WO2024117535A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2024117535A1
WO2024117535A1 PCT/KR2023/015999 KR2023015999W WO2024117535A1 WO 2024117535 A1 WO2024117535 A1 WO 2024117535A1 KR 2023015999 W KR2023015999 W KR 2023015999W WO 2024117535 A1 WO2024117535 A1 WO 2024117535A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat exchanger
air conditioner
indoor
indoor heat
Prior art date
Application number
PCT/KR2023/015999
Other languages
French (fr)
Korean (ko)
Inventor
김한국
김호준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2024117535A1 publication Critical patent/WO2024117535A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present invention relates to an air conditioner, and particularly to an air conditioner capable of removing foreign substances adsorbed on an indoor heat exchanger.
  • Air conditioners are installed to create a more comfortable indoor environment for humans by discharging hot and cold air into the room to control the indoor temperature and purify the indoor air.
  • an air conditioner includes an indoor unit composed of a heat exchanger and installed indoors, and an outdoor unit composed of a compressor and a heat exchanger that supplies refrigerant to the indoor unit.
  • Air conditioners operate for cooling or heating depending on the flow of refrigerant.
  • high-temperature, high-pressure liquid refrigerant is supplied from the outdoor unit's compressor through the outdoor unit's heat exchanger to the indoor unit.
  • the refrigerant expands and vaporizes in the indoor unit's heat exchanger, the temperature of the surrounding air decreases, and the indoor unit fan rotates. Accordingly, cold air is discharged into the room.
  • high-temperature, high-pressure gaseous refrigerant is supplied from the compressor of the outdoor unit to the indoor unit, and air warmed by the energy released as the high-temperature, high-pressure gaseous refrigerant is liquefied in the heat exchanger of the indoor unit is supplied to the indoor unit by the operation of the indoor unit fan. is discharged as
  • Conventional air conditioners use a refrigerant cycle to form frost on the surface of the heat exchanger of the indoor unit, as in prior art 1 (Japanese Patent Publication No. 2010-014288), in order to remove foreign substances adsorbed on the heat exchanger of the indoor unit. After doing so, a defrost operation is performed to remove frost formed on the surface of the heat exchanger. At this time, as the water formed on the surface of the heat exchanger during the defrosting operation flows and is drained, foreign substances adsorbed on the heat exchanger of the indoor unit, etc. can be removed along with the water.
  • the conventional air conditioner operates so that water droplets first condense on the surface of the heat exchanger of the indoor unit before forming frost on the surface of the heat exchanger of the indoor unit, as in Prior Art 2 (Japanese Patent Publication No. 2018-200128). When removing foreign substances, it may operate to drain a larger amount of water.
  • the present disclosure aims to solve the above-described problems and other problems.
  • Another purpose is to provide an air conditioner that can effectively remove foreign substances adsorbed on an indoor heat exchanger only by detecting temperature.
  • Another purpose is to provide an air conditioner that can prevent damage to the compressor that may occur while removing foreign substances adsorbed on an indoor heat exchanger.
  • Another purpose is to provide an air conditioner that can more effectively remove foreign substances adsorbed on the indoor heat exchanger by repeating the operation of removing foreign substances adsorbed on the indoor heat exchanger by considering whether the foreign substances adsorbed on the indoor heat exchanger are sufficiently removed. It is in
  • an air conditioner includes a compressor that compresses and discharges a refrigerant; an indoor heat exchanger that exchanges heat between the refrigerant and indoor air; A heat exchanger temperature sensor that detects the temperature of the indoor heat exchanger; an indoor temperature sensor that detects the indoor temperature; and a control unit, wherein the control unit performs primary control on the compressor based on a first target temperature for the temperature of the indoor heat exchanger, which corresponds to the temperature of the room, and the primary control is terminated. When this occurs, secondary control is performed on the compressor based on the second target temperature for the temperature of the indoor heat exchanger, which is below zero and lower than the first target temperature.
  • the compressor is controlled for a predetermined period of time.
  • the operating frequency of is set to a preset minimum frequency, and when the predetermined time elapses, it can be determined whether to repeat the performance of the primary control based on the conditions related to the secondary control.
  • foreign substances adsorbed on an indoor heat exchanger can be effectively removed only by detecting temperature.
  • the operation of removing foreign substances adsorbed on the indoor heat exchanger is repeated in consideration of whether the foreign substances adsorbed on the indoor heat exchanger are sufficiently removed according to the purpose, thereby removing the foreign substances adsorbed on the indoor heat exchanger. can be removed more effectively.
  • FIG. 1 is a diagram showing an example of the configuration of an air conditioner according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of an outdoor unit and an indoor unit according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of an air conditioner according to an embodiment of the present invention.
  • 4 to 6 are flowcharts showing a method of operating an air conditioner according to various embodiments of the present invention.
  • module and “part” for components used in the following description are simply given in consideration of the ease of writing this specification, and do not in themselves give any particularly important meaning or role. Accordingly, the terms “module” and “unit” may be used interchangeably.
  • FIG. 1 is a diagram showing an example of the configuration of an air conditioner according to an embodiment of the present invention.
  • an air conditioner 100 may include an outdoor unit 21 and an indoor unit 31 connected to the outdoor unit 21.
  • the indoor unit 31 is described as a wall-mounted air conditioner, but is not limited thereto.
  • the air conditioner 100 may further include at least one of a ventilator, an air purifier, a humidifier, and a heater, and may operate in conjunction with the operations of the indoor unit 31 and the outdoor unit 21.
  • the outdoor unit 21 includes a compressor (not shown) that receives and compresses the refrigerant, an outdoor heat exchanger (not shown) that exchanges heat between the refrigerant and outdoor air, and an accumulator that extracts gaseous refrigerant from the supplied refrigerant and supplies it to the compressor. (not shown), a four-way valve (not shown) that selects the refrigerant flow path according to the heating operation, and an expansion valve (not shown) that expands the supplied refrigerant. Additionally, the outdoor unit 21 may further include a plurality of sensors, valves, and an oil recovery device.
  • the outdoor unit 21 operates the provided compressor and outdoor heat exchanger to compress or heat exchange the refrigerant according to settings and supply the refrigerant to the indoor unit 31.
  • the outdoor unit 21 may be driven by a remote controller (not shown) or a demand from the indoor unit 31. At this time, as the cooling/heating capacity varies in response to the indoor unit 31 being driven, the operating number of outdoor units and the operating number of compressors installed in the outdoor unit may also vary.
  • the outdoor unit 21 can supply compressed refrigerant to the connected indoor unit 31.
  • the indoor unit 31 can receive refrigerant from the outdoor unit 21 and discharge cold and hot air into the room.
  • the indoor unit 31 may include an indoor heat exchanger (not shown), an indoor unit fan (not shown), and a plurality of sensors (not shown).
  • the indoor unit 31 is disposed adjacent to the indoor heat exchanger, and includes a drain pan (not shown) that collects water generated by heat exchange of the indoor heat exchanger, and a drain pipe (not shown) that discharges the water collected in the drain pan to the outside. Poetry) may be included.
  • the outdoor unit 21 and the indoor unit 31 can communicate with each other.
  • the outdoor unit 21 and the indoor unit 31 are connected through a communication line and can transmit and receive data to each other.
  • the outdoor unit 21 and the indoor unit 31 may be connected to a remote controller (not shown) by wire or wirelessly and operate under the control of the remote controller (not shown).
  • the remote control 41 is connected to the indoor unit 31 and can transmit a user's control command to the indoor unit 31.
  • the remote control 41 can receive and display status information of the indoor unit 31.
  • the remote control 41 can communicate wired or wirelessly depending on the connection type with the indoor unit 31.
  • FIG. 2 is a schematic diagram of an outdoor unit and an indoor unit according to an embodiment of the present invention. Detailed descriptions of content that overlaps with that described in FIG. 1 will be omitted.
  • the outdoor unit 21 includes a compressor 102 that serves to compress the refrigerant, a compressor motor 102b that drives the compressor 102, and an outdoor unit that serves to radiate heat from the compressed refrigerant.
  • An outdoor blower (105) consisting of a heat exchanger (104), an outdoor fan (105a) disposed on one side of the outdoor heat exchanger (104) to promote heat dissipation of the refrigerant, and a motor (105b) that rotates the outdoor fan (105a); , an expansion valve 106 that expands the condensed refrigerant, a cooling/heating switching valve 110 that changes the flow path of the compressed refrigerant, and a vaporized refrigerant that is stored for a while to remove moisture and foreign substances and then supplies the refrigerant at a constant pressure. It may include an accumulator 103 that supplies power to the compressor.
  • the compressor 102 may be, for example, at least one of an inverter compressor and a constant speed compressor.
  • the expansion valve 106 may be, for example, an electronic expansion valve (EEV).
  • EEV electronic expansion valve
  • the indoor unit 31 includes an indoor heat exchanger 108 that is disposed indoors and performs a cooling/heating function, an indoor fan 109a and an indoor fan disposed on one side of the indoor heat exchanger 108 to promote heat dissipation of the refrigerant. It may include an indoor blower 109 consisting of a motor 109b that rotates 109a.
  • the air conditioner 100 may include at least one indoor unit 31.
  • the air conditioner 100 includes a plurality of indoor units 31, a plurality of indoor heat exchangers 108 may be respectively connected to the outdoor unit 21.
  • the air conditioner 100 may be configured as an air conditioner that cools the room, or it may also be configured as a heat pump that cools or heats the room.
  • FIG. 3 is a block diagram of an air conditioner according to an embodiment of the present invention.
  • the air conditioner 100 includes a communication interface 310, a sensor unit 320, a memory 330, a fan driver 340 that drives the fan 341, and a compressor 102. It may include a compressor driving unit 350 and/or a control unit 370.
  • the communication interface 310 may include at least one communication module.
  • the communication interface 310 may be provided in the outdoor unit 21 and the indoor unit 31, respectively, and the outdoor unit 21 and the indoor unit 31 may transmit and receive data between them.
  • Communication methods between the outdoor unit 21 and the indoor unit 31 include, for example, a communication method using a power line, a serial communication method (e.g. RS-485 communication), a wired communication method through refrigerant piping, as well as Wi-Fi (Wi-Fi). It may be a wireless communication method such as fi), Bluetooth, Beacon, or Zigbee.
  • the communication interface 310 can transmit and receive data to and from an external device.
  • the communication interface 310 may transmit and receive data by connecting to a server connected to an external network.
  • the sensor unit 320 may include at least one sensor and may transmit data about the detection value detected through the sensor to the control unit 370.
  • the sensor unit 320 may include a heat exchanger temperature sensor 321.
  • the heat exchanger temperature sensor 321 is disposed inside/outside the indoor heat exchanger 108 and can detect the temperature of the indoor heat exchanger 108. For example, when the heat exchanger temperature sensor 321 is placed outside the indoor heat exchanger 108, it may be placed outside the heat exchanger or in a pipe. At this time, the heat exchanger temperature sensor 321 can detect the temperature of the indoor heat exchanger 108 by measuring the surface temperature of the heat exchanger or the surrounding temperature of the heat exchanger.
  • the sensor unit 320 may include a pipe temperature sensor 323.
  • the pipe temperature sensor 323 can detect the temperature of the refrigerant flowing through each pipe of the air conditioner 100.
  • the pipe temperature sensor 323 may be disposed on the inlet pipe of the indoor unit 31 and/or the outlet pipe of the indoor unit 31.
  • the pipe temperature sensor 323 is disposed in a pipe connected to the compressor 102 and measures the temperature of the refrigerant flowing into the compressor 102 (hereinafter referred to as suction temperature) and/or the refrigerant discharged from the compressor 102.
  • suction temperature the temperature of the refrigerant flowing into the compressor 102
  • discharge temperature can be detected.
  • the sensor unit 320 may include an indoor temperature sensor 325 that detects the indoor temperature and/or an outdoor temperature sensor 327 that detects the outdoor temperature.
  • the sensor unit 320 may include a pressure sensor (not shown).
  • a pressure sensor (not shown) can detect the pressure of gaseous refrigerant flowing through each pipe of the air conditioner 100.
  • the pressure sensor is disposed in a pipe connected to the compressor 102, and measures the pressure of the refrigerant flowing into the compressor 102 (hereinafter referred to as suction pressure) and/or the pressure of the refrigerant discharged from the compressor 102 (hereinafter referred to as , discharge pressure) can be detected.
  • the memory 330 may store data on reference values related to the operation of each component provided in the air conditioner 100.
  • the memory 330 can store programs for processing and controlling each signal in the control unit 370, and can store processed data and data to be processed.
  • the memory 330 stores application programs designed for the purpose of performing various tasks that can be processed by the control unit 370, and selects some of the stored application programs at the request of the control unit 370. can be provided.
  • the memory 330 is, for example, volatile memory (e.g., DRAM, SRAM, SDRAM, etc.), non-volatile memory (e.g., flash memory, hard disk drive (HDD), solid state It may include at least one drive (solid-state drive (SSD), etc.).
  • volatile memory e.g., DRAM, SRAM, SDRAM, etc.
  • non-volatile memory e.g., flash memory, hard disk drive (HDD), solid state It may include at least one drive (solid-state drive (SSD), etc.).
  • the fan driver 340 may drive the fan 341 provided in the air conditioner 100.
  • the fan 341 may include an outdoor fan 105a and/or an indoor fan 109a.
  • the fan driver 340 includes a rectifier (not shown) that rectifies AC power into direct current power and outputs it, a DC stage capacitor (not shown) that stores the pulsation voltage from the rectifier, and a plurality of switching elements to provide smoothed direct current. It may include an inverter (not shown) that converts and outputs power into three-phase AC power of a predetermined frequency and/or at least one motor that drives the fan 341 according to the three-phase AC power output from the inverter.
  • the fan driver 340 may be separately configured to drive the outdoor fan 105a and the indoor fan 109a.
  • the air conditioner 100 may include a first fan driver for driving the outdoor fan 105a and a second fan driver for driving the indoor fan 109a.
  • the compressor driving unit 350 can drive the compressor 102.
  • the compressor driving unit 350 includes a rectifier (not shown) that rectifies AC power into direct current power and outputs it, a DC stage capacitor (not shown) that stores the pulsation voltage from the rectifier, and a plurality of switching elements to provide smoothed direct current. It may include an inverter (not shown) that converts and outputs power into three-phase AC power of a predetermined frequency and/or a compressor motor 102b that drives the compressor 102 according to the three-phase AC power output from the inverter. there is.
  • the vane 360 may be disposed at the discharge port of the indoor unit 31 through which air flowing by the indoor fan 109a is discharged.
  • the air conditioner 100 may further include a vane motor that drives the vane 360, a link connected between the vane 360 and the vane motor, etc.
  • the direction in which the vane 360 faces may change according to the rotation of the link.
  • wind direction the direction in which air is discharged through the discharge port of the indoor unit 31
  • the vane motor may be implemented as a step motor, but is not limited thereto.
  • the control unit 370 can control the overall operation of the air conditioner 100.
  • the control unit 370 may be connected to each component provided in the air conditioner 100 and may control the overall operation of each component by transmitting and/or receiving signals between each component and each other.
  • the control unit 370 may control the operation of the fan driving unit 340 to change the rotation speed of the fan 341.
  • the fan driver 340 can change the rotation speed of the outdoor fan 105a by changing the frequency of the three-phase AC power output to the outdoor fan motor 105b under the control of the control unit 370.
  • the fan driver 340 can change the rotation speed of the indoor fan 109a by changing the frequency of the three-phase AC power output to the indoor fan motor 109b under the control of the control unit 370. there is.
  • the control unit 370 can change the operating frequency of the compressor 102 by controlling the operation of the compressor driving unit 350.
  • the compressor driving unit 350 may change the operating frequency of the compressor 102 by changing the frequency of the three-phase AC power output to the compressor motor 102b under the control of the control unit 370. .
  • the control unit 370 can change the wind direction. For example, when changing the wind direction, the control unit 370 may rotate the vane motor so that the direction in which the vane 360 faces changes.
  • the control unit 370 may be provided not only in the outdoor unit 21 but also in the indoor unit 31 and a central controller (not shown) that controls the operation of the outdoor unit 21 and/or the indoor unit 31.
  • the control unit 370 may include at least one processor, and may control the overall operation of the air conditioner 100 using the processor included therein.
  • the processor may be a general processor such as a central processing unit (CPU).
  • the processor may be a dedicated device such as an ASIC or another hardware-based processor.
  • the control unit 370 may obtain data related to each component provided in the air conditioner 100. At this time, the control unit 370 may acquire data related to each component provided in the air conditioner 100 at regular time intervals according to a predetermined period in consideration of the computational load.
  • the control unit 370 can perform various calculations based on the acquired data and control the overall operation of each component provided in the air conditioner 100 according to the calculation results.
  • Data related to each configuration provided in the air conditioner 100 includes, for example, the operating frequency of the compressor 102, the suction temperature of the compressor 102, the discharge temperature, the suction pressure, the discharge pressure, and the indoor unit 31. It may include the inlet piping temperature, the outlet piping temperature of the indoor unit 31, the indoor temperature, the outdoor temperature, the opening amount of the electronic expansion valve (EEV), etc.
  • EEV electronic expansion valve
  • the air conditioner 100 may further include an input device (not shown) capable of receiving user input.
  • an input device eg, a touch panel, a key, etc.
  • the air conditioner 100 may perform an operation corresponding to the user input.
  • the air conditioner 100 may further include an output device (not shown) that outputs a message about the operating state of the air conditioner 100.
  • the output device may include a display device such as a display or a light emitting diode (LED), and/or an audio device such as a speaker or buzzer.
  • 4 to 6 are flowcharts showing a method of operating an air conditioner according to various embodiments of the present invention.
  • the air conditioner 100 determines whether the temperature condition for starting the function for removing foreign substances present on the surface of the indoor heat exchanger 108 (hereinafter referred to as the foreign matter removal function) is satisfied in operation S410. can be judged. For example, the air conditioner 100 determines the temperature condition for starting the foreign matter removal function based on receiving a user input for starting the foreign matter removal function through the touch panel disposed on the remote control 41. You can. For example, the air conditioner 100 may determine the temperature condition for starting the foreign matter removal function according to a preset cycle for performing the foreign matter removal function.
  • the temperature condition for starting the foreign matter removal function may correspond to whether the indoor temperature and the outdoor temperature are each within a predetermined temperature range.
  • the air conditioner 100 provides a temperature condition for starting the foreign matter removal function when the indoor temperature corresponds to the first temperature range of zero and the outdoor temperature corresponds to the second temperature range of zero. This can be judged to be satisfactory.
  • the first temperature range and the second temperature range may be temperature ranges in which a predetermined cooling performance can be secured when the air conditioner 100 is driven as an air conditioner.
  • the first temperature range may be 21°C to 32°C
  • the second temperature range may be 21°C to 37°C.
  • the air conditioner 100 may notify the user that removal of the foreign matter is impossible. For example, the air conditioner 100 may output an indicator indicating that the foreign matter removal function cannot be started through a display disposed on the remote control 41. Meanwhile, the air conditioner 100 may continue to perform the currently performed operation if the temperature condition for starting the foreign matter removal function is not satisfied.
  • the air conditioner 100 may perform an operation related to condensation of moisture contained in indoor air (hereinafter referred to as condensation operation).
  • condensation operation may mean an operation of the air conditioner 100 that causes moisture contained in indoor air to form water droplets on the surface of the indoor heat exchanger 108.
  • the air conditioner 100 may perform the condensation operation for a preset time (hereinafter, condensation time).
  • the air conditioner 100 can check whether the compressor 102 is operating. At this time, when the compressor 102 is not driven, the air conditioner 100 can control the compressor driver 350 to start the compressor 102. For example, when starting the compressor 102, the air conditioner 100 may control the operation of each component according to preset conditions so that the operating frequency of the compressor 102 reaches a predetermined frequency. The air conditioner 100 can control the operation of each component according to the cooling mode for cooling the room. For example, when starting the compressor 102, the air conditioner 100 may open the electronic expansion valve (EEV) according to a preset opening amount. Meanwhile, the air conditioner 100 may determine that the refrigerant cycle is stabilized when the compressor 102 can sufficiently compress the introduced refrigerant into a high-temperature, high-pressure gas refrigerant according to the purpose.
  • EEV electronic expansion valve
  • the air conditioner 100 may determine a target temperature for the temperature of the indoor heat exchanger 108 related to condensation (hereinafter referred to as condensation target temperature).
  • the target condensation temperature may be a temperature at which moisture contained in indoor air forms water droplets on the surface of the indoor heat exchanger 108, but freezing of the water droplets does not occur.
  • the condensation target temperature can correspond to the indoor temperature.
  • the target condensation temperature may be a predetermined temperature (e.g., 18°C) lower than the current temperature in the room.
  • the description is based on the temperature of the indoor heat exchanger 108, but is not limited thereto.
  • the air conditioner 100 may operate based on the lower temperature of the inlet pipe temperature and the outlet pipe temperature of the indoor heat exchanger 108.
  • the air conditioner 100 may perform operations based on the intermediate value of the inlet pipe temperature and the outlet pipe temperature of the indoor heat exchanger 108.
  • the air conditioner 100 can adjust the operating frequency of the compressor 102 based on the current temperature and the target condensation temperature of the indoor heat exchanger 108. For example, the air conditioner 100 may adjust the operating frequency of the compressor 102 in response to the difference between the current temperature of the indoor heat exchanger 108 and the target condensation temperature. At this time, the larger the difference between the current temperature of the indoor heat exchanger 108 and the target condensation temperature, the higher the operating frequency of the compressor 102 may be.
  • the air conditioner 100 may change a predetermined temperature related to determining the target condensation temperature.
  • the air conditioner 100 may receive data on temperature and humidity corresponding to a predetermined location and a predetermined date and time from a server connected to the network through the communication interface 310.
  • the predetermined location may correspond to the location where the air conditioner 100 is installed.
  • the predetermined date and time may correspond to a time, date and/or period corresponding to the start of the foreign matter removal function.
  • the air conditioner 100 may determine a predetermined temperature based on data on temperature and humidity.
  • Data for temperature and humidity may include dry bulb temperature, relative humidity, and/or dew point temperature.
  • the air conditioner 100 determines the dew point temperature corresponding to the dry bulb temperature and relative humidity based on the psychrometric chart. You can.
  • the air conditioner 100 can set a predetermined temperature based on the difference between the indoor temperature and the dew point temperature.
  • a dew point temperature 700 corresponding to the indoor temperature may be determined based on data on temperature and humidity.
  • the air conditioner 100 may determine a temperature that is a certain level higher than the lowest value of the difference between the indoor temperature and the dew point temperature as the predetermined temperature. For example, if the indoor temperature is 32°C and the dew point temperature is 16.7°C, the difference between the indoor temperature and the dew point temperature may be the minimum.
  • the air conditioner 100 may determine the predetermined temperature to be 17°C, which is 1°C or more and less than 2°C higher than the difference between the indoor temperature and the dew point temperature of 15.3°C.
  • the air conditioner 100 may determine whether to perform the foreign matter removal function based on data received from the server. For example, the air conditioner 100 can check the dry bulb temperature, relative humidity, dew point temperature, etc. at a specific date and time based on data received from the server. At this time, the air conditioner 100 may determine to perform the foreign matter removal function when it is determined that moisture condensation occurs more than a predetermined standard based on the dry bulb temperature, relative humidity, dew point temperature, etc. at a specific date and time. For example, the air conditioner 100 may determine to perform the foreign matter removal function based on the difference between the indoor temperature and the dew point temperature being less than a predetermined standard.
  • the air conditioner 100 may output a message recommending performance of the foreign matter removal function through an output device.
  • the air conditioner 100 performs the foreign matter removal function through the display disposed on the remote control 41 based on the difference between the indoor temperature and the dew point temperature being less than the first standard (e.g., 10°C). You can print a recommended message.
  • the air conditioner 100 displays the air conditioner 100 through a display disposed on the remote control 41 based on the difference between the indoor temperature and the dew point temperature being greater than or equal to the second standard (e.g., 18°C).
  • the second standard e.g., 18°C
  • the air conditioner 100 may control the vane 360 to discharge air according to a wind direction preset for the condensation operation.
  • the wind direction is an indirect wind in which the airflow is formed in the front direction of the air conditioner 100, a direct wind in which the airflow is formed in the bottom direction of the air conditioner 100, and a difference between the indirect wind and the direct wind.
  • the corresponding oblique wind may be included.
  • the air conditioner 100 may increase the angle of the vane 360 to generate indirect wind.
  • the angle of the vane 360 may be the angle formed between the vane 360 and a predetermined direction perpendicular to the ground.
  • indirect wind may be formed when the angle of the vane 360 is at its maximum value.
  • the air conditioner 100 may reduce the angle of the vane 360 to generate direct wind.
  • direct wind may be formed when the angle of the vane 360 is at a minimum value.
  • the air conditioner 100 may control the vane 360 to discharge air according to the inclined wind while performing the condensation operation.
  • the air conditioner 100 may rotate the indoor fan 109a at a preset rotation speed in response to the condensation operation. For example, while performing a condensation operation, the air conditioner 100 may rotate the indoor fan 109a at a rotation speed corresponding to level 2 of the four preset rotation speed levels.
  • the wind volume which is the flow rate of air flowing by the indoor fan 109a, may increase as the rotation speed increases.
  • the rotation speed is described as divided into four stages, but is not limited thereto.
  • the air conditioner 100 may determine whether to perform a condensation operation.
  • the air conditioner 100 may be preset to perform a condensation operation when performing an operation to remove foreign substances.
  • the air conditioner 100 may determine whether to perform a condensation operation in response to a user input received through a touch panel disposed on the remote control 41. At this time, if there is a history of previously receiving a user input regarding the performance of the condensation operation, the air conditioner 100 may determine whether to perform the condensation operation based on the history.
  • the air conditioner 100 may perform an operation related to freezing moisture (hereinafter referred to as freezing operation) when the condensation operation is completed in operation S440.
  • freezing operation may refer to an operation of the air conditioner 100 that causes ice to form on the surface of the indoor heat exchanger 108.
  • the freezing operation will be described in detail with reference to FIG. 5.
  • the air conditioner 100 may check whether the opening degree of the expansion valve 106 is less than a preset opening degree (hereinafter referred to as the freezing start opening degree) in relation to the start of the freezing operation in operation S510.
  • the freezing start opening degree may be smaller than the opening degree of the expansion valve 106 (hereinafter referred to as the starting opening degree) at the time when startup of the compressor 102 is completed.
  • the air conditioner 100 may change the opening degree of the expansion valve 106 to the freezing start opening degree based on the fact that the opening degree of the expansion valve 106 exceeds the freezing start opening degree in operation S520.
  • the air conditioner 100 may control the compressor 102 according to the target temperature for the temperature of the indoor heat exchanger 108 related to freezing (hereinafter referred to as freezing target temperature) in operation S530.
  • the freezing target temperature may be determined in the sub-zero temperature range of less than 0°C.
  • the freezing target temperature may be preset to a predetermined temperature (e.g., -19°C) at which moisture condensed in the indoor heat exchanger 108 is sufficiently frozen to a certain level or higher.
  • the air conditioner 100 may control the operating frequency of the compressor 102 based on the difference between the current temperature of the indoor heat exchanger 108 and the freezing target temperature. For example, the air conditioner 100 may control the compressor driving unit 350 to increase the operating frequency of the compressor 102 when the current temperature of the indoor heat exchanger 108 is higher than the freezing target temperature. .
  • the air conditioner 100 may determine whether the current temperature of the indoor heat exchanger 108 is less than a preset temperature limit in operation S540.
  • the limit temperature may be preset to a temperature higher than the freezing target temperature.
  • the limit temperature may be preset to -10°C, which is a sub-zero temperature that is higher than the freezing target temperature of -19°C.
  • the air conditioner 100 may adjust the maximum frequency preset to the operating frequency of the compressor 102 based on the fact that the current temperature of the indoor heat exchanger 108 is less than the preset limit temperature in operation S550. For example, when the current temperature of the indoor heat exchanger 108 is above the limit temperature of -10°C, the maximum operating frequency of the compressor 102 may be preset to the first frequency (e.g., 90 Hz). . At this time, the air conditioner 100 sets the maximum frequency for the operating frequency of the compressor 102 to a predetermined frequency (You can change to a second frequency (e.g. 75 Hz) that is as low as 15 Hz. Through this, the temperature of the indoor heat exchanger 108 can be prevented from being excessively lowered. In addition, by preventing the operation of the compressor 102 from stopping due to an increase in the compression ratio of the compressor 102, a freezing operation can be performed so that the moisture condensed in the indoor heat exchanger 108 is sufficiently frozen.
  • the first frequency e.g. 90 Hz
  • the air conditioner 100 may determine whether the minimum time associated with the performance of the freezing operation (hereinafter referred to as the minimum freezing time) has elapsed after the performance of the freezing operation is started.
  • the minimum freezing time may be longer than the condensing time during which the condensing operation is performed.
  • the solidification time may be preset to 5 minutes and the minimum freezing time may be preset to 10 minutes.
  • the air conditioner 100 may determine whether the temperature of the indoor heat exchanger 108 is below the freezing target temperature based on the elapse of the minimum freezing time in operation S570. According to one embodiment, the air conditioner 100, when the temperature of the indoor heat exchanger 108 is maintained below the freezing target temperature for more than a predetermined time (eg, 10 seconds), the temperature of the indoor heat exchanger 108 It can be judged to be below the freezing target temperature.
  • a predetermined time eg, 10 seconds
  • the air conditioner 100 determines whether the maximum time related to performing the freezing operation (hereinafter, maximum freezing time) has elapsed, based on the temperature of the indoor heat exchanger 108 being higher than the freezing target temperature. You can judge.
  • the maximum freezing time may be preset to 15 minutes.
  • the air conditioner 100 terminates the freezing operation when at least one of the following occurs: when the temperature of the indoor heat exchanger 108 is below the freezing target temperature after the minimum freezing time has elapsed and when the maximum freezing time has elapsed. can do.
  • the air conditioner 100 may control the vane 360 so that air is discharged through the discharge port of the indoor unit 31 in a wind direction different from the wind direction preset for the condensation operation while performing the freezing operation.
  • the air conditioner 100 may control the vanes 360 to discharge air according to indirect wind while performing a freezing operation.
  • the air conditioner 100 may control the vane 360 to close the discharge port of the indoor unit 31 while performing a freezing operation.
  • the air conditioner 100 may set the rotation speed of the outdoor fan 105a to the maximum rotation speed while performing the freezing operation.
  • the air conditioner 100 can adjust the rotation speed of the indoor fan 109a while performing the freezing operation. For example, when the air conditioner 100 starts the freezing operation, the indoor fan 109a may rotate at a rotation speed corresponding to level 1 of four preset rotation speed levels.
  • the air conditioner 100 operates the indoor fan 109a when the inlet pipe temperature of the indoor unit 31 is higher than the preset upper limit temperature after a predetermined time (e.g., 12 minutes) has elapsed from the start of the freezing operation. ) can be controlled so that the rotation speed of the fan driver 340 is lower than the current rotation speed.
  • the preset upper limit temperature may be a temperature (e.g., -5°C) corresponding to the highest temperature in the temperature range where freezing of moisture condensed in the indoor heat exchanger 108 can occur.
  • the air conditioner 100 may monitor the temperature of the inlet pipe of the indoor unit 31 at a predetermined period (e.g., 100 seconds).
  • the fan driver ( 340) can be controlled.
  • a preset difference e.g., 0.2°C
  • the air conditioner 100 may perform a thawing operation to melt the ice formed on the surface of the indoor heat exchanger 108.
  • the air conditioner 100 may perform the thawing operation for a preset time (hereinafter, thawing time).
  • thawing time may be shorter than the freezing time and minimum freezing time.
  • the air conditioner 100 may rotate the indoor fan 109a at a rotation speed corresponding to level 1 or level 2 among four preset rotation speed levels while performing the thawing operation.
  • the air conditioner 100 may set the operating frequency of the compressor 102 to a preset minimum frequency while performing the thawing operation.
  • the minimum frequency may correspond to the minimum operating frequency that can be lowered while the compressor 102 is driving.
  • the air conditioner 100 may set the opening degree of the expansion valve 106 to a preset minimum opening degree while performing a thawing operation.
  • the minimum opening degree may be a starting opening degree or a freezing start opening degree.
  • the minimum opening degree may be an opening degree that is smaller than the starting opening degree and the freezing start opening degree.
  • the air conditioner 100 may set the rotation speed of the outdoor fan 105a to the minimum rotation speed while performing the thawing operation.
  • the indoor unit 31, the outdoor unit 21, and the indoor unit can be recovered to the outdoor unit 102 as much as possible. Through this, problems such as damage to the compressor 102 and reduced efficiency that occur when liquid refrigerant flows into the compressor 102 can be prevented.
  • the air conditioner 100 may stop the operation of the outdoor unit 21 when the thawing time elapses.
  • the air conditioner 100 may end driving the compressor 102.
  • the air conditioner 100 may stop rotating the outdoor fan 105a.
  • the air conditioner 100 may perform an operation (hereinafter referred to as a drying operation) to remove moisture condensed, frozen, and thawed in the indoor heat exchanger 108.
  • the air conditioner 100 can perform either a complete dry operation in which all moisture is removed from the indoor heat exchanger 108 or a partial dry operation in which some moisture is removed from the indoor heat exchanger 108.
  • the drying operation will be described in detail with reference to FIG. 6.
  • the air conditioner 100 may determine whether the operation to remove foreign substances has been repeatedly performed in operation S610. For example, the air conditioner 100 may determine whether the condensation operation, freezing operation, and thawing operation have each been performed two or more times.
  • the air conditioner 100 may check whether the temperature of the indoor heat exchanger 108 has reached the freezing target temperature while performing the freezing operation. .
  • the air conditioner 100 determines that the temperature of the indoor heat exchanger 108 is higher than the freezing target temperature. You can check whether the freezing operation has ended while the temperature is below the standard temperature. For example, if the freezing target temperature is -19°C, the reference temperature may be preset to -17°C, which is higher than -19°C.
  • the air conditioner 100 may perform a partial drying operation in operation S640 when the freezing operation is terminated while the temperature of the indoor heat exchanger 108 is above the reference temperature.
  • the air conditioner 100 when performing a partial drying operation, rotates at level 3 of the 4 preset rotation speeds during the first time preset to perform the partial drying operation.
  • the indoor fan (109a) can be rotated at this speed.
  • the air conditioner 100 may control the vane 360 to discharge air according to a preset wind direction for some drying operations.
  • the air conditioner 100 may control the vanes 360 to discharge air according to indirect wind while performing a partial drying operation.
  • the air conditioner 100 may determine to repeatedly perform the operation to remove foreign substances in operation S650.
  • the air conditioner 100 may perform a completely dry operation when the freezing operation is terminated while the temperature of the indoor heat exchanger 108 is below the reference temperature in operation S660.
  • the air conditioner 100 when performing a completely dry operation, operates the indoor fan at a rotation speed corresponding to level 4 of the four preset rotation speed levels for a second time longer than the first time. (109a) can be rotated. At this time, the air conditioner 100 may change the direction in which the vane 360 faces so that the wind direction changes continuously during the second time. For example, the air conditioner 100 may drive the vane motor so that the wind direction continues to change between direct wind and indirect wind for a second time. For example, the air conditioner 100 can be controlled so that the direction in which the vanes 360 face changes from left to right. Through this, moisture can be dried uniformly in the entire area of the indoor heat exchanger 108. .
  • the air conditioner 100 rotates the indoor fan 109a at a rotation speed corresponding to level 2 of the four preset rotation speed levels for a third time shorter than the second time. You can do it.
  • the air conditioner 100 may control the vane 360 to discharge air according to the inclined wind for the third time.
  • the air conditioner 100 may determine to end the operation for removing foreign substances in operation S660.
  • the air conditioner 100 can check whether the operation for removing foreign substances ends in operation S470.
  • the air conditioner 100 may perform the condensation operation, freezing operation, and/or drying operation again.
  • Figure 8 is a graph of the temperature of the indoor heat exchanger 108.
  • the air conditioner 100 may perform a condensation operation until time t1, a freezing operation from time t1 to time t2, a thawing operation from time t2 to time t3, and a drying operation from time t3.
  • the temperature of the indoor heat exchanger 108 may also correspond to the indoor temperature (T0).
  • the temperature of the indoor heat exchanger 108 may be lowered to a temperature (T1) below the dew point temperature.
  • T1 a temperature below the dew point temperature.
  • the air conditioner 100 performs a freezing operation
  • the temperature of the indoor heat exchanger 108 may gradually decrease.
  • T2 freezing target temperature
  • the freezing operation may be terminated.
  • the air conditioner 100 performs the thawing operation and drying operation, the temperature of the indoor heat exchanger 108 may gradually increase.
  • Figure 9 is a graph of the rotation speed of the indoor fan 109a.
  • the air conditioner 100 may rotate the indoor fan 109a at a rotation speed corresponding to level 2 (f2) of the four preset rotation speed levels.
  • the air conditioner 100 may rotate the indoor fan 109a at a rotation speed corresponding to the first stage (f1), which is slower than the rotation speed (f2) in the condensation operation.
  • the air conditioner 100 may rotate the indoor fan 109a at a rotation speed corresponding to the second stage (f2), which is faster than the rotation speed (f1) in the freezing operation.
  • the air conditioner 100 may rotate the indoor fan 109a at a rotation speed corresponding to level 4 (f4), which is the highest rotation speed, from time t3 to time t4 when a complete drying operation is performed. Meanwhile, the air conditioner 100 may rotate the indoor fan 109a again at a rotation speed corresponding to the second stage (f2) from the time t4 when the complete drying operation is performed.
  • foreign substances adsorbed on the indoor heat exchanger 108 can be effectively removed only by detecting the temperature.
  • the operation of removing foreign substances adsorbed on the indoor heat exchanger 108 is repeated in consideration of whether the foreign substances adsorbed on the indoor heat exchanger 108 are sufficiently removed according to the purpose. By doing so, foreign substances adsorbed on the indoor heat exchanger 108 can be more effectively removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present invention relates to an air conditioner. An air conditioner according to an embodiment of the present invention comprises: a compressor that compresses and discharges a refrigerant; an indoor heat exchanger that exchanges heat between the refrigerant and indoor air; a heat exchanger temperature sensor that detects the temperature of the indoor heat exchanger; an indoor temperature sensor that detects an indoor temperature; and a control unit, wherein the control unit may: first control the compressor on the basis of a first target temperature for the temperature of the indoor heat exchanger, the first target temperature corresponding to the indoor temperature; secondly control, if the first control ends, the compressor on the basis of a below-zero second target temperature for the temperature of the indoor heat exchanger, the second target temperature being lower than the first target temperature; set, if the second control ends, the driving frequency of the compressor to a preset minimum frequency during a predetermined time; and if the predetermined time has elapsed, determine whether to repeat the first control on the basis a condition related to the second control.

Description

공기조화기air conditioner
본 발명은, 공기조화기에 관한 것으로, 특히, 실내 열교환기에 흡착된 이물질을 제거할 수 있는 공기조화기에 관한 것이다.The present invention relates to an air conditioner, and particularly to an air conditioner capable of removing foreign substances adsorbed on an indoor heat exchanger.
공기조화기는 쾌적한 실내 환경을 조성하기 위해, 실내로 냉온의 공기를 토출하여 실내 온도를 조절하고, 실내공기를 정화하도록 함으로써, 인간에게 보다 쾌적한 실내 환경을 제공하기 위해 설치된다. 일반적으로 공기조화기는 열교환기로 구성되어 실내에 설치되는 실내기와, 압축기 및 열교환기 등으로 구성되어 실내기로 냉매를 공급하는 실외기를 포함한다.Air conditioners are installed to create a more comfortable indoor environment for humans by discharging hot and cold air into the room to control the indoor temperature and purify the indoor air. Generally, an air conditioner includes an indoor unit composed of a heat exchanger and installed indoors, and an outdoor unit composed of a compressor and a heat exchanger that supplies refrigerant to the indoor unit.
공기조화기는 냉매의 흐름에 따라 냉방운전되거나 난방운전된다. 냉방운전 시, 실외기의 압축기로부터 실외기의 열교환기를 거쳐 고온, 고압의 액체 냉매가 실내기로 공급되고, 실내기의 열교환기에서 냉매가 팽창 및 기화되면서 주변 공기의 온도가 내려가고, 실내기 팬이 회전 동작함에 따라 냉기가 실내로 토출된다. 난방운전 시, 실외기의 압축기로부터 고온, 고압의 기체 냉매가 실내기로 공급되고, 실내기의 열교환기에서 고온, 고압의 기체 냉매가 액화되면서 방출된 에너지에 의해 따뜻해진 공기가 실내기 팬의 동작에 따라 실내로 토출된다.Air conditioners operate for cooling or heating depending on the flow of refrigerant. During cooling operation, high-temperature, high-pressure liquid refrigerant is supplied from the outdoor unit's compressor through the outdoor unit's heat exchanger to the indoor unit. As the refrigerant expands and vaporizes in the indoor unit's heat exchanger, the temperature of the surrounding air decreases, and the indoor unit fan rotates. Accordingly, cold air is discharged into the room. During heating operation, high-temperature, high-pressure gaseous refrigerant is supplied from the compressor of the outdoor unit to the indoor unit, and air warmed by the energy released as the high-temperature, high-pressure gaseous refrigerant is liquefied in the heat exchanger of the indoor unit is supplied to the indoor unit by the operation of the indoor unit fan. is discharged as
한편, 공기조화기가 운전을 수행하는 동안, 실내기의 열교환기 등에 먼지와 같은 이물질이 흡착될 수 있다. 예를 들어, 공기조화기가 냉방운전을 수행하는 동안, 실내기의 열교환기에서는 냉매와 실내공기 간의 열교환에 의해 응축수가 생성될 수 있다. 이때, 응축수 중 일부가 열교환기의 표면에 맺히거나, 응축수가 배출되는 드레인관에 잔존하는 경우, 응축수에 이물질 등이 흡착될 수 있다.Meanwhile, while the air conditioner is operating, foreign substances such as dust may be adsorbed on the heat exchanger of the indoor unit. For example, while the air conditioner is performing a cooling operation, condensate water may be generated in the heat exchanger of the indoor unit due to heat exchange between the refrigerant and indoor air. At this time, if some of the condensed water forms on the surface of the heat exchanger or remains in the drain pipe through which the condensed water is discharged, foreign substances, etc. may be adsorbed on the condensed water.
이와 같이, 실내기의 열교환기 등에 이물질이 흡착되는 경우, 이물질에 의해 세균, 곰팡이 등과 같은 미생물이 번식할 수 있어, 사용자에게 불쾌감을 줄 수 있을 뿐만 아니라, 사용자의 건강에 해로운 영향을 미칠 수도 있어, 이물질 제거를 위한 다양한 연구가 이루어지고 있다.In this way, when foreign substances are adsorbed on the heat exchanger of the indoor unit, microorganisms such as bacteria and mold can multiply due to the foreign substances, which not only may cause discomfort to the user, but may also have a detrimental effect on the user's health. Various studies are being conducted to remove foreign substances.
종래의 공기조화기는, 실내기의 열교환기 등에 흡착된 이물질을 제거하기 위해, 선행기술 1(일본공개특허 제2010-014288호)와 같이, 냉매사이클을 이용하여 실내기의 열교환기의 표면에 서리를 형성시킨 후, 열교환기의 표면에 형성된 서리를 제거하는 제상운전을 수행한다. 이때, 제상운전에 의해 열교환기의 표면에 형성된 물이 흘러 배수됨에 따라, 실내기의 열교환기 등에 흡착된 이물질이 물과 함께 제거될 수 있다.Conventional air conditioners use a refrigerant cycle to form frost on the surface of the heat exchanger of the indoor unit, as in prior art 1 (Japanese Patent Publication No. 2010-014288), in order to remove foreign substances adsorbed on the heat exchanger of the indoor unit. After doing so, a defrost operation is performed to remove frost formed on the surface of the heat exchanger. At this time, as the water formed on the surface of the heat exchanger during the defrosting operation flows and is drained, foreign substances adsorbed on the heat exchanger of the indoor unit, etc. can be removed along with the water.
또한, 종래의 공기조화기는, 선행기술 2(일본공개특허 제2018-200128호)와 같이, 실내기의 열교환기의 표면에 서리를 형성하기 전에, 열교환기의 표면에 물방울이 먼저 응결되도록 동작함으로써, 이물질 제거 시 더 많은 양의 물이 배수되도록 동작할 수도 있다.In addition, the conventional air conditioner operates so that water droplets first condense on the surface of the heat exchanger of the indoor unit before forming frost on the surface of the heat exchanger of the indoor unit, as in Prior Art 2 (Japanese Patent Publication No. 2018-200128). When removing foreign substances, it may operate to drain a larger amount of water.
본 개시는 전술한 문제 및 다른 문제를 해결하는 것을 목적으로 한다.The present disclosure aims to solve the above-described problems and other problems.
또 다른 목적은, 온도에 대한 검출만으로 실내 열교환기에 흡착된 이물질을 효과적으로 제거할 수 있는 공기조화기를 제공함에 있다. Another purpose is to provide an air conditioner that can effectively remove foreign substances adsorbed on an indoor heat exchanger only by detecting temperature.
또 다른 목적은, 실내 열교환기에 흡착된 이물질을 제거하는 동안에 발생 가능한 압축기의 손상을 방지할 수 있는 공기조화기를 제공함에 있다.Another purpose is to provide an air conditioner that can prevent damage to the compressor that may occur while removing foreign substances adsorbed on an indoor heat exchanger.
또 다른 목적은, 실내 열교환기에 흡착된 이물질이 충분히 제거되는지 여부를 고려하여 실내 열교환기에 흡착된 이물질을 제거하는 동작을 반복함으로써, 실내 열교환기에 흡착된 이물질을 보다 효과적으로 제거할 수 있는 공기조화기를 제공함에 있다.Another purpose is to provide an air conditioner that can more effectively remove foreign substances adsorbed on the indoor heat exchanger by repeating the operation of removing foreign substances adsorbed on the indoor heat exchanger by considering whether the foreign substances adsorbed on the indoor heat exchanger are sufficiently removed. It is in
상기 목적을 달성하기 위한, 본 발명의 일 실시예에 따른 공기 조화기는, 냉매를 압축하여 토출하는 압축기; 상기 냉매와 실내의 공기를 열교환하는 실내 열교환기; 상기 실내 열교환기의 온도를 감지하는 열교환기 온도센서; 상기 실내의 온도를 감지하는 실내 온도센서; 및 제어부를 포함하고, 상기 제어부는, 상기 실내의 온도에 대응하는, 상기 실내 열교환기의 온도에 대한 제1 목표온도에 기초하여 상기 압축기에 대한 1차 제어를 수행하고, 상기 1차 제어가 종료되면, 상기 제1 목표온도보다 낮은 영하의 상기 실내 열교환기의 온도에 대한 제2 목표온도에 기초하여 상기 압축기에 대한 2차 제어를 수행하고, 상기 2차 제어가 종료되면, 소정 시간 동안 상기 압축기의 운전주파수를 기 설정된 최소 주파수로 설정하고, 상기 소정 시간이 경과되면, 상기 2차 제어에 관한 조건에 기초하여 상기 1차 제어에 대한 수행을 반복할지 여부를 결정할 수 있다. In order to achieve the above object, an air conditioner according to an embodiment of the present invention includes a compressor that compresses and discharges a refrigerant; an indoor heat exchanger that exchanges heat between the refrigerant and indoor air; A heat exchanger temperature sensor that detects the temperature of the indoor heat exchanger; an indoor temperature sensor that detects the indoor temperature; and a control unit, wherein the control unit performs primary control on the compressor based on a first target temperature for the temperature of the indoor heat exchanger, which corresponds to the temperature of the room, and the primary control is terminated. When this occurs, secondary control is performed on the compressor based on the second target temperature for the temperature of the indoor heat exchanger, which is below zero and lower than the first target temperature. When the secondary control is terminated, the compressor is controlled for a predetermined period of time. The operating frequency of is set to a preset minimum frequency, and when the predetermined time elapses, it can be determined whether to repeat the performance of the primary control based on the conditions related to the secondary control.
본 개시에 따른 공기조화기의 효과에 대해 설명하면 다음과 같다.The effects of the air conditioner according to the present disclosure will be described as follows.
본 개시의 적어도 하나의 실시예에 따르면, 온도에 대한 검출만으로 실내 열교환기에 흡착된 이물질을 효과적으로 제거할 있다.According to at least one embodiment of the present disclosure, foreign substances adsorbed on an indoor heat exchanger can be effectively removed only by detecting temperature.
또한, 본 개시의 적어도 하나의 실시예에 따르면, 실내 열교환기에 흡착된 이물질을 제거하는 동안에 발생 가능한 압축기의 손상을 방지할 수 있다. Additionally, according to at least one embodiment of the present disclosure, it is possible to prevent damage to the compressor that may occur while removing foreign substances adsorbed on the indoor heat exchanger.
또한, 본 개시의 적어도 하나의 실시예에 따르면, 실내 열교환기에 흡착된 이물질이 목적에 따라 충분히 제거되는지 여부를 고려하여 실내 열교환기에 흡착된 이물질을 제거하는 동작을 반복함으로써, 실내 열교환기에 흡착된 이물질을 보다 효과적으로 제거할 수 있다.In addition, according to at least one embodiment of the present disclosure, the operation of removing foreign substances adsorbed on the indoor heat exchanger is repeated in consideration of whether the foreign substances adsorbed on the indoor heat exchanger are sufficiently removed according to the purpose, thereby removing the foreign substances adsorbed on the indoor heat exchanger. can be removed more effectively.
본 개시의 적용 가능성의 추가적인 범위는 이하의 상세한 설명으로부터 명백해질 것이다. 그러나 본 개시의 사상 및 범위 내에서 다양한 변경 및 수정은 당업자에게 명확하게 이해될 수 있으므로, 상세한 설명 및 본 개시의 바람직한 실시 예와 같은 특정 실시 예는 단지 예시로 주어진 것으로 이해되어야 한다.Additional scope of applicability of the present disclosure will become apparent from the detailed description that follows. However, since various changes and modifications within the spirit and scope of the present disclosure may be clearly understood by those skilled in the art, the detailed description and specific embodiments such as preferred embodiments of the present disclosure should be understood as being given only as examples.
도 1은 본 발명의 일 실시예에 따른, 공기조화기의 구성의 예시를 도시한 도면이다.1 is a diagram showing an example of the configuration of an air conditioner according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른, 실외기와 실내기의 개략도이다.Figure 2 is a schematic diagram of an outdoor unit and an indoor unit according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른, 공기조화기의 블록도이다.Figure 3 is a block diagram of an air conditioner according to an embodiment of the present invention.
도 4 내지 도 6은, 본 발명의 다양한 실시예에 따른, 공기조화기의 동작방법을 도시한 순서도들이다. 4 to 6 are flowcharts showing a method of operating an air conditioner according to various embodiments of the present invention.
도 7 내지 9은, 본 발명의 다양한 실시예에 따른, 공기조화기의 동작에 대한 설명에 참조되는 도면들이다.7 to 9 are drawings referenced in the description of the operation of an air conditioner according to various embodiments of the present invention.
이하에서는 도면을 참조하여 본 발명을 상세하게 설명한다. 도면에서는 본 발명을 명확하고 간략하게 설명하기 위하여 설명과 관계없는 부분의 도시를 생략하였으며, 명세서 전체를 통하여 동일 또는 극히 유사한 부분에 대해서는 동일한 도면 참조부호를 사용한다. Hereinafter, the present invention will be described in detail with reference to the drawings. In the drawings, parts not related to the description are omitted in order to clearly and briefly explain the present invention, and identical or extremely similar parts are denoted by the same drawing reference numerals throughout the specification.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 단순히 본 명세서 작성의 용이함만이 고려되어 부여되는 것으로서, 그 자체로 특별히 중요한 의미 또는 역할을 부여하는 것은 아니다. 따라서, 상기 "모듈" 및 "부"는 서로 혼용되어 사용될 수도 있다.The suffixes “module” and “part” for components used in the following description are simply given in consideration of the ease of writing this specification, and do not in themselves give any particularly important meaning or role. Accordingly, the terms “module” and “unit” may be used interchangeably.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나, 숫자, 단계, 동작, 구성요소, 부품, 또는 이들을 조합한 것들의 존재, 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the presence or addition of numbers, steps, operations, components, parts, or combinations thereof.
또한, 본 명세서에서, 다양한 요소들을 설명하기 위해 제1, 제2 등의 용어가 이용될 수 있으나, 이러한 요소들은 이러한 용어들에 의해 제한되지 아니한다. 이러한 용어들은 한 요소를 다른 요소로부터 구별하기 위해서만 이용된다. Additionally, in this specification, terms such as first and second may be used to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish one element from another.
도 1은 본 발명의 일 실시예에 따른, 공기조화기의 구성의 예시를 도시한 도면이다.1 is a diagram showing an example of the configuration of an air conditioner according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 공기조화기(100)는, 실외기(21)와, 실외기(21)에 연결되는 실내기(31)를 포함할 수 있다. 본 개시에서는, 실내기(31)가 벽걸이형 공기조화기인 것으로 설명하나, 이에 제한되지 않는다.Referring to FIG. 1, an air conditioner 100 according to an embodiment of the present invention may include an outdoor unit 21 and an indoor unit 31 connected to the outdoor unit 21. In the present disclosure, the indoor unit 31 is described as a wall-mounted air conditioner, but is not limited thereto.
한편, 공기조화기(100)는, 환기장치, 공기청정장치, 가습장치 및 히터 중 적어도 하나를 더 포함할 수 있으며, 실내기(31) 및 실외기(21)의 동작에 연동하여 동작할 수 있다.Meanwhile, the air conditioner 100 may further include at least one of a ventilator, an air purifier, a humidifier, and a heater, and may operate in conjunction with the operations of the indoor unit 31 and the outdoor unit 21.
실외기(21)는, 냉매를 공급받아 압축하는 압축기(미도시)와, 냉매와 실외공기를 열교환하는 실외 열교환기(미도시)와, 공급되는 냉매로부터 기체 냉매를 추출하여 압축기로 공급하는 어큐뮬레이터(미도시)와, 난방운전에 따른 냉매의 유로를 선택하는 사방밸브(미도시)와, 공급되는 냉매가 팽창되는 팽창밸브(미도시)를 포함할 수 있다. 또한, 실외기(21)는, 다수의 센서, 밸브 및 오일회수기 등을 더 포함할 수 있다.The outdoor unit 21 includes a compressor (not shown) that receives and compresses the refrigerant, an outdoor heat exchanger (not shown) that exchanges heat between the refrigerant and outdoor air, and an accumulator that extracts gaseous refrigerant from the supplied refrigerant and supplies it to the compressor. (not shown), a four-way valve (not shown) that selects the refrigerant flow path according to the heating operation, and an expansion valve (not shown) that expands the supplied refrigerant. Additionally, the outdoor unit 21 may further include a plurality of sensors, valves, and an oil recovery device.
실외기(21)는, 구비되는 압축기 및 실외 열교환기를 동작시켜 설정에 따라 냉매를 압축하거나 열교환하여 실내기(31)로 냉매를 공급할 수 있다. 실외기(21)는, 원격제어기(미도시) 또는 실내기(31)의 요구(demand)에 의해 구동될 수 있다. 이때, 구동되는 실내기(31)에 대응하여 냉/난방 용량이 가변됨에 따라 실외기의 작동 개수 및 실외기에 설치된 압축기의 작동 개수가 가변되는 것도 가능하다.The outdoor unit 21 operates the provided compressor and outdoor heat exchanger to compress or heat exchange the refrigerant according to settings and supply the refrigerant to the indoor unit 31. The outdoor unit 21 may be driven by a remote controller (not shown) or a demand from the indoor unit 31. At this time, as the cooling/heating capacity varies in response to the indoor unit 31 being driven, the operating number of outdoor units and the operating number of compressors installed in the outdoor unit may also vary.
이때, 실외기(21)는, 연결된 실내기(31)로 압축된 냉매를 공급할 수 있다.At this time, the outdoor unit 21 can supply compressed refrigerant to the connected indoor unit 31.
실내기(31)는, 실외기(21)로부터 냉매를 공급받아 실내로 냉온의 공기를 토출할 수 있다. The indoor unit 31 can receive refrigerant from the outdoor unit 21 and discharge cold and hot air into the room.
실내기(31)는, 실내 열교환기(미도시)와, 실내기팬(미도시), 다수의 센서(미도시) 등을 포함할 수 있다. The indoor unit 31 may include an indoor heat exchanger (not shown), an indoor unit fan (not shown), and a plurality of sensors (not shown).
실내기(31)는, 실내 열교환기에 인접하여 배치되어, 실내 열교환기의 열교환에 의해 발생하는 물이 수집되는 드레인팬(미도시)와, 드레인팬에 집수된 물을 외부로 토출하는 드레인관(미도시)를 포함할 수 있다.The indoor unit 31 is disposed adjacent to the indoor heat exchanger, and includes a drain pan (not shown) that collects water generated by heat exchange of the indoor heat exchanger, and a drain pipe (not shown) that discharges the water collected in the drain pan to the outside. Poetry) may be included.
실외기(21) 및 실내기(31)는, 상호 통신을 수행할 수 있다. 예를 들어, 실외기(21) 및 실내기(31)는, 통신선으로 연결되어 상호 데이터를 송수신할 수 있다. 실외기(21) 및 실내기(31)는 원격제어기(미도시)와 유선 또는 무선으로 연결되어 원격제어기(미도시)의 제어에 따라 동작할 수도 있다.The outdoor unit 21 and the indoor unit 31 can communicate with each other. For example, the outdoor unit 21 and the indoor unit 31 are connected through a communication line and can transmit and receive data to each other. The outdoor unit 21 and the indoor unit 31 may be connected to a remote controller (not shown) by wire or wirelessly and operate under the control of the remote controller (not shown).
리모컨(41)은, 실내기(31)에 연결되어, 실내기(31)로 사용자의 제어명령을 전달할 수 있다. 리모컨(41)은, 실내기(31)의 상태정보를 수신하여 표시할 수 있다. 이때 리모컨(41)은 실내기(31)와의 연결 형태에 따라 유선 또는 무선으로 통신할 수 있다.The remote control 41 is connected to the indoor unit 31 and can transmit a user's control command to the indoor unit 31. The remote control 41 can receive and display status information of the indoor unit 31. At this time, the remote control 41 can communicate wired or wirelessly depending on the connection type with the indoor unit 31.
도 2는 본 발명의 일 실시예에 따른, 실외기와 실내기의 개략도이다. 도 1에서 설명한 내용과 중복되는 내용에 대해서는 상세한 설명을 생략하도록 한다.Figure 2 is a schematic diagram of an outdoor unit and an indoor unit according to an embodiment of the present invention. Detailed descriptions of content that overlaps with that described in FIG. 1 will be omitted.
도 2를 참조하면, 실외기(21)는, 냉매를 압축시키는 역할을 하는 압축기(102)와, 압축기(102)를 구동하는 압축기용 모터(102b)와, 압축된 냉매를 방열시키는 역할을 하는 실외 열교환기(104)와, 실외 열교환기(104)의 일측에 배치되어 냉매의 방열을 촉진시키는 실외팬(105a)과 실외팬(105a)을 회전시키는 모터(105b)로 이루어진 실외 송풍기(105)와, 응축된 냉매를 팽창하는 팽창밸브(106)와, 압축된 냉매의 유로를 바꾸는 냉/난방 절환밸브(110)와, 기체화된 냉매를 잠시 저장하여 수분과 이물질을 제거한 뒤 일정한 압력의 냉매를 압축기로 공급하는 어큐뮬레이터(103) 등을 포함할 수 있다. Referring to FIG. 2, the outdoor unit 21 includes a compressor 102 that serves to compress the refrigerant, a compressor motor 102b that drives the compressor 102, and an outdoor unit that serves to radiate heat from the compressed refrigerant. An outdoor blower (105) consisting of a heat exchanger (104), an outdoor fan (105a) disposed on one side of the outdoor heat exchanger (104) to promote heat dissipation of the refrigerant, and a motor (105b) that rotates the outdoor fan (105a); , an expansion valve 106 that expands the condensed refrigerant, a cooling/heating switching valve 110 that changes the flow path of the compressed refrigerant, and a vaporized refrigerant that is stored for a while to remove moisture and foreign substances and then supplies the refrigerant at a constant pressure. It may include an accumulator 103 that supplies power to the compressor.
압축기(102)는, 예를 들어, 인버터 압축기, 정속 압축기 중 적어도 하나가 사용될 수 있다.The compressor 102 may be, for example, at least one of an inverter compressor and a constant speed compressor.
팽창밸브(106)는, 예를 들어, 전자식 팽창밸브(electronic expansion valve; EEV)일 수 있다.The expansion valve 106 may be, for example, an electronic expansion valve (EEV).
실내기(31)는, 실내에 배치되어 냉/난방 기능을 수행하는 실내 열교환기(108)와, 실내 열교환기(108)의 일측에 배치되어 냉매의 방열을 촉진시키는 실내팬(109a)과 실내팬(109a)을 회전시키는 모터(109b)로 이루어진 실내 송풍기(109) 등을 포함할 수 있다. The indoor unit 31 includes an indoor heat exchanger 108 that is disposed indoors and performs a cooling/heating function, an indoor fan 109a and an indoor fan disposed on one side of the indoor heat exchanger 108 to promote heat dissipation of the refrigerant. It may include an indoor blower 109 consisting of a motor 109b that rotates 109a.
공기조화기(100)는, 적어도 하나의 실내기(31)를 포함할 수 있다. 공기조화기(100)가 복수의 실내기(31)를 포함하는 경우, 복수의 실내 열교환기(108)가 실외기(21)에 각각 연결될 수 있다. The air conditioner 100 may include at least one indoor unit 31. When the air conditioner 100 includes a plurality of indoor units 31, a plurality of indoor heat exchangers 108 may be respectively connected to the outdoor unit 21.
또한, 공기조화기(100)는, 실내를 냉방시키는 냉방기로 구성되는 것도 가능하고, 실내를 냉방시키거나 난방시키는 히트 펌프로 구성되는 것도 가능하다.Additionally, the air conditioner 100 may be configured as an air conditioner that cools the room, or it may also be configured as a heat pump that cools or heats the room.
도 3은 본 발명의 일 실시예에 따른, 공기조화기의 블록도이다.Figure 3 is a block diagram of an air conditioner according to an embodiment of the present invention.
도 3을 참조하면, 공기조화기(100)는, 통신 인터페이스(310), 센서부(320), 메모리(330), 팬(341)을 구동하는 팬 구동부(340), 압축기(102)를 구동하는 압축기 구동부(350) 및/또는 제어부(370)를 포함할 수 있다.Referring to FIG. 3, the air conditioner 100 includes a communication interface 310, a sensor unit 320, a memory 330, a fan driver 340 that drives the fan 341, and a compressor 102. It may include a compressor driving unit 350 and/or a control unit 370.
통신 인터페이스(310)는, 적어도 하나의 통신 모듈을 포함할 수 있다. 예를 들어, 통신 인터페이스(310)는, 실외기(21)와 실내기(31)에 각각 구비될 수 있고, 실외기(21)와 실내기(31)는 상호 간에 데이터를 송수신할 수 있다.The communication interface 310 may include at least one communication module. For example, the communication interface 310 may be provided in the outdoor unit 21 and the indoor unit 31, respectively, and the outdoor unit 21 and the indoor unit 31 may transmit and receive data between them.
실외기(21)와 실내기(31)의 통신 방식은, 예를 들어, 전력선을 이용한 통신 방식, 시리얼 통신 방식(예: RS-485 통신), 냉매 배관을 통한 유선 통신 방식뿐만 아니라, 와이파이(Wi-fi), 블루투스(Bluetooth), 비콘(Beacon), 지그비(zigbee)등의 무선 통신 방식일 수도 있다.Communication methods between the outdoor unit 21 and the indoor unit 31 include, for example, a communication method using a power line, a serial communication method (e.g. RS-485 communication), a wired communication method through refrigerant piping, as well as Wi-Fi (Wi-Fi). It may be a wireless communication method such as fi), Bluetooth, Beacon, or Zigbee.
통신 인터페이스(310)는, 외부 장치와 상호 간에 데이터를 송수신할 수 있다. 예를 들어, 통신 인터페이스(310)는, 외부 네트워크에 연결된 서버에 접속하여 데이터를 송수신할 수도 있다. The communication interface 310 can transmit and receive data to and from an external device. For example, the communication interface 310 may transmit and receive data by connecting to a server connected to an external network.
센서부(320)는, 적어도 하나의 센서를 구비할 수 있고, 센서를 통해 검출된 검출 값에 대한 데이터를 제어부(370)로 전송할 수 있다. The sensor unit 320 may include at least one sensor and may transmit data about the detection value detected through the sensor to the control unit 370.
센서부(320)는, 열교환기 온도센서(321)를 구비할 수 있다. 열교환기 온도센서(321)는, 실내 열교환기(108)의 내/외부에 배치되어, 실내 열교환기(108)의 온도를 검출할 수 있다. 예를 들어, 열교환기 온도센서(321)가 실내 열교환기(108)의 외부에 배치되는 경우, 열교환기의 외부 또는 배관에 배치될 수 있다. 이때, 열교환기 온도센서(321)는, 열교환기의 표면 온도를 측정하거나 열교환기의 주변 온도를 측정하여 실내 열교환기(108)의 온도를 검출할 수 있다.The sensor unit 320 may include a heat exchanger temperature sensor 321. The heat exchanger temperature sensor 321 is disposed inside/outside the indoor heat exchanger 108 and can detect the temperature of the indoor heat exchanger 108. For example, when the heat exchanger temperature sensor 321 is placed outside the indoor heat exchanger 108, it may be placed outside the heat exchanger or in a pipe. At this time, the heat exchanger temperature sensor 321 can detect the temperature of the indoor heat exchanger 108 by measuring the surface temperature of the heat exchanger or the surrounding temperature of the heat exchanger.
센서부(320)는, 배관 온도센서(323)를 구비할 수 있다. 배관 온도센서(323)는, 공기조화기(100)의 각 배관을 통해 유동하는 냉매의 온도를 검출할 수 있다. 예를 들어, 배관 온도센서(323)는, 실내기(31)의 입구측 배관 및/또는 실내기(31)의 출구측 배관에 배치될 수 있다. 예를 들어, 배관 온도센서(323)는, 압축기(102)에 연결된 배관에 배치되어, 압축기(102)로 유입되는 냉매의 온도(이하, 흡입온도) 및/또는 압축기(102)에서 토출되는 냉매의 온도(이하, 토출온도)를 검출할 수 있다. The sensor unit 320 may include a pipe temperature sensor 323. The pipe temperature sensor 323 can detect the temperature of the refrigerant flowing through each pipe of the air conditioner 100. For example, the pipe temperature sensor 323 may be disposed on the inlet pipe of the indoor unit 31 and/or the outlet pipe of the indoor unit 31. For example, the pipe temperature sensor 323 is disposed in a pipe connected to the compressor 102 and measures the temperature of the refrigerant flowing into the compressor 102 (hereinafter referred to as suction temperature) and/or the refrigerant discharged from the compressor 102. The temperature (hereinafter referred to as discharge temperature) can be detected.
센서부(320)는, 실내의 온도를 검출하는 실내 온도센서(325) 및/또는 실외의 온도를 검출하는 실외 온도센서(327)를 구비할 수 있다. The sensor unit 320 may include an indoor temperature sensor 325 that detects the indoor temperature and/or an outdoor temperature sensor 327 that detects the outdoor temperature.
센서부(320)는, 압력센서(미도시)를 구비할 수 있다. 압력센서(미도시)는, 공기조화기(100)의 각 배관을 통해 유동하는 기체 냉매의 압력을 검출할 수 있다. 예를 들어, 압력센서는, 압축기(102)에 연결된 배관에 배치되어, 압축기(102)로 유입되는 냉매의 압력(이하, 흡입압력) 및/또는 압축기(102)에서 토출되는 냉매의 압력(이하, 토출압력)을 검출할 수 있다.The sensor unit 320 may include a pressure sensor (not shown). A pressure sensor (not shown) can detect the pressure of gaseous refrigerant flowing through each pipe of the air conditioner 100. For example, the pressure sensor is disposed in a pipe connected to the compressor 102, and measures the pressure of the refrigerant flowing into the compressor 102 (hereinafter referred to as suction pressure) and/or the pressure of the refrigerant discharged from the compressor 102 (hereinafter referred to as , discharge pressure) can be detected.
메모리(330)는, 공기조화기(100)에 구비된 각 구성의 동작과 관련된 기준 값에 대한 데이터를 저장할 수 있다. The memory 330 may store data on reference values related to the operation of each component provided in the air conditioner 100.
메모리(330)는, 제어부(370) 내의 각 신호 처리 및 제어를 위한 프로그램을 저장할 수 있고, 처리된 데이터 및 처리 대상인 데이터를 저장할 수 있다. 예를 들어, 메모리(330)는, 제어부(370)에 의해 처리 가능한 다양한 작업들을 수행하기 위한 목적으로 설계된 응용 프로그램들을 저장하고, 제어부(370)의 요청 시, 저장된 응용 프로그램들 중 일부를 선택적으로 제공할 수 있다.The memory 330 can store programs for processing and controlling each signal in the control unit 370, and can store processed data and data to be processed. For example, the memory 330 stores application programs designed for the purpose of performing various tasks that can be processed by the control unit 370, and selects some of the stored application programs at the request of the control unit 370. can be provided.
메모리(330)는, 예를 들어, 휘발성 메모리(예: DRAM, SRAM, SDRAM 등)나, 비휘발성 메모리(예: 플래시 메모리(Flash memory), 하드 디스크 드라이브(Hard disk drive; HDD), 솔리드 스테이트 드라이브(Solid-state drive; SSD) 등) 중 적어도 하나를 포함할 수 있다.The memory 330 is, for example, volatile memory (e.g., DRAM, SRAM, SDRAM, etc.), non-volatile memory (e.g., flash memory, hard disk drive (HDD), solid state It may include at least one drive (solid-state drive (SSD), etc.).
팬 구동부(340)는, 공기조화기(100)에 구비된 팬(341)을 구동할 수 있다. 예를 들어, 팬(341)은, 실외팬(105a) 및/또는 실내팬(109a)를 포함할 수 있다.The fan driver 340 may drive the fan 341 provided in the air conditioner 100. For example, the fan 341 may include an outdoor fan 105a and/or an indoor fan 109a.
팬 구동부(340)는, 교류 전원을 직류 전원으로 정류하여 출력하는 정류부(미도시), 정류부로부터의 맥동 전압을 저장하는 dc 단 커패시터(미도시), 복수의 스위칭 소자를 구비하여, 평활된 직류 전원을 소정 주파수의 3상 교류 전원으로 변환 및 출력하는 인버터(미도시) 및/또는 인버터로부터 출력되는 3상 교류 전원에 따라 팬(341)을 구동하는 적어도 하나의 모터를 포함할 수 있다.The fan driver 340 includes a rectifier (not shown) that rectifies AC power into direct current power and outputs it, a DC stage capacitor (not shown) that stores the pulsation voltage from the rectifier, and a plurality of switching elements to provide smoothed direct current. It may include an inverter (not shown) that converts and outputs power into three-phase AC power of a predetermined frequency and/or at least one motor that drives the fan 341 according to the three-phase AC power output from the inverter.
한편, 팬 구동부(340)는, 실외팬(105a) 및 실내팬(109a)를 구동하기 위한 구성을 각각 구분하여 구비할 수 있다. 예를 들어, 공기조화기(100)는, 실외팬(105a)를 구동하기 위한 제1 팬 구동부와, 실내팬(109a)를 구동하기 위한 제2 팬 구동부를 포함할 수 있다. Meanwhile, the fan driver 340 may be separately configured to drive the outdoor fan 105a and the indoor fan 109a. For example, the air conditioner 100 may include a first fan driver for driving the outdoor fan 105a and a second fan driver for driving the indoor fan 109a.
압축기 구동부(350)는, 압축기(102)를 구동할 수 있다. 압축기 구동부(350)는, 교류 전원을 직류 전원으로 정류하여 출력하는 정류부(미도시), 정류부로부터의 맥동 전압을 저장하는 dc 단 커패시터(미도시), 복수의 스위칭 소자를 구비하여, 평활된 직류 전원을 소정 주파수의 3상 교류 전원으로 변환 및 출력하는 인버터(미도시) 및/또는 인버터로부터 출력되는 3상 교류 전원에 따라, 압축기(102)를 구동하는 압축기용 모터(102b)를 포함할 수 있다.The compressor driving unit 350 can drive the compressor 102. The compressor driving unit 350 includes a rectifier (not shown) that rectifies AC power into direct current power and outputs it, a DC stage capacitor (not shown) that stores the pulsation voltage from the rectifier, and a plurality of switching elements to provide smoothed direct current. It may include an inverter (not shown) that converts and outputs power into three-phase AC power of a predetermined frequency and/or a compressor motor 102b that drives the compressor 102 according to the three-phase AC power output from the inverter. there is.
베인(360)은, 실내팬(109a)에 의해 유동하는 공기가 토출되는 실내기(31)의 토출구에 배치될 수 있다. 공기조화기(100)는, 베인(360)을 구동하는 베인모터, 베인(360)과 베인모터 사이에 연결되는 링크 등을 더 포함할 수 있다. 예를 들어, 베인모터의 회전에 따라 링크가 회전하는 경우, 링크의 회전에 따라 베인(360)이 향하는 방향이 변할 수 있다. 이때, 베인(360)이 향하는 방향이 변함에 따라 실내기(31)의 토출구를 통해 공기가 토출되는 방향(이하, 풍향)이 변경될 수 있다. 베인모터는, 스텝모터(step motor)로 구현될 수 있으나, 이에 제한되지 않는다. The vane 360 may be disposed at the discharge port of the indoor unit 31 through which air flowing by the indoor fan 109a is discharged. The air conditioner 100 may further include a vane motor that drives the vane 360, a link connected between the vane 360 and the vane motor, etc. For example, when the link rotates according to the rotation of the vane motor, the direction in which the vane 360 faces may change according to the rotation of the link. At this time, as the direction in which the vane 360 faces changes, the direction in which air is discharged through the discharge port of the indoor unit 31 (hereinafter referred to as wind direction) may change. The vane motor may be implemented as a step motor, but is not limited thereto.
제어부(370)는, 공기조화기(100)의 전반적인 동작을 제어할 수 있다. 제어부(370)는, 공기조화기(100)에 구비된 각 구성과 연결될 수 있고, 각 구성과 상호 간에 신호를 송신 및/또는 수신하여, 각 구성의 전반적인 동작을 제어할 수 있다. The control unit 370 can control the overall operation of the air conditioner 100. The control unit 370 may be connected to each component provided in the air conditioner 100 and may control the overall operation of each component by transmitting and/or receiving signals between each component and each other.
제어부(370)는, 팬 구동부(340)의 동작을 제어하여, 팬(341)의 회전수를 변경할 수 있다. 예를 들어, 팬 구동부(340)는, 제어부(370)의 제어에 따라, 실외팬용 모터(105b)로 출력되는 3상 교류 전원의 주파수를 변경하여, 실외팬(105a)의 회전수를 변경할 수 있다. 예를 들어, 팬 구동부(340)는, 제어부(370)의 제어에 따라, 실내팬용 모터(109b)로 출력되는 3상 교류 전원의 주파수를 변경하여, 실내팬(109a)의 회전수를 변경할 수 있다.The control unit 370 may control the operation of the fan driving unit 340 to change the rotation speed of the fan 341. For example, the fan driver 340 can change the rotation speed of the outdoor fan 105a by changing the frequency of the three-phase AC power output to the outdoor fan motor 105b under the control of the control unit 370. there is. For example, the fan driver 340 can change the rotation speed of the indoor fan 109a by changing the frequency of the three-phase AC power output to the indoor fan motor 109b under the control of the control unit 370. there is.
제어부(370)는, 압축기 구동부(350)의 동작을 제어하여, 압축기(102)의 운전주파수를 변경할 수 있다. 예를 들어, 압축기 구동부(350)는, 제어부(370)의 제어에 따라, 압축기용 모터(102b)로 출력되는 3상 교류 전원의 주파수를 변경하여, 압축기(102)의 운전주파수를 변경할 수 있다.The control unit 370 can change the operating frequency of the compressor 102 by controlling the operation of the compressor driving unit 350. For example, the compressor driving unit 350 may change the operating frequency of the compressor 102 by changing the frequency of the three-phase AC power output to the compressor motor 102b under the control of the control unit 370. .
제어부(370)는, 풍향을 변경할 수 있다. 예를 들어, 제어부(370)는, 풍향을 변경하는 경우, 베인(360)이 향하는 방향이 변경되도록 베인모터를 회전시킬 수 있다.The control unit 370 can change the wind direction. For example, when changing the wind direction, the control unit 370 may rotate the vane motor so that the direction in which the vane 360 faces changes.
제어부(370)는, 실외기(21) 뿐만 아니라, 실내기(31), 실외기(21) 및/또는 실내기(31)의 동작을 제어하는 중앙제어기(미도시) 등에 구비될 수도 있다. The control unit 370 may be provided not only in the outdoor unit 21 but also in the indoor unit 31 and a central controller (not shown) that controls the operation of the outdoor unit 21 and/or the indoor unit 31.
제어부(370)는, 적어도 하나의 프로세서를 포함할 수 있고, 이에 포함된 프로세서를 이용하여, 공기조화기(100)의 동작 전반을 제어할 수 있다. 여기서, 프로세서는 CPU(central processing unit)과 같은 일반적인 프로세서일 수 있다. 물론, 프로세서는 ASIC과 같은 전용 장치(dedicated device)이거나 다른 하드웨어 기반의 프로세서일 수 있다.The control unit 370 may include at least one processor, and may control the overall operation of the air conditioner 100 using the processor included therein. Here, the processor may be a general processor such as a central processing unit (CPU). Of course, the processor may be a dedicated device such as an ASIC or another hardware-based processor.
제어부(370)는, 공기조화기(100)에 구비된 각 구성과 관련된 데이터를 획득할 수 있다. 이때, 제어부(370)는, 연산 부하를 고려하여, 소정 주기에 따라, 일정 시간 간격을 두고 공기조화기(100)에 구비된 각 구성과 관련된 데이터를 획득할 수도 있다.The control unit 370 may obtain data related to each component provided in the air conditioner 100. At this time, the control unit 370 may acquire data related to each component provided in the air conditioner 100 at regular time intervals according to a predetermined period in consideration of the computational load.
제어부(370)는, 획득한 데이터에 기초하여 다양한 연산을 수행할 수 있고, 연산 결과에 따라 공기조화기(100)에 구비된 각 구성의 전반적인 동작을 제어할 수 있다. The control unit 370 can perform various calculations based on the acquired data and control the overall operation of each component provided in the air conditioner 100 according to the calculation results.
공기조화기(100)에 구비된 각 구성과 관련된 데이터는, 예를 들어, 압축기(102)의 운전주파수, 압축기(102)의 흡입온도, 토출온도, 흡입 압력, 토출압력, 실내기(31)의 입구측 배관온도, 실내기(31)의 출구측 배관온도, 실내 온도, 실외 온도, 전자식 팽창팰브(EEV)의 개도량 등을 포함할 수 있다.Data related to each configuration provided in the air conditioner 100 includes, for example, the operating frequency of the compressor 102, the suction temperature of the compressor 102, the discharge temperature, the suction pressure, the discharge pressure, and the indoor unit 31. It may include the inlet piping temperature, the outlet piping temperature of the indoor unit 31, the indoor temperature, the outdoor temperature, the opening amount of the electronic expansion valve (EEV), etc.
한편, 공기조화기(100)는, 사용자 입력을 수신할 수 있는 입력 장치(미도시)를 더 포함할 수 있다. 예를 들어, 공기조화기(100)는, 입력 장치(예: 터치 패널, 키 등)을 통해 사용자 입력을 수신하는 경우, 수신되니 사용자 입력에 대응하는 동작을 수행할 수 있다. Meanwhile, the air conditioner 100 may further include an input device (not shown) capable of receiving user input. For example, when the air conditioner 100 receives a user input through an input device (eg, a touch panel, a key, etc.), the air conditioner 100 may perform an operation corresponding to the user input.
공기조화기(100)는, 공기조화기(100)의 동작 상태에 대한 메시지를 출력하는 출력 장치(미도시)를 더 포함할 수 있다. 예를 들어, 출력 장치는, 디스플레이, 발광 다이오드(Light Emitting Diode: LED) 등의 표시 장치 및/또는 스피커, 버저 등의 오디오 장치를 포함할 수 있다.The air conditioner 100 may further include an output device (not shown) that outputs a message about the operating state of the air conditioner 100. For example, the output device may include a display device such as a display or a light emitting diode (LED), and/or an audio device such as a speaker or buzzer.
도 4 내지 도 6은, 본 발명의 다양한 실시예에 따른, 공기조화기의 동작방법을 도시한 순서도들이다. 4 to 6 are flowcharts showing a method of operating an air conditioner according to various embodiments of the present invention.
도 4를 참조하면, 공기조화기(100)는, S410 동작에서, 실내 열교환기(108)의 표면에 존재하는 이물질을 제거하는 기능(이하, 이물질제거 기능)의 개시에 관한 온도 조건의 만족 여부를 판단할 수 있다. 예를 들어, 공기조화기(100)는, 리모컨(41)에 배치된 터치 패널을 통해 이물질제거 기능을 개시하는 사용자 입력이 수신되는 것에 기초하여, 이물질제거 기능의 개시에 관한 온도 조건을 판단할 수 있다. 예를 들어, 공기조화기(100)는, 이물질제거 기능의 수행에 관하여 기 설정된 주기에 따라 이물질제거 기능의 개시에 관한 온도 조건을 판단할 수 있다.Referring to FIG. 4, the air conditioner 100 determines whether the temperature condition for starting the function for removing foreign substances present on the surface of the indoor heat exchanger 108 (hereinafter referred to as the foreign matter removal function) is satisfied in operation S410. can be judged. For example, the air conditioner 100 determines the temperature condition for starting the foreign matter removal function based on receiving a user input for starting the foreign matter removal function through the touch panel disposed on the remote control 41. You can. For example, the air conditioner 100 may determine the temperature condition for starting the foreign matter removal function according to a preset cycle for performing the foreign matter removal function.
이물질제거 기능의 개시에 관한 온도 조건은, 실내의 온도 및 실외의 온도가 각각 소정 온도 범위에 포함되는지 여부에 해당할 수 있다. 예를 들어, 공기조화기(100)는, 실내의 온도가 영상의 제1 온도 범위에 해당하고, 실외의 온도가 영상의 제2 온도 범위에 해당하는 경우, 이물질제거 기능의 개시에 관한 온도 조건이 만족하는 것으로 판단할 수 있다. 여기서, 제1 온도 범위 및 제2 온도 범위는, 공기조화기(100)를 냉방기로 구동하는 경우에 있어서 소정 냉방 성능의 확보가 가능한 온도 범위일 수 있다. 예를 들어, 제1 온도 범위는 21℃ 내지 32℃, 제2 온도 범위는 21℃ 내지 37℃일 수 있다.The temperature condition for starting the foreign matter removal function may correspond to whether the indoor temperature and the outdoor temperature are each within a predetermined temperature range. For example, the air conditioner 100 provides a temperature condition for starting the foreign matter removal function when the indoor temperature corresponds to the first temperature range of zero and the outdoor temperature corresponds to the second temperature range of zero. This can be judged to be satisfactory. Here, the first temperature range and the second temperature range may be temperature ranges in which a predetermined cooling performance can be secured when the air conditioner 100 is driven as an air conditioner. For example, the first temperature range may be 21°C to 32°C, and the second temperature range may be 21°C to 37°C.
공기조화기(100)는, S420 동작에서, 이물질제거 기능의 개시에 관한 온도 조건을 만족하지 않는 경우, 이물질의 제거가 불가함을 사용자에게 통지할 수 있다. 예를 들어, 공기조화기(100)는, 리모컨(41)에 배치된 디스플레이를 통해 이물질제거 기능의 개시가 불가함을 나타내는 인디케이터를 출력할 수 있다. 한편, 공기조화기(100)는, 이물질제거 기능의 개시에 관한 온도 조건을 만족하지 않는 경우, 현재 수행 중인 동작을 계속 수행할 수 있다. If the temperature condition for starting the foreign matter removal function is not satisfied in operation S420, the air conditioner 100 may notify the user that removal of the foreign matter is impossible. For example, the air conditioner 100 may output an indicator indicating that the foreign matter removal function cannot be started through a display disposed on the remote control 41. Meanwhile, the air conditioner 100 may continue to perform the currently performed operation if the temperature condition for starting the foreign matter removal function is not satisfied.
공기조화기(100)는, S430 동작에서, 이물질제거 기능의 개시에 관한 온도 조건을 만족하는 경우, 실내의 공기에 포함된 수분의 응결에 관한 운전(이하, 응결 운전)을 수행할 수 있다. 여기서, 응결 운전은, 실내의 공기에 포함된 수분이 실내 열교환기(108)의 표면에 물방울로 맺히도록 하는 공기조화기(100)의 동작을 의미할 수 있다. 예를 들어, 공기조화기(100)는, 응결 운전을 수행하는 것으로 기 설정된 시간(이하, 응결 시간) 동안 응결 운전을 수행할 수 있다. If the temperature condition for starting the foreign matter removal function is satisfied in operation S430, the air conditioner 100 may perform an operation related to condensation of moisture contained in indoor air (hereinafter referred to as condensation operation). Here, the condensation operation may mean an operation of the air conditioner 100 that causes moisture contained in indoor air to form water droplets on the surface of the indoor heat exchanger 108. For example, the air conditioner 100 may perform the condensation operation for a preset time (hereinafter, condensation time).
공기조화기(100)는, 응결 운전을 수행하는 것으로 결정된 경우, 압축기(102)의 구동 여부를 확인할 수 있다. 이때, 공기조화기(100)는, 압축기(102)가 구동되지 않은 경우, 압축기 구동부(350)를 제어하여 압축기(102)를 시동할 수 있다. 예를 들어, 공기조화기(100)는, 압축기(102)를 시동하는 경우, 압축기(102)의 운전주파수가 소정 주파수에 도달하도록, 기 설정된 조건에 따라 각 구성의 동작을 제어할 수 있다. 공기조화기(100)는, 실내를 냉방시키는 냉방모드에 따라, 각 구성의 동작을 제어할 수 있다. 예를 들어, 공기조화기(100)는, 압축기(102)를 시동하는 경우, 전자식 팽창밸브(EEV)를 기 설정된 개도량에 따라 개방할 수 있다. 한편, 공기조화기(100)는, 압축기(102)가 유입된 냉매를 고온, 고압의 기체 냉매로 목적에 따라 충분히 압축할 수 있는 경우, 냉매사이클이 안정화된 것으로 판단할 수 있다. When it is determined to perform a condensation operation, the air conditioner 100 can check whether the compressor 102 is operating. At this time, when the compressor 102 is not driven, the air conditioner 100 can control the compressor driver 350 to start the compressor 102. For example, when starting the compressor 102, the air conditioner 100 may control the operation of each component according to preset conditions so that the operating frequency of the compressor 102 reaches a predetermined frequency. The air conditioner 100 can control the operation of each component according to the cooling mode for cooling the room. For example, when starting the compressor 102, the air conditioner 100 may open the electronic expansion valve (EEV) according to a preset opening amount. Meanwhile, the air conditioner 100 may determine that the refrigerant cycle is stabilized when the compressor 102 can sufficiently compress the introduced refrigerant into a high-temperature, high-pressure gas refrigerant according to the purpose.
공기조화기(100)는, 응결과 관련된 실내 열교환기(108)의 온도에 대한 목표온도(이하, 응결 목표온도)를 결정할 수 있다. 응결 목표온도는, 실내의 공기에 포함된 수분이 실내 열교환기(108)의 표면에 물방울로 맺히면서, 물방울의 결빙은 일어나지 않는 온도일 수 있다. 응결 목표온도는, 실내의 온도에 대응할 수 있다. 예를 들어, 응결 목표온도는, 실내의 현재 온도보다 응결과 관련하여 기 설정된 소정 온도(예: 18℃) 낮은 온도일 수 있다. 본 개시에서는, 실내 열교환기(108)의 온도를 기준으로 설명하나, 이에 제한되지 않는다. 예를 들어, 공기조화기(100)는, 실내 열교환기(108)의 입구측 배관온도 및 출구측 배관온도 중 낮은 온도에 기초하여 동작을 수행할 수 있다. 예를 들어, 공기조화기(100)는, 실내 열교환기(108)의 입구측 배관온도 및 출구측 배관온도의 중간 값에 기초하여 동작을 수행할 수 있다.The air conditioner 100 may determine a target temperature for the temperature of the indoor heat exchanger 108 related to condensation (hereinafter referred to as condensation target temperature). The target condensation temperature may be a temperature at which moisture contained in indoor air forms water droplets on the surface of the indoor heat exchanger 108, but freezing of the water droplets does not occur. The condensation target temperature can correspond to the indoor temperature. For example, the target condensation temperature may be a predetermined temperature (e.g., 18°C) lower than the current temperature in the room. In the present disclosure, the description is based on the temperature of the indoor heat exchanger 108, but is not limited thereto. For example, the air conditioner 100 may operate based on the lower temperature of the inlet pipe temperature and the outlet pipe temperature of the indoor heat exchanger 108. For example, the air conditioner 100 may perform operations based on the intermediate value of the inlet pipe temperature and the outlet pipe temperature of the indoor heat exchanger 108.
공기조화기(100)는, 실내 열교환기(108)의 현재 온도 및 응결 목표온도에 기초하여, 압축기(102)의 운전주파수를 조절할 수 있다. 예를 들어, 공기조화기(100)는, 실내 열교환기(108)의 현재 온도와 응결 목표온도 간의 차이에 대응하여 압축기(102)의 운전주파수를 조절할 수 있다. 이때, 실내 열교환기(108)의 현재 온도와 응결 목표온도 간의 차이가 클수록 압축기(102)의 운전주파수가 높을 수 있다. The air conditioner 100 can adjust the operating frequency of the compressor 102 based on the current temperature and the target condensation temperature of the indoor heat exchanger 108. For example, the air conditioner 100 may adjust the operating frequency of the compressor 102 in response to the difference between the current temperature of the indoor heat exchanger 108 and the target condensation temperature. At this time, the larger the difference between the current temperature of the indoor heat exchanger 108 and the target condensation temperature, the higher the operating frequency of the compressor 102 may be.
일 실시예에 따르면, 공기조화기(100)는, 응결 목표온도의 결정과 관련된 소정 온도를 변경할 수 있다. 공기조화기(100)는, 통신 인터페이스(310)를 통해 네트워크에 연결된 서버로부터 소정 위치 및 소정 일시에 대응하는 온도 및 습도에 대한 데이터를 수신할 수 있다. 소정 위치는, 공기조화기(100)가 설치된 위치에 해당할 수 있다. 소정 일시는, 이물질제거 기능의 개시에 대응하는 시간, 일자 및/또는 기간에 해당할 수 있다. According to one embodiment, the air conditioner 100 may change a predetermined temperature related to determining the target condensation temperature. The air conditioner 100 may receive data on temperature and humidity corresponding to a predetermined location and a predetermined date and time from a server connected to the network through the communication interface 310. The predetermined location may correspond to the location where the air conditioner 100 is installed. The predetermined date and time may correspond to a time, date and/or period corresponding to the start of the foreign matter removal function.
공기조화기(100)는, 온도 및 습도에 대한 데이터에 기초하여, 소정 온도를 결정할 수 있다. 온도 및 습도에 대한 데이터는, 건구온도, 상대습도 및/또는 이슬점온도를 포함할 수 있다. 예를 들어, 온도 및 습도에 대한 데이터가 건구온도 및 상대습도를 포함하는 경우, 공기조화기(100)는, 습공기선도(psychrometric chart)에 기초하여 건구온도 및 상대습도에 대응하는 이슬점온도를 결정할 수 있다. The air conditioner 100 may determine a predetermined temperature based on data on temperature and humidity. Data for temperature and humidity may include dry bulb temperature, relative humidity, and/or dew point temperature. For example, when data on temperature and humidity includes dry bulb temperature and relative humidity, the air conditioner 100 determines the dew point temperature corresponding to the dry bulb temperature and relative humidity based on the psychrometric chart. You can.
공기조화기(100)는, 실내의 온도와 이슬점온도 간의 차이에 기초하여, 소정 온도를 설정할 수 있다. 도 7을 참조하면, 온도 및 습도에 대한 데이터에 기초하여, 실내의 온도에 대응하는 이슬점온도(700)가 결정될 수 있다. 이때, 공기조화기(100)는, 실내의 온도와 이슬점온도 간의 차이 중 최저치보다 일정 수준 높은 온도를 소정 온도로 결정할 수 있다. 예를 들어, 실내의 온도가 32℃, 이슬점온도가 16.7℃인 경우, 실내의 온도와 이슬점온도 간의 차이가 최저치일 수 있다. 이때, 공기조화기(100)는, 실내의 온도와 이슬점온도 간의 차이인 15.3℃보다 1℃ 이상 2℃ 미만 높은 온도인 17℃를 소정 온도로 결정할 수 있다. The air conditioner 100 can set a predetermined temperature based on the difference between the indoor temperature and the dew point temperature. Referring to FIG. 7, a dew point temperature 700 corresponding to the indoor temperature may be determined based on data on temperature and humidity. At this time, the air conditioner 100 may determine a temperature that is a certain level higher than the lowest value of the difference between the indoor temperature and the dew point temperature as the predetermined temperature. For example, if the indoor temperature is 32°C and the dew point temperature is 16.7°C, the difference between the indoor temperature and the dew point temperature may be the minimum. At this time, the air conditioner 100 may determine the predetermined temperature to be 17°C, which is 1°C or more and less than 2°C higher than the difference between the indoor temperature and the dew point temperature of 15.3°C.
한편, 공기조화기(100)는, 서버로부터 수신된 데이터에 기초하여, 이물질제거 기능의 수행 여부를 결정할 수 있다. 예를 들어, 공기조화기(100)는, 서버로부터 수신된 데이터에 기초하여 특정 일시의 건구온도, 상대습도, 이슬점 온도 등을 확인할 수 있다. 이때, 공기조화기(100)는, 특정 일시의 건구온도, 상대습도, 이슬점 온도 등에 기초하여 수분의 응결이 소정 기준 이상 일어나는 것으로 판단되는 경우, 이물질제거 기능을 수행하는 것으로 결정할 수 있다. 예를 들어, 공기조화기(100)는, 실내의 온도와 이슬점온도 간의 차이가 소정 기준 미만인 것에 기초하여 이물질제거 기능을 수행하는 것으로 결정할 수 있다. Meanwhile, the air conditioner 100 may determine whether to perform the foreign matter removal function based on data received from the server. For example, the air conditioner 100 can check the dry bulb temperature, relative humidity, dew point temperature, etc. at a specific date and time based on data received from the server. At this time, the air conditioner 100 may determine to perform the foreign matter removal function when it is determined that moisture condensation occurs more than a predetermined standard based on the dry bulb temperature, relative humidity, dew point temperature, etc. at a specific date and time. For example, the air conditioner 100 may determine to perform the foreign matter removal function based on the difference between the indoor temperature and the dew point temperature being less than a predetermined standard.
공기조화기(100)는, 이물질제거 기능의 수행을 추천하는 메시지를 출력 장치를 통해 출력할 수 있다. 예를 들어, 공기조화기(100)는, 실내의 온도와 이슬점온도 간의 차이가 제1 기준(예: 10℃) 미만인 것에 기초하여 리모컨(41)에 배치된 디스플레이를 통해 이물질제거 기능의 수행을 추천하는 메시지를 출력할 수 있다. 한편, 공기조화기(100)는, 공기조화기(100)는, 실내의 온도와 이슬점온도 간의 차이가 제2 기준(예: 18℃) 이상인 것에 기초하여 리모컨(41)에 배치된 디스플레이를 통해 이물질제거 기능의 수행이 부적절함을 통지하는 메시지를 출력할 수 있다.The air conditioner 100 may output a message recommending performance of the foreign matter removal function through an output device. For example, the air conditioner 100 performs the foreign matter removal function through the display disposed on the remote control 41 based on the difference between the indoor temperature and the dew point temperature being less than the first standard (e.g., 10°C). You can print a recommended message. Meanwhile, the air conditioner 100 displays the air conditioner 100 through a display disposed on the remote control 41 based on the difference between the indoor temperature and the dew point temperature being greater than or equal to the second standard (e.g., 18°C). A message notifying that the foreign matter removal function is inappropriate can be output.
공기조화기(100)는, 응결 운전을 수행하는 동안, 응결 운전에 대하여 기 설정된 풍향에 따라 공기가 토출되도록 베인(360)을 제어할 수 있다. 예를 들어, 풍향은, 기류가 공기조화기(100)의 전면방향으로 형성되는 간접풍과, 기류가 공기조화기(100)의 하단방향으로 형성되는 직접풍과, 간접풍과 직접풍 사이에 해당하는 경사풍을 포함할 수 있다. 공기조화기(100)는 간접풍을 형성하도록 베인(360)의 각도를 증가시킬 수 있다. 여기서, 베인(360)의 각도는, 지면에 수직하는 소정 방향과 베인(360)이 이루는 각도일 수 있다. 예를 들어, 간접풍은, 베인(360)의 각도가 최대값인 경우에 형성될 수 있다. 또한, 공기조화기(100)는 직접풍을 형성하도록 베인(360)의 각도를 감소시킬 수 있다. 예를 들어, 직접풍은, 베인(360)의 각도가 최소값인 경우에 형성될 수 있다. 이때, 공기조화기(100)는, 응결 운전을 수행하는 동안, 경사풍에 따라 공기가 토출되도록 베인(360)을 제어할 수 있다. While performing a condensation operation, the air conditioner 100 may control the vane 360 to discharge air according to a wind direction preset for the condensation operation. For example, the wind direction is an indirect wind in which the airflow is formed in the front direction of the air conditioner 100, a direct wind in which the airflow is formed in the bottom direction of the air conditioner 100, and a difference between the indirect wind and the direct wind. The corresponding oblique wind may be included. The air conditioner 100 may increase the angle of the vane 360 to generate indirect wind. Here, the angle of the vane 360 may be the angle formed between the vane 360 and a predetermined direction perpendicular to the ground. For example, indirect wind may be formed when the angle of the vane 360 is at its maximum value. Additionally, the air conditioner 100 may reduce the angle of the vane 360 to generate direct wind. For example, direct wind may be formed when the angle of the vane 360 is at a minimum value. At this time, the air conditioner 100 may control the vane 360 to discharge air according to the inclined wind while performing the condensation operation.
공기조화기(100)는, 응결 운전을 수행하는 동안, 실내팬(109a)을 응결 운전에 대응하여 기 설정된 회전 속도로 회전시킬 수 있다. 예를 들어, 공기조화기(100)는, 응결 운전을 수행하는 동안, 기 설정된 4단계의 회전 속도 중 2단계에 해당하는 회전 속도로 실내팬(109a)을 회전시킬 수 있다. 여기서, 회전 속도의 단계가 증가할수록, 회전 속도의 증가에 따라 실내팬(109a)에 의해 유동하는 공기의 유량인 풍량이 증가할 수 있다. 본 개시에서는, 회전 속도가 4단계로 구분되는 것으로 설명하나, 이에 제한되지 않는다.While performing the condensation operation, the air conditioner 100 may rotate the indoor fan 109a at a preset rotation speed in response to the condensation operation. For example, while performing a condensation operation, the air conditioner 100 may rotate the indoor fan 109a at a rotation speed corresponding to level 2 of the four preset rotation speed levels. Here, as the level of rotation speed increases, the wind volume, which is the flow rate of air flowing by the indoor fan 109a, may increase as the rotation speed increases. In the present disclosure, the rotation speed is described as divided into four stages, but is not limited thereto.
일 실시예에 따르면, 공기조화기(100)는, 응결 운전을 수행할지 여부를 결정할 수 있다. 예를 들면, 공기조화기(100)는, 이물질제거를 위한 동작을 수행함에 있어서, 응결 운전을 수행하는 것으로 기 설정될 수 있다. 예를 들면, 공기조화기(100)는, 리모컨(41)에 배치된 터치 패널을 통해 수신되는 사용자 입력에 대응하여, 응결 운전의 수행 여부를 결정할 수 있다. 이때, 공기조화기(100)는, 이전에 응결 운전의 수행에 관한 사용자 입력이 수신된 이력이 있는 경우, 이력에 따라 응결 운전의 수행 여부를 결정할 수도 있다.According to one embodiment, the air conditioner 100 may determine whether to perform a condensation operation. For example, the air conditioner 100 may be preset to perform a condensation operation when performing an operation to remove foreign substances. For example, the air conditioner 100 may determine whether to perform a condensation operation in response to a user input received through a touch panel disposed on the remote control 41. At this time, if there is a history of previously receiving a user input regarding the performance of the condensation operation, the air conditioner 100 may determine whether to perform the condensation operation based on the history.
공기조화기(100)는, S440 동작에서, 응결 동작이 완료된 경우, 수분의 동결에 관한 운전(이하, 동결 운전)을 수행할 수 있다. 여기서, 동결 운전은, 실내 열교환기(108)의 표면에 얼음이 형성되도록 하는 공기조화기(100)의 동작을 의미할 수 있다. 이하에서는, 도 5를 참조하여, 동결 동작에 대해서 구체적으로 설명하도록 한다.The air conditioner 100 may perform an operation related to freezing moisture (hereinafter referred to as freezing operation) when the condensation operation is completed in operation S440. Here, the freezing operation may refer to an operation of the air conditioner 100 that causes ice to form on the surface of the indoor heat exchanger 108. Hereinafter, the freezing operation will be described in detail with reference to FIG. 5.
도 5를 참조하면, 공기조화기(100)는, S510 동작에서, 팽창밸브(106)의 개도가 동결 운전의 개시와 관련하여 기 설정된 개도(이하, 동결 개시 개도) 미만인지 여부를 확인할 수 있다. 여기서, 동결 개시 개도는, 압축기(102)의 시동이 완료된 시점에서의 팽창밸브(106)의 개도(이하, 시동 개도)보다 작을 수 있다. Referring to FIG. 5, the air conditioner 100 may check whether the opening degree of the expansion valve 106 is less than a preset opening degree (hereinafter referred to as the freezing start opening degree) in relation to the start of the freezing operation in operation S510. . Here, the freezing start opening degree may be smaller than the opening degree of the expansion valve 106 (hereinafter referred to as the starting opening degree) at the time when startup of the compressor 102 is completed.
공기조화기(100)는, S520 동작에서, 팽창밸브(106)의 개도가 동결 개시 개도를 초과하는 것에 기초하여, 팽창밸브(106)의 개도를 동결 개시 개도로 변경할 수 있다. The air conditioner 100 may change the opening degree of the expansion valve 106 to the freezing start opening degree based on the fact that the opening degree of the expansion valve 106 exceeds the freezing start opening degree in operation S520.
공기조화기(100)는, S530 동작에서, 동결과 관련된 실내 열교환기(108)의 온도에 대한 목표온도(이하, 동결 목표온도)에 따라 압축기(102)를 제어할 수 있다. 여기서, 동결 목표온도는, 0℃ 미만인 영하의 온도 범위에서 결정될 수 있다. 예를 들어, 동결 목표온도는, 실내 열교환기(108)에 응결된 수분의 결빙이 일정 수준 이상 충분히 일어나는 소정 온도(예: -19℃)로 기 설정될 수 있다. The air conditioner 100 may control the compressor 102 according to the target temperature for the temperature of the indoor heat exchanger 108 related to freezing (hereinafter referred to as freezing target temperature) in operation S530. Here, the freezing target temperature may be determined in the sub-zero temperature range of less than 0°C. For example, the freezing target temperature may be preset to a predetermined temperature (e.g., -19°C) at which moisture condensed in the indoor heat exchanger 108 is sufficiently frozen to a certain level or higher.
공기조화기(100)는, 실내 열교환기(108)의 현재 온도와 동결 목표온도 간의 차이에 기초하여, 압축기(102)의 운전주파수를 제어할 수 있다. 예를 들면, 공기조화기(100)는, 실내 열교환기(108)의 현재 온도가 동결 목표온도보다 높은 경우, 압축기(102)의 운전주파수가 높아지도록, 압축기 구동부(350)를 제어할 수 있다. The air conditioner 100 may control the operating frequency of the compressor 102 based on the difference between the current temperature of the indoor heat exchanger 108 and the freezing target temperature. For example, the air conditioner 100 may control the compressor driving unit 350 to increase the operating frequency of the compressor 102 when the current temperature of the indoor heat exchanger 108 is higher than the freezing target temperature. .
공기조화기(100)는, S540 동작에서, 실내 열교환기(108)의 현재 온도가 기 설정된 제한온도 미만인지 여부를 판단할 수 있다. 여기서, 제한온도는, 동결 목표온도보다 높은 온도로 기 설정될 수 있다. 예를 들어, 제한온도는, 동결 목표온도인 -19℃보다 높은 영하의 온도인 -10℃로 기 설정될 수 있다.The air conditioner 100 may determine whether the current temperature of the indoor heat exchanger 108 is less than a preset temperature limit in operation S540. Here, the limit temperature may be preset to a temperature higher than the freezing target temperature. For example, the limit temperature may be preset to -10°C, which is a sub-zero temperature that is higher than the freezing target temperature of -19°C.
공기조화기(100)는, S550 동작에서, 실내 열교환기(108)의 현재 온도가 기 설정된 제한온도 미만인 것에 기초하여, 압축기(102)의 운전주파수에 대하여 기 설정된 최대 주파수를 조절할 수 있다. 예를 들어, 실내 열교환기(108)의 현재 온도가 제한온도인 -10℃ 이상인 상태에서, 압축기(102)의 운전주파수에 대한 최대 주파수가 제1 주파수(예: 90Hz)로 기 설정될 수 있다. 이때, 공기조화기(100)는, 실내 열교환기(108)의 현재 온도가 제한온도인 -10℃ 미만인 것에 기초하여, 압축기(102)의 운전주파수에 대한 최대 주파수를 제1 주파수보다 소정 주파수(예: 15Hz)만큼 낮은 제2 주파수(예: 75Hz)로 변경할 수 있다. 이를 통해, 실내 열교환기(108)의 온도가 과도하게 낮아지는 것을 방지할 수 있다. 또한, 압축기(102)의 압축비의 상승으로 인해 압축기(102)의 동작이 정지되는 것을 미연에 방지하여, 실내 열교환기(108)에 응결된 수분이 충분히 결빙되도록 동결 운전을 수행할 수 있다. The air conditioner 100 may adjust the maximum frequency preset to the operating frequency of the compressor 102 based on the fact that the current temperature of the indoor heat exchanger 108 is less than the preset limit temperature in operation S550. For example, when the current temperature of the indoor heat exchanger 108 is above the limit temperature of -10°C, the maximum operating frequency of the compressor 102 may be preset to the first frequency (e.g., 90 Hz). . At this time, the air conditioner 100 sets the maximum frequency for the operating frequency of the compressor 102 to a predetermined frequency ( You can change to a second frequency (e.g. 75 Hz) that is as low as 15 Hz. Through this, the temperature of the indoor heat exchanger 108 can be prevented from being excessively lowered. In addition, by preventing the operation of the compressor 102 from stopping due to an increase in the compression ratio of the compressor 102, a freezing operation can be performed so that the moisture condensed in the indoor heat exchanger 108 is sufficiently frozen.
공기조화기(100)는, S560 동작에서, 동결 운전의 수행이 개시된 후 동결 운전의 수행과 관련된 최소 시간(이하, 최소 동결 시간)이 경과하는지 여부를 판단할 수 있다. 여기서, 최소 동결 시간은, 응결 운전이 수행되는 응결 시간보다 긴 시간일 수 있다. 예를 들어, 응결 시간은 5분, 최소 동결 시간은 10분으로 기 설정될 수 있다.In operation S560, the air conditioner 100 may determine whether the minimum time associated with the performance of the freezing operation (hereinafter referred to as the minimum freezing time) has elapsed after the performance of the freezing operation is started. Here, the minimum freezing time may be longer than the condensing time during which the condensing operation is performed. For example, the solidification time may be preset to 5 minutes and the minimum freezing time may be preset to 10 minutes.
공기조화기(100)는, S570 동작에서, 최소 동결 시간이 경과된 것에 기초하여, 실내 열교환기(108)의 온도가 동결 목표온도 이하인지 여부를 판단할 수 있다. 일 실시예에 따르면, 공기조화기(100)는, 실내 열교환기(108)의 온도가 소정 시간(예: 10초) 이상 동결 목표온도 이하로 유지되는 경우, 실내 열교환기(108)의 온도가 동결 목표온도 이하인 것으로 판단할 수 있다. The air conditioner 100 may determine whether the temperature of the indoor heat exchanger 108 is below the freezing target temperature based on the elapse of the minimum freezing time in operation S570. According to one embodiment, the air conditioner 100, when the temperature of the indoor heat exchanger 108 is maintained below the freezing target temperature for more than a predetermined time (eg, 10 seconds), the temperature of the indoor heat exchanger 108 It can be judged to be below the freezing target temperature.
공기조화기(100)는, S580 동작에서, 실내 열교환기(108)의 온도가 동결 목표온도보다 높은 것에 기초하여, 동결 운전의 수행과 관련된 최대 시간(이하, 최대 동결 시간)이 경과하는지 여부를 판단할 수 있다. 예를 들어, 최대 동결 시간은 15분으로 기 설정될 수 있다.In operation S580, the air conditioner 100 determines whether the maximum time related to performing the freezing operation (hereinafter, maximum freezing time) has elapsed, based on the temperature of the indoor heat exchanger 108 being higher than the freezing target temperature. You can judge. For example, the maximum freezing time may be preset to 15 minutes.
공기조화기(100)는, 최소 동결 시간이 경과된 후 실내 열교환기(108)의 온도가 동결 목표온도 이하인 경우 및 최대 동결 시간이 경과된 경우 중 적어도 하나에 해당하면, 동결 운전의 수행을 종료할 수 있다.The air conditioner 100 terminates the freezing operation when at least one of the following occurs: when the temperature of the indoor heat exchanger 108 is below the freezing target temperature after the minimum freezing time has elapsed and when the maximum freezing time has elapsed. can do.
한편, 공기조화기(100)는, 동결 운전을 수행하는 동안, 실내기(31)의 토출구를 통해 응결 운전에 대하여 기 설정된 풍향과 상이한 풍향으로 공기가 토출되도록 베인(360)을 제어할 수 있다. 예를 들어, 공기조화기(100)는, 동결 운전을 수행하는 동안, 간접풍에 따라 공기가 토출되도록 베인(360)을 제어할 수 있다. 예를 들어, 공기조화기(100)는, 동결 운전을 수행하는 동안, 베인(360)이 실내기(31)의 토출구를 닫도록 제어할 수 있다.Meanwhile, the air conditioner 100 may control the vane 360 so that air is discharged through the discharge port of the indoor unit 31 in a wind direction different from the wind direction preset for the condensation operation while performing the freezing operation. For example, the air conditioner 100 may control the vanes 360 to discharge air according to indirect wind while performing a freezing operation. For example, the air conditioner 100 may control the vane 360 to close the discharge port of the indoor unit 31 while performing a freezing operation.
공기조화기(100)는, 동결 운전을 수행하는 동안, 실외팬(105a)의 회전 속도를 최대 회전 속도로 설정할 수 있다. 공기조화기(100)는, 동결 운전을 수행하는 동안, 실내팬(109a)의 회전 속도를 조절할 수 있다. 예를 들어, 공기조화기(100)는, 동결 운전을 개시하는 경우, 기 설정된 4단계의 회전 속도 중 1단계에 해당하는 회전 속도로 실내팬(109a)을 회전시킬 수 있다. The air conditioner 100 may set the rotation speed of the outdoor fan 105a to the maximum rotation speed while performing the freezing operation. The air conditioner 100 can adjust the rotation speed of the indoor fan 109a while performing the freezing operation. For example, when the air conditioner 100 starts the freezing operation, the indoor fan 109a may rotate at a rotation speed corresponding to level 1 of four preset rotation speed levels.
이때, 공기조화기(100)는, 동결 운전이 개시된 시점으로부터 소정 시간(예: 12분)이 경과된 후, 실내기(31)의 입구측 배관온도가 기 설정된 상한 온도 이상인 경우, 실내팬(109a)의 회전 속도가 현재 회전 속도보다 낮아지도록 팬 구동부(340)를 제어할 수 있다. 여기서, 기 설정된 상한 온도는, 실내 열교환기(108)에 응결된 수분의 결빙이 일어날 수 있는 온도 범위에서 가장 높은 온도에 해당하는 온도(예: -5℃)일 수 있다. 한편, 공기조화기(100)는, 동결 운전을 수행하는 동안, 소정 주기(예: 100초)에 따라 실내기(31)의 입구측 배관온도를 모니터링할 수 있다. 이때, 소정 주기에 따라 검출된 실내기(31)의 입구측 배관온도 간의 차이가 기 설정된 차이(예: 0.2℃) 미만인 경우, 실내팬(109a)의 회전 속도가 현재 회전 속도보다 낮아지도록 팬 구동부(340)를 제어할 수 있다. 본 개시에서는, 실내기(31)의 입구측 배관온도에 기초하여 실내팬(109a)의 회전 속도가 조절되는 것으로 설명하나, 이에 제한되지 않는다.At this time, the air conditioner 100 operates the indoor fan 109a when the inlet pipe temperature of the indoor unit 31 is higher than the preset upper limit temperature after a predetermined time (e.g., 12 minutes) has elapsed from the start of the freezing operation. ) can be controlled so that the rotation speed of the fan driver 340 is lower than the current rotation speed. Here, the preset upper limit temperature may be a temperature (e.g., -5°C) corresponding to the highest temperature in the temperature range where freezing of moisture condensed in the indoor heat exchanger 108 can occur. Meanwhile, while performing a freezing operation, the air conditioner 100 may monitor the temperature of the inlet pipe of the indoor unit 31 at a predetermined period (e.g., 100 seconds). At this time, if the difference between the inlet pipe temperature of the indoor unit 31 detected according to a predetermined cycle is less than a preset difference (e.g., 0.2°C), the fan driver ( 340) can be controlled. In the present disclosure, it is explained that the rotation speed of the indoor fan 109a is adjusted based on the temperature of the inlet pipe of the indoor unit 31, but the present disclosure is not limited thereto.
다시 도 4를 참조하면, 공기조화기(100)는, S450 동작에서, 동결 동작이 완료된 경우, 실내 열교환기(108)의 표면에 형성된 얼음을 녹이는 해빙 운전을 수행할 수 있다. 공기조화기(100)는, 해빙 운전을 수행하는 것으로 기 설정된 시간(이하, 해빙 시간) 동안 해빙 운전을 수행할 수 있다. 예를 들어, 해빙 시간은, 응결 시간 및 최소 동결 시간보다 짧은 시간일 수 있다.Referring again to FIG. 4 , when the freezing operation is completed in operation S450, the air conditioner 100 may perform a thawing operation to melt the ice formed on the surface of the indoor heat exchanger 108. The air conditioner 100 may perform the thawing operation for a preset time (hereinafter, thawing time). For example, the thaw time may be shorter than the freezing time and minimum freezing time.
공기조화기(100)는, 해빙 운전을 수행하는 동안 기 설정된 4단계의 회전 속도 중 1단계 또는 2단계에 해당하는 회전 속도로 실내팬(109a)을 회전시킬 수 있다.The air conditioner 100 may rotate the indoor fan 109a at a rotation speed corresponding to level 1 or level 2 among four preset rotation speed levels while performing the thawing operation.
공기조화기(100)는, 해빙 운전을 수행하는 동안 압축기(102)의 운전주파수를 기 설정된 최소 주파수로 설정할 수 있다. 여기서, 최소 주파수는, 압축기(102)가 구동하는 동안 낮아질 수 있는 운전주파수의 최소값에 해당할 수 있다. 공기조화기(100)는, 해빙 운전을 수행하는 동안 팽창밸브(106)의 개도를 기 설정된 최소 개도로 설정할 수 있다. 예를 들어, 최소 개도는, 시동 개도 또는 동결 개시 개도일 수 있다. 예를 들어, 최소 개도는, 시동 개도 및 동결 개시 개도보다 작은 개도일 수 있다. 공기조화기(100)는, 해빙 운전을 수행하는 동안 실외팬(105a)의 회전 속도를 최소 회전 속도로 설정할 수 있다. The air conditioner 100 may set the operating frequency of the compressor 102 to a preset minimum frequency while performing the thawing operation. Here, the minimum frequency may correspond to the minimum operating frequency that can be lowered while the compressor 102 is driving. The air conditioner 100 may set the opening degree of the expansion valve 106 to a preset minimum opening degree while performing a thawing operation. For example, the minimum opening degree may be a starting opening degree or a freezing start opening degree. For example, the minimum opening degree may be an opening degree that is smaller than the starting opening degree and the freezing start opening degree. The air conditioner 100 may set the rotation speed of the outdoor fan 105a to the minimum rotation speed while performing the thawing operation.
압축기(102)의 운전주파수, 팽창밸브(106)의 개도, 실외팬(105a)의 회전 속도 등이 최소치로 설정됨에 따라, 해빙 운전이 수행되는 동안 실내기(31), 실외기(21)와 실내기(31)를 연결하는 배관 등에 잔존하는 냉매가 실외기(102)로 최대한 회수될 수 있다. 이를 통해, 액체 냉매가 압축기(102)로 유입되는 경우에 발생하는 압축기(102)의 손상, 효율 감소 등의 문제를 방지할 수 있다.As the operating frequency of the compressor 102, the opening degree of the expansion valve 106, and the rotation speed of the outdoor fan 105a are set to minimum values, the indoor unit 31, the outdoor unit 21, and the indoor unit ( The refrigerant remaining in the pipes connecting 31) can be recovered to the outdoor unit 102 as much as possible. Through this, problems such as damage to the compressor 102 and reduced efficiency that occur when liquid refrigerant flows into the compressor 102 can be prevented.
한편, 공기조화기(100)는, 해빙 시간이 경과되는 경우, 실외기(21)의 동작을 정지할 수 있다. 예를 들어, 공기조화기(100)는, 압축기(102)의 구동을 종료할 수 있다. 예를 들어, 공기조화기(100)는, 실외팬(105a)의 회전을 종료할 수 있다. Meanwhile, the air conditioner 100 may stop the operation of the outdoor unit 21 when the thawing time elapses. For example, the air conditioner 100 may end driving the compressor 102. For example, the air conditioner 100 may stop rotating the outdoor fan 105a.
공기조화기(100)는, S460 동작에서, 해빙 시간이 경과되는 경우, 실내 열교환기(108)에 응결, 결빙 및 해빙된 수분을 제거하는 운전(이하, 건조 운전)을 수행할 수 있다. 공기조화기(100)는, 수분을 실내 열교환기(108)에서 모두 제거하는 완전 건조 운전 및 수분을 실내 열교환기(108)에서 일부 제거하는 일부 건조 운전 중 어느 하나를 수행할 수 있다. 이하에서는, 도 6를 참조하여, 건조 동작에 대해서 구체적으로 설명하도록 한다.When the thawing time elapses in operation S460, the air conditioner 100 may perform an operation (hereinafter referred to as a drying operation) to remove moisture condensed, frozen, and thawed in the indoor heat exchanger 108. The air conditioner 100 can perform either a complete dry operation in which all moisture is removed from the indoor heat exchanger 108 or a partial dry operation in which some moisture is removed from the indoor heat exchanger 108. Hereinafter, the drying operation will be described in detail with reference to FIG. 6.
도 6을 참조하면, 공기조화기(100)는, S610 동작에서, 이물질제거를 위한 동작을 반복 수행하였는지 여부를 판단할 수 있다. 예를 들어, 공기조화기(100)는, 응결 운전, 동결 운전 및 해빙 운전을 각각 2회 이상 수행하였는지 여부를 판단할 수 있다. Referring to FIG. 6, the air conditioner 100 may determine whether the operation to remove foreign substances has been repeatedly performed in operation S610. For example, the air conditioner 100 may determine whether the condensation operation, freezing operation, and thawing operation have each been performed two or more times.
공기조화기(100)는, S620 동작에서, 이물질제거를 위한 동작을 반복 수행하지 않은 경우, 동결 운전을 수행하는 동안 실내 열교환기(108)의 온도가 동결 목표온도에 도달하였는지 여부를 확인할 수 있다. If the operation for removing foreign substances is not repeatedly performed in operation S620, the air conditioner 100 may check whether the temperature of the indoor heat exchanger 108 has reached the freezing target temperature while performing the freezing operation. .
공기조화기(100)는, S630 동작에서, 실내 열교환기(108)의 온도가 동결 목표온도보다 높은 상태에서 동결 운전이 종료된 경우, 실내 열교환기(108)의 온도가 동결 목표온도보다 높은 소정 기준 온도 미만인 상태에서 동결 운전이 종료되었는지 여부를 확인할 수 있다. 예를 들어, 동결 목표온도가 -19℃인 경우, 기준 온도는 -19℃보다 높은 -17℃로 기 설정될 수 있다.In operation S630, when the freezing operation is terminated while the temperature of the indoor heat exchanger 108 is higher than the freezing target temperature, the air conditioner 100 determines that the temperature of the indoor heat exchanger 108 is higher than the freezing target temperature. You can check whether the freezing operation has ended while the temperature is below the standard temperature. For example, if the freezing target temperature is -19°C, the reference temperature may be preset to -17°C, which is higher than -19°C.
공기조화기(100)는, S640 동작에서, 실내 열교환기(108)의 온도가 기준 온도 이상인 상태에서 동결 운전이 종료된 경우, 일부 건조 운전을 수행할 수 있다. The air conditioner 100 may perform a partial drying operation in operation S640 when the freezing operation is terminated while the temperature of the indoor heat exchanger 108 is above the reference temperature.
일 실시예에 따르면, 공기조화기(100)는, 일부 건조 운전을 수행하는 경우, 일부 건조 운전을 수행하는 것으로 기 설정된 제1 시간 동안, 기 설정된 4단계의 회전 속도 중 3단계에 해당하는 회전 속도로 실내팬(109a)을 회전시킬 수 있다. 이때, 공기조화기(100)는, 일부 건조 운전에 대하여 기 설정된 풍향에 따라 공기가 토출되도록 베인(360)을 제어할 수 있다. 예를 들어, 공기조화기(100)는, 일부 건조 운전을 수행하는 동안, 간접풍에 따라 공기가 토출되도록 베인(360)을 제어할 수 있다. According to one embodiment, when performing a partial drying operation, the air conditioner 100 rotates at level 3 of the 4 preset rotation speeds during the first time preset to perform the partial drying operation. The indoor fan (109a) can be rotated at this speed. At this time, the air conditioner 100 may control the vane 360 to discharge air according to a preset wind direction for some drying operations. For example, the air conditioner 100 may control the vanes 360 to discharge air according to indirect wind while performing a partial drying operation.
공기조화기(100)는, S650 동작에서, 이물질제거를 위한 동작을 반복 수행하는 것으로 결정할 수 있다. The air conditioner 100 may determine to repeatedly perform the operation to remove foreign substances in operation S650.
공기조화기(100)는, S660 동작에서, 실내 열교환기(108)의 온도가 기준 온도 미만인 상태에서 동결 운전이 종료된 경우, 완전 건조 운전을 수행할 수 있다. The air conditioner 100 may perform a completely dry operation when the freezing operation is terminated while the temperature of the indoor heat exchanger 108 is below the reference temperature in operation S660.
일 실시예에 따르면, 공기조화기(100)는, 완전 건조 운전을 수행하는 경우, 제1 시간보다 긴 제2 시간 동안, 기 설정된 4단계의 회전 속도 중 4단계에 해당하는 회전 속도로 실내팬(109a)을 회전시킬 수 있다. 이때, 공기조화기(100)는, 제2 시간 동안 풍향이 연속적으로 변경되도록 베인(360)이 향하는 방향을 변경할 수 있다. 예를 들어, 공기조화기(100)는, 제2 시간 동안 풍향이 직접풍과 간접풍 사이에서 계속 변경되도록 베인모터를 구동할 수 있다. 예를 들어, 공기조화기(100)는, 베인(360)이 향하는 방향이 좌우로 변경되도록 제어할 수 있다.이를 통해, 실내 열교환기(108)의 전체 영역에서 수분이 균일하게 건조될 수 있다.According to one embodiment, when performing a completely dry operation, the air conditioner 100 operates the indoor fan at a rotation speed corresponding to level 4 of the four preset rotation speed levels for a second time longer than the first time. (109a) can be rotated. At this time, the air conditioner 100 may change the direction in which the vane 360 faces so that the wind direction changes continuously during the second time. For example, the air conditioner 100 may drive the vane motor so that the wind direction continues to change between direct wind and indirect wind for a second time. For example, the air conditioner 100 can be controlled so that the direction in which the vanes 360 face changes from left to right. Through this, moisture can be dried uniformly in the entire area of the indoor heat exchanger 108. .
한편, 공기조화기(100)는, 제2 시간이 경과되면, 제2 시간보다 짧은 제3 시간 동안, 기 설정된 4단계의 회전 속도 중 2단계에 해당하는 회전 속도로 실내팬(109a)을 회전시킬 수 있다. 이때, 공기조화기(100)는, 제3 시간 동안, 경사풍에 따라 공기가 토출되도록 베인(360)을 제어할 수 있다.Meanwhile, when the second time elapses, the air conditioner 100 rotates the indoor fan 109a at a rotation speed corresponding to level 2 of the four preset rotation speed levels for a third time shorter than the second time. You can do it. At this time, the air conditioner 100 may control the vane 360 to discharge air according to the inclined wind for the third time.
공기조화기(100)는, S660 동작에서, 이물질제거를 위한 동작을 종료하는 것으로 결정할 수 있다. The air conditioner 100 may determine to end the operation for removing foreign substances in operation S660.
다시 도 4를 참조하면, 공기조화기(100)는, S470 동작에서, 이물질제거를 위한 동작을 종료하는지 여부를 확인할 수 있다. 공기조화기(100)는, 이물질 제거를 위한 동작을 반복 수행하는 경우, 응결 운전, 동결 운전 및/또는 건조 운전을 다시 수행할 수 있다. Referring again to FIG. 4, the air conditioner 100 can check whether the operation for removing foreign substances ends in operation S470. When the air conditioner 100 repeatedly performs the operation to remove foreign substances, it may perform the condensation operation, freezing operation, and/or drying operation again.
도 8은, 실내 열교환기(108)의 온도에 대한 그래프이다. 도 8을 참조하면, 공기조화기(100)는, t1 시점까지 응결 운전, t1 시점부터 t2 시점까지 동결 운전, t2 시점부터 t3 시점까지 해빙 운전, t3 시점부터 건조 운전을 수행할 수 있다.Figure 8 is a graph of the temperature of the indoor heat exchanger 108. Referring to FIG. 8, the air conditioner 100 may perform a condensation operation until time t1, a freezing operation from time t1 to time t2, a thawing operation from time t2 to time t3, and a drying operation from time t3.
실내의 온도(T0)가 제1 온도 범위인 21℃ 내지 32℃에 포함되는 경우, 실내 열교환기(108)의 온도 역시 실내의 온도(T0)에 해당할 수 있다. 이때, 공기조화기(100)가 응결 운전을 수행하는 동안, 실내 열교환기(108)의 온도는 이슬점 온도를 하회하는 온도(T1)까지 낮아질 수 있다. 공기조화기(100)가 동결 운전을 수행하는 동안 실내 열교환기(108)의 온도가 점차 하강할 수 있다. 이때, 실내 열교환기(108)의 온도가 동결 목표온도(T2)에 도달함에 따라, 동결 운전이 종료될 수 있다. 한편, 공기조화기(100)가 해빙 운전 및 건조 운전을 수행하는 동안 실내 열교환기(108)의 온도는 점차 상승할 수 있다. When the indoor temperature (T0) is within the first temperature range of 21°C to 32°C, the temperature of the indoor heat exchanger 108 may also correspond to the indoor temperature (T0). At this time, while the air conditioner 100 performs the condensation operation, the temperature of the indoor heat exchanger 108 may be lowered to a temperature (T1) below the dew point temperature. While the air conditioner 100 performs a freezing operation, the temperature of the indoor heat exchanger 108 may gradually decrease. At this time, as the temperature of the indoor heat exchanger 108 reaches the freezing target temperature (T2), the freezing operation may be terminated. Meanwhile, while the air conditioner 100 performs the thawing operation and drying operation, the temperature of the indoor heat exchanger 108 may gradually increase.
도 9는, 실내팬(109a)의 회전 속도에 대한 그래프이다. 도 9를 참조하면, 공기조화기(100)는, 응결 운전을 수행하는 동안 실내팬(109a)을 기 설정된 4단계의 회전 속도 중 2단계(f2)에 해당하는 회전 속도로 회전시킬 수 있다. 공기조화기(100)는, 동결 운전을 수행하는 동안 실내팬(109a)을 응결 운전에서의 회전 속도(f2)보다 느린 1단계(f1)에 해당하는 회전 속도로 회전시킬 수 있다. 공기조화기(100)는, 해빙 운전을 수행하는 동안 실내팬(109a)을 동결 운전에서의 회전 속도(f1)보다 빠른 2단계(f2)에 해당하는 회전 속도로 회전시킬 수 있다.Figure 9 is a graph of the rotation speed of the indoor fan 109a. Referring to FIG. 9, while performing a condensation operation, the air conditioner 100 may rotate the indoor fan 109a at a rotation speed corresponding to level 2 (f2) of the four preset rotation speed levels. While performing the freezing operation, the air conditioner 100 may rotate the indoor fan 109a at a rotation speed corresponding to the first stage (f1), which is slower than the rotation speed (f2) in the condensation operation. While performing the thawing operation, the air conditioner 100 may rotate the indoor fan 109a at a rotation speed corresponding to the second stage (f2), which is faster than the rotation speed (f1) in the freezing operation.
공기조화기(100)는, 완전 건조 동작을 수행하는 t3 시점부터 t4 시점까지, 실내팬(109a)을 가장 높은 회전 속도인 4단계(f4)에 해당하는 회전 속도로 회전시킬 수 있다. 한편, 공기조화기(100)는, 완전 건조 동작을 수행하는 t4 시점부터, 실내팬(109a)을 다시 2단계(f2)에 해당하는 회전 속도로 회전시킬 수 있다. The air conditioner 100 may rotate the indoor fan 109a at a rotation speed corresponding to level 4 (f4), which is the highest rotation speed, from time t3 to time t4 when a complete drying operation is performed. Meanwhile, the air conditioner 100 may rotate the indoor fan 109a again at a rotation speed corresponding to the second stage (f2) from the time t4 when the complete drying operation is performed.
상기와 같이, 본 발명의 실시예 중 적어도 하나에 따르면, 온도에 대한 검출만으로 실내 열교환기(108)에 흡착된 이물질을 효과적으로 제거할 있다.As described above, according to at least one embodiment of the present invention, foreign substances adsorbed on the indoor heat exchanger 108 can be effectively removed only by detecting the temperature.
또한, 본 개시의 적어도 하나의 실시예에 따르면, 실내 열교환기(108)에 흡착된 이물질을 제거하는 동안에 발생 가능한 압축기(102)의 손상을 방지할 수 있다. Additionally, according to at least one embodiment of the present disclosure, it is possible to prevent damage to the compressor 102 that may occur while removing foreign substances adsorbed on the indoor heat exchanger 108.
또한, 본 개시의 적어도 하나의 실시예에 따르면, 실내 열교환기(108)에 흡착된 이물질이 목적에 따라 충분히 제거되는지 여부를 고려하여 실내 열교환기(108)에 흡착된 이물질을 제거하는 동작을 반복함으로써, 실내 열교환기(108)에 흡착된 이물질을 보다 효과적으로 제거할 수 있다.In addition, according to at least one embodiment of the present disclosure, the operation of removing foreign substances adsorbed on the indoor heat exchanger 108 is repeated in consideration of whether the foreign substances adsorbed on the indoor heat exchanger 108 are sufficiently removed according to the purpose. By doing so, foreign substances adsorbed on the indoor heat exchanger 108 can be more effectively removed.
첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The attached drawings are only for easy understanding of the embodiments disclosed in the present specification, and the technical idea disclosed in the present specification is not limited by the attached drawings, and all changes, equivalents and modifications included in the spirit and technical scope of the present invention are not limited. It should be understood to include water or substitutes.
마찬가지로, 특정한 순서로 도면에서 동작들을 묘사하고 있지만, 이는 바람직한 결과를 얻기 위하여 도시된 그 특정한 순서나 순차적인 순서대로 그러한 동작들을 수행하여야 한다거나, 모든 도시된 동작들이 수행되어야 하는 것으로 이해되어서는 안 된다. 특정한 경우, 멀티태스킹과 병렬 프로세싱이 유리할 수 있다.Likewise, although operations are depicted in the drawings in a particular order, this should not be construed to mean that those operations must be performed in the specific order or sequential order shown or that all of the depicted operations must be performed to obtain desirable results. . In certain cases, multitasking and parallel processing may be advantageous.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다. In addition, although preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the specific embodiments described above, and the technical field to which the invention pertains without departing from the gist of the present invention as claimed in the claims. Of course, various modifications can be made by those skilled in the art, and these modifications should not be understood individually from the technical idea or perspective of the present invention.

Claims (13)

  1. 냉매를 압축하여 토출하는 압축기;A compressor that compresses and discharges refrigerant;
    상기 냉매와 실내의 공기를 열교환하는 실내 열교환기;an indoor heat exchanger that exchanges heat between the refrigerant and indoor air;
    상기 실내 열교환기의 온도 및 실내의 온도를 감지하는 센서부; 및A sensor unit that detects the temperature of the indoor heat exchanger and the temperature of the room; and
    제어부를 포함하고,Includes a control unit,
    상기 제어부는,The control unit,
    상기 실내의 온도에 대응하는, 상기 실내 열교환기의 온도에 대한 제1 목표온도에 기초하여 상기 압축기에 대한 1차 제어를 수행하고, Perform primary control on the compressor based on a first target temperature for the temperature of the indoor heat exchanger, which corresponds to the temperature of the room,
    상기 1차 제어가 종료되면, 상기 제1 목표온도보다 낮은 영하의 상기 실내 열교환기의 온도에 대한 제2 목표온도에 기초하여 상기 압축기에 대한 2차 제어를 수행하고,When the primary control is terminated, secondary control is performed on the compressor based on a second target temperature for the temperature of the indoor heat exchanger, which is below zero and lower than the first target temperature, and
    상기 2차 제어가 종료되면, 소정 시간 동안 상기 압축기의 운전주파수를 기 설정된 최소 주파수로 설정하고, When the secondary control is terminated, the operating frequency of the compressor is set to a preset minimum frequency for a predetermined period of time,
    상기 소정 시간이 경과되면, 상기 2차 제어에 관한 조건에 기초하여 상기 1차 제어에 대한 수행을 반복할지 여부를 결정하는 것을 특징으로 하는 공기조화기.When the predetermined time has elapsed, an air conditioner characterized in that it is determined whether to repeat the performance of the primary control based on conditions related to the secondary control.
  2. 제1항에 있어서, According to paragraph 1,
    상기 실내 열교환기로 유동하는 냉매를 팽창하는 팽창밸브; an expansion valve that expands the refrigerant flowing into the indoor heat exchanger;
    상기 냉매와 실외의 공기를 열교환하는 실외 열교환기; 및an outdoor heat exchanger that exchanges heat between the refrigerant and outdoor air; and
    상기 실외 열교환기에 인접하게 배치되는 실외팬을 더 포함하고,Further comprising an outdoor fan disposed adjacent to the outdoor heat exchanger,
    상기 제어부는, The control unit,
    상기 소정 시간 동안 상기 팽창밸브의 개도를 기 설정된 최소 개도로 설정하고, Setting the opening degree of the expansion valve to a preset minimum opening degree during the predetermined time,
    상기 소정 시간 동안 상기 실외팬의 회전속도를 기 설정된 최소 회전속도로 설정하는 것을 특징으로 하는 공기조화기.An air conditioner characterized in that the rotation speed of the outdoor fan is set to a preset minimum rotation speed during the predetermined time.
  3. 제1항에 있어서, According to paragraph 1,
    상기 제어부는,The control unit,
    상기 실내 열교환기의 온도가 상기 제2 목표온도보다 높은 소정 기준 온도 미만인 상태에서 상기 2차 제어가 종료된 경우, 상기 1차 제어에 대한 수행을 반복하지 않는 것으로 결정하고,When the secondary control is terminated while the temperature of the indoor heat exchanger is lower than a predetermined reference temperature that is higher than the second target temperature, determining not to repeat the primary control,
    상기 실내 열교환기의 온도가 상기 기준 온도 이상인 상태에서 상기 2차 제어가 종료된 경우, 상기 1차 제어에 대한 수행을 반복하는 것으로 결정하는 것을 특징으로 하는 공기조화기.An air conditioner wherein, when the secondary control is terminated while the temperature of the indoor heat exchanger is above the reference temperature, it is determined to repeat the primary control.
  4. 제3항에 있어서, According to paragraph 3,
    상기 제어부는, 상기 2차 제어를 수행하는 동안,While performing the secondary control, the control unit,
    상기 2차 제어가 기 설정된 최소 시간 이상 수행된 것에 기초하여, 상기 실내 열교환기의 온도가 상기 제2 목표온도 이하인지 여부를 확인하고,Based on the secondary control being performed for more than a preset minimum time, determine whether the temperature of the indoor heat exchanger is below the second target temperature,
    상기 실내 열교환기의 온도가 상기 제2 목표온도보다 높은 것에 기초하여, 상기 2차 제어가 기 설정된 최대 시간 이상 수행되는지 여부를 확인하고, Based on that the temperature of the indoor heat exchanger is higher than the second target temperature, determine whether the secondary control is performed for more than a preset maximum time,
    상기 실내 열교환기의 온도가 상기 제2 목표온도 이하인 경우 및 상기 2차 제어가 상기 최대 시간 이상 수행된 경우 중 적어도 하나에 기초하여, 상기 2차 제어를 종료하는 것을 특징으로 하는 공기조화기.An air conditioner, characterized in that the secondary control is terminated based on at least one of a case where the temperature of the indoor heat exchanger is below the second target temperature and a case where the secondary control is performed for more than the maximum time.
  5. 제3항에 있어서, According to paragraph 3,
    상기 제어부는, 상기 2차 제어를 수행하는 동안,While performing the secondary control, the control unit,
    상기 실내 열교환기의 온도가 상기 기준 온도보다 높은 소정 제한 온도 이상인 것에 기초하여, 상기 운전주파수에 대하여 기 설정된 최대 주파수를 제1 주파수로 유지하고,Based on the fact that the temperature of the indoor heat exchanger is above a predetermined limit temperature higher than the reference temperature, maintaining the maximum frequency preset for the operating frequency as the first frequency,
    상기 실내 열교환기의 온도가 상기 제한 온도 미만인 것에 기초하여, 상기 최대 주파수를 상기 제1 주파수보다 낮은 제2 주파수로 변경하는 것을 특징으로 하는 공기조화기.An air conditioner, characterized in that, based on the temperature of the indoor heat exchanger being less than the limit temperature, the maximum frequency is changed to a second frequency lower than the first frequency.
  6. 제1항에 있어서, According to paragraph 1,
    상기 실내 열교환기에 인접하게 배치되는 실내팬을 더 포함하고,Further comprising an indoor fan disposed adjacent to the indoor heat exchanger,
    상기 제어부는,The control unit,
    상기 1차 제어에 대한 수행을 반복하는 것으로 결정되는 것에 기초하여, 상기 실내팬이 제1 시간 동안 제1 회전 속도로 회전하도록 제어하고,Controlling the indoor fan to rotate at a first rotation speed for a first time, based on the determination of repeating the performance of the first control,
    상기 1차 제어에 대한 수행을 반복하지 않는 것으로 결정되는 것에 기초하여, 상기 실내팬이 상기 제1 시간보다 긴 제2 시간 동안 상기 제1 회전 속도보다 높은 제2 회전 속도로 회전하도록 제어하는 것을 특징으로 하는 공기조화기.Based on the determination not to repeat the performance of the first control, controlling the indoor fan to rotate at a second rotation speed higher than the first rotation speed for a second time longer than the first time. An air conditioner that uses.
  7. 제6항에 있어서, According to clause 6,
    상기 제어부는,The control unit,
    상기 제2 시간이 경과되면, 상기 제2 시간보다 짧은 제3 시간 동안 상기 제1 회전 속도보다 낮은 제3 회전 속도로 회전하도록 제어하는 것을 특징으로 하는 공기조화기.When the second time has elapsed, the air conditioner is controlled to rotate at a third rotation speed lower than the first rotation speed for a third time shorter than the second time.
  8. 제7항에 있어서, In clause 7,
    상기 실내팬에 의해 유동하는 공기가 토출되는 토출구에 배치되는 베인을 포함하고,It includes a vane disposed at an outlet through which air flowing by the indoor fan is discharged,
    상기 제어부는,The control unit,
    상기 제2 시간 동안 상기 토출구를 통해 상기 공기가 토출되는 방향이 연속적으로 변경되도록 상기 베인을 제어하는 공기조화기.An air conditioner that controls the vane to continuously change the direction in which the air is discharged through the discharge port during the second time.
  9. 제1항에 있어서, According to paragraph 1,
    상기 실외의 온도를 감지하는 실외 온도센서를 더 포함하고, It further includes an outdoor temperature sensor that detects the outdoor temperature,
    상기 제어부는,The control unit,
    상기 실내의 온도가 영상의 제1 온도 범위에 해당하고, 상기 실외의 온도가 영상의 제2 온도 범위에 해당하는 것에 기초하여, 상기 1차 제어를 수행하고,Performing the primary control based on the indoor temperature corresponding to the first temperature range of the image and the outdoor temperature corresponding to the second temperature range of the image,
    상기 실내의 온도가 상기 제1 온도 범위에 해당하지 않는 경우 및 상기 실외의 온도가 상기 제2 온도 범위에 해당하지 않는 경우 중 적어도 하나에 해당하는 것에 기초하여, 상기 1차 제어에 대한 수행이 불가한 것으로 판단하는 것을 특징으로 하는 공기조화기.Based on at least one of the indoor temperature not falling within the first temperature range and the outdoor temperature not falling within the second temperature range, the primary control cannot be performed. An air conditioner characterized by being judged as having been used.
  10. 제1항에 있어서, According to paragraph 1,
    외부 장치와 통신하는 통신 인터페이스를 더 포함하고,Further comprising a communication interface for communicating with an external device,
    상기 제어부는,The control unit,
    상기 통신 인터페이스를 통해 수신되는, 소정 위치 및 소정 일시에 대응하는 온도 및 습도에 대한 데이터에 기초하여, 이슬점온도를 산출하고,Calculating a dew point temperature based on data on temperature and humidity corresponding to a predetermined location and predetermined date and time received through the communication interface,
    상기 산출된 이슬점온도과 상기 실내의 온도 간의 차이에 기초하여 상기 제1 목표온도를 결정하는 것을 특징으로 하는 특징으로 하는 공기조화기.An air conditioner characterized in that the first target temperature is determined based on the difference between the calculated dew point temperature and the indoor temperature.
  11. 제1항에 있어서,According to paragraph 1,
    상기 실내 열교환기의 온도는, 상기 실내 열교환기의 입구측 배관온도 및 출구측 배관온도 중 낮은 온도 또는 상기 실내 열교환기의 입구측 배관온도 및 출구측 배관온도의 중간 값에 대응하는 것을 특징으로 하는 공기조화기.The temperature of the indoor heat exchanger is characterized in that it corresponds to the lower temperature of the inlet piping temperature and the outlet piping temperature of the indoor heat exchanger or the intermediate value between the inlet piping temperature and the outlet piping temperature of the indoor heat exchanger. Air conditioner.
  12. 제1항에 있어서,According to paragraph 1,
    상기 실내 열교환기에 인접하게 배치되는 실내팬 및An indoor fan disposed adjacent to the indoor heat exchanger and
    상기 실내팬에 의해 유동하는 공기가 토출되는 토출구에 배치되는 베인을 포함하고,It includes a vane disposed at an outlet through which air flowing by the indoor fan is discharged,
    상기 제어부는, The control unit,
    상기 1차 제어를 수행하는 동안, 상기 공기가 토출되는 방향이 제1 방향으로 고정되도록 상기 베인을 제어하는 것을 특징으로 하는 공기조화기.While performing the primary control, the air conditioner is characterized in that the vane is controlled so that the direction in which the air is discharged is fixed to the first direction.
  13. 제12항에 있어서,According to clause 12,
    상기 제어부는,The control unit,
    상기 2차 제어를 수행하는 경우, 상기 공기가 토출되는 방향이 상기 제1 방향보다 높은 제2 방향으로 상승하도록 상기 베인을 제어하거나, 상기 베인이 상기 토출구가 폐쇄되도록 상기 베인을 제어하는 것을 특징으로 하는 공기조화기.When performing the secondary control, the vane is controlled so that the direction in which the air is discharged rises in a second direction higher than the first direction, or the vane is controlled so that the discharge port is closed. air conditioner.
PCT/KR2023/015999 2022-11-29 2023-10-17 Air conditioner WO2024117535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220162658A KR20240079591A (en) 2022-11-29 2022-11-29 Air conditioner
KR10-2022-0162658 2022-11-29

Publications (1)

Publication Number Publication Date
WO2024117535A1 true WO2024117535A1 (en) 2024-06-06

Family

ID=91324276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015999 WO2024117535A1 (en) 2022-11-29 2023-10-17 Air conditioner

Country Status (2)

Country Link
KR (1) KR20240079591A (en)
WO (1) WO2024117535A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170082818A (en) * 2016-01-07 2017-07-17 엘지전자 주식회사 Indoor unit and Air conditioner having it
JP6598393B2 (en) * 2016-11-11 2019-10-30 青島海尓空調器有限総公司 Cleaning method for indoor and outdoor air conditioners
CN110822627A (en) * 2019-10-31 2020-02-21 广东志高暖通设备股份有限公司 Self-cleaning control method for indoor heat exchanger of air conditioning system
JP2022501561A (en) * 2019-08-23 2022-01-06 海信家電集団股▲ふん▼有限公司 Air conditioner and air conditioner cleaning method
KR20220090782A (en) * 2020-12-23 2022-06-30 엘지전자 주식회사 Air conditioner and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170082818A (en) * 2016-01-07 2017-07-17 엘지전자 주식회사 Indoor unit and Air conditioner having it
JP6598393B2 (en) * 2016-11-11 2019-10-30 青島海尓空調器有限総公司 Cleaning method for indoor and outdoor air conditioners
JP2022501561A (en) * 2019-08-23 2022-01-06 海信家電集団股▲ふん▼有限公司 Air conditioner and air conditioner cleaning method
CN110822627A (en) * 2019-10-31 2020-02-21 广东志高暖通设备股份有限公司 Self-cleaning control method for indoor heat exchanger of air conditioning system
KR20220090782A (en) * 2020-12-23 2022-06-30 엘지전자 주식회사 Air conditioner and method thereof

Also Published As

Publication number Publication date
KR20240079591A (en) 2024-06-05

Similar Documents

Publication Publication Date Title
US20210254847A1 (en) Hvac functionality restoration systems and methods
US11378316B2 (en) Diagnostic mode of operation to detect refrigerant leaks in a refrigeration circuit
WO2015076509A1 (en) Air conditioner and method of controlling the same
CN110017564B (en) Double-cold-source fresh air unit and control method thereof
JP2010210121A (en) Air conditioner
JP2008064447A (en) Refrigeration device
WO2019194371A1 (en) Method for controlling air conditioning system
WO2017185733A1 (en) Air conditioning system and valve control method therefor
KR20100059522A (en) A control method of an air conditioner
US20180031267A1 (en) System and method for detecting flow restrictions across a coil of an outdoor heat exchanger
WO2018147675A1 (en) Refrigeration system
WO2021172866A1 (en) Heat pump and operation method thereof
KR20110001667A (en) Air conditioner and operating method thereof
US10830472B2 (en) Systems and methods for dynamic coil calibration
US20240019148A1 (en) System and method to operate hvac system during voltage variation event
WO2024117535A1 (en) Air conditioner
US20240019147A1 (en) System and method for monitoring charge level of hvac system
KR20110013979A (en) Air conditioner and control method thereof
US20230366601A1 (en) Air conditioner and operation method thereof
KR101064412B1 (en) Method and apparatus for sensing refrigerants leakage of multi type air conditioner
KR20090067738A (en) Control method of air conditioner
US10914487B2 (en) Low load mode of HVAC system
CN2534512Y (en) Constant temperature and humidity air conditioner with lower-dew-point temperature controller
KR101953182B1 (en) Air Conditioner and Controlling Method for the Same
US20190286173A1 (en) Systems and methods for detecting airflow in heating, ventilation, and air conditioning units

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23898069

Country of ref document: EP

Kind code of ref document: A1