WO2024117504A1 - Hybrid driving module - Google Patents

Hybrid driving module Download PDF

Info

Publication number
WO2024117504A1
WO2024117504A1 PCT/KR2023/015031 KR2023015031W WO2024117504A1 WO 2024117504 A1 WO2024117504 A1 WO 2024117504A1 KR 2023015031 W KR2023015031 W KR 2023015031W WO 2024117504 A1 WO2024117504 A1 WO 2024117504A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral surface
clutch
output member
drive module
hybrid drive
Prior art date
Application number
PCT/KR2023/015031
Other languages
French (fr)
Korean (ko)
Inventor
김정우
조아론
박진수
Original Assignee
주식회사 카펙발레오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 카펙발레오 filed Critical 주식회사 카펙발레오
Publication of WO2024117504A1 publication Critical patent/WO2024117504A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a hybrid drive module, and more specifically, to a hybrid drive module in which the lock-up clutch between the rotor hub and the output member is compact in the axial direction, has sufficient clutch capacity, and is easy to cool.
  • the drive module used in hybrid vehicles has a structure that transmits the power of the motor and engine to the transmission.
  • the hybrid drive module includes an input member that receives engine power, a housing that supports the stator, a rotor hub that supports the rotor, an engine clutch that connects the input member and the rotor hub, and a motor and/or engine from the rotor hub. It includes an output member that receives the force and transmits it to the transmission, and a power transmission part that connects the rotor hub and the output member.
  • the power transmission unit may have a structure including a torque converter and a lock-up clutch arranged in parallel on the power system.
  • An engine clutch, a lock-up clutch, etc. may be installed in the radial inner space of the rotor in the rotor hub. After a clutch, etc. is installed in the space, a hub ridge or cover is installed to cover the space. The hub ridge is installed to rotate integrally with the rotor hub.
  • the input member and the rotor hub are relatively rotatably supported by each other, and the rotor hub and the output member are also relatively rotatably supported by each other.
  • the hybrid drive module is located between the engine and transmission, and a compact design is required to improve loadability. These demands are even higher for front-wheel drive vehicles.
  • Republic of Korea Patent Publication KR 10-2239269 B1 discloses an axially compact hybrid drive module structure. Since the lock-up clutch of the disclosed hybrid drive module must transmit both engine power and motor power to the output member, an increase in clutch capacity is required. However, since the internal space of the hybrid drive module is already narrow in the axial direction, it is difficult to add any more friction material.
  • the operating pressure that presses the clutch must be increased. Increasing the operating pressure means that power to create such operating pressure is consumed, which causes fuel efficiency to deteriorate.
  • the present invention was devised to solve the above-mentioned problems, and its purpose is to provide a hybrid drive module in which the capacity of the clutch can be increased without increasing the friction material and without increasing the operating pressure.
  • the purpose of the present invention is to provide a hybrid drive module implemented with a structure that can increase clutch capacity even in a narrow space.
  • the purpose of the present invention is to provide a hybrid drive module that allows smooth flow of fluid for cooling the friction material even in a narrow space.
  • the present invention for solving the above-described problems can be applied to a hybrid drive module disposed between an engine and a transmission in a power system and including a motor that provides power to the transmission.
  • the hybrid drive module includes a rotor hub 20 on which the rotor 52 of the motor is installed, an output member 80 that receives power from the rotor hub 20 and transmits it to the transmission, the rotor hub 20 and an output A lock-up clutch 70 that selectively connects the members 80, and a piston member 75 that is slidably installed on the output member 80 in the axial direction to press or release the lock-up clutch 70.
  • a rotor hub 20 on which the rotor 52 of the motor is installed, an output member 80 that receives power from the rotor hub 20 and transmits it to the transmission, the rotor hub 20 and an output A lock-up clutch 70 that selectively connects the members 80, and a piston member 75 that is slidably installed on the output member 80 in the axial direction to press or release the lock-up clutch 70.
  • the output member 80 includes a sliding outer peripheral surface 82 on which the piston member 75 slides, a connecting flange 83 provided at the rear of the sliding outer peripheral surface 82 and extending in the centrifugal direction, and the connecting flange ( 83) and includes a communication hole 84 that connects the front space and the rear space of the connection flange 83.
  • the lock-up clutch 70 is connected to the connection flange 83 in a radial direction outside the communication hole 84.
  • the lock-up clutch 70 includes a plurality of friction materials 71, a rotor side carrier 25 provided on the rotor hub 20 and connected to rotationally constrained with a selected part of the friction material 71, and the friction material 71. ) may include an output carrier 72 that is connected to be rotationally constrained with the rest.
  • the friction material 71 rotationally constrained with the rotor-side carrier 25 and the friction material 71 rotationally constrained with the output-side carrier 72 may be alternately arranged in the axial direction.
  • the rotor hub 20 includes a hub shaft 21 provided on the centripetal side and extending in the axial direction, a radial extension portion 23 extending radially from the hub shaft 21, and the radial extension.
  • An axial extension portion 24 extending in the axial direction may be provided at the distal end of the portion 23.
  • the rotor side carrier 25 may be disposed further outward in the radial direction than the output side carrier 72.
  • the rotor side carrier 25 may be provided on the inner periphery of the axial extension portion 24.
  • the output side carrier 72 may be disposed further inward than the rotor side carrier 25 in the radial direction.
  • the communication hole 84 may communicate forwardly with the space (outflow space) between the piston member 75 and the output side carrier 72.
  • a fluid clutch may be provided at the rear of the output member 80 to fluidly couple the rotor hub 20 and the output member 80.
  • the fluid clutch may be a torque converter 60 including an impeller 61, a turbine 62, and a reactor 64 disposed between them.
  • the reactor 64 may be connected to the fixed end 65 so that rotation is permitted in one direction and rotation in the other direction is restricted.
  • this connection can be made by a one-way clutch 67.
  • the front of the fixed end 65 may be spaced rearward from the rear of the connection flange 83.
  • the output member 80 may further include a rear outer peripheral surface 87 extending further rearward in the radial direction than the communication hole 84 of the connecting flange 83.
  • Some sections of the rear outer peripheral surface 87 may overlap with the fixed end 65 supporting the reactor 64 of the torque converter 60 in the axial direction and may be disposed further inward in the radial direction.
  • the rear outer peripheral surface 87 may have a shape whose outer diameter gradually decreases toward the rear.
  • the facing inner peripheral surface 66 provided in a section of the fixed end 65 that overlaps the rear outer peripheral surface 87 in the axial direction may have a shape in which the inner diameter gradually decreases toward the rear. Accordingly, the fluid supplied from the transmission can flow smoothly forward by receiving centrifugal force in the space between the rear outer peripheral surface 87 and the facing inner peripheral surface 66.
  • the communication hole 84 may communicate rearwardly with a space (inlet space) between the output member 80, the reactor 64, and the fixed end 65.
  • the communication hole 84 may communicate rearwardly with the space between the rear surface and rear outer peripheral surface 87 of the connection flange 83, the reactor 64, and the fixed end 65.
  • a bearing 88 that supports the relative rotation of the output member 80 that occurs across the fluid clutch is connected to the connection flange radially outside the communication hole 84 located at the rear of the connection flange 83. It can be connected to (83).
  • the bearing 88 may partially/entirely block/shield the fluid in the inlet space from flowing outward in the radial direction. Accordingly, it is possible to promote the fluid in the inlet space flowing into the communication hole 84.
  • the bearing 88 may define the inlet space on the radial outer side of the inlet space.
  • a plurality of communication holes 84 may be provided in the connection flange 83 in a form in which a plurality of communication holes 84 are spaced apart along the circumferential direction.
  • the communication hole 84 may be inclined to extend radially outward from the rear of the connection flange 83 toward the front. This can guide/promote fluid flow from the inlet space to the outlet space through the communication hole 84.
  • the communication hole 84 may include a hole portion 85 extending forward from the rear of the connection flange 83.
  • the hole portion 85 is connected to a first hole 851 recessed from the rear side of the connection flange 83 to the front, and to the front of the first hole 851 and has a diameter smaller than the first hole 851. It may include a second hole 852 having. The second hole 852 may guide/promote fluid in the inlet space to flow into the first hole 851.
  • the flow cross section of the second hole 852 may be disposed within the flow cross section of the first hole 851.
  • the second hole 852 can further guide/promote the fluid in the inlet space to flow into the first hole 851.
  • the communication hole 84 is an annular groove 86 that is recessed backward from the front of the connecting flange 83 and formed entirely along the circumferential direction to communicate with the hole portion 85 and the front end of the hole portion 85. may include.
  • the inner peripheral surface provided on the distal side of the annular groove 86 may be inclined to extend radially outward from the rear to the front. This can guide/promote the flow of fluid flowing out of the hole portion 85 into the annular groove 86 into the outflow space.
  • the inner peripheral surface provided on the distal side of the annular groove 86 may be disposed further outward in the radial direction than the outlet of the hole portion 85 communicating with the annular groove 86. This can guide/promote the outflow of fluid from the hole portion 85 to the annular groove 86.
  • the outer peripheral surface provided on the centripetal side of the annular groove 86 includes a sliding extension surface 861 connected to the sliding outer peripheral surface 82 in a shape corresponding to the sliding outer peripheral surface 82, and a sliding extension surface 861 and It may include a tapered surface 862 that is connected and whose outer diameter gradually decreases toward the rear.
  • a sliding portion 76 may be provided that extends in the axial direction and has a bore that slides with the sliding outer peripheral surface 82.
  • the sliding portion 76 may extend rearward from the piston portion of the piston member 75.
  • the outer diameter of the sliding portion 76 may be smaller than the inner diameter of the inner peripheral surface provided on the distal side of the annular groove 86. Accordingly, even if the sliding portion 76 moves rearward to the sliding extension surface 861, the phenomenon of a decrease in the flow cross-section of the annular groove 86 can be minimized.
  • a chamfer surface 77 may be provided at the radially outer corner of the rear end of the sliding portion 76. This can guide the flow of fluid flowing out of the annular groove 86 into the outflow space.
  • the centrifugal inner peripheral surface of the annular groove 86 is inclined, and the chamfer surface 77 of the sliding portion 76 is also inclined, the cross-sectional flow area between them can be regulated, thereby preventing the flow of fluid passing through the space between them. Flow speed can be increased.
  • a spacer 89 may be interposed between the rotor hub 20 and the output member 80 to maintain a predetermined gap between the rotor hub 20 and the output member 80 and allow fluid to flow.
  • the space between the rotor hub 20 and the piston member 75 may communicate with the space in which the spacer 89 is interposed.
  • the lock-up clutch 70 may be disposed behind the piston member 75.
  • the centripetal end of the lock-up clutch 70 may be disposed further rearward in the axial direction than the connecting flange 83 portion disposed radially inside. Accordingly, the uneven shape that may be present at the centripetal end of the lock-up clutch 70 can be prevented from acting as resistance to the flow of fluid flowing into the outflow space through the communication hole 84.
  • the torque converter 60 may be disposed behind the lock-up clutch 70.
  • the inner peripheral surface of the centripetal end of the lock-up clutch 70 and the inner peripheral surface of the centripetal end of the turbine plate 63 of the torque converter 60 may be in contact with the outer peripheral surface of the connection flange 83. Accordingly, the uneven shape that may be present at the centripetal end of the lock-up clutch 70 and the turbine plate 63 can be prevented from acting as a resistance to the flow of fluid flowing into the outflow space through the communication hole 84.
  • centripetal end of the lock-up clutch 70, the centripetal end of the turbine plate 63 of the torque converter 60, and the connecting flange 83 contact each other in the axial direction and may be riveted together. Accordingly, axial alignment and fixation of the lockup clutch 70 and the turbine plate 63 with respect to the output member 80 can be accomplished at once.
  • the capacity of the clutch can be increased by securing the area of the piston member 75 without increasing the friction material and operating pressure.
  • clutch capacity can be increased even in a narrow space without increasing the axial dimension of the hybrid drive module.
  • the flow of fluid for cooling the friction material of the lock-up clutch can be smoothly induced even in a narrow space.
  • FIG. 1 is a cross-sectional view of an embodiment of a hybrid drive module according to the present invention.
  • FIG. 2 is an enlarged view of the lockup clutch, output member, and torque converter portion of the hybrid drive module shown in FIG. 1.
  • FIG. 3 is an enlarged view of the output member of the hybrid drive module shown in FIG. 2 and its vicinity.
  • the present invention is not limited to the embodiments disclosed below, but may be subject to various changes and may be implemented in various different forms. This example is provided solely to ensure that the disclosure of the present invention is complete and to fully inform those skilled in the art of the scope of the invention. Therefore, the present invention is not limited to the embodiments disclosed below, but substitutes or adds to the configuration of one embodiment and the configuration of another embodiment, as well as all changes and equivalents included in the technical spirit and scope of the present invention. It should be understood to include substitutes.
  • the hybrid drive module of the embodiment is symmetrical about the axis, for convenience of drawing, only half of the hybrid drive module is shown about the axis. Additionally, for convenience of explanation, the direction along the longitudinal direction of the axis forming the center of rotation of the hybrid drive module is referred to as the axial direction.
  • the front-to-back direction or axial direction is a direction parallel to the axis of rotation, with forward (forward) meaning the direction toward one direction of the power source, such as the engine, and rear (rear) meaning the direction toward the other direction, such as the transmission. . Therefore, the front (front) means the side where the surface faces forward, and the back (back) means the side where the surface faces rear.
  • the radial direction or radial direction means a direction approaching the center or moving away from the center along a straight line passing through the center of the rotation axis on a plane perpendicular to the rotation axis.
  • the direction radially away from the center is called the centrifugal direction, and the direction closer to the center is called the centripetal direction.
  • the circumferential direction or circumferential direction means the direction surrounding the rotation axis.
  • the outer circumference refers to the outer circumference
  • the inner circumference refers to the inner circumference. Therefore, the outer peripheral surface refers to a surface facing away from the rotation axis, and the inner peripheral surface refers to a surface facing the rotation axis.
  • the circumferential side refers to a surface whose normal line faces the circumferential direction.
  • the hybrid drive module of the present invention is disposed between the engine and transmission in the power system.
  • the engine is placed on the left, and the transmission is placed on the right.
  • the hybrid drive module includes a motor 50 that provides power to the transmission.
  • the motor 50 includes a stator 51 and a rotor 52.
  • the stator 51 is fixed to the housing 10 of the hybrid drive module. And the rotor 52 is accommodated in the housing 10 radially inside the stator 51 .
  • the rotor 52 may be fixed to the rotor hub 20 disposed inside the housing 10.
  • An input member 30 is provided at the front center of the housing 10 and is connected to the engine to receive power from the engine.
  • the input member 30 is rotatably supported with respect to the housing 10 through an input shaft bearing 34.
  • the input member 30 protrudes further forward than the housing 10, and an input spline 32 is formed on the outer peripheral surface of the protruding portion.
  • a torsional damper 36 is connected to the input spline 32.
  • the input side of the torsional damper 36 is connected to the engine, and the output side is connected to the input member 30.
  • a sealing member is interposed in front of the input shaft bearing 34 between the inner peripheral surface of the housing 10 and the outer peripheral surface of the input member 30. That is, the rear part of the sealing member is filled with fluid supplied from the transmission, and the sealing member and the housing 10 form the boundary of the space filled with this fluid. That is, the torsional damper 36 may be a dry spring damper.
  • the rotor hub 20 may include an axial extension portion 24 for fixing the rotor 52 and a radial extension portion 23 extending radially inward from the axial extension portion 24. You can.
  • the axial extension portion 24 may have a shape similar to a cylinder extending in the axial direction.
  • the radial extension portion 23 is connected to approximately the central portion of the axial extension portion 24 in the axial direction.
  • a hub shaft 21 extending in the axial direction is provided.
  • the hub shaft 21 is disposed rearward of the input member 30 in the axial direction, and a partial section in the axial direction overlaps the input member 30.
  • a hub shaft bearing 22 is interposed in the section where the input member 30 and the hub shaft 21 overlap, so that the input member 30 and the hub shaft 21 rotate and support each other.
  • a hub ridge 40 is connected to the front end of the axial extension portion 24.
  • the hub ridge 40 is inserted into the axial extension part 24 from the front of the axial extension part 24 in a form accommodated in the radial inner space of the axial extension part 24.
  • the hub coupling portion 41 provided at the radially outer end of the hub ridge 40 may be rotationally engaged with the axial extension portion 24.
  • a snap ring is inserted into the axial extension portion 24 to prevent the hub ridge 40 from separating from the axial extension portion 24.
  • the radially inner end of the hub ridge 40 is provided with a piston installation portion 42 extending rearward, and the radially inner end of the housing 10 also extends rearward from the radial inner side of the hub ridge 40. It is extended. And a ridge bearing 47 is interposed between them. That is, the hub ridge 40 is rotatably supported with respect to the housing 10.
  • the rotor hub 20 is rotatably supported by the housing 10 through the hub ridge 40 and the ridge bearing 47, and the hub shaft bearing 22, the input member 30, and the input shaft bearing It is rotatably supported on the housing 10 through (34).
  • a back cover 55 is connected to the rear end of the axial extension portion 24.
  • the back cover 55 is integrally fixed to the rear end of the axial extension portion 24 through welding or fastening means such as bolts.
  • the radial inner space of the axial extension portion 24 of the rotor hub 20 constitutes a space filled with a fluid such as transmission oil.
  • This space can be divided into a first accommodating space 26 and a second accommodating space 27 by the radial extension part 23.
  • the first accommodation space 26 may be defined as a space between the radial extension part 23 and the back cover 55 in the axial direction.
  • the second receiving space 27 may be defined as a space between the hub ridge 40 and the radial extension portion 23 in the axial direction. That is, the second receiving space 27 is located further forward than the first receiving space 26.
  • the input member 30 is disposed on the second receiving space 27 side.
  • the input member 30 and the rotor hub 20 are connected through an engine clutch 37.
  • the engine clutch 37 is also disposed in the second accommodation space 27.
  • the engine clutch 37 includes a clutch pack 38 in which a plurality of friction plates are arranged in the axial direction.
  • the radial outer side of the clutch pack 38 is fixed to the inner peripheral surface of the axial extension portion 24 of the rotor hub 20, and the radial inner side of the clutch pack 38 is located at the rear of the input member 30. It is fixed to an input plate 33 extending radially outward from the end.
  • a piston plate 43 is disposed in front of the clutch pack 38.
  • the piston plate 43 is disposed between the hub ridge 40 and the clutch pack 38 in the axial direction.
  • the outer peripheral surface of the piston plate 43 is slidably in contact with the hub ridge 40, and the inner peripheral surface of the piston plate 43 is slidably in contact with the piston installation portion 42 of the hub ridge 40. .
  • the space between the piston plate 43 and the hub ridge 40 forms a first operating chamber 430.
  • the hub ridge 40 is provided with an operating hole 44 connected to communicate with the first operating chamber 430.
  • a compensation plate 45 is disposed in front of the clutch pack 38 and rear of the piston plate 43.
  • the outer peripheral surface of the compensation plate 45 is in contact with the piston plate 43.
  • the radial inner end of the compensation plate 45 is supported on the piston installation portion 42 of the hub ridge 40. Accordingly, the piston plate 43 slides in contact with the compensation plate 45.
  • the space between the piston plate 43 and the compensation plate 45 forms a compensation chamber 450.
  • a return spring 48 is accommodated in the compensation chamber 450.
  • the return spring 48 is interposed between the piston plate 43 and the compensation plate 45 to elastically press the piston plate 43 in a direction away from the compensation plate 45. That is, the return spring 48 elastically applies in the direction in which the piston plate 43 presses and releases the clutch pack 38.
  • the radial inner boundary of the compensation chamber 450 may be defined by the piston installation portion 42.
  • the piston installation portion 42 of the hub ridge 40 is provided with a compensation hole 46 connected to communicate with the compensation chamber 450.
  • a first flow passage communicating with the operating hole 44 is provided in the housing 10.
  • the fluid supplied to the first operating chamber 430 is supplied to the first operating chamber 430 through the first flow path and the operating hole 44.
  • the engine clutch 37 operates, and the power of the engine is transmitted to the rotor hub 20 through the input member 30 and the clutch pack 38.
  • the housing 10 is provided with a second flow passage 11 communicating with the second receiving space 27.
  • the first flow path and the second flow path 11 do not communicate with each other.
  • the compensation hole 46 communicates with the second receiving space 27. Accordingly, the fluid supplied to the compensation chamber 450 is supplied to the compensation chamber 450 through the second flow passage 11, the second receiving space 27, and the compensation hole 46.
  • a passage hole 31 may be formed in the input member 30 so that the fluid filling the second receiving space 27 flows smoothly through the second passage 11. Accordingly, the fluid supplied through the second flow passage 11 fills the second receiving space 27 and lubricates and cools the bearings and the clutch pack 38.
  • the piston plate 43 and the compensation plate 45 rotate together with the hub ridge 40, and the hub ridge 40 is connected to the rotor hub 20 so as to be rotationally constrained. Accordingly, the piston plate 43 and the compensation plate 45 rotate together with the rotor hub 20.
  • An output member 80 and a power transmission unit that transmits the rotational force of the rotor hub 20 to the output member 80 may be accommodated in the first accommodation space 26 of the rotor hub 20.
  • the power transmission unit may include a fluid clutch connected to the rotor hub 20 and friction materials in the form of a clutch pack connected to the rotor hub 20.
  • the fluid clutch may be a torque converter 60. That is, the fluid clutch includes a half torus-shaped impeller 61 and a turbine 62 facing each other, and a reactor 64 disposed between them and connected to the fixed end 65 through a one-way clutch 67. may include.
  • the impeller 61 may be provided on the back cover 55. Accordingly, the impeller 61 is rotationally constrained with the rotor hub 20.
  • a pump drive hub 56 extending rearward is provided on the radial inner side of the back cover 55.
  • the fixed end 65 is disposed in front and radially inside the pump driving hub 56, and a cover bearing 57 may be interposed between them.
  • the output member 80 is disposed in front of the fixed end 65 and radially inside, and a bearing 88 may be interposed between them.
  • the rotational force drives the pump through the back cover 55 and the pump driving hub 56, and thus the space between the output member 80 and the fixed end 65 Transmission oil is supplied to the first receiving space 26 through. Accordingly, the first receiving space 26 is filled with fluid for operating the fluid clutch and cooling the friction material 71. Oil flowing into the first receiving space 26 in this way may flow out into the transmission through the space between the fixed end 65 and the back cover 55. In this fluid circulation process, the friction material 71, one-way clutch 67, cover bearing 57, and bearing 88 can be lubricated and cooled.
  • the turbine 62 faces the impeller 61 and is disposed in front of the impeller 61, and the radial inner side of the turbine plate 63 on which the turbine 62 is installed is connected to the output member 80.
  • the output member 80 is connected to the input of the transmission.
  • a reactor 64 is disposed between the impeller 61 and the turbine 62.
  • the reactor 64 is installed on the fixed end 65 via a one-way clutch 67.
  • the reactor 64 rotates relative to the back cover 55 and rotates relative to the output member 80.
  • the reactor 64 and the back cover 55 The cover bearing 57 is interposed between them, and the bearing 88 is interposed between the reactor 64 and the output member 80. That is, the output member 80 and the back cover 55 are rotatably supported with respect to the fixed end 65.
  • the rotational force of the motor and/or engine may be transmitted to the output member 80 through the torque converter 60.
  • a lock-up clutch 70 is disposed in front of the turbine plate 63 in the first accommodation space 26.
  • the lock-up clutch 70 includes a friction material 71 in which a plurality of friction plates are arranged in the axial direction.
  • the friction material 71 connects or disconnects the rotor hub 20 and the output member 80 between them.
  • the plurality of friction materials 71 include a friction material 71 connected to the rotor side carrier 25 provided on the inner peripheral surface of the axial extension portion 24 of the rotor hub 20 on the radial outer side, and a friction material 71 connected in the radial direction thereof. Friction materials 71 connected to the output member 80 on the inside are arranged alternately along the axial direction.
  • the rotor side carrier 25 may be disposed further outward in the radial direction than the output side carrier 72. That is, the output side carrier 72 may be disposed further inward than the rotor side carrier 25 in the radial direction.
  • rotor side carrier 25 is formed integrally with the inner peripheral surface of the axial extension portion 24 .
  • this rotor side carrier 25 may be manufactured as a separate part and then coupled to the rotor hub 20.
  • the friction material 71 may be connected to the output carrier 72 on its radial inner side, and the output carrier 72 may be connected to the output member 80 in such a way that the output carrier 72 is fixed to the output member 80.
  • a piston member 75 is installed in the first receiving space 26 to pressurize or release the friction material 71.
  • the piston member 75 has a shape extending in the radial direction and has a first surface (rear) facing one side of the axial direction and a second surface (front) facing the opposite direction. That is, the first and second surfaces are turned away from (opposing) each other.
  • the piston member 75 is disposed behind the radial extension portion 23 and in front of the lock-up clutch 70. Accordingly, the first surface is disposed to face the friction material 71 and the torque converter. And the second surface is disposed to face the radial extension portion 23.
  • the radially inner end of the piston member 75 is slidably in contact with the outer peripheral surface of the output member 80.
  • the radially outer end of the piston member 75 slideably contacts the inner peripheral surface of the axial extension portion 24.
  • the radial extension 23 and the piston member 75 define a second operating chamber 750 for the piston member 75.
  • the second surface of the piston member 75 faces the second operating chamber 750.
  • the output member 80 has a hollow shaft shape. And output splines 81 connected to the input of the transmission are formed on the inner peripheral surface of the hollow shaft shape.
  • the hollow portion of the output member 80 forms a flow path that supplies fluid to the second operating chamber 750.
  • a spacer 89 is interposed between the output member 80 and the radial extension portion 23 to maintain the gap between them and allow fluid movement.
  • the flow path communicates with the second operating chamber 750 through the space between the output member 80 and the radial extension portion 23. Accordingly, transmission oil supplied through the flow path may flow into the second operating chamber 750.
  • the hybrid drive module is located between the engine and transmission, and a compact design is required to improve mountability.
  • a compact design is required to improve mountability.
  • the space in the engine room is narrow, so an even more compact design is required.
  • the demand for compactness of hybrid drive modules is both for axial dimension reduction rather than radial dimension reduction, but the axial dimension reduction is particularly greater.
  • the engine clutch 37 requires a clutch capacity sufficient to transmit the engine power to the rotor hub 20, while the lock-up clutch 70 is a rotor in which the engine power and the motor power are combined. Since the rotational force of the hub 20 must be transmitted to the output member 80 or vice versa, an even higher clutch capacity is required.
  • Clutch capacity is influenced by the characteristics of the friction material and the characteristics of the pressing force that presses the friction material.
  • the characteristics of the friction material the larger the friction coefficient of the friction material, the larger the number of friction materials, and the larger the effective radius of the friction material, the greater the clutch capacity.
  • the characteristics of the pressing force pressing the friction material the larger the operating pressure of the fluid pressing the piston, the larger the cross-sectional area of the piston on which the operating pressure of the fluid acts, and the larger the clutch capacity.
  • a structure is proposed to maximize the cross-sectional area of the piston.
  • the centrifugal side of the piston member 75 slides directly on the inner peripheral surface of the axial extension portion 24 of the rotor hub 20 to secure the outer diameter as much as possible.
  • the outer diameter of the output member 80 on which the centripetal side of the piston member 75 slides was reduced as much as possible, and the inner diameter of the piston member 75 was reduced as much as possible.
  • the effective area of the piston member 75 that receives the pressure acting in the axial direction from the fluid in the second operating chamber 750 can be secured as much as possible.
  • the fluid coupling is performed in the torque converter 60 and the heated fluid is supplied to the friction material 71 to reduce the phenomenon of lowering the friction coefficient of the friction material, and the low temperature fluid supplied from the transmission is supplied to the friction material (71). 71) It provides a flow path structure that leads to smooth supply.
  • the output member 80 is connected to the power transmission unit, that is, the turbine plate 63 of the torque converter 60 and the output side carrier 72 of the lock-up clutch 70 to receive the rotational force of the rotor hub 20, and has an inner peripheral surface. It is connected to the input shaft of the transmission through the output spline 81 provided in and transmits the rotational force to the transmission. Additionally, the output member 80 provides a sliding outer peripheral surface 82 on which the piston member 75 slides.
  • the output member 80 minimizes the axial dimension to compact the hybrid drive module, secures rigidity for transmitting rotational force between the rotor hub 20 and the input of the transmission, and also reduces the outer diameter of the sliding outer peripheral surface 82. It is desirable to reduce the inner diameter of the piston member 75 as much as possible.
  • the output member 80 has a shape that varies the radial positions of the part connected to the power transmission part, that is, the torque converter 60 and the lock-up clutch 70, and the part where the sliding outer peripheral surface 82 is provided. do. That is, the radial distance of the connection portion from the center of rotation is greater than the radial distance of the sliding outer peripheral surface 82.
  • the sliding outer peripheral surface 82 is provided on the front part of the output member 80. And the torque converter 60 and the lock-up clutch 70 are provided rearward of the sliding outer peripheral surface 82 and are connected to a connection flange 83 whose diameter is larger than the sliding outer peripheral surface 82. That is, the connection flange 83 extends in the centrifugal direction from the rear of the sliding outer peripheral surface 82.
  • the output spline 81 may be provided on the inner peripheral surface of the output member 80 in the axial section where the sliding outer peripheral surface 82 and the connecting flange 83 are provided. Accordingly, while suppressing the increase in the axial length of the output member 80, the axial length of the output spline 81 is secured to secure the coupling force or power transmission rigidity between the output member 80 and the transmission and to transmit rotational force. In addition, by securing the radial distance of the connecting flange (83) and minimizing the outer diameter of the sliding outer peripheral surface (82) to reduce the inner diameter of the piston member (75), the pressure application area of the piston member (75) can be secured as much as possible. there is.
  • centripetal portion of the turbine plate 63 of the torque converter 60 is axially overlapped with the central portion of the output side carrier 72 of the lock-up clutch 70 at the rear. And it overlaps with the distal part of the connecting flange 83 in the axial direction and is fastened to each other through a fastening means such as a rivet 832.
  • the rotational force of the rotor hub 20 is transmitted to the output member 80 through the rivet 832.
  • the radial distance of the rivet 832 from the center of rotation is longer than the radial distance of the sliding outer peripheral surface 82 from the center of rotation, even if the same amount of torque is transmitted, the stress on the rivet 832 may be smaller. there is.
  • a front step is opened forward and centrifugally so that the centripetal portion of the turbine plate 63 and the centripetal portion of the output side carrier 72 can be engaged.
  • a shape is prepared.
  • the inner peripheral surface of the centroid of the output carrier 72 and the inner peripheral surface of the centripetal center of the turbine plate 63 are in contact with the outer peripheral surface of the front step shape, and the rear surface of the turbine plate 63 is in contact with the front surface of the front step and its axial position and radial positions are mutually regulated. Accordingly, the combination and alignment of parts can be done very easily and accurately.
  • a rear step shape that is open rearward and distal to allow the bearing 88 to be seated is provided.
  • the bearing 88 is in contact with the outer peripheral surface and rear of the rear step, and its axial and radial positions are mutually regulated. Due to the rear step shape of the connection flange 83, the distance between the output member 80 and the fixed end 65 can become closer, thereby making the axial dimension of the hybrid drive module more compact. .
  • the rear head portion of the rivet 832 is received in the head receiving groove 831 provided on the rear side of the rear step of the connecting flange 83. Therefore, the bearing 88 does not interfere with the rivet 832 and comes into contact with the rear side of the rear step of the connecting flange 83 and can be accurately seated on the connecting flange 83.
  • the portion of the connection flange 83 through which the rivet 832 passes rotates as if the radial distance from the center of rotation of the rivet 832 fastened to the connection flange 83 of the output member 80 is secured. Since the radial distance from the center is secured, there is no problem in transmitting rotational force even if the axial thickness of the distal portion of the connecting flange 83 is reduced by forming a step shape at the distal front and rear portions of the connecting flange 83.
  • connection flange 83 the space in front of the connection flange 83 and the space behind the connection flange 83 are blocked due to the shape of the connection flange 83.
  • the area where the connection flange 83 and the rivet 832 are joined is obscured by the bearing 88 located at the rear step of the connection flange 83.
  • the fluid supplied between the output member 80 and the fixed end 65 is supplied to the torus space of the torque converter 60 through a gap provided in the bearing 88, and the fluid in the torus space is supplied to the turbine plate ( 63) and flows toward the friction material 71 through the space between the axial extension portion 24 of the rotor hub 20.
  • the temperature of the fluid flowing through fluid coupling in the torus space increases, and according to the above structure, the high temperature fluid reaches the friction material 71. Then, there is a risk that the friction coefficient of the friction material 71 may decrease due to the high temperature environment.
  • connection flange 83 provided for fastening the rivet 832 are covered by the bearing 88, so there is no space between the output member 80 and the fixed end 65. It is difficult for the supplied fluid to flow from the rear space of the connection flange 83 to the front space through the holes of the connection flange 83.
  • a communication hole 84 is formed through the connection flange 83 in the front and rear directions.
  • the lockup clutch 70 and the torque converter 60 are connected to the connection flange 83 in a radial direction outside the communication hole 84. That is, the front step shape and the rear step shape of the connection flange 83 are formed radially outside the communication hole 84.
  • the communication hole 84 communicates forwardly with the space (i.e., outflow space) between the piston member 75 and the output side carrier 72, and rearwardly communicates with the output member 80 and the fixed end 65. ) It connects to the space between them (i.e., inflow space).
  • the output member 80 further includes a rear outer peripheral surface 87 that extends further rearward in the radial direction than the communication hole 84 of the connecting flange 83.
  • the section where the rear outer peripheral surface 87 is formed in the output member 80 in the axial direction is a region that is not directly involved in the transmission of rotational force between the rotor hub 20 and the transmission. Therefore, the radial thickness of the output member 80 in the corresponding section can be formed to be thinner than the radial thickness of the output member 80 in the section of the connecting flange 83 provided in front or the section of the sliding outer peripheral surface 82.
  • the rear outer peripheral surface 87 may have a shape whose outer diameter gradually decreases toward the rear.
  • the facing inner peripheral surface 66 provided in a section of the fixed end 65 that overlaps the rear outer peripheral surface 87 in the axial direction may have a shape in which the inner diameter gradually decreases toward the rear. Then, the fluid supplied from the transmission can flow smoothly forward by receiving centrifugal force in the space between the rear outer peripheral surface 87 and the facing inner peripheral surface 66.
  • the inlet space defined by the rear and rear outer peripheral surface 87 of the connection flange 83, the reactor 64, and the fixed end 65 is provided.
  • the bearing 88 is disposed radially outside the communication hole 84 at the rear of the connecting flange 83. Accordingly, the inner peripheral surface of the bearing 88 can define the radial outer boundary of the inflow space.
  • the bearing 88 partially/completely blocks/shields the fluid in the inlet space from flowing radially outward, the fluid in the inlet space flows radially outward through the gap in the bearing 88. Rather, it flows more toward the communication hole (84).
  • the communication hole 84 may be inclined to extend radially outward from the rear of the connection flange 83 toward the front. This can guide/promote fluid flow from the inlet space to the outlet space through the communication hole 84.
  • the communication hole 84 includes a plurality of hole portions 85 formed in the connection flange 83 in a manner spaced apart along the circumferential direction.
  • the hole portion 85 extends forward from the rear of the connecting flange 83.
  • the hole portion 85 is connected to a first hole 851 recessed from the rear side of the connection flange 83 to the front, and to the front of the first hole 851 and has a diameter smaller than the first hole 851. It includes a second hole 852 having. When viewed in the extending direction of the second hole 852, the flow cross section of the second hole 852 is disposed within the flow cross section of the first hole 851. That is, the first hole 851 and the second hole 852 have a funnel-like shape. This shape allows the fluid in the inflow space to better flow into the communication hole (84).
  • the communication hole 84 further includes an annular groove 86 that is recessed from the front of the connecting flange 83 to the rear and is formed entirely along the circumferential direction to communicate with the front end of the hole portion 85.
  • the piston member 75 which moves in the front-back direction to operate/release the lock-up clutch 70 and slides on the sliding outer peripheral surface 82 of the output member 80, extends in the axial direction and slides on the sliding outer peripheral surface 82. It is provided with a sliding portion 76 having a bore that slides.
  • the sliding portion 76 may have a shape extending rearward from the centripetal end of the piston member 75.
  • the sliding portion 76 In order for sliding to occur smoothly, it is desirable for the sliding portion 76 to have a certain length in the axial direction.
  • the sliding portion 76 has a shape extending rearward from the centripetal end of the piston member 75, and the outer diameter of the sliding portion 76 is an inner peripheral surface provided on the distal side of the annular groove 86. If it is smaller than the inner diameter, when the sliding part 76 slides in the axial direction, a portion of the rear end side of the sliding part 76 does not interfere with the connecting flange 83 and is defined by the annular groove 86. Since it is possible to enter and exit the internal space, the length extended in the axial direction of the sliding outer peripheral surface 82 in the output member 80 can be made more compact.
  • the outer peripheral surface provided on the centripetal side of the annular groove 86 has a shape corresponding to the sliding outer peripheral surface 82, and has a sliding extension surface 861 connected to the sliding outer peripheral surface 82, and a sliding extension surface 861 of the sliding extension surface 861. It is connected to the rear side and includes a tapered surface 862 whose outer diameter gradually decreases toward the rear.
  • the sliding extension surface 861 guides the sliding portion 76 of the piston member 75.
  • the tapered surface 862 further increases the cross-sectional flow area of the communication hole 84 and promotes the flow of fluid through the communication hole 84.
  • the inner peripheral surface provided on the distal side of the annular groove 86 is disposed further outward in the radial direction than the outlet of the hole portion 85 communicating with the annular groove 86. Accordingly, the fluid flowing through the hole portion 85 flows more smoothly into the annular groove 86.
  • the inner peripheral surface provided on the distal side of the annular groove 86 has an inclined shape extending radially outward from the rear to the front. This guides and promotes the fluid in the annular groove 86 to flow forward.
  • the outer diameter of the sliding portion 76 is smaller than the inner diameter of the inner peripheral surface provided on the distal side of the annular groove 86, so even if the sliding portion 76 moves rearward to the sliding extension surface 861, the annular shape The phenomenon of a decrease in the flow cross section of the groove 86 can be minimized.
  • a chamfer surface 77 is provided at the radial outer corner of the rear end of the sliding portion 76, so that the phenomenon of reducing the flow cross section of the annular groove 86 can be further minimized, and the flow cross section of the annular groove 86 can be reduced. It can guide the fluid flowing out into the outflow space.
  • the degree of inclination of the chamfer surface 77 of the sliding portion 76 is steeper than the degree of inclination of the inner peripheral surface on the distal side of the annular groove 86, the distance between them gradually decreases from the rear to the front. It can be made to take a reduced form. In this way, if the flow cross-sectional area is appropriately designed, it can also have the effect of increasing the flow velocity of the fluid passing through the space between them.
  • the inner peripheral surface of the centripetal end of the output carrier 72 and the inner peripheral surface of the centripetal end of the turbine plate 63 are inserted into the front step portion of the connecting flange 83 and can be in contact with the outer peripheral surface of the front step portion. there is. Accordingly, the uneven shape that may be present at the centripetal end of the output carrier 72 and the turbine plate 63 is not exposed in the centripetal direction. Accordingly, the uneven shape does not impede the flow of fluid flowing into the outflow space through the communication hole 84.
  • the fluid supplied from the transmission to the first receiving space receives centrifugal force through the space between the rear outer peripheral surface 87 and the facing inner peripheral surface 66 and flows into the inflow space.
  • the fluid flows smoothly toward the communication hole 84 through the first hole 851 while being prevented from flowing into the torus by the bearing 88 in the inflow space.
  • the fluid in the communication hole 84 receives centrifugal force and is promoted to flow forward, thereby flowing out into the outflow space.
  • the fluid in the outflow space flows in a centrifugal direction through the space between the piston member 75 and the output side carrier 72, cools the friction material 71, and flows toward the torus of the torque converter 60.
  • the fluid in the torus returns to the transmission through the space between the fixed end (65) and the back cover (55).
  • the capacity of the lock-up clutch 70 can be further increased by increasing the area of the piston member 75 and allowing relatively low-temperature fluid to cool the friction material 71.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

The present invention provides a hybrid driving module which has a lock-up clutch between a rotor hub and an output member, that is compact in the axial direction while having a sufficient clutch capacity and also being easily cooled. The present invention comprises: a rotor hub (20) with a rotor (52) provided; an output member (80) which receives the driving force of the rotor hub (20) and delivers same to a transmission; a lock-up clutch (70) for selectively connecting the rotor hub (20) and the output member (80) from therebetween; and a piston member (75) which is provided on the output member (80) to be slidable in the axial direction, and presses or releases the lock-up clutch (70). The output member (80) comprises: a slide outer circumferential surface (82) on which the piston member (75) slides; a connection flange (83) which is provided behind the slide outer circumferential surface (82) and extends in the centrifugal direction; and a communication hole (84) which is provided in the connection flange (83) and connects a front space and a rear space of the connection flange (83) to be in communication. The lock-up clutch (70) is connected to the connection flange (83) from further out in the radial direction than the communication hole (84).

Description

하이브리드 구동 모듈Hybrid drive module
본 출원은 2022년 11월 28일자 대한민국 특허출원 제10-2022-0162003호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2022-0162003, dated November 28, 2022, and all contents disclosed in the document of the Korean Patent Application are included as part of this specification.
본 발명은 하이브리드 구동 모듈에 관한 것으로, 보다 상세하게는 로터 허브와 출력부재 사이의 락업클러치가 축방향으로 컴팩트하면서도 충분한 클러치 용량을 가지고 냉각도 수월한 하이브리드 구동 모듈에 관한 것이다.The present invention relates to a hybrid drive module, and more specifically, to a hybrid drive module in which the lock-up clutch between the rotor hub and the output member is compact in the axial direction, has sufficient clutch capacity, and is easy to cool.
하이브리드 차량에 사용되는 구동 모듈은 모터와 엔진의 힘을 변속기로 전달하는 구조를 가진다. 하이브리드 구동 모듈은, 엔진의 힘을 전달받는 입력부재, 스테이터를 지지하는 하우징, 로터를 지지하는 로터 허브, 상기 입력부재와 로터 허브 사이에서 이들을 연결하는 엔진클러치, 상기 로터 허브로부터 모터 및/또는 엔진의 힘을 전달받아 변속기에 전달하는 출력부재, 상기 로터 허브와 출력부재 사이에서 이들을 연결하는 동력전달부를 포함한다. 상기 동력전달부는, 동력 계통 상 병렬로 배치된 토크컨버터와 락업클러치를 포함하는 구조일 수 있다.The drive module used in hybrid vehicles has a structure that transmits the power of the motor and engine to the transmission. The hybrid drive module includes an input member that receives engine power, a housing that supports the stator, a rotor hub that supports the rotor, an engine clutch that connects the input member and the rotor hub, and a motor and/or engine from the rotor hub. It includes an output member that receives the force and transmits it to the transmission, and a power transmission part that connects the rotor hub and the output member. The power transmission unit may have a structure including a torque converter and a lock-up clutch arranged in parallel on the power system.
상기 로터 허브에서 상기 로터의 반경방향 내측 공간에는 엔진클러치, 락업클러치 등이 설치될 수 있다. 상기 공간에 클러치 등이 설치된 뒤에는 허브 리지나 커버가 설치되어 상기 공간을 덮는다. 상기 허브 리지는 로터 허브와 일체로 회전하도록 설치된다.An engine clutch, a lock-up clutch, etc. may be installed in the radial inner space of the rotor in the rotor hub. After a clutch, etc. is installed in the space, a hub ridge or cover is installed to cover the space. The hub ridge is installed to rotate integrally with the rotor hub.
상기 입력부재와 로터 허브는 상대적으로 회전 가능하게 상호 지지되고, 로터 허브와 출력부재도 상대적으로 회전 가능하게 상호 지지된다.The input member and the rotor hub are relatively rotatably supported by each other, and the rotor hub and the output member are also relatively rotatably supported by each other.
하이브리드 구동 모듈은 엔진과 변속기 사이에 위치하는데, 탑재성 향상을 위해 컴팩트한 설계가 요구된다. 이러한 요구는 전륜 구동 차량의 경우 더욱 높아진다.The hybrid drive module is located between the engine and transmission, and a compact design is required to improve loadability. These demands are even higher for front-wheel drive vehicles.
대한민국 등록특허공보 KR 10-2239269 B1에는 축방향으로 컴팩트한 하이브리드 구동 모듈 구조가 개시되어 있다. 개시된 하이브리드 구동 모듈의 락업클러치는 엔진의 동력과 모터의 동력을 함께 출력부재에 전달하여야 하므로 클러치 용량의 증대가 필요하다. 그러나, 상기 하이브리드 구동 모듈의 내부 공간은 이미 축방향으로 협소하기 때문에 더 이상 마찰재를 추가하기 어렵다.Republic of Korea Patent Publication KR 10-2239269 B1 discloses an axially compact hybrid drive module structure. Since the lock-up clutch of the disclosed hybrid drive module must transmit both engine power and motor power to the output member, an increase in clutch capacity is required. However, since the internal space of the hybrid drive module is already narrow in the axial direction, it is difficult to add any more friction material.
결국 위와 같은 하이브리드 구동 모듈에서 마찰재의 증가 없이 클러치 용량을 증가시키기 위해서는 클러치를 가압하는 작동압력을 증가시킬 수밖에 없다. 작동압력을 증가시킨다는 것은, 그러한 작동 압력을 형성하기 위한 동력이 소모된다는 것을 의미하므로, 이는 연비 악화의 원인이 된다.Ultimately, in order to increase the clutch capacity without increasing the friction material in the above hybrid drive module, the operating pressure that presses the clutch must be increased. Increasing the operating pressure means that power to create such operating pressure is consumed, which causes fuel efficiency to deteriorate.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 마찰재의 증가 없이, 그리고 작동 압력의 증가 없이 클러치의 용량이 증대될 수 있는 하이브리드 구동 모듈을 제공하는 것을 목적으로 한다.The present invention was devised to solve the above-mentioned problems, and its purpose is to provide a hybrid drive module in which the capacity of the clutch can be increased without increasing the friction material and without increasing the operating pressure.
본 발명은, 협소한 공간에서도 클러치 용량을 증대할 수 있는 구조가 구현된 하이브리드 구동 모듈을 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a hybrid drive module implemented with a structure that can increase clutch capacity even in a narrow space.
본 발명은, 협소한 공간에서도 마찰재의 냉각을 위한 유체의 유동이 원활하게 이루어질 수 있는 하이브리드 구동 모듈을 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a hybrid drive module that allows smooth flow of fluid for cooling the friction material even in a narrow space.
본 발명의 기술적 과제들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The technical problems of the present invention are not limited to the purposes mentioned above, and other purposes and advantages of the present invention that are not mentioned can be understood through the following description and will be more clearly understood by the examples of the present invention. . Additionally, it will be readily apparent that the objects and advantages of the present invention can be realized by the means and combinations thereof indicated in the patent claims.
상술한 과제를 해결하기 위한 본 발명은, 동력 계통에서 엔진과 변속기 사이에 배치되고 변속기에 동력을 제공하는 모터를 구비하는 하이브리드 구동 모듈에 적용될 수 있다.The present invention for solving the above-described problems can be applied to a hybrid drive module disposed between an engine and a transmission in a power system and including a motor that provides power to the transmission.
상기 하이브리드 구동 모듈은, 모터의 로터(52)가 설치된 로터 허브(20), 상기 로터 허브(20)의 동력을 전달받아 상기 변속기에 전달하는 출력부재(80), 상기 로터 허브(20)와 출력부재(80) 사이에서 이들을 선택적으로 연결하는 락업클러치(70), 및 축방향으로 상기 출력부재(80)에 접동 가능하게 설치되어 상기 락업클러치(70)를 가압하거나 가압 해제하는 피스톤부재(75)를 포함할 수 있다.The hybrid drive module includes a rotor hub 20 on which the rotor 52 of the motor is installed, an output member 80 that receives power from the rotor hub 20 and transmits it to the transmission, the rotor hub 20 and an output A lock-up clutch 70 that selectively connects the members 80, and a piston member 75 that is slidably installed on the output member 80 in the axial direction to press or release the lock-up clutch 70. may include.
상기 출력부재(80)는, 상기 피스톤부재(75)가 접동하는 접동외주면(82), 상기 접동외주면(82)의 후방에 마련되고 원심방향으로 연장되는 연결플랜지(83), 및 상기 연결플랜지(83)에 마련되어 상기 연결플랜지(83)의 전방 공간과 후방 공간을 통하도록 연결하는 연통홀(84)을 포함한다.The output member 80 includes a sliding outer peripheral surface 82 on which the piston member 75 slides, a connecting flange 83 provided at the rear of the sliding outer peripheral surface 82 and extending in the centrifugal direction, and the connecting flange ( 83) and includes a communication hole 84 that connects the front space and the rear space of the connection flange 83.
상기 락업클러치(70)는 상기 연통홀(84)보다 반경방향 외측에서 상기 연결플랜지(83)에 연결된다.The lock-up clutch 70 is connected to the connection flange 83 in a radial direction outside the communication hole 84.
상기 락업클러치(70)는, 복수 개의 마찰재(71), 상기 로터 허브(20)에 마련되고 상기 마찰재(71) 중 선택된 일부와 회전 구속되도록 연결되는 로터측 캐리어(25), 및 상기 마찰재(71) 중 나머지와 회전 구속되도록 연결되는 출력측 캐리어(72)를 포함할 수 있다.The lock-up clutch 70 includes a plurality of friction materials 71, a rotor side carrier 25 provided on the rotor hub 20 and connected to rotationally constrained with a selected part of the friction material 71, and the friction material 71. ) may include an output carrier 72 that is connected to be rotationally constrained with the rest.
복수 개의 상기 마찰재(71) 중 로터측 캐리어(25)와 회전 구속된 마찰재(71)와 출력측 캐리어(72)와 회전 구속된 마찰재(71)는 축방향으로 교호로 배치될 수 있다.Among the plurality of friction materials 71, the friction material 71 rotationally constrained with the rotor-side carrier 25 and the friction material 71 rotationally constrained with the output-side carrier 72 may be alternately arranged in the axial direction.
상기 로터 허브(20)는, 구심 측에 마련되고 축방향으로 연장되는 허브축(21)과, 상기 허브축(21)으로부터 반경방향으로 연장되는 반경방향연장부(23)와, 상기 반경방향연장부(23)의 원심 측 단부에서 축방향으로 연장되는 축방향연장부(24)를 구비할 수 있다.The rotor hub 20 includes a hub shaft 21 provided on the centripetal side and extending in the axial direction, a radial extension portion 23 extending radially from the hub shaft 21, and the radial extension. An axial extension portion 24 extending in the axial direction may be provided at the distal end of the portion 23.
상기 로터측 캐리어(25)는 상기 출력측 캐리어(72)보다 반경방향으로 더 외측에 배치될 수 있다.The rotor side carrier 25 may be disposed further outward in the radial direction than the output side carrier 72.
상기 로터측 캐리어(25)는 상기 축방향연장부(24)의 내주에 마련될 수 있다.The rotor side carrier 25 may be provided on the inner periphery of the axial extension portion 24.
상기 출력측 캐리어(72)는 상기 로터측 캐리어(25)보다 반경방향으로 더 내측에 배치될 수 있다.The output side carrier 72 may be disposed further inward than the rotor side carrier 25 in the radial direction.
상기 연통홀(84)은, 전방으로, 상기 피스톤부재(75)와 출력측 캐리어(72) 사이의 공간(유출공간)과 통할 수 있다.The communication hole 84 may communicate forwardly with the space (outflow space) between the piston member 75 and the output side carrier 72.
상기 출력부재(80)의 후방에는 상기 로터 허브(20)와 상기 출력부재(80)를 유체 커플링 하는 유체클러치가 마련될 수 있다.A fluid clutch may be provided at the rear of the output member 80 to fluidly couple the rotor hub 20 and the output member 80.
상기 유체클러치는 임펠러(61)와 터빈(62) 및 이들 사이에 배치되는 리액터(64)를 포함하는 토크컨버터(60)일 수 있다.The fluid clutch may be a torque converter 60 including an impeller 61, a turbine 62, and a reactor 64 disposed between them.
상기 리액터(64)는 고정단(65)에 대해 일방향으로 회전이 허용되고 타방향으로는 회전이 제한되도록 연결될 수 있다. 가령 이러한 연결은 원웨이클러치(67)에 의해 이루어질 수 있다.The reactor 64 may be connected to the fixed end 65 so that rotation is permitted in one direction and rotation in the other direction is restricted. For example, this connection can be made by a one-way clutch 67.
상기 고정단(65)의 전면은, 상기 연결플랜지(83)의 후면으로부터 후방으로 이격 배치될 수 있다.The front of the fixed end 65 may be spaced rearward from the rear of the connection flange 83.
상기 출력부재(80)는, 상기 연결플랜지(83)의 연통홀(84)보다 반경방향 내측에서 후방으로 더 연장되는 후방외주면(87)을 더 포함할 수 있다.The output member 80 may further include a rear outer peripheral surface 87 extending further rearward in the radial direction than the communication hole 84 of the connecting flange 83.
상기 후방외주면(87)의 일부 구간은, 축방향으로 상기 토크컨버터(60)의 리액터(64)를 지지하는 고정단(65)과 중첩 배치되고 반경방향으로 더 내측에 배치될 수 있다.Some sections of the rear outer peripheral surface 87 may overlap with the fixed end 65 supporting the reactor 64 of the torque converter 60 in the axial direction and may be disposed further inward in the radial direction.
상기 후방외주면(87)은 후방으로 갈수록 외경이 점차 줄어드는 형상을 포함할 수 있다.The rear outer peripheral surface 87 may have a shape whose outer diameter gradually decreases toward the rear.
상기 고정단(65)에서 상기 후방외주면(87)과 축방향으로 중첩되는 구간에 마련된 대면 내주면(66)은 후방으로 갈수록 내경이 점차 줄어드는 형상을 포함할 수 있다. 이에 따라 변속기로부터 공급되는 유체가 상기 후방외주면(87)과 대면 내주면(66) 사이의 공간에서 원심력을 받아 전방으로 원활하게 유동할 수 있다.The facing inner peripheral surface 66 provided in a section of the fixed end 65 that overlaps the rear outer peripheral surface 87 in the axial direction may have a shape in which the inner diameter gradually decreases toward the rear. Accordingly, the fluid supplied from the transmission can flow smoothly forward by receiving centrifugal force in the space between the rear outer peripheral surface 87 and the facing inner peripheral surface 66.
상기 연통홀(84)은, 후방으로, 상기 출력부재(80)와, 리액터(64) 및 고정단(65) 사이의 공간(유입공간)과 통할 수 있다. The communication hole 84 may communicate rearwardly with a space (inlet space) between the output member 80, the reactor 64, and the fixed end 65.
구체적으로, 상기 연통홀(84)은, 후방으로, 연결플랜지(83)의 후면 및 후방외주면(87)과, 리액터(64) 및 고정단(65) 사이의 공간과 통할 수 있다.Specifically, the communication hole 84 may communicate rearwardly with the space between the rear surface and rear outer peripheral surface 87 of the connection flange 83, the reactor 64, and the fixed end 65.
상기 유체클러치를 사이에 두고 발생하는 출력부재(80)의 상대적인 회전을 지지하는 베어링(88)이, 상기 연결플랜지(83)의 후면에 위치하는 연통홀(84)보다 반경방향 외측에서 상기 연결플랜지(83)에 연결될 수 있다.A bearing 88 that supports the relative rotation of the output member 80 that occurs across the fluid clutch is connected to the connection flange radially outside the communication hole 84 located at the rear of the connection flange 83. It can be connected to (83).
상기 베어링(88)은, 상기 유입공간의 유체가 반경방향 외측으로 유동하는 것을 부분적/전체적으로 저지/차폐할 수 있다. 이에 따라, 상기 유입공간의 유체가 상기 연통홀(84)로 유입되는 것을 촉진할 수 있다.The bearing 88 may partially/entirely block/shield the fluid in the inlet space from flowing outward in the radial direction. Accordingly, it is possible to promote the fluid in the inlet space flowing into the communication hole 84.
상기 베어링(88)은, 상기 유입공간의 반경방향 외측에서 상기 유입공간을 규정할 수 있다.The bearing 88 may define the inlet space on the radial outer side of the inlet space.
상기 연통홀(84)은, 복수 개가 원주 방향을 따라 이격 배치된 형태로 상기 연결플랜지(83)에 마련될 수 있다.A plurality of communication holes 84 may be provided in the connection flange 83 in a form in which a plurality of communication holes 84 are spaced apart along the circumferential direction.
상기 연통홀(84)은 상기 연결플랜지(83)의 후방으로부터 전방으로 갈수록 반경방향 외측으로 연장되도록 경사진 형태일 수 있다. 이는 유체가 상기 유입공간으로부터 상기 연통홀(84)을 통해 상기 유출공간으로 유동하는 것을 안내/촉진할 수 있다.The communication hole 84 may be inclined to extend radially outward from the rear of the connection flange 83 toward the front. This can guide/promote fluid flow from the inlet space to the outlet space through the communication hole 84.
상기 연통홀(84)은 상기 연결플랜지(83)의 후면으로부터 전방으로 연장되는 홀부(85)를 구비할 수 있다.The communication hole 84 may include a hole portion 85 extending forward from the rear of the connection flange 83.
상기 홀부(85)는, 상기 연결플랜지(83)의 후면으로부터 전방으로 함몰된 제1홀(851), 및 상기 제1홀(851)의 전방에 연결되고 상기 제1홀(851)보다 작은 직경을 가지는 제2홀(852)을 포함할 수 있다. 상기 제2홀(852)은 상기 유입공간의 유체가 상기 제1홀(851)로 유입되는 것을 안내/촉진할 수 있다.The hole portion 85 is connected to a first hole 851 recessed from the rear side of the connection flange 83 to the front, and to the front of the first hole 851 and has a diameter smaller than the first hole 851. It may include a second hole 852 having. The second hole 852 may guide/promote fluid in the inlet space to flow into the first hole 851.
상기 제2홀(852)의 연장방향으로 보았을 때 상기 제2홀(852)의 유동 단면은 상기 제1홀(851)의 유동 단면 내에 배치될 수 있다. 상기 제2홀(852)은 상기 유입공간의 유체가 상기 제1홀(851)로 유입되는 것을 더욱 안내/촉진할 수 있다.When viewed in the direction in which the second hole 852 extends, the flow cross section of the second hole 852 may be disposed within the flow cross section of the first hole 851. The second hole 852 can further guide/promote the fluid in the inlet space to flow into the first hole 851.
상기 연통홀(84)은, 상기 홀부(85), 및 상기 홀부(85)의 전방 단부와 연통하도록 상기 연결플랜지(83)의 전면으로부터 후방으로 함몰되고 원주방향을 따라 전체적으로 형성된 환형홈(86)을 포함할 수 있다.The communication hole 84 is an annular groove 86 that is recessed backward from the front of the connecting flange 83 and formed entirely along the circumferential direction to communicate with the hole portion 85 and the front end of the hole portion 85. may include.
상기 환형홈(86)의 원심 측에 마련된 내주면은 후방으로부터 전방으로 갈수록 반경방향 외측으로 연장되도록 경사진 형태일 수 있다. 이는 홀부(85)에서 환형홈(86)으로 유출된 유체가 상기 유출공간으로 유동하는 것을 안내/촉진할 수 있다.The inner peripheral surface provided on the distal side of the annular groove 86 may be inclined to extend radially outward from the rear to the front. This can guide/promote the flow of fluid flowing out of the hole portion 85 into the annular groove 86 into the outflow space.
상기 환형홈(86)의 원심 측에 마련된 내주면은, 상기 환형홈(86)과 연통하는 홀부(85)의 출구보다 반경방향으로 더 외측에 배치될 수 있다. 이는 홀부(85)에서 환형홈(86)으로 유체가 유출되는 것을 안내/촉진할 수 있다.The inner peripheral surface provided on the distal side of the annular groove 86 may be disposed further outward in the radial direction than the outlet of the hole portion 85 communicating with the annular groove 86. This can guide/promote the outflow of fluid from the hole portion 85 to the annular groove 86.
상기 환형홈(86)의 구심 측에 마련된 외주면은, 상기 접동외주면(82)과 대응하는 형상으로 상기 접동외주면(82)에 연결되는 접동연장면(861)과, 상기 접동연장면(861)과 연결되고 후방으로 갈수록 외경이 점차 줄어드는 형상의 테이퍼면(862)을 포함할 수 있다.The outer peripheral surface provided on the centripetal side of the annular groove 86 includes a sliding extension surface 861 connected to the sliding outer peripheral surface 82 in a shape corresponding to the sliding outer peripheral surface 82, and a sliding extension surface 861 and It may include a tapered surface 862 that is connected and whose outer diameter gradually decreases toward the rear.
상기 피스톤부재(75)의 구심단부에는, 축방향으로 연장되고 상기 접동외주면(82)과 접동하는 보어를 구비하는 접동부(76)가 마련될 수 있다.At the centripetal end of the piston member 75, a sliding portion 76 may be provided that extends in the axial direction and has a bore that slides with the sliding outer peripheral surface 82.
상기 접동부(76)는 피스톤부재(75)의 피스톤 부위로부터 후방으로 연장될 수 있다.The sliding portion 76 may extend rearward from the piston portion of the piston member 75.
상기 접동부(76)의 외경은, 상기 환형홈(86)의 원심 측에 마련된 내주면의 내경보다 더 작을 수 있다. 이에 따라, 접동부(76)가 접동연장면(861)까지 후방으로 이동하더라도 환형홈(86)의 유동 단면이 줄어드는 현상을 최소화할 수 있다.The outer diameter of the sliding portion 76 may be smaller than the inner diameter of the inner peripheral surface provided on the distal side of the annular groove 86. Accordingly, even if the sliding portion 76 moves rearward to the sliding extension surface 861, the phenomenon of a decrease in the flow cross-section of the annular groove 86 can be minimized.
상기 접동부(76)의 후방 단부의 반경방향 외측 코너에는 챔퍼면(77)이 마련될 수 있다. 이는 환형홈(86)으로부터 유출공간으로 유출되는 유체의 흐름을 안내할 수 있다. A chamfer surface 77 may be provided at the radially outer corner of the rear end of the sliding portion 76. This can guide the flow of fluid flowing out of the annular groove 86 into the outflow space.
환형홈(86)의 원심 측 내주면이 경사진 형태이고, 접동부(76)의 챔퍼면(77)도 경사진 형태이므로, 이들 사이의 유동 단면적을 규제할 수 있어 이들 사이의 공간을 지나는 유체의 유속을 증가시킬 수 있다.Since the centrifugal inner peripheral surface of the annular groove 86 is inclined, and the chamfer surface 77 of the sliding portion 76 is also inclined, the cross-sectional flow area between them can be regulated, thereby preventing the flow of fluid passing through the space between them. Flow speed can be increased.
상기 로터 허브(20)와 상기 출력부재(80) 사이에는 로터 허브(20)와 출력부재(80) 사이에 소정의 간격을 유지하며 유체의 흐름을 허용하는 스페이서(89)가 개재될 수 있다.A spacer 89 may be interposed between the rotor hub 20 and the output member 80 to maintain a predetermined gap between the rotor hub 20 and the output member 80 and allow fluid to flow.
상기 로터 허브(20)와 피스톤부재(75) 사이의 공간은 상기 스페이서(89)가 개재된 공간과 연통할 수 있다.The space between the rotor hub 20 and the piston member 75 may communicate with the space in which the spacer 89 is interposed.
상기 락업클러치(70)는 상기 피스톤부재(75)의 후방에 배치될 수 있다.The lock-up clutch 70 may be disposed behind the piston member 75.
상기 락업클러치(70)의 구심측 단부는, 그보다 반경방향 내측에 배치되는 연결플랜지(83) 부분보다 축방향으로 더 후방에 배치될 수 있다. 이에 따라, 락업클러치(70)의 구심측 단부에 있을 수 있는 요철 형상이 연통홀(84)을 통해 유출공간으로 흐르는 유체의 흐름에 저항으로 작용하지 않도록 할 수 있다.The centripetal end of the lock-up clutch 70 may be disposed further rearward in the axial direction than the connecting flange 83 portion disposed radially inside. Accordingly, the uneven shape that may be present at the centripetal end of the lock-up clutch 70 can be prevented from acting as resistance to the flow of fluid flowing into the outflow space through the communication hole 84.
상기 토크컨버터(60)는 상기 락업클러치(70)의 후방에 배치될 수 있다.The torque converter 60 may be disposed behind the lock-up clutch 70.
상기 락업클러치(70)의 구심측 단부의 내주면과 상기 토크컨버터(60)의 터빈플레이트(63)의 구심측 단부의 내주면은, 상기 연결플랜지(83)의 외주면과 접할 수 있다. 이에 따라, 락업클러치(70)와 터빈플레이트(63)의 구심측 단부에 있을 수 있는 요철 형상이 연통홀(84)을 통해 유출공간으로 흐르는 유체의 흐름에 저항으로 작용하지 않도록 할 수 있다.The inner peripheral surface of the centripetal end of the lock-up clutch 70 and the inner peripheral surface of the centripetal end of the turbine plate 63 of the torque converter 60 may be in contact with the outer peripheral surface of the connection flange 83. Accordingly, the uneven shape that may be present at the centripetal end of the lock-up clutch 70 and the turbine plate 63 can be prevented from acting as a resistance to the flow of fluid flowing into the outflow space through the communication hole 84.
상기 락업클러치(70)의 구심측 단부와 상기 토크컨버터(60)의 터빈플레이트(63)의 구심측 단부와 상기 연결플랜지(83)는, 축방향으로 서로 접하며 함께 리벳 고정될 수 있다. 이에 따라 출력부재(80)에 대한 락업클러치(70)와 터빈플레이트(63)의 축정렬과 고정이 일거에 이루어질 수 있다.The centripetal end of the lock-up clutch 70, the centripetal end of the turbine plate 63 of the torque converter 60, and the connecting flange 83 contact each other in the axial direction and may be riveted together. Accordingly, axial alignment and fixation of the lockup clutch 70 and the turbine plate 63 with respect to the output member 80 can be accomplished at once.
본 발명의 하이브리드 구동 모듈에 따르면, 마찰재의 증가 없이, 그리고 작동 압력의 증가 없이, 피스톤부재(75)의 면적을 확보하여 클러치의 용량을 증대시킬 수 있다.According to the hybrid drive module of the present invention, the capacity of the clutch can be increased by securing the area of the piston member 75 without increasing the friction material and operating pressure.
본 발명에 따르면, 하이브리드 구동 모듈의 축방향 치수를 늘리지 않고 협소한 공간에서도 클러치 용량을 증대할 수 있다.According to the present invention, clutch capacity can be increased even in a narrow space without increasing the axial dimension of the hybrid drive module.
본 발명에 따르면, 협소한 공간에서도 락업클러치의 마찰재를 냉각하기 위한 유체의 유동을 원활하게 유도할 수 있다.According to the present invention, the flow of fluid for cooling the friction material of the lock-up clutch can be smoothly induced even in a narrow space.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the above-described effects, specific effects of the present invention are described below while explaining specific details for carrying out the invention.
도 1은 본 발명에 따른 하이브리드 구동 모듈의 실시예의 단면도이다.1 is a cross-sectional view of an embodiment of a hybrid drive module according to the present invention.
도 2는 도 1에 도시된 하이브리드 구동 모듈의 락업클러치와 출력부재와 토크 컨버터 부분의 확대도이다.FIG. 2 is an enlarged view of the lockup clutch, output member, and torque converter portion of the hybrid drive module shown in FIG. 1.
도 3은 도 2에 도시된 하이브리드 구동 모듈의 출력부재와 그 부근의 확대도이다.FIG. 3 is an enlarged view of the output member of the hybrid drive module shown in FIG. 2 and its vicinity.
[부호의 설명][Explanation of symbols]
10: 하우징 11: 제2유로 20: 로터 허브 21: 허브축 22: 허브축베어링 23: 반경방향연장부 24: 축방향연장부 25: 로터측 캐리어 26: 제1수용공간 27: 제2수용공간 30: 입력부재 31: 유로홀 32: 입력스플라인 33: 입력플레이트 34: 입력축베어링 36: 토셔널 댐퍼 37: 엔진클러치 38: 클러치팩 40: 허브 리지 41: 허브 결합부 42: 피스톤 설치부 43: 피스톤플레이트 430: 제1작동챔버 44: 작동홀 45: 보상플레이트 450: 보상챔버 46: 보상홀 47: 리지베어링 48: 리턴스프링 50: 모터 51: 스테이터 52: 로터 55: 백커버 56: 펌프 구동 허브 57: 커버베어링 60: 토크컨버터 61: 임펠러 62: 터빈 63: 터빈플레이트 64: 리액터 65: 고정단 66: 대면 내주면 67: 원웨이클러치 70: 락업클러치 71: 마찰재 72: 출력측 캐리어 75: 피스톤부재 750: 제2작동챔버 76: 접동부 77: 챔퍼면 80: 출력부재 81: 출력스플라인 82: 접동외주면 83: 연결플랜지 831: 헤드수용홈 832: 리벳 84: 연통홀 85: 홀부 851: 제1홀 852: 제2홀 86: 환형홈 861: 접동연장면 862: 테이퍼면 87: 후방외주면 88: 베어링 89: 스페이서10: Housing 11: Second flow path 20: Rotor hub 21: Hub shaft 22: Hub shaft bearing 23: Radial extension 24: Axial extension 25: Rotor side carrier 26: First accommodation space 27: Second accommodation space 30: Input member 31: Euro hole 32: Input spline 33: Input plate 34: Input shaft bearing 36: Torsional damper 37: Engine clutch 38: Clutch pack 40: Hub ridge 41: Hub coupling part 42: Piston installation part 43: Piston Plate 430: First operating chamber 44: Operating hole 45: Compensating plate 450: Compensating chamber 46: Compensating hole 47: Ridge bearing 48: Return spring 50: Motor 51: Stator 52: Rotor 55: Back cover 56: Pump driving hub 57 : Cover bearing 60: Torque converter 61: Impeller 62: Turbine 63: Turbine plate 64: Reactor 65: Fixed end 66: Facing inner peripheral surface 67: One-way clutch 70: Lock-up clutch 71: Friction material 72: Output side carrier 75: Piston member 750: Second operating chamber 76: Sliding portion 77: Chamfer surface 80: Output member 81: Output spline 82: Sliding outer peripheral surface 83: Connection flange 831: Head receiving groove 832: Rivet 84: Communication hole 85: Hole portion 851: First hole 852: Second hole 86: Annular groove 861: Sliding extension surface 862: Taper surface 87: Rear outer peripheral surface 88: Bearing 89: Spacer
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조로 하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 다양한 변경을 가할 수 있고 서로 다른 다양한 형태로 구현될 수 있다. 단지 본 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다. 따라서 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라, 어느 하나의 실시예의 구성과 다른 실시예의 구성을 서로 치환하거나 부가하는 것은 물론 본 발명의 기술적 사상과 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. The present invention is not limited to the embodiments disclosed below, but may be subject to various changes and may be implemented in various different forms. This example is provided solely to ensure that the disclosure of the present invention is complete and to fully inform those skilled in the art of the scope of the invention. Therefore, the present invention is not limited to the embodiments disclosed below, but substitutes or adds to the configuration of one embodiment and the configuration of another embodiment, as well as all changes and equivalents included in the technical spirit and scope of the present invention. It should be understood to include substitutes.
첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면에서 구성요소들은 이해의 편의 등을 고려하여 크기나 두께가 과장되게 크거나 작게 표현될 수 있으나, 이로 인해 본 발명의 보호범위가 제한적으로 해석되어서는 아니 될 것이다.The attached drawings are only for easy understanding of the embodiments disclosed in the present specification, and the technical idea disclosed in the present specification is not limited by the attached drawings, and all changes, equivalents, and changes included in the spirit and technical scope of the present invention are not limited. It should be understood to include water or substitutes. In the drawings, components may be expressed exaggeratedly large or small in size or thickness for convenience of understanding, etc., but the scope of protection of the present invention should not be construed as limited due to this.
본 명세서에서 사용한 용어는 단지 특정한 구현예나 실시예를 설명하기 위해 사용되는 것으로, 본 발명을 한정하려는 의도가 아니다. 그리고 단수의 표현은, 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 명세서에서 ~포함하다, ~이루어진다 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이다. 즉 명세서에서 ~포함하다, ~이루어진다 등의 용어는. 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들이 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this specification are only used to describe specific implementations or examples, and are not intended to limit the invention. And singular expressions include plural expressions, unless the context clearly dictates otherwise. In the specification, terms such as ~include, ~consist of, etc. are intended to designate the presence of features, numbers, steps, operations, components, parts, or a combination thereof described in the specification. In other words, terms such as ~include, ~consist, etc. in the specification. It should be understood that this does not exclude in advance the presence or addition of one or more other features, numbers, steps, operations, components, parts or combinations thereof.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms containing ordinal numbers, such as first, second, etc., may be used to describe various components, but the components are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is said to be "connected" or "connected" to another component, it is understood that it may be directly connected to or connected to the other component, but that other components may exist in between. It should be. On the other hand, when it is mentioned that a component is “directly connected” or “directly connected” to another component, it should be understood that there are no other components in between.
어떤 구성요소가 다른 구성요소의 "상부에 있다"거나 "하부에 있다"고 언급된 때에는, 그 다른 구성요소의 바로 위에 배치되어 있는 것뿐만 아니라 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.When a component is referred to as being "on top" or "below" another component, it should be understood that not only is it placed directly on top of the other component, but there may also be other components in between. .
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless explicitly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
실시예의 하이브리드 구동 모듈은 축을 기준으로 대칭을 이루므로, 작도의 편의 상, 축을 기준으로 반만 도시한다. 또한 설명의 편의 상, 하이브리드 구동 모듈의 회전의 중심을 이루는 축의 길이방향을 따르는 방향을 축방향이라 한다. 즉 전후 방향 또는 축방향은 회전축과 나란한 방향으로서, 전방(앞쪽)은 동력원인 어느 일 방향, 가령 엔진 쪽으로 향하는 방향을 의미하고, 후방(뒤쪽)은 다른 일 방향, 가령 변속기 쪽으로 향하는 방향을 의미한다. 따라서 전면(앞면)이란 그 표면이 전방을 바라보는 면을 의미하고, 후면(뒷면)이란 그 표면이 후방을 바라보는 면을 의미한다.Since the hybrid drive module of the embodiment is symmetrical about the axis, for convenience of drawing, only half of the hybrid drive module is shown about the axis. Additionally, for convenience of explanation, the direction along the longitudinal direction of the axis forming the center of rotation of the hybrid drive module is referred to as the axial direction. In other words, the front-to-back direction or axial direction is a direction parallel to the axis of rotation, with forward (forward) meaning the direction toward one direction of the power source, such as the engine, and rear (rear) meaning the direction toward the other direction, such as the transmission. . Therefore, the front (front) means the side where the surface faces forward, and the back (back) means the side where the surface faces rear.
반경방향 또는 방사 방향이라 함은 상기 회전축과 수직한 평면 상에서 상기 회전축의 중심을 지나는 직선을 따라 상기 중심에 가까워지는 방향 또는 상기 중심으로부터 멀어지는 방향을 의미한다. 상기 중심으로부터 반경방향으로 멀어지는 방향을 원심방향이라 하고, 상기 중심에 가까워지는 방향을 구심방향이라 한다.The radial direction or radial direction means a direction approaching the center or moving away from the center along a straight line passing through the center of the rotation axis on a plane perpendicular to the rotation axis. The direction radially away from the center is called the centrifugal direction, and the direction closer to the center is called the centripetal direction.
둘레방향 또는 원주방향이라 함은 상기 회전축의 주위를 둘러싸는 방향을 의미한다. 외주라 함은 외측 둘레, 내주라 함은 내측 둘레를 의미한다. 따라서 외주면은 상기 회전축을 등지는 방향의 면이고, 내주면은 상기 회전축을 바라보는 방향의 면을 의미한다.The circumferential direction or circumferential direction means the direction surrounding the rotation axis. The outer circumference refers to the outer circumference, and the inner circumference refers to the inner circumference. Therefore, the outer peripheral surface refers to a surface facing away from the rotation axis, and the inner peripheral surface refers to a surface facing the rotation axis.
둘레방향 측면이라 함은 그 면의 법선이 둘레방향을 향하는 면을 의미한다.The circumferential side refers to a surface whose normal line faces the circumferential direction.
[하이브리드 구동 모듈의 전반적인 구조][Overall structure of hybrid drive module]
본 발명의 하이브리드 구동 모듈은 동력 계통에서 엔진과 변속기 사이에 배치된다. 실시예의 도면 상 좌측에 엔진이 배치되고, 우측에 변속기가 배치된다.The hybrid drive module of the present invention is disposed between the engine and transmission in the power system. In the drawing of the embodiment, the engine is placed on the left, and the transmission is placed on the right.
상기 하이브리드 구동 모듈은 변속기에 동력을 제공하는 모터(50)를 구비한다. 상기 모터(50)는 스테이터(51)와 로터(52)를 구비한다.The hybrid drive module includes a motor 50 that provides power to the transmission. The motor 50 includes a stator 51 and a rotor 52.
상기 스테이터(51)는 상기 하이브리드 구동 모듈의 하우징(10)에 고정된다. 그리고 상기 로터(52)는, 상기 스테이터(51)보다 반경방향 내측에서 상기 하우징(10)에 수용된다. 상기 로터(52)는, 상기 하우징(10) 내부에 배치되는 로터 허브(20)에 고정될 수 있다.The stator 51 is fixed to the housing 10 of the hybrid drive module. And the rotor 52 is accommodated in the housing 10 radially inside the stator 51 . The rotor 52 may be fixed to the rotor hub 20 disposed inside the housing 10.
상기 하우징(10)의 전방 중심에는 엔진과 연결되어 엔진의 동력을 입력 받는 입력부재(30)가 마련된다. 상기 입력부재(30)는 상기 하우징(10)에 대해 입력축베어링(34)을 통해 회전 가능하게 지지된다.An input member 30 is provided at the front center of the housing 10 and is connected to the engine to receive power from the engine. The input member 30 is rotatably supported with respect to the housing 10 through an input shaft bearing 34.
상기 입력부재(30)는 상기 하우징(10)보다 전방으로 더 돌출되고, 돌출된 부위의 외주면에 입력스플라인(32)이 형성되어 있다. 상기 입력스플라인(32)에는 토셔널 댐퍼(36)가 연결된다. 토셔널 댐퍼(36)의 입력 측은 엔진에 연결되고, 출력 측은 상기 입력부재(30)에 연결된다.The input member 30 protrudes further forward than the housing 10, and an input spline 32 is formed on the outer peripheral surface of the protruding portion. A torsional damper 36 is connected to the input spline 32. The input side of the torsional damper 36 is connected to the engine, and the output side is connected to the input member 30.
상기 하우징(10)의 내주면과 입력부재(30)의 외주면 사이에서 상기 입력축베어링(34)의 전방에는 실링부재가 개재된다. 즉 상기 실링부재보다 후방에는 변속기에서 공급되는 유체가 채워지고, 상기 실링부재와 하우징(10)은 이러한 유체가 채워지는 공간의 경계를 구성한다. 즉 상기 토셔널 댐퍼(36)는 건식 스프링 댐퍼일 수 있다.A sealing member is interposed in front of the input shaft bearing 34 between the inner peripheral surface of the housing 10 and the outer peripheral surface of the input member 30. That is, the rear part of the sealing member is filled with fluid supplied from the transmission, and the sealing member and the housing 10 form the boundary of the space filled with this fluid. That is, the torsional damper 36 may be a dry spring damper.
상기 로터 허브(20)는, 상기 로터(52)를 고정하는 축방향연장부(24)와, 상기 축방향연장부(24)로부터 반경방향 내측으로 연장되는 반경방향연장부(23)를 구비할 수 있다. 상기 축방향연장부(24)는 축방향으로 연장되는 실린더와 유사한 형태일 수 있다.The rotor hub 20 may include an axial extension portion 24 for fixing the rotor 52 and a radial extension portion 23 extending radially inward from the axial extension portion 24. You can. The axial extension portion 24 may have a shape similar to a cylinder extending in the axial direction.
상기 반경방향연장부(23)는 상기 축방향연장부(24)의 축방향의 대략 중앙 부위에 연결된다.The radial extension portion 23 is connected to approximately the central portion of the axial extension portion 24 in the axial direction.
상기 반경방향연장부(23)의 반경방향 내측 단부에는, 축방향으로 연장되는 허브축(21)이 마련된다. 상기 허브축(21)은 축방향으로 상기 입력부재(30)보다 후방에 배치되고, 축방향의 일부 구간이 상기 입력부재(30)와 중첩된다. 입력부재(30)와 허브축(21)이 중첩되는 구간에는 허브축베어링(22)이 개재되어, 입력부재(30)와 허브축(21)이 상호 회전 지지되도록 한다.At the radially inner end of the radial extension portion 23, a hub shaft 21 extending in the axial direction is provided. The hub shaft 21 is disposed rearward of the input member 30 in the axial direction, and a partial section in the axial direction overlaps the input member 30. A hub shaft bearing 22 is interposed in the section where the input member 30 and the hub shaft 21 overlap, so that the input member 30 and the hub shaft 21 rotate and support each other.
상기 축방향연장부(24)의 전방 단부에는 허브 리지(40)가 연결된다. 허브 리지(40)는 상기 축방향연장부(24)의 전방으로부터 상기 축방향연장부(24)의 반경방향 내측 공간에 수용되는 형태로 상기 축방향연장부(24)에 끼워진다. 이때 상기 허브 리지(40)의 반경방향 외측 단부에 마련된 허브 결합부(41)는 상기 축방향연장부(24)와 회전 구속되도록 맞물릴 수 있다. 이어서 축방향연장부(24)에 스냅링이 끼워져, 상기 허브 리지(40)가 상기 축방향연장부(24)로부터 이탈하지 않도록 한다.A hub ridge 40 is connected to the front end of the axial extension portion 24. The hub ridge 40 is inserted into the axial extension part 24 from the front of the axial extension part 24 in a form accommodated in the radial inner space of the axial extension part 24. At this time, the hub coupling portion 41 provided at the radially outer end of the hub ridge 40 may be rotationally engaged with the axial extension portion 24. Then, a snap ring is inserted into the axial extension portion 24 to prevent the hub ridge 40 from separating from the axial extension portion 24.
상기 허브 리지(40)의 반경방향 내측 단부는 후방으로 연장되는 피스톤 설치부(42)를 구비하고, 상기 하우징(10)의 반경방향 내측 단부도 상기 허브 리지(40)보다 반경방향 내측에서 후방으로 연장된다. 그리고 이들 사이에 리지베어링(47)이 개재된다. 즉 상기 허브 리지(40)는 상기 하우징(10)에 대해 회전 가능하게 지지된다.The radially inner end of the hub ridge 40 is provided with a piston installation portion 42 extending rearward, and the radially inner end of the housing 10 also extends rearward from the radial inner side of the hub ridge 40. It is extended. And a ridge bearing 47 is interposed between them. That is, the hub ridge 40 is rotatably supported with respect to the housing 10.
이에 따라 상기 로터 허브(20)는, 허브 리지(40)와 리지베어링(47)을 통해 상기 하우징(10)에 회전 가능하게 지지되고, 허브축베어링(22)과 입력부재(30)와 입력축베어링(34)을 통해 상기 하우징(10)에 회전 가능하게 지지된다.Accordingly, the rotor hub 20 is rotatably supported by the housing 10 through the hub ridge 40 and the ridge bearing 47, and the hub shaft bearing 22, the input member 30, and the input shaft bearing It is rotatably supported on the housing 10 through (34).
상기 축방향연장부(24)의 후방 단부에는 백커버(55)가 연결된다. 상기 백커버(55)는 상기 축방향연장부(24)의 후방 단부에 용접을 통해, 또는 볼트와 같은 체결수단을 통해 일체로 고정된다.A back cover 55 is connected to the rear end of the axial extension portion 24. The back cover 55 is integrally fixed to the rear end of the axial extension portion 24 through welding or fastening means such as bolts.
상기 로터 허브(20)의 축방향연장부(24)의 반경방향 내측 공간은, 변속기 오일과 같은 유체가 채워지는 공간을 구성한다. 이러한 공간은, 상기 반경방향연장부(23)에 의해 제1수용공간(26)과 제2수용공간(27)으로 구획될 수 있다. 상기 제1수용공간(26)은 축방향으로 상기 반경방향연장부(23)와 상기 백커버(55) 사이의 공간으로 규정될 수 있다. 상기 제2수용공간(27)은 축방향으로 상기 허브 리지(40)와 상기 반경방향연장부(23) 사이의 공간으로 규정될 수 있다. 즉 제2수용공간(27)은 제1수용공간(26)보다 더 전방에 배치된다.The radial inner space of the axial extension portion 24 of the rotor hub 20 constitutes a space filled with a fluid such as transmission oil. This space can be divided into a first accommodating space 26 and a second accommodating space 27 by the radial extension part 23. The first accommodation space 26 may be defined as a space between the radial extension part 23 and the back cover 55 in the axial direction. The second receiving space 27 may be defined as a space between the hub ridge 40 and the radial extension portion 23 in the axial direction. That is, the second receiving space 27 is located further forward than the first receiving space 26.
상기 입력부재(30)는 상기 제2수용공간(27) 측에 배치된다. 상기 입력부재(30)와 상기 로터 허브(20)는 엔진클러치(37)를 통해 연결된다. 상기 엔진클러치(37) 역시 상기 제2수용공간(27)에 배치된다. 상기 엔진클러치(37)는 복수 개의 마찰판이 축방향으로 배치된 클러치팩(38)을 구비한다. The input member 30 is disposed on the second receiving space 27 side. The input member 30 and the rotor hub 20 are connected through an engine clutch 37. The engine clutch 37 is also disposed in the second accommodation space 27. The engine clutch 37 includes a clutch pack 38 in which a plurality of friction plates are arranged in the axial direction.
상기 클러치팩(38)의 반경방향 외측은 상기 로터 허브(20)의 축방향연장부(24)의 내주면에 고정되고, 상기 클러치팩(38)의 반경방향 내측은 상기 입력부재(30)의 후방 단부에서 반경방향 외측으로 연장되는 입력플레이트(33)에 고정된다.The radial outer side of the clutch pack 38 is fixed to the inner peripheral surface of the axial extension portion 24 of the rotor hub 20, and the radial inner side of the clutch pack 38 is located at the rear of the input member 30. It is fixed to an input plate 33 extending radially outward from the end.
상기 클러치팩(38)의 전방에는 피스톤플레이트(43)가 배치된다. 상기 피스톤플레이트(43)는 축방향으로 상기 허브 리지(40)와 상기 클러치팩(38) 사이에 배치된다. 상기 피스톤플레이트(43)의 외주면은 상기 허브 리지(40)에 대해 슬라이드 가능하게 접하고, 상기 피스톤플레이트(43)의 내주면은 상기 허브 리지(40)의 피스톤 설치부(42)에 대해 슬라이드 가능하게 접한다. 상기 피스톤플레이트(43)와 상기 허브 리지(40) 사이의 공간은 제1작동챔버(430)를 이룬다.A piston plate 43 is disposed in front of the clutch pack 38. The piston plate 43 is disposed between the hub ridge 40 and the clutch pack 38 in the axial direction. The outer peripheral surface of the piston plate 43 is slidably in contact with the hub ridge 40, and the inner peripheral surface of the piston plate 43 is slidably in contact with the piston installation portion 42 of the hub ridge 40. . The space between the piston plate 43 and the hub ridge 40 forms a first operating chamber 430.
상기 허브 리지(40)에는 상기 제1작동챔버(430)와 통하도록 연결된 작동홀(44)이 마련된다.The hub ridge 40 is provided with an operating hole 44 connected to communicate with the first operating chamber 430.
상기 클러치팩(38)의 전방이면서 상기 피스톤플레이트(43)의 후방에는 보상플레이트(45)가 배치된다. 상기 보상플레이트(45)의 외주면은 상기 피스톤플레이트(43)에 접한다. 상기 보상플레이트(45)의 반경방향 내측 단부는 상기 허브 리지(40)의 피스톤 설치부(42)에 지지된다. 이에 따라 상기 피스톤플레이트(43)는 상기 보상플레이트(45)에 대해 슬라이드 가능하게 접한다. 상기 피스톤플레이트(43)와 상기 보상플레이트(45) 사이의 공간은 보상챔버(450)를 이룬다. 상기 보상챔버(450)에는 리턴스프링(48)이 수용된다. 상기 리턴스프링(48)은 상기 피스톤플레이트(43)와 상기 보상플레이트(45) 사이에 개재되어 상기 피스톤플레이트(43)를 상기 보상플레이트(45)로부터 멀어지는 방향으로 탄성 가압한다. 즉 상기 리턴스프링(48)은 상기 피스톤플레이트(43)가 상기 클러치팩(38)을 가압 해제하는 방향으로 탄성 가세한다. A compensation plate 45 is disposed in front of the clutch pack 38 and rear of the piston plate 43. The outer peripheral surface of the compensation plate 45 is in contact with the piston plate 43. The radial inner end of the compensation plate 45 is supported on the piston installation portion 42 of the hub ridge 40. Accordingly, the piston plate 43 slides in contact with the compensation plate 45. The space between the piston plate 43 and the compensation plate 45 forms a compensation chamber 450. A return spring 48 is accommodated in the compensation chamber 450. The return spring 48 is interposed between the piston plate 43 and the compensation plate 45 to elastically press the piston plate 43 in a direction away from the compensation plate 45. That is, the return spring 48 elastically applies in the direction in which the piston plate 43 presses and releases the clutch pack 38.
상기 보상챔버(450)의 반경방향 내측 경계는 상기 피스톤 설치부(42)에 의해 규정될 수 있다. 상기 허브 리지(40)의 피스톤 설치부(42)에는 상기 보상챔버(450)와 통하도록 연결된 보상홀(46)이 마련된다.The radial inner boundary of the compensation chamber 450 may be defined by the piston installation portion 42. The piston installation portion 42 of the hub ridge 40 is provided with a compensation hole 46 connected to communicate with the compensation chamber 450.
도시되지는 아니하였으나, 상기 하우징(10)에는 상기 작동홀(44)과 연통하는 제1유로가 마련된다. 상기 제1작동챔버(430)에 공급되는 유체는 상기 제1유로와 상기 작동홀(44)을 통해 상기 제1작동챔버(430)에 공급된다. 그러면 엔진클러치(37)가 작동하고, 엔진의 동력은, 입력부재(30)와 클러치팩(38)을 통해 로터 허브(20)에 전달된다.Although not shown, a first flow passage communicating with the operating hole 44 is provided in the housing 10. The fluid supplied to the first operating chamber 430 is supplied to the first operating chamber 430 through the first flow path and the operating hole 44. Then, the engine clutch 37 operates, and the power of the engine is transmitted to the rotor hub 20 through the input member 30 and the clutch pack 38.
상기 하우징(10)에는 상기 제2수용공간(27)과 연통하는 제2유로(11)가 마련된다. 상기 하우징(10)에서 상기 제1유로와 제2유로(11)는 서로 통하지 않는다.The housing 10 is provided with a second flow passage 11 communicating with the second receiving space 27. In the housing 10, the first flow path and the second flow path 11 do not communicate with each other.
상기 보상홀(46)은 상기 제2수용공간(27)과 연통한다. 따라서 상기 보상챔버(450)에 공급되는 유체는 상기 제2유로(11)와 상기 제2수용공간(27)과 상기 보상홀(46)을 통해 상기 보상챔버(450)에 공급된다.The compensation hole 46 communicates with the second receiving space 27. Accordingly, the fluid supplied to the compensation chamber 450 is supplied to the compensation chamber 450 through the second flow passage 11, the second receiving space 27, and the compensation hole 46.
상기 제2수용공간(27)에는, 상술한 입력축베어링(34)과 리지베어링(47)과 허브축베어링(22)이 배치되고, 또한 클러치팩(38)이 배치된다. 상기 제2유로(11)를 통해 상기 제2수용공간(27)에 채워지는 유체가 원활하게 유동하도록, 상기 입력부재(30)에는 유로홀(31)이 형성될 수 있다. 따라서 상기 제2유로(11)를 통해 공급된 유체는, 상기 제2수용공간(27)을 채우며 상기 베어링들과 상기 클러치팩(38)을 윤활하고 냉각한다.In the second accommodation space 27, the above-described input shaft bearing 34, ridge bearing 47, and hub shaft bearing 22 are disposed, and a clutch pack 38 is also disposed. A passage hole 31 may be formed in the input member 30 so that the fluid filling the second receiving space 27 flows smoothly through the second passage 11. Accordingly, the fluid supplied through the second flow passage 11 fills the second receiving space 27 and lubricates and cools the bearings and the clutch pack 38.
상기 제1유로를 통해 공급되는 유체의 압력이 상기 제2유로(11)를 통해 공급되는 유체의 압력과 상기 리턴스프링(48)의 탄성력을 이기면, 상기 피스톤플레이트(43)는 클러치팩(38)을 가압하고, 그렇지 않으면, 상기 피스톤플레이트(43)는 상기 클러치팩(38)을 가압 해제한다.When the pressure of the fluid supplied through the first passage overcomes the pressure of the fluid supplied through the second passage 11 and the elastic force of the return spring 48, the piston plate 43 is connected to the clutch pack 38. is pressed, otherwise, the piston plate 43 pressurizes and releases the clutch pack 38.
상기 피스톤플레이트(43)와 상기 보상플레이트(45)는 상기 허브 리지(40)와 함께 회전하고, 상기 허브 리지(40)는 상기 로터 허브(20)에 회전 구속되도록 연결되어 있다. 이에 따라 상기 피스톤플레이트(43)와 상기 보상플레이트(45)는 상기 로터 허브(20)와 함께 회전한다.The piston plate 43 and the compensation plate 45 rotate together with the hub ridge 40, and the hub ridge 40 is connected to the rotor hub 20 so as to be rotationally constrained. Accordingly, the piston plate 43 and the compensation plate 45 rotate together with the rotor hub 20.
상기 로터 허브(20)의 제1수용공간(26)에는, 출력부재(80)와, 상기 로터 허브(20)의 회전력을 상기 출력부재(80)에 전달하는 동력전달부가 수용될 수 있다.An output member 80 and a power transmission unit that transmits the rotational force of the rotor hub 20 to the output member 80 may be accommodated in the first accommodation space 26 of the rotor hub 20.
상기 동력전달부는, 상기 로터 허브(20)에 연결되는 유체클러치와, 상기 로터 허브(20)에 연결되는 클러치팩 형태의 마찰재들을 포함할 수 있다.The power transmission unit may include a fluid clutch connected to the rotor hub 20 and friction materials in the form of a clutch pack connected to the rotor hub 20.
상기 유체클러치는 토크컨버터(60)일 수 있다. 즉 상기 유체 클러치는 각각 서로 마주보는 하프 토러스 형태의 임펠러(61)와 터빈(62), 그리고 이들 사이에 배치되고 고정단(65)에 대해 원웨이클러치(67)를 통해 연결되는 리액터(64)를 포함할 수 있다.The fluid clutch may be a torque converter 60. That is, the fluid clutch includes a half torus-shaped impeller 61 and a turbine 62 facing each other, and a reactor 64 disposed between them and connected to the fixed end 65 through a one-way clutch 67. may include.
상기 임펠러(61)는 백커버(55)에 마련될 수 있다. 이에 따라 상기 임펠러(61)는 로터 허브(20)와 회전 구속된다.The impeller 61 may be provided on the back cover 55. Accordingly, the impeller 61 is rotationally constrained with the rotor hub 20.
상기 백커버(55)의 반경방향 내측에는 후방으로 연장되는 펌프 구동 허브(56)가 마련된다. A pump drive hub 56 extending rearward is provided on the radial inner side of the back cover 55.
상기 고정단(65)은 펌프 구동 허브(56)의 전방이면서 반경방향 내측에 배치되고, 이들 사이에는 커버베어링(57)이 개재될 수 있다. 상기 출력부재(80)는 고정단(65)의 전방이면서 반경방향 내측에 배치되고 이들 사이에는 베어링(88)이 개재될 수 있다.The fixed end 65 is disposed in front and radially inside the pump driving hub 56, and a cover bearing 57 may be interposed between them. The output member 80 is disposed in front of the fixed end 65 and radially inside, and a bearing 88 may be interposed between them.
상기 로터 허브(20)가 회전하면, 그 회전력은 백커버(55)와 펌프 구동 허브(56)를 통해 펌프를 구동하게 되고, 이에, 상기 출력부재(80)와 고정단(65) 사이의 공간을 통해 상기 제1수용공간(26)에 변속기 오일이 공급된다. 이에 따라 상기 제1수용공간(26)에는, 상기 유체클러치의 작동 및 상기 마찰재(71)의 냉각을 위한 유체가 채워진다. 이렇게 제1수용공간(26)으로 유입된 오일은, 고정단(65)과 백커버(55) 사이의 공간을 통해 변속기로 유출될 수 있다. 이러한 유체의 순환 과정에서 마찰재(71), 원웨이클러치(67), 커버베어링(57) 및 베어링(88)이 윤활 및 냉각될 수 있다.When the rotor hub 20 rotates, the rotational force drives the pump through the back cover 55 and the pump driving hub 56, and thus the space between the output member 80 and the fixed end 65 Transmission oil is supplied to the first receiving space 26 through. Accordingly, the first receiving space 26 is filled with fluid for operating the fluid clutch and cooling the friction material 71. Oil flowing into the first receiving space 26 in this way may flow out into the transmission through the space between the fixed end 65 and the back cover 55. In this fluid circulation process, the friction material 71, one-way clutch 67, cover bearing 57, and bearing 88 can be lubricated and cooled.
상기 터빈(62)은 임펠러(61)와 마주하며 임펠러(61)의 전방에 배치되고, 상기 터빈(62)이 설치된 터빈플레이트(63)의 반경방향 내측은 출력부재(80)에 연결된다. 출력부재(80)는 변속기의 입력과 연결된다.The turbine 62 faces the impeller 61 and is disposed in front of the impeller 61, and the radial inner side of the turbine plate 63 on which the turbine 62 is installed is connected to the output member 80. The output member 80 is connected to the input of the transmission.
상기 임펠러(61)와 터빈(62) 사이에는 리액터(64)가 배치된다. 리액터(64)는 원웨이클러치(67)를 매개로 고정단(65)에 설치된다. 상기 리액터(64)는 상기 백커버(55)에 대해서도 상대적으로 회전하고, 상기 출력부재(80)에 대해서도 상대적으로 회전한다. 백커버(55)와 리액터(64)의 상대적인 회전, 그리고 출력부재(80)와 리액터(64)의 상대적인 회전을 허용하며 이들 상호 회전 지지하도록 하기 위해, 상기 리액터(64)와 백커버(55) 사이에 상기 커버베어링(57)이 개재되고 상기 리액터(64)와 출력부재(80) 사이에 상기 베어링(88)이 개재된다. 즉 상기 출력부재(80)와 백커버(55)는 상기 고정단(65)에 대해 회전 가능하게 지지된다.A reactor 64 is disposed between the impeller 61 and the turbine 62. The reactor 64 is installed on the fixed end 65 via a one-way clutch 67. The reactor 64 rotates relative to the back cover 55 and rotates relative to the output member 80. In order to allow the relative rotation of the back cover 55 and the reactor 64 and the relative rotation of the output member 80 and the reactor 64 and support their mutual rotation, the reactor 64 and the back cover 55 The cover bearing 57 is interposed between them, and the bearing 88 is interposed between the reactor 64 and the output member 80. That is, the output member 80 and the back cover 55 are rotatably supported with respect to the fixed end 65.
로터 허브(20)와 출력부재(80)의 회전 속도에 차이가 있는 상태에서, 모터 및/또는 엔진의 회전력은 토크컨버터(60)를 통해 출력부재(80)에 전달될 수 있다.In a state where there is a difference in rotation speed between the rotor hub 20 and the output member 80, the rotational force of the motor and/or engine may be transmitted to the output member 80 through the torque converter 60.
상기 제1수용공간(26)에서 상기 터빈플레이트(63)의 전방에는, 락업클러치(70)가 배치된다. 상기 락업클러치(70)는 복수 개의 마찰판이 축방향으로 배치된 마찰재(71)를 구비한다.A lock-up clutch 70 is disposed in front of the turbine plate 63 in the first accommodation space 26. The lock-up clutch 70 includes a friction material 71 in which a plurality of friction plates are arranged in the axial direction.
상기 마찰재(71)는 상기 로터 허브(20)와 상기 출력부재(80) 사이에서 이들을 연결하거나 연결 해제한다.The friction material 71 connects or disconnects the rotor hub 20 and the output member 80 between them.
복수 개의 상기 마찰재(71)는, 그 반경방향 외측에서 상기 로터 허브(20)의 축방향연장부(24)의 내주면에 마련된 로터측 캐리어(25)와 연결되는 마찰재(71)와, 그 반경방향 내측에서 상기 출력부재(80)에 연결되는 마찰재(71)가 축방향을 따라 교호로 배치되는 형태로 배치된다.The plurality of friction materials 71 include a friction material 71 connected to the rotor side carrier 25 provided on the inner peripheral surface of the axial extension portion 24 of the rotor hub 20 on the radial outer side, and a friction material 71 connected in the radial direction thereof. Friction materials 71 connected to the output member 80 on the inside are arranged alternately along the axial direction.
상기 로터측 캐리어(25)는 상기 출력측 캐리어(72)보다 반경방향으로 더 외측에 배치될 수 있다. 즉 상기 출력측 캐리어(72)는 상기 로터측 캐리어(25)보다 반경방향으로 더 내측에 배치될 수 있다.The rotor side carrier 25 may be disposed further outward in the radial direction than the output side carrier 72. That is, the output side carrier 72 may be disposed further inward than the rotor side carrier 25 in the radial direction.
실시예에서는 상기 축방향연장부(24)의 내주면에 로터측 캐리어(25)가 일체로 형성된 구조가 예시된다. 그러나 이러한 로터측 캐리어(25)는 별도의 부품으로 제작된 뒤 로터 허브(20)에 결합되는 구조일 수도 있다.In the embodiment, a structure in which the rotor side carrier 25 is formed integrally with the inner peripheral surface of the axial extension portion 24 is illustrated. However, this rotor side carrier 25 may be manufactured as a separate part and then coupled to the rotor hub 20.
상기 마찰재(71)는 그 반경방향 내측에서 출력측 캐리어(72)에 연결되고, 상기 출력측 캐리어(72)가 상기 출력부재(80)에 고정되는 형태로 상기 출력부재(80)에 연결될 수 있다.The friction material 71 may be connected to the output carrier 72 on its radial inner side, and the output carrier 72 may be connected to the output member 80 in such a way that the output carrier 72 is fixed to the output member 80.
상기 제1수용공간(26) 내에는 상기 마찰재(71)를 가압하거나 가압 해제하는 피스톤부재(75)가 설치된다.A piston member 75 is installed in the first receiving space 26 to pressurize or release the friction material 71.
상기 피스톤부재(75)는, 반경방향으로 연장되는 형상을 구비하고, 축방향의 어느 일방을 바라보는 제1면(후면)과, 그 반대방향을 바라보는 제2면(전면)을 구비한다. 즉, 상기 제1면과 제2면은 서로 등지고(대향하고) 있다.The piston member 75 has a shape extending in the radial direction and has a first surface (rear) facing one side of the axial direction and a second surface (front) facing the opposite direction. That is, the first and second surfaces are turned away from (opposing) each other.
상기 피스톤부재(75)는 반경방향연장부(23)의 후방에, 그리고 락업클러치(70)의 전방에 배치된다. 이에 따라 상기 제1면은 상기 마찰재(71)와 상기 토크 컨버터 쪽을 바라보도록 배치된다. 그리고 상기 제2면은 상기 반경방향연장부(23)를 마주하도록 배치된다.The piston member 75 is disposed behind the radial extension portion 23 and in front of the lock-up clutch 70. Accordingly, the first surface is disposed to face the friction material 71 and the torque converter. And the second surface is disposed to face the radial extension portion 23.
상기 피스톤부재(75)의 반경방향 내측 단부는, 상기 출력부재(80)의 외주면과 슬라이드 가능하게 접한다. 상기 피스톤부재(75)의 반경방향 외측 단부는, 상기 축방향연장부(24)의 내주면과 슬라이드 가능하게 접한다.The radially inner end of the piston member 75 is slidably in contact with the outer peripheral surface of the output member 80. The radially outer end of the piston member 75 slideably contacts the inner peripheral surface of the axial extension portion 24.
상기 반경방향연장부(23)와 상기 피스톤부재(75)는 상기 피스톤부재(75)에 대한 제2작동챔버(750)를 규정한다. 상기 피스톤부재(75)의 상기 제2면은 상기 제2작동챔버(750)와 마주한다.The radial extension 23 and the piston member 75 define a second operating chamber 750 for the piston member 75. The second surface of the piston member 75 faces the second operating chamber 750.
출력부재(80)는 중공의 축 형상을 가진다. 그리고 그 중공의 축 형상의 내주면에는 변속기의 입력과 연결되는 출력스플라인(81)이 형성된다. 상기 출력부재(80)의 중공부는, 상기 제2작동챔버(750)로 유체를 공급하는 유로를 구성한다. 상기 출력부재(80)와 반경방향연장부(23) 사이에는 이들 간의 간격을 유지하며 유체의 이동을 허용하는 스페이서(89)가 개재된다. 상기 유로는 출력부재(80)와 반경방향연장부(23) 사이의 공간을 통해 상기 제2작동챔버(750)와 연통한다. 따라서 상기 유로를 통해 공급되는 변속기 오일은 상기 제2작동챔버(750)에 유입될 수 있다. 상기 제1수용공간(26)의 압력보다 상기 제2작동챔버(750)의 압력이 높아지면, 피스톤부재(75)가 후진하여 락업클러치(70)가 작동하고, 로터 허브(20)의 회전력은 락업클러치(70)를 통해 출력부재(80)에 전달될 수 있다. 상기 제1수용공간(26)의 압력보다 상기 제2작동챔버(750)의 압력이 낮아지면, 피스톤부재(75)가 전진하여 락업클러치(70)는 해제된다.The output member 80 has a hollow shaft shape. And output splines 81 connected to the input of the transmission are formed on the inner peripheral surface of the hollow shaft shape. The hollow portion of the output member 80 forms a flow path that supplies fluid to the second operating chamber 750. A spacer 89 is interposed between the output member 80 and the radial extension portion 23 to maintain the gap between them and allow fluid movement. The flow path communicates with the second operating chamber 750 through the space between the output member 80 and the radial extension portion 23. Accordingly, transmission oil supplied through the flow path may flow into the second operating chamber 750. When the pressure of the second operating chamber 750 is higher than the pressure of the first receiving space 26, the piston member 75 moves backwards and the lock-up clutch 70 operates, and the rotational force of the rotor hub 20 is It can be transmitted to the output member 80 through the lock-up clutch 70. When the pressure of the second operating chamber 750 becomes lower than the pressure of the first receiving space 26, the piston member 75 advances and the lock-up clutch 70 is released.
[피스톤부재의 면적 확대와 마찰재 냉각 구조][Expansion of the area of the piston member and cooling structure of the friction material]
하이브리드 구동 모듈은 엔진과 변속기 사이에 위치하는데, 탑재성 향상을 위해 컴팩트한 설계가 요구된다. 전륜 구동 차량의 경우 엔진룸의 공간이 좁아 더더욱 컴팩트한 설계가 요구된다.The hybrid drive module is located between the engine and transmission, and a compact design is required to improve mountability. In the case of front-wheel drive vehicles, the space in the engine room is narrow, so an even more compact design is required.
하이브리드 구동 모듈의 컴팩트화에 대한 요구는, 반경방향 치수 감소보다 축방향 치수 감소에 모두 요구되지만, 특히 축방향 치수 감소에 대한 요구가 더 크다.The demand for compactness of hybrid drive modules is both for axial dimension reduction rather than radial dimension reduction, but the axial dimension reduction is particularly greater.
앞서 설명한 하이브리드 구동 모듈에서, 엔진클러치(37)는 엔진의 동력을 로터 허브(20)에 전달하는 정도의 클러치 용량이 요구되는 반면, 락업클러치(70)는 엔진의 동력과 모터의 동력이 합쳐진 로터 허브(20)의 회전력을 출력부재(80)에 전달하거나 그 반대로 전달해야 하기에, 더더욱 높은 클러치 용량이 요구된다.In the hybrid drive module described above, the engine clutch 37 requires a clutch capacity sufficient to transmit the engine power to the rotor hub 20, while the lock-up clutch 70 is a rotor in which the engine power and the motor power are combined. Since the rotational force of the hub 20 must be transmitted to the output member 80 or vice versa, an even higher clutch capacity is required.
클러치 용량은, 마찰재의 특성과 마찰재를 가압하는 가압력의 특성에 의해 좌우된다. 마찰재의 특성과 관련하여서는, 마찰재의 마찰계수가 클수록, 마찰재의 개수가 많을수록, 마찰재의 유효반경이 클수록, 클러치 용량이 증대된다. 마찰재를 가압하는 가압력의 특성과 관련하여서는, 피스톤을 가압하는 유체의 작동압력이 클수록, 상기 유체의 작동압력이 작용하는 피스톤의 단면적이 커질수록, 클러치 용량이 증대된다.Clutch capacity is influenced by the characteristics of the friction material and the characteristics of the pressing force that presses the friction material. Regarding the characteristics of the friction material, the larger the friction coefficient of the friction material, the larger the number of friction materials, and the larger the effective radius of the friction material, the greater the clutch capacity. Regarding the characteristics of the pressing force pressing the friction material, the larger the operating pressure of the fluid pressing the piston, the larger the cross-sectional area of the piston on which the operating pressure of the fluid acts, and the larger the clutch capacity.
여기서, 마찰재의 개수를 늘리려고 하면, 그만큼 하이브리드 구동 모듈의 축방향 치수가 늘어날 수밖에 없다. 즉 하이브리드 구동 모듈의 축방향 치수가 제한된 상태에서 마찰재의 개수를 늘리는 것에는 한계가 있다.Here, if you try to increase the number of friction materials, the axial dimension of the hybrid drive module will inevitably increase accordingly. In other words, there is a limit to increasing the number of friction materials when the axial dimension of the hybrid drive module is limited.
또한 마찰재의 유효반경을 키우면, 그만큼 하이브리드 구동 모듈의 반경방향 치수가 늘어날 수밖에 없다. 즉 하이브리드 구동 모듈의 반경방향 치수가 제한된 상태에서 마찰재의 유효반경을 키우는 것에는 한계가 있다.Additionally, if the effective radius of the friction material is increased, the radial dimension of the hybrid drive module will inevitably increase accordingly. In other words, there is a limit to increasing the effective radius of the friction material when the radial dimension of the hybrid drive module is limited.
또한 피스톤을 가압하는 유체의 작동압력을 높이기 위해서는, 그만큼 유압 발생에 동력이 소모되기에, 연비 악화로 이어진다.Additionally, in order to increase the operating pressure of the fluid that pressurizes the piston, a lot of power is consumed to generate hydraulic pressure, which leads to poor fuel efficiency.
이에 실시예에서는, 피스톤의 단면적을 최대한 키우기 위한 구조를 제안한다.Accordingly, in the embodiment, a structure is proposed to maximize the cross-sectional area of the piston.
실시예에서는, 피스톤부재(75)의 원심 측이 로터 허브(20)의 축방향연장부(24)의 내주면에 직접 접동하도록 하여 그 외경을 최대한 확보하였다.In the embodiment, the centrifugal side of the piston member 75 slides directly on the inner peripheral surface of the axial extension portion 24 of the rotor hub 20 to secure the outer diameter as much as possible.
실시예에서는, 피스톤부재(75)의 구심 측이 접동하는 출력부재(80)의 외경을 최대한 축소하여 피스톤부재(75)의 내경을 최대한 축소하였다.In the embodiment, the outer diameter of the output member 80 on which the centripetal side of the piston member 75 slides was reduced as much as possible, and the inner diameter of the piston member 75 was reduced as much as possible.
그러면, 제2작동챔버(750)의 유체로부터 축방향으로 작용하는 압력을 받는 피스톤부재(75)의 유효 면적을 최대한 확보할 수 있다.Then, the effective area of the piston member 75 that receives the pressure acting in the axial direction from the fluid in the second operating chamber 750 can be secured as much as possible.
또한 실시예에서는, 마찰재의 마찰계수가 유지되도록 마찰재를 원활하게 냉각할 수 있는 구조를 제안한다.In addition, in the embodiment, a structure that can smoothly cool the friction material so that the friction coefficient of the friction material is maintained is proposed.
실시예에서는, 토크컨버터(60)에서 유체커플링이 이루어지며 가열된 유체가 마찰재(71)에 공급되어 마찰재의 마찰계수가 낮아지는 현상을 줄이기 위해, 변속기에서 공급되는 낮은 온도의 유체가 마찰재(71)에 원활하게 공급되도록 유도하는 유로 구조를 제공한다.In the embodiment, the fluid coupling is performed in the torque converter 60 and the heated fluid is supplied to the friction material 71 to reduce the phenomenon of lowering the friction coefficient of the friction material, and the low temperature fluid supplied from the transmission is supplied to the friction material (71). 71) It provides a flow path structure that leads to smooth supply.
상기 출력부재(80)는 동력전달부, 즉 토크컨버터(60)의 터빈플레이트(63) 및 락업클러치(70)의 출력측 캐리어(72)와 연결되어 로터 허브(20)의 회전력을 전달받고, 내주면에 마련된 출력스플라인(81)을 통해 변속기의 입력축과 연결되어 변속기로 상기 회전력을 전달한다. 또한 상기 출력부재(80)는, 상기 피스톤부재(75)가 접동하는 접동외주면(82)을 제공한다.The output member 80 is connected to the power transmission unit, that is, the turbine plate 63 of the torque converter 60 and the output side carrier 72 of the lock-up clutch 70 to receive the rotational force of the rotor hub 20, and has an inner peripheral surface. It is connected to the input shaft of the transmission through the output spline 81 provided in and transmits the rotational force to the transmission. Additionally, the output member 80 provides a sliding outer peripheral surface 82 on which the piston member 75 slides.
따라서 출력부재(80)는, 하이브리드 구동 모듈의 컴팩트화를 위해 축방향 치수를 최소화하면서도, 로터 허브(20)와 변속기의 입력 간의 회전력 전달을 위한 강성을 확보하고, 또한 접동외주면(82)의 외경을 최대한 축소하여 피스톤부재(75)의 내경이 최대한 축소되도록 하는 것이 바람직하다.Therefore, the output member 80 minimizes the axial dimension to compact the hybrid drive module, secures rigidity for transmitting rotational force between the rotor hub 20 and the input of the transmission, and also reduces the outer diameter of the sliding outer peripheral surface 82. It is desirable to reduce the inner diameter of the piston member 75 as much as possible.
이를 위해 상기 출력부재(80)는, 동력전달부 즉 토크컨버터(60) 및 락업클러치(70)와 연결되는 부위와 상기 접동외주면(82)이 마련되는 부위의 반경방향 위치를 달리 하는 형상을 구비한다. 즉 회전 중심으로부터 상기 연결 부위의 반경 거리는 상기 접동외주면(82)의 반경 거리보다 더 크다.To this end, the output member 80 has a shape that varies the radial positions of the part connected to the power transmission part, that is, the torque converter 60 and the lock-up clutch 70, and the part where the sliding outer peripheral surface 82 is provided. do. That is, the radial distance of the connection portion from the center of rotation is greater than the radial distance of the sliding outer peripheral surface 82.
상기 접동외주면(82)은 출력부재(80)의 전방부에 마련된다. 그리고 상기 토크컨버터(60)와 락업클러치(70)는, 상기 접동외주면(82)보다 후방에 마련되고, 상기 접동외주면(82)보다 직경이 확장된 연결플랜지(83)에 연결된다. 즉 상기 연결플랜지(83)는 상기 접동외주면(82)의 후방에서 원심방향으로 연장된다.The sliding outer peripheral surface 82 is provided on the front part of the output member 80. And the torque converter 60 and the lock-up clutch 70 are provided rearward of the sliding outer peripheral surface 82 and are connected to a connection flange 83 whose diameter is larger than the sliding outer peripheral surface 82. That is, the connection flange 83 extends in the centrifugal direction from the rear of the sliding outer peripheral surface 82.
상기 출력스플라인(81)은, 상기 접동외주면(82)과 연결플랜지(83)가 마련된 축방향 구간에서 상기 출력부재(80)의 내주면에 마련될 수 있다. 이에 따라, 출력부재(80)의 축방향 길이가 늘어나는 것을 억제하면서도 상기 출력스플라인(81)의 축방향 길이를 확보하여 출력부재(80)와 변속기 간의 결합력 내지 동력 전달 강성을 확보하고, 회전력을 전달하기 위한 연결플랜지(83)의 반경방향 거리를 확보하며, 아울러 접동외주면(82)의 외경을 최소화하여 피스톤부재(75)의 내경을 줄임으로써 피스톤부재(75)의 압력 작용 면적을 최대한 확보할 수 있다.The output spline 81 may be provided on the inner peripheral surface of the output member 80 in the axial section where the sliding outer peripheral surface 82 and the connecting flange 83 are provided. Accordingly, while suppressing the increase in the axial length of the output member 80, the axial length of the output spline 81 is secured to secure the coupling force or power transmission rigidity between the output member 80 and the transmission and to transmit rotational force. In addition, by securing the radial distance of the connecting flange (83) and minimizing the outer diameter of the sliding outer peripheral surface (82) to reduce the inner diameter of the piston member (75), the pressure application area of the piston member (75) can be secured as much as possible. there is.
상기 토크컨버터(60)의 터빈플레이트(63)의 구심부는 상기 락업클러치(70)의 출력측 캐리어(72)의 구심부의 후방에서 이와 축방향으로 중첩된다. 그리고 이는 상기 연결플랜지(83)의 원심부와 축방향으로 중첩되며, 리벳(832)과 같은 체결수단을 통해 상호 체결된다.The centripetal portion of the turbine plate 63 of the torque converter 60 is axially overlapped with the central portion of the output side carrier 72 of the lock-up clutch 70 at the rear. And it overlaps with the distal part of the connecting flange 83 in the axial direction and is fastened to each other through a fastening means such as a rivet 832.
그러면 상기 로터 허브(20)의 회전력은 상기 리벳(832)을 통해 상기 출력부재(80)로 전달된다. 이때, 상기 리벳(832)이 회전 중심으로부터 갖는 반경 거리는 상기 접동외주면(82)이 회전 중심으로부터 갖는 반경 거리보다 더 길기 때문에, 동일한 크기의 토크를 전달하더라도 리벳(832)에 걸리는 응력은 더 작을 수 있다.Then, the rotational force of the rotor hub 20 is transmitted to the output member 80 through the rivet 832. At this time, since the radial distance of the rivet 832 from the center of rotation is longer than the radial distance of the sliding outer peripheral surface 82 from the center of rotation, even if the same amount of torque is transmitted, the stress on the rivet 832 may be smaller. there is.
실시예에 따르면, 연결플랜지(83)의 원심측 전방 부위에는, 상기 터빈플레이트(63)의 구심부와 출력측 캐리어(72)의 구심부가 맞물릴 수 있도록 전방으로, 그리고 원심방향으로 오픈된 전방 스텝 형상이 마련된다. 그리고 출력측 캐리어(72)의 구심의 내주면과 터빈플레이트(63)의 구심의 내주면은 상기 전방 스텝 형상의 외주면과 접하고, 상기 터빈플레이트(63)의 후면은 상기 전방 스텝의 전면과 접하며 그 축방향 위치와 반경방향 위치가 상호 규제된다. 이에 따라 부품의 결합과 정렬이 매우 손쉽고 정확하게 이루어질 수 있다.According to the embodiment, at the distal front portion of the connection flange 83, a front step is opened forward and centrifugally so that the centripetal portion of the turbine plate 63 and the centripetal portion of the output side carrier 72 can be engaged. A shape is prepared. And the inner peripheral surface of the centroid of the output carrier 72 and the inner peripheral surface of the centripetal center of the turbine plate 63 are in contact with the outer peripheral surface of the front step shape, and the rear surface of the turbine plate 63 is in contact with the front surface of the front step and its axial position and radial positions are mutually regulated. Accordingly, the combination and alignment of parts can be done very easily and accurately.
상기 연결플랜지(83)의 원심측 후방 부위에는, 베어링(88)이 안착되도록 후방으로, 그리고 원심방향으로 오픈된 후방 스텝 형상이 마련된다. 베어링(88)은 상기 후방 스텝의 외주면과 후면에 접하며 그 축방향 위치와 반경방향 위치가 상호 규제된다. 상기 연결플랜지(83)의 후방 스텝 형상으로 인해, 상기 출력부재(80)와 상기 고정단(65) 간의 거리가 더 가까워질 수 있고, 이로써 하이브리드 구동 모듈의 축방향 치수를 보다 컴팩트하게 할 수 있다.At the distal rear portion of the connecting flange 83, a rear step shape that is open rearward and distal to allow the bearing 88 to be seated is provided. The bearing 88 is in contact with the outer peripheral surface and rear of the rear step, and its axial and radial positions are mutually regulated. Due to the rear step shape of the connection flange 83, the distance between the output member 80 and the fixed end 65 can become closer, thereby making the axial dimension of the hybrid drive module more compact. .
상기 리벳(832)의 후방측 헤드부는 상기 연결플랜지(83)의 후방 스텝의 후면에 마련된 헤드수용홈(831)에 수용된다. 따라서 베어링(88)은 리벳(832)과 간섭되지 아니하고 연결플랜지(83)의 후방 스텝의 후면과 접하며 상기 연결플랜지(83)에 정확히 안착될 수 있다.The rear head portion of the rivet 832 is received in the head receiving groove 831 provided on the rear side of the rear step of the connecting flange 83. Therefore, the bearing 88 does not interfere with the rivet 832 and comes into contact with the rear side of the rear step of the connecting flange 83 and can be accurately seated on the connecting flange 83.
실시예에 따르면, 출력부재(80)의 연결플랜지(83)에 체결되는 리벳(832)이 회전 중심으로부터 갖는 반경 거리가 확보된 것처럼, 리벳(832)이 관통하는 연결플랜지(83) 부위가 회전 중심으로부터 갖는 반경 거리도 확보되었기 때문에, 연결플랜지(83)의 원심측 전방 부위와 후방 부위에 스텝 형상을 두어 연결플랜지(83)의 원심 부위의 축방향 두께가 축소되더라도 회전력 전달에 문제가 없다.According to the embodiment, the portion of the connection flange 83 through which the rivet 832 passes rotates as if the radial distance from the center of rotation of the rivet 832 fastened to the connection flange 83 of the output member 80 is secured. Since the radial distance from the center is secured, there is no problem in transmitting rotational force even if the axial thickness of the distal portion of the connecting flange 83 is reduced by forming a step shape at the distal front and rear portions of the connecting flange 83.
위와 같은 출력부재(80) 구조에 따르면, 연결플랜지(83) 형상으로 인해 연결플랜지(83)의 전방의 공간과 연결플랜지(83)의 후방의 공간이 가로막힌다. 또한 연결플랜지(83)와 리벳(832)이 결합된 부위는 연결플랜지(83)의 후방 스텝에 자리잡은 베어링(88)에 의해 가려진 상태가 된다.According to the structure of the output member 80 as described above, the space in front of the connection flange 83 and the space behind the connection flange 83 are blocked due to the shape of the connection flange 83. In addition, the area where the connection flange 83 and the rivet 832 are joined is obscured by the bearing 88 located at the rear step of the connection flange 83.
이러한 구조에 따르면, 출력부재(80)와 고정단(65) 사이로 공급되는 유체가 베어링(88)에 마련된 틈을 통해 토크컨버터(60)의 토러스 공간으로 공급되고, 토러스 공간의 유체가 터빈플레이트(63)와 로터 허브(20)의 축방향연장부(24) 사이의 공간을 통해 마찰재(71) 쪽으로 유동하게 된다.According to this structure, the fluid supplied between the output member 80 and the fixed end 65 is supplied to the torus space of the torque converter 60 through a gap provided in the bearing 88, and the fluid in the torus space is supplied to the turbine plate ( 63) and flows toward the friction material 71 through the space between the axial extension portion 24 of the rotor hub 20.
토러스 공간에서 유체 커플링을 하며 유동하는 유체는 온도가 상승하게 되는바, 위와 같은 구조에 따르면 마찰재(71)에는 고온의 유체가 도달하게 된다. 그러면 고온의 환경으로 인해 마찰재(71)의 마찰계수가 저하될 우려가 있다.The temperature of the fluid flowing through fluid coupling in the torus space increases, and according to the above structure, the high temperature fluid reaches the friction material 71. Then, there is a risk that the friction coefficient of the friction material 71 may decrease due to the high temperature environment.
그러나, 컴팩트한 설계를 위해, 상기 리벳(832)의 체결을 위해 마련된 연결플랜지(83)의 홀들은 상기 베어링(88)에 의해 가려진 상태가 되므로, 출력부재(80)와 고정단(65) 사이로 공급되는 유체가 상기 연결플랜지(83)의 홀들을 통해 연결플랜지(83)의 후방 공간으로부터 전방 공간으로 유동하기가 어렵다.However, for compact design, the holes of the connecting flange 83 provided for fastening the rivet 832 are covered by the bearing 88, so there is no space between the output member 80 and the fixed end 65. It is difficult for the supplied fluid to flow from the rear space of the connection flange 83 to the front space through the holes of the connection flange 83.
실시예에 따르면, 연결플랜지(83)의 후방 공간으로부터 연결플랜지(83)의 전방 공간으로 유체가 유동하는 경로를 마련하기 위해, 상기 연결플랜지(83)에 전후방향으로 관통된 연통홀(84)을 제공한다.According to the embodiment, in order to provide a path for fluid to flow from the rear space of the connection flange 83 to the front space of the connection flange 83, a communication hole 84 is formed through the connection flange 83 in the front and rear directions. provides.
상기 락업클러치(70)와 토크컨버터(60)는 상기 연통홀(84)보다 반경방향 외측에서 상기 연결플랜지(83)에 연결된다. 즉 상기 연결플랜지(83)의 전방 스텝 형상과 후방 스텝 형상은 상기 연통홀(84)보다 반경방향 외측에 형성된다.The lockup clutch 70 and the torque converter 60 are connected to the connection flange 83 in a radial direction outside the communication hole 84. That is, the front step shape and the rear step shape of the connection flange 83 are formed radially outside the communication hole 84.
상기 연통홀(84)은, 전방으로, 상기 피스톤부재(75)와 출력측 캐리어(72) 사이의 공간(즉, 유출공간)과 통하고, 후방으로, 상기 출력부재(80)와 고정단(65) 사이의 공간(즉, 유입공간)과 통한다.The communication hole 84 communicates forwardly with the space (i.e., outflow space) between the piston member 75 and the output side carrier 72, and rearwardly communicates with the output member 80 and the fixed end 65. ) It connects to the space between them (i.e., inflow space).
상기 출력부재(80)는, 상기 연결플랜지(83)의 연통홀(84)보다 반경방향 내측에서 후방으로 더 연장되는 후방외주면(87)을 더 포함한다. 축방향으로 상기 출력부재(80)에서 후방외주면(87)이 형성된 구간은, 로터 허브(20)와 변속기 간의 회전력 전달에 직접적으로 관여하지 않는 부위이다. 따라서 해당 구간에서 출력부재(80)의 반경방향 두께는, 그보다 전방에 마련된 연결플랜지(83) 구간이나 접동외주면(82) 구간에서 출력부재(80)의 반경방향 두께보다 더욱 얇게 형성할 수 있다.The output member 80 further includes a rear outer peripheral surface 87 that extends further rearward in the radial direction than the communication hole 84 of the connecting flange 83. The section where the rear outer peripheral surface 87 is formed in the output member 80 in the axial direction is a region that is not directly involved in the transmission of rotational force between the rotor hub 20 and the transmission. Therefore, the radial thickness of the output member 80 in the corresponding section can be formed to be thinner than the radial thickness of the output member 80 in the section of the connecting flange 83 provided in front or the section of the sliding outer peripheral surface 82.
이에 따라 축방향으로 상기 후방외주면(87)의 일부 구간이, 축방향으로 고정단(65)과 중첩 배치되고 반경방향으로는 더 내측에 배치되도록 함에 있어서 별다른 어려움이 없게 된다.Accordingly, there is no particular difficulty in allowing a portion of the rear outer peripheral surface 87 to overlap the fixed end 65 in the axial direction and to be disposed further inward in the radial direction.
상기 후방외주면(87)은 후방으로 갈수록 외경이 점차 줄어드는 형상을 포함할 수 있다. 이에 대응하여, 상기 고정단(65)에서 상기 후방외주면(87)과 축방향으로 중첩되는 구간에 마련된 대면 내주면(66)은 후방으로 갈수록 내경이 점차 줄어드는 형상을 포함할 수 있다. 그러면 변속기로부터 공급되는 유체가 상기 후방외주면(87)과 대면 내주면(66) 사이의 공간에서 원심력을 받아 전방으로 원활하게 유동할 수 있다.The rear outer peripheral surface 87 may have a shape whose outer diameter gradually decreases toward the rear. Correspondingly, the facing inner peripheral surface 66 provided in a section of the fixed end 65 that overlaps the rear outer peripheral surface 87 in the axial direction may have a shape in which the inner diameter gradually decreases toward the rear. Then, the fluid supplied from the transmission can flow smoothly forward by receiving centrifugal force in the space between the rear outer peripheral surface 87 and the facing inner peripheral surface 66.
상기 연통홀(84)의 후방에는, 연결플랜지(83)의 후면 및 후방외주면(87)과, 리액터(64) 및 고정단(65) 사이에 의해 규정되는 상기 유입공간이 마련된다.At the rear of the communication hole 84, the inlet space defined by the rear and rear outer peripheral surface 87 of the connection flange 83, the reactor 64, and the fixed end 65 is provided.
상기 베어링(88)은 상기 연결플랜지(83)의 후면에서 연통홀(84)보다 반경방향 외측에 배치된다. 이에 따라 상기 베어링(88)의 내주면은 상기 유입공간의 반경방향 외측 경계를 규정할 수 있게 된다.The bearing 88 is disposed radially outside the communication hole 84 at the rear of the connecting flange 83. Accordingly, the inner peripheral surface of the bearing 88 can define the radial outer boundary of the inflow space.
상기 베어링(88)은, 상기 유입공간의 유체가 반경방향 외측으로 유동하는 것을 부분적/전체적으로 저지/차폐하게 되므로, 상기 유입공간의 유체는 상기 베어링(88)의 틈새를 통해 반경방향 외측으로 유동하기보다, 상기 연통홀(84) 쪽으로 더욱 유동하게 된다.Since the bearing 88 partially/completely blocks/shields the fluid in the inlet space from flowing radially outward, the fluid in the inlet space flows radially outward through the gap in the bearing 88. Rather, it flows more toward the communication hole (84).
상기 연통홀(84)은 상기 연결플랜지(83)의 후방으로부터 전방으로 갈수록 반경방향 외측으로 연장되도록 경사진 형태일 수 있다. 이는 유체가 상기 유입공간으로부터 상기 연통홀(84)을 통해 상기 유출공간으로 유동하는 것을 안내/촉진할 수 있다.The communication hole 84 may be inclined to extend radially outward from the rear of the connection flange 83 toward the front. This can guide/promote fluid flow from the inlet space to the outlet space through the communication hole 84.
실시예에서는 연통홀(84)의 경사진 정도와 후방외주면(87)이 경사진 정도가 실질적으로 대응하는 형태가 예시된다. 그러나 경사각이 반드시 서로 일치해야 하는 것은 아니다.In the embodiment, a form in which the degree of inclination of the communication hole 84 and the degree of inclination of the rear outer peripheral surface 87 substantially correspond is illustrated. However, the inclination angles do not necessarily have to match each other.
상기 연통홀(84)은, 원주 방향을 따라 이격 배치된 형태로 상기 연결플랜지(83)에 형성된 복수 개의 홀부(85)를 포함한다.The communication hole 84 includes a plurality of hole portions 85 formed in the connection flange 83 in a manner spaced apart along the circumferential direction.
상기 홀부(85)는 상기 연결플랜지(83)의 후면으로부터 전방으로 연장된다.The hole portion 85 extends forward from the rear of the connecting flange 83.
상기 홀부(85)는, 상기 연결플랜지(83)의 후면으로부터 전방으로 함몰된 제1홀(851), 및 상기 제1홀(851)의 전방에 연결되고 상기 제1홀(851)보다 작은 직경을 가지는 제2홀(852)을 포함한다. 상기 제2홀(852)의 연장방향으로 보았을 때 상기 제2홀(852)의 유동 단면은 상기 제1홀(851)의 유동 단면 내에 배치된다. 즉 상기 제1홀(851)과 제2홀(852)은 마치 깔때기와 같은 형상을 가진다. 이러한 형상은 상기 유입공간의 유체가 상기 연통홀(84)로 더욱 잘 유입되도록 해준다.The hole portion 85 is connected to a first hole 851 recessed from the rear side of the connection flange 83 to the front, and to the front of the first hole 851 and has a diameter smaller than the first hole 851. It includes a second hole 852 having. When viewed in the extending direction of the second hole 852, the flow cross section of the second hole 852 is disposed within the flow cross section of the first hole 851. That is, the first hole 851 and the second hole 852 have a funnel-like shape. This shape allows the fluid in the inflow space to better flow into the communication hole (84).
상기 연통홀(84)은, 상기 홀부(85)의 전방 단부와 연통하도록 상기 연결플랜지(83)의 전면으로부터 후방으로 함몰되고 원주방향을 따라 전체적으로 형성된 환형홈(86)을 더 포함한다.The communication hole 84 further includes an annular groove 86 that is recessed from the front of the connecting flange 83 to the rear and is formed entirely along the circumferential direction to communicate with the front end of the hole portion 85.
상기 락업클러치(70)를 작동/해제시키기 위해 전후 방향으로 이동하며 상기 출력부재(80)의 접동외주면(82)에 접동하는 피스톤부재(75)는, 축방향으로 연장되고 상기 접동외주면(82)과 접동하는 보어를 구비하는 접동부(76)를 구비한다.The piston member 75, which moves in the front-back direction to operate/release the lock-up clutch 70 and slides on the sliding outer peripheral surface 82 of the output member 80, extends in the axial direction and slides on the sliding outer peripheral surface 82. It is provided with a sliding portion 76 having a bore that slides.
상기 접동부(76)는 상기 피스톤부재(75)의 구심단부로부터 후방으로 연장되는 형태를 가질 수 있다.The sliding portion 76 may have a shape extending rearward from the centripetal end of the piston member 75.
접동이 원활하게 일어나도록, 상기 접동부(76)는 축방향으로 어느 정도 길이를 확보하는 것이 바람직하다.In order for sliding to occur smoothly, it is desirable for the sliding portion 76 to have a certain length in the axial direction.
이에 따라 상기 접동부(76)가 상기 피스톤부재(75)의 구심단부로부터 후방으로 연장되는 형태를 가지도록 하고, 상기 접동부(76)의 외경이 상기 환형홈(86)의 원심 측에 마련된 내주면의 내경보다 작도록 하면, 접동부(76)가 축방향으로 접동할 때 접동부(76)의 후방 단부 측 일부 구간이 상기 연결플랜지(83)와 간섭되지 않고 상기 환형홈(86)에 의해 규정되는 내부 공간으로 드나들 수 있게 되는바, 출력부재(80)에서 접동외주면(82)이 축방향으로 연장된 길이를 더 컴팩트하게 할 수 있다.Accordingly, the sliding portion 76 has a shape extending rearward from the centripetal end of the piston member 75, and the outer diameter of the sliding portion 76 is an inner peripheral surface provided on the distal side of the annular groove 86. If it is smaller than the inner diameter, when the sliding part 76 slides in the axial direction, a portion of the rear end side of the sliding part 76 does not interfere with the connecting flange 83 and is defined by the annular groove 86. Since it is possible to enter and exit the internal space, the length extended in the axial direction of the sliding outer peripheral surface 82 in the output member 80 can be made more compact.
상기 환형홈(86)의 구심 측에 마련된 외주면은, 상기 접동외주면(82)과 대응하는 형상으로 상기 접동외주면(82)에 연결되는 접동연장면(861)과, 상기 접동연장면(861)의 후방 측에 연결되고 후방으로 갈수록 외경이 점차 줄어드는 형상의 테이퍼면(862)을 포함한다. 상기 접동연장면(861)은, 상기 피스톤부재(75)의 접동부(76)의 접동을 안내해준다. 아울러 상기 테이퍼면(862)은 연통홀(84)의 유동 단면적을 더 증대시켜 주어 연통홀(84)을 통한 유체의 유동을 촉진한다.The outer peripheral surface provided on the centripetal side of the annular groove 86 has a shape corresponding to the sliding outer peripheral surface 82, and has a sliding extension surface 861 connected to the sliding outer peripheral surface 82, and a sliding extension surface 861 of the sliding extension surface 861. It is connected to the rear side and includes a tapered surface 862 whose outer diameter gradually decreases toward the rear. The sliding extension surface 861 guides the sliding portion 76 of the piston member 75. In addition, the tapered surface 862 further increases the cross-sectional flow area of the communication hole 84 and promotes the flow of fluid through the communication hole 84.
상기 환형홈(86)의 원심 측에 마련된 내주면은, 상기 환형홈(86)과 연통하는 홀부(85)의 출구보다 반경방향으로 더 외측에 배치된다. 이에 따라 홀부(85)를 통해 유동한 유체가 환형홈(86)으로 더욱 원활하게 유출된다.The inner peripheral surface provided on the distal side of the annular groove 86 is disposed further outward in the radial direction than the outlet of the hole portion 85 communicating with the annular groove 86. Accordingly, the fluid flowing through the hole portion 85 flows more smoothly into the annular groove 86.
상기 환형홈(86)의 원심 측에 마련된 내주면은 후방으로부터 전방으로 갈수록 반경방향 외측으로 연장되도록 경사진 형태를 가진다. 이는 환형홈(86)의 유체가 전방으로 유동하는 것을 안내하고 촉진한다.The inner peripheral surface provided on the distal side of the annular groove 86 has an inclined shape extending radially outward from the rear to the front. This guides and promotes the fluid in the annular groove 86 to flow forward.
앞서 설명한 바와 같이 상기 접동부(76)의 외경은 상기 환형홈(86)의 원심 측에 마련된 내주면의 내경보다 더 작으므로, 접동부(76)가 접동연장면(861)까지 후방으로 이동하더라도 환형홈(86)의 유동 단면이 줄어드는 현상을 최소화할 수 있다.As previously explained, the outer diameter of the sliding portion 76 is smaller than the inner diameter of the inner peripheral surface provided on the distal side of the annular groove 86, so even if the sliding portion 76 moves rearward to the sliding extension surface 861, the annular shape The phenomenon of a decrease in the flow cross section of the groove 86 can be minimized.
더불어, 상기 접동부(76)의 후방 단부의 반경방향 외측 코너에는 챔퍼면(77)이 마련되어 있어서, 환형홈(86)의 유동 단면이 줄어드는 현상을 더욱 최소화할 수 있고, 환형홈(86)으로부터 유출공간으로 유체가 흘러 나가는 것을 안내할 수 있다.In addition, a chamfer surface 77 is provided at the radial outer corner of the rear end of the sliding portion 76, so that the phenomenon of reducing the flow cross section of the annular groove 86 can be further minimized, and the flow cross section of the annular groove 86 can be reduced. It can guide the fluid flowing out into the outflow space.
이때, 상기 환형홈(86)의 원심 측 내주면이 경사진 정도보다, 접동부(76)의 챔퍼면(77)가 경사진 정도가 더 가파르도록 하면, 후방에서 전방으로 갈수록 이들 사이의 간격이 점차 줄어드는 형태가 되도록 할 수 있다. 이처럼 유동 단면적을 적절히 설계하면 이들 사이의 공간을 지나는 유체의 유속을 증가시키는 효과도 발휘할 수 있다.At this time, if the degree of inclination of the chamfer surface 77 of the sliding portion 76 is steeper than the degree of inclination of the inner peripheral surface on the distal side of the annular groove 86, the distance between them gradually decreases from the rear to the front. It can be made to take a reduced form. In this way, if the flow cross-sectional area is appropriately designed, it can also have the effect of increasing the flow velocity of the fluid passing through the space between them.
한편, 상기 출력측 캐리어(72)의 구심측 단부의 내주면과 상기 터빈플레이트(63)의 구심측 단부의 내주면은, 상기 연결플랜지(83)의 전방 스텝 부분에 끼워지며 전방 스텝 부분의 외주면과 접할 수 있다. 이에 따라, 출력측 캐리어(72)와 터빈플레이트(63)의 구심측 단부에 있을 수 있는 요철 형상이 구심 방향으로 노출되지 않는다. 이에 따라 상기 요철 형상은 연통홀(84)을 통해 유출공간으로 흐르는 유체의 흐름을 방해하지 않는다.Meanwhile, the inner peripheral surface of the centripetal end of the output carrier 72 and the inner peripheral surface of the centripetal end of the turbine plate 63 are inserted into the front step portion of the connecting flange 83 and can be in contact with the outer peripheral surface of the front step portion. there is. Accordingly, the uneven shape that may be present at the centripetal end of the output carrier 72 and the turbine plate 63 is not exposed in the centripetal direction. Accordingly, the uneven shape does not impede the flow of fluid flowing into the outflow space through the communication hole 84.
이러한 구조에 따르면, 상기 변속기로부터 제1수용공간에 공급되는 유체는, 후방외주면(87)과 대면 내주면(66) 사이의 공간을 통해 원심력을 받으며 유입공간으로 흘러 들어간다. 상기 유체는, 유입공간 내에서 베어링(88)에 의해 토러스 내부로 흐르는 것이 저지된 상태에서, 제1홀(851)을 통해 상기 연통홀(84) 쪽으로 원활하게 유입된다.According to this structure, the fluid supplied from the transmission to the first receiving space receives centrifugal force through the space between the rear outer peripheral surface 87 and the facing inner peripheral surface 66 and flows into the inflow space. The fluid flows smoothly toward the communication hole 84 through the first hole 851 while being prevented from flowing into the torus by the bearing 88 in the inflow space.
연통홀(84)의 유체는 원심력을 받으며 전방으로 흐름이 촉진되어 유출공간으로 유출된다. 유출공간의 유체는 피스톤부재(75)와 출력측 캐리어(72) 사이의 공간을 통해 원심 방향으로 유동하여 마찰재(71)를 냉각하고, 토크컨버터(60)의 토러스 쪽으로 흐르게 된다.The fluid in the communication hole 84 receives centrifugal force and is promoted to flow forward, thereby flowing out into the outflow space. The fluid in the outflow space flows in a centrifugal direction through the space between the piston member 75 and the output side carrier 72, cools the friction material 71, and flows toward the torus of the torque converter 60.
토러스의 유체는, 고정단(65)과 백커버(55) 사이의 공간을 통해 변속기로 되돌아간다.The fluid in the torus returns to the transmission through the space between the fixed end (65) and the back cover (55).
즉, 본 발명에 따르면, 피스톤부재(75)의 면적을 더 크게 하면서, 상대적으로 저온의 유체가 마찰재(71)를 냉각하도록 함으로써, 락업클러치(70)의 용량을 더욱 증대시킬 수 있다.That is, according to the present invention, the capacity of the lock-up clutch 70 can be further increased by increasing the area of the piston member 75 and allowing relatively low-temperature fluid to cool the friction material 71.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As described above, the present invention has been described with reference to the illustrative drawings, but the present invention is not limited to the embodiments and drawings disclosed herein, and various modifications may be made by those skilled in the art within the scope of the technical idea of the present invention. It is obvious that transformation can occur. In addition, although the operational effects according to the configuration of the present invention were not explicitly described and explained in the above description of the embodiments of the present invention, it is natural that the predictable effects due to the configuration should also be recognized.

Claims (17)

  1. 동력 계통에서 엔진과 변속기 사이에 배치되고, 변속기에 동력을 제공하는 모터를 구비하는 하이브리드 구동 모듈로서,A hybrid drive module disposed between an engine and a transmission in a power system and having a motor that provides power to the transmission,
    로터(52)가 설치된 로터 허브(20);Rotor hub (20) on which the rotor (52) is installed;
    상기 로터 허브(20)의 동력을 전달받아 상기 변속기에 전달하는 출력부재(80);An output member 80 that receives power from the rotor hub 20 and transmits it to the transmission;
    상기 로터 허브(20)와 출력부재(80) 사이에서 이들을 선택적으로 연결하는 락업클러치(70); 및A lock-up clutch 70 that selectively connects the rotor hub 20 and the output member 80; and
    축방향으로 상기 출력부재(80)에 접동 가능하게 설치되어, 상기 락업클러치(70)를 가압하거나 가압 해제하는 피스톤부재(75);를 포함하고,A piston member 75 is slidably installed on the output member 80 in the axial direction to press or release the lock-up clutch 70,
    상기 출력부재(80)는:The output member 80 is:
    상기 피스톤부재(75)가 접동하는 접동외주면(82);A sliding outer peripheral surface (82) on which the piston member (75) slides;
    상기 접동외주면(82)의 후방에 마련되고, 원심방향으로 연장되는 연결플랜지(83); 및A connection flange (83) provided at the rear of the sliding outer peripheral surface (82) and extending in the centrifugal direction; and
    상기 연결플랜지(83)에 마련되어 상기 연결플랜지(83)의 전방 공간과 후방 공간을 통하도록 연결하는 연통홀(84);을 포함하고,It includes a communication hole 84 provided in the connection flange 83 and connecting the front space and the rear space of the connection flange 83,
    상기 락업클러치(70)는 상기 연통홀(84)보다 반경방향 외측에서 상기 연결플랜지(83)에 연결되는, 하이브리드 구동 모듈.The lock-up clutch (70) is connected to the connection flange (83) in a radial direction outside the communication hole (84).
  2. 청구항 1에 있어서,In claim 1,
    상기 연통홀(84)은 상기 연결플랜지(83)의 후방으로부터 전방으로 갈수록 반경방향 외측으로 연장되도록 경사진, 하이브리드 구동 모듈.The communication hole (84) is inclined to extend radially outward from the rear of the connection flange (83) toward the front.
  3. 청구항 1에 있어서,In claim 1,
    상기 연통홀(84)은, The communication hole 84 is,
    상기 연결플랜지(83)의 후면으로부터 전방으로 함몰된 제1홀(851); 및A first hole 851 recessed from the rear to the front of the connection flange 83; and
    상기 제1홀(851)의 전방에 연결되고, 상기 제1홀(851)보다 작은 직경을 가지는 제2홀(852);을 구비하는, 하이브리드 구동 모듈.A hybrid drive module comprising: a second hole (852) connected to the front of the first hole (851) and having a smaller diameter than the first hole (851).
  4. 청구항 3에 있어서,In claim 3,
    상기 제2홀(852)의 연장방향으로 보았을 때 상기 제2홀(852)의 유동 단면은 상기 제1홀(851)의 유동 단면 내에 배치되는, 하이브리드 구동 모듈.A hybrid drive module, wherein the flow cross section of the second hole (852) is disposed within the flow cross section of the first hole (851) when viewed in the extending direction of the second hole (852).
  5. 청구항 1에 있어서,In claim 1,
    상기 연통홀(84)은,The communication hole 84 is,
    상기 연결플랜지(83)의 후면으로부터 전방으로 연장되는 홀부(85); 및A hole portion 85 extending forward from the rear of the connection flange 83; and
    상기 홀부(85)의 전방 단부와 연통하도록 상기 연결플랜지(83)의 전면으로부터 후방으로 함몰되고, 원주방향을 따라 전체적으로 형성된 환형홈(86);을 포함하는, 하이브리드 구동 모듈.A hybrid drive module comprising: an annular groove (86) recessed from the front to the rear of the connecting flange (83) to communicate with the front end of the hole portion (85) and formed entirely along the circumferential direction.
  6. 청구항 5에 있어서,In claim 5,
    상기 환형홈(86)의 원심 측에 마련된 내주면은 후방으로부터 전방으로 갈수록 반경방향 외측으로 연장되도록 경사진, 하이브리드 구동 모듈.A hybrid drive module in which the inner peripheral surface provided on the distal side of the annular groove 86 is inclined to extend radially outward from the rear to the front.
  7. 청구항 5에 있어서,In claim 5,
    상기 환형홈(86)의 원심 측에 마련된 내주면은, 상기 환형홈(86)과 연통하는 홀부(85)의 출구보다 반경방향으로 더 외측에 배치되는, 하이브리드 구동 모듈.A hybrid drive module in which the inner circumferential surface provided on the distal side of the annular groove (86) is disposed further outward in the radial direction than the outlet of the hole portion (85) communicating with the annular groove (86).
  8. 청구항 5에 있어서,In claim 5,
    상기 환형홈(86)의 구심 측에 마련된 외주면은, 상기 접동외주면(82)과 대응하는 형상으로 상기 접동외주면(82)에 연결되는 접동연장면(861)과, 상기 접동연장면(861)과 연결되고 후방으로 갈수록 외경이 점차 줄어드는 형상의 테이퍼면(862)을 포함하는, 하이브리드 구동 모듈.The outer peripheral surface provided on the centripetal side of the annular groove 86 includes a sliding extension surface 861 connected to the sliding outer peripheral surface 82 in a shape corresponding to the sliding outer peripheral surface 82, and a sliding extension surface 861 and A hybrid drive module that is connected and includes a tapered surface 862 whose outer diameter gradually decreases toward the rear.
  9. 청구항 5에 있어서,In claim 5,
    상기 피스톤부재(75)의 구심단부에는, 축방향으로 연장되고 상기 접동외주면(82)과 접동하는 보어를 구비하는 접동부(76)가 마련되고,At the centripetal end of the piston member 75, a sliding portion 76 is provided that extends in the axial direction and has a bore that slides with the sliding outer peripheral surface 82,
    상기 접동부(76)의 외경은, 상기 환형홈(86)의 원심 측에 마련된 내주면의 내경보다 더 작은, 하이브리드 구동 모듈.A hybrid drive module in which the outer diameter of the sliding portion (76) is smaller than the inner diameter of the inner peripheral surface provided on the distal side of the annular groove (86).
  10. 청구항 9에 있어서,In claim 9,
    상기 접동부(76)의 후방 단부의 반경방향 외측 코너에는 챔퍼면(77)이 마련된, 하이브리드 구동 모듈.A hybrid drive module, wherein a chamfer surface (77) is provided at the radially outer corner of the rear end of the sliding portion (76).
  11. 청구항 1에 있어서,In claim 1,
    상기 출력부재(80)의 연결플랜지(83) 후방에는 상기 로터 허브(20)와 상기 출력부재(80)를 유체 커플링하는 유체클러치가 마련되고,A fluid clutch is provided at the rear of the connecting flange 83 of the output member 80 to fluidly couple the rotor hub 20 and the output member 80,
    상기 유체클러치를 사이에 두고 발생하는 출력부재(80)의 상대적인 회전을 지지하는 베어링(88)이, 상기 연결플랜지(83)의 후면에 위치하는 연통홀(84)보다 반경방향 외측에서 상기 연결플랜지(83)에 연결되는, 하이브리드 구동 모듈.A bearing 88 that supports the relative rotation of the output member 80 that occurs across the fluid clutch is connected to the connection flange radially outside the communication hole 84 located at the rear of the connection flange 83. Hybrid drive module, connected to (83).
  12. 청구항 1에 있어서,In claim 1,
    상기 출력부재(80)는, 상기 연결플랜지(83)의 연통홀(84)보다 반경방향 내측에서 후방으로 더 연장되는 후방외주면(87)을 더 포함하고,The output member 80 further includes a rear outer peripheral surface 87 extending further rearward from the radial inner side than the communication hole 84 of the connecting flange 83,
    상기 후방외주면(87)은 후방으로 갈수록 외경이 점차 줄어드는 형상을 포함하는, 하이브리드 구동 모듈.The rear outer peripheral surface (87) has a shape whose outer diameter gradually decreases toward the rear.
  13. 청구항 12에 있어서,In claim 12,
    상기 출력부재(80)의 후방에는 상기 로터 허브(20)와 상기 출력부재(80)를 유체 커플링 하는 토크컨버터(60)가 마련되고,A torque converter 60 is provided at the rear of the output member 80 to fluidly couple the rotor hub 20 and the output member 80,
    상기 후방외주면(87)의 일부 구간은, 축방향으로 상기 토크컨버터(60)의 리액터(64)를 지지하는 고정단(65)과 중첩 배치되고 반경방향으로 더 내측에 배치되며,A portion of the rear outer peripheral surface 87 overlaps the fixed end 65 supporting the reactor 64 of the torque converter 60 in the axial direction and is disposed further inward in the radial direction,
    상기 고정단(65)에서 상기 후방외주면(87)과 축방향으로 중첩되는 구간에 마련된 대면 내주면(66)은 후방으로 갈수록 내경이 점차 줄어드는 형상을 포함하는, 하이브리드 구동 모듈.A hybrid drive module wherein the facing inner peripheral surface (66) provided in a section axially overlapping with the rear outer peripheral surface (87) at the fixed end (65) has a shape whose inner diameter gradually decreases toward the rear.
  14. 청구항 13에 있어서,In claim 13,
    상기 고정단(65)의 전면은, 상기 연결플랜지(83)의 후면으로부터 후방으로 이격 배치된, 하이브리드 구동 모듈.A hybrid drive module in which the front of the fixed end (65) is spaced rearward from the rear of the connection flange (83).
  15. 청구항 1에 있어서,In claim 1,
    상기 로터 허브(20)와 상기 출력부재(80) 사이에는 로터 허브(20)와 출력부재(80) 사이에 소정의 간격을 유지하며 유체의 흐름을 허용하는 스페이서(89)가 개재되고,A spacer 89 is interposed between the rotor hub 20 and the output member 80 to allow fluid flow while maintaining a predetermined gap between the rotor hub 20 and the output member 80,
    상기 로터 허브(20)와 피스톤부재(75) 사이의 공간은 상기 스페이서(89)가 개재된 공간과 연통하며,The space between the rotor hub 20 and the piston member 75 communicates with the space in which the spacer 89 is interposed,
    상기 락업클러치(70)는 상기 피스톤부재(75)의 후방에 배치되는, 하이브리드 구동 모듈.The lock-up clutch (70) is a hybrid drive module disposed behind the piston member (75).
  16. 청구항 1에 있어서,In claim 1,
    상기 락업클러치(70)의 구심측 단부는, 그보다 반경방향 내측에 배치되는 연결플랜지(83) 부분보다 축방향으로 더 후방에 배치되는, 하이브리드 구동 모듈.A hybrid drive module in which the centripetal end of the lock-up clutch (70) is disposed further rearward in the axial direction than the connecting flange (83) portion that is disposed radially inside the lock-up clutch (70).
  17. 청구항 1에 있어서,In claim 1,
    상기 락업클러치(70)의 후방에는, 상기 로터 허브(20)와 상기 출력부재(80)를 유체 커플링 하는 토크컨버터(60)가 마련되고,At the rear of the lock-up clutch 70, a torque converter 60 is provided to fluidly couple the rotor hub 20 and the output member 80,
    상기 락업클러치(70)의 구심측 단부의 내주면과 상기 토크컨버터(60)의 터빈플레이트(63)의 구심측 단부의 내주면은, 상기 연결플랜지(83)의 외주면과 접하고,The inner peripheral surface of the centripetal end of the lock-up clutch 70 and the inner peripheral surface of the centripetal end of the turbine plate 63 of the torque converter 60 are in contact with the outer peripheral surface of the connection flange 83,
    상기 락업클러치(70)의 구심측 단부와 상기 토크컨버터(60)의 터빈플레이트(63)의 구심측 단부와 상기 연결플랜지(83)는, 축방향으로 서로 접하며 리벳 고정되는, 하이브리드 구동 모듈.A hybrid drive module in which the centripetal end of the lock-up clutch 70, the centripetal end of the turbine plate 63 of the torque converter 60, and the connection flange 83 contact each other in the axial direction and are riveted.
PCT/KR2023/015031 2022-11-28 2023-09-27 Hybrid driving module WO2024117504A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220162003A KR20230028194A (en) 2022-11-28 2022-11-28 Hybrid drive module
KR10-2022-0162003 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024117504A1 true WO2024117504A1 (en) 2024-06-06

Family

ID=85326570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015031 WO2024117504A1 (en) 2022-11-28 2023-09-27 Hybrid driving module

Country Status (2)

Country Link
KR (1) KR20230028194A (en)
WO (1) WO2024117504A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230028194A (en) * 2022-11-28 2023-02-28 주식회사 카펙발레오 Hybrid drive module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243597A (en) * 2008-03-31 2009-10-22 Aisin Aw Co Ltd Starting device
US20130175131A1 (en) * 2010-09-29 2013-07-11 Mazda Motor Corporation Torque converter
KR102239269B1 (en) * 2019-12-09 2021-04-12 주식회사 카펙발레오 Hybrid drive module
US20210268889A1 (en) * 2018-07-10 2021-09-02 Zf Friedrichshafen Ag Rotor support for an electrical machine
US20220074477A1 (en) * 2020-09-08 2022-03-10 Ford Global Technologies, Llc Powertrain system for an electric or a hybrid vehicle
KR20230028194A (en) * 2022-11-28 2023-02-28 주식회사 카펙발레오 Hybrid drive module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243597A (en) * 2008-03-31 2009-10-22 Aisin Aw Co Ltd Starting device
US20130175131A1 (en) * 2010-09-29 2013-07-11 Mazda Motor Corporation Torque converter
US20210268889A1 (en) * 2018-07-10 2021-09-02 Zf Friedrichshafen Ag Rotor support for an electrical machine
KR102239269B1 (en) * 2019-12-09 2021-04-12 주식회사 카펙발레오 Hybrid drive module
US20220074477A1 (en) * 2020-09-08 2022-03-10 Ford Global Technologies, Llc Powertrain system for an electric or a hybrid vehicle
KR20230028194A (en) * 2022-11-28 2023-02-28 주식회사 카펙발레오 Hybrid drive module

Also Published As

Publication number Publication date
KR20230028194A (en) 2023-02-28

Similar Documents

Publication Publication Date Title
WO2024117504A1 (en) Hybrid driving module
WO2021118054A1 (en) Hybrid drive module
WO2024117503A1 (en) Hybrid driving module
WO2024117505A1 (en) Hybrid driving module
WO2024111859A1 (en) Rotor hub and hybrid drive module equipped with same
WO2021157921A1 (en) Hybrid driving module
WO2024096340A1 (en) Hybrid driving module
WO2019240522A1 (en) Drive system for electric automobile
WO2020189826A1 (en) Intelligent power generation module
WO2019221417A1 (en) Turbo compressor
WO2018117705A1 (en) Torque-coupling device with one-way turbine clutch, and method for making the same
US20070267270A1 (en) Coupling arrangment
WO2019117469A1 (en) Torque converter for vehicle, and control method thereof
WO2020263057A1 (en) Torque converter
WO2020013466A1 (en) Motor
WO2017052024A1 (en) Double clutch
WO2024096341A1 (en) Hybrid driving module
WO2021085735A1 (en) Temperature correction valve opening/closing device, dual reduction ratio reducer, and dual reduction ratio temperature correction valve opening/closing device, each having dual material stem nut
WO2022239969A1 (en) Power transmission apparatus for hybrid vehicle
WO2018093108A1 (en) Triple clutch and actuator thereof
WO2013165225A1 (en) Propulsion apparatus for ship
WO2018117709A1 (en) Torque-coupling device with torsional vibration damper and one-way turbine clutch, and method for making the same
WO2021101110A1 (en) Torque converter for vehicle
WO2020032489A1 (en) Hydrokinetic torque-coupling device having lock-up clutch with dual piston assembly
WO2022146066A1 (en) Hybrid driving module