WO2024117760A1 - 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2024117760A1
WO2024117760A1 PCT/KR2023/019414 KR2023019414W WO2024117760A1 WO 2024117760 A1 WO2024117760 A1 WO 2024117760A1 KR 2023019414 W KR2023019414 W KR 2023019414W WO 2024117760 A1 WO2024117760 A1 WO 2024117760A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
compound
layer
Prior art date
Application number
PCT/KR2023/019414
Other languages
English (en)
French (fr)
Inventor
차용범
금수정
조우진
최지영
하재승
황성현
이우철
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2024117760A1 publication Critical patent/WO2024117760A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/38Polycyclic condensed hydrocarbons containing four rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • This specification relates to compounds and organic light-emitting devices containing the same.
  • organic luminescence refers to a phenomenon that converts electrical energy into light energy using organic materials.
  • Organic light-emitting devices that utilize the organic light-emitting phenomenon usually have a structure including an anode, a cathode, and an organic material layer between them.
  • the organic material layer is often composed of a multi-layer structure made of different materials to increase the efficiency and stability of the organic light-emitting device, and may be composed of, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.
  • this organic light-emitting device when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode into the organic material layer. When the injected holes and electrons meet, an exciton is formed, and this exciton When it falls back to the ground state, it glows.
  • the present application seeks to provide a compound and an organic light-emitting device containing the same.
  • A is a condensed aryl group in which two or more hydrocarbon rings are condensed
  • B is a substituted or unsubstituted aryl group
  • R1 to R16 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group.
  • Another embodiment of the present specification is an anode; cathode; and at least one organic material layer provided between the anode and the cathode, wherein at least one layer of the organic material layer contains the compound.
  • the compound according to an exemplary embodiment of the present invention can be used as a material for the organic layer of an organic light-emitting device.
  • the compound according to a specific embodiment of the present invention can be used as a material for the light-emitting layer of an organic light-emitting device.
  • the compound according to an exemplary embodiment of the present invention can be included in an organic light emitting device to improve device characteristics such as low driving voltage, excellent efficiency characteristics, or excellent lifespan characteristics.
  • FIG. 1 to 3 show examples of organic light-emitting devices according to some embodiments of the present invention.
  • the deuterium substitution rate of the compound is determined by using TLC-MS (Thin-Layer Chromatography/Mass Spectrometry), and is determined by maximizing the distribution of molecular weights at the end of the reaction.
  • a method of calculating the substitution rate based on the value or a quantitative analysis method using NMR can be determined by adding DMF as an internal standard and calculating the D-substitution rate from the integral amount of the total peak using the integration rate on 1H NMR. You can.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is changed to another substituent.
  • the position to be substituted is not limited as long as it is the position where the hydrogen atom is substituted, that is, a position where the substituent can be substituted, and if two or more substituents are substituted. , two or more substituents may be the same or different from each other.
  • substituted or unsubstituted refers to deuterium; halogen group; Nitrile group (-CN); nitro group; hydroxyl group; Alkyl group; Cycloalkyl group; Alkoxy group; Phosphine oxide group; Aryloxy group; Alkylthioxy group; Arylthioxy group; Alkyl sulphoxy group; Aryl sulfoxy group; alkenyl group; silyl group; boron group; Amine group; Aryl group; and a heterocyclic group, or is substituted with a substituent in which two or more of the above-exemplified substituents are linked, or does not have any substituent.
  • a substituent group in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, or it may be interpreted as a substituent in which two phenyl groups are connected.
  • substituted or unsubstituted refers to deuterium; halogen group; Nitrile group; silyl group; Alkoxy group; Aryloxy group; Alkyl group; Aryl group; and a heterocyclic group, or is substituted with a substituent in which two or more of the above-exemplified substituents are linked, or does not have any substituent.
  • substituted or unsubstituted refers to deuterium; Alkyl group; Aryl group; and a heterocyclic group, or is substituted with a substituent in which two or more of the above-exemplified substituents are linked, or does not have any substituent.
  • halogen groups include fluorine (-F), chlorine (-Cl), bromine (-Br), or iodine (-I).
  • the silyl group may be represented by the formula -SiYaYbYc, where Ya, Yb, and Yc are each hydrogen; Substituted or unsubstituted alkyl group; Or, it may be a substituted or unsubstituted aryl group.
  • the silyl group specifically includes, but is not limited to, trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, and phenylsilyl group. No.
  • the boron group may be represented by the chemical formula -BYdYe, where Yd and Ye are each hydrogen; Substituted or unsubstituted alkyl group; Or, it may be a substituted or unsubstituted aryl group.
  • the boron group specifically includes, but is not limited to, dimethyl boron group, diethyl boron group, t-butylmethyl boron group, diphenyl boron group, and phenyl boron group.
  • the alkyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 60. According to one embodiment, the carbon number of the alkyl group is 1 to 30. According to another embodiment, the carbon number of the alkyl group is 1 to 20. According to another embodiment, the carbon number of the alkyl group is 1 to 10.
  • alkyl groups include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, n-pentyl group, hexyl group, n -Hexyl group, heptyl group, n-heptyl group, octyl group, n-octyl group, etc., but are not limited to these.
  • the alkoxy group may be straight chain, branched chain, or ring chain.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably 1 to 20 carbon atoms.
  • Substituents containing alkyl groups, alkoxy groups, and other alkyl group moieties described in this specification include both straight-chain or branched forms.
  • the alkenyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, etc., but are not limited to these.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 6. Specifically, it includes cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., but is not limited thereto.
  • the amine group is -NH 2
  • the amine group may be substituted with the above-described alkyl group, aryl group, heterocyclic group, alkenyl group, cycloalkyl group, and combinations thereof.
  • the number of carbon atoms of the substituted amine group is not particularly limited, but is preferably 1 to 30. According to one embodiment, the carbon number of the amine group is 1 to 20. According to one embodiment, the carbon number of the amine group is 1 to 10.
  • substituted amine groups include methylamine group, dimethylamine group, ethylamine group, diethylamine group, phenylamine group, 9,9-dimethylfluorenylphenylamine group, pyridylphenylamine group, and diphenylamine.
  • phenylpyridylamine group phenylpyridylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, dibenzofuranylphenylamine group, 9-methylanthracenylamine group, diphenylamine group, phenylnaphthylamine group, Ditolylamine group, phenyltolylamine group, diphenylamine group, etc., but are not limited to these.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a monocyclic aryl group such as a phenyl group, biphenyl group, terphenyl group, or quarterphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, triphenylenyl group, etc., but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be combined with each other to form a spiro structure.
  • Spirofluorenyl groups such as (9,9-dimethylfluorenyl group), and It may be a substituted fluorenyl group such as (9,9-diphenylfluorenyl group). However, it is not limited to this.
  • the above-described description of the aryl group may be applied to the aryl group in the aryloxy group.
  • the heterocyclic group is a cyclic group containing one or more of N, O, P, S, Si, and Se as heteroatoms, and the number of carbon atoms is not particularly limited, but it is preferably 2 to 60 carbon atoms. According to one embodiment, the carbon number of the heterocyclic group is 2 to 30. According to one embodiment, the carbon number of the heterocyclic group is 2 to 20.
  • heterocyclic groups include pyridine group, pyrrole group, pyrimidine group, quinoline group, pyridazinyl group, furan group, thiophene group, imidazole group, pyrazole group, dibenzofuran group, dibenzothiophene group, and carboxymethyl group. Examples include sol group, benzocarbazole group, naphthobenzofuran group, benzonaphthothiophene group, indenocarbazole group, and triazinyl group, but are not limited to these.
  • heterocyclic group described above can be applied, except that the heteroaryl group is aromatic.
  • the description of the aryl group may be applied, except that the arylene group is divalent.
  • ring is a hydrocarbon ring; Or refers to a heterocycle.
  • the hydrocarbon ring may be an aromatic, aliphatic, or a condensed ring of aromatic and aliphatic, and may be selected from examples of the cycloalkyl group or aryl group.
  • forming a ring by combining with adjacent groups means a substituted or unsubstituted aliphatic hydrocarbon ring by combining with adjacent groups; Substituted or unsubstituted aromatic hydrocarbon ring; Substituted or unsubstituted aliphatic heterocycle; Substituted or unsubstituted aromatic heterocycle; Or it means forming a condensation ring thereof.
  • the hydrocarbon ring refers to a ring consisting only of carbon and hydrogen atoms.
  • the heterocycle refers to a ring containing one or more heteroatoms selected from N, O, P, S, Si, and Se.
  • the aliphatic hydrocarbon ring, aromatic hydrocarbon ring, aliphatic heterocycle, and aromatic heterocycle may be monocyclic or polycyclic.
  • an aliphatic hydrocarbon ring refers to a non-aromatic ring consisting only of carbon and hydrogen atoms.
  • Examples of aliphatic hydrocarbon rings include cyclopropane, cyclobutane, cyclobutene, cyclopentane, cyclopentene, cyclohexane, cyclohexene, 1,4-cyclohexadiene, cycloheptane, cycloheptene, cyclooctane, and cyclooctene. It is not limited to this.
  • an aromatic hydrocarbon ring refers to an aromatic ring consisting only of carbon and hydrogen atoms.
  • aromatic hydrocarbon rings include benzene, naphthalene, anthracene, phenanthrene, perylene, fluoranthene, triphenylene, phenalene, pyrene, tetracene, chrysene, pentacene, fluorene, indene, acenaphthylene, Benzofluorene, spirofluorene, etc., but are not limited thereto.
  • an aromatic hydrocarbon ring can be interpreted to have the same meaning as an aryl group.
  • an aliphatic heterocycle refers to an aliphatic ring containing one or more heteroatoms.
  • aliphatic heterocycles include oxirane, tetrahydrofuran, 1,4-dioxane, pyrrolidine, piperidine, morpholine, oxepane, and azocaine. , thiocane, etc., but is not limited thereto.
  • an aromatic heterocycle refers to an aromatic ring containing one or more heteroatoms.
  • aromatic heterocycles include pyridine, pyrrole, pyrimidine, pyridazine, furan, thiophene, imidazole, parazole, oxazole, isoxazole, thiazole, isothiazole, triazole, oxadiazole, and thiazole.
  • the compound according to an exemplary embodiment of the present specification is represented by Formula 1 as described above.
  • the compound of Formula 1 is characterized by a biphenyl group substituted with A and B substituted at carbons 9 and 10 of anthracene, respectively, where A is bonded to the ortho position of biphenyl. Due to these structural characteristics, when the compound is applied to an organic light emitting device, it can exhibit low voltage, high efficiency, and/or long life effects.
  • A is a substituted or unsubstituted naphthyl group; Substituted or unsubstituted phenanthrenyl group; A substituted or unsubstituted fluoranthenyl group; Or a substituted or unsubstituted triphenylenyl group.
  • A is a naphthyl group unsubstituted or substituted with deuterium; A phenanthrenyl group substituted or unsubstituted with deuterium; A fluoranthenyl group substituted or unsubstituted with deuterium; Or it is a triphenylenyl group substituted or unsubstituted with deuterium.
  • A has a deuterium substitution rate of 0%.
  • A has a deuterium substitution rate of 10% to 100%.
  • A has a deuterium substitution rate of 20% to 100%.
  • A has a deuterium substitution rate of 50% to 100%.
  • A is any one of the following structures.
  • d1 is an integer from 0 to 7
  • d2 is an integer from 0 to 9
  • d3 is an integer from 0 to 8
  • d4 and d8 are each an integer from 0 to 3
  • d5 is an integer from 0 to 5
  • d6 is an integer from 0 to 5.
  • d7 is an integer from 0 to 6
  • B is a substituted or unsubstituted phenyl group; Substituted or unsubstituted biphenyl group; Substituted or unsubstituted terphenyl group; Substituted or unsubstituted naphthyl group; Substituted or unsubstituted phenanthrenyl group; Or a substituted or unsubstituted triphenylenyl group.
  • B is a phenyl group substituted or unsubstituted with one or more selected from the group consisting of deuterium and an aryl group; A biphenyl group substituted or unsubstituted with one or more selected from the group consisting of deuterium and aryl groups; A terphenyl group substituted or unsubstituted with one or more selected from the group consisting of deuterium and aryl groups; A naphthyl group substituted or unsubstituted with one or more selected from the group consisting of deuterium and aryl groups; A phenanthrenyl group substituted or unsubstituted with one or more selected from the group consisting of deuterium and aryl groups; or a triphenylenyl group substituted or unsubstituted with one or more selected from the group consisting of deuterium and aryl groups.
  • B has a deuterium substitution rate of 0%.
  • B has a deuterium substitution rate of 10% to 100%.
  • B has a deuterium substitution rate of 20% to 100%.
  • B has a deuterium substitution rate of 50% to 100%.
  • B is a structure in which one or more of the following structures are connected, and the following structures are substituted or unsubstituted with deuterium.
  • R1 to R16 are each hydrogen; Or deuterium.
  • R1 to R8 are hydrogen.
  • R1 to R8 are deuterium.
  • R9 to R16 are hydrogen.
  • R9 to R16 are deuterium.
  • the deuterium substitution rate of the compound of Formula 1 is 0%.
  • the deuterium substitution rate of the compound of Formula 1 is 10% to 100%.
  • the deuterium substitution rate of the compound of Formula 1 is 20% to 100%.
  • the deuterium substitution rate of the compound of Formula 1 is 50% to 100%.
  • the compound is any one selected from the following structures.
  • An exemplary embodiment of the present specification includes an anode; cathode; and at least one organic material layer provided between the anode and the cathode, wherein at least one layer of the organic material layer contains the compound.
  • the organic light emitting device includes an anode; cathode; and at least one organic material layer including a light-emitting layer provided between the anode and the cathode, and at least one layer of the organic material layer includes the compound of Formula 1.
  • the organic light emitting device of the present specification can be manufactured using conventional organic light emitting device manufacturing methods and materials, except that one or more organic material layers are formed using the above-described compounds.
  • the thickness of the organic material layer containing the compound of Formula 1 is 10 ⁇ to 600 ⁇ , preferably 50 ⁇ to 500 ⁇ , and more preferably 200 ⁇ to 400 ⁇ .
  • the compound may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution application method means spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • the organic light emitting device of the present specification can be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate. At this time, a metal or a conductive metal oxide or an alloy thereof is deposited on the substrate using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation. It can be manufactured by forming an anode, forming an organic material layer including a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • PVD physical vapor deposition
  • an organic light-emitting device can be made by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound of Formula 1 may be formed into an organic layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light-emitting device.
  • the solution application method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • the organic material layer may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic material layer includes a hole injection layer, a hole transport layer, a hole injection and transport layer, an electron blocking layer, a light emitting layer, an electron transport layer, an electron injection layer, and an electron injection and transport layer. It may be a multi-layered structure including: However, the structure of the organic light emitting device is not limited to this and may include fewer or more organic material layers.
  • the organic material layer may be formed of the same material or a different material.
  • the organic material layer uses a variety of polymer materials to form a smaller number of layers by using a solvent process rather than a deposition method, such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer. It can be manufactured in layers.
  • the organic material layer containing the compound of Formula 1 may be a light-emitting layer.
  • the light-emitting layer containing the compound of Formula 1 may include only a single material, but may also include additional materials.
  • the compound of Formula 1 may serve as a host in the light-emitting layer, and in this case, it may further include an additional dopant.
  • the light-emitting layer further includes a fluorescent dopant or a phosphorescent dopant.
  • the dopant is a phosphorescent material such as (4,6-F 2 ppy) 2 Irpic, spiro-DPVBi, spiro-6P, distylbenzene (DSB), distrylarylene (DSA), PFO-based polymer, Fluorescent materials such as PPV-based polymers, anthracene-based compounds, pyrene-based compounds, boron-based compounds, etc. may be used, but are not limited thereto.
  • a phosphorescent material such as (4,6-F 2 ppy) 2 Irpic, spiro-DPVBi, spiro-6P, distylbenzene (DSB), distrylarylene (DSA), PFO-based polymer, Fluorescent materials such as PPV-based polymers, anthracene-based compounds, pyrene-based compounds, boron-based compounds, etc. may be used, but are not limited thereto.
  • the dopant in the light-emitting layer is included in an amount of 1 to 50 parts by weight based on 100 parts by weight of the host.
  • the organic material layer includes a hole blocking layer, an electron transport layer, or an electron injection layer.
  • the hole blocking layer, electron transport layer, or electron injection layer may or may not include the compound.
  • the organic material layer includes a hole injection layer, a hole transport layer, or an electron blocking layer.
  • the hole blocking layer, electron transport layer, or electron injection layer may or may not include the compound.
  • the organic light emitting device includes an anode; cathode; and a light-emitting layer provided between the anode and the cathode, and further comprising a single-layer organic material layer between the light-emitting layer and the anode, wherein the light-emitting layer includes the compound.
  • the organic light emitting device includes an anode; cathode; and a light-emitting layer provided between the anode and the cathode, and further comprising a multi-layer organic material layer between the light-emitting layer and the anode, wherein the light-emitting layer includes the compound.
  • the organic light emitting device includes an anode; cathode; and a light-emitting layer provided between the anode and the cathode, and further comprising at least one of a hole injection layer, a hole transport layer, and an electron blocking layer between the light-emitting layer and the anode, and the light-emitting layer includes the compound.
  • the organic light emitting device includes an anode; cathode; and a light-emitting layer provided between the anode and the cathode, and a hole injection layer, a hole transport layer, and an electron blocking layer between the anode and the light-emitting layer, and the light-emitting layer includes the compound.
  • the organic light emitting device includes an anode; hole injection layer; hole transport layer; Electronic blocking layer; light emitting layer; and a cathode are sequentially provided, and the light-emitting layer includes the compound.
  • an additional organic material layer may be further provided between each of the layers.
  • the organic light emitting device includes an anode; cathode; and a light-emitting layer provided between the anode and the cathode, and further comprising a single-layer organic material layer between the light-emitting layer and the cathode, wherein the light-emitting layer includes the compound.
  • the organic light emitting device includes an anode; cathode; and a light-emitting layer provided between the anode and the cathode, and further comprising a multi-layer organic material layer between the light-emitting layer and the cathode, wherein the light-emitting layer includes the compound.
  • the organic light emitting device includes an anode; cathode; and a light-emitting layer provided between the anode and the cathode, further comprising one or more layers of a hole blocking layer, an electron injection layer, an electron transport layer, and an electron injection and transport layer between the cathode and the light-emitting layer, wherein the light-emitting layer contains the compound.
  • the organic light emitting device includes an anode; cathode; and a light-emitting layer provided between the anode and the cathode, and a hole blocking layer and an electron injection and transport layer between the cathode and the light-emitting layer, and the light-emitting layer includes the compound.
  • the organic light emitting device includes an anode; light emitting layer; hole blocking layer; electron injection and transport layer; and a cathode are sequentially provided, and the light-emitting layer includes the compound.
  • an additional organic material layer may be further provided between each of the layers.
  • the organic light emitting device includes an anode; hole injection layer; Hole transport layer; Electronic blocking layer; light emitting layer; hole blocking layer; electron injection and transport layer; and a cathode are sequentially stacked, and the light-emitting layer includes the compound.
  • the structure of the organic light emitting device of this specification may have the same structure as shown in FIGS. 1 to 3, but is not limited thereto.
  • Figure 1 shows an example of an organic light emitting device consisting of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • Figure 2 shows an example of an organic light emitting device consisting of a substrate (1), anode (2), hole injection layer (5), hole transport layer (6), light emitting layer (7), electron transport layer (8), and cathode (4). It was done.
  • Figure 3 shows a substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron blocking layer (9), light emitting layer (7), hole blocking layer (10), electron injection and transport layer ( 11) and an example of an organic light emitting device connected to a cathode 4 are shown.
  • the organic light emitting device may have a stacked structure, for example, as shown below, in addition to the structure specified in the drawings, but is not limited thereto.
  • the ‘electron transport layer/electron injection layer’ may be replaced with an ‘electron injection and transport layer’ or a ‘layer that performs electron injection and electron transport simultaneously’.
  • (15) may be an organic light emitting device having a stacking order of 'anode/hole injection layer/hole transport layer/electron blocking layer/light emitting layer/hole blocking layer/electron injection and transport layer/cathode'.
  • the 'hole injection layer/hole transport layer' may be replaced with a 'hole injection and transport layer' or a 'layer that performs hole injection and hole transport at the same time'.
  • (15) may be an organic light emitting device having a stacking order of 'anode/hole injection and transport layer/electron blocking layer/light emitting layer/hole blocking layer/electron transport layer/electron injection layer/cathode'.
  • the anode is an electrode that injects holes
  • the anode material is generally preferably a material with a large work function to ensure smooth hole injection into the organic layer.
  • Specific examples of anode materials that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; and conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited to these. .
  • the cathode is an electrode that injects electrons
  • the cathode material is generally preferably a material with a small work function to facilitate electron injection into the organic layer.
  • Specific examples of cathode materials that can be used in the present invention include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; There are, but are not limited to, multi-layered materials such as LiF/Al or LiO 2 /Al.
  • the hole injection layer may serve to facilitate the injection of holes from the anode to the light emitting layer.
  • the hole injection material is a material that can easily inject holes from an anode at a low voltage, and it is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the anode and the HOMO of the surrounding organic material layer.
  • Specific examples of hole injection materials include metal porphyrine, oligothiophene, arylamine series compounds, hexanitrilehexaazatriphenylene series compounds, quinacridone series compounds, and perylene series. compounds, benzonitrile-based compounds, anthraquinone, and polyaniline- and polythiophene-based conductive polymers, but are not limited to these.
  • the hole injection layer may be an arylamine-based compound or a benzonitrile-based compound. More specifically, arylamine-based compounds substituted with carbazole groups and benzonitrile-based compounds substituted with halogen groups may be used, but are not limited to these.
  • the thickness of the hole injection layer may be 1 nm to 150 nm. If the thickness of the hole injection layer is 1 nm or more, there is an advantage in preventing the hole injection characteristics from deteriorating, and if it is 150 nm or less, the thickness of the hole injection layer is so thick that the driving voltage is increased to improve the movement of holes. There is an advantage to preventing this.
  • the hole injection layer includes a compound of the following formula HI-1.
  • L101 is directly bonded; Or a substituted or unsubstituted arylene group,
  • R101 to R103 are the same or different from each other, and each independently represents a substituted or unsubstituted aryl group.
  • L101 is a direct bond; Substituted or unsubstituted phenylene group; Or a substituted or unsubstituted naphthylene group.
  • L101 is a direct bond; Or a substituted or unsubstituted phenylene group.
  • L101 is a direct bond; Or it is a phenylene group.
  • R101 to R103 are the same as or different from each other, and are each independently a substituted or unsubstituted monocyclic aryl group; Or it is a substituted or unsubstituted polycyclic aryl group.
  • R101 to R103 are the same as or different from each other, and are each independently a substituted or unsubstituted phenyl group; Substituted or unsubstituted biphenyl group; Substituted or unsubstituted terphenyl group; Substituted or unsubstituted naphthyl group; Substituted or unsubstituted anthracenyl group; Substituted or unsubstituted phenanthrenyl group; Substituted or unsubstituted triphenylenyl group; Substituted or unsubstituted pyrene group; Or a substituted or unsubstituted fluorenyl group.
  • R101 to R103 are the same as or different from each other, and are each independently a substituted or unsubstituted phenyl group; Substituted or unsubstituted biphenyl group; Or a substituted or unsubstituted fluorenyl group.
  • R101 to R103 are the same as or different from each other, and are each independently a phenyl group; Biphenyl group; Or it is a fluorenyl group substituted with an alkyl group.
  • the formula HI-1 is one of the following structures.
  • the hole injection layer includes a compound of the following formula HI-2.
  • R111 to R113 are the same or different from each other, and are each independently hydrogen; halogen group; Nitrile group; Substituted or unsubstituted alkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • a111 to a113 are each integers from 1 to 5
  • R111 to R113 are the same as or different from each other, and are each a halogen group; Or it is a nitrile group.
  • R111 to R113 are the same or different from each other, and are each fluorine; Or it is a nitrile group.
  • the chemical formula HI-2 has the following structure.
  • the hole injection layer includes a compound of the formula HI-1 and a compound of the formula HI-2.
  • the hole transport layer may play a role in facilitating the transport of holes.
  • the hole transport material is a material that can transport holes from the anode or hole injection layer and transfer them to the light emitting layer, and a material with high mobility for holes is suitable.
  • Specific examples of hole transport materials include, but are not limited to, arylamine-based compounds, carbazole-based compounds, conductive polymers, and block copolymers with both conjugated and non-conjugated parts.
  • a carbazole-based compound substituted with an arylamine group may be used in the hole transport layer, but is not limited thereto.
  • the hole transport layer includes a compound of the following formula HT-1.
  • L201 and L202 are the same or different from each other and are each independently directly bonded; Or a substituted or unsubstituted arylene group,
  • R200 is a substituted or unsubstituted aryl group
  • R201 to R204 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted aryl group; Or it is a substituted or unsubstituted heterocyclic group.
  • L201 and L202 are the same or different from each other and are each independently a substituted or unsubstituted arylene group.
  • L201 and L202 are the same or different from each other, and are each independently a substituted or unsubstituted phenylene group; Or a substituted or unsubstituted naphthylene group.
  • L201 and L202 are the same or different from each other and are each independently a substituted or unsubstituted phenylene group.
  • L201 and L202 are each a phenylene group.
  • R200 is a substituted or unsubstituted monocyclic aryl group; Or it is a substituted or unsubstituted polycyclic aryl group.
  • R200 is a substituted or unsubstituted phenyl group; Substituted or unsubstituted biphenyl group; Substituted or unsubstituted terphenyl group; Substituted or unsubstituted naphthyl group; Substituted or unsubstituted anthracenyl group; Substituted or unsubstituted phenanthrenyl group; Substituted or unsubstituted triphenylenyl group; Substituted or unsubstituted pyrene group; Or a substituted or unsubstituted fluorenyl group.
  • R200 is a substituted or unsubstituted naphthyl group.
  • R201 to R204 are the same as or different from each other, and each independently represents a substituted or unsubstituted aryl group.
  • R201 to R204 are the same as or different from each other, and are each independently a substituted or unsubstituted monocyclic aryl group; Or it is a substituted or unsubstituted polycyclic aryl group.
  • R201 to R204 are the same as or different from each other, and are each independently a substituted or unsubstituted phenyl group; Substituted or unsubstituted biphenyl group; Substituted or unsubstituted terphenyl group; Substituted or unsubstituted naphthyl group; Substituted or unsubstituted anthracenyl group; Substituted or unsubstituted phenanthrenyl group; Substituted or unsubstituted triphenylenyl group; Substituted or unsubstituted pyrene group; Or a substituted or unsubstituted fluorenyl group.
  • R201 to R204 are the same as or different from each other, and each independently represents a substituted or unsubstituted phenyl group.
  • R201 to R204 are each a phenyl group.
  • the chemical formula HT-1 has the following structure.
  • An additional hole buffer layer may be provided between the hole injection layer and the hole transport layer, and may include hole injection or transport materials known in the art.
  • An electron blocking layer may be provided between the hole transport layer and the light emitting layer.
  • the above-described compounds or materials known in the art may be used in the electron blocking layer.
  • a carbazole-based compound may be used in the electron blocking layer.
  • the electron blocking layer includes a compound of the following formula EB-1.
  • L301 is a substituted or unsubstituted arylene group
  • R301 and R302 are the same or different from each other, and each independently represents a substituted or unsubstituted aryl group.
  • L301 is a monocyclic or polycyclic arylene group.
  • L301 is a substituted or unsubstituted phenylene group; Or a substituted or unsubstituted biphenylene group.
  • L301 is a biphenylene group.
  • R301 and R302 are the same or different from each other, and are each independently a substituted or unsubstituted phenyl group; Substituted or unsubstituted biphenyl group; Substituted or unsubstituted terphenyl group; Substituted or unsubstituted naphthyl group; Substituted or unsubstituted anthracenyl group; Substituted or unsubstituted phenanthrenyl group; Substituted or unsubstituted triphenylenyl group; Substituted or unsubstituted pyrene group; Or a substituted or unsubstituted fluorenyl group.
  • R301 and R302 are the same or different from each other, and are each independently a substituted or unsubstituted phenyl group; Or a substituted or unsubstituted biphenyl group.
  • R301 and R302 are the same or different from each other, and each independently represents a biphenyl group substituted or unsubstituted by an aryl group.
  • the formula EB-1 has the following structure.
  • the light-emitting layer may emit red, green, or blue light and may be made of a phosphorescent material or a fluorescent material.
  • the light-emitting material is a material that can emit light in the visible light range by transporting holes and electrons from the hole transport layer and the electron transport layer, respectively, and combining them, and is preferably a material with good quantum efficiency for fluorescence or phosphorescence.
  • the light-emitting material includes 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV) series polymer; Spiro compounds; polyfluorene; Rubrene, etc., but is not limited to these.
  • Alq 3 8-hydroxy-quinoline aluminum complex
  • Carbazole-based compounds dimerized styryl compounds
  • BAlq 10-hydroxybenzoquinoline-metal compound
  • Compounds of the benzoxazole, benzthiazole and benzimidazole series Compounds of the benzoxazole, benzthiazole and benzimidazole series
  • Poly(p-phenylenevinylene) (PPV) series polymer Poly(p-phenylenevinylene) (PP
  • Host materials for the light-emitting layer include condensed aromatic ring derivatives or heterocycle-containing compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, and ladder-type compounds. These include furan compounds and pyrimidine derivatives, but are not limited to these.
  • the compound of Formula 1 of the present invention may be used as the host of the light-emitting layer, but is not limited thereto.
  • the light-emitting dopants include PIQIr(acac)(bis(1-phenylquinoline)acetylacetonateiridium), PQIr(acac)(bis(1-phenylquinoline)acetylacetonate iridium), and PQIr(tris(1-phenylquinoline)iridium).
  • phosphorescent materials such as PtOEP (octaethylporphyrin platinum), or fluorescent materials such as Alq 3 (tris(8-hydroxyquinolino)aluminum) may be used, but are not limited to these.
  • the light-emitting layer emits green light
  • a phosphor such as Ir(ppy) 3 (tris(2-phenylpyridine)iridium) or a fluorescent material such as Alq 3 (tris(8-hydroxyquinolino)aluminum)
  • the light-emitting dopant may be a phosphorescent material such as (4,6-F 2 ppy) 2 Irpic, spiro-DPVBi, spiro-6P, distylbenzene (DSB), or distrylarylene (DSA).
  • pyrene-based compounds may be used, but are not limited to these.
  • a pyrene-based compound may be used as the dopant, but is not limited thereto.
  • the dopant includes a compound of formula D below.
  • X1 and X2 are the same or different from each other and are each independently CR'; or NR", and at least one of X1 and X2 is NR",
  • R401 to R403, R' and R" are the same or different from each other, and are each independently hydrogen; deuterium; halogen group; nitrile group; substituted or unsubstituted alkyl group; substituted or unsubstituted cycloalkyl group; substituted or unsubstituted alkoxy A substituted or unsubstituted silyl group; a substituted or unsubstituted aryl group; or a substituted or unsubstituted heterocyclic group;
  • a substituted or unsubstituted ring is the same or different from each other, and are each independently hydrogen; deuterium; halogen group; nitrile group; substituted or unsubstituted alkyl group; substituted or unsubstituted cycloalkyl group; substituted or unsubstituted alkoxy A substituted or unsubstituted silyl group; a substituted or unsubstituted aryl group; or a
  • r401 and r403 are each an integer from 0 to 4, r402 is an integer from 0 to 3, and when r401 to r403 are each 2 or more, the substituents in the parentheses are the same or different from each other.
  • R401 to R403 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Or it is a substituted or unsubstituted aryl group.
  • R401 to R403 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Or it is a substituted or unsubstituted alkyl group.
  • R401 to R403 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Or it is a straight chain or branched alkyl group.
  • R401 to R403 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; A straight-chain alkyl group having 1 to 30 carbon atoms; Or it is a branched alkyl group having 4 to 30 carbon atoms.
  • R401 to R403 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Or it is a branched alkyl group having 4 to 30 carbon atoms.
  • X1 and X2 are the same or different from each other and are each independently NR'', and R'' is a substituted or unsubstituted alkyl group; Substituted or unsubstituted aryl group; Or it is a substituted or unsubstituted heterocyclic group.
  • X1 and X2 are the same or different from each other and are each independently NR'', and R'' is a substituted or unsubstituted aryl group.
  • X1 and X2 are the same or different from each other and are each independently NR'', and R'' is an aryl group substituted with an alkyl group.
  • Formula D has the following structure.
  • the light-emitting layer includes the compound of Formula 1 as a host of the light-emitting layer, and the compound of Formula D as a dopant of the light-emitting layer.
  • the weight ratio of the compound of Formula 1 and the compound of Formula D in the light emitting layer is 100:1 to 1:1. Specifically, 70:1 to 2:1, or 50:1 to 3:1.
  • a hole blocking layer may be provided between the cathode and the light emitting layer.
  • the hole blocking layer is a layer that prevents holes from reaching the cathode, and can generally be formed under the same conditions as the hole injection layer.
  • Specific examples of hole blocking materials include, but are not limited to, oxadiazole derivatives, triazole derivatives, triazine derivatives, phenanthroline derivatives, BCP, and aluminum complexes.
  • triazine derivatives may be used, but are not limited thereto.
  • the hole blocking layer includes a compound of the following formula HB-1.
  • L501 to L503 are the same or different from each other and are each independently directly bonded; Or a substituted or unsubstituted arylene group,
  • R501 to R504 are the same or different from each other and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; Or it is a substituted or unsubstituted heterocyclic group.
  • L501 to L503 are the same or different from each other and are each independently directly bonded; Substituted or unsubstituted phenylene group; Substituted or unsubstituted biphenylene group; Or a substituted or unsubstituted naphthylene group.
  • L501 to L503 are the same or different from each other and are each independently directly bonded; Or a substituted or unsubstituted biphenylene group.
  • L501 and L502 are the same or different from each other and are each independently a direct bond.
  • L503 is a substituted or unsubstituted biphenylene group.
  • L503 is a biphenylene group.
  • R501 to R504 are the same or different from each other, and each independently represents a substituted or unsubstituted aryl group.
  • R501 to R504 are the same or different from each other, and are each independently a substituted or unsubstituted monocyclic aryl group; Or it is a substituted or unsubstituted polycyclic aryl group.
  • R501 to R504 are the same as or different from each other, and are each independently a substituted or unsubstituted phenyl group; Substituted or unsubstituted biphenyl group; Substituted or unsubstituted terphenyl group; Substituted or unsubstituted naphthyl group; Substituted or unsubstituted anthracenyl group; Substituted or unsubstituted phenanthrenyl group; Substituted or unsubstituted triphenylenyl group; Substituted or unsubstituted pyrene group; Or a substituted or unsubstituted fluorenyl group.
  • R501 to R504 are the same as or different from each other, and are each independently a substituted or unsubstituted phenyl group; Or a substituted or unsubstituted naphthyl group.
  • R501 to R504 are the same as or different from each other, and each independently represents a phenyl group substituted or unsubstituted by a naphthyl group.
  • the formula HB-1 is one of the following structures.
  • the electron transport layer may play a role in facilitating the transport of electrons.
  • the electron transport material is a material that can easily receive electrons from the cathode and transfer them to the light-emitting layer, and a material with high mobility for electrons is suitable.
  • the electron transport material includes, but is not limited to, an Al complex of 8-hydroxyquinoline, a complex containing Alq 3 , an organic radical compound, and a hydroxyflavone-metal complex.
  • the thickness of the electron transport layer may be 1 nm to 50 nm.
  • the thickness of the electron transport layer is 1 nm or more, it has the advantage of preventing the electron transport characteristics from deteriorating, and if it is 50 nm or less, the thickness of the electron transport layer is too thick to prevent the driving voltage from increasing to improve the movement of electrons. There is an advantage.
  • the electron injection layer may serve to facilitate injection of electrons.
  • the electron injection material has the ability to transport electrons, has an excellent electron injection effect from the cathode, a light emitting layer or a light emitting material, prevents movement of excitons generated in the light emitting layer to the hole injection layer, and thin film Compounds with excellent forming ability are preferred.
  • the electron injection materials include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, triazine, imidazole, perylenetetracarboxylic acid, and preorenylidene methane. , anthrone, etc. and their derivatives, metal complex compounds, and nitrogen-containing 5-membered ring derivatives, etc., but are not limited thereto.
  • metal complex compounds include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, Tris(2-methyl-8-hydroxyquinolinato)aluminum, Tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato) gallium, bis(2-methyl-8-quinolinato)(1-naphtolato) aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato) gallium, etc. It is not limited to this.
  • the electron transport layer and the electron injection layer may be formed as a single layer.
  • an electron injection and transport layer can be formed by vacuum depositing an electron injection material and an electron transport material at the same time, or by vacuum depositing a material that exhibits both electron injection and transport effects.
  • the electron injection and transport layer may further include a metal complex.
  • the metal complex include, but are not limited to, Al complex of 8-hydroxyquinoline (Alq 3 ), LiQ, and metal complex compounds.
  • the electron injection and transport layer may be made of triazine derivatives and lithium quinolite (LiQ), but is not limited thereto.
  • the organic light emitting device may be a front emitting type, a back emitting type, or a double-sided emitting type depending on the material used.
  • the organic light emitting device can be included and used in various electronic devices.
  • the electronic device may be a display panel, a touch panel, a solar module, a lighting device, etc., but is not limited thereto.
  • 9-bromo-10-phenylanthracene (5.50 g, 16.51 mmol) and compound a-1 (8.65 g, 18.16 mmol) were added to a 500 mL round bottom flask in a nitrogen atmosphere. After completely dissolving in 240 mL of hydrofuran, add 2M potassium carbonate solution (120 mL), add tetrakis-(triphenylphosphine)palladium (Pd(PPh 3 ) 4 ) (0.57 g, 0.50 mmol), and leave for 3 hours. It was heated and stirred for a while.
  • 9-bromo-10-phenylanthracene (5.50 g, 16.51 mmol) and compound a-2 (4.55 g, 14.51 mmol) were added to a 500 mL round bottom flask in a nitrogen atmosphere. After completely dissolving in 240 mL of furan, 2M aqueous potassium carbonate solution (120 mL) was added, tetrakis-(triphenylphosphine)palladium (0.70 g, 0.60 mmol) was added, and the mixture was heated and stirred for 3 hours.
  • 9-bromo-10-phenylanthracene (5.50 g, 16.51 mmol) and compound a-3 (8.65. g, 18.16 mmol) were added to a 500 mL round bottom flask in a nitrogen atmosphere. After completely dissolving in 240 mL of hydrofuran, 2M aqueous potassium carbonate solution (120 mL) was added, tetrakis-(triphenylphosphine)palladium (0.57 g, 0.50 mmol) was added, and the mixture was heated and stirred for 5 hours.
  • 9-bromo-10-phenylanthracene (5.50 g, 14.35 mmol) and compound a-4 (7.52 g, 15.79 mmol) were added to a 500 mL round bottom flask in a nitrogen atmosphere. After completely dissolving in 240 mL of furan, 2M aqueous potassium carbonate solution (120 mL) was added, tetrakis-(triphenylphosphine)palladium (0.50 g, 0.43 mmol) was added, and the mixture was heated and stirred for 6 hours.
  • 9-bromo-10-phenylanthracene (5.50 g, 14.35 mmol) and compound a-5 (7.52 g, 15.79 mmol) were added to a 500 mL round bottom flask in a nitrogen atmosphere. After completely dissolving in 240 mL of furan, 2M aqueous potassium carbonate solution (120 mL) was added, tetrakis-(triphenylphosphine)palladium (0.50 g, 0.43 mmol) was added, and the mixture was heated and stirred for 3 hours.
  • a glass substrate coated with a thin film of ITO (indium tin oxide) with a thickness of 1,000 ⁇ was placed in distilled water with a detergent dissolved in it and washed ultrasonically.
  • a detergent manufactured by Fischer Co. was used, and distilled water filtered secondarily using a filter manufactured by Millipore Co. was used as distilled water.
  • ultrasonic cleaning was repeated twice with distilled water for 10 minutes.
  • the following compounds HI1 and the following compounds HI2 were thermally vacuum deposited to a thickness of 100 ⁇ at a ratio of 98:2 (molar ratio) to form a hole injection layer.
  • a hole transport layer was formed by vacuum depositing a compound (1150 ⁇ ) represented by the following chemical formula HT1 on the hole injection layer.
  • an electron blocking layer was formed by vacuum depositing the compound of EB1 with a film thickness of 50 ⁇ on the hole transport layer.
  • Compound 1 synthesized in Preparation Example 1 and the compound represented by the formula BD below were vacuum deposited on the electron blocking layer to a film thickness of 200 ⁇ at a weight ratio of 25:1 to form a light emitting layer.
  • a hole blocking layer was formed by vacuum depositing the compound of HB1 with a film thickness of 50 ⁇ on the light emitting layer.
  • a compound represented by the formula ET1 and a compound represented by the formula LiQ were vacuum deposited on the hole blocking layer at a weight ratio of 1:1 to form an electron injection and transport layer with a thickness of 310 ⁇ .
  • a cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 ⁇ and aluminum to a thickness of 1,000 ⁇ on the electron injection and transport layer.
  • LiF lithium fluoride
  • the deposition rate of organic matter was maintained at 0.4 ⁇ /sec to 0.7 ⁇ /sec, the deposition rate of lithium fluoride of the cathode was maintained at 0.3 ⁇ /sec, and aluminum was maintained at 2 ⁇ /sec, and the vacuum degree during deposition was 2x10.
  • An organic light emitting device was manufactured by maintaining -7 torr to 5x10 -6 torr.
  • An organic light emitting device was manufactured in the same manner as Example 1-1, except that the compounds listed in Table 1 below were used instead of Compound 1 in Example 1-1.
  • Example 1-1 An organic light emitting device was manufactured in the same manner as Example 1-1, except that the compounds listed in Table 1 below were used instead of Compound 1 in Example 1-1.
  • the compounds BH1 to BH8 used in Table 1 below are as follows.
  • T95 refers to the time it takes for the luminance to decrease from the initial luminance (1600 nit) to 95%.
  • Example 1-1 Compound 1 4.41 6.50 (0.146, 0.046) 274
  • Example 1-2 Compound 2 4.43 6.56 (0.145, 0.046) 263
  • Example 1-3 Compound 3 4.42 6.57 (0.146, 0.045) 268
  • Example 1-4 Compound 4 4.44 6.58 (0.147, 0.047) 271
  • Examples 1-5 Compound 5 4.45 6.56 (0.146, 0.046) 268
  • Example 1-6 Compound 6 4.43 6.59 (0.145, 0.046) 298
  • Example 1-7 Compound 7 4.46 6.55 (0.146, 0.045) 289
  • Examples 1-8 compound 8 4.47 6.53 (0.147, 0.046) 277
  • Example 1-9 Compound 9 4.41 6.45 (0.146, 0.046) 281
  • Examples 1-10 Compound 10 4.48 6.56 (0.147, 0.045) 288
  • Example 1-11 Compound 11
  • the organic light emitting device in which the compound of the present invention was applied to the light emitting layer showed excellent characteristics in terms of efficiency, driving voltage, and stability.
  • the organic light-emitting devices using the compounds of the present invention have lower voltage, It exhibited characteristics of high efficiency and long lifespan.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1의 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.

Description

화합물 및 이를 포함하는 유기 발광 소자
본 출원은 2022년 11월 30일에 한국특허청에 제출된 한국 특허 출원 제10-2022-0164765호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자를 위한 새로운 재료의 개발이 계속 요구되고 있다.
본 출원은 화합물 및 이를 포함하는 유기 발광 소자를 제공하고자 한다.
본 명세서의 일 실시상태는 하기 화학식 1의 화합물을 제공한다:
[화학식 1]
Figure PCTKR2023019414-appb-img-000001
상기 화학식 1에 있어서,
A는 2 이상의 탄화수소고리가 축합된 축합 아릴기이고,
B는 치환 또는 비치환된 아릴기이며,
R1 내지 R16은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 또 하나의 실시상태는 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 상기 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 발명의 일 실시상태에 따른 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있다.
본 발명의 구체적인 일 실시상태에 따른 화합물은 유기 발광 소자의 발광층 재료로 사용될 수 있다.
본 발명의 일 실시상태에 따른 화합물은 유기 발광 소자에 포함되어 낮은 구동전압, 우수한 효율 특성, 또는 우수한 수명 특성을 갖게 하는 등 소자 특성을 향상시킬 수 있다.
도 1 내지 도 3은 본 발명의 몇몇 실시상태에 따른 유기 발광 소자의 예를 도시한 것이다.
1: 기판
2: 애노드
3: 발광층
4: 캐소드
5: 정공주입층
6: 정공수송층
7: 발광층
8: 전자수송층
9: 전자차단층
10: 정공차단층
11: 전자 주입 및 수송층
이하 본 명세서에 대하여 더욱 상세히 설명한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에 있어서, 화합물의 중수소 치환율은 TLC-MS (Thin-Layer Chromatography/Mass Spectrometry)를 사용하여, 반응의 종결시점에서 분자량들이 이루는 분포의 max. 값을 기준으로 치환율을 계산하는 방법 또는 NMR을 이용한 정량분석 방법으로, Internal standard로 DMF를 첨가하고, 1H NMR 상의 integration 비율을 이용하여 총 peak의 적분량으로부터 D-치환율을 계산하는 방법을 통하여 파악할 수 있다.
본 발명에 있어서, "
Figure PCTKR2023019414-appb-img-000002
" 및 "*"는 각각 다른 치환기 또는 결합부에 연결되는 부위를 의미한다.
상기 "치환" 이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기(-CN); 니트로기; 히드록시기; 알킬기; 시클로알킬기; 알콕시기; 포스핀옥사이드기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 알케닐기; 실릴기; 붕소기; 아민기; 아릴기; 및 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 실릴기; 알콕시기; 아릴옥시기; 알킬기; 아릴기; 및 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 알킬기; 아릴기; 및 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 할로겐기의 예로는 불소(-F), 염소(-Cl), 브롬(-Br) 또는 요오드(-I)가 있다.
본 명세서에 있어서, 실릴기는 -SiYaYbYc의 화학식으로 표시될 수 있고, 상기 Ya, Yb 및 Yc는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 -BYdYe의 화학식으로 표시될 수 있고, 상기 Yd 및 Ye는 각각 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기일 수 있다. 상기 붕소기는 구체적으로 디메틸붕소기, 디에틸붕소기, t-부틸메틸붕소기, 디페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 30이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 알킬기의 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, 펜틸기, n-펜틸기, 헥실기, n-헥실기, 헵틸기, n-헵틸기, 옥틸기, n-옥틸기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 20인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, i-프로필옥시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 기재된 알킬기, 알콕시기 및 그 외 알킬기 부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함한다.
본 명세서에 있어서, 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아민기는 -NH2이며, 상기 아민기에는 전술한 알킬기, 아릴기, 헤테로고리기, 알케닐기, 시클로알킬기 및 이들의 조합 등이 치환될 수 있다. 상기 치환된 아민기의 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 일 실시상태에 따르면, 상기 아민기의 탄소수는 1 내지 20이다. 일 실시상태에 따르면, 상기 아민기의 탄소수는 1 내지 10이다. 치환된 아민기의 구체적인 예로는 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기, 페닐아민기, 9,9-디메틸플루오레닐페닐아민기, 피리딜페닐아민기, 디페닐아민기, 페닐피리딜아민기, 나프틸아민기, 바이페닐아민기, 안트라세닐아민기, 디벤조퓨라닐페닐아민기, 9-메틸안트라세닐아민기, 디페닐아민기, 페닐나프틸아민기, 디톨릴아민기, 페닐톨릴아민기, 디페닐아민기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기, 쿼터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기, 트리페닐레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2023019414-appb-img-000003
,
Figure PCTKR2023019414-appb-img-000004
등의 스피로플루오레닐기,
Figure PCTKR2023019414-appb-img-000005
(9,9-디메틸플루오레닐기), 및
Figure PCTKR2023019414-appb-img-000006
(9,9-디페닐플루오레닐기) 등의 치환된 플루오레닐기가 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴옥시기 중의 아릴기는 전술한 아릴기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 헤테로고리기는 이종원자로 N, O, P, S, Si 및 Se 중 1개 이상을 포함하는 고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 2 내지 30이다. 일 실시상태에 따르면, 상기 헤테로고리기의 탄소수는 2 내지 20이다. 헤테로고리기의 예로는 피리딘기, 피롤기, 피리미딘기, 퀴놀린기, 피리다지닐기, 퓨란기, 티오펜기, 이미다졸기, 피라졸기, 디벤조퓨란기, 디벤조티오펜기, 카바졸기, 벤조카바졸기, 나프토벤조퓨란기, 벤조나프토티오펜기, 인데노카바졸기, 트리아지닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 방향족인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
본 명세서에 있어서, 상기 아릴렌기는 2가인 것을 제외하고는 상기 아릴기에 대한 설명이 적용될 수 있다.
본 명세서에 있어서, 인접한 기와 서로 결합하여 형성되는 치환 또는 비치환된 고리에서, "고리"는 탄화수소고리; 또는 헤테로고리를 의미한다.
상기 탄화수소고리는 방향족, 지방족, 또는 방향족과 지방족의 축합고리일 수 있으며, 상기 시클로알킬기 또는 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 인접하는 기와 서로 결합하여 고리를 형성한다는 의미는 인접하는 기와 서로 결합하여 치환 또는 비치환된 지방족 탄화수소고리; 치환 또는 비치환된 방향족 탄화수소고리; 치환 또는 비치환된 지방족 헤테로고리; 치환 또는 비치환된 방향족 헤테로고리; 또는 이들의 축합고리를 형성하는 것을 의미한다. 상기 탄화수소고리는 탄소와 수소 원자로만 이루어진 고리를 의미한다. 상기 헤테로고리는 N, O, P, S, Si 및 Se 중에서 선택된 1 이상의 헤테로원자를 포함하는 고리를 의미한다. 본 명세서에 있어서, 상기 지방족 탄화수소고리, 방향족 탄화수소고리, 지방족 헤테로고리 및 방향족 헤테로고리는 단환 또는 다환일 수 있다.
본 명세서에 있어서, 지방족 탄화수소고리란 방향족이 아닌 고리로서 탄소와 수소 원자로만 이루어진 고리를 의미한다. 지방족 탄화수소고리의 예로는 시클로프로판, 시클로부탄, 시클로부텐, 시클로펜탄, 시클로펜텐, 시클로헥산, 시클로헥센, 1,4-시클로헥사디엔, 시클로헵탄, 시클로헵텐, 시클로옥탄, 시클로옥텐 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 방향족 탄화수소고리란 탄소와 수소 원자로만 이루어진 방향족의 고리를 의미한다. 방향족 탄화수소고리의 예로는 벤젠, 나프탈렌, 안트라센, 페난트렌, 페릴렌, 플루오란텐, 트리페닐렌, 페날렌, 파이렌, 테트라센, 크라이센, 펜타센, 플루오렌, 인덴, 아세나프틸렌, 벤조플루오렌, 스피로플루오렌 등이 있으나, 이에 한정되지 않는다. 본 명세서에 있어서, 방향족 탄화수소고리는 아릴기와 동일한 의미로 해석될 수 있다.
본 명세서에 있어서, 지방족 헤테로고리란 헤테로원자 중 1개 이상을 포함하는 지방족 고리를 의미한다. 지방족 헤테로고리의 예로는, 옥시레인(oxirane), 테트라하이드로퓨란, 1,4-디옥세인(1,4-dioxane), 피롤리딘, 피페리딘, 모르폴린(morpholine), 옥세판, 아조케인, 티오케인 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 방향족 헤테로고리란 헤테로원자 중 1개 이상을 포함하는 방향족 고리를 의미한다. 방향족 헤테로고리의 예로는, 피리딘, 피롤, 피리미딘, 피리다진, 퓨란, 티오펜, 이미다졸, 파라졸, 옥사졸, 이소옥사졸, 티아졸, 이소티아졸, 트리아졸, 옥사디아졸, 티아디아졸, 디티아졸, 테트라졸, 피란, 티오피란, 디아진, 옥사진, 티아진, 다이옥신, 트리아진, 테트라진, 이소퀴놀린, 퀴놀린, 퀴논, 퀴나졸린, 퀴녹살린, 나프티리딘, 아크리딘, 페난트리딘, 디아자나프탈렌, 드리아자인덴, 인돌, 인돌리진, 벤조티아졸, 벤조옥사졸, 벤조이미다졸, 벤조티오펜, 벤조퓨란, 디벤조티오펜, 디벤조퓨란, 카바졸, 벤조카바졸, 디벤조카바졸, 페나진, 이미다조피리딘, 페녹사진, 인돌로카바졸, 인데노카바졸 등이 있으나, 이에 한정되지 않는다.
이하 본 발명의 바람직한 실시상태를 상세히 설명한다. 그러나 본 발명의 실시상태는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시상태들에 한정되지는 않는다.
본 명세서의 일 실시상태에 따른 화합물은 전술한 바와 같이 화학식 1로 표시된다. 상기 화학식 1의 화합물은 안트라센의 9 및 10번 탄소에 각각 A로 치환된 바이페닐기와 B가 치환된 것을 특징으로 하며, 여기서 A는 바이페닐의 오르토 위치에 결합하는 것을 특징으로 한다. 이와 같은 구성적 특징에 의하여 상기 화합물을 유기 발광 소자에 적용하는 경우 저전압, 고효율 및/또는 장수명 효과를 나타낼 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 A는 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 페난트레닐기; 치환 또는 비치환된 플루오란테닐기; 또는 치환 또는 비치환된 트리페닐레닐기다.
본 명세서의 일 실시상태에 따르면, 상기 A는 중수소로 치환 또는 비치환된 나프틸기; 중수소로 치환 또는 비치환된 페난트레닐기; 중수소로 치환 또는 비치환된 플루오란테닐기; 또는 중수소로 치환 또는 비치환된 트리페닐레닐기다.
본 명세서의 일 실시상태에 따르면, 상기 A는 중수소 치환율이 0%이다.
본 명세서의 일 실시상태에 따르면, 상기 A는 중수소 치환율이 10% 내지 100%이다.
본 명세서의 일 실시상태에 따르면, 상기 A는 중수소 치환율이 20% 내지 100%이다.
본 명세서의 일 실시상태에 따르면, 상기 A는 중수소 치환율이 50% 내지 100%이다.
본 명세서의 일 실시상태에 따르면, 상기 A는 하기 구조 중 어느 하나이다.
Figure PCTKR2023019414-appb-img-000007
상기 구조에 있어서,
d1은 0 내지 7의 정수이고, d2는 0 내지 9의 정수이며, d3은 0 내지 8의 정수이고, d4 및 d8은 각각 0 내지 3의 정수이며, d5는 0 내지 5의 정수이고, d6은 0 내지 4의 정수이며, d7은 0 내지 6의 정수이고,
Figure PCTKR2023019414-appb-img-000008
는 상기 화학식 1에 결합되는 부분이다.
본 명세서의 일 실시상태에 따르면, 상기 B는 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 페난트레닐기; 또는 치환 또는 비치환된 트리페닐레닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 B는 중수소 및 아릴기로 이루어진 군에서 선택되는 하나 이상으로 치환 또는 비치환된 페닐기; 중수소 및 아릴기로 이루어진 군에서 선택되는 하나 이상으로 치환 또는 비치환된 바이페닐기; 중수소 및 아릴기로 이루어진 군에서 선택되는 하나 이상으로 치환 또는 비치환된 터페닐기; 중수소 및 아릴기로 이루어진 군에서 선택되는 하나 이상으로 치환 또는 비치환된 나프틸기; 중수소 및 아릴기로 이루어진 군에서 선택되는 하나 이상으로 치환 또는 비치환된 페난트레닐기; 또는 중수소 및 아릴기로 이루어진 군에서 선택되는 하나 이상으로 치환 또는 비치환된 트리페닐레닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 B는 중수소 치환율이 0%이다.
본 명세서의 일 실시상태에 따르면, 상기 B는 중수소 치환율이 10% 내지 100%이다.
본 명세서의 일 실시상태에 따르면, 상기 B는 중수소 치환율이 20% 내지 100%이다.
본 명세서의 일 실시상태에 따르면, 상기 B는 중수소 치환율이 50% 내지 100%이다.
본 명세서의 일 실시상태에 따르면, 상기 B는 하기 구조 중 어느 하나 또는 둘 이상이 연결된 구조이고, 하기 구조는 중수소로 치환 또는 비치환된다.
Figure PCTKR2023019414-appb-img-000009
상기 구조에 있어서,
Figure PCTKR2023019414-appb-img-000010
는 상기 화학식 1에 결합되는 부분이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R16은 각각 수소; 또는 중수소이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R8은 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R8은 중수소이다.
본 명세서의 일 실시상태에 따르면, 상기 R9 내지 R16은 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 R9 내지 R16은 중수소이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1의 화합물의 중수소 치환율은 0%이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1의 화합물의 중수소 치환율은 10% 내지 100%이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1의 화합물의 중수소 치환율은 20% 내지 100%이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1의 화합물의 중수소 치환율은 50% 내지 100%이다.
본 명세서의 일 실시상태에 있어서, 상기 화합물은 하기 구조들 중에서 선택되는 어느 하나이다.
Figure PCTKR2023019414-appb-img-000011
Figure PCTKR2023019414-appb-img-000012
Figure PCTKR2023019414-appb-img-000013
Figure PCTKR2023019414-appb-img-000014
Figure PCTKR2023019414-appb-img-000015
Figure PCTKR2023019414-appb-img-000016
Figure PCTKR2023019414-appb-img-000017
Figure PCTKR2023019414-appb-img-000018
Figure PCTKR2023019414-appb-img-000019
Figure PCTKR2023019414-appb-img-000020
Figure PCTKR2023019414-appb-img-000021
Figure PCTKR2023019414-appb-img-000022
Figure PCTKR2023019414-appb-img-000023
Figure PCTKR2023019414-appb-img-000024
Figure PCTKR2023019414-appb-img-000025
Figure PCTKR2023019414-appb-img-000026
Figure PCTKR2023019414-appb-img-000027
Figure PCTKR2023019414-appb-img-000028
Figure PCTKR2023019414-appb-img-000029
Figure PCTKR2023019414-appb-img-000030
Figure PCTKR2023019414-appb-img-000031
Figure PCTKR2023019414-appb-img-000032
Figure PCTKR2023019414-appb-img-000033
Figure PCTKR2023019414-appb-img-000034
Figure PCTKR2023019414-appb-img-000035
Figure PCTKR2023019414-appb-img-000036
본 명세서의 일 실시상태는 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 상기 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
구체적으로, 상기 유기 발광 소자는 애노드; 캐소드; 및 상기 애노드와 상기 캐소드 사이에 구비된 발광층을 포함하는 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 상기 화학식 1의 화합물을 포함한다.
본 명세서의 유기 발광 소자는 전술한 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1의 화합물을 포함하는 유기물층의 두께는 10 Å 내지 600 Å이고, 바람직하게는 50 Å 내지 500 Å이고, 더욱 바람직하게는 200 Å 내지 400 Å이다.
상기 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
예컨대, 본 명세서의 유기 발광 소자는 기판 상에 애노드, 유기물층 및 캐소드를 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 물리 증착 방법(PVD: physical Vapor Deposition)을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 애노드를 형성하고, 그 위에 정공주입층, 정공수송층, 전자차단층, 발광층 및 전자수송층을 포함하는 유기물층을 형성한 후, 그 위에 캐소드로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 캐소드 물질부터 유기물층, 애노드 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 상기 화학식 1의 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 단층 구조로 이루어질 수 있으며, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수도 있다. 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 예컨대, 상기 유기물층은 정공주입층, 정공수송층, 정공 주입 및 수송층, 전자차단층, 발광층, 전자수송층, 전자주입층, 및 전자 주입 및 수송층 등을 포함하는 다층 구조일 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수 또는 더 많은 수의 유기물층을 포함할 수 있다.
상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1의 화합물을 포함하는 유기물층은 발광층일 수 있다.
상기 화학식 1의 화합물을 포함하는 발광층은 단독 물질만을 포함할 수도 있으나, 추가의 물질을 더 포함할 수 있다. 예컨대, 상기 화학식 1의 화합물은 발광층에서 호스트로서 역할을 할 수 있으며, 이 경우 추가의 도펀트를 더 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 발광층은 형광 도펀트 또는 인광 도펀트를 더 포함한다.
이때, 상기 도펀트로는 (4,6-F2ppy)2Irpic와 같은 인광 물질이나, spiro-DPVBi, spiro-6P, 디스틸벤젠(DSB), 디스트릴아릴렌(DSA), PFO계 고분자, PPV계 고분자, 안트라센계 화합물, 파이렌계 화합물, 보론계 화합물 등과 같은 형광 물질이 사용될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 발광층 내의 도펀트는 호스트 100 중량부 대비 1 중량부 내지 50 중량부로 포함된다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 정공차단층, 전자수송층 또는 전자주입층을 포함한다. 이때, 상기 정공차단층, 전자수송층 또는 전자주입층은 상기 화합물을 포함하거나, 포함하지 않을 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기물층은 정공주입층, 정공수송층 또는 전자차단층을 포함한다. 이때, 상기 정공차단층, 전자수송층 또는 전자주입층은 상기 화합물을 포함하거나, 포함하지 않을 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 애노드; 캐소드; 및 애노드와 캐소드 사이에 구비된 발광층을 포함하고, 상기 발광층과 애노드 사이에 단층의 유기물층을 더 포함하며, 상기 발광층이 상기 화합물을 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 애노드; 캐소드; 및 애노드와 캐소드 사이에 구비된 발광층을 포함하고, 상기 발광층과 애노드 사이에 다층의 유기물층을 더 포함하며, 상기 발광층이 상기 화합물을 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 애노드; 캐소드; 및 애노드와 캐소드 사이에 구비된 발광층을 포함하고, 상기 발광층과 애노드 사이에 정공주입층, 정공수송층 및 전자차단층 중 1층 이상을 더 포함하며, 상기 발광층이 상기 화합물을 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 애노드; 캐소드; 및 애노드와 캐소드 사이에 구비된 발광층을 포함하고, 상기 애노드와 발광층 사이에 정공주입층, 정공수송층 및 전자차단층을 포함하며, 상기 발광층이 상기 화합물을 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 애노드; 정공주입층; 정공수송층; 전자차단층; 발광층; 및 캐소드가 순차적으로 구비된 구조이며, 상기 발광층이 상기 화합물을 포함한다. 이때, 상기 각 층들 사이에는 추가의 유기물층이 더 구비될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 애노드; 캐소드; 및 애노드와 캐소드 사이에 구비된 발광층을 포함하고, 상기 발광층과 캐소드 사이에 단층의 유기물층을 더 포함하며, 상기 발광층이 상기 화합물을 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 애노드; 캐소드; 및 애노드와 캐소드 사이에 구비된 발광층을 포함하고, 상기 발광층과 캐소드 사이에 다층의 유기물층을 더 포함하며, 상기 발광층이 상기 화합물을 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 애노드; 캐소드; 및 애노드와 캐소드 사이에 구비된 발광층을 포함하고, 상기 캐소드와 발광층 사이에 정공차단층, 전자주입층, 전자수송층, 및 전자 주입 및 수송층 중 1층 이상을 더 포함하며, 상기 발광층이 상기 화합물을 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 애노드; 캐소드; 및 애노드와 캐소드 사이에 구비된 발광층을 포함하고, 상기 캐소드와 발광층 사이에 정공차단층, 및 전자 주입 및 수송층을 포함하며, 상기 발광층이 상기 화합물을 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 애노드; 발광층; 정공차단층; 전자 주입 및 수송층; 및 캐소드가 순차적으로 구비된 구조이며, 상기 발광층이 상기 화합물을 포함한다. 이때, 상기 각 층들 사이에는 추가의 유기물층이 더 구비될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 유기 발광 소자는 애노드; 정공주입층; 정공수송층; 전자차단층; 발광층; 정공차단층; 전자주입 및 수송층; 및 캐소드가 순차적으로 적층된 구조이고, 상기 발광층이 상기 화합물을 포함한다.
예컨대, 본 명세서의 유기 발광 소자의 구조는 도 1 내지 도 3에 나타난 것과 같은 구조를 가질 수 있으나 이에만 한정되는 것은 아니다.
도 1은 기판(1), 애노드(2), 발광층(3) 및 캐소드(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 애노드(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 캐소드(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 3은 기판(1), 애노드(2), 정공주입층(5), 정공수송층(6), 전자차단층(9), 발광층(7), 정공차단층(10), 전자 주입 및 수송층(11) 및 캐소드(4)로 이어진 유기 발광 소자의 예를 도시한 것이다.
구체적으로, 상기 유기 발광 소자는 상기 도면에 명시된 구조 외에 예컨대 하기와 같은 적층 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.
(1) 애노드/정공수송층/발광층/캐소드
(2) 애노드/정공주입층/정공수송층/발광층/캐소드
(3) 애노드/정공수송층/발광층/전자수송층/캐소드
(4) 애노드/정공수송층/발광층/전자수송층/전자주입층/캐소드
(5) 애노드/정공주입층/정공수송층/발광층/전자수송층/캐소드
(6) 애노드/정공주입층/정공수송층/발광층/전자수송층/전자주입층/캐소드
(7) 애노드/정공수송층/전자차단층/발광층/전자수송층/캐소드
(8) 애노드/정공수송층/전자차단층/발광층/전자수송층/전자주입층/캐소드
(9) 애노드/정공주입층/정공수송층/전자차단층/발광층/전자수송층/캐소드
(10) 애노드/정공주입층/정공수송층/전자차단층/발광층/전자수송층/전자주입층/캐소드
(11) 애노드/정공수송층/발광층/정공차단층/전자수송층/캐소드
(12) 애노드/정공수송층/발광층/ 정공차단층/전자수송층/전자주입층/캐소드
(13) 애노드/정공주입층/정공수송층/발광층/정공차단층/전자수송층/캐소드
(14) 애노드/정공주입층/정공수송층/발광층/정공차단층/전자수송층/전자주입층/캐소드
(15) 애노드/정공주입층/정공수송층/전자차단층/발광층/정공차단층/전자수송층/전자주입층/캐소드
본 명세서의 일 실시상태에 따르면, 상기 '전자수송층/전자주입층'은 '전자 주입 및 수송층' 또는 '전자 주입과 전자 수송을 동시에 하는 층'으로 대체될 수 있다. 예컨대, 상기 (15)는 '애노드/정공주입층/정공수송층/전자차단층/발광층/정공차단층/전자 주입 및 수송층/캐소드'의 적층 순서를 가지는 유기 발광 소자일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 '정공주입층/정공수송층'은 '정공 주입 및 수송층' 또는 '정공 주입과 정공 수송을 동시에 하는 층'으로 대체될 수 있다. 예컨대, 상기 (15)는 '애노드/정공 주입 및 수송층/전자차단층/발광층/정공차단층/전자수송층/전자주입층/캐소드'의 적층 순서를 가지는 유기 발광 소자일 수 있다.
상기 애노드는 정공을 주입하는 전극으로, 애노드 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 애노드 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO, Indium Tin Oxide), 인듐아연 산화물(IZO, Indium Zinc Oxide)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 및 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 캐소드는 전자를 주입하는 전극으로, 캐소드 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 본 발명에서 사용될 수 있는 캐소드 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 애노드로부터 발광층으로 정공의 주입을 원활하게 하는 역할을 할 수 있다. 정공 주입 물질로는 낮은 전압에서 애노드로부터 정공을 잘 주입 받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 애노드의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 화합물, 헥사니트릴헥사아자트리페닐렌 계열의 화합물, 퀴나크리돈(quinacridone) 계열의 화합물, 페릴렌(perylene) 계열의 화합물, 벤조니트릴 계열의 화합물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
구체적으로, 상기 정공주입층은 아릴아민 계열의 화합물 및 벤조니트릴계열의 화합물이 사용될 수 있다. 보다 구체적으로, 카바졸기로 치환된 아릴아민계 화합물 및 할로겐기로 치환된 벤조니트릴계 화합물이 사용될 수 있으나, 이들에만 한정되는 것은 아니다.
정공주입층의 두께는 1nm 내지 150nm일 수 있다. 상기 정공주입층의 두께가 1nm 이상이면, 정공 주입 특성이 저하되는 것을 방지할 수 있는 이점이 있고, 150nm 이하이면, 정공주입층의 두께가 너무 두꺼워 정공의 이동을 향상시키기 위해 구동전압이 상승되는 것을 방지할 수 있는 이점이 있다.
본 명세서의 일 실시상태에 따르면, 상기 정공주입층은 하기 화학식 HI-1의 화합물을 포함한다.
[화학식 HI-1]
Figure PCTKR2023019414-appb-img-000037
상기 화학식 HI-1에 있어서,
L101은 직접결합; 또는 치환 또는 비치환된 아릴렌기이고,
R101 내지 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 L101은 직접결합; 치환 또는 비치환된 페닐렌기; 또는 치환 또는 비치환된 나프틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L101은 직접결합; 또는 치환 또는 비치환된 페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L101은 직접결합; 또는 페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 R101 내지 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 단환의 아릴기; 또는 치환 또는 비치환된 다환의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R101 내지 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 안트라세닐기; 치환 또는 비치환된 페난트레닐기; 치환 또는 비치환된 트리페닐레닐기; 치환 또는 비치환된 피렌기; 또는 치환 또는 비치환된 플루오레닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 R101 내지 R103은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 또는 치환 또는 비치환된 플루오레닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 R101 내지 R103은 서로 같거나 상이하고, 각각 독립적으로 페닐기; 바이페닐기; 또는 알킬기로 치환된 플루오레닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 HI-1은 하기 구조 중 어느 하나이다.
Figure PCTKR2023019414-appb-img-000038
본 명세서의 일 실시상태에 따르면, 상기 정공주입층은 하기 화학식 HI-2의 화합물을 포함한다.
[화학식 HI-2]
Figure PCTKR2023019414-appb-img-000039
상기 화학식 HI-2에 있어서,
R111 내지 R113은 서로 같거나 상이하고, 각각 독립적으로 수소; 할로겐기; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이고,
a111 내지 a113은 각각 1 내지 5의 정수이며,
a111이 2 이상일 경우, 2 이상의 R111은 서로 같거나 상이하고,
a112가 2 이상일 경우, 2 이상의 R112는 서로 같거나 상이하며,
a113이 2 이상일 경우, 2 이상의 R113은 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 R111 내지 R113은 서로 같거나 상이하고, 각각 할로겐기; 또는 니트릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R111 내지 R113은 서로 같거나 상이하고, 각각 불소; 또는 니트릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 HI-2는 하기 구조이다.
Figure PCTKR2023019414-appb-img-000040
본 명세서의 일 실시상태에 따르면, 상기 정공주입층은 상기 화학식 HI-1의 화합물 및 상기 화학식 HI-2의 화합물을 포함한다.
상기 정공수송층은 정공의 수송을 원활하게 하는 역할을 할 수 있다. 정공 수송 물질로는 애노드나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 정공 수송 물질의 구체적인 예로는 아릴아민계 화합물, 카바졸계 화합물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 구체적으로, 상기 정공수송층에는 아릴아민기로 치환된 카바졸계 화합물이 사용될 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 정공수송층은 하기 화학식 HT-1의 화합물을 포함한다.
[화학식 HT-1]
Figure PCTKR2023019414-appb-img-000041
상기 화학식 HT-1에 있어서,
L201 및 L202는 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 아릴렌기이고,
R200은 치환 또는 비치환된 아릴기이며,
R201 내지 R204는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, 상기 L201 및 L202는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L201 및 L202는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐렌기; 또는 치환 또는 비치환된 나프틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L201 및 L202는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L201 및 L202는 각각 페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 R200은 치환 또는 비치환된 단환의 아릴기; 또는 치환 또는 비치환된 다환의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R200은 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 안트라세닐기; 치환 또는 비치환된 페난트레닐기; 치환 또는 비치환된 트리페닐레닐기; 치환 또는 비치환된 피렌기; 또는 치환 또는 비치환된 플루오레닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 R200은 치환 또는 비치환된 나프틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 R201 내지 R204는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R201 내지 R204는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 단환의 아릴기; 또는 치환 또는 비치환된 다환의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R201 내지 R204는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 안트라세닐기; 치환 또는 비치환된 페난트레닐기; 치환 또는 비치환된 트리페닐레닐기; 치환 또는 비치환된 피렌기; 또는 치환 또는 비치환된 플루오레닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 R201 내지 R204는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 R201 내지 R204는 각각 페닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 HT-1은 하기 구조이다.
Figure PCTKR2023019414-appb-img-000042
상기 정공주입층과 정공수송층 사이에 추가로 정공버퍼층이 구비될 수 있으며, 당 기술분야에 알려져 있는 정공주입 또는 수송재료를 포함할 수 있다.
상기 정공수송층과 발광층 사이에 전자차단층이 구비될 수 있다. 상기 전자차단층에는 전술한 화합물 또는 당 기술분야에 알려져 있는 재료가 사용될 수 있다. 구체적으로, 상기 전자차단층에는 카바졸계 화합물이 사용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 전자차단층은 하기 화학식 EB-1의 화합물을 포함한다.
[화학식 EB-1]
Figure PCTKR2023019414-appb-img-000043
상기 화학식 EB-1에 있어서,
L301은 치환 또는 비치환된 아릴렌기이고,
R301 및 R302는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 L301은 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L301은 치환 또는 비치환된 페닐렌기; 또는 치환 또는 비치환된 바이페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L301은 바이페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 R301 및 R302는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 안트라세닐기; 치환 또는 비치환된 페난트레닐기; 치환 또는 비치환된 트리페닐레닐기; 치환 또는 비치환된 피렌기; 또는 치환 또는 비치환된 플루오레닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 R301 및 R302는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 또는 치환 또는 비치환된 바이페닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 R301 및 R302는 서로 같거나 상이하고, 각각 독립적으로 아릴기로 치환 또는 비치환된 바이페닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 EB-1은 하기 구조이다.
Figure PCTKR2023019414-appb-img-000044
상기 발광층은 적색, 녹색 또는 청색을 발광할 수 있으며, 인광 물질 또는 형광 물질로 이루어질 수 있다. 상기 발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송 받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 예컨대, 상기 발광 물질로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌; 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
발광층의 호스트 재료로는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 예컨대, 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이들에만 한정되는 것은 아니다. 구체적으로, 상기 발광층의 호스트로는 본 발명의 화학식 1의 화합물이 사용될 수 있으나, 이에만 한정되는 것은 아니다.
발광층이 적색 발광을 하는 경우, 발광 도펀트로는 PIQIr(acac)(bis(1-phenylisoquinoline)acetylacetonateiridium), PQIr(acac)(bis(1-phenylquinoline)acetylacetonate iridium), PQIr(tris(1-phenylquinoline)iridium), PtOEP(octaethylporphyrin platinum)와 같은 인광 물질이나, Alq3(tris(8-hydroxyquinolino)aluminum)와 같은 형광 물질이 사용될 수 있으나, 이들에만 한정되는 것은 아니다. 발광층이 녹색 발광을 하는 경우, 발광 도펀트로는 Ir(ppy)3(tris(2-phenylpyridine)iridium)와 같은 인광물질이나, Alq3(tris(8-hydroxyquinolino)aluminum)와 같은 형광 물질이 사용될 수 있으나, 이들에만 한정되는 것은 아니다. 발광층이 청색 발광을 하는 경우, 발광 도펀트로는 (4,6-F2ppy)2Irpic와 같은 인광 물질이나, spiro-DPVBi, spiro-6P, 디스틸벤젠(DSB), 디스트릴아릴렌(DSA), 피렌계 화합물, PFO계 고분자, PPV계 고분자와 같은 형광 물질이 사용될 수 있으나, 이들에만 한정되는 것은 아니다. 구체적으로, 상기 도펀트로는 피렌계 화합물이 사용될 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 도펀트는 하기 화학식 D의 화합물을 포함한다.
[화학식 D]
Figure PCTKR2023019414-appb-img-000045
상기 화학식 D에 있어서,
X1 및 X2는 서로 같거나 상이하고, 각각 독립적으로 CR'; 또는 NR"이고, X1 및 X2 중 적어도 하나는 NR"이며,
R401 내지 R403, R' 및 R"은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이거나, 인접한 기와 서로 결합하여, 치환 또는 비치환된 고리를 형성하고,
r401 및 r403은 각각 0 내지 4의 정수이고, r402는 0 내지 3의 정수이고, r401 내지 r403이 각각 2 이상인 경우 괄호 내의 치환기는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 R401 내지 R403은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R401 내지 R403은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 따르면, 상기 R401 내지 R403은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 직쇄 또는 분지쇄의 알킬기이다.
본 명세서의 일 실시상태에 따르면, 상기 R401 내지 R403은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 탄소수 1 내지 30의 직쇄의 알킬기; 또는 탄소수 4 내지 30의 분지쇄의 알킬기이다.
본 명세서의 일 실시상태에 따르면, 상기 R401 내지 R403은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 또는 탄소수 4 내지 30의 분지쇄의 알킬기이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 및 X2는 서로 같거나 상이하고, 각각 독립적으로 NR''이고, R''은 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 및 X2는 서로 같거나 상이하고, 각각 독립적으로 NR''이고, R''은 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 및 X2는 서로 같거나 상이하고, 각각 독립적으로 NR''이고, R''은 알킬기로 치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 D는 하기 구조이다.
Figure PCTKR2023019414-appb-img-000046
본 명세서의 일 실시상태에 따르면, 상기 발광층은 상기 화학식 1의 화합물을 발광층의 호스트로 포함하고, 상기 화학식 D의 화합물을 발광층의 도펀트로 포함한다.
본 발명의 일 실시상태에 따르면, 상기 발광층 내에서 상기 화학식 1의 화합물과 상기 화학식 D의 화합물의 중량비는 100:1 내지 1:1이다. 구체적으로, 70:1 내지 2:1, 또는 50:1 내지 3:1이다.
상기 캐소드와 발광층 사이에 정공차단층이 구비될 수 있다. 상기 정공차단층은 정공의 캐소드 도달을 저지하는 층으로, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 정공 차단 물질의 구체적인 예로는 옥사디아졸 유도체나 트리아졸 유도체, 트리아진 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이들에만 한정되는 것은 아니다. 구체적으로, 트리아진 유도체가 사용될 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 정공차단층는 하기 화학식 HB-1의 화합물을 포함한다.
[화학식 HB-1]
Figure PCTKR2023019414-appb-img-000047
상기 화학식 HB-1에 있어서,
L501 내지 L503은 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 아릴렌기이고,
R501 내지 R504는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이다.
본 명세서의 일 실시상태에 따르면, 상기 L501 내지 L503은 서로 같거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 페닐렌기; 치환 또는 비치환된 바이페닐렌기; 또는 치환 또는 비치환된 나프틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L501 내지 L503은 서로 같거나 상이하고, 각각 독립적으로 직접결합; 또는 치환 또는 비치환된 바이페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L501 및 L502는 서로 같거나 상이하고, 각각 독립적으로 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 L503은 치환 또는 비치환된 바이페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L503은 바이페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 R501 내지 R504는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R501 내지 R504는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 단환의 아릴기; 또는 치환 또는 비치환된 다환의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R501 내지 R504는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 안트라세닐기; 치환 또는 비치환된 페난트레닐기; 치환 또는 비치환된 트리페닐레닐기; 치환 또는 비치환된 피렌기; 또는 치환 또는 비치환된 플루오레닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 R501 내지 R504는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐기; 또는 치환 또는 비치환된 나프틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 R501 내지 R504는 서로 같거나 상이하고, 각각 독립적으로 나프틸기로 치환 또는 비치환된 페닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 HB-1은 하기 구조 중 어느 하나이다.
Figure PCTKR2023019414-appb-img-000048
상기 전자수송층은 전자의 수송을 원활하게 하는 역할을 할 수 있다. 전자 수송 물질로는 캐소드로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 예컨대, 상기 전자 수송 물질로는 8-히드록시퀴놀린의 Al 착물, Alq3를 포함한 착물, 유기 라디칼 화합물, 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자수송층의 두께는 1nm 내지 50nm일 수 있다. 전자수송층의 두께가 1nm 이상이면 전자 수송 특성이 저하되는 것을 방지할 수 있는 이점이 있고, 50nm 이하이면 전자수송층의 두께가 너무 두꺼워 전자의 이동을 향상시키기 위해 구동전압이 상승되는 것을 방지할 수 있는 이점이 있다.
상기 전자주입층은 전자의 주입을 원활하게 하는 역할을 할 수 있다. 전자 주입 물질로는 전자를 수송하는 능력을 갖고, 캐소드로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 박막형성능력이 우수한 화합물이 바람직하다. 예컨대, 상기 전자 주입 물질로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 트리아진, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
상기 전자수송층 및 전자주입층은 단층으로 형성될 수 있다. 예컨대, 전자 주입 물질과 전자 수송 물질을 동시에 진공증착하거나, 전자 주입 및 수송 효과를 동시에 나타내는 물질을 진공증착하여 전자 주입 및 수송층을 형성할 수 있다.
상기 전자주입 및 수송층은 금속 착체를 더 포함할 수 있다. 상기 금속 착체의 예로는 8-히드록시퀴놀린의 Al 착물(Alq3), LiQ, 금속 착체 화합물 등이 있으나, 이에만 한정되지 않는다. 예컨대, 상기 전자 주입 및 수송층은 트리아진 유도체와 리튬퀴놀라이트(LiQ)가 사용될 수 있으나, 이에만 한정되는 것은 아니다
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 본 명세서에 따른 유기 발광 소자는 다양한 전자 장치에 포함되어 사용될 수 있다. 예컨대, 상기 전자 장치는 디스플레이 패널, 터치 패널, 태양광 모듈, 조명 장치 등일 수 있고, 이에 한정되지 않는다.
이하, 본 명세서를 구체적으로 설명하기 위해 실험예를 들어 상세하기 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
< 제조예 1> 화합물 1의 합성
Figure PCTKR2023019414-appb-img-000049
질소 분위기에서 500 mL 둥근 바닥 플라스크에 9-브로모-10-페닐아트라센(9-bromo-10-phenylanthracene) (5.50 g, 16.51 mmol), 및 화합물 a-1(8.65 g, 18.16 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(Pd(PPh3)4)(0.57 g, 0.50 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 280 mL로 재결정하여 화합물 1(6.12 g, 수율: 61%)를 제조하였다. MS[M+H]+= 533
< 제조예 2> 화합물 2의 합성
Figure PCTKR2023019414-appb-img-000050
질소 분위기에서 500 mL 둥근 바닥 플라스크에 9-브로모-10-페닐안트라센(9-bromo-10-phenylanthracene) (5.50 g, 16.51 mmol), 및 화합물 a-2(4.55 g, 14.51 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.70 g, 0.60 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 310 mL로 재결정하여 화합물 2(4.55 g, 수율: 62%)를 제조하였다. MS[M+H]+= 533
< 제조예 3> 화합물 3의 합성
Figure PCTKR2023019414-appb-img-000051
질소 분위기에서 500 mL 둥근 바닥 플라스크에 9-브로모-10-페닐안트라센(9-bromo-10-phenylanthracene) (5.50 g, 16.51 mmol), 및 화합물 a-3(8.65. g, 18.16 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.57 g, 0.50 mmol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 270 mL로 재결정하여 화합물 3(5.23 g, 수율: 53%)을 제조하였다. MS[M+H]+= 583
< 제조예 4> 화합물 4의 합성
Figure PCTKR2023019414-appb-img-000052
질소 분위기에서 500 mL 둥근 바닥 플라스크에 9-브로모-10-페닐안트라센(9-bromo-10-phenylanthracene) (5.50 g, 14.35 mmol), 및 화합물 a-4(7.52 g, 15.79 mmol)를 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.50 g, 0.43 mmol)을 넣은 후 6시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 260 mL로 재결정하여 화합물 4(5.77 g, 수율: 62%)를 제조하였다. MS[M+H]+= 633
< 제조예 5> 화합물 5의 합성
Figure PCTKR2023019414-appb-img-000053
질소 분위기에서 500 mL 둥근 바닥 플라스크에 9-브로모-10-페닐안트라센(9-bromo-10-phenylanthracene) (5.50 g, 14.35 mmol), 및 화합물 a-5(7.52 g, 15.79 mmol)를 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.50 g, 0.43 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 230 mL로 재결정하여 화합물 5(6.45 g, 수율: 69%)를 제조하였다. MS[M+H]+= 607
< 제조예 6> 화합물 6의 합성
Figure PCTKR2023019414-appb-img-000054
질소 분위기에서 500 mL 둥근 바닥 플라스크에 9-([1,1'-바이페닐]-2-일-d9)-10-브로모안트라센-1,2,3,4,5,6,7,8-d8(9-([1,1'-biphenyl]-2-yl-d9)-10-bromoanthracene-1,2,3,4,5,6,7,8-d8) (5.50 g, 13.45 mmol), 및 화합물 a-6(7.05 g, 14.79 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.47 g, 0.40 mmol)을 넣은 후 6시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 270 mL로 재결정하여 화합물 6(7.04 g, 수율: 77%)을 제조하였다. MS[M+H]+= 641
< 제조예 7> 화합물 7의 합성
Figure PCTKR2023019414-appb-img-000055
질소 분위기에서 500 mL 둥근 바닥 플라스크에 9-([1,1'-바이페닐]-3-일)-10-브로모안트라센-1,2,3,4,5,6,7,8-d8(9-([1,1'-biphenyl]-3-yl)-10-bromoanthracene-1,2,3,4,5,6,7,8-d8) (5.50 g, 13.45 mmol), 및 화합물 a-7(7.05 g, 14.79 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.47 g, 0.40 mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 260 mL로 재결정하여 화합물 7(6.18 g, 수율: 68%)을 제조하였다. MS[M+H]+= 632
< 제조예 8> 화합물 8의 합성
Figure PCTKR2023019414-appb-img-000056
질소 분위기에서 500 mL 둥근 바닥 플라스크에 9-브로모-10-(나프탈렌-1-일)안트라센-1,2,3,4,5,6,7,8-d8(9-bromo-10-(naphthalen-1-yl)anthracene-1,2,3,4,5,6,7,8-d8) (5.50 g, 13.45 mmol), 및 화합물 a-3(7.05 g, 14.79 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.47 g, 0.40 mmol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 250 mL로 재결정하여 화합물 8(5.45 g, 수율: 60%)을 제조하였다. MS[M+H]+= 641
< 제조예 9> 화합물 9의 합성
Figure PCTKR2023019414-appb-img-000057
질소 분위기에서 500 mL 둥근 바닥 플라스크에 9-브로모-10-(나프탈렌-2-일-d7)안트라센-1,2,3,4,5,6,7,8-d8(9-bromo-10-(naphthalen-2-yl-d7)anthracene-1,2,3,4,5,6,7,8-d8) (5.50 g, 12.69 mmol), 및 화합물 a-4(6.65 g, 13.96 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.44 g, 0.38 mmol)을 넣은 후 7시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 270 mL로 재결정하여 화합물 9(6.22 g, 수율: 70%)를 제조하였다. MS[M+H]+= 698
< 제조예 10> 화합물 10의 합성
Figure PCTKR2023019414-appb-img-000058
질소 분위기에서 500 mL 둥근 바닥 플라스크에 9-([1,1'-바이페닐]-4-일)-10-브로모안트라센-1,2,3,4,5,6,7,8-d8(9-([1,1'-biphenyl]-4-yl)-10-bromoanthracene-1,2,3,4,5,6,7,8-d8) (5.50 g, 15.90 mmol), 및 화합물 a-8(8.33 g, 17.49 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.55 g, 0.48 mmol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 280 mL로 재결정하여 화합물 10(6.69 g, 수율: 68%)을 제조하였다. MS[M+H]+= 709
< 제조예 11> 화합물 11의 합성
Figure PCTKR2023019414-appb-img-000059
질소 분위기에서 500 mL 둥근 바닥 플라스크에 9-브로모-10-(4-(나프탈렌-1-일-d7)페닐-2,3,5,6-d4)안트라센-1,2,3,4,5,6,7,8-d8(9-bromo-10-(4-(naphthalen-1-yl-d7)phenyl-2,3,5,6-d4)anthracene-1,2,3,4,5,6,7,8-d8) (5.50 g, 16.13 mmol), 및 화합물 a-9(8.45 g, 17.74 mmol)를 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.56 g, 0.48 mmol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 280 mL로 재결정하여 화합물 11(6.17 g, 수율: 63%)을 제조하였다. MS[M+H]+= 682
< 제조예 12> 화합물 12의 합성
Figure PCTKR2023019414-appb-img-000060
질소 분위기에서 500 mL 둥근 바닥 플라스크에 9-(10-브로모안트라센-9-일-1,2,3,4,5,6,7,8-d8)페난트렌-1,2,3,4,5,6,7,8,10-d9(9-(10-bromoanthracen-9-yl-1,2,3,4,5,6,7,8-d8)phenanthrene-1,2,3,4,5,6,7,8,10-d9) (5.50 g, 12.90 mmol), 및 화합물 a-4(6.76 g, 14.19 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.45 g, 0.39 mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 톨루엔 280 mL로 재결정하여 화합물 12(5.77 g, 수율: 64%)를 제조하였다. MS[M+H]+= 751
실시예 1-1.
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 양극인 ITO 투명 전극 위에 하기 화합물 HI1 및 하기 화합물 HI2의 화합물을 98:2(몰비)의 비가 되도록 100Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 화학식 HT1으로 표시되는 화합물(1150Å)을 진공 증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 50Å으로 EB1의 화합물을 진공 증착하여 전자차단층을 형성하였다. 이어서, 상기 전자차단층 위에 막 두께 200Å으로 상기 제조예 1에서 합성한 화합물 1 및 하기 화학식 BD로 표시되는 화합물을 25:1의 중량비로 진공증착하여 발광층을 형성하였다. 상기 발광층 위에 막 두께 50Å으로 HB1의 화합물을 진공 증착하여 정공차단층을 형성하였다. 이어서, 상기 정공차단층 위에 하기 화학식 ET1으로 표시되는 화합물과 하기 화학식 LiQ로 표시되는 화합물을 1:1의 중량비로 진공증착하여 310Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2023019414-appb-img-000061
상기의 과정에서 유기물의 증착속도는 0.4Å/sec 내지 0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2x10-7 torr 내지 5x10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.
실시예 1-2 내지 실시예 1-12.
상기 실시예 1-1에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 1-1 내지 1-8.
상기 실시예 1-1에서 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 1에서 사용한 BH1 내지 BH8의 화합물은 하기와 같다.
Figure PCTKR2023019414-appb-img-000062
실험예 .
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 색좌표 및 수명을 측정하고 그 결과를 하기 표 1에 나타내었다. T95은 휘도가 초기 휘도(1600 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
화합물
(발광층)
전압
(V
@10mA/cm2)
효율
(cd/A
@10mA/cm2)
색좌표
(x,y)
T95
(hr)
실시예 1-1 화합물 1 4.41 6.50 (0.146, 0.046) 274
실시예 1-2 화합물 2 4.43 6.56 (0.145, 0.046) 263
실시예 1-3 화합물 3 4.42 6.57 (0.146, 0.045) 268
실시예 1-4 화합물 4 4.44 6.58 (0.147, 0.047) 271
실시예 1-5 화합물 5 4.45 6.56 (0.146, 0.046) 268
실시예 1-6 화합물 6 4.43 6.59 (0.145, 0.046) 298
실시예 1-7 화합물 7 4.46 6.55 (0.146, 0.045) 289
실시예 1-8 화합물 8 4.47 6.53 (0.147, 0.046) 277
실시예 1-9 화합물 9 4.41 6.45 (0.146, 0.046) 281
실시예 1-10 화합물 10 4.48 6.56 (0.147, 0.045) 288
실시예 1-11 화합물 11 4.41 6.53 (0.146, 0.046) 292
실시예 1-12 화합물 12 4.49 6.52 (0.147, 0.046) 283
비교예 1-1 BH1 4.86 5.97 (0.146, 0.045) 163
비교예 1-2 BH2 4.73 6.12 (0.146, 0.045) 221
비교예 1-3 BH3 5.14 5.66 (0.146, 0.046) 82
비교예 1-4 BH4 6.28 4.38 (0.145, 0.045) 61
비교예 1-5 BH5 4.58 6.10 (0.146, 0.047) 238
비교예 1-6 BH6 4.57 6.08 (0.146, 0.048) 252
비교예 1-7 BH7 4.99 6.14 (0.147, 0.047) 261
비교예 1-8 BH8 4.84 6.17 (0.146, 0.048) 267
상기 표 1에 나타난 바와 같이, 본 발명의 화합물을 발광층에 적용한 유기 발광 소자는, 효율, 구동 전압 및 안정성 면에서 우수한 특성을 나타내었다.
구체적으로, 본원 발명의 화합물을 사용한 유기 발광 소자(실시예 1-1 내지 1-12)는 BH1 내지 BH8의 화합물을 사용하여 제조된 비교예 1-1 내지 1-8의 유기 발광 소자보다 저전압, 고효율 및 장수명의 특성을 나타내었다.
이상을 통해 본 발명의 바람직한 실시예(발광층)에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속한다.

Claims (11)

  1. 하기 화학식 1의 화합물:
    [화학식 1]
    Figure PCTKR2023019414-appb-img-000063
    상기 화학식 1에 있어서,
    A는 2 이상의 탄화수소고리가 축합된 축합 아릴기이고,
    B는 치환 또는 비치환된 아릴기이며,
    R1 내지 R16은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이다.
  2. 청구항 1에 있어서, 상기 A는 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 페난트레닐기; 치환 또는 비치환된 플루오란테닐기; 또는 치환 또는 비치환된 트리페닐레닐기인 것인 화합물.
  3. 청구항 1에 있어서, 상기 A는 중수소로 치환 또는 비치환된 나프틸기; 중수소로 치환 또는 비치환된 페난트레닐기; 중수소로 치환 또는 비치환된 플루오란테닐기; 또는 중수소로 치환 또는 비치환된 트리페닐레닐기인 것인 화합물.
  4. 청구항 1에 있어서, 상기 A는 하기 구조 중 어느 하나인 것인 화합물:
    Figure PCTKR2023019414-appb-img-000064
    상기 구조에 있어서,
    d1은 0 내지 7의 정수이고, d2는 0 내지 9의 정수이며, d3은 0 내지 8의 정수이고, d4 및 d8은 각각 0 내지 3의 정수이며, d5는 0 내지 5의 정수이고, d6은 0 내지 4의 정수이며, d7은 0 내지 6의 정수이고,
    Figure PCTKR2023019414-appb-img-000065
    는 상기 화학식 1에 결합되는 부분이다.
  5. 청구항 1에 있어서, 상기 B는 치환 또는 비치환된 페닐기; 치환 또는 비치환된 바이페닐기; 치환 또는 비치환된 터페닐기; 치환 또는 비치환된 나프틸기; 치환 또는 비치환된 페난트레닐기; 또는 치환 또는 비치환된 트리페닐레닐기인 것인 화합물.
  6. 청구항 1에 있어서, 상기 B는 하기 구조 중 어느 하나 또는 둘 이상이 연결된 구조이고, 하기 구조는 중수소로 치환 또는 비치환되는 것인 화합물:
    Figure PCTKR2023019414-appb-img-000066
    상기 구조에 있어서,
    Figure PCTKR2023019414-appb-img-000067
    는 상기 화학식 1에 결합되는 부분이다.
  7. 청구항 1에 있어서, R1 내지 R16은 각각 수소; 또는 중수소인 것인 화합물.
  8. 청구항 1에 있어서, 상기 화합물은 하기 구조들 중에서 선택되는 어느 하나인 것인 화합물:
    Figure PCTKR2023019414-appb-img-000068
    Figure PCTKR2023019414-appb-img-000069
    Figure PCTKR2023019414-appb-img-000070
    Figure PCTKR2023019414-appb-img-000071
    Figure PCTKR2023019414-appb-img-000072
    Figure PCTKR2023019414-appb-img-000073
    Figure PCTKR2023019414-appb-img-000074
    Figure PCTKR2023019414-appb-img-000075
    Figure PCTKR2023019414-appb-img-000076
    Figure PCTKR2023019414-appb-img-000077
    Figure PCTKR2023019414-appb-img-000078
    Figure PCTKR2023019414-appb-img-000079
    Figure PCTKR2023019414-appb-img-000080
    Figure PCTKR2023019414-appb-img-000081
    Figure PCTKR2023019414-appb-img-000082
    Figure PCTKR2023019414-appb-img-000083
    Figure PCTKR2023019414-appb-img-000084
    Figure PCTKR2023019414-appb-img-000085
    Figure PCTKR2023019414-appb-img-000086
    Figure PCTKR2023019414-appb-img-000087
    Figure PCTKR2023019414-appb-img-000088
    Figure PCTKR2023019414-appb-img-000089
    Figure PCTKR2023019414-appb-img-000090
    Figure PCTKR2023019414-appb-img-000091
    Figure PCTKR2023019414-appb-img-000092
    Figure PCTKR2023019414-appb-img-000093
    .
  9. 애노드;
    캐소드; 및
    상기 애노드와 상기 캐소드 사이에 구비된 1층 이상의 유기물층을 포함하고,
    상기 유기물층 중 1층 이상은 청구항 1 내지 8 중 어느 한 항에 따른 화합물을 포함하는 것인 유기 발광 소자.
  10. 청구항 9에 있어서, 상기 화학식 1의 화합물을 포함하는 유기물층은 발광층인 것인 유기 발광 소자.
  11. 청구항 10에 있어서, 상기 발광층은 하기 화학식 D의 화합물을 더 포함하는 것인 유기 발광 소자.
    [화학식 D]
    Figure PCTKR2023019414-appb-img-000094
    상기 화학식 D에 있어서,
    X1 및 X2는 서로 같거나 상이하고, 각각 독립적으로 CR'; 또는 NR"이고, X1 및 X2 중 적어도 하나는 NR"이며,
    R401 내지 R403, R' 및 R"은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로고리기이거나, 인접한 기와 서로 결합하여, 치환 또는 비치환된 고리를 형성하고,
    r401 및 r403은 각각 0 내지 4의 정수이고, r402는 0 내지 3의 정수이고, r401 내지 r403이 각각 2 이상인 경우 괄호 내의 치환기는 서로 같거나 상이하다.
PCT/KR2023/019414 2022-11-30 2023-11-29 화합물 및 이를 포함하는 유기 발광 소자 WO2024117760A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220164765 2022-11-30
KR10-2022-0164765 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024117760A1 true WO2024117760A1 (ko) 2024-06-06

Family

ID=91324650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/019414 WO2024117760A1 (ko) 2022-11-30 2023-11-29 화합물 및 이를 포함하는 유기 발광 소자

Country Status (2)

Country Link
KR (1) KR20240081414A (ko)
WO (1) WO2024117760A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110049554A (ko) * 2009-11-05 2011-05-12 엘지디스플레이 주식회사 청색 형광 화합물 및 이를 포함하는 유기전계발광소자
KR20120122897A (ko) * 2011-04-29 2012-11-07 에스에프씨 주식회사 신규한 화합물 및 이를 포함하는 유기전계발광소자
KR20200047400A (ko) * 2018-10-26 2020-05-07 롬엔드하스전자재료코리아유한회사 복수 종의 발광 재료 및 이를 포함하는 유기 전계 발광 소자
KR20230132040A (ko) * 2022-03-08 2023-09-15 주식회사 엘지화학 코팅 조성물, 이를 포함하는 유기 발광 소자 및 이의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI667228B (zh) 2015-09-24 2019-08-01 南韓商Lg化學股份有限公司 化合物及含有該化合物的有機電子裝置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110049554A (ko) * 2009-11-05 2011-05-12 엘지디스플레이 주식회사 청색 형광 화합물 및 이를 포함하는 유기전계발광소자
KR20120122897A (ko) * 2011-04-29 2012-11-07 에스에프씨 주식회사 신규한 화합물 및 이를 포함하는 유기전계발광소자
KR20200047400A (ko) * 2018-10-26 2020-05-07 롬엔드하스전자재료코리아유한회사 복수 종의 발광 재료 및 이를 포함하는 유기 전계 발광 소자
KR20230132040A (ko) * 2022-03-08 2023-09-15 주식회사 엘지화학 코팅 조성물, 이를 포함하는 유기 발광 소자 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE Registry 6 July 2005 (2005-07-06), ANONYMOUS: " Anthracene, 9-[1,1'-biphenyl]-4-yl-10-(2',5'-di-1-naphthalenyl[1,1'- biphenyl]-4-yl)- (CA INDEX NAME)", XP093176708, retrieved from STNext Database accession no. 853945-43-4 *

Also Published As

Publication number Publication date
KR20240081414A (ko) 2024-06-07

Similar Documents

Publication Publication Date Title
WO2019132506A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019235873A1 (ko) 유기 발광 소자
WO2020145725A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020091521A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020138963A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2018182297A1 (ko) 벤조카바졸계 화합물 및 이를 포함하는 유기 발광 소자
WO2019156405A1 (ko) 화합물 및 이를 포함한 유기 발광 소자
WO2020122451A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019164218A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2020076109A1 (ko) 유기발광소자
WO2021125813A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019194615A1 (ko) 다환 화합물 및 이를 포함하는 유기전자소자
WO2021091165A1 (ko) 유기 발광 소자
WO2017052221A1 (ko) 신규 화합물 및 이를 포함하는 유기 발광 소자
WO2021029709A1 (ko) 유기 발광 소자
WO2018070840A1 (ko) 유기전계 발광 소자
WO2020231242A1 (ko) 유기 발광 소자
WO2020149610A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022239962A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022108258A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021194261A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246835A9 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246837A9 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020153652A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020153653A1 (ko) 화합물 및 이를 포함하는 유기발광소자