WO2024119382A1 - 信道状态信息上报方法、装置及存储介质 - Google Patents

信道状态信息上报方法、装置及存储介质 Download PDF

Info

Publication number
WO2024119382A1
WO2024119382A1 PCT/CN2022/137040 CN2022137040W WO2024119382A1 WO 2024119382 A1 WO2024119382 A1 WO 2024119382A1 CN 2022137040 W CN2022137040 W CN 2022137040W WO 2024119382 A1 WO2024119382 A1 WO 2024119382A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
information
spatial basis
resource
combination
Prior art date
Application number
PCT/CN2022/137040
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/137040 priority Critical patent/WO2024119382A1/zh
Priority to CN202280005497.9A priority patent/CN115997405A/zh
Publication of WO2024119382A1 publication Critical patent/WO2024119382A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a channel state information (CSI) reporting method, device and storage medium.
  • CSI channel state information
  • CJT coherent joint transmission
  • M-TRP multi-transmission reception point
  • TRP transmission reception points
  • the network device When a network device provides services to a terminal through a TRP, the network device will configure the Channel Measurement Resource (CMR) for the TRP.
  • CMR Channel Measurement Resource
  • CSI Channel State Information
  • the present disclosure provides a channel state information reporting method, device and storage medium.
  • a channel state information reporting method which is applied to a terminal, and the method includes: receiving first configuration information sent by a network device, the first configuration information is used to configure at least one channel measurement resource CMR, and the at least one CMR includes N channel state information reference signal CSI-RS resources, where N is an integer greater than 1.
  • a channel state information reporting method which is applied to a network device, and the method includes: sending first configuration information to a terminal, the first configuration information is used to configure at least one channel measurement resource CMR, and the at least one CMR includes N channel state information reference signal CSI-RS resources, where N is an integer greater than 1.
  • a channel state information reporting device which is applied to a terminal, and the device includes: a receiving module, used to receive first configuration information sent by a network device, the first configuration information is used to configure at least one channel measurement resource CMR, and the at least one CMR includes N channel state information reference signal CSI-RS resources, where N is an integer greater than 1.
  • a channel state information reporting device which is applied to a network device, and the device includes: a sending module, used to send first configuration information to a terminal, the first configuration information is used to configure at least one channel measurement resource CMR, and the at least one CMR includes N channel state information reference signal CSI-RS resources, where N is an integer greater than 1.
  • a channel state information reporting device comprising: a processor; a memory for storing processor executable instructions; wherein the processor is configured to: execute the method described in the above-mentioned first aspect and any one of its embodiments.
  • a channel state information reporting device comprising: a processor; a memory for storing processor executable instructions; wherein the processor is configured to: execute the method described in the above second aspect and any one of its embodiments.
  • a storage medium in which instructions are stored.
  • the instructions in the storage medium are executed by a processor of a terminal, the terminal is enabled to execute the method described in the first aspect and any one of its embodiments.
  • a storage medium in which instructions are stored.
  • the instructions in the storage medium are executed by a processor of a network device, the network device is enabled to execute the method described in the above second aspect and any one of its embodiments.
  • a communication system comprising a terminal and a network device, wherein the terminal is used to execute the method described in the above-mentioned first aspect and any one of its embodiments; and the network device is used to execute the method described in the above-mentioned second aspect and any one of its embodiments.
  • the terminal receives first configuration information sent by a network device, wherein the first configuration information is used to configure at least one CMR, and the at least one CMR includes N CSI-RS resources.
  • the terminal can perform CSI measurement based on the configuration of the CMR, thereby improving the transmission performance of the multiple transmission and reception points.
  • Fig. 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 is a flow chart showing a method for reporting channel state information according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing a method for reporting channel state information according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing a method for reporting channel state information according to an exemplary embodiment.
  • Fig. 5 is a flow chart showing a method for reporting channel state information according to an exemplary embodiment.
  • Fig. 6 is a flow chart showing a method for reporting channel state information according to an exemplary embodiment.
  • Fig. 7 is a flow chart showing a method for reporting channel state information according to an exemplary embodiment.
  • Fig. 8 is a block diagram showing a channel state information reporting device according to an exemplary embodiment.
  • Fig. 9 is a block diagram showing a channel state information reporting device according to an exemplary embodiment.
  • Fig. 10 is a block diagram showing a device for reporting channel state information according to an exemplary embodiment.
  • Fig. 11 is a block diagram showing a device for reporting channel state information according to an exemplary embodiment.
  • the wireless communication system includes a network device and a terminal.
  • the terminal is connected to the network device through wireless resources and performs data transmission.
  • the wireless communication system shown in FIG1 is only for schematic illustration, and the wireless communication system may also include other network devices, such as core network devices, wireless relay devices, and wireless backhaul devices, which are not shown in FIG1.
  • the embodiments of the present disclosure do not limit the number of network devices and terminals included in the wireless communication system.
  • the wireless communication system of the embodiment of the present disclosure is a network that provides wireless communication functions.
  • the wireless communication system can adopt different communication technologies, such as code division multiple access (code division multiple access, CDMA), wideband code division multiple access (wideband code division multiple access, WCDMA), time division multiple access (time division multiple access, TDMA), frequency division multiple access (frequency division multiple access, FDMA), orthogonal frequency division multiple access (orthogonal frequency-division multiple access, OFDMA), single carrier frequency division multiple access (single carrier FDMA, SC-FDMA), carrier sense multiple access/collision avoidance (Carrier Sense Multiple Access with Collision Avoidance).
  • code division multiple access code division multiple access
  • CDMA code division multiple access
  • wideband code division multiple access wideband code division multiple access
  • WCDMA wideband code division multiple access
  • time division multiple access time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • single carrier frequency division multiple access single carrier frequency division multiple access
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network, 5G network can also be called new wireless network (New Radio, NR).
  • 2G English: generation
  • 3G network 4G network or future evolution network, such as 5G network
  • 5G network can also be called new wireless network (New Radio, NR).
  • NR New Radio
  • the present disclosure sometimes simply refers to a wireless communication network as a network.
  • the wireless access network equipment may also be referred to as a wireless access network equipment.
  • the wireless access network equipment may be: a base station, an evolved node B (base station), a home base station, an access point (AP) in a wireless fidelity (WIFI) system, a wireless relay node, a wireless backhaul node, a transmission point (TP) or a transmission and reception point (TRP), etc. It may also be a gNB in an NR system, or it may also be a component or a part of a base station. It should be understood that in the embodiments of the present disclosure, the specific technology and specific device form adopted by the network equipment are not limited.
  • the network equipment may provide communication coverage for a specific geographical area, and may communicate with a terminal located in the coverage area (cell).
  • the network equipment may also be a vehicle-mounted device.
  • the terminal involved in the present disclosure may also be referred to as a terminal device, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), etc., which is a device that provides voice and/or data connectivity to users.
  • the terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • some examples of terminals are: a smart phone (Mobile Phone), a customer premises equipment (Customer Premise Equipment, CPE), a pocket computer (Pocket Personal Computer, PPC), a handheld computer, a personal digital assistant (Personal Digital Assistant, PDA), a laptop computer, a tablet computer, a wearable device, or a vehicle-mounted device, etc.
  • V2X vehicle-to-everything
  • the terminal device may also be a vehicle-mounted device.
  • V2X vehicle-to-everything
  • CJT coherent joint transmission
  • M-TRP multi-transmission reception point
  • TRP transmission reception points
  • the network device When a network device provides services to a terminal through a TRP, the network device will configure the Channel Measurement Resource (CMR) for the TRP.
  • CMR Channel Measurement Resource
  • CSI Channel State Information
  • the embodiment of the present disclosure provides a channel state information reporting method, wherein a terminal receives first configuration information sent by a network device, wherein the first configuration information is used to configure at least one CMR, and the at least one CMR includes N channel state information reference signal (Channel State Information Reference Signal, CSI-RS) resources.
  • CSI-RS Channel State Information Reference Signal
  • Fig. 2 is a flow chart of a channel state information reporting method according to an exemplary embodiment. As shown in Fig. 2 , the channel state information reporting method is used in a terminal and includes the following steps.
  • step S11 first configuration information sent by a network device is received, where the first configuration information is used to configure at least one CMR, where the at least one CMR includes N CSI-RS resources, where N is an integer greater than 1.
  • N CSI-RS resources correspond to N TRPs. That is, the network device indicates the CSI-RS resources corresponding to the N TRPs.
  • the terminal receives first configuration information sent by the network device, wherein the first configuration information is used to configure at least one CMR, and the at least one CMR includes N CSI-RS resources.
  • the terminal can perform CSI measurement based on the configuration of the CMR, thereby improving the transmission performance of the multiple transmission and reception points.
  • Fig. 3 is a flow chart of a channel state information reporting method according to an exemplary embodiment. As shown in Fig. 3 , the method includes the following steps.
  • step S21 second configuration information sent by the network device is received, where the second configuration information is used to configure at least one spatial basis vector combination and a combination index corresponding to at least one spatial basis vector combination, where at least one spatial basis vector combination includes the number of spatial basis vectors corresponding to each resource in N CSI-RS resources.
  • the spatial basis vectors can also be called beams.
  • the spatial basis vector is related to at least one of N1, N2, O1, and O2.
  • N1 is the number of antenna ports in the first dimension
  • N2 is the number of antenna ports in the second dimension
  • O1 is the oversampling rate in the first dimension
  • O2 is the oversampling rate in the second dimension.
  • the number of antenna ports can be understood as the number of CSI-RS ports.
  • the selection of spatial basis vectors may be understood as selecting a specified number of spatial basis vectors from the total number N1*N2 of antenna ports of each CSI-RS resource.
  • the second configuration information is used to configure at least one spatial basis vector combination and a combination index corresponding to at least one spatial basis vector combination, so that after the terminal determines the number of spatial basis vectors corresponding to each CSI-RS resource, it can determine the combination index corresponding to the spatial basis vector combination corresponding to the number of spatial basis vectors corresponding to N CSI-RS resources.
  • the embodiment shown in FIG. 2 can be implemented alone, that is, when the embodiment shown in FIG. 2 is implemented alone, the terminal can receive the first configuration information sent by the network device for configuring at least one CMR; and whether to receive the second configuration information for configuring at least one spatial basis vector combination and the combination index corresponding to at least one spatial basis vector combination, or the method used to determine at least one spatial basis vector combination and the combination index corresponding to at least one spatial basis vector combination, the embodiment of the present disclosure does not limit this.
  • the embodiment shown in FIG. 2 can also be implemented in combination with other embodiments of the present disclosure, for example, in combination with the embodiment shown in FIG.
  • the terminal can receive the first configuration information sent by the network device for configuring at least one CMR; and the terminal also receives the second configuration information sent by the network device for configuring at least one spatial basis vector combination and the combination index corresponding to at least one spatial basis vector combination.
  • the first configuration message and the second configuration message can be carried in different signaling or the same signaling, and the embodiment of the present disclosure does not limit this.
  • FIG. 4 is a flow chart showing a method for reporting channel state information according to an exemplary embodiment. As shown in FIG. 4 , the method includes the following steps.
  • step S31 based on the first configuration information and/or the second configuration information, N CSI-RS resources are measured, and first indication information and/or second indication information are determined.
  • the first indication information is used to indicate the target CSI-RS resource and/or non-target CSI-RS resource among the N CSI-RS resources, and the second indication information is used to indicate at least one combination index.
  • the spatial basis vector combination corresponding to the combination index indicated by the second indication information is used to determine the number of spatial basis vectors corresponding to the target CSI-RS resource.
  • the terminal can implicitly determine the combination index corresponding to at least one spatial basis vector combination, so there is no need for the network device to send the second configuration information.
  • the terminal measures N CSI-RS resources based on the first configuration information to determine the second indication information.
  • the spatial basis vector combination can include the following 9 combinations and corresponding combination indexes:
  • first indication information and/or second indication information is sent to a network device.
  • the network device can obtain the target CSI-RS resource selected by the terminal and the number of spatial basis vectors corresponding to the target CSI-RS resource, thereby improving the transmission performance of CJT based on multi-TRP.
  • the number of spatial basis vectors corresponding to the target CSI-RS resource is the number of spatial basis vectors corresponding to the target CSI-RS resource in the spatial basis vector combination corresponding to at least one combination index indicated by the second indication information.
  • the CMR configured by the first configuration information includes 4 CSI-RS resources
  • the first indication information indicates that the first three CSI-RS resources among the 4 CSI-RS resources are target CSI-RS resources
  • the last CSI-RS resource is a non-target CSI-RS resource
  • the number of spatial basis vectors selected for each target CSI-RS resource is 2, 4, and 2.
  • the combination corresponding to the combination index indicated by the second indication information is ⁇ 2, 4, 2, 6 ⁇ , which means that the number of spatial basis vectors corresponding to the target CSI-RS resources is 2, 4, and 2, respectively.
  • the combination ⁇ 2, 4, 2, 6 ⁇ corresponding to the combination index indicated by the second indication information is a combination configured by the network device through the second configuration information. If the CMR configured by the first configuration information includes N CSI-RS resources, the combination configured by the second configuration information will include the number of spatial basis vectors that may correspond to the N CSI-RS resources. Regardless of whether the terminal selects all N CSI-RS resources as target CSI-RS resources, the combination corresponding to the combination index indicated by the second indication information will include the number of spatial basis vectors corresponding to the N CSI-RS resources.
  • the number of spatial basis vectors corresponding to non-target CSI-RS resources is 0.
  • the number of spatial basis vectors actually corresponding to the non-target CSI-RS resources is 0.
  • the terminal selects part of the CSI-RS resources configured by the first configuration information (also referred to as target CSI-RS resources), and the other part of the CSI-RS resources are not selected by the terminal (also referred to as non-target CSI-RS resources), if the number of spatial basis vectors corresponding to each CSI-RS resource included in the CMR is determined only according to the second indication information, the network device needs to consider that the number of spatial basis vectors corresponding to the part of the CSI-RS resources not selected by the terminal is 0.
  • the network device needs to configure all combinations of spatial basis vector combinations corresponding to all CSI-RS resources for the terminal, wherein the number of spatial basis vectors corresponding to each CSI-RS resource includes 0 and non-0 (such as 2, 4, 6), which will result in a large RRC signaling overhead and a large number of combinations.
  • the number of bits required when the terminal indicates the selected combination index in the uplink control information (UCI) is also large, resulting in a large signaling overhead of the UCI.
  • the number of non-zero basis vectors includes only 2, the number of spatial basis vectors selected by the terminal for each target CSI-RS resource is 2. If the number of spatial basis vectors corresponding to the non-target CSI-RS resource is 0, the number of bits required for the combination index indicated by the second indication information must be able to cover the combination indexes corresponding to the following 15 combinations:
  • the spatial basis vector combination only needs ⁇ 2, 2, 2, 2 ⁇ to determine the number of spatial basis vectors corresponding to the target CSI-RS resources.
  • the first indication information indicates the target CSI-RS resources and the non-target CSI-RS resources
  • the spatial basis vector combination corresponding to the combination index indicated by the second indication information is ⁇ 2, 2, 2, 2 ⁇
  • the base station can determine that the number of spatial basis vectors corresponding to the target CSI-RS resources is 2, and the number of spatial basis vectors corresponding to the non-target CSI-RS resources is 0.
  • the number of non-zero basis vectors includes 2 and 4
  • the number of spatial basis vectors selected by the terminal for each target CSI-RS resource is 2 or 4. If the number of spatial basis vectors corresponding to the non-target CSI-RS resource is 0, the number of bits required for the combination index indicated by the second indication information must be able to cover the combination indexes corresponding to 81 combinations including 0, 2 and 4:
  • the spatial basis vector combination indicated by the second indication information only needs to indicate 16 combinations including 2 and 4, which greatly reduces the number of combinations corresponding to the combination index indicated by the second indication information.
  • the embodiment of the present disclosure combines the first indication information used to indicate the target CSI-RS resources and/or the non-target CSI-RS resources with the second indication information used to indicate the combination index to indicate the number of spatial basis vectors corresponding to the target CSI-RS resources.
  • the second indication information only needs to indicate the combination index corresponding to the number of spatial basis vectors corresponding to the target CSI-RS resources, which greatly reduces the number of combinations corresponding to the combination index indicated by the second indication information and saves the signaling overhead of the second indication information.
  • At least one combination index indicated by the second indication information is determined based on the first rule.
  • the first rule may be a pre-configured rule; or the first rule may be a rule specified by a protocol; or the first device may be a rule indicated by a network device, etc.
  • the embodiments of the present disclosure are not limited here.
  • the CMR configured by the first configuration information includes 4 CSI-RS resources, and the terminal selects the last three CSI-RS resources as target CSI-RS resources, and the number of spatial basis vectors corresponding to each target CSI-RS resource is determined to be 2, and the first CSI-RS resource is a non-target CSI-RS resource.
  • the spatial basis vector combinations configured for the 4 CSI-RS resources by the second configuration information there are multiple spatial basis vector combinations in which the number of spatial basis vectors corresponding to the last three CSI-RS resources is 2, while the number of spatial basis vectors corresponding to the first CSI-RS resource is 2 or 4 or 6, etc. For example: ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇ .
  • the terminal can determine the combination index indicated by the second indication information based on the first rule.
  • the first rule includes:
  • the index indicated by the second indication information is any one of a plurality of combination indexes corresponding to a plurality of spatial basis vector combinations.
  • multiple spatial basis vectors are combined into ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇
  • the combination index indicated by the second indication information may be the combination index corresponding to any one of the combinations ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇ .
  • the index indicated by the second indication information is a combination index corresponding to a combination with a smaller combination index value among multiple combination indexes corresponding to multiple spatial basis vector combinations.
  • multiple spatial basis vectors are combined into ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇ , among which the combination index corresponding to ⁇ 2, 2, 2, 2 ⁇ is smaller, so the combination index indicated by the second indication information can be the combination index corresponding to ⁇ 2, 2, 2, 2 ⁇ .
  • the index indicated by the second indication information is a combination index corresponding to a combination with a larger combination index value among multiple combination indexes corresponding to multiple spatial basis vector combinations.
  • multiple spatial basis vectors are combined into ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇ , among which the combination index corresponding to ⁇ 6, 2, 2, 2 ⁇ is larger, so the combination index indicated by the second indication information can be the combination index corresponding to ⁇ 6, 2, 2, 2 ⁇ .
  • the index indicated by the second indication information is a combination index corresponding to a combination of spatial basis vectors having a smaller number of spatial basis vectors corresponding to a designated non-target CSI-RS resource.
  • multiple spatial basis vector combinations are ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇ , and if only the first CSI-RS resource is a non-target CSI-RS resource, the designated non-target CSI-RS resource is the first CSI-RS resource.
  • the spatial basis vector combination with a smaller number of spatial basis vectors corresponding to the first CSI-RS resource is ⁇ 2, 2, 2, 2 ⁇ , so the combination index indicated by the second indication information can be the combination index corresponding to ⁇ 2, 2, 2, 2 ⁇ .
  • the index indicated by the second indication information is a combination index corresponding to a spatial basis vector combination having a larger number of spatial basis vectors corresponding to a designated non-target CSI-RS resource among multiple spatial basis vector combinations.
  • multiple spatial basis vector combinations are ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇ , and if only the first CSI-RS resource is a non-target CSI-RS resource, the designated non-target CSI-RS resource is the first CSI-RS resource.
  • the spatial basis vector combination with a larger number of spatial basis vectors corresponding to the first CSI-RS resource is ⁇ 6, 2, 2, 2 ⁇ , so the combination index indicated by the second indication information can be the combination index corresponding to ⁇ 6, 2, 2, 2 ⁇ .
  • the designated non-target CSI-RS resource when there is only one non-target CSI-RS resource, includes the one non-target CSI-RS resource.
  • specifying the non-target CSI-RS resources includes:
  • the corresponding non-target CSI-RS resource has a larger CSI-RS resource index.
  • the first configuration information configures the CMR for the terminal including four CSI-RS resources.
  • the terminal selects the first two CSI-RS resources as target CSI-RS resources, and the last two CSI-RS resources are non-target CSI-RS resources.
  • the number of spatial basis vectors corresponding to the first two CSI-RS resources selected by the terminal is 2, and the number of spatial basis vectors corresponding to the last two CSI-RS resources in different spatial basis vector combinations is different.
  • multiple spatial basis vector combinations are ⁇ 2, 2, 2, 2 ⁇ , ⁇ 2, 2, 4, 2 ⁇ , ⁇ 2, 2, 4, 6 ⁇ , ⁇ 2, 2, 6, 6 ⁇ , and so on.
  • the CSI-RS resource index corresponding to the third CSI-RS resource is the first resource index
  • the CSI-RS resource index corresponding to the fourth CSI-RS resource index is the second resource index
  • the first resource index is smaller than the second resource index
  • the designated non-target CSI-RS resources may be the third and fourth CSI-RS resources.
  • the index indicated by the second indication information is a combination index corresponding to a combination of spatial basis vectors with a smaller number of spatial basis vectors corresponding to the third and fourth CSI-RS resources. Since the combination of spatial basis vectors with a smaller number of spatial basis vectors corresponding to the third and fourth CSI-RS resources is ⁇ 2, 2, 2, 2 ⁇ , the combination index indicated by the second indication information may be a combination index corresponding to ⁇ 2, 2, 2, 2 ⁇ .
  • the designated non-target CSI-RS resources may be the third and fourth CSI-RS resources.
  • the index indicated by the second indication information is the combined index corresponding to the combination of spatial basis vectors with a larger number of spatial basis vectors corresponding to the third and fourth CSI-RS resources.
  • the combinations of spatial basis vectors with a larger number of spatial basis vectors corresponding to the third and fourth CSI-RS resources are both ⁇ 2, 2, 6, 6 ⁇ , so the combined index indicated by the second indication information may be the combined index corresponding to ⁇ 2, 2, 6, 6 ⁇ .
  • the designated non-target CSI-RS resource is a non-target CSI-RS resource with a smaller corresponding CSI-RS resource index
  • the designated non-target CSI-RS resource is a third CSI-RS resource.
  • the index indicated by the second indication information is a combined index corresponding to a combination of spatial basis vectors with a smaller number of spatial basis vectors corresponding to the third CSI-RS resource.
  • the combination of spatial basis vectors with a smaller number of spatial basis vectors corresponding to the third CSI-RS resource is ⁇ 2, 2, 2, 2 ⁇ , so the combined index indicated by the second indication information can be a combined index corresponding to ⁇ 2, 2, 2, 2 ⁇ .
  • the designated non-target CSI-RS resource is a non-target CSI-RS resource with a smaller corresponding CSI-RS resource index
  • the designated non-target CSI-RS resource is a third CSI-RS resource.
  • the index indicated by the second indication information is a combined index corresponding to a combination of spatial basis vectors with a larger number of spatial basis vectors corresponding to the third CSI-RS resource.
  • the combination of spatial basis vectors with a larger number of spatial basis vectors corresponding to the third CSI-RS resource is ⁇ 2, 2, 6, 6 ⁇ , so the combined index indicated by the second indication information can be a combined index corresponding to ⁇ 2, 2, 6, 6 ⁇ .
  • the designated non-target CSI-RS resource is a non-target CSI-RS resource corresponding to a larger CSI-RS resource index
  • the designated non-target CSI-RS resource is the fourth CSI-RS resource.
  • the index indicated by the second indication information is a combined index corresponding to a combination of spatial basis vectors with a smaller number of spatial basis vectors corresponding to the fourth CSI-RS resource.
  • the combination of spatial basis vectors with a smaller number of spatial basis vectors corresponding to the fourth CSI-RS resource is ⁇ 2, 2, 2, 2 ⁇ , so the combined index indicated by the second indication information can be a combined index corresponding to ⁇ 2, 2, 2, 2 ⁇ .
  • the designated non-target CSI-RS resource is a non-target CSI-RS resource with a larger corresponding CSI-RS resource index
  • the designated non-target CSI-RS resource is the fourth CSI-RS resource.
  • the index indicated by the second indication information is a combined index corresponding to a combination of spatial basis vectors with a larger number of spatial basis vectors corresponding to the fourth CSI-RS resource.
  • the combination of spatial basis vectors with a larger number of spatial basis vectors corresponding to the fourth CSI-RS resource is ⁇ 2, 2, 6, 6 ⁇ , so the combined index indicated by the second indication information can be a combined index corresponding to ⁇ 2, 2, 6, 6 ⁇ .
  • the network device can obtain the number of spatial basis vectors corresponding to the target CSI-RS resources.
  • the embodiment of the present disclosure can specify through a first rule which combination index the second indication information indicates, thereby clarifying the behavior of the terminal.
  • the smaller or larger involved in the above embodiments does not only mean the smallest or largest, but can also mean the second smallest, third smallest, and so on.
  • the combination index specifically indicated by the first rule can be determined according to the actual application scenario to clarify the behavior of the terminal.
  • the first indication information includes N bits, each of the N bits corresponds to a CSI-RS resource among N CSI-RS resources, and the different values of each bit are used to indicate that the corresponding CSI-RS resource is a target CSI-RS resource or a non-target CSI-RS resource.
  • bit value when the bit value is the first value, it indicates that the CSI-RS resource is a target CSI-RS resource.
  • bit value when the bit value is the second value, it indicates that the CSI-RS resource is a non-target CSI-RS resource.
  • the first value is 0, and the second value is 1. Or, the first value is 1, and the second value is 0.
  • the first indication information and the second indication information are carried in the CSI.
  • the first indication information and the second indication information are carried in the CSI, so that the first indication information and the second indication information can be reported simultaneously when the CSI is reported, thereby reducing signaling consumption.
  • CSI includes: first information and second information.
  • the first information corresponds to an indication field of a fixed size, and the size of the indication field corresponding to the second information is determined based on the first information; the first indication information and/or the second indication information is carried in the first information.
  • the CSI may include two parts, namely part 1 and part 2. Part 1 may correspond to the first information, and part 2 may correspond to the second information.
  • the size of the indication field corresponding to the first information may be a fixed value, such as a preset value, or a default size specified by a protocol.
  • the size of part 2 of the CSI is determined based on the information in part 1.
  • the size of part 2 indicates the number of bits occupied by part 2 of the CSI, such as 8 bits or 16 bits.
  • the size of part 2 of CSI is determined based on the first indication information in part 1. If the first indication information in part 1 indicates more target CSI-RS resources, the size of part 2 will be larger. Conversely, if the first indication information in part 1 indicates less target CSI-RS resources, the size of part 2 will be smaller.
  • the size of part 2 of CSI is determined based on the second indication information in part 1. If the number of spatial basis vectors corresponding to the target CSI-RS resource indicated by the second indication information in part 1 is large, the size of part 2 will be larger. Conversely, if the number of spatial basis vectors corresponding to the target CSI-RS resource indicated by the first indication information in part 1 is small, the size of part 2 will be smaller.
  • the signaling overhead of CSI reporting can be reduced.
  • the first information also includes at least one of the following: channel state information reference signal resource indicator (CRI); layer rank indication information; wideband channel quality information (CQI); number of non-zero wideband amplitude coefficients; non-zero coefficient number indication information; non-zero coefficient position indication information; and mode indication information.
  • CRI channel state information reference signal resource indicator
  • CQI wideband channel quality information
  • mode indication information number of non-zero wideband amplitude coefficients
  • non-zero coefficient number indication information non-zero coefficient position indication information
  • mode indication information mode indication information
  • the first information includes the number of non-zero wideband amplitude coefficients.
  • the number of non-zero broadband amplitude coefficients means the number of broadband amplitude coefficient values that are non-zero.
  • the first information includes non-zero coefficient number indication information.
  • non-zero coefficient number indication information can indicate the number of coefficients whose coherent coefficients are non-zero.
  • the first information includes non-zero coefficient position indication information.
  • non-zero coefficient position indication information can indicate the position of the coefficient whose coherent coefficient is non-zero.
  • the first information includes a mode indication.
  • the mode indication can be used to indicate the CSI feedback mode, codebook mode, etc.
  • the CSI feedback mode may include mode 1 and mode 2, mode 1 is feedback based on a single TRP, and mode 2 is feedback based on multiple TRPs.
  • the CSI feedback mode may also include other modes, which are not limited by the present disclosure.
  • the codebook mode may include codebook structure 1 and codebook structure 2, codebook structure 1 is to feedback a frequency domain basis vector (frequency domain basis, FD basis) information for all CSI-RS resources included in a CMR; codebook structure 2 is to feedback a frequency domain basis vector information for each CSI-RS resource included in a CMR.
  • the codebook mode may also include other modes, which are not limited by the present disclosure.
  • the second information includes precoding matrix indicator (PMI) information.
  • PMI precoding matrix indicator
  • the PMI information includes at least one of the following: spatial domain basis vector parameter information; frequency domain basis vector parameter information; non-zero coefficient position indication information; phase coefficient information; amplitude coefficient information.
  • the present disclosure also provides a channel state information reporting method applied to a network device.
  • FIG5 is a flow chart of a channel state information reporting method according to an exemplary embodiment. As shown in FIG5 , the channel state information reporting method is used in a network device and includes the following steps.
  • step S41 first configuration information is sent to a terminal, where the first configuration information is used to configure at least one CMR, where the at least one CMR includes N CSI-RS resources, where N is an integer greater than 1.
  • N CSI-RS resources correspond to N TRPs. That is, the network device indicates the CSI-RS resources corresponding to the N TRPs.
  • the network device sends first configuration information to the terminal, wherein the first configuration information is used to configure at least one CMR, and the at least one CMR includes N CSI-RS resources.
  • the terminal can perform CSI measurement based on the configuration of the CMR, thereby improving the transmission performance of the multiple transmission and reception points.
  • FIG6 is a flow chart of a channel state information reporting method according to an exemplary embodiment. As shown in FIG6 , the method includes the following steps.
  • step S51 second configuration information is sent to the terminal, where the second configuration information is used to configure at least one spatial basis vector combination and a combination index corresponding to at least one spatial basis vector combination, where at least one spatial basis vector combination includes the number of spatial basis vectors corresponding to each resource in N CSI-RS resources.
  • the spatial basis vectors can also be called beams.
  • the spatial basis vector is related to at least one of N1, N2, O1, and O2.
  • N1 is the number of antenna ports in the first dimension
  • N2 is the number of antenna ports in the second dimension
  • O1 is the oversampling rate in the first dimension
  • O2 is the oversampling rate in the second dimension.
  • the number of antenna ports can be understood as the number of CSI-RS ports.
  • the selection of spatial basis vectors may be understood as selecting a specified number of spatial basis vectors from the total number N1*N2 of antenna ports of each CSI-RS resource.
  • the second configuration information is used to configure at least one spatial basis vector combination and a combination index corresponding to at least one spatial basis vector combination, so that the terminal can determine the combination index corresponding to the spatial basis vector combination corresponding to the number of spatial basis vectors corresponding to N CSI-RS resources after determining the number of spatial basis vectors corresponding to each CSI-RS resource.
  • the embodiment shown in Figure 5 can be implemented separately, that is: when the embodiment shown in Figure 5 is implemented separately, the network device can send first configuration information for configuring at least one CMR to the terminal; and whether to send second configuration information for configuring at least one spatial basis vector combination and the combination index corresponding to at least one spatial basis vector combination is not limited in this embodiment of the present disclosure.
  • the embodiment shown in Figure 5 can also be implemented in combination with other embodiments of the present disclosure, for example, in combination with the embodiment shown in Figure 6; that is: the network device sends first configuration information for configuring at least one CMR to the terminal; and the network device also sends second configuration information for configuring at least one spatial basis vector combination and the combination index corresponding to at least one spatial basis vector combination to the terminal.
  • the first configuration message and the second configuration message can be carried in different signaling or the same signaling, and the embodiment of the present disclosure is not limited in this.
  • FIG. 7 is a flow chart of a channel state information reporting method according to an exemplary embodiment. As shown in FIG. 7 , the method includes the following steps.
  • step S61 first indication information and/or second indication information sent by a terminal is received.
  • the first indication information is used to indicate the target CSI-RS resource and/or non-target CSI-RS resource among the N CSI-RS resources, and the second indication information is used to indicate at least one combination index.
  • the spatial basis vector combination corresponding to the combination index indicated by the second indication information is used to determine the number of spatial basis vectors corresponding to the target CSI-RS resource.
  • the terminal can implicitly determine the combination index corresponding to at least one spatial basis vector combination, so the network device does not need to send the second configuration information to the terminal.
  • the terminal measures N CSI-RS resources based on the first configuration information to determine the second indication information.
  • the spatial basis vector combination can include the following 9 combinations and corresponding combination indexes:
  • a receiving terminal sends first indication information and/or second indication information.
  • the target CSI-RS resource or non-target CSI-RS resource selected by the terminal from N CSI-RS resources and the number of spatial basis vectors corresponding to the target CSI-RS resource can be determined, and the combination index corresponding to the combination of spatial basis vectors corresponding to the number of spatial basis vectors corresponding to the target CSI-RS resource can be determined, so that the network device can obtain the target CSI-RS resource selected by the terminal and the number of spatial basis vectors corresponding to the target CSI-RS resource, thereby improving the transmission performance of CJT based on multi-TRP.
  • the number of spatial basis vectors corresponding to the target CSI-RS resource is the number of spatial basis vectors corresponding to the target CSI-RS resource in the spatial basis vector combination corresponding to at least one combination index indicated by the second indication information.
  • the CMR configured by the first configuration information includes 4 CSI-RS resources
  • the first indication information indicates that the first three CSI-RS resources among the 4 CSI-RS resources are target CSI-RS resources
  • the last CSI-RS resource is a non-target CSI-RS resource
  • the number of spatial basis vectors selected for each target CSI-RS resource is 2, 4, and 2.
  • the combination corresponding to the combination index indicated by the second indication information is ⁇ 2, 4, 2, 6 ⁇ , which means that the number of spatial basis vectors corresponding to the target CSI-RS resources is 2, 4, and 2, respectively.
  • the combination ⁇ 2, 4, 2, 6 ⁇ corresponding to the combination index indicated by the second indication information is a combination configured by the network device through the second configuration information. If the CMR configured by the first configuration information includes N CSI-RS resources, the combination configured by the second configuration information will include the number of spatial basis vectors that may correspond to the N CSI-RS resources. Regardless of whether the terminal selects all N CSI-RS resources as target CSI-RS resources, the combination corresponding to the combination index indicated by the second indication information will include the number of spatial basis vectors corresponding to the N CSI-RS resources.
  • the number of spatial basis vectors corresponding to non-target CSI-RS resources is 0.
  • the number of spatial basis vectors actually corresponding to the non-target CSI-RS resources is 0.
  • the terminal selects part of the CSI-RS resources configured by the first configuration information (also referred to as target CSI-RS resources), and the other part of the CSI-RS resources are not selected by the terminal (also referred to as non-target CSI-RS resources), if the number of spatial basis vectors corresponding to each CSI-RS resource included in the CMR is determined only according to the second indication information, the network device needs to consider that the number of spatial basis vectors corresponding to the part of the CSI-RS resources not selected by the terminal is 0.
  • the network device needs to configure all combinations of spatial basis vector combinations corresponding to all CSI-RS resources for the terminal, wherein the number of spatial basis vectors corresponding to each CSI-RS resource includes 0 and non-0 (such as 2, 4, 6), which will result in a large RRC signaling overhead and a large number of combinations.
  • the number of bits required when the terminal indicates the selected combination index in the uplink control information (UCI) is also large, resulting in a large signaling overhead of the UCI.
  • the number of non-zero basis vectors includes only 2, the number of spatial basis vectors selected by the terminal for each target CSI-RS resource is 2. If the number of spatial basis vectors corresponding to the non-target CSI-RS resource is 0, the number of bits required for the combination index indicated by the second indication information must be able to cover the combination indexes corresponding to the following 15 combinations:
  • the spatial basis vector combination only needs ⁇ 2, 2, 2, 2 ⁇ to determine the number of spatial basis vectors corresponding to the target CSI-RS resources.
  • the first indication information indicates the target CSI-RS resources and the non-target CSI-RS resources
  • the spatial basis vector combination corresponding to the combination index indicated by the second indication information is ⁇ 2, 2, 2, 2 ⁇
  • the base station can determine that the number of spatial basis vectors corresponding to the target CSI-RS resources is 2, and the number of spatial basis vectors corresponding to the non-target CSI-RS resources is 0.
  • the number of non-zero basis vectors includes 2 and 4
  • the number of spatial basis vectors selected by the terminal for each target CSI-RS resource is 2 or 4. If the number of spatial basis vectors corresponding to the non-target CSI-RS resource is 0, the number of bits required for the combination index indicated by the second indication information must be able to cover the combination indexes corresponding to 81 combinations including 0, 2 and 4:
  • the spatial basis vector combination indicated by the second indication information only needs to indicate 16 combinations including 2 and 4, which greatly reduces the number of combinations corresponding to the combination index indicated by the second indication information.
  • the embodiment of the present disclosure combines the first indication information used to indicate the target CSI-RS resources and/or the non-target CSI-RS resources with the second indication information used to indicate the combination index to indicate the number of spatial basis vectors corresponding to the target CSI-RS resources.
  • the second indication information only needs to indicate the combination index corresponding to the number of spatial basis vectors corresponding to the target CSI-RS resources, which greatly reduces the number of combinations corresponding to the combination index indicated by the second indication information and saves the signaling overhead of the second indication information.
  • At least one combination index indicated by the second indication information is determined based on the first rule.
  • the first rule may be a pre-configured rule; or the first rule may be a rule specified by a protocol; or the first device may be a rule indicated by a network device, etc.
  • the embodiments of the present disclosure are not limited here.
  • the CMR configured by the first configuration information includes 4 CSI-RS resources, and the terminal selects the last three CSI-RS resources as target CSI-RS resources, and the number of spatial basis vectors corresponding to each target CSI-RS resource is determined to be 2, and the first CSI-RS resource is a non-target CSI-RS resource.
  • the spatial basis vector combinations configured by the second configuration information for 4 CSI-RS resources there are multiple spatial basis vector combinations in which the number of spatial basis vectors corresponding to the last three CSI-RS resources is 2, while the number of spatial basis vectors corresponding to the first CSI-RS resource is 2 or 4 or 6, etc. For example: ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇ .
  • the terminal can determine the combination index indicated by the second indication information based on the first rule.
  • the first rule includes:
  • the index indicated by the second indication information is any one of a plurality of combination indexes corresponding to a plurality of spatial basis vector combinations.
  • multiple spatial basis vectors are combined into ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇
  • the combination index indicated by the second indication information may be the combination index corresponding to any one of the combinations ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇ .
  • the index indicated by the second indication information is a combination index corresponding to a combination with a smaller combination index value among multiple combination indexes corresponding to multiple spatial basis vector combinations.
  • multiple spatial basis vectors are combined into ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇ , among which the combination index corresponding to ⁇ 2, 2, 2, 2 ⁇ is smaller, so the combination index indicated by the second indication information can be the combination index corresponding to ⁇ 2, 2, 2, 2 ⁇ .
  • the index indicated by the second indication information is a combination index corresponding to a combination with a larger combination index value among multiple combination indexes corresponding to multiple spatial basis vector combinations.
  • multiple spatial basis vectors are combined into ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇ , among which the combination index corresponding to ⁇ 6, 2, 2, 2 ⁇ is larger, so the combination index indicated by the second indication information can be the combination index corresponding to ⁇ 6, 2, 2, 2 ⁇ .
  • the index indicated by the second indication information is a combination index corresponding to a combination of spatial basis vectors having a smaller number of spatial basis vectors corresponding to a designated non-target CSI-RS resource.
  • multiple spatial basis vector combinations are ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇ , and if only the first CSI-RS resource is a non-target CSI-RS resource, the designated non-target CSI-RS resource is the first CSI-RS resource.
  • the spatial basis vector combination with a smaller number of spatial basis vectors corresponding to the first CSI-RS resource is ⁇ 2, 2, 2, 2 ⁇ , so the combination index indicated by the second indication information can be the combination index corresponding to ⁇ 2, 2, 2, 2 ⁇ .
  • the index indicated by the second indication information is a combination index corresponding to a combination of spatial basis vectors having a larger number of spatial basis vectors corresponding to a designated non-target CSI-RS resource among multiple spatial basis vector combinations.
  • multiple spatial basis vector combinations are ⁇ 2, 2, 2, 2 ⁇ , ⁇ 4, 2, 2, 2 ⁇ , ⁇ 6, 2, 2, 2 ⁇ , and if only the first CSI-RS resource is a non-target CSI-RS resource, the designated non-target CSI-RS resource is the first CSI-RS resource.
  • the spatial basis vector combination with a larger number of spatial basis vectors corresponding to the first CSI-RS resource is ⁇ 6, 2, 2, 2 ⁇ , so the combination index indicated by the second indication information may be the combination index corresponding to ⁇ 6, 2, 2, 2 ⁇ .
  • the designated non-target CSI-RS resource when there is only one non-target CSI-RS resource, includes the one non-target CSI-RS resource.
  • specifying the non-target CSI-RS resources includes:
  • the corresponding non-target CSI-RS resource has a larger CSI-RS resource index.
  • the first configuration information configures the CMR for the terminal including four CSI-RS resources.
  • the terminal selects the first two CSI-RS resources as target CSI-RS resources, and the last two CSI-RS resources are non-target CSI-RS resources.
  • the number of spatial basis vectors corresponding to the first two CSI-RS resources selected by the terminal is 2, and the number of spatial basis vectors corresponding to the last two CSI-RS resources in different spatial basis vector combinations is different.
  • multiple spatial basis vector combinations are ⁇ 2, 2, 2, 2 ⁇ , ⁇ 2, 2, 4, 2 ⁇ , ⁇ 2, 2, 4, 6 ⁇ , ⁇ 2, 2, 6, 6 ⁇ , and so on.
  • the CSI-RS resource index corresponding to the third CSI-RS resource is the first resource index
  • the CSI-RS resource index corresponding to the fourth CSI-RS resource index is the second resource index
  • the first resource index is smaller than the second resource index
  • the designated non-target CSI-RS resources may be the third and fourth CSI-RS resources.
  • the index indicated by the second indication information is the combined index corresponding to the combination of spatial basis vectors with a smaller number of spatial basis vectors corresponding to the third and fourth CSI-RS resources.
  • the combinations of spatial basis vectors with a smaller number of spatial basis vectors corresponding to the third and fourth CSI-RS resources are both ⁇ 2, 2, 2, 2 ⁇ , so the combined index indicated by the second indication information may be the combined index corresponding to ⁇ 2, 2, 2, 2 ⁇ .
  • the designated non-target CSI-RS resources may be the third and fourth CSI-RS resources.
  • the index indicated by the second indication information is the combination index corresponding to the combination of spatial basis vectors with a larger number of spatial basis vectors corresponding to the third and fourth CSI-RS resources. Since the combination of spatial basis vectors with a larger number of spatial basis vectors corresponding to the third and fourth CSI-RS resources is ⁇ 2, 2, 6, 6 ⁇ , the combination index indicated by the second indication information may be the combination index corresponding to ⁇ 2, 2, 6, 6 ⁇ .
  • the designated non-target CSI-RS resource is a non-target CSI-RS resource with a smaller corresponding CSI-RS resource index
  • the designated non-target CSI-RS resource is a third CSI-RS resource.
  • the index indicated by the second indication information is a combined index corresponding to a combination of spatial basis vectors with a smaller number of spatial basis vectors corresponding to the third CSI-RS resource.
  • the combination of spatial basis vectors with a smaller number of spatial basis vectors corresponding to the third CSI-RS resource is ⁇ 2, 2, 2, 2 ⁇ , so the combined index indicated by the second indication information can be a combined index corresponding to ⁇ 2, 2, 2, 2 ⁇ .
  • the designated non-target CSI-RS resource is a non-target CSI-RS resource with a smaller corresponding CSI-RS resource index
  • the designated non-target CSI-RS resource is a third CSI-RS resource.
  • the index indicated by the second indication information is a combined index corresponding to a combination of spatial basis vectors with a larger number of spatial basis vectors corresponding to the third CSI-RS resource.
  • the combination of spatial basis vectors with a larger number of spatial basis vectors corresponding to the third CSI-RS resource is ⁇ 2, 2, 6, 6 ⁇ , so the combined index indicated by the second indication information can be a combined index corresponding to ⁇ 2, 2, 6, 6 ⁇ .
  • the designated non-target CSI-RS resource is a non-target CSI-RS resource corresponding to a larger CSI-RS resource index
  • the designated non-target CSI-RS resource is the fourth CSI-RS resource.
  • the index indicated by the second indication information is a combined index corresponding to a combination of spatial basis vectors with a smaller number of spatial basis vectors corresponding to the fourth CSI-RS resource.
  • the combination of spatial basis vectors with a smaller number of spatial basis vectors corresponding to the fourth CSI-RS resource is ⁇ 2, 2, 2, 2 ⁇ , so the combined index indicated by the second indication information can be a combined index corresponding to ⁇ 2, 2, 2, 2 ⁇ .
  • the designated non-target CSI-RS resource is a non-target CSI-RS resource with a larger corresponding CSI-RS resource index
  • the designated non-target CSI-RS resource is the fourth CSI-RS resource.
  • the index indicated by the second indication information is a combined index corresponding to a combination of spatial basis vectors with a larger number of spatial basis vectors corresponding to the fourth CSI-RS resource.
  • the combination of spatial basis vectors with a larger number of spatial basis vectors corresponding to the fourth CSI-RS resource is ⁇ 2, 2, 6, 6 ⁇ , so the combined index indicated by the second indication information can be a combined index corresponding to ⁇ 2, 2, 6, 6 ⁇ .
  • the network device can obtain the number of spatial basis vectors corresponding to the target CSI-RS resources.
  • the embodiment of the present disclosure can specify through a first rule which combination index the second indication information indicates, thereby clarifying the behavior of the terminal.
  • the smaller or larger involved in the above embodiments does not only mean the smallest or largest, but can also mean the second smallest, third smallest, and so on.
  • the combination index specifically indicated by the first rule can be determined according to the actual application scenario to clarify the behavior of the terminal.
  • the first indication information includes N bits, each of the N bits corresponds to a CSI-RS resource among N CSI-RS resources, and the different values of each bit are used to indicate that the corresponding CSI-RS resource is a target CSI-RS resource or a non-target CSI-RS resource.
  • bit value when the bit value is the first value, it indicates that the CSI-RS resource is a target CSI-RS resource.
  • bit value when the bit value is the second value, it indicates that the CSI-RS resource is a non-target CSI-RS resource.
  • the first value is 0, and the second value is 1. Or, the first value is 1, and the second value is 0.
  • the first indication information and the second indication information are carried in the CSI.
  • the first indication information and the second indication information are carried in the CSI, so that the first indication information and the second indication information can be reported simultaneously when the CSI is reported, thereby reducing signaling consumption.
  • CSI includes: first information and second information.
  • the first information corresponds to an indication field of a fixed size, and the size of the indication field corresponding to the second information is determined based on the first information; the first indication information and/or the second indication information is carried in the first information.
  • the CSI may include two parts, namely part 1 and part 2. Part 1 may correspond to the first information, and part 2 may correspond to the second information.
  • the size of the indication field corresponding to the first information may be a fixed value, such as a preset value, or a default size specified by a protocol.
  • the size of part 2 of the CSI is determined based on the information in part 1.
  • the size of part 2 indicates the number of bits occupied by part 2 of the CSI, such as 8 bits or 16 bits.
  • the size of part 2 of CSI is determined based on the first indication information in part 1. If the first indication information in part 1 indicates more target CSI-RS resources, the size of part 2 will be larger. Conversely, if the first indication information in part 1 indicates less target CSI-RS resources, the size of part 2 will be smaller.
  • the size of part 2 of CSI is determined based on the second indication information in part 1. If the number of spatial basis vectors corresponding to the target CSI-RS resource indicated by the second indication information in part 1 is large, the size of part 2 will be larger. Conversely, if the number of spatial basis vectors corresponding to the target CSI-RS resource indicated by the first indication information in part 1 is small, the size of part 2 will be smaller.
  • the signaling overhead of CSI reporting can be reduced.
  • the first information also includes at least one of the following: channel state information reference signal resource indicator (CRI); layer rank indication information; wideband channel quality information (CQI); number of non-zero wideband amplitude coefficients; non-zero coefficient number indication information; non-zero coefficient position indication information; mode indication information.
  • CRI channel state information reference signal resource indicator
  • CQI wideband channel quality information
  • the first information includes the number of non-zero wideband amplitude coefficients.
  • the number of non-zero broadband amplitude coefficients means the number of broadband amplitude coefficient values that are non-zero.
  • the first information includes non-zero coefficient number indication information.
  • non-zero coefficient number indication information can indicate the number of coefficients whose coherent coefficients are non-zero.
  • the first information includes non-zero coefficient position indication information.
  • non-zero coefficient position indication information can indicate the position of the coefficient whose coherent coefficient is non-zero.
  • the first information includes a mode indication.
  • the mode indication can be used to indicate the CSI feedback mode, codebook mode, etc.
  • the CSI feedback mode may include mode 1 and mode 2, mode 1 is feedback based on a single TRP, and mode 2 is feedback based on multiple TRPs.
  • the CSI feedback mode may also include other modes, which are not limited by the present disclosure.
  • the codebook mode may include codebook structure 1 and codebook structure 2, codebook structure 1 is to feedback a frequency domain basis vector (FD basis) information for all CSI-RS resources included in a CMR; codebook structure 2 is to feedback a frequency domain basis vector information for each CSI-RS resource included in a CMR.
  • the codebook mode may also include other modes, which are not limited by the present disclosure.
  • the second information includes precoding matrix indicator (PMI) information.
  • PMI precoding matrix indicator
  • the PMI information includes at least one of the following: spatial domain basis vector parameter information; frequency domain basis vector parameter information; non-zero coefficient position indication information; phase coefficient information; amplitude coefficient information.
  • an embodiment of the present disclosure also provides a channel state information reporting device.
  • the channel state information reporting device includes hardware structures and/or software modules corresponding to the execution of each function in order to realize the above functions.
  • the embodiment of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the technical solution of the embodiment of the present disclosure.
  • Fig. 8 is a block diagram of a channel state information reporting device according to an exemplary embodiment.
  • the device includes a receiving module 101.
  • the channel state information reporting device 100 is applied in a terminal.
  • the receiving module 101 is configured to receive first configuration information sent by a network device, where the first configuration information is used to configure at least one channel measurement resource CMR, where the at least one CMR includes N channel state information reference signal CSI-RS resources, where N is an integer greater than 1.
  • the receiving module 101 is further configured to receive second configuration information sent by the network device, where the second configuration information is used to configure at least one spatial basis vector combination and a combination index corresponding to the at least one spatial basis vector combination, where the at least one spatial basis vector combination includes the number of spatial basis vectors corresponding to each of the N CSI-RS resources.
  • the channel state information reporting device 100 further includes a processing module 102.
  • the processing module 102 is configured to measure the N CSI-RS resources based on the first configuration information and/or the second configuration information, and determine the first indication information and/or the second indication information;
  • the first indication information is used to indicate the target CSI-RS resource and/or non-target CSI-RS resource among the N CSI-RS resources, and the second indication information is used to indicate at least one combination index.
  • the channel state information reporting apparatus 100 further includes a sending module 103.
  • the sending module 103 is configured to send the first indication information and/or the second indication information to the network device.
  • the number of spatial basis vectors corresponding to the target CSI-RS resource is the number of spatial basis vectors corresponding to the target CSI-RS resource in the spatial basis vector combination corresponding to at least one combination index indicated by the second indication information.
  • the number of spatial basis vectors corresponding to the non-target CSI-RS resources is 0.
  • the number of spatial basis vectors corresponding to the target CSI-RS resources included in the combination is the same, and the number of spatial basis vectors corresponding to the non-target CSI-RS resources included is different, at least one of the combination indexes indicated by the second indication information is determined based on the first rule.
  • the first rule includes:
  • specifying a non-target CSI-RS resource includes:
  • the corresponding non-target CSI-RS resource has a larger CSI-RS resource index.
  • the first indication information includes N bits, each of the N bits corresponds to a CSI-RS resource among the N CSI-RS resources, and the different value of each bit is used to indicate that the corresponding CSI-RS resource is a target CSI-RS resource or a non-target CSI-RS resource.
  • the first indication information and the second indication information are carried in channel state information CSI.
  • the CSI includes: first information and second information, the first information corresponds to an indication field of a fixed size, and a size of the indication field corresponding to the second information is determined based on the first information;
  • the first indication information and/or the second indication information is carried in the first information.
  • the first information further includes at least one of the following information:
  • the second information includes precoding matrix indication PMI information
  • PMI information includes at least one of the following:
  • Fig. 9 is a block diagram of a channel state information reporting device according to an exemplary embodiment.
  • the device includes a sending module 201.
  • the channel state information reporting device 200 is applied to a network device.
  • the sending module 201 is configured to send first configuration information to the terminal, where the first configuration information is used to configure at least one channel measurement resource CMR, where the at least one CMR includes N channel state information reference signal CSI-RS resources, where N is an integer greater than 1.
  • the sending module 201 is also configured to send second configuration information to the terminal, and the second configuration information is used to configure at least one spatial basis vector combination and a combination index corresponding to at least one spatial basis vector combination, and at least one spatial basis vector combination includes the number of spatial basis vectors corresponding to each resource in N CSI-RS resources.
  • the channel state information reporting device 200 further includes a receiving module 202.
  • the receiving module 202 is configured to receive the first indication information and/or the second indication information sent by the terminal;
  • the first indication information is used to indicate the target CSI-RS resource and/or non-target CSI-RS resource among the N CSI-RS resources, and the second indication information is used to indicate at least one of the combination indexes.
  • the number of spatial basis vectors corresponding to the target CSI-RS resource is the number of spatial basis vectors corresponding to the target CSI-RS resource in the spatial basis vector combination corresponding to at least one combination index indicated by the second indication information.
  • the number of spatial basis vectors corresponding to non-target CSI-RS resources is 0.
  • the number of spatial basis vectors corresponding to the target CSI-RS resources included in the combination is the same, and the number of spatial basis vectors corresponding to the non-target CSI-RS resources included is different, at least one of the combination indexes indicated by the second indication information is determined based on the first rule.
  • the first rule includes:
  • specifying a non-target CSI-RS resource includes:
  • the corresponding non-target CSI-RS resource has a larger CSI-RS resource index.
  • the first indication information includes N bits, each of the N bits corresponds to a CSI-RS resource among the N CSI-RS resources, and a different value of each bit is used to indicate that the corresponding CSI-RS resource is a target CSI-RS resource or a non-target CSI-RS resource.
  • the first indication information and/or the second indication information is carried in channel state information CSI.
  • the CSI includes: first information and second information, the first information corresponds to an indication field of a fixed size, and a size of the indication field corresponding to the second information is determined based on the first information;
  • the first indication information and the second indication information are carried in the first information.
  • the first information further includes at least one of the following information:
  • the second information includes precoding matrix indication PMI information
  • the PMI information includes at least one of the following:
  • channel state information reporting device 100 and the channel state information reporting device 200 may also include other modules, such as a communication module.
  • modules such as a communication module.
  • Fig. 10 is a block diagram of a channel state information reporting device according to an exemplary embodiment.
  • the device 300 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • apparatus 300 may include one or more of the following components: a processing component 302 , a memory 304 , a power component 306 , a multimedia component 308 , an audio component 310 , an input/output (I/O) interface 312 , a sensor component 314 , and a communication component 316 .
  • the processing component 302 generally controls the overall operation of the device 300, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • the processing component 302 may include one or more modules to facilitate the interaction between the processing component 302 and other components.
  • the processing component 302 may include a multimedia module to facilitate the interaction between the multimedia component 308 and the processing component 302.
  • the memory 304 is configured to store various types of data to support operations on the device 300. Examples of such data include instructions for any application or method operating on the device 300, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 306 provides power to the various components of the device 300.
  • the power component 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 300.
  • the multimedia component 308 includes a screen that provides an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 308 includes a front camera and/or a rear camera. When the device 300 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 310 is configured to output and/or input audio signals.
  • the audio component 310 includes a microphone (MIC), and when the device 300 is in an operating mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 304 or sent via the communication component 316.
  • the audio component 310 also includes a speaker for outputting audio signals.
  • I/O interface 312 provides an interface between processing component 302 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor assembly 314 includes one or more sensors for providing various aspects of the status assessment of the device 300.
  • the sensor assembly 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, the sensor assembly 314 can also detect the position change of the device 300 or a component of the device 300, the presence or absence of user contact with the device 300, the orientation or acceleration/deceleration of the device 300, and the temperature change of the device 300.
  • the sensor assembly 314 can include a proximity sensor configured to detect the presence of a nearby object without any physical contact.
  • the sensor assembly 314 can also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 314 can also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 316 is configured to facilitate wired or wireless communication between the device 300 and other devices.
  • the device 300 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 316 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 300 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic components to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors or other electronic components to perform the above method.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 304 including instructions, and the instructions can be executed by the processor 320 of the device 300 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • FIG11 is a block diagram of a channel state information reporting device according to an exemplary embodiment.
  • the device 400 may be provided as a network device.
  • the device 400 includes a processing component 422, which further includes one or more processors, and a memory resource represented by a memory 432 for storing instructions executable by the processing component 422, such as an application.
  • the application stored in the memory 432 may include one or more modules, each of which corresponds to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above method.
  • the device 400 may also include a power supply component 426 configured to perform power management of the device 400, a wired or wireless network interface 450 configured to connect the device 400 to a network, and an input/output (I/O) interface 458.
  • the device 400 may operate based on an operating system stored in the memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, or the like.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 432 including instructions, which can be executed by the processing component 422 of the device 400 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • plural refers to two or more than two, and other quantifiers are similar thereto.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the singular forms “a”, “the” and “the” are also intended to include plural forms, unless the context clearly indicates other meanings.
  • first, second, etc. are used to describe various information, but such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other, and do not indicate a specific order or degree of importance. In fact, the expressions “first”, “second”, etc. can be used interchangeably.
  • the first information can also be referred to as the second information, and similarly, the second information can also be referred to as the first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种信道状态信息的上报方法、装置及存储介质,涉及通信技术领域,用于提升多TRP的传输性能。该方法包括:接收网络设备发送的第一配置信息,所述第一配置信息用于配置至少一个信道测量资源CMR,所述至少一个CMR包括N个信道状态信息参考信号CSI-RS资源,N为大于1的整数。

Description

信道状态信息上报方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种信道状态信息(Channel State Information,CSI)上报方法、装置及存储介质。
背景技术
在新无线技术(New Radio,NR)中,引入了基于多发送接收点(Multi Transmission Reception Point,M-TRP)的相干联合传输(Coherent Joint Transmission,CJT)。网络设备可通过多个发送接收点(Transmission Reception Point,TRP)接收或发送波束进行传输,从而为终端提供服务。
在网络设备通过TRP为终端提供服务时,网络设备会针对TRP进行信道测量资源(Channel Measurement Resource,CMR)的配置。但针对多TRP的CJT,如何进行信道状态信息(Channel State Information,CSI)的上报,是需要解决的问题。
发明内容
为克服相关技术中存在的问题,本公开提供一种信道状态信息上报方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种信道状态信息上报方法,应用于终端,所述方法包括:接收网络设备发送的第一配置信息,所述第一配置信息用于配置至少一个信道测量资源CMR,所述至少一个CMR包括N个信道状态信息参考信号CSI-RS资源,N为大于1的整数。
根据本公开实施例的第二方面,提供一种信道状态信息上报方法,应用于网络设备,所述方法包括:向终端发送第一配置信息,所述第一配置信息用于配置至少一个信道测量资源CMR,所述至少一个CMR包括N个信道状态信息参考信号CSI-RS资源,N为大于1的整数。
根据本公开实施例的第三方面,提供一种信道状态信息上报装置,应用于终端,所述装置包括:接收模块,用于接收网络设备发送的第一配置信息,所述第一配置信息用于配置至少一个信道测量资源CMR,所述至少一个CMR包括N个信道状态信息参考信号CSI-RS资源,N为大于1的整数。
根据本公开实施例的第四方面,提供一种信道状态信息上报装置,应用于网络设备, 所述装置包括:发送模块,用于向终端发送第一配置信息,所述第一配置信息用于配置至少一个信道测量资源CMR,所述至少一个CMR包括N个信道状态信息参考信号CSI-RS资源,N为大于1的整数。
根据本公开实施例的第五方面,提供一种信道状态信息上报装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:执行上述第一方面及其任意一种实施方式中所述的方法。
根据本公开实施例的第六方面,提供一种信道状态信息上报装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:执行上述第二方面及其任意一种实施方式中所述的方法。
根据本公开实施例的第七方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行上述第一方面及其任意一种实施方式中所述的方法。
根据本公开实施例的第八方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行上述第二方面及其任意一种实施方式中所述的方法。
根据本公开实施例的第九方面,提供一种通信***,包括终端和网络设备,其中,所述终端用于执行上述第一方面及其任意一种实施方式所述的方法;所述网络设备用于执行如上述第二方面及其任意一种实施方式所述的方法。
本公开的实施例提供的技术方案可以包括以下有益效果:终端通过接收网络设备发送的第一配置信息,其中,第一配置信息用于配置至少一个CMR,至少一个CMR包括N个CSI-RS资源。从而终端在多发送接收点的相干联合传输场景中,能够基于CMR的配置进行CSI测量,提升多发送接收点的传输性能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信***示意图。
图2是根据一示例性实施例示出的一种信道状态信息上报方法的流程图。
图3是根据一示例性实施例示出的一种信道状态信息上报方法的流程图。
图4是根据一示例性实施例示出的一种信道状态信息上报方法的流程图。
图5是根据一示例性实施例示出的一种信道状态信息上报方法的流程图。
图6是根据一示例性实施例示出的一种信道状态信息上报方法的流程图。
图7是根据一示例性实施例示出的一种信道状态信息上报方法的流程图。
图8是根据一示例性实施例示出的一种信道状态信息上报装置的框图。
图9是根据一示例性实施例示出的一种信道状态信息上报装置的框图。
图10是根据一示例性实施例示出的一种用于信道状态信息上报装置的框图。
图11是根据一示例性实施例示出的一种用于信道状态信息上报装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。
本公开实施例提供的信道状态信息的上报方法可应用于图1所示的无线通信***中。参阅图1所示,该无线通信***中包括网络设备和终端。终端通过无线资源与网络设备相连接,并进行数据传输。
可以理解的是,图1所示的无线通信***仅是进行示意性说明,无线通信***中还可包括其它网络设备,例如还可以包括核心网设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信***中包括网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例无线通信***,是一种提供无线通信功能的网络。无线通信***可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,基站)、家庭基站、无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点 (transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR***中的gNB,或者,还可以是构成基站的组件或一部分设备等。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。在本公开中,网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端进行通信。此外,当为车联网(V2X)通信***时,网络设备还可以是车载设备。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、客户前置设备(Customer Premise Equipment,CPE),口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信***时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
在新无线技术(New Radio,NR)中,引入了基于多发送接收点(Multi Transmission Reception Point,M-TRP)的相干联合传输(Coherent Joint Transmission,CJT)。网络设备可通过多个发送接收点(Transmission Reception Point,TRP)接收或发送波束进行传输,从而为终端提供服务。
在网络设备通过TRP为终端提供服务时,网络设备会针对TRP进行信道测量资源(Channel Measurement Resource,CMR)的配置。但针对多TRP的CJT,如何进行信道状态信息(Channel State Information,CSI)的上报,是需要解决的问题。
基于此,本公开实施例提供了一种信道状态信息上报方法,终端通过接收网络设备发送的第一配置信息,其中,第一配置信息用于配置至少一个CMR,至少一个CMR包括N个信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源。从而终端在多发送接收点的相干联合传输场景中,能够基于CMR的配置进行CSI测量,提升多TRP的传输性能。
图2是根据一示例性实施例示出的一种信道状态信息上报方法的流程图,如图2所示,信道状态信息上报方法用于终端中,包括以下步骤。
在步骤S11中,接收网络设备发送的第一配置信息,第一配置信息用于配置至少一个CMR,至少一个CMR包括N个CSI-RS资源,N为大于1的整数。
其中,N个CSI-RS资源对应N个TRP。即,网络设备指示了N个TRP对应的CSI-RS 资源。
在本公开实施例中,终端通过接收网络设备发送的第一配置信息,其中,第一配置信息用于配置至少一个CMR,至少一个CMR包括N个CSI-RS资源。从而终端在多发送接收点的相干联合传输场景中,能够基于CMR的配置进行CSI测量,提升多发送接收点的传输性能。
图3是根据一示例性实施例示出的一种信道状态信息上报方法的流程图,如图3所示,包括以下步骤。
在步骤S21中,接收网络设备发送的第二配置信息,第二配置信息用于配置至少一个空域基向量组合以及至少一个空域基向量组合对应的组合索引,至少一个空域基向量组合包括N个CSI-RS资源中每个资源对应的空域基向量数目。
其中,空域基向量也可以称为波束beam。
在一些实施例中,空域基向量与N1、N2、O1、O2中的至少一项相关。其中,N1为第一维度天线端口数,N2为第二维度天线端口数,O1为第一维度过采样率,O2为第二维度过采样率。其中天线端口数可以理解为CSI-RS的端口数。
例如,空域基向量的选择可以理解为从各个CSI-RS资源的天线端口总数N1*N2中分别选择指定数量的空域基向量。
在本公开实施例中,第二配置信息用于配置至少一个空域基向量组合以及至少一个空域基向量组合对应的组合索引,从而终端在确定了每个CSI-RS资源对应的空间基向量数目之后,可以确定N个CSI-RS资源对应的空间基向量数目对应的空域基向量组合对应的组合索引。
需要说明的是,如图2所示的实施例可以单独被实施,即:如图2所示的实施例单独被实施的时候,终端可以接收网络设备发送的用于配置至少一个CMR的第一配置信息;而是否接收用于配置至少一个空域基向量组合以及至少一个空域基向量组合对应的组合索引的第二配置信息,或是采用何种方式确定至少一个空域基向量组合以及至少一个空域基向量组合对应的组合索引,本公开实施例并不对此做出限定。如图2所示的实施例也可以结合本公开的其他实施例一起被实施,例如结合如图3所示的实施例一起被实施;即:终端可以接收网络设备发送的用于配置至少一个CMR的第一配置信息;且终端还接收网络设备发送的用于配置至少一个空域基向量组合以及至少一个空域基向量组合对应的组合索引的第二配置信息。在本公开实施例中,第一配置消息和第二配置消息可以承载在不同的信令或相同的信令中,本公开实施例并不对此做出限定。
图4是根据一示例性实施例示出的一种信道状态信息上报方法的流程图,如图4所示, 包括以下步骤。
在步骤S31中,基于第一配置信息和/或第二配置信息,对N个CSI-RS资源进行测量,并确定第一指示信息和/或第二指示信息。
其中,第一指示信息用于指示N个CSI-RS资源中的目标CSI-RS资源和/或非目标CSI-RS资源,第二指示信息用于指示至少一个组合索引。
在一些实施例中,第二指示信息指示的组合索引对应的空域基向量组合用于确定目标CSI-RS资源对应的空域基向量数目。
值得说明的是,终端可以隐式确定至少一个空域基向量组合对应的组合索引,因此无需网络设备发送的第二配置信息,终端基于第一配置信息,对N个CSI-RS资源进行测量,即可确定第二指示信息。
例如,终端基于网络设备的配置信息或默认规则确定每个CSI-RS资源对应的空域基向量数目的候选取值为2,4和6时,那么若一个CMR中包含的CSI-RS资源的数量为2时,空域基向量组合可以包含如下9个组合以及相应的组合索引:
组合1:{2,2}
组合2:{2,4}
组合3:{2,6}
组合4:{4,2}
组合5:{4,4}
组合6:{4,6}
组合7:{6,2}
组合8:{6,4}
组合9:{6,6}
当然,上述组合与组合索引的对应关系不限于本实施例中给出的对应关系。
在本公开实施例提供的一种信道状态信息上报方法中,向网络设备发送第一指示信息和/或第二指示信息。
在本公开实施例中,通过对N个CSI-RS资源进行测量,可以确定终端在N个CSI-RS资源中选择的目标CSI-RS资源或非目标CSI-RS资源,以及目标CSI-RS资源对应的空域基向量数目,并确定目标CSI-RS资源对应的空域基向量数目所对应的空域基向量组合对应的组合索引,从而在向网络设备发送第一指示信息和/或第二指示信息后,网络设备可以获知终端选择的目标CSI-RS资源以及目标CSI-RS资源对应的空域基向量数目,提高基于多TRP的CJT的传输性能。
在本公开实施例提供的一种信道状态信息上报方法中,目标CSI-RS资源对应的空域基向量数目为第二指示信息指示的至少一个组合索引对应的空域基向量组合中目标CSI-RS资源对应的空域基向量数目。
例如,第一配置信息配置的CMR包含了4个CSI-RS资源,第一指示信息指示了4个CSI-RS资源中的前三个CSI-RS资源为目标CSI-RS资源,最后一个CSI-RS资源为非目标CSI-RS资源,每个目标CSI-RS资源选择的空域基向量数目分别为2、4、2。那么第二指示信息指示的组合索引对应的组合为{2,4,2,6},即表示目标CSI-RS资源分别对应的空域基向量数目为2、4、2。
其中,第二指示信息指示的组合索引对应的组合{2,4,2,6}为网络设备通过第二配置信息配置的组合。若第一配置信息配置的CMR包含了N个CSI-RS资源,第二配置信息配置的组合中就会包括N个CSI-RS资源可能对应的空域基向量数目。无论终端是否将N个CSI-RS资源全部选择为目标CSI-RS资源,第二指示信息指示的组合索引对应的组合中都会包括N个CSI-RS资源对应的空域基向量数目。
在本公开实施例提供的一种信道状态信息上报方法中,非目标CSI-RS资源对应的空域基向量数目为0。
值得说明的是,无论第二配置信息为N个CSI-RS资源配置的组合中非目标CSI-RS资源对应的空域基向量数目为多少或者第二指示信息指示的组合索引对应的组合中非目标CSI-RS资源对应的空域基向量数目为多少,非目标CSI-RS资源实际对应的空域基向量数目均为0。
在上述实施例中,若终端选择了第一配置信息配置的部分CSI-RS资源(也被称为目标CSI-RS资源),另一部分CSI-RS资源未被终端选择(也被称为非目标CSI-RS资源)时,若只根据第二指示信息来确定CMR包含的每个CSI-RS资源对应的空域基向量数目,则网络设备需要考虑未被终端选择的部分CSI-RS资源对应的空域基向量数目为0,因此,网络设备需要为终端配置所有CSI-RS资源对应的空域基向量组合的所有组合,其中每个CSI-RS资源对应的空域基向量数目包含0和非0(比如2,4,6),此时会导致RRC信令开销较大,组合数较多。同时,在上行控制信息(Uplink Control Information,UCI)中终端指示选择的组合索引时需要的比特bit数也较多,导致UCI的信令开销也较大。
例如,若非0的基向量数目仅包含2时,终端为每个目标CSI-RS资源选择的空域基向量数目为2,若考虑非目标CSI-RS资源对应的空域基向量数目为0,则第二指示信息指示的组合索引需要的bit数必须能覆盖以下15种组合对应的组合索引:
{2,2,2,2},{0,2,2,2},{0,0,2,2},{0,0,0,2},{2,0,2,2},{2,0, 0,2},{2,0,0,0},{2,2,0,2},{2,2,0,0},{2,2,2,0},{0,2,0,2},{0,2,2,0},{0,0,2,0},{0,0,2,2},{0,2,0,0}。
但如果第二指示信息与第一指示信息相结合,由于第一指示信息指示的非目标CSI-RS资源对应的空域基向量均为0,因此无需考虑第二指示信息指示的组合索引对应的空域基向量组合中非目标CSI-RS资源对应的空域基向量数目为多少,那么空域基向量组合只需要{2,2,2,2}这一种组合即可确定目标CSI-RS资源对应的空域基向量数目。即第一指示信息指示目标CSI-RS资源和非目标CSI-RS资源,第二指示信息指示的组合索引对应的空域基向量组合为{2,2,2,2},那么基站即可确定目标CSI-RS资源对应的空域基向量数目为2,非目标CSI-RS资源对应的空域基向量数目为0。
又例如,若非0的基向量数目包含2和4时,终端为每个目标CSI-RS资源选择的空域基向量数目为2或4,若考虑非目标CSI-RS资源对应的空域基向量数目为0,则第二指示信息指示的组合索引需要的bit数必须能覆盖包括0、2和4的81种组合对应的组合索引:
{2,2,4,4},{0,2,4,4},{0,0,4,4},{2,2,4,2},{2,0,4,4},{2,0,4,2},{4,2,0,0},{4,2,0,2},{4,2,0,0},{4,2,2,0},{4,2,0,2}…。
但如果第二指示信息与第一指示信息相结合,由于第一指示信息指示的非目标CSI-RS资源对应的空域基向量均为0,因此无需考虑第二指示信息指示的组合索引对应的空域基向量组合中非目标CSI-RS资源对应的空域基向量数目为多少,那么第二指示信息指示的空域基向量组合只需要指示包括2和4的16种组合即可,大大减少了第二指示信息指示的组合索引对应的组合数量。
本公开实施例将用于指示目标CSI-RS资源和/或非目标CSI-RS资源的第一指示信息和用于指示组合索引的第二指示信息相结合来指示目标CSI-RS资源对应的空域基向量数目,无论非目标CSI-RS资源在第二指示信息指示的组合索引对应的组合中对应的空域基向量数目为多少,非目标CSI-RS资源对应的空域基向量数目均为0,也即是说,第二指示信息只需要指示目标CSI-RS资源对应的空域基向量数目对应的组合索引即可,大大减少了第二指示信息指示的组合索引对应的组合数量,节省第二指示信息的信令开销。
在本公开实施例提供的一种信道状态信息上报方法中,响应于至少一个空域基向量组合中存在多个空域基向量组合包含的目标CSI-RS资源对应的空域基向量数目相同,且包含的非目标CSI-RS资源对应的空域基向量数目不同,第二指示信息指示的至少一个组合索引基于第一规则确定。
其中,第一规则可以是预先配置的规则;或者,第一规则为协议规定的规则;或者, 第一设备为网络设备指示的规则等等。本公开实施例在此不做限定。
示例性的,第一配置信息配置的CMR包含了4个CSI-RS资源,终端选择了后三个CSI-RS资源为目标CSI-RS资源,且每个目标CSI-RS资源对应的空域基向量数目都确定为2,而第一个CSI-RS资源为非目标CSI-RS资源。但第二配置信息为4个CSI-RS资源配置的空域基向量组合中,存在多个空域基向量组合中后三个CSI-RS资源对应的空域基向量数目为2,而第一个CSI-RS资源对应的空域基向量数目为2或4或6等等。例如:{2,2,2,2},{4,2,2,2},{6,2,2,2}。此时,终端可以基于第一规则确定第二指示信息指示的组合索引。
在一些实施例中,第一规则包括:
多个空域基向量组合对应的多个组合索引中的任意一个组合索引;或
多个空域基向量组合对应的多个组合索引中组合索引值较小的组合对应的组合索引;或
多个空域基向量组合对应的多个组合索引中组合索引值较大的组合对应的组合索引;或
多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引;或
多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引。
一示例性实施例中,第二指示信息指示的索引为多个空域基向量组合对应的多个组合索引中的任意一个组合索引。
例如,多个空域基向量组合为{2,2,2,2},{4,2,2,2},{6,2,2,2},第二指示信息指示的组合索引可以为{2,2,2,2},{4,2,2,2},{6,2,2,2}中任意一个组合对应的组合索引。
另一示例性实施例中,第二指示信息指示的索引为多个空域基向量组合对应的多个组合索引中组合索引值较小的组合对应的组合索引。
例如,多个空域基向量组合为{2,2,2,2},{4,2,2,2},{6,2,2,2},其中,{2,2,2,2}对应的组合索引较小,因此第二指示信息指示的组合索引可以为{2,2,2,2}对应的组合索引。
另一示例性实施例中,第二指示信息指示的索引为多个空域基向量组合对应的多个组合索引中组合索引值较大的组合对应的组合索引。
例如,多个空域基向量组合为{2,2,2,2},{4,2,2,2},{6,2,2,2},其中, {6,2,2,2}对应的组合索引较大,因此第二指示信息指示的组合索引可以为{6,2,2,2}对应的组合索引。
另一示例性实施例中,第二指示信息指示的索引为指定非目标CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引。
例如,多个空域基向量组合为{2,2,2,2},{4,2,2,2},{6,2,2,2},若只有第一个CSI-RS资源为非目标CSI-RS资源,则指定非目标CSI-RS资源就是第一个CSI-RS资源。而三个组合中,第一个CSI-RS资源对应的空域基向量数目较小的空域基向量组合为{2,2,2,2},所以第二指示信息指示的组合索引可以为{2,2,2,2}对应的组合索引。
另一示例性实施例中,第二指示信息指示的索引为多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引。
例如,多个空域基向量组合为{2,2,2,2},{4,2,2,2},{6,2,2,2},若只有第一个CSI-RS资源为非目标CSI-RS资源,则指定非目标CSI-RS资源就是第一个CSI-RS资源。而三个组合中,第一个CSI-RS资源对应的空域基向量数目较大的空域基向量组合为{6,2,2,2},所以第二指示信息指示的组合索引可以为{6,2,2,2}对应的组合索引。
在一些实施例中,当非目标CSI-RS资源只有一个时,指定非目标CSI-RS资源包括该一个非目标CSI-RS资源。
在一些实施例中,当非目标CSI-RS资源存在多个时,指定非目标CSI-RS资源包括:
所有非目标CSI-RS资源;或
对应CSI-RS资源索引较小的非目标CSI-RS资源;或
对应CSI-RS资源索引较大的非目标CSI-RS资源。
示例性的,第一配置信息为终端配置的CMR包含了4个CSI-RS资源,终端选择了前两个CSI-RS资源作为目标CSI-RS资源,后两个CSI-RS资源为非目标CSI-RS资源,且终端选择的前两个CSI-RS资源对应的空域基向量数目均为2,后两个CSI-RS资源在不同空域基向量组合中对应的空域基向量数目不同,比如,多个空域基向量组合为{2,2,2,2},{2,2,4,2},{2,2,4,6},{2,2,6,6}等等。
其中,第三个CSI-RS资源对应的CSI-RS资源索引为第一资源索引,第四个CSI-RS资源索引对应的CSI-RS资源索引为第二资源索引,第一资源索引小于第二资源索引。
一种实施方式中,若指定非目标CSI-RS资源包括所有非目标CSI-RS资源,则指定非目标CSI-RS资源可以为第三个和第四个CSI-RS资源。此时,第二指示信息指示的索引为第三个和第四个CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引。而第三个CSI-RS资源和第四个CSI-RS资源对应的空域基向量数目较小的空域基向量 组合均为{2,2,2,2},所以第二指示信息指示的组合索引可以为{2,2,2,2}对应的组合索引。
另一种实施方式中,若指定非目标CSI-RS资源包括所有非目标CSI-RS资源,则指定非目标CSI-RS资源可以为第三个和第四个CSI-RS资源。此时,第二指示信息指示的索引为第三个和第四个CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引。而第三个CSI-RS资源和第四个CSI-RS资源对应的空域基向量数目较大的空域基向量组合均为{2,2,6,6},所以第二指示信息指示的组合索引可以为{2,2,6,6}对应的组合索引。
另一种实施方式中,若指定非目标CSI-RS资源为对应CSI-RS资源索引较小的非目标CSI-RS资源,则指定非目标CSI-RS资源为第三个CSI-RS资源。此时,第二指示信息指示的索引为第三个CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引。而第三个CSI-RS资源对应的空域基向量数目较小的空域基向量组合为{2,2,2,2},所以第二指示信息指示的组合索引可以为{2,2,2,2}对应的组合索引。
另一种实施方式中,若指定非目标CSI-RS资源为对应CSI-RS资源索引较小的非目标CSI-RS资源,则指定非目标CSI-RS资源为第三个CSI-RS资源。此时,第二指示信息指示的索引为第三个CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引。而第三个CSI-RS资源对应的空域基向量数目较大的空域基向量组合为{2,2,6,6},所以第二指示信息指示的组合索引可以为{2,2,6,6}对应的组合索引。
另一种实施方式中,若指定非目标CSI-RS资源为对应CSI-RS资源索引较大的非目标CSI-RS资源,则指定非目标CSI-RS资源为第四个CSI-RS资源。此时,第二指示信息指示的索引为第四个CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引。而第四个CSI-RS资源对应的空域基向量数目较小的空域基向量组合为{2,2,2,2},所以第二指示信息指示的组合索引可以为{2,2,2,2}对应的组合索引。
另一种实施方式中,若指定非目标CSI-RS资源为对应CSI-RS资源索引较大的非目标CSI-RS资源,则指定非目标CSI-RS资源为第四个CSI-RS资源。此时,第二指示信息指示的索引为第四个CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引。而第四个CSI-RS资源对应的空域基向量数目较大的空域基向量组合为{2,2,6,6},所以第二指示信息指示的组合索引可以为{2,2,6,6}对应的组合索引。
在本公开实施例中,在多个空域基向量组合中包含的目标CSI-RS资源对应的空域基向量数目相同时,由于非目标CSI-RS资源对应的空域基向量数目为0,因此无论第二指示信息指示哪个组合索引,网络设备均可获知目标CSI-RS资源对应的空域基向量数目,本 公开实施例可以通过第一规则规定第二指示信息指示的组合索引究竟是哪一个,从而明确终端的行为。
值得说明的是,上述实施例涉及的较小或较大,并不仅表示最小或最大,还可以表示第二小、第三小等等,可根据实际应用场景确定第一规则具体指示的组合索引,明确终端的行为即可。
在本公开实施例提供的一种信道状态信息上报方法中,第一指示信息包括N个比特,N个比特中每个比特对应N个CSI-RS资源中的一个CSI-RS资源,每个比特的不同取值用于指示对应的一个CSI-RS资源为目标CSI-RS资源或非目标CSI-RS资源。
例如,比特取值为第一取值时,表示该CSI-RS资源为目标CSI-RS资源。比特取值为第二取值时,表示该CSI-RS资源为非目标CSI-RS资源。
其中,第一取值为0,第二取值为1。或,第一取值为1,第二取值为0。
在本公开实施例提供的一种信道状态信息上报方法中,第一指示信息和第二指示信息承载在CSI中。
本公开实施例通过将第一指示信息和第二指示信息承载在CSI中,在CSI上报时能够同时上报第一指示信息和第二指示信息,减少信令消耗。
在本公开实施例提供的一种信道状态信息上报方法中,CSI包括:第一信息和第二信息。
其中,第一信息对应有固定大小的指示域,第二信息对应指示域的大小基于第一信息确定;第一指示信息和/或第二指示信息承载在第一信息中。
一示例性实施例中,CSI可以包括两个部分,即部分(part)1和part 2。其中,part 1可以对应第一信息,part 2可以对应第二信息。
另一示例性实施例中,第一信息对应的指示域的size可以是固定值。例如是预先设定的,或者是协议规定的默认size等。
另一示例性实施例中,CSI的part 2的size基于part 1中的信息确定。其中,part 2的size表示CSI的part 2所占用的比特(bit)数的大小。如占用8个bit或16个bit等。
例如,CSI的part 2的size基于part 1中的第一指示信息确定。若part 1中的第一指示信息指示的目标CSI-RS资源较多,则part 2的size就会大一些。反之,若part 1中的第一指示信息指示的目标CSI-RS资源较少,则part 2的size就会小一些。
又例如,CSI的part 2的size基于part 1中的第二指示信息确定。若part 1中的第二指示信息指示的目标CSI-RS资源对应的空域基向量数目较多,则part 2的size就会大一些。反之,若part 1中的第一指示信息指示的目标CSI-RS资源对应的空域基向量数目较少,则 part 2的size就会小一些。
在本公开实施例中,当第二指示信息需要指示的组合索引较少时,可以减少CSI上报的信令开销。
在本公开实施例提供的一种信道状态信息上报方法中,第一信息还包括以下至少一项:信道状态信息参考信号资源指示(channel state information reference signal resource indicator,CRI);层rank指示信息;宽带信道质量信息(channel quality indicator,CQI);非零宽带幅度系数个数;非零系数个数指示信息;非零系数位置指示信息;模式指示信息。
一示例性实施例中,第一信息包括非零宽带幅度系数个数。
可以理解,非零宽带幅度系数个数即表示宽带幅度系数值为非零的数量。
一示例性实施例中,第一信息包括非零系数个数指示信息。
可以理解,非零系数个数指示信息可以指示相干系数为非零的系数的数量。
一示例性实施例中,第一信息包括非零系数位置指示信息。
可以理解,非零系数位置指示信息可以指示相干系数为非零的系数的位置。
一示例性实施例中,第一信息包括模式指示。
例如,模式指示可以用于指示CSI反馈模式、码本模式等。CSI反馈模式可以包括模式1和模式2,模式1为基于单个TRP的反馈,模式2为基于多个TRP的反馈。当然,CSI反馈模式也可以包含其它模式,本公开不作限制。码本模式可以包括码本结构1和码本结构2,码本结构1为针对一个CMR包括的所有CSI-RS资源,反馈一份频域基向量(frequency domain basis,FD basis)信息;码本结构2为针对一个CMR包括的每个CSI-RS资源,分别反馈一份频域基向量信息。码本模式也可以包含其它模式,本公开不作限制。
在本公开实施例提供的一种信道状态信息上报方法中,第二信息包括预编码矩阵指示(precoding matrix indicator,PMI)信息。
其中,PMI信息至少包括以下至少一项:空域基向量参数信息;频域基向量参数信息;非零系数位置指示信息;相位系数信息;幅度系数信息。
基于相同的构思,本公开还提供一种应用于网络设备的信道状态信息上报方法。
图5是根据一示例性实施例示出的一种信道状态信息上报方法的流程图,如图5所示,信道状态信息上报方法用于网络设备中,包括以下步骤。
在步骤S41中,向终端发送第一配置信息,第一配置信息用于配置至少一个CMR,所述至少一个CMR包括N个CSI-RS资源,N为大于1的整数。
其中,N个CSI-RS资源对应N个TRP。即,网络设备指示了N个TRP对应的CSI-RS资源。
在本公开实施例中,网络设备通过向终端发送第一配置信息,其中,第一配置信息用于配置至少一个CMR,至少一个CMR包括N个CSI-RS资源。从而终端在多发送接收点的相干联合传输场景中,能够基于CMR的配置进行CSI测量,提升多发送接收点的传输性能。
图6是根据一示例性实施例示出的一种信道状态信息上报方法的流程图,如图6所示,包括以下步骤。
在步骤S51中,向终端发送第二配置信息,第二配置信息用于配置至少一个空域基向量组合以及至少一个空域基向量组合对应的组合索引,至少一个空域基向量组合包括N个CSI-RS资源中每个资源对应的空域基向量数目。
其中,空域基向量也可以称为波束beam。
在一些实施例中,空域基向量与N1、N2、O1、O2中的至少一项相关。其中,N1为第一维度天线端口数,N2为第二维度天线端口数,O1为第一维度过采样率,O2为第二维度过采样率。其中天线端口数可以理解为CSI-RS的端口数。
例如,空域基向量的选择可以理解为从各个CSI-RS资源的天线端口总数N1*N2中分别选择指定数量的空域基向量。
在本公开实施例中,第二配置信息用于配置至少一个空域基向量组合以及至少一个空域基向量组合对应的组合索引,从而终端可以在确定了每个CSI-RS资源对应的空间基向量数目之后,可以确定N个CSI-RS资源对应的空间基向量数目对应的空域基向量组合对应的组合索引。
需要说明的是,如图5所示的实施例可以单独被实施,即:如图5所示的实施例单独被实施的时候,网络设备可以向终端发送用于配置至少一个CMR的第一配置信息;而是否发送用于配置至少一个空域基向量组合以及至少一个空域基向量组合对应的组合索引的第二配置信息,本公开实施例并不对此做出限定。如图5所示的实施例也可以结合本公开的其他实施例一起被实施,例如结合如图6所示的实施例一起被实施;即:网络设备向终端发送用于配置至少一个CMR的第一配置信息;且网络设备还向终端发送用于配置至少一个空域基向量组合以及至少一个空域基向量组合对应的组合索引的第二配置信息。在本公开实施例中,第一配置消息和第二配置消息可以承载在不同的信令或相同的信令中,本公开实施例并不对此做出限定。
图7是根据一示例性实施例示出的一种信道状态信息上报方法的流程图,如图7所示,包括以下步骤。
在步骤S61中,接收终端发送的第一指示信息和/或第二指示信息。
其中,第一指示信息用于指示N个CSI-RS资源中的目标CSI-RS资源和/或非目标CSI-RS资源,第二指示信息用于指示至少一个组合索引。
在一些实施例中,第二指示信息指示的组合索引对应的空域基向量组合用于确定目标CSI-RS资源对应的空域基向量数目。
值得说明的是,终端可以隐式的确定至少一个空域基向量组合对应的组合索引,因此网络设备无需向终端发送第二配置信息,终端基于第一配置信息,对N个CSI-RS资源进行测量,即可确定第二指示信息。
例如,终端基于网络设备的配置信息或默认规则确定每个CSI-RS资源对应的空域基向量数目的候选取值为2,4和6时,那么若一个CMR中包含的CSI-RS资源的数量为2时,空域基向量组合可以包含如下9个组合以及相应的组合索引:
组合1:{2,2}
组合2:{2,4}
组合3:{2,6}
组合4:{4,2}
组合5:{4,4}
组合6:{4,6}
组合7:{6,2}
组合8:{6,4}
组合9:{6,6}
当然,上述组合与组合索引的对应关系不限于本实施例中给出的对应关系。
在本公开实施例提供的一种信道状态信息上报方法中,接收终端发送第一指示信息和/或第二指示信息。
在本公开实施例中,通过接收终端发送第一指示信息和/或第二指示信息,可以确定终端在N个CSI-RS资源中选择的目标CSI-RS资源或非目标CSI-RS资源,以及目标CSI-RS资源对应的空域基向量数目,并确定目标CSI-RS资源对应的空域基向量数目所对应的空域基向量组合对应的组合索引,从而网络设备可以获知终端选择的目标CSI-RS资源以及目标CSI-RS资源对应的空域基向量数目,提高基于多TRP的CJT的传输性能。
在本公开实施例提供的一种信道状态信息上报方法中,目标CSI-RS资源对应的空域基向量数目为第二指示信息指示的至少一个组合索引对应的空域基向量组合中目标CSI-RS资源对应的空域基向量数目。
例如,第一配置信息配置了的CMR包含了4个CSI-RS资源,第一指示信息指示了4 个CSI-RS资源中的前三个CSI-RS资源为目标CSI-RS资源,最后一个CSI-RS资源为非目标CSI-RS资源,每个目标CSI-RS资源选择的空域基向量数目分别为2、4、2。那么第二指示信息指示的组合索引对应的组合为{2,4,2,6},即表示目标CSI-RS资源分别对应的空域基向量数目为2、4、2。
其中,第二指示信息指示的组合索引对应的组合{2,4,2,6}为网络设备通过第二配置信息配置的组合。若第一配置信息配置的CMR包含了N个CSI-RS资源,第二配置信息配置的组合中就会包括N个CSI-RS资源可能对应的空域基向量数目。无论终端是否将N个CSI-RS资源全部选择为目标CSI-RS资源,第二指示信息指示的组合索引对应的组合中都会包括N个CSI-RS资源对应的空域基向量数目。
在本公开实施例提供的一种信道状态信息上报方法中,非目标CSI-RS资源对应的空域基向量数目为0。
值得说明的是,无论第二配置信息为N个CSI-RS资源配置的组合中非目标CSI-RS资源对应的空域基向量数目为多少或者第二指示信息指示的组合索引对应的组合中非目标CSI-RS资源对应的空域基向量数目为多少,非目标CSI-RS资源实际对应的空域基向量数目均为0。
在上述实施例中,若终端选择了第一配置信息配置的部分CSI-RS资源(也被称为目标CSI-RS资源),另一部分CSI-RS资源未被终端选择(也被称为非目标CSI-RS资源)时,若只根据第二指示信息来确定CMR包含的每个CSI-RS资源对应的空域基向量数目,则网络设备需要考虑未被终端选择的部分CSI-RS资源对应的空域基向量数目为0,因此,网络设备需要为终端配置所有CSI-RS资源对应的空域基向量组合的所有组合,其中每个CSI-RS资源对应的空域基向量数目包含0和非0(比如2,4,6),此时会导致RRC信令开销较大,组合数较多。同时,在上行控制信息(Uplink Control Information,UCI)中终端指示选择的组合索引时需要的bit数也较多,导致UCI的信令开销也较大。
例如,若非0的基向量数目仅包含2时,终端为每个目标CSI-RS资源选择的空域基向量数目为2,若考虑非目标CSI-RS资源对应的空域基向量数目为0,则第二指示信息指示的组合索引需要的bit数必须能覆盖以下15种组合对应的组合索引:
{2,2,2,2},{0,2,2,2},{0,0,2,2},{0,0,0,2},{2,0,2,2},{2,0,0,2},{2,0,0,0},{2,2,0,2},{2,2,0,0},{2,2,2,0},{0,2,0,2},{0,2,2,0},{0,0,2,0},{0,0,2,2},{0,2,0,0}。
但如果第二指示信息与第一指示信息相结合,由于第一指示信息指示的非目标CSI-RS资源对应的空域基向量均为0,因此无需考虑第二指示信息指示的组合索引对应的空域基 向量组合中非目标CSI-RS资源对应的空域基向量数目为多少,那么空域基向量组合只需要{2,2,2,2}这一种组合即可确定目标CSI-RS资源对应的空域基向量数目。即第一指示信息指示目标CSI-RS资源和非目标CSI-RS资源,第二指示信息指示的组合索引对应的空域基向量组合为{2,2,2,2},那么基站即可确定目标CSI-RS资源对应的空域基向量数目为2,非目标CSI-RS资源对应的空域基向量数目为0。
又例如,若非0的基向量数目包含2和4时,终端为每个目标CSI-RS资源选择的空域基向量数目为2或4,若考虑非目标CSI-RS资源对应的空域基向量数目为0,则第二指示信息指示的组合索引需要的bit数必须能覆盖包括0、2和4的81种组合对应的组合索引:
{2,2,4,4},{0,2,4,4},{0,0,4,4},{2,2,4,2},{2,0,4,4},{2,0,4,2},{4,2,0,0},{4,2,0,2},{4,2,0,0},{4,2,2,0},{4,2,0,2}…。
但如果第二指示信息与第一指示信息相结合,由于第一指示信息指示的非目标CSI-RS资源对应的空域基向量均为0,因此无需考虑第二指示信息指示的组合索引对应的空域基向量组合中非目标CSI-RS资源对应的空域基向量数目为多少,那么第二指示信息指示的空域基向量组合只需要指示包括2和4的16种组合即可,大大减少了第二指示信息指示的组合索引对应的组合数量。
本公开实施例将用于指示目标CSI-RS资源和/或非目标CSI-RS资源的第一指示信息和用于指示组合索引的第二指示信息相结合来指示目标CSI-RS资源对应的空域基向量数目,无论非目标CSI-RS资源在第二指示信息指示的组合索引对应的组合中对应的空域基向量数目为多少,非目标CSI-RS资源对应的空域基向量数目均为0,也即是说,第二指示信息只需要指示目标CSI-RS资源对应的空域基向量数目对应的组合索引即可,大大减少了第二指示信息指示的组合索引对应的组合数量,节省第二指示信息的信令开销。
在本公开实施例提供的一种信道状态信息上报方法中,响应于至少一个空域基向量组合中存在多个空域基向量组合包含的目标CSI-RS资源对应的空域基向量数目相同,且包含的非目标CSI-RS资源对应的空域基向量数目不同,第二指示信息指示的至少一个组合索引基于第一规则确定。
其中,第一规则可以是预先配置的规则;或者,第一规则为协议规定的规则;或者,第一设备为网络设备指示的规则等等。本公开实施例在此不做限定。
示例性的,第一配置信息配置的CMR包含了4个CSI-RS资源,终端选择了后三个CSI-RS资源为目标CSI-RS资源,且每个目标CSI-RS资源对应的空域基向量数目都确定为2,而第一个CSI-RS资源为非目标CSI-RS资源。但第二配置信息为4个CSI-RS资源 配置的空域基向量组合中,存在多个空域基向量组合中后三个CSI-RS资源对应的空域基向量数目为2,而第一个CSI-RS资源对应的空域基向量数目为2或4或6等等。例如:{2,2,2,2},{4,2,2,2},{6,2,2,2}。此时,终端可以基于第一规则确定第二指示信息指示的组合索引。
在一些实施例中,第一规则包括:
多个空域基向量组合对应的多个组合索引中的任意一个组合索引;或
多个空域基向量组合对应的多个组合索引中组合索引值较小的组合对应的组合索引;或
多个空域基向量组合对应的多个组合索引中组合索引值较大的组合对应的组合索引;或
多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引;或
多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引。
一示例性实施例中,第二指示信息指示的索引为多个空域基向量组合对应的多个组合索引中的任意一个组合索引。
例如,多个空域基向量组合为{2,2,2,2},{4,2,2,2},{6,2,2,2},第二指示信息指示的组合索引可以为{2,2,2,2},{4,2,2,2},{6,2,2,2}中任意一个组合对应的组合索引。
另一示例性实施例中,第二指示信息指示的索引为多个空域基向量组合对应的多个组合索引中组合索引值较小的组合对应的组合索引。
例如,多个空域基向量组合为{2,2,2,2},{4,2,2,2},{6,2,2,2},其中,{2,2,2,2}对应的组合索引较小,因此第二指示信息指示的组合索引可以为{2,2,2,2}对应的组合索引。
另一示例性实施例中,第二指示信息指示的索引为多个空域基向量组合对应的多个组合索引中组合索引值较大的组合对应的组合索引。
例如,多个空域基向量组合为{2,2,2,2},{4,2,2,2},{6,2,2,2},其中,{6,2,2,2}对应的组合索引较大,因此第二指示信息指示的组合索引可以为{6,2,2,2}对应的组合索引。
另一示例性实施例中,第二指示信息指示的索引为指定非目标CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引
例如,多个空域基向量组合为{2,2,2,2},{4,2,2,2},{6,2,2,2},若只有第一个CSI-RS资源为非目标CSI-RS资源,则指定非目标CSI-RS资源就是第一个CSI-RS资源。而三个组合中,第一个CSI-RS资源对应的空域基向量数目较小的空域基向量组合为{2,2,2,2},所以第二指示信息指示的组合索引可以为{2,2,2,2}对应的组合索引。
另一示例性实施例中,第二指示信息指示的索引为多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引.
例如,多个空域基向量组合为{2,2,2,2},{4,2,2,2},{6,2,2,2},若只有第一个CSI-RS资源为非目标CSI-RS资源,则指定非目标CSI-RS资源就是第一个CSI-RS资源。而三个组合中,第一个CSI-RS资源对应的空域基向量数目较大的空域基向量组合为{6,2,2,2},所以第二指示信息指示的组合索引可以为{6,2,2,2}对应的组合索引。
在一些实施例中,当非目标CSI-RS资源只有一个时,指定非目标CSI-RS资源包括该一个非目标CSI-RS资源。
在一些实施例中,当非目标CSI-RS资源存在多个时,指定非目标CSI-RS资源包括:
所有非目标CSI-RS资源;或
对应CSI-RS资源索引较小的非目标CSI-RS资源;或
对应CSI-RS资源索引较大的非目标CSI-RS资源。
示例性的,第一配置信息为终端配置的CMR包含了4个CSI-RS资源,终端选择了前两个CSI-RS资源作为目标CSI-RS资源,后两个CSI-RS资源为非目标CSI-RS资源,且终端选择的前两个CSI-RS资源对应的空域基向量数目均为2,后两个CSI-RS资源在不同空域基向量组合中对应的空域基向量数目不同,比如,多个空域基向量组合为{2,2,2,2},{2,2,4,2},{2,2,4,6},{2,2,6,6}等等。
其中,第三个CSI-RS资源对应的CSI-RS资源索引为第一资源索引,第四个CSI-RS资源索引对应的CSI-RS资源索引为第二资源索引,第一资源索引小于第二资源索引。
一种实施方式中,若指定非目标CSI-RS资源包括所有非目标CSI-RS资源,则指定非目标CSI-RS资源可以为第三个和第四个CSI-RS资源。此时,第二指示信息指示的索引为第三个和第四个CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引。而第三个CSI-RS资源和第四个CSI-RS资源对应的空域基向量数目较小的空域基向量组合均为{2,2,2,2},所以第二指示信息指示的组合索引可以为{2,2,2,2}对应的组合索引。
另一种实施方式中,若指定非目标CSI-RS资源包括所有非目标CSI-RS资源,则指定非目标CSI-RS资源可以为第三个和第四个CSI-RS资源。此时,第二指示信息指示的索引 为第三个和第四个CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引。而第三个CSI-RS资源和第四个CSI-RS资源对应的空域基向量数目较大的空域基向量组合均为{2,2,6,6},所以第二指示信息指示的组合索引可以为{2,2,6,6}对应的组合索引。
另一种实施方式中,若指定非目标CSI-RS资源为对应CSI-RS资源索引较小的非目标CSI-RS资源,则指定非目标CSI-RS资源为第三个CSI-RS资源。此时,第二指示信息指示的索引为第三个CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引。而第三个CSI-RS资源对应的空域基向量数目较小的空域基向量组合为{2,2,2,2},所以第二指示信息指示的组合索引可以为{2,2,2,2}对应的组合索引。
另一种实施方式中,若指定非目标CSI-RS资源为对应CSI-RS资源索引较小的非目标CSI-RS资源,则指定非目标CSI-RS资源为第三个CSI-RS资源。此时,第二指示信息指示的索引为第三个CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引。而第三个CSI-RS资源对应的空域基向量数目较大的空域基向量组合为{2,2,6,6},所以第二指示信息指示的组合索引可以为{2,2,6,6}对应的组合索引。
又一种实施方式中,若指定非目标CSI-RS资源为对应CSI-RS资源索引较大的非目标CSI-RS资源,则指定非目标CSI-RS资源为第四个CSI-RS资源。此时,第二指示信息指示的索引为第四个CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引。而第四个CSI-RS资源对应的空域基向量数目较小的空域基向量组合为{2,2,2,2},所以第二指示信息指示的组合索引可以为{2,2,2,2}对应的组合索引。
另一种实施方式中,若指定非目标CSI-RS资源为对应CSI-RS资源索引较大的非目标CSI-RS资源,则指定非目标CSI-RS资源为第四个CSI-RS资源。此时,第二指示信息指示的索引为第四个CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引。而第四个CSI-RS资源对应的空域基向量数目较大的空域基向量组合为{2,2,6,6},所以第二指示信息指示的组合索引可以为{2,2,6,6}对应的组合索引。
在本公开实施例中,在多个空域基向量组合中包含的目标CSI-RS资源对应的空域基向量数目相同时,由于非目标CSI-RS资源对应的空域基向量数目为0,因此无论第二指示信息指示哪个组合索引,网络设备均可获知目标CSI-RS资源对应的空域基向量数目,本公开实施例可以通过第一规则规定第二指示信息指示的组合索引究竟是哪一个,从而明确终端的行为。
值得说明的是,上述实施例涉及的较小或较大,并不仅表示最小或最大,还可以表示第二小、第三小等等,可根据实际应用场景确定第一规则具体指示的组合索引,明确终端 的行为即可。
在本公开实施例提供的一种信道状态信息上报方法中,第一指示信息包括N个比特,N个比特中每个比特对应N个CSI-RS资源中的一个CSI-RS资源,每个比特的不同取值用于指示对应的一个CSI-RS资源为目标CSI-RS资源或非目标CSI-RS资源。
例如,比特取值为第一取值时,表示该CSI-RS资源为目标CSI-RS资源。比特取值为第二取值时,表示该CSI-RS资源为非目标CSI-RS资源。
其中,第一取值为0,第二取值为1。或,第一取值为1,第二取值为0。
在本公开实施例提供的一种信道状态信息上报方法中,第一指示信息和第二指示信息承载在CSI中。
本公开实施例通过将第一指示信息和第二指示信息承载在CSI中,在CSI上报时能够同时上报第一指示信息和第二指示信息,减少信令消耗。
在本公开实施例提供的一种信道状态信息上报方法中,CSI包括:第一信息和第二信息。
其中,第一信息对应有固定大小的指示域,第二信息对应指示域的大小基于第一信息确定;第一指示信息和/或第二指示信息承载在第一信息中。
一示例性实施例中,CSI可以包括两个部分,即部分(part)1和part 2。其中,part 1可以对应第一信息,part 2可以对应第二信息。
另一示例性实施例中,第一信息对应的指示域的size可以是固定值。例如是预先设定的,或者是协议规定的默认size等。
另一示例性实施例中,CSI的part 2的size基于part 1中的信息确定。其中,part 2的size表示CSI的part 2所占用的比特(bit)数的大小。如占用8个bit或16个bit等。
例如,CSI的part 2的size基于part 1中的第一指示信息确定。若part 1中的第一指示信息指示的目标CSI-RS资源较多,则part 2的size就会大一些。反之,若part 1中的第一指示信息指示的目标CSI-RS资源较少,则part 2的size就会小一些。
又例如,CSI的part 2的size基于part 1中的第二指示信息确定。若part 1中的第二指示信息指示的目标CSI-RS资源对应的空域基向量数目较多,则part 2的size就会大一些。反之,若part 1中的第一指示信息指示的目标CSI-RS资源对应的空域基向量数目较少,则part 2的size就会小一些。
在本公开实施例中,当第二指示信息需要指示的组合索引较少时,可以减少CSI上报的信令开销。
在本公开实施例提供的一种信道状态信息上报方法中,第一信息还包括以下至少一 项:信道状态信息参考信号资源指示(channel state information reference signal resource indicator,CRI);层rank指示信息;宽带信道质量信息(channel quality indicator,CQI);非零宽带幅度系数个数;非零系数个数指示信息;非零系数位置指示信息;模式指示信息。
一示例性实施例中,第一信息包括非零宽带幅度系数个数。
可以理解,非零宽带幅度系数个数即表示宽带幅度系数值为非零的数量。
一示例性实施例中,第一信息包括非零系数个数指示信息。
可以理解,非零系数个数指示信息可以指示相干系数为非零的系数的数量。
一示例性实施例中,第一信息包括非零系数位置指示信息。
可以理解,非零系数位置指示信息可以指示相干系数为非零的系数的位置。
一示例性实施例中,第一信息包括模式指示。
例如,模式指示可以用于指示CSI反馈模式、码本模式等。CSI反馈模式可以包括模式1和模式2,模式1为基于单个TRP的反馈,模式2为基于多个TRP的反馈。当然,CSI反馈模式也可以包含其它模式,本公开不作限制。码本模式可以包括码本结构1和码本结构2,码本结构1为针对一个CMR包括的所有CSI-RS资源,反馈一份频域基向量(frequency domain basis,FD basis)信息;码本结构2为针对一个CMR包括的每个CSI-RS资源,分别反馈一份频域基向量信息。码本模式也可以包含其它模式,本公开不作限制。
在本公开实施例提供的一种信道状态信息上报方法中,第二信息包括预编码矩阵指示(precoding matrix indicator,PMI)信息。
其中,PMI信息至少包括以下至少一项:空域基向量参数信息;频域基向量参数信息;非零系数位置指示信息;相位系数信息;幅度系数信息。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种信道状态信息上报装置。
可以理解的是,本公开实施例提供的信道状态信息上报装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功 能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图8是根据一示例性实施例示出的一种信道状态信息上报装置框图。参照图8,该装置包括接收模块101。其中,信道状态信息的上报装置100应用于终端中。
该接收模块101被配置为接收网络设备发送的第一配置信息,第一配置信息用于配置至少一个信道测量资源CMR,至少一个CMR包括N个信道状态信息参考信号CSI-RS资源,N为大于1的整数。
一种实施方式中,接收模块101,还被配置为接收网络设备发送的第二配置信息,第二配置信息用于配置至少一个空域基向量组合以及所述至少一个空域基向量组合对应的组合索引,至少一个空域基向量组合包括N个CSI-RS资源中每个资源对应的空域基向量数目。
一种实施方式中,信道状态信息的上报装置100还包括处理模块102。处理模块102,被配置为基于第一配置信息和/或第二配置信息,对所述N个CSI-RS资源进行测量,并确定第一指示信息和/或第二指示信息;
其中,第一指示信息用于指示所述N个CSI-RS资源中的目标CSI-RS资源和/或非目标CSI-RS资源,第二指示信息用于指示至少一个组合索引。
一种实施方式中,信道状态信息的上报装置100还包括发送模块103。发送模块103,被配置为向网络设备发送第一指示信息和/或第二指示信息。
一种实施方式中,目标CSI-RS资源对应的空域基向量数目为第二指示信息指示的至少一个组合索引对应的空域基向量组合中目标CSI-RS资源对应的空域基向量数目。
一种实施方式中,所述非目标CSI-RS资源对应的空域基向量数目为0。
一种实施方式中,响应于至少一个空域基向量组合中存在多个空域基向量组合包含的目标CSI-RS资源对应的空域基向量数目相同,且包含的非目标CSI-RS资源对应的空域基向量数目不同,第二指示信息指示的至少一个所述组合索引基于第一规则确定。
一种实施方式中,第一规则包括:
多个空域基向量组合对应的多个组合索引中的任意一个组合索引;或
多个空域基向量组合对应的多个组合索引中组合索引值较小的组合对应的组合索引;或
多个空域基向量组合对应的多个组合索引中组合索引值较大的组合对应的组合索引;或
多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引;或
所述多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引。
一种实施方式中,指定非目标CSI-RS资源包括:
所有非目标CSI-RS资源;或
对应CSI-RS资源索引较小的非目标CSI-RS资源;或
对应CSI-RS资源索引较大的非目标CSI-RS资源。
一种实施方式中,第一指示信息包括N个比特,N个比特中每个比特对应N个CSI-RS资源中的一个CSI-RS资源,每个比特的不同取值用于指示对应的一个CSI-RS资源为目标CSI-RS资源或非目标CSI-RS资源。
一种实施方式中,第一指示信息和第二指示信息承载在信道状态信息CSI中。
一种实施方式中,CSI包括:第一信息和第二信息,第一信息对应有固定大小的指示域,第二信息对应指示域的大小基于所述第一信息确定;
第一指示信息和/或第二指示信息承载在第一信息中。
一种实施方式中,第一信息还包括以下至少一项信息:
信道状态信息参考信号资源指示CRI;
层rank指示信息;
宽带信道质量信息CQI;
非零宽带幅度系数个数;
非零系数个数指示信息;
非零系数位置指示信息;
模式指示信息。
一种实施方式中,所述第二信息包括预编码矩阵指示PMI信息;
PMI信息至少包括以下至少一项:
空域基向量参数信息;
频域基向量参数信息;
非零系数位置指示信息;
相位系数信息;
幅度系数信息。
图9是根据一示例性实施例示出的一种信道状态信息上报装置框图。参照图9,该装置包括发送模块201。其中,信道状态信息的上报装置200应用于网络设备中。
发送模块201,被配置为向终端发送第一配置信息,第一配置信息用于配置至少一个 信道测量资源CMR,至少一个CMR包括N个信道状态信息参考信号CSI-RS资源,N为大于1的整数。
一种实施方式中,发送模块201,还被配置为向终端发送第二配置信息,第二配置信息用于配置至少一个空域基向量组合以及至少一个空域基向量组合对应的组合索引,至少一个空域基向量组合包括N个CSI-RS资源中每个资源对应的空域基向量数目。
一种实施方式中,信道状态信息的上报装置200还包括接收模块202。接收模块202,用于接收终端发送的第一指示信息和/或第二指示信息;
其中,第一指示信息用于指示N个CSI-RS资源中的目标CSI-RS资源和/或非目标CSI-RS资源,第二指示信息用于指示至少一个所述组合索引。
一种实施方式中,目标CSI-RS资源对应的空域基向量数目为第二指示信息指示的至少一个组合索引对应的空域基向量组合中目标CSI-RS资源对应的空域基向量数目。
一种实施方式中,非目标CSI-RS资源对应的空域基向量数目为0。
一种实施方式中,若至少一个空域基向量组合中存在多个空域基向量组合包含的目标CSI-RS资源对应的空域基向量数目相同,且包含的非目标CSI-RS资源对应的空域基向量数目不同,第二指示信息指示的至少一个所述组合索引基于第一规则确定。
一种实施方式中,第一规则包括:
多个空域基向量组合对应的多个组合索引中的任意一个组合索引;或
多个空域基向量组合对应的多个组合索引中组合索引值较小的组合对应的组合索引;或
多个空域基向量组合对应的多个组合索引中组合索引值较大的组合对应的组合索引;或
多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引;或
所述多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引。
一种实施方式中,指定非目标CSI-RS资源包括:
所有非目标CSI-RS资源;或
对应CSI-RS资源索引较小的非目标CSI-RS资源;或
对应CSI-RS资源索引较大的非目标CSI-RS资源。
一种实施方式中,第一指示信息包括N个比特,N个比特中每个比特对应N个CSI-RS资源中的一个CSI-RS资源,每个比特的不同取值用于指示对应的一个CSI-RS资源为目标 CSI-RS资源或非目标CSI-RS资源。
一种实施方式中,第一指示信息和/或第二指示信息承载在信道状态信息CSI中。
一种实施方式中,CSI包括:第一信息和第二信息,第一信息对应有固定大小的指示域,第二信息对应指示域的大小基于所述第一信息确定;
第一指示信息和第二指示信息承载在所述第一信息中。
一种实施方式中,第一信息还包括以下至少一项信息:
信道状态信息参考信号资源指示CRI;
层rank指示信息;
宽带信道质量信息CQI;
非零宽带幅度系数个数;
非零系数个数指示信息;
非零系数位置指示信息;
模式指示信息。
一种实施方式中,第二信息包括预编码矩阵指示PMI信息;
所述PMI信息至少包括以下至少一项:
空域基向量参数信息;
频域基向量参数信息;
非零系数位置指示信息;
相位系数信息;
幅度系数信息。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
需要说明的是,信道状态信息上报装置100和信道状态信息上报装置200还可以包括其他模块,例如通信模块。关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图10是根据一示例性实施例示出的一种信道状态信息上报装置的框图。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图10,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理***,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个 组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图11是根据一示例性实施例示出的一种信道状态信息上报装置的框图。例如,装置400可以被提供为一网络设备。参照图11,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口450被配置为将装置400连接到网络,和一个输入输出(I/O)接口458。装置400可以操作基于存储在存储器432的操作***,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器432,上述指令可由装置400的处理组件422执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,本公开中涉及到的“响应于”“如果”等词语的含义取决于语境以及实际使用的场景,如在此所使用的词语“响应于”可以被解释成为“在……时”或“当……时”或“如果”或“若”。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利范围来限制。

Claims (34)

  1. 一种信道状态信息上报方法,其特征在于,应用于终端,所述方法包括:
    接收网络设备发送的第一配置信息,所述第一配置信息用于配置至少一个信道测量资源CMR,所述至少一个CMR包括N个信道状态信息参考信号CSI-RS资源,N为大于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的第二配置信息,所述第二配置信息用于配置至少一个空域基向量组合以及所述至少一个空域基向量组合对应的组合索引,所述至少一个空域基向量组合包括所述N个CSI-RS资源中每个资源对应的空域基向量数目。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    基于所述第一配置信息和/或第二配置信息,对所述N个CSI-RS资源进行测量,并确定第一指示信息和/或第二指示信息;
    其中,所述第一指示信息用于指示所述N个CSI-RS资源中的目标CSI-RS资源和/或非目标CSI-RS资源,所述第二指示信息用于指示至少一个组合索引。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    向网络设备发送所述第一指示信息和/或所述第二指示信息。
  5. 根据权利要求3或4所述的方法,其特征在于,所述目标CSI-RS资源对应的空域基向量数目为所述第二指示信息指示的至少一个组合索引对应的空域基向量组合中所述目标CSI-RS资源对应的空域基向量数目。
  6. 根据权利要求3或4所述的方法,其特征在于,所述非目标CSI-RS资源对应的空域基向量数目为0。
  7. 根据权利要求3至6中任意一项所述的方法,其特征在于,响应于所述至少一个空域基向量组合中存在多个空域基向量组合包含的所述目标CSI-RS资源对应的空域基向量数目相同,且包含的所述非目标CSI-RS资源对应的空域基向量数目不同,所述第二指示信息指示的至少一个所述组合索引基于第一规则确定。
  8. 根据权利要求7所述的方法,其特征在于,所述第一规则包括:
    所述多个空域基向量组合对应的多个组合索引中的任意一个组合索引;或
    所述多个空域基向量组合对应的多个组合索引中组合索引值较小的组合对应的组合索引;或
    所述多个空域基向量组合对应的多个组合索引中组合索引值较大的组合对应的组合 索引;或
    所述多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引;或
    所述多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引。
  9. 根据权利要求8所述的方法,其特征在于,所述指定非目标CSI-RS资源包括:
    所有非目标CSI-RS资源;或
    对应CSI-RS资源索引较小的非目标CSI-RS资源;或
    对应CSI-RS资源索引较大的非目标CSI-RS资源。
  10. 根据权利要求3至9中任意一项所述的方法,其特征在于,所述第一指示信息包括N个比特,所述N个比特中每个比特对应所述N个CSI-RS资源中的一个CSI-RS资源,所述每个比特的不同取值用于指示对应的所述一个CSI-RS资源为目标CSI-RS资源或非目标CSI-RS资源。
  11. 根据权利要求3至10中任意一项所述的方法,其特征在于,所述第一指示信息和第二指示信息承载在信道状态信息CSI中。
  12. 根据权利要求11所述的方法,其特征在于,所述CSI包括:第一信息和第二信息,所述第一信息对应有固定大小的指示域,所述第二信息对应指示域的大小基于所述第一信息确定;
    所述第一指示信息和/或所述第二指示信息承载在所述第一信息中。
  13. 根据权利要求12所述的方法,其特征在于,所述第一信息还包括以下至少一项信息:
    信道状态信息参考信号资源指示CRI;
    层rank指示信息;
    宽带信道质量信息CQI;
    非零宽带幅度系数个数;
    非零系数个数指示信息;
    非零系数位置指示信息;
    模式指示信息。
  14. 根据权利要求12所述的方法,其特征在于,所述第二信息包括预编码矩阵指示PMI信息;
    所述PMI信息至少包括以下至少一项:
    空域基向量参数信息;
    频域基向量参数信息;
    非零系数位置指示信息;
    相位系数信息;
    幅度系数信息。
  15. 一种信道状态信息上报方法,其特征在于,应用于网络设备,所述方法包括:
    向终端发送第一配置信息,所述第一配置信息用于配置至少一个信道测量资源CMR,所述至少一个CMR包括N个信道状态信息参考信号CSI-RS资源,N为大于1的整数。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第二配置信息,所述第二配置信息用于配置至少一个空域基向量组合以及所述至少一个空域基向量组合对应的组合索引,所述至少一个空域基向量组合包括所述N个CSI-RS资源中每个资源对应的空域基向量数目。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:
    接收所述终端发送的第一指示信息和/或第二指示信息;
    其中,所述第一指示信息用于指示所述N个CSI-RS资源中的目标CSI-RS资源和/或非目标CSI-RS资源,所述第二指示信息用于指示至少一个组合索引。
  18. 根据权利要求17所述的方法,其特征在于,所述目标CSI-RS资源对应的空域基向量数目为所述第二指示信息指示的至少一个组合索引对应的空域基向量组合中所述目标CSI-RS资源对应的空域基向量数目。
  19. 根据权利要求17所述的方法,其特征在于,所述非目标CSI-RS资源对应的空域基向量数目为0。
  20. 根据权利要求17至19中任意一项所述的方法,其特征在于,若所述至少一个空域基向量组合中存在多个空域基向量组合包含的所述目标CSI-RS资源对应的空域基向量数目相同,且包含的所述非目标CSI-RS资源对应的空域基向量数目不同,所述第二指示信息指示的至少一个所述组合索引基于第一规则确定。
  21. 根据权利要求20所述的方法,其特征在于,所述第一规则包括:
    所述多个空域基向量组合对应的多个组合索引中的任意一个组合索引;或
    所述多个空域基向量组合对应的多个组合索引中组合索引值较小的组合对应的组合索引;或
    所述多个空域基向量组合对应的多个组合索引中组合索引值较大的组合对应的组合索引;或
    所述多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较小的空域基向量组合对应的组合索引;或
    所述多个空域基向量组合中指定非目标CSI-RS资源对应的空域基向量数目较大的空域基向量组合对应的组合索引。
  22. 根据权利要求21所述的方法,其特征在于,所述指定非目标CSI-RS资源包括:
    所有非目标CSI-RS资源;或
    对应CSI-RS资源索引较小的非目标CSI-RS资源;或
    对应CSI-RS资源索引较大的非目标CSI-RS资源。
  23. 根据权利要求17至22中任意一项所述的方法,其特征在于,所述第一指示信息包括N个比特,所述N个比特中每个比特对应所述N个CSI-RS资源中的一个CSI-RS资源,所述每个比特的不同取值用于指示对应的所述一个CSI-RS资源为目标CSI-RS资源或非目标CSI-RS资源。
  24. 根据权利要求17至23任意一项所述的方法,其特征在于,所述第一指示信息和/或第二指示信息承载在信道状态信息CSI中。
  25. 根据权利要求24所述的方法,其特征在于,所述CSI包括:第一信息和第二信息,所述第一信息对应有固定大小的指示域,所述第二信息对应指示域的大小基于所述第一信息确定;
    所述第一指示信息和所述第二指示信息承载在所述第一信息中。
  26. 根据权利要求25所述的方法,其特征在于,所述第一信息还包括以下至少一项信息:
    信道状态信息参考信号资源指示CRI;
    层rank指示信息;
    宽带信道质量信息CQI;
    非零宽带幅度系数个数;
    非零系数个数指示信息;
    非零系数位置指示信息;
    模式指示信息。
  27. 根据权利要求25所述的方法,其特征在于,所述第二信息包括预编码矩阵指示PMI信息;
    所述PMI信息至少包括以下至少一项:
    空域基向量参数信息;
    频域基向量参数信息;
    非零系数位置指示信息;
    相位系数信息;
    幅度系数信息。
  28. 一种信道状态信息上报装置,其特征在于,应用于终端,所述装置包括:
    接收模块,用于接收网络设备发送的第一配置信息,所述第一配置信息用于配置至少一个信道测量资源CMR,所述至少一个CMR包括N个信道状态信息参考信号CSI-RS资源,N为大于1的整数。
  29. 一种信道状态信息上报装置,其特征在于,应用于网络设备,所述装置包括:
    发送模块,用于向终端发送第一配置信息,所述第一配置信息用于配置至少一个信道测量资源CMR,所述至少一个CMR包括N个信道状态信息参考信号CSI-RS资源,N为大于1的整数。
  30. 一种信道状态信息上报装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至14中任意一项所述的方法。
  31. 一种信道状态信息上报装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求15至27中任意一项所述的方法。
  32. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行权利要求1至14中任意一项所述的方法。
  33. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行权利要求15至27中任意一项所述的方法。
  34. 一种通信***,包括终端和网络设备,其中,
    所述终端用于执行如权利要求1至14中任意一项所述的方法;
    所述网络设备用于执行如权利要求15至27中任意一项所述的方法。
PCT/CN2022/137040 2022-12-06 2022-12-06 信道状态信息上报方法、装置及存储介质 WO2024119382A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/137040 WO2024119382A1 (zh) 2022-12-06 2022-12-06 信道状态信息上报方法、装置及存储介质
CN202280005497.9A CN115997405A (zh) 2022-12-06 2022-12-06 信道状态信息上报方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/137040 WO2024119382A1 (zh) 2022-12-06 2022-12-06 信道状态信息上报方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2024119382A1 true WO2024119382A1 (zh) 2024-06-13

Family

ID=85990612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137040 WO2024119382A1 (zh) 2022-12-06 2022-12-06 信道状态信息上报方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN115997405A (zh)
WO (1) WO2024119382A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822714A (zh) * 2020-12-31 2021-05-18 中兴通讯股份有限公司 信道状态信息上报、资源配置方法、通信节点及存储介质
CN114342278A (zh) * 2019-08-08 2022-04-12 三星电子株式会社 用于无线通信***中的csi参数配置的方法和装置
CN115380501A (zh) * 2022-07-21 2022-11-22 北京小米移动软件有限公司 信道测量资源的配置方法、装置、设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342278A (zh) * 2019-08-08 2022-04-12 三星电子株式会社 用于无线通信***中的csi参数配置的方法和装置
CN112822714A (zh) * 2020-12-31 2021-05-18 中兴通讯股份有限公司 信道状态信息上报、资源配置方法、通信节点及存储介质
CN115380501A (zh) * 2022-07-21 2022-11-22 北京小米移动软件有限公司 信道测量资源的配置方法、装置、设备及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AFSHIN HAGHIGHAT, INTERDIGITAL, INC.: "Discussion on CSI Enhancements for CJT and Medium/High UE Velocities", 3GPP DRAFT; R1-2210927; TYPE DISCUSSION; NR_MIMO_EVO_DL_UL-CORE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Toulouse, FR; 20221114 - 20221118, 7 November 2022 (2022-11-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052221491 *
MIN ZHU, CATT: "CSI enhancement for high/medium UE velocities and coherent JT", 3GPP DRAFT; R1-2211169; TYPE DISCUSSION; NR_MIMO_EVO_DL_UL-CORE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Toulouse, FR; 20221114 - 20221118, 7 November 2022 (2022-11-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052221734 *

Also Published As

Publication number Publication date
CN115997405A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
CN109792745B (zh) 数据传输方法、基站、用户设备及存储介质
WO2023070562A1 (zh) 传输配置指示状态确定方法、装置及存储介质
WO2023070563A1 (zh) 传输配置指示状态确定方法、装置及存储介质
WO2021184217A1 (zh) 信道状态信息测量方法、装置及计算机存储介质
WO2020258041A1 (zh) 数据传输方法、装置、***及存储介质
WO2024119382A1 (zh) 信道状态信息上报方法、装置及存储介质
WO2024087118A1 (zh) 幅度系数的上报方法、装置及存储介质
US20230137584A1 (en) Multiple-input multiple-output mode configuration method and apparatus, and storage medium
WO2022151387A1 (zh) 信息动态指示方法及装置、网络设备、用户设备及存储介质
WO2021063195A1 (zh) 直连链路的参考信号接收功率rsrp测量方法及装置
US20230180175A1 (en) Positioning measurement method, positioning measurement apparatus and storage medium
WO2024082315A1 (zh) 一种信道状态信息反馈方法、装置、设备及存储介质
WO2023056646A1 (zh) 一种信道状态信息上报方法、装置及存储介质
WO2024130747A1 (zh) 一种资源限制指示方法、装置及存储介质
WO2024082312A1 (zh) 传输配置指示状态的确定方法、装置及存储介质
WO2024092786A1 (zh) 一种通信方法、装置、设备及存储介质
WO2024065231A1 (zh) 一种通信方法、装置及存储介质
WO2024092585A1 (zh) 一种通信方法、装置、设备及存储介质
WO2024138734A1 (zh) 一种预编码方法、装置及存储介质
WO2024087258A1 (zh) 波束失败检测参考信号资源的确定方法、装置及存储介质
WO2024130613A1 (zh) 一种传输配置指示状态的确定方法、装置及存储介质
WO2024082314A1 (zh) 传输配置指示状态的确定方法、装置及存储介质
WO2024130590A1 (zh) 一种传输配置指示状态的确定方法、装置及存储介质
WO2024026696A1 (zh) 波束上报增强方法、装置、通信设备及存储介质
WO2024145886A1 (zh) 信道状态信息上报方法、装置及存储介质