pool, and uses the first wireless resource to send a first transmission block and the HARQ information corresponding to the first transmission block.
  • the terminal device determines through a machine learning algorithm that the terminal device cannot use an autonomous transmission method to send uplink data at a certain moment, the terminal device does not send the first transmission block and the HARQ information corresponding to the second transmission block at that moment.
  • the terminal device uses a machine learning algorithm to re-determine that the first transmission block can be autonomously sent at another moment.
  • the terminal device uses a machine learning algorithm to determine the first wireless resource from the wireless resource pool. For example, the terminal device uses the resource occupancy monitored in n time units before a certain moment as the input of the machine learning algorithm to obtain the first wireless resource autonomously selected by the machine learning algorithm from the wireless resource pool, where n is a positive integer.
  • the terminal device uses the first wireless resource to send the first transmission block and HARQ information at this moment.
  • the terminal device since the terminal device adopts an autonomous transmission mode for data transmission, there may be conflicts, that is, there is a conflict between the data transmission of the terminal device and other terminal devices.
  • the terminal device will set a timer corresponding to the first transmission block to supervise the initial transmission of the first transmission block or the retransmission of the first transmission block.
  • a timer corresponding to the first transmission block to supervise the initial transmission of the first transmission block or the retransmission of the first transmission block.
  • the terminal device uses different channels to send the first transmission block and the HARQ information corresponding to the first transmission block respectively.
  • the terminal device uses PUSCH (physical uplink shared channel) to send the first transmission block, and uses PUCCH (physical uplink control channel) to send the HARQ information corresponding to the first transmission block.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the correspondence between the radio resources in the PUCCH and the radio resources in the PUSCH is preconfigured.
  • the terminal device transmits the first transport block and the HARQ feedback information corresponding to the first transport block through the same channel. For example, the terminal device uses PUSCH to transmit the first transport block and the HARQ feedback information corresponding to the first transport block.
  • the terminal device uses PUSCH to transmit the first transmission block, and uses PUCCH to transmit HARQ feedback information corresponding to the first transmission block.
  • the terminal device uses different encoding methods for the first transmission block and the HARQ information corresponding to the first transmission block.
  • the specific content of this process please refer to the embodiments below.
  • the channel used by the terminal device to send the first transmission block and the HARQ information corresponding to the first transmission block is determined according to actual needs, and this application does not limit it here.
  • the terminal device in addition to sending the first transmission block and the HARQ information corresponding to the first transmission block to the network device, the terminal device also indicates the identifier of the terminal device to the network device, so that the network device can determine the sender of the first transmission block based on the identifier of the terminal device.
  • the identifier of the terminal device is used to uniquely characterize the terminal device.
  • each terminal device in the same network device service cell has a different identifier.
  • different terminal devices correspond to different terminal identifiers.
  • the identifier of terminal device 1 is a
  • the identifier of terminal device 2 is b
  • a and b are not the same.
  • the identifier of the terminal device includes but is not limited to a MAC address, RNTI (Radio Network Temporary Identity), SUPI (Subscription Permanent Identifier), SUCI (Subscription Concealed Identifier), serial number of the terminal device, etc., which is not limited in this application.
  • the terminal device indicates the identifier of the terminal device to the network device, including: the terminal device carries the identifier of the terminal device in the first transmission block, or the terminal device carries the identifier of the terminal device in the HARQ information, or the terminal device transmits the identifier of the terminal device to the network device separately.
  • the HARQ information corresponding to the first transmission block includes an identifier of the terminal device.
  • the network device obtains the identifier of the terminal device by demodulating and decoding the received HARQ information corresponding to the first transmission block. For details of the process, please refer to the following embodiments.
  • the terminal device autonomously selects wireless resources for data transmission
  • the terminal device uses the autonomously selected wireless resources to send a transmission block and the HARQ information corresponding to the transmission block to the network device
  • the terminal device indicates the identifier of the terminal device to the network device.
  • the network device can know which terminal device sent the transmission block, thereby ensuring that subsequent HARQ feedback can be executed smoothly, thereby improving the reliability of data transmission in the event of potential conflicts.
  • the HARQ information includes an identifier of the terminal device; or, the control information including the HARQ information includes an identifier of the terminal device.
  • the terminal device identifier and the HARQ information are transmitted in the same manner. For example, the terminal device identifier and the HARQ information are transmitted together.
  • the HARQ information includes an identifier of the terminal device and at least one of the following: a HARQ process ID, a NAI.
  • control information is used to control the data transmission process between the terminal device and the network device.
  • control information includes at least one of the following: HARQ information, identification of the terminal device, and decoding information.
  • the control information sent by the terminal device can be called UCI (Uplink Control Information).
  • the decoding information is used to instruct to perform a decoding operation on the received code stream, so as to decode the received code stream to obtain the first transport block and the HARQ information corresponding to the first transport block.
  • the decoding information includes: a modulation mode and a channel coding mode.
  • the modulation mode includes but is not limited to at least one of the following: amplitude keying, frequency shift keying, phase keying, and subcarrier modulation. It should be noted that the specific content in the control information is set according to actual conditions, and this application does not limit it here.
  • the HARQ information is included in the control information, and the terminal device uses the first wireless resource to send the first transmission block and the control information corresponding to the first transmission block to the network device.
  • the terminal device uses different channels to respectively send the first transmission block and the control information corresponding to the first transmission block, or the terminal device uses the same channel to send the first transmission block and the control information corresponding to the first transmission block.
  • control information corresponding to the first transmission block may be sent on the PUCCH or on the PUSCH.
  • the method of indicating the identification of the terminal device is configured by the network device.
  • the network device can determine the identity of the terminal device based on the identification information, so that various forms of HARQ transmission between the terminal device and the network device can proceed smoothly, which helps to improve the reliability of data transmission in the event of potential conflicts.
  • the identification of the terminal device is indicated in an implicit manner.
  • the terminal device identifier is indicated in an implicit indication manner, including: implicitly indicating the terminal device identifier in the first transmission block. For example, the terminal device convolves the terminal device identifier with the transmission block to implicitly indicate the terminal device identifier in the first transmission block.
  • the terminal device identifier is indicated in an implicit indication manner, including: implicitly indicating the terminal device identifier in the HARQ information.
  • the terminal device identifier is convolved with the HARQ information to implicitly indicate the terminal device identifier in the HARQ information.
  • the network device After receiving the first transmission block or HAQR information convolved with the identification of the terminal device, the network device performs fast blind decoding according to the context related to the terminal device in the serving cell during the decoding process to determine the identification of the terminal device sending the first transmission block.
  • the convolution method of the terminal device identifier is indicated by the network device.
  • the network device indicates that the identifier of the terminal identifier is convolved in the transmission block, so after receiving a certain transmission block, the network device can extract the identifier of the terminal device from the transmission block, thereby determining which terminal device sent the transmission block.
  • the identifier of the terminal device corresponds to an implicit identifier
  • the terminal device carries the implicit identifier in the first transmission block or HARQ information, so as to indicate the identifier of the terminal device using an implicit indication method.
  • the implicit identifier of the terminal device is obtained by encrypting the identifier of the terminal device.
  • the network device determines the identifier of the terminal device by decrypting the implicit identifier.
  • the terminal device and the network device negotiate to determine the encryption method of the identifier of the terminal device and the corresponding decryption method.
  • the implicit indication method of the terminal device's identification is pre-set or configured by the network device.
  • the terminal device sends the first transmission block and the HARQ information corresponding to the first transmission block to the network device.
  • the identification of the terminal device is carried by the first transmission block or the HARQ information corresponding to the first transmission block in an explicit or implicit indication manner, and the network device decodes the first transmission block and the HARQ information corresponding to the first transmission block to obtain the identification of the terminal device.
  • the terminal device's autonomous selection of the first wireless resource may collide with the wireless resources used by other terminal devices in the network device's service cell, the first transmission block and the HARQ information corresponding to the first transmission block may or may not be correctly decoded by the network device.
  • the following situations may occur during the transmission process:
  • Case 1 The HARQ information is correctly decoded by the network device, and the first transport block is also correctly decoded by the network device.
  • Case 2 The HARQ information is correctly decoded by the network device, but the first transport block is not correctly decoded by the network device.
  • Case 3 The HARQ information is not correctly decoded, and the first transport block may be correctly decoded or not correctly decoded.
  • the terminal device needs to retransmit the first transmission block.
  • the HARQ information is correctly decoded by the network device including the following two situations: the network device does not receive the HARQ information, and the network device cannot correctly decode the HARQ information. For example, a collision occurs in the first wireless resource, resulting in the network device being unable to successfully receive the HARQ information. For another example, the network device determines that the decoded HARQ information does not meet the inspection condition, which indicates that the network device cannot correctly decode the HARQ information.
  • the first transmission block is not correctly decoded including the following two situations: the network device does not receive the first transmission block, and the network device cannot correctly decode the first transmission block.
  • the network device needs to send feedback information to the terminal device.
  • the feedback information is used to feedback whether the network device correctly decodes a certain transport block and HARQ information.
  • the terminal device receives feedback information from the network device through FCH (Feedback Channel).
  • FCH Feeback Channel
  • the terminal device uniquely determines the FCH based on the first wireless resource.
  • the terminal device monitors the feedback information corresponding to the HARQ process ID of the terminal device sent by the network device on the FCH.
  • the following describes the wireless communication process between the terminal device and the network device through several embodiments.
  • the wireless communication method also includes: the terminal device starts a timer; during the operation of the timer, if the terminal device receives HARQ-ACK (Acknowledgement) feedback information from the network device, the terminal device stops the timer; or, during the operation of the timer, if the terminal device receives HARQ-NACK (Negative Acknowledgement) feedback information from the network device, the terminal device stops the timer, reselects the second wireless resource to retransmit the first transmission block, and restarts the timer.
  • HARQ-ACK Acknowledgement
  • NACK Negative Acknowledgement
  • a timer is used to control the transmission duration of an initial transmission or a retransmission process of a transmission block.
  • the timer is called a timeout timer.
  • the terminal device starts the timer at the time of sending the transmission block. If the running time of the timer is less than the duration threshold, the HARQ process continues to transmit; if the running time of the timer is equal to the duration threshold, it means that the transmission of the transmission block has timed out.
  • the duration is preset. It should be noted that the value of the duration threshold is determined according to the protocol, and this application does not limit it here.
  • the terminal device when the terminal device sends the first transmission block and the HARQ information corresponding to the first transmission block to the network device for the first time, the terminal device starts a timer and records the initial transmission duration of the transmission block through the timer. Optionally, if the timer times out, the terminal device needs to retransmit the first transmission block and reset the timer.
  • the network device monitors the channel and attempts to receive the first transmission block and the HARQ information corresponding to the first transmission block.
  • the network device feeds back the reception status of the first transmission block and the HARQ information corresponding to the first transmission block to the terminal device in an explicit manner.
  • the network device If the network device can correctly decode the first transmission block and the HARQ information corresponding to the first transmission block, the network device sends HARQ-ACK feedback information of the network device to the terminal device.
  • the HARQ-ACK feedback information can be represented by a 1-bit character.
  • the HARQ-ACK feedback information is represented by "1".
  • the terminal device receives HARQ-ACK feedback information and stops the timer.
  • the terminal device resets or cancels the timer.
  • the network device If the network device fails to correctly decode the first transmission block, the network device sends HARQ-NACK feedback information of the network device to the terminal device.
  • the terminal device stops the timer according to the HARQ-NACK feedback information and retransmits the first transmission block.
  • the HARQ-NACK feedback information can be represented by a 1-bit character.
  • the HARQ-ACK feedback information is represented by "0".
  • the terminal device autonomously selects a second wireless resource and uses the second wireless resource to retransmit the first resource block. For example, the terminal device autonomously selects the second wireless resource from a wireless resource pool. The second wireless resource is used to retransmit the first transmission block.
  • the HARQ information transmitted using the second wireless resource is different from the HARQ information transmitted using the first wireless resource.
  • the terminal device autonomously selects the second wireless resource from the wireless resource pool.
  • the method for the terminal device to autonomously select the second wireless resource is similar to the method for autonomously selecting the first wireless resource.
  • FIG. 3 is a schematic diagram of explicit feedback provided by an exemplary embodiment of the present application.
  • the terminal device uses the first wireless resource to send the first transmission block and the HARQ information corresponding to the first transmission block.
  • this step can be a HARQ initial transmission or a HARQ retransmission.
  • the network device correctly decodes the first transmission block and the HARQ information corresponding to the first transmission block.
  • the network device sends a HARQ-ACK to the terminal device, explicitly indicating that the first transmission block is successfully decoded.
  • FIG. 4 is a schematic diagram of explicit feedback provided by another exemplary embodiment of the present application.
  • the terminal device uses the first wireless resource to send the first transmission block and the HARQ information corresponding to the first transmission block.
  • this step can be an HARQ initial transmission or a HARQ retransmission.
  • the network device cannot correctly decode the first transmission block or the HARQ information.
  • the network device sends a HARQ-NACK to the terminal device, explicitly indicating that the transmission of the first transmission block has failed.
  • the terminal device performs HARQ retransmission (including retransmission of the first transmission block and the HARQ information).
  • the terminal device can clearly determine whether the network device successfully decodes the first transmission block and the HARQ information corresponding to the first transmission block based on the feedback information.
  • the wireless communication method also includes: the terminal device starts a timer; during the operation of the timer, if the terminal device receives first scheduling information from the network device, the terminal device stops the timer, and the first scheduling information is used to schedule the terminal device to send a new transmission block; or, during the operation of the timer, if the terminal device receives second scheduling information from the network device, the terminal device stops the timer, and uses the wireless resources indicated by the second scheduling information to retransmit the first transmission block, and restarts the timer, and the second scheduling information is used to schedule the terminal device to retransmit the first transmission block.
  • the network device implicitly indicates to the terminal device the decoding status of the first transmission block and the HARQ information corresponding to the first transmission block.
  • the network device sends scheduling information to the terminal device, and implicitly feeds back the decoding status of the first transmission block and the HARQ information corresponding to the first transmission block by indicating the wireless resources through the scheduling information.
  • the network device If the network device can correctly decode the first transmission block and the HARQ information corresponding to the first transmission block, the network device sends the first scheduling information to the terminal device.
  • the first scheduling information is used to schedule the terminal device to send a new transmission block.
  • the terminal device after receiving the first scheduling information, determines, based on the first scheduling information, that the first transmission block and the HARQ feedback information corresponding to the first transmission block are decoded successfully, and the terminal device stops the timer.
  • the first scheduling information can indicate wireless resources (such as time-frequency resources).
  • the first scheduling information includes NDI and new wireless resources.
  • the terminal device uses the new wireless resources indicated by the first scheduling information to send the new transmission block to the network device.
  • the network device If the network device fails to correctly decode the first transmission block, the network device sends second scheduling information to the terminal device.
  • the second scheduling information is used to schedule retransmission of the first transmission block.
  • the second scheduling information can indicate a radio resource used for retransmitting the first transport block.
  • the second scheduling information includes the NDI and the radio resource used for retransmitting the first transport block.
  • the NAI included in the first scheduling information and the NAI included in the second scheduling information are different, and the terminal device retransmits the first transmission block or transmits a new transmission block according to the NDI included in the scheduling information.
  • the terminal device receives the second scheduling information, and determines that the decoding of the first transmission block fails according to the second scheduling information.
  • the terminal device turns off the timer and needs to retransmit the first transmission block.
  • FIG. 5 is a schematic diagram of implicit feedback provided by an exemplary embodiment of the present application.
  • the terminal device uses the first wireless resource to send the first transmission block and the HARQ information corresponding to the first transmission block.
  • this step can be HARQ initial transmission or HARQ retransmission.
  • the network device can correctly decode the first transmission block and the HARQ information.
  • the network device sends the first scheduling information to the terminal device, implicitly indicating that the first transmission block and the HARQ information are decoded successfully.
  • the terminal device sends a new transmission block according to the scheduling of the first scheduling information.
  • FIG. 6 is a schematic diagram of implicit feedback provided by another exemplary embodiment of the present application.
  • the terminal device uses the first wireless resource to send the first transmission block and the HARQ information corresponding to the first transmission block.
  • this step can be an HARQ initial transmission or a HARQ retransmission.
  • the network device cannot correctly decode the first transmission block or the HARQ information.
  • the network device sends a second scheduling information to the terminal device, implicitly indicating that the transmission of the first transmission block has failed.
  • the terminal device performs HARQ retransmission (including retransmitting the first transmission block and the HARQ information) according to the second scheduling information.
  • the network device implicitly feeds back the transmission status of the transmission block and HARQ information to the terminal device through scheduling information, and indicates new wireless resources through scheduling information, which helps to reduce the occurrence of transmission collisions and improve the success rate of data transmission by the terminal device.
  • the terminal device determines whether to retransmit the first transmission block according to the feedback information sent by the network device. In other embodiments, the terminal device can automatically determine to retransmit the first transmission block to shorten the transmission time of the first transmission block.
  • the wireless communication method further includes: the terminal device starts a timer; when the timer times out, the terminal device reselects a second wireless resource to retransmit the first transmission block, and restarts the timer.
  • Timer timeout means that the time in the timer exceeds the duration threshold.
  • the duration threshold is determined according to actual needs.
  • Timer timeout means that the HARQ process corresponding to the first transmission block takes a long time, that is, the first transmission block may fail to transmit.
  • the terminal device reselects the second wireless resource to retransmit the first transmission block.
  • the terminal device can autonomously select the second wireless resource.
  • the specific content of this process please refer to the embodiment of selecting the first wireless resource. This application will not go into details here.
  • FIG. 7 is a schematic diagram of timeout retransmission provided by an exemplary embodiment of the present application.
  • the terminal device uses the first wireless resource to send the first transmission block and the HARQ information corresponding to the first transmission block.
  • this step can be an HARQ initial transmission or a HARQ retransmission.
  • the network device cannot correctly decode the first transmission block or the HARQ information. 730.
  • the timer in the terminal device times out. 740.
  • the terminal device performs HARQ retransmission (including retransmission of the first transmission block and the HARQ information).
  • the terminal device can retransmit the transmission block after the timer expires, thereby ensuring that the transmission block retransmission process proceeds smoothly.
  • the wireless communication method also includes: the terminal device starts a timer; when the timer times out, the terminal device executes a backoff process to determine the timing of retransmitting the first transmission block, retransmits the first transmission block using the reselected second wireless resources at the determined timing, and restarts the timer.
  • the terminal device performs a fallback process, including: the terminal device determines a timing for retransmitting the first transmission block from a fallback duration starting from a timer expiration moment, and the terminal device retransmits the first transmission block using a second wireless resource according to the determined timing.
  • the terminal device restarts the timer and records the time taken for retransmitting the first transmission block.
  • the backoff duration may be pre-set or may be configured by the network device.
  • the terminal device determines the timing to retransmit the first transmission block from the backoff period starting from the timer timeout moment, including: the terminal device selects an idle time from the backoff period starting from the timer timeout moment according to the resource monitoring result as the timing to retransmit the first transmission block, or the terminal device determines the timing to reselect the first transmission block from the backoff period starting from the timer timeout moment through a machine learning algorithm.
  • the fallback duration is 5s
  • the 12:00:00 timer times out then the terminal device determines that the timing for retransmitting the first transmission block is 12:00:03 between 12:00:00 and 12:00:05.
  • the terminal device retransmits the first transmission block using the second wireless resource at 12:00:03.
  • the terminal device may determine the second wireless resource from the wireless resource pool according to the determined timing. For example, the terminal device selects an unoccupied wireless resource at the determined timing from the wireless resource pool as the second wireless resource.
  • the method for determining the timing of retransmitting the first transmission block is set according to actual needs and is not limited in this application.
  • FIG8 is a schematic diagram of fallback retransmission provided by an exemplary embodiment of the present application.
  • the terminal device uses the first wireless resource to send the first transmission block and the HARQ information corresponding to the first transmission block.
  • this step can be an HARQ initial transmission or a HARQ retransmission.
  • the network device fails to correctly decode at least one of the first transmission block or the HARQ information. 830.
  • the timer in the terminal device times out. 840.
  • the terminal device performs a backoff process to determine the timing for retransmitting the first transmission block.
  • the terminal device performs HARQ retransmission (including retransmitting the first transmission block and the HARQ information). At the determined timing, the terminal device retransmits the first transmission block according to the reselected second wireless resource.
  • the terminal device can determine the timing for retransmitting the first transmission block within the backoff period, which helps to avoid collision with the second wireless resource and helps to improve the success rate of retransmitting the first transmission block.
  • the wireless communication method also includes: the terminal device starts a timer; during the operation of the timer, the terminal device detects a wireless channel related to the first wireless resource; if a channel conflict is detected, the terminal device stops the timer, and performs a backoff process to determine the timing of retransmitting the first transmission block, retransmits the first transmission block using the reselected second wireless resource at the determined timing, and restarts the timer.
  • the terminal device uses the first wireless resource to send the first transmission block and the HARQ information corresponding to the first transmission block to the network device, it detects the wireless channel related to the first wireless resource, and determines whether the first transmission block needs to be retransmitted based on the channel detection result.
  • Channel conflict refers to a collision in a wireless channel associated with the first wireless resource. That is, the wireless resources (such as time-frequency resources) used by the terminal device and other terminal devices in the same wireless channel overlap. Channel conflict may cause the network device to fail to successfully receive the first transmission block or HARQ information. In some embodiments, the terminal device continuously detects the wireless channel associated with the first wireless resource before receiving feedback information from the network device or the timer expires.
  • the terminal device continues to detect the wireless channel.
  • the terminal device If the terminal device detects a channel conflict, it means that the first transmission block or HARQ information may fail to be transmitted or decoded incorrectly, so the terminal device stops the timer and retransmits the first transmission block.
  • the terminal device performs a fallback process, determines a time to retransmit the first transmission block, and retransmits the first transmission block using the reselected second wireless resource at the determined time.
  • the terminal device restarts the timer to record the retransmission time of the first transmission block.
  • the terminal device does not perform the fallback process. That is, after detecting that a channel conflict occurs, the terminal device determines an autonomous second wireless resource and uses the second wireless resource to retransmit the first transmission block. For example, when the terminal device detects a transmission channel conflict, the terminal device immediately determines the second wireless resource. After determining the second wireless resource, the terminal device uses the second wireless resource to retransmit the first transmission block. This method helps to further improve and speed up the terminal device to start retransmission.
  • the terminal device determines the timing for retransmitting the first transmission block from the backoff duration starting from the moment when the channel conflict is detected. For example, if the backoff duration is 3s and the moment when the channel conflict is detected is 11:00:15, the terminal device determines the timing for retransmitting the first transmission block to be 11:00:18 between 11:00:15 and 11:00:18.
  • FIG. 9 is a schematic diagram of monitoring retransmission provided by an exemplary embodiment of the present application.
  • the terminal device uses the first wireless resource to send the first transmission block and the HARQ information corresponding to the first transmission block.
  • this step can be an HARQ initial transmission or an HARQ retransmission.
  • the terminal device performs channel detection to determine that there is a conflict in the wireless channel related to the first wireless resource. 930.
  • the terminal device performs a backoff process to determine the timing of retransmitting the first transmission block.
  • the terminal device performs HARQ retransmission (including retransmitting the first transmission block and the HARQ information). At the determined timing, the terminal device retransmits the first transmission block according to the reselected second wireless resource.
  • the terminal device can timely understand the conflict situation of the wireless channels related to the wireless resources, so that when the relevant wireless channels conflict, the first transmission block can be retransmitted in time without having to wait until the timer times out to retransmit the first transmission block. This helps to shorten the time between sending the first transmission block and retransmitting the first transmission block, and improve the transmission efficiency of the first transmission block.
  • the physical layer of the terminal device processes control information including HARQ information differently from the processing method for generating the PDU of the first transport block.
  • the physical layer of the terminal device is used to process the upper layer data packets and use the first wireless resource to send the processed data packets to the network device.
  • the PDU for generating the first transmission block refers to a data unit transmitted by the MAC layer to the physical layer.
  • the PDU for generating the first transmission block includes user data, and the physical layer processes the PDU to obtain the first transmission block.
  • the probability of successful transmission of at least one of the first transmission block and the HARQ information is improved while controlling the wireless resources consumed in the transmission process.
  • the physical layer uses different processing methods to process the PDU for generating the first transmission block and the control information containing the HARQ information, so that the transmission success rate of the HARQ information is higher.
  • a coding rate of the physical layer for control information is lower than a coding rate for PDU; and/or a modulation order of the physical layer for control information is lower than a modulation order for PDU.
  • the coding rate refers to the proportion of the useful part (non-redundant) in the data. Assuming that the coding rate is k/n, for every k bits of useful information, there are n bits of data, and the remaining n-k bits of data are redundant data.
  • the encoding rate is inversely proportional to the decoding success rate. That is, if the encoding rate of the data is higher, the decoding success rate of the data is lower; if the encoding rate of the data is lower, the decoding success rate of the data is higher.
  • the physical layer uses a smaller encoding rate (less than the encoding rate for the PDU) to process the PDU, which helps to improve the decoding success rate of the HARQ information.
  • the modulation order is used to calculate the number of bits that each data unit (symbol) can represent.
  • the modulation order of the physical layer for control information includes at least one of the following: BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying).
  • the modulation order is inversely proportional to the decoding success rate. That is, if the modulation order of the data is higher, the transmission decoding rate of the data is lower; if the modulation order of the data is lower, the decoding success rate of the data is higher.
  • the encoding code rate of the physical layer for the control information is lower than the encoding code rate for the PDU.
  • the modulation order of the physical layer for the control information is smaller than the modulation order for the PDU.
  • a coding rate of the physical layer for the control information is lower than a coding rate for the PDU, and a modulation order of the physical layer for the control information is lower than a modulation order for the PDU.
  • the difficulty of the network device to successfully receive and decode the HARQ information is reduced, which helps to improve the decoding success rate of the HARQ information (or control information). Since if the HARQ information decoding fails, the terminal device needs to retransmit the first transmission block regardless of whether the first transmission block is successfully decoded, therefore, by improving the decoding success rate of the HARQ information, it is also helpful to reduce the retransmission of the first transmission block caused by the decoding failure of the HARQ information.
  • control information is physical layer uplink control information of the terminal device.
  • control information is generated by a MAC layer of the terminal device.
  • control information includes at least one of the following: HARQ information, an identifier of the terminal device, and a modulation order and a coding rate.
  • the control information includes the modulation order and coding rate for generating the HARQ information, and the modulation order and coding rate for generating the first transmission block.
  • the distribution position of HARQ information, terminal device identification, modulation order and coding rate in the control information is determined according to actual needs, and this application does not limit it here.
  • the PDU generating the first transmission block includes: data packets to be transmitted, and BSI (Buffer State Information) of the terminal device.
  • BSI Buffer State Information
  • the data packet to be transmitted includes user data.
  • the buffer status information of the terminal device refers to information related to the first transmission block stored in the terminal device.
  • the cache status information includes at least one of the following: size information of cached data packets, the relationship between data packets and logical channels, and the remaining delay budget of data packets.
  • the size information of cached data packets is used to characterize the amount of data packets to be transmitted; the corresponding relationship between data packets and logical channels is used to characterize the logical channels corresponding to the data packets to be transmitted; and the remaining delay budget of data packets refers to the remaining transmission time of the data packets (such as transmission blocks) to be transmitted before the delay budget is reached.
  • the remaining delay budget of the transmission block is 3 seconds.
  • the cache status information is generated by the RLC (Radio Link Control) layer of the terminal device.
  • the RLC layer receives the SDU (Service Data Unit) input from the upper layer and generates the cache status information corresponding to the data packet to be transmitted; the RLC layer obtains the PDU of the RLC layer based on the SDU input from the upper layer and the cache status information.
  • SDU Service Data Unit
  • the MAC layer uses the PDU of the RLC layer as the SDU of the MAC layer and generates control information.
  • the MAC layer obtains the PDU of the MAC layer based on the control information and the SDU of the MAC layer.
  • the physical layer receives the PDU of the MAC layer and obtains the first transmission block and the HARQ information corresponding to the first transmission block by modulating and encoding the PDU.
  • the physical layer of the terminal device uses the first wireless resource to send the first transmission block and the HARQ information corresponding to the first transmission block to the network device.
  • the network device feeds back the transmission status of the first transmission block and the HARQ information to the terminal device in an implicit manner, and the network device can generate scheduling information according to the remaining delay budget.
  • the first transmission block includes a remaining delay budget, and if the network device successfully decodes the first transmission block but fails to successfully decode the HARQ information corresponding to the first transmission block, it indicates that the terminal device needs to retransmit the first transmission block.
  • the network device generates second scheduling information based on the remaining delay budget and sends the second scheduling information to the terminal device.
  • the terminal device receives the second scheduling information, and retransmits the first transmission block and the HARQ information corresponding to the first transmission block according to the new wireless resources indicated by the second scheduling information.
  • the HARQ information corresponding to the first transmission block is different from the HARQ information corresponding to the first transmission block during the initial transmission process.
  • the first transmission block includes a remaining delay budget. If the network device successfully decodes the first transmission block and successfully decodes the HARQ information corresponding to the first transmission block, the network device generates first scheduling information based on the remaining delay budget and sends the first scheduling information to the terminal device.
  • the terminal device receives the first scheduling information and transmits a new transmission block according to the new wireless resources indicated by the first scheduling information.
  • the physical layer of the terminal device uses NOMA (Non Orthogonal Multiple Access) to perform signal modulation.
  • NOMA Non Orthogonal Multiple Access
  • the NOMA modulation method allows network equipment to receive signals sent by one or more terminal devices on partially or completely overlapping wireless resources, and can correctly decode part or all of the signals.
  • the physical layer of the terminal device adopts the NOMA method to perform signal modulation: including using NOMA to modulate the control information including HARQ information and the PDU for generating the first transmission block.
  • the physical layer of the terminal device uses NOMA for signal modulation, so that the terminal device establishes multiple HARQ processes and sends multiple PDUs in parallel.
  • the terminal device can only send the transport blocks serially. For example, after completing the HARQ process of the first transport block, the terminal device starts the HARQ process of the next transport block.
  • the physical layer of the terminal device is pre-configured to use the NOMA method for signal modulation, or is configured through a network device.
  • Figure 10 shows a flow chart of a wireless communication method provided by another embodiment of the present application.
  • the method can be applied to the network architecture shown in Figure 1, for example, each step can be performed by a network device.
  • the method can include the following steps (1010):
  • Step 1010 The network device receives a first transmission block and HARQ information corresponding to the first transmission block sent by a terminal device using a first wireless resource selected autonomously, and determines an identifier of the terminal device based on the received information.
  • the network device determines, based on the identifier of the terminal device, that the first transmission block and the HARQ information corresponding to the first transmission block are sent by the terminal device, so that the network device sends feedback information to the terminal device based on the decoding status of the first transmission block and the HARQ information.
  • the terminal device autonomously selects wireless resources for data transmission
  • the terminal device uses the autonomously selected wireless resources to send a transmission block and the HARQ information corresponding to the transmission block to the network device
  • the terminal device indicates the identifier of the terminal device to the network device so that after receiving the transmission block, the network device can know which terminal device sent the transmission block, thereby ensuring that subsequent HARQ feedback can be executed smoothly and improving the reliability of data transmission in the event of potential conflicts.
  • the HARQ information includes an identifier of the terminal device; or, the control information including the HARQ information includes an identifier of the terminal device.
  • the terminal device's identity is indicated in an implicit indication manner. In some embodiments, the terminal device's identity is indicated in an implicit indication manner, including the terminal device convolving the terminal device's identity in the control information or in the first transmission block.
  • the network device After receiving the first transmission block convolved with the terminal device's identification, or the control information convolved with the terminal device's identification, the network device performs a fast blind decoding based on the context of the terminal device in the cell that has been stored to obtain the terminal device's identification. Indicating the terminal device's identification by implicit indication helps to improve the security of the wireless communication process.
  • the wireless communication method also includes: when the HARQ information is correctly decoded and the first transmission block is also correctly decoded, the network device sends HARQ-ACK feedback information to the terminal device; or, when the HARQ information is correctly decoded and the first transmission block is not correctly decoded, the network device sends HARQ-NACK feedback information to the terminal device.
  • the network device may explicitly provide feedback of the transmission status to the terminal device.
  • the decoding status of the first transmission block and the HARQ information can be clearly indicated to the terminal device.
  • the wireless communication method also includes: when the HARQ information is correctly decoded and the first transmission block is also correctly decoded, the network device sends first scheduling information to the terminal device, and the first scheduling information is used to schedule the terminal device to send a new transmission block; or, when the HARQ information is correctly decoded and the first transmission block is not correctly decoded, the network device sends second scheduling information to the terminal device, and the second scheduling information is used to schedule the terminal device to retransmit the first transmission block.
  • the terminal device and the network device agree that in the event of a transmission failure, the transmission block should be retransmitted, and the network device can implicitly feedback the transmission status to the terminal device.
  • the scheduling information includes new wireless resources, and the terminal device uses the new wireless resources to retransmit the first transmission block, or transmit a new transmission block.
  • Indicating new wireless resources through scheduling information helps reduce the probability of collision during transmission and improves the transmission success rate of transmission blocks.
  • the wireless communication method also includes: the network device receives a first transmission block retransmitted by the terminal device using a reselected second wireless resource; wherein the first transmission block is retransmitted when a timer of the terminal device times out; or, the first transmission block is retransmitted when the terminal device detects a conflict in a wireless channel related to the first wireless resource after sending the first information.
  • the first transport block and the HARQ information are sent to the network device on the same channel.
  • the first transport block and the HARQ information are sent to the network device on different channels.
  • the HARQ information further includes at least one of the following: an identifier of the HARQ process, and a new data indication NDI.
  • the PDU for generating the first transmission block includes: a data packet to be transmitted, and a BSI of the terminal device.
  • the wireless communication method further includes: the network device sends configuration information of a wireless resource pool to the terminal device, and the wireless resources in the wireless resource pool are shared by multiple terminal devices in a cell corresponding to the network device.
  • the configuration information of the wireless resource pool is used to configure the wireless resource pool.
  • the terminal device determines the wireless resources (such as time-frequency resources) included in the wireless resource pool according to the configuration information of the wireless resource pool.
  • the network device sends the configuration information of the wireless resource pool to multiple terminal devices in the same serving cell.
  • the network device sends the configuration information of the wireless resource pool to the terminal device.
  • the network device sends the configuration information of the wireless resource pool to the terminal device by broadcasting.
  • FIG 11 shows a block diagram of a wireless communication device provided by an embodiment of the present application.
  • the device has the function of implementing the example of the method executed by the above-mentioned terminal device, and the function can be implemented by hardware, or by hardware executing corresponding software.
  • the device can be the terminal device introduced above, or it can be set in the terminal device.
  • the device 1100 may include: a transceiver module 1110.
  • the transceiver module 1110 is used to use the autonomously selected first wireless resource to send a first transmission block and HARQ information corresponding to the first transmission block to a network device, and indicate the identifier of the terminal device to the network device.
  • the HARQ information includes an identifier of the terminal device; or, the control information containing the HARQ information includes an identifier of the terminal device.
  • the identification of the terminal device is indicated in an implicit manner.
  • the transceiver module 1110 is also used to: start a timer; if HARQ-ACK feedback information is received from the network device during the operation of the timer, stop the timer; or, if HARQ-NACK feedback information is received from the network device during the operation of the timer, stop the timer, reselect a second wireless resource to retransmit the first transmission block, and restart the timer.
  • the transceiver module 1110 is also used to: start a timer; during the operation of the timer, if first scheduling information is received from the network device, stop the timer, and the first scheduling information is used to schedule the terminal device to send a new transmission block; or during the operation of the timer, if second scheduling information is received from the network device, stop the timer, and use the wireless resources indicated by the second scheduling information to retransmit the first transmission block, and restart the timer, and the second scheduling information is used to schedule the terminal device to retransmit the first transmission block.
  • the transceiver module 1110 is further used to: start a timer; when the timer times out, reselect a second wireless resource to retransmit the first transmission block, and restart the timer.
  • the transceiver module 1110 is also used to: start a timer; when the timer times out, execute a backoff process to determine a timing for retransmitting the first transmission block, retransmit the first transmission block using a reselected second wireless resource at the determined timing, and restart the timer.
  • the transceiver module 1110 is also used to: start a timer; while the timer is running, detect the wireless channel related to the first wireless resource; if a channel conflict is detected, stop the timer, and perform a backoff process to determine the timing of retransmitting the first transmission block, retransmit the first transmission block using the reselected second wireless resource at the determined timing, and restart the timer.
  • the first transport block and the HARQ information are sent to the network device on the same channel.
  • the first transport block and the HARQ information are sent to the network device on different channels.
  • the HARQ information further includes at least one of the following: an identifier of the HARQ process, and an NDI.
  • the physical layer of the terminal device processes control information containing the HARQ information in a manner different from the manner in which it processes a PDU for generating the first transport block.
  • the encoding rate of the physical layer for the control information is lower than the encoding rate for the PDU; and/or, the modulation order of the physical layer for the control information is lower than the modulation order for the PDU.
  • control information is physical layer uplink control information of the terminal device.
  • the PDU for generating the first transmission block includes: a data packet to be transmitted, and the BSI of the terminal device.
  • the first wireless resource and/or the second wireless resource is autonomously selected by the terminal device from a wireless resource pool, the wireless resources in the wireless resource pool are shared by multiple terminal devices in the cell where the terminal device is located, and the second wireless resource is used to retransmit the first transmission block.
  • the physical layer of the terminal device uses NOMA to perform signal modulation.
  • Figure 12 shows a block diagram of a wireless communication device provided by an embodiment of the present application.
  • the device has the function of implementing the method example on the network device side described above, and the function can be implemented by hardware, or by hardware executing corresponding software.
  • the device can be the network device described above, or it can be set in the network device.
  • the device 1200 may include: a receiving module 1210.
  • the receiving module 1210 is used to receive a first transmission block and HARQ information corresponding to the first transmission block sent by a terminal device using a first wireless resource selected autonomously, and determine an identifier of the terminal device based on the received information.
  • the HARQ information includes an identifier of the terminal device; or, the control information containing the HARQ information includes an identifier of the terminal device.
  • the identification of the terminal device is indicated in an implicit manner.
  • the apparatus 1200 further includes: a sending module for sending HARQ-ACK feedback information to the terminal device when the HARQ information is correctly decoded and the first transport block is also correctly decoded; or, for sending HARQ-NACK feedback information to the terminal device when the HARQ information is correctly decoded and the first transport block is not correctly decoded.
  • the apparatus 1200 further includes: a sending module, configured to send first scheduling information to the terminal device when the HARQ information is correctly decoded and the first transmission block is also correctly decoded, wherein the first scheduling information is used to schedule the terminal device to send a new transmission block; or, to send second scheduling information to the terminal device when the HARQ information is correctly decoded and the first transmission block is not correctly decoded, wherein the second scheduling information is used to schedule the terminal device to retransmit the first transmission block.
  • a sending module configured to send first scheduling information to the terminal device when the HARQ information is correctly decoded and the first transmission block is also correctly decoded, wherein the first scheduling information is used to schedule the terminal device to send a new transmission block
  • second scheduling information is used to schedule the terminal device to retransmit the first transmission block.
  • the receiving module 1210 is also used to receive the first transmission block retransmitted by the terminal device using a reselected second wireless resource; wherein the first transmission block is retransmitted when the timer of the terminal device times out; or, the first transmission block is retransmitted when the terminal device detects a conflict in the wireless channel related to the first wireless resource after sending the first information.
  • the first transport block and the HARQ information are sent to the network device on the same channel.
  • the first transport block and the HARQ information are sent to the network device on different channels.
  • the HARQ information further includes at least one of the following: an identifier of the HARQ process, and an NDI.
  • the PDU for generating the first transmission block includes: a data packet to be transmitted, and the BSI of the terminal device.
  • the apparatus 1200 further includes: a resource sending module, configured to send configuration information of a wireless resource pool to the terminal device, wherein the wireless resources in the wireless resource pool are shared by multiple terminal devices in a cell corresponding to the network device.
  • a resource sending module configured to send configuration information of a wireless resource pool to the terminal device, wherein the wireless resources in the wireless resource pool are shared by multiple terminal devices in a cell corresponding to the network device.
  • the device provided in the above embodiment realizes its function, it only uses the division of the above-mentioned functional modules as an example.
  • the above-mentioned functions can be assigned to different functional modules according to actual needs, that is, the content structure of the device can be divided into different functional modules to complete all or part of the functions described above.
  • the terminal device 1300 can be used to execute the wireless communication method executed by the terminal device in the above embodiment.
  • the terminal device 1300 may include: a processor 1301, a transceiver 1302 and a memory 1303.
  • the processor 1301 includes one or more processing cores, and the processor 1301 executes various functional applications and information processing by running software programs and modules.
  • the processor 1301 is used to execute other steps except the receiving and sending steps executed by the terminal device in the above method embodiment.
  • the transceiver 1302 may include a receiver and a transmitter.
  • the receiver and the transmitter may be implemented as the same wireless communication component, and the wireless communication component may include a wireless communication chip and a radio frequency antenna.
  • the transceiver 1302 is used to perform the receiving and/or sending steps performed by the terminal device in the above method embodiment.
  • the memory 1303 may be connected to the processor 1301 and the transceiver 1302 .
  • the memory 1303 may be used to store a computer program executed by the processor, and the processor 1301 is used to execute the computer program to implement each step performed by the terminal device in the above method embodiment.
  • memory 1303 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, and volatile or non-volatile storage devices include but are not limited to: magnetic disks or optical disks, electrically erasable programmable read-only memory, erasable programmable read-only memory, static access memory, read-only memory, magnetic memory, flash memory, and programmable read-only memory.
  • the transceiver 1302 is used to: use the autonomously selected first wireless resource to send the first transmission block and the HARQ information corresponding to the first transmission block to the network device, and indicate the identifier of the terminal device to the network device.
  • FIG14 shows a schematic diagram of the structure of a network device 1400 provided in an embodiment of the present application.
  • the network device 1400 can be used to execute the method steps performed by the network device in the above embodiment.
  • the network device 1400 may include: a processor 1401 , a transceiver 1402 , and a memory 1403 .
  • the processor 1401 includes one or more processing cores, and the processor 1401 executes various functional applications and information processing by running software programs and modules.
  • the processor 1401 is used to execute other steps except the receiving and sending steps executed by the network device in the above method embodiment.
  • the transceiver 1402 may include a receiver and a transmitter.
  • the transceiver 1402 may include a wired communication component, which may include a wired communication chip and a wired interface (such as an optical fiber interface).
  • the transceiver 1402 may also include a wireless communication component, which may include a wireless communication chip and a radio frequency antenna.
  • the transceiver 1402 is used to perform the receiving and/or sending steps performed by the network device in the above method embodiment.
  • the memory 1403 may be connected to the processor 1401 and the transceiver 1402 .
  • the memory 1403 may be used to store a computer program executed by the processor, and the processor 1401 is used to execute the computer program to implement each step performed by the network device in the above method embodiment.
  • memory 1403 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, and volatile or non-volatile storage devices include but are not limited to: magnetic disks or optical disks, electrically erasable programmable read-only memory, erasable programmable read-only memory, static access memory, read-only memory, magnetic memory, flash memory, and programmable read-only memory.
  • the transceiver 1402 is used to: receive a first transmission block and HARQ information corresponding to the first transmission block sent by a terminal device using a first wireless resource selected autonomously, and determine an identifier of the terminal device based on the received information.
  • An embodiment of the present application also provides a computer-readable storage medium, in which a computer program is stored.
  • the computer program is used to be executed by a processor of a communication device to implement the above-mentioned wireless communication method on the terminal device side, or the wireless communication method on the network device side.
  • the computer readable storage medium may include: ROM (Read-Only Memory), RAM (Random-Access Memory), SSD (Solid State Drives) or optical disks, etc.
  • the random access memory may include ReRAM (Resistance Random Access Memory) and DRAM (Dynamic Random Access Memory).
  • An embodiment of the present application also provides a chip, which includes a programmable logic circuit and/or program instructions.
  • the chip runs on a communication device, it is used to implement the wireless communication method on the terminal device side or the wireless communication method on the network device side.
  • An embodiment of the present application also provides a computer program product, which includes a computer program, and the computer program is stored in a computer-readable storage medium.
  • a processor reads and executes the computer program from the computer-readable storage medium to implement the above-mentioned wireless communication method on the terminal device side, or the above-mentioned wireless communication method on the network device side.
  • An embodiment of the present application also provides a communication system, which includes a terminal device and a network device, wherein the terminal device is used to execute the wireless communication method on the terminal device side, and the network device is used to execute the wireless communication method on the network device side.
  • the "indication" mentioned in the embodiments of the present application can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association relationship between A and B.
  • corresponding may indicate a direct or indirect correspondence between two items, or an association relationship between the two items, or a relationship of indication and being indicated, configuration and being configured, etc.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" generally indicates that the related objects are in an "or” relationship.
  • step numbers described in this document only illustrate a possible execution order between the steps.
  • the above steps may not be executed in the order of the numbers, such as two steps with different numbers are executed at the same time, or two steps with different numbers are executed in the opposite order to that shown in the figure.
  • the embodiments of the present application are not limited to this.
  • Computer-readable media include computer storage media and communication media, wherein the communication media include any media that facilitates the transmission of a computer program from one place to another.
  • the storage medium can be any available medium that a general or special-purpose computer can access.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种无线通信方法、装置、设备、存储介质及程序产品,涉及通信技术领域。所述方法包括:终端设备使用自主选择的第一无线资源,向网络设备发送第一传输块和第一传输块对应的HARQ信息,且向网络设备指示终端设备的标识(210)。对于终端设备自主选择无线资源进行数据传输的场景,本申请提供了一种HARQ通信方法,终端设备在使用自主选择的无线资源向网络设备发送传输块以及该传输块对应的HARQ信息时,通过向网络设备指示该终端设备的标识,使得网络设备在接收到该传输块之后,能够获知该传输块是由哪个终端设备发送的,从而确保后续的HARQ反馈能够顺利执行,提高了在有潜在冲突的情况下数据发送的可靠性。

Description

无线通信方法、装置、设备、存储介质及程序产品 技术领域
本申请实施例涉及通信技术领域,特别涉及一种无线通信方法、装置、设备、存储介质及程序产品。
背景技术
终端设备需要使用无线资源进行上行数据传输。相关技术中,网络设备可以为终端设备配置共享的无线资源池,终端设备从该无线资源池中,自主选择无线资源进行上行数据传输。
针对这一场景,如何进行HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)信息发送,还有待进一步研究。
发明内容
本申请实施例提供了一种无线通信方法、装置、设备、存储介质及程序产品。所述技术方案如下:
根据本申请实施例的一个方面,提供了一种无线通信方法,所述方法包括:
终端设备使用自主选择的第一无线资源,向网络设备发送第一传输块和所述第一传输块对应的HARQ信息,且向所述网络设备指示所述终端设备的标识。
根据本申请实施例的一个方面,提供了一种无线通信方法,所述方法包括:
网络设备接收终端设备使用自主选择的第一无线资源发送的第一传输块和所述第一传输块对应的HARQ信息,且根据接收到的信息确定所述终端设备的标识。
根据本申请实施例的一个方面,提供了一种无线通信装置,所述装置包括:
收发模块,用于使用自主选择的第一无线资源,向网络设备发送第一传输块和所述第一传输块对应的HARQ信息,且向所述网络设备指示终端设备的标识。
根据本申请实施例的一个方面,提供了一种无线通信装置,所述装置包括:
接收模块,用于接收终端设备使用自主选择的第一无线资源发送的第一传输块和所述第一传输块对应的HARQ信息,且根据接收到的信息确定所述终端设备的标识。
根据本申请实施例的一个方面,提供了一种通信设备,所述通信设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现上述终端设备侧的无线通信方法,或者实现上述网络设备侧的无线通信方法。
根据本申请实施例的一个方面,提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现上述终端设备侧的无线通信方法,或者实现上述网络设备侧的无线通信方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述终端设备侧的无线通信方法,或者实现上述网络设备侧的无线通信方法。
根据本申请实施例的一个方面,提供了一种计算机程序产品,所述计算机程序产品包括计算机程序,所述计算机程序存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机程序,以实现上述终端设备侧的无线通信方法,或者实现上述网络设备侧的无线通信方法。
根据本申请实施例的一个方面,提供了一种通信***,所述***包括终端设备和网络设备,所述终端设备用于执行上述终端设备侧的无线通信方法,所述网络设备用于执行上述网络设备侧的无线通信方法。
本申请实施例提供的技术方案可以包括如下有益效果:
对于终端设备自主选择无线资源进行数据传输的场景,终端设备在使用自主选择的无线资源向网络设备发送传输块以及该传输块对应的HARQ信息时,通过向网络设备指示该终端设备的标识,使得网络设备在接收到该传输块之后,能够获知该传输块是由哪个终端设备发送的,从而确保后续的HARQ反馈能够顺利执行,提高了在有潜在冲突的情况下数据发送的可靠性。
附图说明
图1是本申请一个实施例提供的网络架构的示意图;
图2是本申请一个实施例提供的无线通信方法的流程图;
图3是本申请一个示例性实施例提供的显式反馈的示意图;
图4是本申请一个示例性实施例提供的显式反馈的示意图;
图5是本申请一个示例性实施例提供的隐式反馈的示意图;
图6是本申请另一个示例性实施例提供的隐式反馈的示意图;
图7是本申请一个示例性实施例提供的超时重传的示意图;
图8是本申请一个示例性实施例提供的回退重传的示意图;
图9是本申请一个示例性实施例提供的监听重传的示意图;
图10是本申请另一个实施例提供的无线通信方法的流程图;
图11是本申请一个实施例提供的无线通信装置的框图;
图12是本申请一个实施例提供的无线通信装置的框图;
图13是本申请一个实施例提供的终端设备的结构示意图;
图14是本申请一个实施例提供的网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参考图1,其示出了本申请一个实施例提供的网络架构的示意图。该网络架构可以包括:终端设备10、接入网设备20和核心网设备30。
终端设备10可以指UE(User Equipment,用户设备)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、用户代理或用户装置。在一些实施例中,终端设备10还可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digita1Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5GS(5th Generation System,第五代移动通信***)中的终端设备或者未来演进的PLMN(Pub1ic Land Mobi1e Network,公用陆地移动通信网络)中的终端设备等,本申请实施例对此并不限定。为方便描述,上面提到的设备统称为终端设备。终端设备10的数量通常为多个,每一个接入网设备20所管理的小区内可以分布一个或多个终端设备10。在本申请实施例中,“终端设备”和“UE”通常表达同一含义,两者可以混用,但本领域技术人员可以理解其含义。
接入网设备20是一种部署在接入网中用以为终端设备10提供无线通信功能的设备。接入网设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的***中,具备接入网设备功能的设备的名称可能会有所不同,例如在5G NR***中,称为gNodeB或者gNB。随着通信技术的演进,“接入网设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为接入网设备。在一些实施例中,通过接入网设备20,终端设备10和核心网设备30之间可以建立通信关系。示例性地,在LTE(Long Term Evolution,长期演进)***中,接入网设备20可以是EUTRAN(Evolved Universal Terrestrial Radio Access Network,演进的通用陆地无线网)或者EUTRAN中的一个或者多个eNodeB;在5G NR***中,接入网设备20可以是RAN(Radio Access Network,无线接入网)或者RAN中的一个或者多个gNB。在本申请实施例中,所述的“网络设备”除特别说明之外,是指接入网设备20,如基站。
核心网设备30是部署在核心网中的设备,核心网设备30的功能主要是提供用户连接、对用户的管理以及对业务完成承载,作为承载网络提供到外部网络的接口。例如,5G NR***中的核心网设备可以包括AMF(Access and Mobility Management Function,接入和移动性管理功能)实体、UPF(User Plane Function,用户平面功能)实体和SMF(Session Management Function,会话管理功能)实体等设备。
在一些实施例中,接入网设备20与核心网设备30之间通过某种空口技术互相通信,例如5G NR***中的NG接口。接入网设备20与终端设备10之间通过某种空口技术互相通信,例如Uu接口。
本申请实施例中的“5G NR***”也可以称为5G***或者NR***,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于LTE***,也可以适用于5G NR***,也可以适用于5G NR***后续的演进***,还可以适用于诸如NB-IoT(Narrow Band Internet of Things,窄带物联网)***等其他通信***,本申请对此不作限定。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的载波上的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小 区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
通信***中,终端设备需要发送数据时,需要首先发送调度请求消息给网络设备,网络设备根据获取的调度请求消息调度终端设备发送一个PDU(Protocol Data Unit,协议数据单元),该PDU中包括终端设备的缓冲调度信息。网络设备根据获得的缓冲调度信息调度终端设备发送数据。
通过这种方法,终端设备发送缓冲信息的PDU和发送数据包的PDU所使用的无线资源都是被调度终端设备所专用的,从而不存在无线资源冲突的情况。然而,这种方法会导致用户面的时延长,终端设备发送数据之前需要和网络设备有一个握手的过程。对于数据包到达比较连续的应用来说,由于后续发送的PDU也可以携带缓冲信息,所以时延问题不严重。但是对于一些数据包到达不连续的应用来说,终端设备发送调度请求就会很频繁,从而引入额外的用户面时延。
相关技术采用了一些改进措施,比如网络设备事先把需要发送数据的无线资源的模式通知给终端设备。当终端设备有数据包需要发送的时候,终端设备就会采用这些预配置的无线资源进行发送从而避免发送调度请求。这种方法的主要问题是无线资源的浪费,因为网络设备并不知道在所通知的时间点终端设备是否会发送数据,从而必须采用比较保守的无线资源调度算法。
相关技术的主要出发点是:终端设备在发送数据包的时候,所使用的无线资源必须是排他的,从而在相同小区中任何两个终端设备之间避免发生无线资源冲突。这种出发点在网络设备覆盖比较大,网络设备所使用的载波的频段比较低的时候是很有必要的,因为这样的小区往往用于覆盖范围比较大的宏蜂窝,小区中终端设备的数量往往比较多,所以冲突解决是很有必要的。
但是随着无线通信***的不断迭代发展,新的无线通信***除了会重耕前已经在使用的无线频率资源之外,往往会增加新的频谱。比如5G***会重耕2G、3G和4G***中所使用的2GHz以下的频段,同时5G***在新的频段,比如3.5GHz,进行广泛的布网。其中一个很重要的原因是因为3.5GHz在很多国家有超过100MHz的带宽。运营商为了节省开销采取了种种措施使得3.5GHz频段的覆盖范围和之前***的覆盖范围相当从而充分利用原有***的硬件和基础设施。但是并不是所有的频段都可以采取这种方式。比如毫米波,就只能覆盖热点地区。由于毫米波的无线电波传播特性所限,只能覆盖有限的区域,比如小区半径在几十米的级别,一个小区内所服务的终端设备的个数和宏蜂窝(大概几百米到几十公里之间)内的所服务的终端设备的个数相比要少的多。
在这种情况下,终端设备之间在接入到相同的无线资源池的时候产生冲突的概率就大大降低。即使发生了冲突,技术上还可以采取一些措施来进行增强,比如采用HARQ重发机制。假设终端设备所使用的无线资源池当前的冲突概率是10%,并且HARQ的BLER(block error rate,误块率)也是10%,那么每次发送的成功率是81%(90%*90%),而失败率是19%。当一个HARQ进程采取的最大重发次数是2次(包括初传一共是3次),在发送了3次还没有发送成功的概率是0.6859%。这主要是得益于无线资源池的小的冲突概率。
在该背景下,本申请提供了一种无线通信方法,对于终端设备自主选择无线资源进行数据传输的场景,终端设备在使用自主选择的无线资源向网络设备发送传输块以及该传输块对应的HARQ信息时,通过向网络设备指示该终端设备的标识,使得网络设备在接收到该传输块之后,能够获知该传输块是由哪个终端设备发送的,从而确保后续的HARQ反馈能够顺利执行,提高了在有潜在冲突的情况下数据发送的可靠性。
请参考图2,其示出了本申请一个实施例提供的无线通信方法的流程图。该方法可应用于图1所示的网络架构中,例如各步骤可以由终端设备执行。该方法可以包括如下步骤:
步骤210,终端设备使用自主选择的第一无线资源,向网络设备发送第一传输块和第一传输块对应的HARQ信息,且向网络设备指示终端设备的标识。
在一些实施例中,第一传输块中包括用户数据。传输块(Transport Block,TB)是指数据传输的单位。第一传输块对应的HARQ信息用于控制第一传输块的HARQ进程(process)。
在一些实施例中,HARQ信息中包括以下至少之一:HARQ process ID(HARQ进程的标识)、NDI(New Data Indicator,新数据指示)等。HARQ process ID也称为HARQ process Number,用于唯一标识一个HARQ处理进程。
在一些实施例中,HARQ信息选择性携带HARQ进程的标识。HARQ信息是否携带HARQ进程的标识,与无线通信过程是都进行传出块的重传有关。
可选地,终端设备和网络设备约定数据传输不存在重传,则HARQ信息可以不携带HARQ进程的标识。也即,假设终端设备和网络设备实现约定传输块只进行一个HARQ process,比如ID为0的HARQ  process,HARQ信息中可以省略HARQ process ID。
可选地,终端设备和网络设备实现约定传输块进行一个以上HARQ process(采用相同的方式进行传输块的发送和接收),则HARQ信息中需要携带HARQ process ID。例如,在对通信可靠性要求较高的场景中,终端设备和网络设备约定数据传输需要进行重传,则HARQ信息包括HARQ进程的标识。
NDI用于表征被调度的数据为初传还是重传。在一些实施例中,NDI使用1bit字符表示。NDI的翻转(例如0翻转为1,或者1翻转为0)表示HARQ process为新的传输块的初传。
在一些实施例中,传输块和HARQ信息之间是一一对应的,也即不同的传输块分别对应不同的HARQ信息。在一些实施例中,第一传输块对应的HARQ信息由终端设备的MAC(Medium Access Control,媒体接入控制)层生成。
第一无线资源是终端设备自主选择的,用于发送第一传输块和第一传输块对应的HARQ信息的无线资源。在一些实施例中,第一无线资源包括时域资源和频域资源,简称为时频资源。
在一些实施例中,终端设备从无线资源池自主选择第一无线资源。无线资源池中包括至少一个用于进行无线通信的无线资源。在一些实施例中,终端设备使用的无线资源池为预配置,或者由网络设备配置。例如,网络设备通过RRC(Radio Resource Control,无线资源控制)信令向终端设备配置无线资源池。
可选地,无线资源池由网络设备对应的服务小区中的多个终端设备所共享。也即,处于网络设备对应的服务小区中的任意一个终端设备都能够从无线资源池中选择用于上行传输的无线资源,以提升无线资源池中的资源利用率。
在一些实施例中,终端设备内置有机器学习算法,该机器学习算法用于确定某一时刻,终端设备能否使用无线资源池中的无线资源向网络设备发送传输块和传输块对应的HARQ信息。可选地,终端设备通过机器学习算法确定使用无线资源池中的无线资源发送上行数据的方法称为自主发送方式。若终端设备通过机器学习算法确定,某一时刻终端设备可以使用自主发送方式发送上行数据,则终端设备从无线资源池中选择第一无线资源,并使用第一无线资源发送第一传输块和第一传输块对应的HARQ信息。
若终端设备通过机器学习算法确定,某一时刻终端设备不能使用自主发送方式发送上行数据,则终端设备不在该时刻发送第一传输块和第传输块对应的HARQ信息。可选地,终端设备使用机器学习算法重新确定另一时刻能够自主发送第一传输块。
在一些实施例中,终端设备使用机器学习算法从无线资源池中确定第一无线资源。例如,终端设备将某一时刻之前的n个时间单元中监听到的资源占用情况作为机器学习算法的输入,获得机器学习算法从无线资源池中自主选择的第一无线资源,n为正整数。可选地,终端设备在该时刻使用第一无线资源发送第一传输块和HARQ信息。
可选地,由于终端设备采用自主发送方式进行数据传输,可能会存在冲突,也即,终端设备与其他终端设备的数据发送存在冲突,为了解决这个问题,终端设备会设置第一传输块对应的定时器,来监督第一传输块的初传或者第一传输块的重传,有关该过程的具体内容请参考下文实施例。
在一些实施例中,终端设备使用不同的信道分别发送第一传输块和第一传输块对应的HARQ信息。可选地,终端设备使用PUSCH(物理上行共享信道)发送第一传输块,使用PUCCH(物理上行控制信道)发送第一传输块对应的HARQ信息。在一些实施例中,PUSCH上的无线资源和PUCCH上的无线资源之间存在对应关系,终端设备使用PUSCH上的无线资源发送第一传输块,并根据对应关系从PUCCH上确定用于发送第一传输块对应的HARQ信息无线资源。
可选地,PUCCH中的无线资源和PUSCH中的无线资源之间的对应关系是预配置的。
在一些实施例中,终端设备通过同一信道传输第一传输块和第一传输块对应的HARQ反馈信息。例如,终端设备使用PUSCH传输第一传输块和第一传输块对应的HARQ反馈信息。
可选地,若终端设备与网络设备建立有RRC连接,则终端设备使用PUSCH传输第一传输块,使用PUCCH传输第一传输块对应的HARQ反馈信息。
在一些实施例中,为了在数据传输成功率和节省无线通信资源这两个性能之间达到平衡,终端设备对第一传输块和第一传输块对应的HARQ信息采用不同的编码方式,有关该过程的具体内容请参考下文实施例。
需要说明的是,终端设备发送第一传输块和第一传输块对应的HARQ信息所使用的信道根据实际需要进行确定,本申请在此不进行限定。
在一些实施例中,终端设备除了向网络设备发送第一传输块和第一传输块对应的HARQ信息之外,还会向网络设备指示终端设备的标识,使得网络设备能够根据终端设备的标识,确定第一传输块的发送方。
在一些实施例中,终端设备的标识用于唯一表征终端设备。可选地,处于同一网络设备服务小区中的各个终端设备具有不同的标识。在一些实施例中,不同终端设备对应有不同的终端标识。例如,终端设备1的标识为a,终端设备2的标识为b,且a与b并不相同。可选地,终端设备的标识包括但不限于MAC 地址、RNTI(Radio Network Temporary Identity,无线网络临时标识)、SUPI(Subscription Permanent Identifier,用户永久标识符)、SUCI(Subscription Concealed Identifier,用户隐藏标识符)、终端设备的序列号等,本申请对此不作限定。
在一些实施例中,终端设备向网络设备指示终端设备的标识包括:终端设备在第一传输块中携带终端设备的标识,或者终端设备在HARQ信息中携带终端设备的标识,或者终端设备单独向网络设备传输终端设备的标识。
在一些实施例中,第一传输块对应的HARQ信息包括终端设备的标识。网络设备通过对接收到的第一传输块对应的HARQ信息进行解调和解码等操作,得到终端设备的标识,有关该过程的具体内容请参考下文实施例。
综上所述,对于终端设备自主选择无线资源进行数据传输的场景,终端设备在使用自主选择的无线资源向网络设备发送传输块以及该传输块对应的HARQ信息时,通过向网络设备指示该终端设备的标识,使得网络设备在接收到该传输块之后,能够获知该传输块是由哪个终端设备发送的,从而确保后续的HARQ反馈能够顺利执行,提高了在有潜在冲突的情况下数据发送的可靠性。
在一些实施例中,HARQ信息中包括终端设备的标识;或者,包含HARQ信息的控制信息中包括终端设备的标识。
在一些实施例中,终端设备的标识与HARQ信息的传输方式相同。例如,终端设备的标识与HARQ信息共同传输。
在一些实施例中,HARQ信息包括终端设备的标识,以及以下至少之一:HARQ process ID、NAI。
在一些实施例中,控制信息用于控制终端设备与网络设备的数据传输过程。在一些实施例中,控制信息中包括以下至少之一:HARQ信息、终端设备的标识和解码信息。可选地,终端设备发送的控制信息可以称为UCI(Uplink Control Information,上行控制信息)。
在一些实施例中,解码信息用于指示对接收到的码流进行解码操作,以便从接收到的码流中解码得到第一传输块以及第一传输块对应的HARQ信息。可选地,解码信息包括:调制方式和信道编码方式。
可选地,调制方式包括但不限于以下至少之一:振幅键控,频移键控,相位键控,副载波调制。需要说明的是,控制信息中的具体内容根据实际情况进行设定,本申请在此不进行限定。
在一些实施例中,HARQ信息包含在控制信息中,终端设备使用第一无线资源向网络设备发送第一传输块和第一传输块对应的控制信息。
可选地,终端设备使用不同信道分别发送第一传输块和第一传输块对应的控制信息,或者,终端设备使用同一信道发送第一传输块和第一传输块对应的控制信息。
可选地,第一传输块对应的控制信息可以在PUCCH上发送,也可以在PUSCH上发送。
在一些实施例中,终端设备的标识的指示方法由网络设备配置。
通过将终端设备的标识包含在HARQ信息或者控制信息中,使得网络设备能够根据标识信息确定终端设备的身份,使得终端设备和网络设备之间各种形式的HARQ传输能够顺利进行,有助于提高有潜在冲突的情况下数据发送的可靠性。
在一些实施例中,终端设备的标识采用隐式指示方式进行指示。
在一些实施例中,终端设备的标识采用隐式指示方式进行指示,包括:在第一传输块中隐式指示终端设备的标识。例如,终端设备将终端设备的标识与传输块进行卷积,实现在第一传输块中隐式指示终端设备的标识。
在一些实施例中,终端设备的标识采用隐式指示方式进行指示,包括:在HARQ信息中隐式指示终端设备的标识。例如,将终端设备的标识与HARQ信息进行卷积,实现在HARQ信息中隐式指示终端设备的标识。
网络设备在接收到卷积有终端设备的标识的第一传输块或者HAQR信息后,在解码过程中,根据服务小区中与终端设备有关的上下文进行快速盲解,确定发送第一传输块的终端设备的标识。
在一些实施例中,终端设备的标识的卷积方法由网络设备指示。例如,网络设备指示将终端标识的标识卷积在传输块中,那么网络设备在接收到某个传输块后,网络设备可以从传输块中提取出终端设备的标识,从而确定出该传输块由哪个终端设备发送。
在一些实施例中,终端设备的标识对应有隐式标识,终端设备在第一传输块或者HARQ信息中携带隐式标识,实现使用隐式指示方式指示终端设备的标识。可选地,通过对终端设备的标识进行加密,得到终端设备的隐式标识。网络设备在接收到隐式标识后,通过对隐式标识进行解密,确定终端设备的标识。可选地,终端设备与网络设备建立连接后,终端设备和网络设备商议确定终端设备的标识的加密方式,以及 对应的解密方式。
在一些实施例中,终端设备的标识的隐式指示方式是预设置的,或者由网络设备配置。
通过对终端设备的标识进行隐式指示,使得除了网络设备之外的其他设备确定终端设备的标识信息的难度增加。也就是说,即使其他设备能够监听到第一传输块或者HARQ信息,也不能直观地确定终端设备的标识。有助于避免终端设备与网络设备之间的通信被监听,提升无线通信的安全性。
终端设备向网络设备发送第一传输块和第一传输块对应HARQ信息。可选地,终端设备的标识采用显式或者隐式指示方式,由第一传输块或者第一传输块对应的HARQ信息携带,网络设备对第一传输块和第一传输块对应的HARQ信息进行解码,能够得到终端设备的标识。
由于终端设备自主选择第一无线资源可能与网络设备服务小区中的其他终端设备使用的无线资源发生碰撞,因此,第一传输块和第一传输块对应的HARQ信息可能被网络设备解码成功,也可能无法被网络设备正确解码。
可选地,传输过程会发生如下几种情况:
情况1、HARQ信息被网络设备正确解码,第一传输块也被网络设备正确解码。
情况2、HARQ信息被网络设备正确解码,第一传输块没有被网络设备正确解码。
情况3、HARQ信息没有被正确解码,第一传输块可能被正确解码或者没有被正确解码。
可选地,若发生情况2或者情况3,终端设备需要对第一传输块进行重传。
在一些实施例中,HARQ信息被网络设备正确解码包括以下两种情况:网络设备没有接收到HARQ信息、网络设备不能正确解码HARQ信息。例如,第一无线资源发生碰撞,导致网络设备无法成功接收HARQ信息。又例如,网络设备确定解码后的HARQ信息不符合检验条件,则说明网络设备不能正确解码HARQ信息。
在一些实施例中,第一传输块没有被正确解码包括以下两种情况:网络设备没有接收到第一传输块、网络设备不能正确解码第一传输块。
网络设备需要向终端设备发送反馈信息。反馈信息用于反馈网络设备是否正确解码了某个传输块以及HARQ信息。
可选地,终端设备通过FCH(Feedback Channel,反馈信道)接收网络设备的反馈信息。这个FCH和终端设备自主选择的第一无线资源之间存在对应关系。也就是说,终端设备根据第一无线资源唯一确定FCH。终端设备在该FCH上监听网络设备发送的关于该终端设备的HARQ process ID对应的反馈信息。
下面,通过几个实施例对终端设备和网络设备之间的无线通信过程进行介绍说明。
在一些实施例中,无线通信方法还包括:终端设备启动定时器;在定时器的运行过程中,若终端设备接收到来自网络设备的HARQ-ACK(Acknowledgement,肯定确认)反馈信息,则终端设备停止定时器;或者,在定时器的运行过程中,若终端设备接收到来自网络设备的HARQ-NACK(Negative Acknowledgement,否定确认)反馈信息,则终端设备停止定时器,并重新选择第二无线资源对第一传输块进行重传,以及重新启动定时器。
在一些实施例中,定时器用于控制传输块初传或者重传过程的传输时长。可选地,定时器称为超时定时器(timeout timer)。
对于任意一个传输块,终端设备在该传输块的发送时刻启动定时器,,若定时器的运行时长小于时长阈值,则该HARQ进程继续传输;若定时器的运行时长等于时长阈值,则说明该传输块传输超时。可选地,时长为预设置的,需要说明的是,时长阈值的数值根据协议确定,本申请在此不进行限定。
在一些实施例中,在终端设备向网络设备初次发送第一传输块和第一传输块对应的HARQ信息的情况下,终端设备启动定时器,通过定时器记录该传输块的初传时长。可选地,若发生定时器超时,则终端设备需要对第一传输块进行重传,并重置定时器。
网络设备对信道进行监听,尝试接收第一传输块和第一传输块对应的HARQ信息。可选地,网络设备使用显式方式向终端设备反馈第一传输块和第一传输块对应的HARQ信息的接收情况。
若网络设备能够正确解码第一传输块和第一传输块对应的HARQ信息,则网络设备向终端设备发送网络设备的HARQ-ACK反馈信息。可选地,HARQ-ACK反馈信息可以使用1个比特字符表示。例如,HARQ-ACK反馈信息由“1”表示。
在一些实施例中,终端设备接收HARQ-ACK反馈信息,并停止定时器。可选地,终端设备重置或取消定时器。
若网络设备未能正确解码第一传输块,则网络设备向终端设备发送网络设备的HARQ-NACK反馈信息。终端设备根据HARQ-NACK反馈信息停止定时器,并对第一传输块进行重传。可选地,HARQ-NACK反馈信息可以使用1个比特字符表示。例如,HARQ-ACK反馈信息由“0”表示。
在一些实施例中,在终端设备接收到HARQ-NACK反馈信息后,需要准备HARQ重传。可选地,终 端设备自主选择第二无线资源,并使用第二无线资源进行第一资源块的重传。例如,终端设备从无线资源池中自主选择第二无线资源。第二无线资源用于对第一传输块进行重传。
可选地,在使用第二无线资源传输的HARQ信息和使用第一无线资源传输的HARQ信息不同。可选地,终端设备从无线资源池中自主选择第二无线资源。终端设备自主选择第二无线资源的方法与自主选择第一无线资源的方法相似,有关该过程的具体内容请参考上文实施例,本申请在此不进行赘述。
图3是本申请一个示例性实施例提供的显式反馈的示意图。
310,终端设备使用第一无线资源发送第一传输块和第一传输块对应的HARQ信息。可选地,该步骤可以为HARQ初传或者HARQ重传。320,网络设备正确解码第一传输块和第一传输块对应的HARQ信息。330,网络设备向终端设备发送HARQ-ACK,显式地指示第一传输块被成功解码。
图4是本申请另一个示例性实施例提供的显式反馈的示意图。
410,终端设备使用第一无线资源发送第一传输块和第一传输块对应的HARQ信息。可选地,该步骤可以为HARQ初传或者HARQ重传。420,网络设备不能够正确解码第一传输块或者HARQ信息中。430,网络设备向终端设备发送HARQ-NACK,显式地指示第一传输块传输失败。440,终端设备进行HARQ重传(包括重传第一传输块、HARQ信息)。
通过显式反馈第一传输块的传输情况,使得终端设备根据反馈信息能够明确地确定出网络设备是否成功解码第一传输块和第一传输块对应的HARQ信息。
在一些实施例中,无线通信方法还包括:终端设备启动定时器;在定时器的运行过程中,若终端设备接收到来自网络设备的第一调度信息,则终端设备停止定时器,第一调度信息用于调度终端设备发送新的传输块;或者,在定时器的运行过程中,若终端设备接收到来自网络设备的第二调度信息,则终端设备停止定时器,并采用第二调度信息所指示的无线资源对第一传输块进行重传,以及重新启动定时器,第二调度信息用于调度终端设备重传第一传输块。
在一些实施例中,网络设备隐式向终端设备指示第一传输块和第一传输块对应的HARQ信息的解码情况。可选地,网络设备向终端设备发送调度信息,通过调度信息指示无线资源来隐式反馈第一传输块和第一传输块对应的HARQ信息的解码情况。
若网络设备能够正确解码第一传输块和第一传输块对应的HARQ信息,则网络设备向终端设备发送第一调度信息。可选地,第一调度信息用于调度终端设备发送新的传输块。
在一些实施例中,在接收到第一调度信息后,终端设备根据第一调度信息确定第一传输块和第一传输块对应的HARQ反馈信息被解码成功,终端设备停止定时器。
在一些实施例中,第一调度信息能够指示无线资源(如时频资源)。可选地,第一调度信息中包括NDI和新的无线资源。在需要发送新的传输块的情况下,终端设备使用第一调度信息指示的新的无线资源向网络设备发送新的传输块。
若网络设备未能正确解码第一传输块,则网络设备向终端设备发送第二调度信息。可选地,第二调度信息用于调度重传第一传输块。
在一些实施例中,第二调度信息能够指示用于重传第一传输块的无线资源。可选地,第二调度信息中包括NDI和用于重传第一传输块的无线资源。
在一些实施例中,第一调度信息和第二调度信息中包括的NAI不同,终端设备根据调度信息中包含的NDI对第一传输块进行重传,还是传输新的传输块。
终端设备接收第二调度信息,并根据第二调度信息确定第一传输块解码失败,终端设备关闭定时器,并需要对第一传输块进行重传。
图5是本申请一个示例性实施例提供的隐式反馈的示意图。
510,终端设备使用第一无线资源发送第一传输块和第一传输块对应的HARQ信息。可选地,该步骤可以为HARQ初传或者HARQ重传。520,网络设备能够正确解码第一传输块和HARQ信息。530,网络设备向终端设备发送第一调度信息,隐式地指示第一传输块和HARQ信息解码成功。可选地,终端设备根据第一调度信息的调度,发送新的传输块。
图6是本申请另一个示例性实施例提供的隐式反馈的示意图。
610,终端设备使用第一无线资源发送第一传输块和第一传输块对应的HARQ信息。可选地,该步骤可以为HARQ初传或者HARQ重传。620,网络设备不能够正确解码第一传输块或者HARQ信息中。630,网络设备向终端设备发送第二调度信息,隐式地指示第一传输块传输失败。640,终端设备根据第二调度信息进行HARQ重传(包括重传第一传输块、HARQ信息)。
网络设备通过调度信息隐式向终端设备反馈传输块以及HARQ信息的传输情况,并通过调度信息指示新的无线资源,有助于减少传输碰撞的发生,提升终端设备进行数据传输的成功率。
上文一些实施例,终端设备根据网络设备发送的反馈信息,确定是否需要对第一传输块进行重传。在另一些实施例中,终端设备能够自动确定重传第一传输块,以便缩短第一传输块的传输耗时。
在一些实施例中,无线通信方法还包括:终端设备启动定时器;在定时器超时的情况下,终端设备重新选择第二无线资源对第一传输块进行重传,以及重新启动定时器。
定时器超时是指定时器中的计时超出时长阈值。时长阈值根据实际需要进行确定。定时器超时表示第一传输块对应的HARQ进程进行时间较久,也即第一传输块可能发生传输失败。
在一些实施例中,若定时器超时,终端设备重新选择第二无线资源对第一传输块进行重传,可选地,终端设备可以自主选择第二无线资源,有关该过程的具体内容请参考选择第一无线资源的实施例,本申请在此不进行赘述。
图7是本申请一个示例性实施例提供的超时重传的示意图。
710,终端设备使用第一无线资源发送第一传输块和第一传输块对应的HARQ信息。可选地,该步骤可以为HARQ初传或者HARQ重传。720,网络设备不能够正确解码第一传输块或者HARQ信息中。730,终端设备中的定时器超时。740,终端设备进行HARQ重传(包括重传第一传输块、HARQ信息)。
通过这种方法,在网络设备未接收到第一传输块的情况下,终端设备在定时器超时后能够对传输块进行重传,保证了传输块重传过程顺利进行。
在一些实施例中,无线通信方法还包括:终端设备启动定时器;在定时器超时的情况下,终端设备执行回退过程确定重传第一传输块的时机,在确定的时机使用重新选择的第二无线资源对第一传输块进行重传,以及重新启动定时器。
可选地,终端设备执行回退过程,包括:终端设备从定时器超时时刻开始的回退时长中,确定重传第一传输块的时机,终端设备根据确定的时机,使用第二无线资源对第一传输块进行重传。可选地,终端设备重新启动定时器,记录第一传输块的重传耗时。
在一些实施例中,回退时长可以是预设置,也可以由网络设备配置。
在一些实施例中,终端设备从定时器超时时刻开始的回退时长中,确定重传第一传输块的时机,包括:终端设备根据资源监听结果,从定时器超时时刻开始的回退时长中选择空闲时机,作为重传第一传输块的时机,或者,终端设备通过机器学习算法,从定时器超时时刻开始的回退时长中,确定重选第一传输块的时机。
例如,回退时长为5s,12:00:00定时器发生超时,则终端设备在12:00:00至12:00:05之中,确定重传第一传输块的时机为12:00:03。终端设备在12:00:03使用第二无线资源对第一传输块进行重传。可选地,终端设备可以根据确定的时机,从无线资源池中确定第二无线资源。例如,终端设备从无线资源池中选择确定的时机中未被占用的无线资源,作为第二无线资源。
需要说明的是,重传第一传输块的时机的确定方法根据实际需要进行设定,本申请在此不进行限定。
图8是本申请一个示例性实施例提供的回退重传的示意图。
810,终端设备使用第一无线资源发送第一传输块和第一传输块对应的HARQ信息。可选地,该步骤可以为HARQ初传或者HARQ重传。820,网络设备未正确解码第一传输块或者HARQ信息中的至少之一。830,终端设备中的定时器超时。840,终端设备执行回退过程,确定重传第一传输块的时机。850,终端设备进行HARQ重传(包括重传第一传输块、HARQ信息)。终端设备在确定的时机中,根据重新选择的第二无线资源重传第一传输块。
通过执行回退过程,使得终端设备在回退时长内确定出用于重传第一传输块的时机,有助于避免第二无线资源发生碰撞,有助于提升重传第一传输块的成功率。
在一些实施例中,无线通信方法还包括:终端设备启动定时器;在定时器的运行过程中,终端设备对第一无线资源相关的无线信道进行检测;若检测到信道冲突,则终端设备停止定时器,并执行回退过程确定重传第一传输块的时机,在确定的时机使用重新选择的第二无线资源对第一传输块进行重传,以及重新启动定时器。
在一些实施例中,终端设备使用第一无线资源向网络设备发送第一传输块和第一传输块对应的HARQ信息之后,对第一无线资源相关的无线信道进行检测,并根据信道检测结果,确定是否需要对第一传输块进行重传。
信道冲突是指在第一无线资源相关的无线信道存在碰撞。也即,终端设备与其他终端设备在同一无线信道中使用的无线资源(如时频资源)发生重叠。信道冲突可能导致网络设备无法成功接收第一传输块或者HARQ信息。在一些实施例中,终端设备在接收到网络设备的反馈信息或者定时器超时之前,对第一无线资源相关的无线信道进行持续检测。
可选地,若终端设备未检测到信道冲突,则终端设备继续该无线信道进行检测。
若终端设备检测到信道冲突,则表示第一传输块或者HARQ信息可能发送传输失败或者解码错误,则终端设备停止定时器,并对第一传输块进行重传。
在一些实施例中,终端设备执行回退过程,确定重传第一传输块的时机,并在确定的时机使用重新选择的第二无线资源对第一传输块进行重传。可选地,终端设备重新启动定时器,记录第一传输块的重传时间。
在一些实施例中,终端设备不执行回退过程。也即,终端设备在检测到发生信道冲突后,确定自主第二无线资源,并使用第二无线资源对第一传输块进行重传。例如,在终端设备检测到发送信道冲突的情况下,终端设备立即确定第二无线资源。在确定第二无线资源后,终端设备使用第二无线资源对第一传输块进行重传。通过这种方法,有助于进一步提升加快终端设备开启重传。
可选地,终端设备从检测到信道冲突的时刻开始的回退时长中,确定用于重传第一传输块的时机。例如,回退时长为3s,检测到信道冲突的时刻为11:00:15,则终端设备在11:00:15至11:00:18之中,确定重传第一传输块的时机为11:00:18。
用于重传第一传输块的时机,以及第二无线资源的选择方法具体请参考上文实施例,本申请在此不进行赘述。
图9是本申请一个示例性实施例提供的监听重传的示意图。
910,终端设备使用第一无线资源发送第一传输块和第一传输块对应的HARQ信息。可选地,该步骤可以为HARQ初传或者HARQ重传。920,终端设备执行信道检测,确定与第一无线资源相关的无线信道存在冲突。930,终端设备执行回退过程,确定重传第一传输块的时机。940,终端设备进行HARQ重传(包括重传第一传输块、HARQ信息)。终端设备在确定的时机中,根据重新选择的第二无线资源重传第一传输块。
通过上述方法,终端设备能够及时了解无线资源相关的无线信道的冲突情况,以便在相关的无线信道发生冲突时,及时对第一传输块进行重传,而不必等到定时器超时才对第一传输块进行重传,有助于缩短发送第一传输块与重传第一传输块之间的时长,提升第一传输块的传输效率。
在一些实施例中,终端设备的物理层针对包含HARQ信息的控制信息的处理方式,不同于针对生成第一传输块的PDU的处理方式。
终端设备的物理层用于对上层数据包进行处理,并使用第一无线资源向网络设备发送处理后的数据包。
生成第一传输块的PDU是指MAC层向物理层传输的数据单元。可选地,生成第一传输块的PDU中包括用户数据,物理层对该PDU进行处理,得到第一传输块。
通过使用不同的处理方式对包含HARQ信息的控制信息和生成第一传输块的PDU进行处理,在控制传输过程消耗的无线资源的同时,提升了第一传输块和HARQ信息中的至少一个传输成功的概率。
可选地,物理层使用不同处理方式对生成第一传输块的PDU和包含HARQ信息的控制信息进行处理,使得HARQ信息的传输成功率更高。
在一些实施例中,物理层针对控制信息的编码码率,小于针对PDU的编码码率;和/或,物理层针对控制信息的调制阶数,小于针对PDU的调制阶数。
在一些实施例中,编码码率是指数据中有用部分(非冗余)所占的比例。假设编码码率是k/n,则对于每k位有用信息,对应有n位的数据,剩余n-k为数据为冗余数据。
可选地,编码码率与解码成功率成反比。也即,若数据的编码码率越高,则数据的解码成功率越低;若数据的编码码率越低,则数据的解码成功率越高。物理层使用较小的编码码率(小于针对PDU的编码码率)对PDU进行处理,有助于提升HARQ信息的解码成功率。
在一些实施例中,调制阶数用于计算每个数据单元(码元)所能代表的比特数。可选地,物理层针对控制信息的调制阶数,包括以下至少之一:BPSK(Binary Phase Shift Keying,二进制相移键控),QPSK(Quadrature Phase Shift Keying,正交相移键控)。
可选地,调制阶数与解码成功率成反比。也即,若数据的调制阶数越高,则数据的传输解码率越低;若数据的调制阶数越低,则数据的解码成功率越高。
在一个示例中,物理层针对控制信息的编码码率,小于针对PDU的编码码率。
在另一个示例中,物理层针对控制信息的调制阶数,小于针对PDU的调制阶数。
在另一个示例中,物理层针对控制信息的编码码率,小于针对PDU的编码码率,并且,物理层针对控制信息的调制阶数,小于针对PDU的调制阶数。
需要说明的是,物理层使用的编码码率和调制阶数的具体参数根据实际需要进行设定,本申请在此不进行限定。
通过上述方法,通过使用较小的编码码率和/或调制阶数,降低了网络设备成功接解码HARQ信息的难度,有助于提升HARQ信息(或者控制信息)的解码成功率。由于若HARQ信息解码失败,则无论第一传输块是否解码成功,终端设备都需要对第一传输块进行重传,因此,通过提升HARQ信息的解码成功率,还有助于减少由于HARQ信息的解码失败导致的第一传输块重传。
在一些实施例中,控制信息是终端设备的物理层上行控制信息。
在一些实施例中,控制信息由终端设备的MAC层生成。可选地,控制信息包括以下至少之一:HARQ信息、终端设备的标识以及调制阶数和编码码率。
在终端设备对包含HARQ信息的控制信息的处理方式,不同于针对生成第一传输块的协议数据单元PDU的处理方式的情况下,控制信息中包括生成HARQ信息的调制阶数、编码码率,以及生成的第一传输块的调制阶数、编码码率。
HARQ信息、终端设备的标识以及调制阶数和编码码率在控制信息中的分布位置根据实际需要进行确定,本申请在此不进行限定。
在一些实施例中,生成第一传输块的PDU中包括:需要传输的数据包,以及终端设备的BSI(Buffer State Information,缓存状态信息)。
在一些实施例中,需要传输的数据包中包括用户数据。终端设备的缓存状态信息是指终端设备中存储的与第一传输块相关的信息。
在一些实施例中,缓存状态信息,包括以下至少之一:缓存的数据包的大小信息,数据包和逻辑信道之间的关系,数据包的剩余时延预算。其中,缓存的数据包的大小信息用于表征需要传输的数据包的数据量;数据包和逻辑信道间的对应关系用于表征需要传输的数据包对应的逻辑信道;数据包的剩余时延预算是指需要传输的数据包(如传输块)在达到时延预算之前的剩余传输时间。
例如,某个传输块的时延预算为10秒,该传输块的传输时长为7秒,则该传输块的剩余时延预算为3秒。
在一些实施例中,缓存状态信息由终端设备的RLC(Radio Link Control,无线链路控制)层生成。RLC层接收上层输入的SDU(Service Data Unit,服务数据单元),生成需要传输的数据包对应的缓存状态信息;RLC层根据上层输入的SDU和缓存状态信息,得到RLC层的PDU。
MAC层将RLC层的PDU作为MAC层的SDU,并生成控制信息。MAC层根据控制信息和MAC层的SDU,得到MAC层的PDU。物理层接收MAC层的PDU,通过对PDU进行调制、编码得到第一传输块和第一传输块对应的HARQ信息。终端设备的物理层使用第一无线资源,向网络设备发送第一传输块和第一传输块对应的HARQ信息。
对于上文提供的一个实施例中,网络设备通过隐式的方式向终端设备反馈第一传输块和HARQ信息的传输情况,网络设备可以根据剩余时延预算生成调度信息。
在一些实施例中,第一传输块中包括剩余时延预算,若网络设备成功解码第一传输块,未能成功解码第一传输块对应的HARQ信息,则说明终端设备需要重传第一传输块。网络设备根据剩余时延预算,生成第二调度信息,并向终端设备发送第二调度信息。
终端设备接收第二调度信息,并根据第二调度信息指示的新的无线资源对第一传输块和第一传输块对应的HARQ信息进行重传。
可选地,在第一传输块重传过程中,第一传输块对应的HARQ信息不同于初传过程中,第一传输块对应的HARQ信息。
在一些实施例中,第一传输块中包括剩余时延预算,若网络设备成功解码第一传输块,且成功解码第一传输块对应的HARQ信息,则网络设备根据剩余时延预算,生成第一调度信息,并向终端设备发送第一调度信息。
终端设备接收第一调度信息,并根据第一调度信息指示的新的无线资源传输新的传输块。
在一些实施例中,终端设备的物理层采用NOMA(Non Orthogonal Multiple Access,非正交多址接入)方式进行信号调制。
NOMA调制方式允许网络设备在部分重叠或者完全重叠的无线资源上收到一个或者多个终端设备分别发送的信号,且能够正确地解码部分或者全部的信号。
可选地,终端设备的物理层采用NOMA方式进行信号调制:包括,使用NOMA对包括HARQ信息的控制信息和生成第一传输块的PDU进行调制。
若HARQ信息中包含HARQ process ID,则终端设备的物理层采用NOMA进行信号调制,使得终端 设备建立多个HARQ process并行发送多个PDU。
若HARQ信息中不包含HARQ process ID,或者HARQ process ID设置为固定值(比如0),则终端设备只能串行发送传输块。例如,终端设备在完成第一传输块的HARQ进程后,开始进行下一个传输块的HARQ进程。
可选地,终端设备的物理层是都采用NOMA方式进行信号调制是预配置的,或者通过网络设备配置。
请参考图10,其示出了本申请另一个实施例提供的无线通信方法的流程图。该方法可应用于图1所示的网络架构中,例如各步骤可以由网络设备执行。该方法可以包括如下几个步骤(1010):
步骤1010,网络设备接收终端设备使用自主选择的第一无线资源发送的第一传输块和第一传输块对应的HARQ信息,且根据接收到的信息确定终端设备的标识。
网络设备根据终端设备的标识确定第一传输块和第一传输块对应的HARQ信息由终端设备发送,以便网络设备根据第一传输块和HARQ信息的解码情况,向终端设备发送反馈信息。
对于终端设备自主选择无线资源进行数据传输的场景,终端设备在使用自主选择的无线资源向网络设备发送传输块以及该传输块对应的HARQ信息时,通过向网络设备指示该终端设备的标识,使得网络设备在接收到该传输块之后,能够获知该传输块是由哪个终端设备发送的,从而确保后续的HARQ反馈能够顺利执行,提高了在有潜在冲突的情况下数据发送的可靠性。
在一些实施例中,HARQ信息中包括终端设备的标识;或者,包含HARQ信息的控制信息中包括终端设备的标识。
在一些实施例中,终端设备的标识采用隐式指示方式进行指示。在一些实施例中,终端设备的标识采用隐式指示方式进行指示,包括终端设备将终端设备的标识卷积在控制信息中,或者卷积在第一传输块中。
网络设备在接收到卷积有终端设备的标识的第一传输块,或者卷积有终端设备的标识的控制信息后,根据已经存储的小区中终端设备的上下文进行快速的盲解,得到终端设备的标识。通过隐式指示方式指示终端设备的标识,有助于提升无线通信过程中的安全性。
在一些实施例中,无线通信方法还包括:在HARQ信息被正确解码,且第一传输块也被正确解码的情况下,网络设备向终端设备发送HARQ-ACK反馈信息;或者,在HARQ信息被正确解码,且第一传输块未被正确解码的情况下,网络设备向终端设备发送HARQ-NACK反馈信息。
在一些实施例中,若终端设备和网络设备约定不进行传输块的重传,则网络设备可以显式向终端设备反馈传输情况。
通过网络设备显式地向终端设备反馈第一传输块和HARQ信息的传输情况,能够明确向终端设备指示第一传输块和HARQ信息的解码情况。
在一些实施例中,无线通信方法还包括:在HARQ信息被正确解码,且第一传输块也被正确解码的情况下,网络设备向终端设备发送第一调度信息,第一调度信息用于调度终端设备发送新的传输块;或者,在HARQ信息被正确解码,且第一传输块未被正确解码的情况下,网络设备向终端设备发送第二调度信息,第二调度信息用于调度终端设备重传第一传输块。
在一些实施例中,终端设备和网络设备约定在发生传输失败的情况下,应对传输块进行重传,则网络设备可以隐式向终端设备反馈传输情况。可选地,调度信息用包括新的无线资源,终端设备使用新的无线资源对第一传输块进行重传,或者传输新的传输块。
通过调度信息指示新的无线资源,有助于减少传输过程中发生碰撞的概率,提升传输块的传输成功率。
在一些实施例中,无线通信方法还包括:网络设备接收终端设备使用重新选择的第二无线资源重传的第一传输块;其中,第一传输块是在终端设备的定时器超时的情况下进行重传的;或者,第一传输块是在终端设备在发送第一信息之后,检测到第一无线资源相关的无线信道存在冲突的情况下进行重传的。
在一些实施例中,第一传输块和HARQ信息在同一信道上发送给网络设备。
在一些实施例中,第一传输块和HARQ信息在不同信道上发送给网络设备。
在一些实施例中,HARQ信息还包括以下至少之一:HARQ进程的标识、新数据指示NDI。
在一些实施例中,生成第一传输块的PDU中包括:需要传输的数据包,以及终端设备的BSI。
在一些实施例中,无线通信方法还包括:网络设备向终端设备发送无线资源池的配置信息,无线资源池中的无线资源为网络设备对应的小区内的多个终端设备所共享。
在一些实施例中,无线资源池的配置信息用于对无线资源池进行配置。终端设备根据无线资源池的配置信息,确定无线资源池中包括的无线资源(如时频资源)。在一些实施例中,网络设备向同一服务小区中的多个终端设备发送无线资源池的配置信息。
例如,在终端设备与网络设备建立通信连接后,网络设备向终端设备发送无线资源池的配置信息。又例如,网络设备通过广播的方式向发送中无线资源池的配置信息。
需要说明的是,有关网络设备侧未详细介绍的内容,请参考上文终端设备侧的方法实施例,本申请在此不进行赘述。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图11,其示出了本申请一个实施例提供的无线通信装置的框图。该装置具有实现上述终端设备执行的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端设备,也可以设置在终端设备中。如图11所示,该装置1100可以包括:收发模块1110。
收发模块1110,用于使用自主选择的第一无线资源,向网络设备发送第一传输块和所述第一传输块对应的HARQ信息,且向所述网络设备指示终端设备的标识。
在一些实施例中,所述HARQ信息中包括所述终端设备的标识;或者,包含所述HARQ信息的控制信息中包括所述终端设备的标识。
在一些实施例中,所述终端设备的标识采用隐式指示方式进行指示。
在一些实施例中,所述收发模块1110,还用于:启动定时器;在所述定时器的运行过程中,若接收到来自所述网络设备的HARQ-ACK反馈信息,则停止所述定时器;或者,在所述定时器的运行过程中,若接收到来自所述网络设备的HARQ-NACK反馈信息,则停止所述定时器,并重新选择第二无线资源对所述第一传输块进行重传,以及重新启动所述定时器。
在一些实施例中,收发模块1110,还用于:启动定时器;在所述定时器的运行过程中,若接收到来自所述网络设备的第一调度信息,则停止所述定时器,所述第一调度信息用于调度所述终端设备发送新的传输块;或者,在所述定时器的运行过程中,若接收到来自所述网络设备的第二调度信息,则停止所述定时器,并采用所述第二调度信息所指示的无线资源对所述第一传输块进行重传,以及重新启动所述定时器,所述第二调度信息用于调度所述终端设备重传所述第一传输块。
在一些实施例中,收发模块1110,还用于:启动定时器;在所述定时器超时的情况下,重新选择第二无线资源对所述第一传输块进行重传,以及重新启动所述定时器。
在一些实施例中,收发模块1110,还用于:启动定时器;在所述定时器超时的情况下,执行回退过程确定重传所述第一传输块的时机,在确定的所述时机使用重新选择的第二无线资源对所述第一传输块进行重传,以及重新启动所述定时器。
在一些实施例中,收发模块1110,还用于:启动定时器;在所述定时器的运行过程中,对所述第一无线资源相关的无线信道进行检测;若检测到信道冲突,则停止所述定时器,并执行回退过程确定重传所述第一传输块的时机,在确定的所述时机使用重新选择的第二无线资源对所述第一传输块进行重传,以及重新启动所述定时器。
在一些实施例中,所述第一传输块和所述HARQ信息在同一信道上发送给所述网络设备。
在一些实施例中,所述第一传输块和所述HARQ信息在不同信道上发送给所述网络设备。
在一些实施例中,所述HARQ信息还包括以下至少之一:HARQ进程的标识、NDI。
在一些实施例中,所述终端设备的物理层针对包含所述HARQ信息的控制信息的处理方式,不同于针对生成所述第一传输块的PDU的处理方式。
在一些实施例中,所述物理层针对所述控制信息的编码码率,小于针对所述PDU的编码码率;和/或,所述物理层针对所述控制信息的调制阶数,小于针对所述PDU的调制阶数。
在一些实施例中,所述控制信息是所述终端设备的物理层上行控制信息。
在一些实施例中,生成所述第一传输块的PDU中包括:需要传输的数据包,以及所述终端设备的BSI。
在一些实施例中,所述第一无线资源和/或第二无线资源是由所述终端设备从无线资源池中自主选择的,所述无线资源池中的无线资源为所述终端设备所处小区内的多个终端设备所共享,所述第二无线资源用于对所述第一传输块进行重传。
在一些实施例中,所述终端设备的物理层采用NOMA方式进行信号调制。
请参考图12,其示出了本申请一个实施例提供的无线通信装置的框图。该装置具有实现上述网络设备侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的网络设备,也可以设置在网络设备中。如图12所示,该装置1200可以包括:接收模块1210。
接收模块1210,用于接收终端设备使用自主选择的第一无线资源发送的第一传输块和所述第一传输块对应的HARQ信息,且根据接收到的信息确定所述终端设备的标识。
在一些实施例中,所述HARQ信息中包括所述终端设备的标识;或者,包含所述HARQ信息的控制信息中包括所述终端设备的标识。
在一些实施例中,所述终端设备的标识采用隐式指示方式进行指示。
在一些实施例中,所述装置1200还包括:发送模块,用于在所述HARQ信息被正确解码,且所述第一传输块也被正确解码的情况下,向所述终端设备发送HARQ-ACK反馈信息;或者,在所述HARQ信息被正确解码,且所述第一传输块未被正确解码的情况下,向所述终端设备发送HARQ-NACK反馈信息。
在一些实施例中,所述装置1200还包括:发送模块,用于在所述HARQ信息被正确解码,且所述第一传输块也被正确解码的情况下,向所述终端设备发送第一调度信息,所述第一调度信息用于调度所述终端设备发送新的传输块;或者,在所述HARQ信息被正确解码,且所述第一传输块未被正确解码的情况下,向所述终端设备发送第二调度信息,所述第二调度信息用于调度所述终端设备重传所述第一传输块。
在一些实施例中,所述接收模块1210,还用于接收所述终端设备使用重新选择的第二无线资源重传的所述第一传输块;其中,所述第一传输块是在所述终端设备的定时器超时的情况下进行重传的;或者,所述第一传输块是在所述终端设备在发送所述第一信息之后,检测到所述第一无线资源相关的无线信道存在冲突的情况下进行重传的。
在一些实施例中,所述第一传输块和所述HARQ信息在同一信道上发送给所述网络设备。
在一些实施例中,所述第一传输块和所述HARQ信息在不同信道上发送给所述网络设备。
在一些实施例中,所述HARQ信息还包括以下至少之一:HARQ进程的标识、NDI。
在一些实施例中,生成所述第一传输块的PDU中包括:需要传输的数据包,以及所述终端设备的BSI。
在一些实施例中,所述装置1200还包括:资源发送模块,用于向所述终端设备发送无线资源池的配置信息,所述无线资源池中的无线资源为所述网络设备对应的小区内的多个终端设备所共享。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图13,其示出了本申请一个实施例提供的终端设备的结构示意图。终端设备1300可用于执行上述实施例中由终端设备执行的无线通信方法。该终端设备1300可以包括:处理器1301、收发器1302以及存储器1303。
处理器1301包括一个或者一个以上处理核心,处理器1301通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。处理器1301用于执行上述方法实施例中由终端设备执行的除接收和发送步骤之外的其他步骤。
收发器1302可以包括接收器和发射器,比如,该接收器和发射器可以实现为同一个无线通信组件,该无线通信组件可以包括一块无线通信芯片以及射频天线。收发器1302用于执行上述方法实施例中由终端设备执行的接收和/或发送步骤。
存储器1303可以与处理器1301以及收发器1302相连。
存储器1303可用于存储处理器执行的计算机程序,处理器1301用于执行该计算机程序,以实现上述方法实施例中的终端设备执行的各个步骤。
此外,存储器1303可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器,可擦除可编程只读存储器,静态随时存取存储器,只读存储器,磁存储器,快闪存储器,可编程只读存储器。
在一示例性实施例中,所述收发器1302用于:使用自主选择的第一无线资源,向网络设备发送第一传输块和第一传输块对应的HARQ信息,且向网络设备指示终端设备的标识。
对于上述实施例中未详细说明的细节,可参见上文方法实施例中的介绍说明,此处不再赘述。
请参考图14,其示出了本申请一个实施例提供的网络设备1400的结构示意图。该网络设备1400可用于执行上述实施例中由网络设备执行的方法步骤。该网络设备1400可以包括:处理器1401、收发器1402以及存储器1403。
处理器1401包括一个或者一个以上处理核心,处理器1401通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。处理器1401用于执行上述方法实施例中由网络设备执行的除接收和发送步骤之外的其他步骤。
收发器1402可以包括接收器和发射器。比如,该收发器1402可以包括一个有线通信组件,该有线通信组件可以包括一块有线通信芯片以及有线接口(比如光纤接口)。可选地,该收发器1402还可以包括一 个无线通信组件,该无线通信组件可以包括一块无线通信芯片以及射频天线。收发器1402用于执行上述方法实施例中由网络设备执行的接收和/或发送步骤。
存储器1403可以与处理器1401以及收发器1402相连。
存储器1403可用于存储处理器执行的计算机程序,处理器1401用于执行该计算机程序,以实现上述方法实施例中的网络设备执行的各个步骤。
此外,存储器1403可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器,可擦除可编程只读存储器,静态随时存取存储器,只读存储器,磁存储器,快闪存储器,可编程只读存储器。
在一示例性实施例中,所述收发器1402用于:接收终端设备使用自主选择的第一无线资源发送的第一传输块和第一传输块对应的HARQ信息,且根据接收到的信息确定终端设备的标识。
对于上述实施例中未详细说明的细节,可参见上文方法实施例中的介绍说明,此处不再赘述。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被通信设备的处理器执行,以实现上述终端设备侧的无线通信方法,或者网络设备侧的无线通信方法。
在一些实施例中,该计算机可读存储介质可以包括:ROM(Read-Only Memory,只读存储器)、RAM(Random-Access Memory,随机存储器)、SSD(Solid State Drives,固态硬盘)或光盘等。其中,随机存取记忆体可以包括ReRAM(Resistance Random Access Memory,电阻式随机存取记忆体)和DRAM(Dynamic Random Access Memory,动态随机存取存储器)。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在通信设备上运行时,用于实现上述终端设备侧的无线通信方法,或者上述网络设备侧的无线通信方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机程序,所述计算机程序存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机程序,以实现上述终端设备侧的无线通信方法,或者上述网络设备侧的无线通信方法。
本申请实施例还提供了一种通信***,所述***包括终端设备和网络设备,终端设备用于执行上述终端设备侧的无线通信方法,网络设备用于执行上述网络设备侧的无线通信方法。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
在本文中提及的“大于或等于”可表示大于等于或大于,“小于或等于”可表示小于等于或小于。
另外,本文中描述的步骤编号,仅示例性示出了步骤间的一种可能的执行先后顺序,在一些其它实施例中,上述步骤也可以不按照编号顺序来执行,如两个不同编号的步骤同时执行,或者两个不同编号的步骤按照与图示相反的顺序执行,本申请实施例对此不作限定。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (61)

  1. 一种无线通信方法,其特征在于,所述方法包括:
    终端设备使用自主选择的第一无线资源,向网络设备发送第一传输块和所述第一传输块对应的混合自动重传请求HARQ信息,且向所述网络设备指示所述终端设备的标识。
  2. 根据权利要求1所述的方法,其特征在于,
    所述HARQ信息中包括所述终端设备的标识;
    或者,
    包含所述HARQ信息的控制信息中包括所述终端设备的标识。
  3. 根据权利要求1所述的方法,其特征在于,所述终端设备的标识采用隐式指示方式进行指示。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备启动定时器;
    在所述定时器的运行过程中,若所述终端设备接收到来自所述网络设备的HARQ-ACK反馈信息,则所述终端设备停止所述定时器;
    或者,
    在所述定时器的运行过程中,若所述终端设备接收到来自所述网络设备的HARQ-NACK反馈信息,则所述终端设备停止所述定时器,并重新选择第二无线资源对所述第一传输块进行重传,以及重新启动所述定时器。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备启动定时器;
    在所述定时器的运行过程中,若所述终端设备接收到来自所述网络设备的第一调度信息,则所述终端设备停止所述定时器,所述第一调度信息用于调度所述终端设备发送新的传输块;
    或者,
    在所述定时器的运行过程中,若所述终端设备接收到来自所述网络设备的第二调度信息,则所述终端设备停止所述定时器,并采用所述第二调度信息所指示的无线资源对所述第一传输块进行重传,以及重新启动所述定时器,所述第二调度信息用于调度所述终端设备重传所述第一传输块。
  6. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备启动定时器;
    在所述定时器超时的情况下,所述终端设备重新选择第二无线资源对所述第一传输块进行重传,以及重新启动所述定时器。
  7. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备启动定时器;
    在所述定时器超时的情况下,所述终端设备执行回退过程确定重传所述第一传输块的时机,在确定的所述时机使用重新选择的第二无线资源对所述第一传输块进行重传,以及重新启动所述定时器。
  8. 根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备启动定时器;
    在所述定时器的运行过程中,所述终端设备对所述第一无线资源相关的无线信道进行检测;
    若检测到信道冲突,则所述终端设备停止所述定时器,并执行回退过程确定重传所述第一传输块的时机,在确定的所述时机使用重新选择的第二无线资源对所述第一传输块进行重传,以及重新启动所述定时器。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述第一传输块和所述HARQ信息在同一信道上发送给所述网络设备。
  10. 根据权利要求1至8任一项所述的方法,其特征在于,所述第一传输块和所述HARQ信息在不同信道上发送给所述网络设备。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述HARQ信息还包括以下至少之一:HARQ进程的标识、新数据指示NDI。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述终端设备的物理层针对包含所述HARQ信息的控制信息的处理方式,不同于针对生成所述第一传输块的协议数据单元PDU的处理方式。
  13. 根据权利要求12所述的方法,其特征在于,
    所述物理层针对所述控制信息的编码码率,小于针对所述PDU的编码码率;
    和/或,
    所述物理层针对所述控制信息的调制阶数,小于针对所述PDU的调制阶数。
  14. 根据权利要求2、12、13中任一项所述的方法,其特征在于,所述控制信息是所述终端设备的物理层上行控制信息。
  15. 根据权利要求1至14任一项所述的方法,其特征在于,生成所述第一传输块的PDU中包括:需要传输的数据包,以及所述终端设备的缓存状态信息BSI。
  16. 根据权利要求1至15任一项所述的方法,其特征在于,所述第一无线资源和/或第二无线资源是由所述终端设备从无线资源池中自主选择的,所述无线资源池中的无线资源为所述终端设备所处小区内的多个终端设备所共享,所述第二无线资源用于对所述第一传输块进行重传。
  17. 根据权利要求1至16任一项所述的方法,其特征在于,所述终端设备的物理层采用非正交多址接入NOMA方式进行信号调制。
  18. 一种无线通信方法,其特征在于,所述方法包括:
    网络设备接收终端设备使用自主选择的第一无线资源发送的第一传输块和所述第一传输块对应的混合自动重传请求HARQ信息,且根据接收到的信息确定所述终端设备的标识。
  19. 根据权利要求18所述的方法,其特征在于,
    所述HARQ信息中包括所述终端设备的标识;
    或者,
    包含所述HARQ信息的控制信息中包括所述终端设备的标识。
  20. 根据权利要求18所述的方法,其特征在于,所述终端设备的标识采用隐式指示方式进行指示。
  21. 根据权利要求18至20任一项所述的方法,其特征在于,所述方法还包括:
    在所述HARQ信息被正确解码,且所述第一传输块也被正确解码的情况下,所述网络设备向所述终端设备发送HARQ-ACK反馈信息;
    或者,
    在所述HARQ信息被正确解码,且所述第一传输块未被正确解码的情况下,所述网络设备向所述终端设备发送HARQ-NACK反馈信息。
  22. 根据权利要求18至20任一项所述的方法,其特征在于,所述方法还包括:
    在所述HARQ信息被正确解码,且所述第一传输块也被正确解码的情况下,所述网络设备向所述终端设备发送第一调度信息,所述第一调度信息用于调度所述终端设备发送新的传输块;
    或者,
    在所述HARQ信息被正确解码,且所述第一传输块未被正确解码的情况下,所述网络设备向所述终端设备发送第二调度信息,所述第二调度信息用于调度所述终端设备重传所述第一传输块。
  23. 根据权利要求18至20任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备使用重新选择的第二无线资源重传的所述第一传输块;
    其中,所述第一传输块是在所述终端设备的定时器超时的情况下进行重传的;或者,所述第一传输块是在所述终端设备在发送所述第一信息之后,检测到所述第一无线资源相关的无线信道存在冲突的情况下进行重传的。
  24. 根据权利要求18至23任一项所述的方法,其特征在于,所述第一传输块和所述HARQ信息在同一信道上发送给所述网络设备。
  25. 根据权利要求18至23任一项所述的方法,其特征在于,所述第一传输块和所述HARQ信息在不同信道上发送给所述网络设备。
  26. 根据权利要求18至25任一项所述的方法,其特征在于,所述HARQ信息还包括以下至少之一:HARQ进程的标识、新数据指示NDI。
  27. 根据权利要求18至26任一项所述的方法,其特征在于,生成所述第一传输块的协议数据单元PDU中包括:需要传输的数据包,以及所述终端设备的缓存状态信息BSI。
  28. 根据权利要求18至27任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送无线资源池的配置信息,所述无线资源池中的无线资源为所述网络设备对应的小区内的多个终端设备所共享。
  29. 一种无线通信装置,其特征在于,所述装置包括:
    收发模块,用于使用自主选择的第一无线资源,向网络设备发送第一传输块和所述第一传输块对应的混合自动重传请求HARQ信息,且向所述网络设备指示终端设备的标识。
  30. 根据权利要求29所述的装置,其特征在于,
    所述HARQ信息中包括所述终端设备的标识;
    或者,
    包含所述HARQ信息的控制信息中包括所述终端设备的标识。
  31. 根据权利要求29所述的装置,其特征在于,所述终端设备的标识采用隐式指示方式进行指示。
  32. 根据权利要求29至31任一项所述的装置,其特征在于:所述收发模块,还用于:
    启动定时器;
    在所述定时器的运行过程中,若所述终端设备接收到来自所述网络设备的HARQ-ACK反馈信息,则停止所述定时器;
    或者,
    在所述定时器的运行过程中,若所述终端设备接收到来自所述网络设备的HARQ-NACK反馈信息,则停止所述定时器,并重新选择第二无线资源对所述第一传输块进行重传,以及重新启动所述定时器。
  33. 根据权利要求29至31任一项所述的装置,其特征在于,所述收发模块,还用于:
    启动定时器;
    在所述定时器的运行过程中,若所述终端设备接收到来自所述网络设备的第一调度信息,则停止所述定时器,所述第一调度信息用于调度所述终端设备发送新的传输块;
    或者,
    在所述定时器的运行过程中,若所述终端设备接收到来自所述网络设备的第二调度信息,则所述停止所述定时器,并采用所述第二调度信息所指示的无线资源对所述第一传输块进行重传,以及重新启动所述定时器,所述第二调度信息用于调度所述终端设备重传所述第一传输块。
  34. 根据权利要求29至31任一项所述的装置,其特征在于,所述收发模块,还用于:
    启动定时器;
    在所述定时器超时的情况下,所述重新选择第二无线资源对所述第一传输块进行重传,以及重新启动所述定时器。
  35. 根据权利要求29至31任一项所述的装置,其特征在于,所述收发模块,还用于:
    启动定时器;
    在所述定时器超时的情况下,执行回退过程确定重传所述第一传输块的时机,在确定的所述时机使用重新选择的第二无线资源对所述第一传输块进行重传,以及重新启动所述定时器。
  36. 根据权利要求29至31任一项所述的装置,其特征在于,所述收发模块,还用于:
    启动定时器;
    在所述定时器的运行过程中,对所述第一无线资源相关的无线信道进行检测;
    若检测到信道冲突,则停止所述定时器,并执行回退过程确定重传所述第一传输块的时机,在确定的所述时机使用重新选择的第二无线资源对所述第一传输块进行重传,以及重新启动所述定时器。
  37. 根据权利要求29至36任一项所述的装置,其特征在于,所述第一传输块和所述HARQ信息在同一信道上发送给所述网络设备。
  38. 根据权利要求29至36任一项所述的装置,其特征在于,所述第一传输块和所述HARQ信息在不同信道上发送给所述网络设备。
  39. 根据权利要求29至38任一项所述的装置,其特征在于,所述HARQ信息还包括以下至少之一:HARQ进程的标识、新数据指示NDI。
  40. 根据权利要求29至39任一项所述的装置,其特征在于,所述终端设备的物理层针对包含所述HARQ信息的控制信息的处理方式,不同于针对生成所述第一传输块的协议数据单元PDU的处理方式。
  41. 根据权利要求40所述的装置,其特征在于,
    所述物理层针对所述控制信息的编码码率,小于针对所述PDU的编码码率;
    和/或,
    所述物理层针对所述控制信息的调制阶数,小于针对所述PDU的调制阶数。
  42. 根据权利要求30、40、41中任一项所述的装置,其特征在于,所述控制信息是所述终端设备的物理层上行控制信息。
  43. 根据权利要求29至32任一项所述的装置,其特征在于,生成所述第一传输块的PDU中包括:需要传输的数据包,以及所述终端设备的缓存状态信息BSI。
  44. 根据权利要求29至43任一项所述的装置,其特征在于,所述第一无线资源和/或第二无线资源是由所述终端设备从无线资源池中自主选择的,所述无线资源池中的无线资源为所述终端设备所处小区内的多个终端设备所共享,所述第二无线资源用于对所述第一传输块进行重传。
  45. 根据权利要求29至44任一项所述的装置,其特征在于,所述终端设备的物理层采用非正交多址接入NOMA方式进行信号调制。
  46. 一种无线通信装置,其特征在于,所述装置包括:
    接收模块,用于接收终端设备使用自主选择的第一无线资源发送的第一传输块和所述第一传输块对应的混合自动重传请求HARQ信息,且根据接收到的信息确定所述终端设备的标识。
  47. 根据权利要求46所述的装置,其特征在于,
    所述HARQ信息中包括所述终端设备的标识;
    或者,
    包含所述HARQ信息的控制信息中包括所述终端设备的标识。
  48. 根据权利要求46所述的装置,其特征在于,所述终端设备的标识采用隐式指示方式进行指示。
  49. 根据权利要求46至48任一项所述的装置,其特征在于,所述装置还包括:
    发送模块,用于在所述HARQ信息被正确解码,且所述第一传输块也被正确解码的情况下,向所述终端设备发送HARQ-ACK反馈信息;
    或者,
    在所述HARQ信息被正确解码,且所述第一传输块未被正确解码的情况下,向所述终端设备发送HARQ-NACK反馈信息。
  50. 根据权利要求46至48任一项所述的装置,其特征在于,所述装置还包括:
    发送模块,用于在所述HARQ信息被正确解码,且所述第一传输块也被正确解码的情况下,向所述终端设备发送第一调度信息,所述第一调度信息用于调度所述终端设备发送新的传输块;
    或者,
    在所述HARQ信息被正确解码,且所述第一传输块未被正确解码的情况下,向所述终端设备发送第二调度信息,所述第二调度信息用于调度所述终端设备重传所述第一传输块。
  51. 根据权利要求46至48任一项所述的装置,其特征在于,所述接收模块,还用于:
    接收所述终端设备使用重新选择的第二无线资源重传的所述第一传输块;
    其中,所述第一传输块是在所述终端设备的定时器超时的情况下进行重传的;或者,所述第一传输块是在所述终端设备在发送所述第一信息之后,检测到所述第一无线资源相关的无线信道存在冲突的情况下进行重传的。
  52. 根据权利要求46至51任一项所述的装置,其特征在于,所述第一传输块和所述HARQ信息在同一信道上发送给所述网络设备。
  53. 根据权利要求46至51任一项所述的装置,其特征在于,所述第一传输块和所述HARQ信息在不同信道上发送给所述网络设备。
  54. 根据权利要求46至53任一项所述的装置,其特征在于,所述HARQ信息还包括以下至少之一:HARQ进程的标识、新数据指示NDI。
  55. 根据权利要求46至54任一项所述的装置,其特征在于,生成所述第一传输块的协议数据单元PDU中包括:需要传输的数据包,以及所述终端设备的缓存状态信息BSI。
  56. 根据权利要求46至55任一项所述的装置,其特征在于,所述装置还包括:资源发送模块,用于向所述终端设备发送无线资源池的配置信息,所述无线资源池中的无线资源为所述网络设备对应的小区内的多个终端设备所共享。
  57. 一种通信设备,其特征在于,所述通信设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现如权利要求1至17任一项所述的方法,或者实现如权利要求18至28任一项所述的方法。
  58. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至17任一项所述的方法,或者实现如权利要求18至28任一项所述的方法。
  59. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如权利要求1至17任一项所述的方法,或者实现如权利要求18至28任一项所述的方法。
  60. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,所述计算机程序存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机程序,以实现如权利要求1至17任一项所述的方法,或者实现如权利要求18至28任一项所述的方法。
  61. 一种通信***,其特征在于,所述***包括终端设备和网络设备,所述终端设备用于执行如权利要求1至17任一项所述的方法,所述网络设备用于执行如权利要求18至28任一项所述的方法。
PCT/CN2022/137834 2022-12-09 2022-12-09 无线通信方法、装置、设备、存储介质及程序产品 WO2024119463A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/137834 WO2024119463A1 (zh) 2022-12-09 2022-12-09 无线通信方法、装置、设备、存储介质及程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/137834 WO2024119463A1 (zh) 2022-12-09 2022-12-09 无线通信方法、装置、设备、存储介质及程序产品

Publications (1)

Publication Number Publication Date
WO2024119463A1 true WO2024119463A1 (zh) 2024-06-13

Family

ID=91378245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137834 WO2024119463A1 (zh) 2022-12-09 2022-12-09 无线通信方法、装置、设备、存储介质及程序产品

Country Status (1)

Country Link
WO (1) WO2024119463A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270516A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 一种数据传输方法、装置及***
CN108632885A (zh) * 2017-03-21 2018-10-09 华为技术有限公司 缓存器状态报告发送的方法、终端设备和网络设备
CN112187417A (zh) * 2019-07-05 2021-01-05 华硕电脑股份有限公司 用于指示装置到装置通信的时间间隔的方法和设备
CN113273292A (zh) * 2019-01-10 2021-08-17 索尼集团公司 通信设备、操作通信设备的方法、基础设施设备以及方法
US20220217767A1 (en) * 2020-02-14 2022-07-07 Lg Electronics Inc. Method and apparatus for operating resource selection and harq operation in nr v2x

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270516A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 一种数据传输方法、装置及***
CN108632885A (zh) * 2017-03-21 2018-10-09 华为技术有限公司 缓存器状态报告发送的方法、终端设备和网络设备
CN113273292A (zh) * 2019-01-10 2021-08-17 索尼集团公司 通信设备、操作通信设备的方法、基础设施设备以及方法
CN112187417A (zh) * 2019-07-05 2021-01-05 华硕电脑股份有限公司 用于指示装置到装置通信的时间间隔的方法和设备
US20220217767A1 (en) * 2020-02-14 2022-07-07 Lg Electronics Inc. Method and apparatus for operating resource selection and harq operation in nr v2x

Similar Documents

Publication Publication Date Title
EP3567770B1 (en) Method for transmitting data, terminal device, and network device
JP7235825B2 (ja) ターボ符号およびldpc符号を使用したペイロード適応符号化のためのコードブロックセグメンテーション
CN107210869B (zh) 用于在无线设备处进行通信的装备和方法
US8638707B2 (en) Method for supporting quality of multimedia broadcast multicast service (MBMS) in mobile communications system and terminal thereof
JP5048746B2 (ja) 通信システム、移動局装置、無線リンク状態管理方法及び集積回路
JP2020512741A (ja) コードブロックグループベースの送信のためのマルチharq方法および装置
TWI793876B (zh) 用於無線通訊的方法及裝置
WO2016119454A1 (zh) 非授权载波资源的使用方法及装置
TW201743581A (zh) 共享rf頻譜頻帶中的harq回饋
CN107431582B (zh) 低等待时间上行链路确收信道波形设计
WO2020067515A1 (en) User equipment and base stations that achieve ultra reliable and low latency communications
US20220103294A1 (en) User equipment and base stations that achieve mini-slot-based repetitions
CN109923815B (zh) 用于关键任务信息的混合复用的方法、装置及其存储介质
WO2020262202A1 (en) User equipment and base stations that achieve uplink multiplexing
WO2021024922A1 (en) Multiplexing harq-ack of different service types on a single pusch
US20110182247A1 (en) Method for controlling harq operation in dynamic radio resource allocation
CN114631388A (zh) 用于具有不同优先级的上行链路信道冲突的信道丢弃行为和定时关系
CN114246009A (zh) 半持久调度下行链路传输和动态下行链路传输的协调
EP2647153B1 (en) Methods and devices for component carrier aggregation control
US20220216954A1 (en) Methods and devices for downlink feedback indication processing
US20220140957A1 (en) HARQ Feedback Technique for Communication Systems
CN115085887A (zh) 无线接入网中非授权频带上接收的下行数据的上行确认方法
WO2024119463A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
WO2012057218A1 (ja) 通信システム、移動局装置、無線送信制御方法及び集積回路
WO2021234143A1 (en) Configured grant enhancements in unlicensed band