WO2024117101A1 - 偏光レンズ - Google Patents

偏光レンズ Download PDF

Info

Publication number
WO2024117101A1
WO2024117101A1 PCT/JP2023/042449 JP2023042449W WO2024117101A1 WO 2024117101 A1 WO2024117101 A1 WO 2024117101A1 JP 2023042449 W JP2023042449 W JP 2023042449W WO 2024117101 A1 WO2024117101 A1 WO 2024117101A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
lens
degree
along
curvature
Prior art date
Application number
PCT/JP2023/042449
Other languages
English (en)
French (fr)
Inventor
能拓 安田
隆二 渡辺
浩一 安田
和也 高島
Original Assignee
株式会社ウインテック
能拓 安田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ウインテック, 能拓 安田 filed Critical 株式会社ウインテック
Publication of WO2024117101A1 publication Critical patent/WO2024117101A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers

Definitions

  • This disclosure relates to polarized lenses used, for example, in sunglasses, goggles, etc.
  • sunglasses 100 include a pair of lens balls 101 and a frame 102 into which the pair of lens balls 101 are attached.
  • Frame 102 has a pair of lens frames 103 into which lens balls 101 are fitted.
  • Lens balls 101 are manufactured by cutting a polarized lens to fit the shape of lens frames 103.
  • Polarized lenses are manufactured, for example, by bending a horizontally elongated laminate in which polycarbonate support plates are laminated on both sides of a polarizing film.
  • the frame 102 is designed with a width greater than a height to be fashionable, and the lens frame 103 is curved significantly in the left-right direction to accommodate light incident not only from the front but also from the side. Therefore, the lens ball 101 must also be curved significantly to match the curvature of the lens frame 103.
  • a spherically curved polarized lens is known in which the degree of curvature along the horizontal axis and the degree of curvature along the vertical axis (the direction perpendicular to the polarization axis) are both set to 8R.
  • a curvature of "1R” means that the focal length is 1m and the refractive power is 1.00, and if the polarized lens is made of glass, the radius of curvature is 523mm.
  • the value that represents the magnitude of this curvature is inversely proportional to the radius of curvature, so the smaller the value, the gentler the curve, and the larger the value, the steeper the curve.
  • a spherically curved lens ball 101 in which the degree of curvature along the horizontal axis and the vertical axis are both set to 6R, and the lens frame 103 of the frame 102 in which this lens ball 101 can be attached has reduced curvature along the left-right direction.
  • a polarized lens that is highly curved into an 8R x 8R spherical shape has a large difference between the degree of curvature of the convex surface on the front side and the concave surface on the back side.
  • This increases the refractive power of light, so if lenses made from this polarized lens are used in sunglasses, it can have a detrimental effect on the eyes, affecting vision and causing eye fatigue.
  • Reducing the thickness of the polarized lens can reduce the refractive power of light, but this also reduces the strength of the lens.
  • Reducing the degree of curvature of the polarized lens can also reduce the refractive power of light, but this also makes the curvature of the lens more gentle, making it difficult to fit the lens into a frame with a highly curved lens frame.
  • the present disclosure aims to address the above-mentioned issues and provide polarized lenses for producing lenses that have low optical refractive power and can be attached to existing frames.
  • a polarized lens that reduces the refractive power of light at least in the area of the polarized lens where the user's pupil hits, suppresses adverse effects on the eyes, and can be fitted to frames that are compatible with existing spherically curved polarized lenses, by adjusting the degree of curvature along the horizontal axis and the degree of curvature along the vertical axis in the assumed eye point area that exists inward from the center of the lens along the horizontal axis according to the refractive index of the polarized lens material and the thickness of the polarized lens, while taking the degree of curvature of a spherically curved polarized lens as a base.
  • the polarized lenses disclosed herein are directed to the polarized lenses described in Section 1 below.
  • a polarized lens for single-eye use that is curved so that the front side is convex and the back side is concave, the degree of curvature along the horizontal axis and the vertical axis of at least the eye point region in a region inside the lens center, which is the intersection of the horizontal axis and the vertical axis, is smaller than the degree of curvature along the horizontal axis and the vertical axis of a region outside the lens center, the assumed eyepoint region is a virtual region that can be obtained by moving a virtual circle having a diameter of 20 mm in the inner region so that the center of the virtual circle reaches a position that is a first distance d1 away from the lens center in the horizontal axis direction to a position that is a second distance d2 away from the lens center, the first distance D1 being 8 mm or more and 11 mm or less, and the second distance D2 being 18 mm or more and 21 mm or less, A polarizing lens in which the spherical power of the assumed
  • the polarized lenses disclosed herein also include the polarized lenses described in Item 2 below as preferred embodiments of the polarized lenses described in Item 1 above.
  • the outer region is divided along the direction of the horizontal axis into a central region on the lens center side and a side region on the outer edge side of the polarizing lens, Item 2.
  • the polarized lens according to item 1 wherein the degree of curvature of the central region along the direction of the horizontal axis is smaller than the degree of curvature of the side regions along the direction of the horizontal axis.
  • the polarized lenses of the present disclosure also include the polarized lenses described in the following item 3 as preferred embodiments of the polarized lenses described in items 1 and 2 above.
  • the inner region is divided into an inner first region, an inner second region, and an inner third region from the horizontal axis toward the upper edge and the lower edge of the polarizing lens, the degree of bending along the longitudinal axis direction increases in the order of the inner first region, the inner second region, and the inner third region; Item 3.
  • the polarized lenses of the present disclosure also include the polarized lenses described in the following item 4 as preferred embodiments of the polarized lenses described in the above item 3.
  • Item 4 The polarized lens according to item 3, in which the degree of curvature of the first inner region along the vertical axis and the degree of curvature of the inner region along the horizontal axis are equal.
  • the polarized lenses disclosed herein also include the polarized lenses described in Item 5 below as preferred embodiments of the polarized lenses described in Item 2 above.
  • the central region is divided into a central first region and a central second region from the horizontal axis toward the upper edge and the lower edge of the polarizing lens, 3.
  • the polarized lens according to item 2 wherein the degree of curvature of the central second region along the direction of the vertical axis is greater than the degree of curvature of the central first region along the direction of the vertical axis.
  • the polarized lenses of the present disclosure also include the polarized lenses described in the following item 6 as preferred embodiments of the polarized lenses described in items 2 and 5 above.
  • Item 6 A polarized lens according to item 2 or 5, in which the degree of curvature of the side region along the horizontal axis and the degree of curvature of the side region along the vertical axis are equal.
  • the polarized lenses of the present disclosure also include the polarized lenses described in the following item 7 as preferred embodiments of the polarized lenses described in items 1 to 6 above.
  • Item 7 The polarizing lens according to any one of items 1 to 7, in which the astigmatism power of the assumed eyepoint area is 0.12 or less.
  • the polarized lenses of the present disclosure also include the polarized lenses described in the following item 8 as preferred embodiments of the polarized lenses described in items 1 to 7 above.
  • the polarizing lens according to any one of items 1 to 7,
  • the polarizing lens is composed of a laminate in which polycarbonate support plates are laminated on both sides of a polarizing film,
  • the thickness of the polarized lens is 0.9 mm
  • the curvature degree of the curved surface along the horizontal axis direction of the eyepoint assumed area and the curvature degree of the curved surface along the vertical axis direction are 6R or less
  • a polarized lens wherein the degree of curvature of the curved surface of the side region in the outer region along the horizontal axis and the degree of curvature of the curved surface along the vertical axis are 8R.
  • the polarized lenses of the present disclosure also include the polarized lenses described in the following item 9 as preferred embodiments of the polarized lenses described in items 1 to 7 above.
  • the polarizing lens according to any one of items 1 to 7,
  • the polarizing lens is composed of a laminate in which polycarbonate support plates are laminated on both sides of a polarizing film,
  • the thickness of the polarized lens is 1.5 mm
  • the curvature degree of the curved surface along the horizontal axis direction of the eyepoint assumed area and the curvature degree of the curved surface along the vertical axis direction are 5R or less
  • a polarized lens wherein the degree of curvature of the curved surface in the outer region along the horizontal axis of the side region and the degree of curvature of the curved surface in the vertical axis direction are 6R.
  • the polarized lens of the present disclosure maintains the degree of curvature of a spherically curved polarized lens at least in the outer region, while making the degree of curvature along the horizontal axis and the degree of curvature along the vertical axis in the inner region, where the eyepoint is expected to hit the user's pupil, smaller than in the outer region, to set the spherical power of the eyepoint expected region to between -0.12 and +0.12. This reduces the refractive power of light in the eyepoint expected region, so the polarized lens of the present disclosure can suppress adverse effects on the eyes and can be attached to frames that are compatible with existing spherically curved polarized lenses.
  • FIG. 1 is a perspective view of a polarizing lens.
  • FIG. 2 is a front view of a polarizing lens.
  • FIG. 3 is a perspective view of the laminate.
  • FIG. 4 is a vertical cross-sectional view of a portion of a polarizing lens.
  • FIG. 5(A) is a cross-sectional view of a polarizing lens
  • FIG. 5(B) is a vertical cross-sectional view of the inner region of the polarizing lens
  • FIG. 5(C) is a vertical cross-sectional view of the central region of the outer region of the polarizing lens.
  • FIG. 6 is a diagram for explaining an assumed eye point area.
  • FIG. 7 is a diagram illustrating a spectacle frame.
  • FIG. 8 is a perspective view of sunglasses.
  • the polarized lenses disclosed herein are used, for example, in sunglasses and goggles.
  • sunglasses and goggles One embodiment of the polarized lenses disclosed herein is described below with reference to the attached drawings.
  • FIGS. 1 and 2 show the appearance of polarizing lens 1.
  • Polarizing lens 1 is for monocular use.
  • the horizontal axis X of polarizing lens 1 is set in the direction of the polarization axis, and the vertical axis Y is set in a direction perpendicular to the polarization axis.
  • the intersection of horizontal axis X and vertical axis Y is the lens center C of polarizing lens 1.
  • the polarized lens 1 is formed by bending the laminate 11, which is elongated in the direction of the horizontal axis X shown in FIG. 3, multiple times while heating it.
  • the laminate 11 is subjected to a first bending process to form an intermediate product having a smaller degree of bending along the horizontal axis X and along the vertical axis Y than the final product, and then the intermediate product is subjected to a second bending process to make the degree of bending along the horizontal axis X and along the vertical axis Y greater than that of the intermediate product and the same as that of the final product, thereby manufacturing the polarized lens 1.
  • the bending process can be performed by a conventionally known method.
  • the outer shape of the laminate 11 is a horizontally elongated rectangular shape, but it does not necessarily have to be rectangular and may be, for example, elliptical.
  • the polarizing lens 1 and laminate 11 are structured by laminating support plates 13 on both sides of a polarizing film 12.
  • the thickness of the polarizing lens 1 and laminate 11 is not particularly limited, but is, for example, 0.9 mm or more and 1.5 mm or less.
  • the thickness of the polarizing lens 1 and laminate 11 can be measured, for example, using a film thickness meter or vernier calipers.
  • the polarizing film 12 is not particularly limited, but may be, for example, a dichroic dye oriented on a polymer film such as polyvinyl alcohol.
  • the thickness of the polarizing film 12 is not particularly limited, but may be, for example, 0.02 mm or more and 0.04 mm or less.
  • the support plate 13 is not particularly limited, but may be, for example, made of glass, polycarbonate (PC), acrylic resin (PMMA), polyamide resin (PA), triacetate, etc.
  • polarizing lens 1 is curved so that the front surface is convex 10A and the back surface is concave 10B.
  • polarizing lens 1 is curved so as to describe a smooth curve along the horizontal axis X in a cross-sectional view perpendicular to the vertical axis Y
  • polarizing lens 1 is curved so as to describe a smooth curve along the vertical axis Y in a cross-sectional view perpendicular to the horizontal axis X.
  • Polarizing lens 1 is curved in an aspheric shape, and the convex surface 10A on the front side and the concave surface 10B on the back side of polarizing lens 1 are aspheric.
  • the dashed dotted line indicates the outer shape of the lens ball formed by cutting away the outer periphery of the polarized lens 1 to fit a lens frame in, for example, a sunglasses frame.
  • the outer periphery of the polarized lens 1 is the portion having a predetermined width from the upper, lower, inner and outer edges of the polarized lens 1 toward the lens center C.
  • FIG. 1 shows a polarized lens for the left eye, with the right side of FIG. 1 corresponding to the temple side of the frame (the side closest to the user's ear) and the left side corresponding to the bridge side of the frame (the side closest to the user's nose).
  • the temple side of the polarized lens 1 is referred to as the "outside" and the bridge side as the "inside.”
  • the degree of curvature along the horizontal axis X of the region 2 inside the lens center C i.e., the region 2 from the vertical axis Y to the inner edge of the polarizing lens 1
  • the degree of curvature along the horizontal axis X of the region 3 outside the lens center C i.e., the region 3 from the vertical axis Y to the outer edge of the polarizing lens 1. Therefore, the inner region 2 of the polarizing lens 1 has a gentler curve along the horizontal axis X than the outer region 3.
  • the width of the inner region (length along the horizontal axis X) and the width of the outer region (length along the horizontal axis X) are approximately equal.
  • the dashed line indicates a state in which the polarizing lens 1 is curved along the horizontal axis X up to the inner region 2 with a degree of curvature along the horizontal axis X of the side region 31 in the outer region 3.
  • the degree of curvature along the horizontal axis X is preferably a constant value throughout the entire region, but does not necessarily have to be a constant value throughout the entire region.
  • a portion of the inner edge side of the polarized lens 1, or a portion of the upper edge side and/or lower edge side of the polarized lens 1 may have a steeper or gentler curve along the horizontal axis X than other portions.
  • the degree of curvature along the direction of the horizontal axis X preferably changes so as to increase from the lens center C toward the outer edge of the polarized lens 1.
  • the outer region 3 is divided into two regions: a central region 30 on the lens center C side, and a lateral region 31 on the outer edge side of the polarized lens 1.
  • the degree of curvature of the central region 30 along the direction of the horizontal axis X is smaller than the degree of curvature of the lateral region 31 along the direction of the horizontal axis X. Therefore, in the outer region 3, the central region 30 curves more gently along the direction of the horizontal axis X than the lateral region 31.
  • the degree of curvature of the polarized lens 1 along the horizontal axis X is preferably greatest in the side regions 31 of the outer region 3, next greatest in the central region 30 of the outer region 3, and least in the inner region 2. Therefore, the degree of curvature of the polarized lens 1 along the horizontal axis X varies so as to decrease from the outer edge of the polarized lens 1 to the lens center C and the inner edge of the polarized lens 1, and the curve along the horizontal axis X from the outer side to the inner side becomes gradually gentler.
  • the degree of curvature along the horizontal axis X is preferably a constant value throughout each region, but does not necessarily have to be a constant value throughout each region.
  • the curve along the horizontal axis X may be steeper or gentler for a portion of the upper edge and/or lower edge of the polarized lens 1 than for other portions.
  • the curve along the horizontal axis X may be steeper or gentler for a portion of the outer edge of the polarized lens 1 than for other portions.
  • the degree of curvature along the vertical axis Y preferably changes so as to increase from the horizontal axis X toward the upper and lower edges of the polarized lens 1.
  • the inner region 2 is divided into three regions, the inner first region 20, the inner second region 21, and the inner third region 22, from the horizontal axis X toward the upper and lower edges of the polarized lens 1.
  • the degree of curvature along the vertical axis Y increases in the order of the inner first region 20, the inner second region 21, and the inner third region 22.
  • the curve along the vertical axis Y is the gentlest in the inner first region 20
  • the curve along the vertical axis Y is steeper in the inner second region 21 than in the inner first region 20
  • the curve along the vertical axis Y is the steepest in the inner third region 22.
  • the vertical width (length along the vertical axis Y) of the first inner region 20, the vertical width (length along the vertical axis Y) of the second inner region 21, and the vertical width (length along the vertical axis Y) of the third inner region 22 are not particularly limited, but are generally equal.
  • the degree of bending along the direction of the vertical axis Y is preferably a constant value throughout each region, but does not necessarily have to be a constant value throughout the entire region.
  • the degree of curvature of the central region 30 along the vertical axis Y preferably changes so as to increase from the horizontal axis X toward the upper and lower edges of the polarized lens 1.
  • the central region 30 is divided into two regions, a central first region 300 and a central second region 301, from the horizontal axis X toward the upper and lower edges of the polarized lens 1.
  • the degree of curvature along the vertical axis Y increases in the order of the central first region 300 and the central second region 301. Therefore, in the central region 30, the curve along the vertical axis Y is steeper in the central second region 301 than in the central first region 30.
  • the vertical width (length along the vertical axis Y) of the central first region 300 and the vertical width (length along the vertical axis Y) of the central second region 301 are not particularly limited, but are generally equal.
  • the degree of bending along the direction of the vertical axis Y is preferably a constant value throughout each region, but does not necessarily have to be a constant value throughout the region.
  • the degree of bending along the direction of the vertical axis Y of the side region 31 is preferably a constant value throughout the entire region, but does not necessarily have to be a constant value throughout the entire region.
  • the degree of bending of the polarized lens 1 along the direction of the vertical axis Y is greatest in the lateral regions 31 of the outer region 3, and is preferably also greatest in the central second region 301 in the central region 30 of the outer region 3 and the inner third region 22 of the inner region 2.
  • the degree of bending of the polarized lens 1 along the direction of the vertical axis Y is preferably next greatest in the central first region 300 in the central region 30 of the outer region 3 and the inner second region 21 of the inner region 2.
  • the degree of bending of the polarized lens 1 along the direction of the vertical axis Y is preferably smallest in the inner first region 20 of the inner region 2.
  • the relationship between the degree of curvature along the horizontal axis X of the polarized lens 1 and the degree of curvature along the vertical axis Y is preferably such that the largest degrees of curvature are approximately equal in value, the next largest degrees of curvature are approximately equal in value, and the smallest degrees of curvature are approximately equal in value.
  • the degree of curvature along the horizontal axis X and the degree of curvature along the vertical axis Y are approximately equal, and the lateral regions 30 are highly curved and spherically curved.
  • the degree of curvature along the horizontal axis X and the degree of curvature along the vertical axis Y are approximately equal, and the central first region 300 is moderately curved and spherically curved.
  • the degree of curvature along the horizontal axis X and the degree of curvature along the vertical axis Y are approximately equal, and the central first region 20 is curved spherically with a small curve.
  • the inner region 2 includes an assumed eyepoint region 4, as shown in Figures 1 and 2.
  • the assumed eyepoint region 4 is a virtual region where it is assumed that the user's pupil will hit when the lens is attached to the frame.
  • the assumed eyepoint region 4 is set with reference to the fact that the distance between a person's left and right eyes is generally 32 mm.
  • a virtual circle 5 having a diameter of 20 mm is moved so that the center of the virtual circle 5 reaches a position from a position away from the lens center C in the direction of the horizontal axis X from a position away from the lens center C by a first distance D1 to a position away from the lens center C by a second distance D2.
  • the virtual region traced by the virtual circle 5 is the assumed eyepoint region 4.
  • the first distance D1 is 8 mm or more and 11 mm or less, preferably 9 mm or more and 11 mm or less, and most preferably 10 mm.
  • the second distance D2 is 18 mm or more and 21 mm or less.
  • the first distance D1 and the second distance D2 can be measured using a computer lens meter CL-2000 manufactured by Topcon Corporation.
  • the expected eyepoint region 4 is preferably included in the first inner region 20 of the inner region 2.
  • the expected eyepoint region 4 is included in the region of the polarized lens 1 where the degree of bending along the horizontal axis X and the degree of bending along the vertical axis Y are the smallest.
  • the spherical power is -0.12 or more and +0.12 or less, and preferably -0.09 or more and +0.09 or less.
  • the spherical power is expressed as (d1 + d2)/2, where d1 is the power of the refractive power of light caused by the difference in magnitude between the degree of curvature along the horizontal axis X of the convex surface on the front side of the polarizing lens 1 and the degree of curvature along the horizontal axis X of the concave surface on the back side, and d2 is the power of the refractive power of light caused by the difference in magnitude between the degree of curvature along the vertical axis Y of the convex surface on the front side of the polarizing lens 1 and the degree of curvature along the vertical axis Y of the concave surface on the back side.
  • a value of -0.12 or more and +0.12 or less is the pass standard, and the closer to zero the s
  • the spherical power mentioned above is determined mainly by the refractive index of the material (support plate 13) of polarizing lens 1, the thickness of polarizing lens 1, the degree of curvature (radius of curvature) of convex surface 10A on the front side of polarizing lens 1, and the degree of curvature (radius of curvature) of concave surface 10B on the back side of polarizing lens 1.
  • the refractive index of the material (support plate 13) of polarizing lens 1 the thickness of polarizing lens 1
  • the degree of curvature (radius of curvature) of convex surface 10A on the front side of polarizing lens 1 the degree of curvature (radius of curvature) of concave surface 10B on the back side of polarizing lens 1.
  • the spherical power of the assumed eyepoint area 4 is calculated based on these factors.
  • a polarizing lens 1 can be made using a 0.9 mm thick laminate 11 in which polycarbonate support plates 13 are laminated on both sides of a polarizing film 12, and the degree of curvature of the expected eyepoint area 4 along the horizontal axis X and along the vertical axis Y are both 6R or less.
  • the degree of curvature refers to the degree of curvature of the convex surface 10A on the front side of the polarizing lens 1.
  • polarized lens 1 can be designed with the degree of curvature shown in Example 1-2 in Table 1 below.
  • Polarized lens 1 having the degree of curvature shown in Example 1-2 can also be attached to existing frames that fit polarized lenses curved into a spherical shape of 8R x 8R, because the side regions 31 of the outer region 3 are curved into a spherical shape of 8R x 8R.
  • a polarizing lens 1 constructed using a 1.5 mm thick laminate 11 in which polycarbonate support plates 13 are laminated on both sides of a polarizing film 12, and in which the degree of curvature of the expected eyepoint area 4 along the horizontal axis X and along the vertical axis Y are both 5R or less.
  • the degree of curvature refers to the degree of curvature of the convex surface 10A on the front side of the polarizing lens 1.
  • polarized lens 1 can be designed with the degree of curvature shown in Example 3-4 of Table 2 below.
  • Polarized lens 1 having the degree of curvature shown in Example 3-4 has a 6R x 6R spherically curved side region of the outer region, and therefore can be attached to existing frames that fit 6R x 6R spherically curved polarized lenses.
  • the refractive index of polycarbonate (PC) is approximately 1.583, which is greater than the refractive index of glass (approximately 1.523), acrylic resin (PMMA) (approximately 1.492), and polyamide resin (PA) (approximately 1.530). Therefore, if polarized lens 1 is designed with the degree of curvature shown in Example 1-4 above, it is easy to recognize that the spherical power of the expected eyepoint area 4 can be made between -0.12 and +0.12 even if the material of the support plate 13 is not polycarbonate but, for example, glass, acrylic resin, polyamide resin, polyvinyl alcohol, etc.
  • the spherical power can be measured using measuring equipment conforming to ISO standards, such as a telescope, eyepiece, and measurement chart, with the polarizing lens 1 tilted horizontally and vertically, assuming that a lens ball made from the polarizing lens 1 is attached to a frame.
  • the telescope can be, for example, a LiNOS reading telescope (focusing range 1200 mm to infinity, axial observation, 1.2x magnification without eyepiece), the eyepiece can be, for example, a LiNOS eyepiece (10x magnification), and the measurement chart can be, for example, a 4.4 mm Power & Prism Chart.
  • the measurement chart can also be displayed on a computer using, for example, an ELECOM UVC WEB camera (maximum pixel count 1600 x 1200 pixels).
  • the astigmatism power is preferably 0.12 or less.
  • the astigmatism power represents the difference in refractive power between d1 and d2,
  • a smaller value of the astigmatism power is preferable, as it means that the distortion is smaller. Small lens distortion can prevent adverse effects on the user's eyes.
  • the astigmatism power can be calculated from the formula
  • the degree of curvature of at least the side regions 31 of the outer region 3 is maintained at the same level as that of a spherically curved polarized lens, for example 8R x 8R or 6R x 6R, while the degree of curvature along the horizontal axis X and along the vertical axis Y in the eyepoint assumed region 4 in the inner region 2, where the user's pupil is assumed to be, is made smaller than that of the outer region 3, and the spherical power of the eyepoint assumed region 4 is set to -0.12 or more and +0.12 or less, preferably -0.09 or more and +0.09 or less. This reduces the refractive power of light in the eyepoint assumed region 4, so that the polarized lens 1 of this embodiment can suppress adverse effects on the eyes and can be attached to frames that are compatible with existing spherically curved polarized lenses.
  • a spherically curved polarized lens for example 8R x 8R or 6R x 6R
  • the outer region 3 is divided along the horizontal axis X into a central region 30 on the lens center C side and a side region 31 on the outer edge side of the polarized lens 1, and the degree of curvature along the horizontal axis X of the central region 30 is smaller than the degree of curvature along the horizontal axis X of the side region 31. Therefore, according to the polarized lens 1 of this embodiment, the degree of curvature along the horizontal axis X changes so as to become smaller in stages from the outer edge of the polarized lens 1 to the lens center C to the inner edge of the polarized lens 1, and the curve along the horizontal axis X from the outside to the inside becomes gradually gentler. This allows the polarized lens 1 to be curved smoothly along the horizontal axis X.
  • the inner region 2 is divided into an inner first region 20, an inner second region 21, and an inner third region 22 from the horizontal axis X toward the upper and lower edges of the polarized lens 1, respectively, with the degree of curvature along the vertical axis Y increasing in the order of the inner first region 20, the inner second region 21, and the inner third region 22.
  • the central region 30 in the outer region 3 is divided into a central first region 300 and a central second region 301 from the horizontal axis X toward the upper and lower edges of the polarized lens 1, respectively, with the degree of curvature along the vertical axis Y of the central second region 301 being greater than the degree of curvature along the vertical axis Y of the central first region 300. Therefore, according to the polarized lens 1 of this embodiment, the degree of curvature along the vertical axis Y of the polarized lens 1 changes so as to become gradually smaller from the largest lateral region 31 of the outer region 3 to the smallest inner first region 20 of the inner region 2, with the curve along the vertical axis Y gradually becoming gentler. This allows the polarizing lens 1 to be smoothly curved along the direction of the vertical axis Y.
  • the astigmatism power in the assumed eyepoint region 4 is 0.12 or less. Therefore, with the polarized lens 1 of this embodiment, lens distortion is small, making it possible to suppress adverse effects on the user's eyes.
  • the polarized lens of the present disclosure is not limited to the above-described embodiment, and various modifications are possible without departing from the spirit of the present disclosure.
  • the polarized lens of Example 1 is a 0.9 mm thick laminated plate, in which a 0.4 mm thick polycarbonate support plate is laminated on both sides of a polarizing film, and curved into an aspheric shape by bending.
  • the size of the polarized lens is 80 mm in the horizontal axis direction and 60 mm in the vertical axis direction. As shown in FIG. 2, the polarized lens is divided into an inner region and an outer region with the center of the lens as the boundary.
  • the inner region is also divided into an inner third region, an inner second region, an inner first region, an inner second region, and an inner third region along the vertical axis between the upper edge and the lower edge of the polarized lens, and the lengths of the respective regions in the vertical axis direction are 10 mm, 10 mm, 20 mm, 10 mm, and 10 mm.
  • the outer region is divided into a central region and a side region, and the lengths of the respective regions in the horizontal axis direction are 20 mm and 20 mm.
  • the central region is divided into a central second region, a central first region, and a central second region between the upper edge and the lower edge along the vertical axis, and the lengths of these regions along the vertical axis are 20 mm, 20 mm, and 20 mm, respectively.
  • the eyepoint assumed region is a virtual region in the inner region that is created by moving a virtual circle with a diameter of 20 mm so that the center of the virtual circle reaches a position 10 mm away from the center of the lens in the horizontal axis direction to a position 21 mm away, and is included in the inner first region.
  • Example 1 Each region of the polarized lens in Example 1 has the degree of curvature shown in Example 1 of Table 1 above.
  • the polarized lens of Example 2 is a 1.5 mm thick laminated plate, in which a 0.7 mm thick polycarbonate support plate is laminated on both sides of a polarizing film, and is curved into an aspheric shape by bending.
  • the size of the polarized lens is 80 mm in the horizontal axis direction and 60 mm in the vertical axis direction. As shown in FIG. 2, the polarized lens is divided into an inner region and an outer region with the center of the lens as the boundary.
  • the inner region is also divided into an inner third region, an inner second region, an inner first region, an inner second region, and an inner third region along the vertical axis between the upper edge and the lower edge of the polarized lens, and the lengths of the respective regions in the vertical axis direction are 10 mm, 10 mm, 20 mm, 10 mm, and 10 mm.
  • the outer region is divided into a central region and a side region, and the lengths of the respective regions in the horizontal axis direction are 20 mm and 20 mm.
  • the central region is divided into a central second region, a central first region, and a central second region between the upper edge and the lower edge along the vertical axis, and the lengths of these regions along the vertical axis are 20 mm, 20 mm, and 20 mm, respectively.
  • the eyepoint assumption region is a virtual region in the inner region that is created by moving a virtual circle with a diameter of 20 mm so that the center of the virtual circle reaches a position 10 mm away from the center of the lens in the horizontal axis direction to a position 18 mm away, and is included in the inner first region.
  • Each region of the polarized lens of Example 2 has the degree of curvature shown in Example 3 of Table 2 above.
  • the polarized lens of Example 3 is a 1.1 mm thick laminated plate, in which a 0.5 mm thick polycarbonate support plate is laminated on both sides of a polarizing film, and curved into an aspheric shape by bending.
  • the size of the polarized lens is 80 mm in the horizontal axis direction and 60 mm in the vertical axis direction. As shown in FIG. 2, the polarized lens is divided into an inner region and an outer region with the center of the lens as the boundary.
  • the inner region is also divided into an inner third region, an inner second region, an inner first region, an inner second region, and an inner third region along the vertical axis between the upper edge and the lower edge of the polarized lens, and the lengths of the respective regions in the vertical axis direction are 10 mm, 10 mm, 20 mm, 10 mm, and 10 mm.
  • the outer region is divided into a central region and a side region, and the lengths of the respective regions in the horizontal axis direction are 20 mm and 20 mm.
  • the central region is divided into a central second region, a central first region, and a central second region between the upper edge and the lower edge along the vertical axis, and the lengths of these regions along the vertical axis are 20 mm, 20 mm, and 20 mm, respectively.
  • the eyepoint assumed region is a virtual region in the inner region that is created by moving a virtual circle with a diameter of 20 mm so that the center of the virtual circle reaches a position 10 mm away from the center of the lens in the horizontal axis direction to a position 21 mm away, and is included in the inner first region.
  • Each region of the polarized lens of Example 3 has the degree of curvature shown in Example 1 of Table 1 above.
  • the polarized lens of Comparative Example 1 is made by bending a 0.9 mm thick laminated plate, with 0.4 mm thick polycarbonate support plates laminated on both sides of a polarizing film, into a spherical shape with a curvature of 8R along both the horizontal and vertical axes.
  • the size of the polarized lens is 80 mm in the horizontal direction and 60 mm in the vertical direction.
  • the polarized lens of Comparative Example 2 is made by bending a 1.5 mm thick laminated plate, with 0.7 mm thick polycarbonate support plates laminated on both sides of a polarizing film, into a spherical shape with a curvature of 6R along both the horizontal and vertical axes.
  • the size of the polarized lens is 80 mm in length along the horizontal axis and 60 mm in length along the vertical axis.
  • the polarized lens of Comparative Example 3 is made by bending a 1.1 mm thick laminate with a 0.5 mm thick polycarbonate support plate laminated on both sides of a polarizing film into a spherical shape with a curvature of 8R along both the horizontal and vertical axes.
  • the size of the polarized lens is 80 mm in the horizontal direction and 60 mm in the vertical direction.
  • the spherical power and astigmatism power were measured using measuring equipment conforming to ISO standards at a position 10 mm inward from the center of the lens along the horizontal axis (see P1 in Figure 6(B)) and at a position 21 mm inward from the center of the lens along the horizontal axis (see P2 in Figure 6(B)).
  • the spherical power and astigmatism power were measured using measuring equipment conforming to ISO standards at a position 10 mm inward from the center of the lens along the horizontal axis (see P1 in Figure 6(B)) and at a position 18 mm inward from the center of the lens along the horizontal axis (see P2 in Figure 6(B)).
  • the spherical power and astigmatism power were measured using a measuring device conforming to ISO standards at a position 10 mm inward from the center of the lens along the horizontal axis (see P1 in Figure 6(B)) and at a position 21 mm inward from the center of the lens along the horizontal axis (see P2 in Figure 6(B)).
  • Tables 4 to 6 show that the aspherically curved polarized lenses of Examples 1-3 of the present disclosure have a spherical power in the expected eyepoint area that is within the range of ⁇ 0.12 and meets the ISO standard passing criteria, whereas the simply spherically curved polarized lenses of Comparative Examples 1-3 have a spherical power in the expected eyepoint area that is outside the range of ⁇ 0.12 and cannot meet the ISO standard passing criteria.
  • the aspherically curved polarized lenses of Examples 1-3 of the present disclosure have spherical powers at the lens center within the range of ⁇ 0.12, which meets the ISO standard passing criteria, whereas the simply spherically curved polarized lenses of Comparative Examples 1-3 have spherical powers at the lens center outside the range of ⁇ 0.12, which is confirmed to be unable to meet the ISO standard passing criteria.
  • the polarized lens was actually cut to the shape of the rim of the eyeglass frame and attached to the rim, and the spherical power and astigmatism power at the eye point position of the eyeglass frame were measured using measuring equipment conforming to ISO standards.
  • the polarized lens is a 1.1 mm thick laminated plate, with 0.5 mm thick polycarbonate support plates laminated on both sides of the polarizing film, which is then bent into an aspheric shape by bending.
  • the size of the polarized lens is 80 mm in the horizontal direction and 60 mm in the vertical direction. As shown in Figure 2, the polarized lens is divided into an inner region and an outer region, with the center of the lens as the boundary.
  • the inner region is also divided into an inner third region, an inner second region, an inner first region, an inner second region, and an inner third region along the vertical axis between the upper and lower edges of the polarized lens, with the lengths of the respective regions along the vertical axis being 10 mm, 10 mm, 20 mm, 10 mm, and 10 mm.
  • the outer region is divided into a central region and a side region, with the lengths of the respective regions along the horizontal axis being 20 mm and 20 mm.
  • the central region is divided into a central second region, a central first region, and a central second region between the upper edge and the lower edge along the vertical axis, and the lengths of these regions along the vertical axis are 20 mm, 20 mm, and 20 mm, respectively.
  • the eyepoint assumed region is a virtual region in the inner region that is created by moving a virtual circle with a diameter of 20 mm so that the center of the virtual circle reaches a position 10 mm away from the center of the lens in the horizontal axis direction to a position 21 mm away, and is included in the inner first region.
  • the spherical power and astigmatism power of the polarized lens before it is attached to the rim of the eyeglass frame are as shown in Table 8 below, and the spherical power in the expected eyepoint area (a position 8 mm to 21 mm inward from the center of the lens) is within the range of ⁇ 0.12.
  • the polarized lens was edge-cut so that the lens center coincided with the center of the rim of the eyeglass frame and matched the shape of the rim, and after cutting, it was attached to the rim of the eyeglass frame.
  • the eyeglass frame used was the eyeglass frame of Example 4-9 below, which has a general shape and size.
  • the eye point of the eyeglass frame is located 32 mm outward from the center of the bridge, assuming a human interpupillary distance of 64 mm.
  • Example 4 (Oakley eyeglass frame) ⁇ Bridge width: 20mm - Rim width: 60mm Temple inclination: 5° forward inclination Rim inclination: Front inclination 16° Horizontal inclination 25° - Rim curve: approx. 7R Eye point position: 8 mm inward from the center of the rim (center of the lens) (2)
  • Example 5 (Carrera eyeglass frame) ⁇ Bridge width: 20mm - Rim width: 62mm Temple inclination: forward inclination 8° Rim inclination: Front inclination 16° Horizontal inclination 25° - Rim curve: approx.
  • Example 8 (eyeglass frame manufactured by CLEAR LAKE) Bridge width: 22mm - Rim width: 62mm Temple inclination: forward inclination 7° Rim inclination: Front inclination 18° Horizontal inclination 26° - Rim curve: approx. 7R Eye point position: 10 mm inward from the center of the rim (center of the lens) (6)
  • Example 9 (Timberland eyeglass frame) Bridge width: 21mm - Rim width: 59mm Temple inclination: forward inclination 1° Rim inclination: Front inclination 16° Horizontal inclination 26° - Rim curve: approx. 7R Eye point position: 8 mm inward from the center of the rim (center of the lens)
  • the expected eyepoint area for a polarized lens is within a range of 8mm to 21mm inward from the center of the lens, when the polarized lens is cut to fit the shape of the rim of a typical eyeglass frame of a typical shape and size and attached to the rim, the actual eyepoint of the eyeglass frame coincides with the expected eyepoint area, and the spherical power at the eyepoint position is within a range of ⁇ 0.12, clearing the ISO standard passing criteria. It can therefore be seen that the polarized lens of the present invention can suppress adverse effects on the eyes.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Polarising Elements (AREA)

Abstract

光の屈折力が小さくかつ既存のフレームにも装着可能なレンズ玉を製作するための偏光レンズの提供を目的とする。レンズ中心Cよりも内側領域2における少なくともアイポイント領域4の横軸Xの方向に沿う曲がり度合及び縦軸Yの方向に沿う曲がり度合が、レンズ中心Cよりも外側領域3の横軸Xの方向に沿う曲がり度合及び縦軸Yの方向に沿う曲がり度合より小さく、アイポイント想定領域4は、内側領域2において、直径20mmの仮想円を、該仮想円の中心がレンズ中心Cから横軸Xの方向に第一距離d1離れた位置から第二距離d2離れた位置まで到達するように移動させることでできる仮想領域であり、第一距離D1は8mm以上11mm以下であり、第二距離D2は18mm以上21mm以下であり、アイポイント想定領域4の球面度数が-0.12以上+0.12以下である。

Description

偏光レンズ
 本開示は、例えばサングラス、ゴーグルなどに用いられる偏光レンズに関する。
 例えば図8に示すように、サングラス100は、一対のレンズ玉101と、一対のレンズ玉101が装着されるフレーム102と、を備える。フレーム102は、レンズ玉101が嵌め込まれる一対のレンズ枠103を有する。レンズ玉101は、偏光レンズをレンズ枠103の形状に合わせてカットすることにより製作される。偏光レンズは、例えば偏光膜の両面にポリカーボネート製の支持板が積層された横長形状の積層板に曲げ加工を施すことにより製作される。
 フレーム102は、ファッション性を考慮して、横の幅が縦の幅よりも長いデザインになっており、機能的には、正面からの入射光のみならず、側方からの入射光にも対応できるように、レンズ枠103が左右方向に沿って大きく湾曲している。そのため、レンズ玉101もレンズ枠103の湾曲に合わせて大きく湾曲させる必要がある。大きく湾曲したレンズ玉101を製作するため、例えば横軸方向に沿う曲がり度合及び縦軸方向(偏光軸に直交する方向)に沿う曲がり度合がいずれも8Rに設定された球面状に湾曲する偏光レンズが知られている。
 ここで、曲がり度合が「1R」とは、焦点距離が1m、屈折力が1.00となることを意味し、偏光レンズがガラス製であると、曲率半径が523mmである。この曲がり度合の大きさを表す数値は曲率半径に反比例するため、前記数値が小さくなる程、緩やかなカーブとなり、前記数値が大きくなる程、急峻なカーブとなる。
 また、横軸方向に沿う曲がり度合及び縦軸方向に沿う曲がり度合がいずれも6Rに設定された球面状に湾曲するレンズ玉101も知られており、このレンズ玉101を装着可能なフレーム102のレンズ枠103は左右方向に沿う湾曲が抑えられている。
 例えば8R×8Rの球面状に大きく湾曲する偏光レンズは、表側の凸面の曲がり度合と裏側の凹面の曲がり度合との間に大きな差が生じる。これにより、光の屈折力が大きくなるために、この偏光レンズから製作されるレンズ玉をサングラスなどに用いると、視力に影響を与えたり眼の疲労などが生じ、眼に悪影響を及ぼす。偏光レンズの厚みを薄くすると、光の屈折力を低減できるが、それではレンズ玉の強度が低下する。また、偏光レンズの曲がり度合を小さくすると、光の屈折力は低減できるが、それではレンズ玉の湾曲も緩やかになるため、大きく湾曲したレンズ枠を有するフレームにレンズ玉を装着するのが困難となる。
 また、6R×6Rの球面状に湾曲する偏光レンズについては、サングラスの見た目を向上させるためにレンズ玉の厚みを厚くすることが要望されている。しかし、偏光レンズを分厚くすると、光の屈折力が大きくなるために、この偏光レンズから製作されるレンズ玉をサングラスなどに用いると、同様に眼に悪影響を及ぼす。偏光レンズの曲がり度合を小さくすると、光の屈折力は低減できるが、それではレンズ玉の湾曲も緩やかになるため、既存のフレームにレンズ玉を装着するのが困難となる。
 本開示は、上記課題に着目して、光の屈折力が小さくかつ既存のフレームにも装着可能なレンズ玉を製作するための偏光レンズの提供を目的とする。
 上記課題を解決するため、本発明者は、球面状に湾曲した偏光レンズの曲がり度合をベースにしながら、レンズ中心から横軸方向に沿って内側に存在するアイポイント想定領域における横軸の方向に沿う曲がり度合及び縦軸の方向に沿う曲がり度合を、偏光レンズの素材の屈折率、偏光レンズの厚みに応じて調整することで、偏光レンズにおいて少なくともユーザの瞳孔が当たる領域の光の屈折力を低減して眼に対する悪影響を抑制し、かつ、既存の球面状に湾曲した偏光レンズに適合したフレームにも装着できる偏光レンズを見出した。
 そのため、本開示の偏光レンズは、以下の項1に記載の偏光レンズを主題とする。
項1.表側が凸面、裏側が凹面となるよう湾曲する単眼用の偏光レンズであって、
 横軸と縦軸との交点であるレンズ中心よりも内側領域における少なくともアイポイント領域の前記横軸の方向に沿う曲がり度合及び前記縦軸の方向に沿う曲がり度合が、前記レンズ中心よりも外側領域の前記横軸の方向に沿う曲がり度合及び前記縦軸の方向に沿う曲がり度合より小さく、
 前記アイポイント想定領域は、前記内側領域において、直径20mmの仮想円を、該仮想円の中心が前記レンズ中心から前記横軸の方向に第一距離d1離れた位置から第二距離d2離れた位置まで到達するよう前記仮想円を移動させることでできる仮想領域であり、 前記第一距離D1は8mm以上11mm以下であり、前記第二距離D2は18mm以上21mm以下であり、
 前記アイポイント想定領域の球面度数が-0.12以上+0.12以下である、偏光レンズ。
 また、本開示の偏光レンズは、上記項1に記載の偏光レンズの好ましい態様として、以下の項2に記載の偏光レンズを包含する。
項2.前記外側領域は、前記横軸の方向に沿って、前記レンズ中心側の中央領域及び該偏光レンズの外縁側の側方領域に分けられており、
 前記中央領域の前記横軸の方向に沿う曲がり度合は、前記側方領域の前記横軸の方向に沿う曲がり度合より小さい、項1に記載の偏光レンズ。
 また、本開示の偏光レンズは、上記項1及び項2に記載の偏光レンズの好ましい態様として、以下の項3に記載の偏光レンズを包含する。
項3.前記内側領域は、前記横軸から該偏光レンズの上縁及び下縁のそれぞれの方に向かって、内側第一領域、内側第二領域及び内側第三領域に分かれており、
 前記内側第一領域、前記内側第二領域及び前記内側第三領域の順で前記縦軸の方向に沿う曲がり度合が大きく、
 前記内側第一領域に前記アイポイント想定領域が含まれる、項1又は項2に記載の偏光レンズ。
 また、本開示の偏光レンズは、上記項3に記載の偏光レンズの好ましい態様として、以下の項4に記載の偏光レンズを包含する。
項4.前記内側第一領域の前記縦軸の方向に沿う曲がり度合と、前記内側領域の前記横軸の方向に沿う曲がり度合とが等しい値である、項3に記載の偏光レンズ。
 また、本開示の偏光レンズは、上記項2に記載の偏光レンズの好ましい態様として、以下の項5に記載の偏光レンズを包含する。
項5.前記中央領域は、前記横軸から該偏光レンズの上縁及び下縁のそれぞれの方に向かって、中央第一領域及び中央第二領域に分けられており、
 前記中央第二領域の前記縦軸の方向に沿う曲がり度合は、前記中央第一領域の前記縦軸の方向に沿う曲がり度合より大きい、項2に記載の偏光レンズ。
 また、本開示の偏光レンズは、上記項2及び5に記載の偏光レンズの好ましい態様として、以下の項6に記載の偏光レンズを包含する。
項6.前記側方領域の前記横軸の方向に沿う曲がり度合と、前記側方領域の前記縦軸の方向に沿う曲がり度合とが等しい値である、項2又は5に記載の偏光レンズ。
 また、本開示の偏光レンズは、上記項1から6に記載の偏光レンズの好ましい態様として、以下の項7に記載の偏光レンズを包含する。
項7.前記アイポイント想定領域の非点収差度数が0.12以下である、項1から7のいずれか一項に記載の偏光レンズ。
 また、本開示の偏光レンズは、上記項1から7に記載の偏光レンズの好ましい態様として、以下の項8に記載の偏光レンズを包含する。
項8.項1から7のいずれか一項に記載の偏光レンズであって、
 該偏光レンズは、偏光膜の両面にポリカーボネート製の支持板が積層された積層板により構成されており、
 該偏光レンズの厚みが0.9mmであり、
 前記アイポント想定領域の前記横軸の方向に沿う曲面の曲がり度合及び前記縦軸の方向に沿う曲面の曲がり度合が6R以下であり、
 前記外側領域における前記側方領域の前記横軸の方向に沿う曲面の曲がり度合及び前記縦軸の方向に沿う曲面の曲がり度合が8Rである、偏光レンズ。
 また、本開示の偏光レンズは、上記項1から7に記載の偏光レンズの好ましい態様として、以下の項9に記載の偏光レンズを包含する。
項9.項1から7のいずれか一項に記載の偏光レンズであって、
 該偏光レンズは、偏光膜の両面にポリカーボネート製の支持板が積層された積層板により構成されており、
 該偏光レンズの厚みが1.5mmであり、
 前記アイポント想定領域の前記横軸の方向に沿う曲面の曲がり度合及び前記縦軸の方向に沿う曲面の曲がり度合が5R以下であり、
 前記外側領域における前記側方領域の前記横軸の方向に沿う曲面の曲がり度合及び前記縦軸の方向に沿う曲面の曲がり度合が6Rである、偏光レンズ。
 本開示の偏光レンズでは、少なくとも外側領域の曲がり度合について球面状に湾曲した偏光レンズの曲がり度合を維持しつつ、内側領域の中でユーザの瞳孔が当たると想定されるアイポイント想定領域における横軸の方向に沿う曲がり度合及び縦軸の方向に沿う曲がり度合を外側領域よりも小さくして、アイポイント想定領域の球面度数を-0.12以上+0.12以下としている。これにより、アイポイント想定領域における光の屈折力を低減することができるため、本開示の偏光レンズによれば、眼に対する悪影響を抑制することができ、かつ、既存の球面状に湾曲した偏光レンズに適合したフレームにも装着できる。
図1は偏光レンズの斜視図である 図2は偏光レンズの正面図である。 図3は積層板の斜視図である。 図4は偏光レンズの一部分の縦断面図である。 図5(A)は偏光レンズの横断面図であり、図5(B)は偏光レンズの内側領域における縦断面図であり、図5(C)は偏光レンズの外側領域の中央領域における縦断面図である。 図6はアイポイント想定領域を説明する図である。 図7は眼鏡フレームを説明する図である。 図8はサングラスの斜視図である。
 本開示の偏光レンズは、例えばサングラス、ゴーグルなどに用いられる。以下、本開示の偏光レンズの一実施形態について、添付図面を参照して説明する。
 図1及び図2は、偏光レンズ1の外観を示す。偏光レンズ1は、単眼用である。偏光レンズ1の横軸Xが偏光軸の方向に、縦軸Yが偏光軸と直交する方向に、それぞれ設定されている。横軸Xと縦軸Yとの交点が偏光レンズ1のレンズ中心Cである。
 偏光レンズ1は、図3に示す横軸Xの方向に長い横長形状の積層板11を加熱しながら複数回の曲げ加工を施して形成される。例えば、積層板11に第1次の曲げ加工を施して、横軸Xの方向に沿う曲がり度合及び縦軸Y方向に沿う曲がり度合が最終品より小さい曲がり度合を有する中間加工品を成形した後、該中間加工品に第2次の曲げ加工を施して、横軸Xの方向に沿う曲がり度合及び縦軸Y方向に沿う曲がり度合を中間加工品より大きく、最終品と同じにすることで、偏光レンズ1を製造することができる。曲げ加工は、従来から公知の方法で行うことができる。積層板11の外形は、横に長い矩形状であるが、必ずしも矩形状である必要はなく、例えば楕円形状であってもよい。
 偏光レンズ1及び積層板11は、図4に示すように、偏光膜12の両面にそれぞれ支持板13を貼り合わせて積層した構造のものである。偏光レンズ1及び積層板11の厚みは特に限定されないが、例えば0.9mm以上1.5mm以下である。偏光レンズ1及び積層板11の厚みは、例えば膜厚計やノギスなどを用いて測定することができる。
 偏光膜12は特に限定されないが、例えば2色性色素をポリビニルアルコールなどの高分子フィルム上に配向させたものである。偏光膜12の厚みは特に限定されないが、例えば0.02mm以上0.04mm以下である。支持板13は特に限定されないが、例えばガラス、ポリカーボネート(PC)、アクリル樹脂(PMMA)、ポリアミド樹脂(PA)、トリアセテートなどにより形成される。
 図1及び図5に示すように、偏光レンズ1は、表側の面が凸面10Aとなりかつ裏側の面が凹面10Bとなるように湾曲している。偏光レンズ1は、図5(A)に示すように、縦軸Yに垂直な断面視において横軸X方向に沿って滑らかなカーブを描くように湾曲しており、かつ、図5(B)(C)に示すように、横軸Xに垂直な断面視において縦軸Yの方向に沿って滑らかなカーブを描くように湾曲している。偏光レンズ1は、非球面状に湾曲しており、偏光レンズ1の表側の凸面10A及び裏側の凹面10Bは非球面である。
 なお、図1において、一点鎖線は、例えばサングラスのフレームにおけるレンズ枠に合わせて偏光レンズ1の外周縁部を削り取ることで形成されるレンズ玉の外形を示している。なお、偏光レンズ1の外周縁部とは、偏光レンズ1の上縁、下縁、内縁及び外縁からレンズ中心Cの方に所定の幅を有する部分である。図1は左眼用の偏光レンズが示されており、図1の右側はフレームのテンプル側(ユーザの耳側)に対応し、左側がフレームのブリッジ側(ユーザの鼻側)に対応する。本開示では、偏光レンズ1における前記テンプル側を「外側」、前記ブリッジ側を「内側」という。
 偏光レンズ1は、図5(A)に示すように、レンズ中心Cよりも内側領域2つまり縦軸Yから偏光レンズ1の内縁までの領域2の横軸Xの方向に沿う曲がり度合が、レンズ中心Cよりも外側領域3つまり縦軸Yから偏光レンズ1の外縁までの領域3の横軸Xの方向に沿う曲がり度合より小さい。そのため、偏光レンズ1は、内側領域2の方が外側領域3よりも横軸Xの方向に沿うカーブが緩やかである。内側領域の横幅(横軸Xに沿う長さ)と外側領域の横幅(横軸Xに沿う長さ)は概ね等しい。なお、図5(A)において、一点鎖線は、仮に外側領域3における側方領域31の横軸Xの方向に沿う曲がり度合で内側領域2まで偏光レンズ1が横軸Xの方向に沿って湾曲した状態を示す。
 内側領域2において、横軸Xの方向に沿う曲がり度合は、好ましくはその全域において一定な値であるが、必ずしもその全域で一定な値でなくてもよい。例えば、内側領域2において、偏光レンズ1の内縁側の一部分や、偏光レンズ1の上縁側及び/又は下縁側の一部分について他の部分よりも、横軸Xの方向に沿うカーブが急であってもよいし緩やかであってもよい。
 外側領域3において、横軸Xの方向に沿う曲がり度合は、好ましくはレンズ中心Cから偏光レンズ1の外端に向けて大きくなるように変化している。例えば、外側領域3は、図2及び図5(A)に示すように、レンズ中心C側の中央領域30と偏光レンズ1の外縁側の側方領域31の二つの領域に分けられている。そして、中央領域30の横軸Xの方向に沿う曲がり度合が、側方領域31の横軸Xの方向に沿う曲がり度合より小さい。そのため、外側領域3は、中央領域30の方が側方領域31よりも横軸Xの方向に沿う曲がりが緩やかである。
 つまり、偏光レンズ1の横軸Xの方向に沿う曲がり度合は、好ましくは、外側領域3の側方領域31において最も大きく、外側領域3の中央領域30において次に大きく、内側領域2において最も小さい。そのため、偏光レンズ1の横軸Xの方向に沿う曲がり度合は、偏光レンズ1の外縁からレンズ中心C、偏光レンズ1の内縁にわたって小さくなるように変化しており、外側から内側にわたって横軸Xの方向に沿うカーブが徐々に緩やかになっている。これにより、外側領域3における側方領域31の横軸Xの方向に沿う曲がり度合と、内側領域2の横軸Xの方向に沿う曲がり度合との差が大きくても、偏光レンズ1を横軸Xの方向に沿って滑らかに湾曲させることができる。
 外側領域3の中央領域30及び側方領域31において、横軸Xの方向に沿う曲がり度合は、好ましくはそれぞれの全域において一定な値であるが、必ずしもそれぞれの全域で一定な値でなくてもよい。例えば、中央領域30及び側方領域31において、偏光レンズ1の上縁側及び/又は下縁側の一部分について他の部分よりも、横軸Xの方向に沿うカーブが急であってもよいし緩やかであってもよい。また、側方領域31において、偏光レンズ1の外縁側の一部分について他の部分よりも、横軸Xの方向に沿うカーブが急であってもよいし緩やかであってもよい。
 次に、偏光レンズ1の縦軸Yの方向に沿う曲がり度合について説明する。
 内側領域2において、縦軸Yの方向に沿う曲がり度合は、好ましくは横軸Xから偏光レンズ1の上縁及び下縁のそれぞれに向けて大きくなるように変化している。例えば、図2及び図5(C)に示すように、内側領域2は、横軸Xから偏光レンズ1の上縁及び下縁のそれぞれの方に向かって、内側第一領域20、内側第二領域21及び内側第三領域22の三つの領域に分けられている。そして、内側第一領域20、内側第二領域21及び内側第三領域22の順で縦軸Yの方向に沿う曲がり度合が大きい。そのため、内側領域2は、内側第一領域20において縦軸Yの方向に沿うカーブが最も緩やかであり、内側第二領域21では内側第一領域20よりも縦軸Yの方向に沿うカーブが急であり、内側第三領域22において縦軸Yの方向に沿うカーブが最も急である。これにより、内側領域2における内側第一領域20の縦軸Yの方向に沿う曲がり度合と、内側第三領域22の縦軸Yの方向に沿う曲がり度合との差が大きくても、偏光レンズ1の内側領域2を縦軸Yの方向に沿って滑らかに湾曲させることができる。
 内側第一領域20の縦幅(縦軸Yに沿う長さ)と内側第二領域21の縦幅(縦軸Yに沿う長さ)と内側第三領域22の縦幅(縦軸Yに沿う長さ)は特に限定されないが、概ね等しい。
 内側第一領域20、内側第二領域21及び内側第三領域22において、縦軸Yの方向に沿う曲がり度合は、好ましくはそれぞれの全域において一定な値であるが、必ずしもその全域で一定な値でなくてもよい。
 外側領域3において、中央領域30の縦軸Yの方向に沿う曲がり度合は、好ましくは横軸Xから偏光レンズ1の上縁及び下縁のそれぞれに向けて大きくなるように変化している。例えば、図2及び図5(C)に示すように、中央領域30は、横軸Xから偏光レンズ1の上縁及び下縁のそれぞれの方に向かって、中央第一領域300及び中央第二領域301の二つの領域に分けられている。そして、中央第一領域300及び中央第二領域301の順で縦軸Yの方向に沿う曲がり度合が大きい。そのため、中央領域30は、中央第一領域30よりも中央第二領域301の方が縦軸Yの方向に沿うカーブが急である。
 中央第一領域300の縦幅(縦軸Yに沿う長さ)と中央第二領域301の縦幅(縦軸Yに沿う長さ)は特に限定されないが、概ね等しい。
 中央第一領域300及び中央第二領域301において、縦軸Yの方向に沿う曲がり度合は、好ましくはそれぞれの全域において一定な値であるが、必ずしもその全域で一定な値でなくてもよい。
 外側領域3において、側方領域31の縦軸Yの方向に沿う曲がり度合は、好ましくはその全域において一定な値であるが、必ずしもその全域で一定な値でなくてもよい。
 偏光レンズ1の縦軸Yの方向に沿う曲がり度合は、外側領域3の側方領域31において最も大きく、好ましくは、外側領域3の中央領域30における中央第二領域301、及び、内側領域2の内側第三領域22においても最も大きい。また、偏光レンズ1の縦軸Yの方向に沿う曲がり度合は、好ましくは、外側領域3の中央領域30における中央第一領域300、及び、内側領域2の内側第二領域21において次に大きい。また、偏光レンズ1の縦軸Yの方向に沿う曲がり度合は、好ましくは、内側領域2の内側第一領域20において最も小さい。
 偏光レンズ1の横軸Xの方向に沿う曲がり度合と縦軸Yの方向に沿う曲がり度合の関係は、好ましくは、最も大きい曲がり度合同士でその値が概ね等しく、次に大きい曲がり度合同士でその値が概ね等しく、最も小さい曲がり度合同士でその値が概ね等しい。つまり、外側領域3の側方領域31において、横軸Xの方向に沿う曲がり度合と縦軸Yの方向に沿う曲がり度合は概ね等しく、側方領域30は高カーブで球面状に湾曲している。同様に、外側領域3の中央領域30の中央第一領域300において、横軸Xの方向に沿う曲がり度合と縦軸Yの方向に沿う曲がり度合は概ね等しく、中央第一領域300は中カーブで球面状に湾曲している。同様に、内側領域2の内側第一領域20において、横軸Xの方向に沿う曲がり度合と縦軸Yの方向に沿う曲がり度合は概ね等しく、中央第一領域20は低カーブで球面状に湾曲している。
 上述した構造の偏光レンズ1において、内側領域2は、図1及び図2に示すように、アイポイント想定領域4を含む。アイポイント想定領域4とは、レンズ玉をフレームに装着した際にユーザの瞳孔が当たると想定される仮想領域である。アイポイント想定領域4は、一般的に人の左右の眼の間の距離が32mmであることを参考にして設定される。
 本開示では、図6に示すように、内側領域2において、直径20mmの仮想円5を、仮想円5の中心がレンズ中心Cから横軸Xの方向に第一距離D1離れた位置から第二距離D2離れた位置まで到達するように仮想円5を移動させることでできる、前記仮想円5が通った跡の仮想領域がアイポイント想定領域4である。ここで、第一距離D1は、8mm以上11mm以下であり、好ましくは9mm以上11mm以下であり、最も好ましくは10mmである。第二距離D2は、18mm以上21mm以下である。第一距離D1及び第二距離D2は、株式会社トプコン製のコンピュータレンズメータCL-2000を用いて測定可能である。
 アイポイント想定領域4は、好ましくは内側領域2の内側第一領域20に含まれる。つまり、偏光レンズ1において、横軸Xの方向に沿う曲がり度合及び縦軸Yの方向に沿う曲がり度合が最も小さい領域にアイポイント想定領域4が含まれる。
 アイポイント想定領域4では、球面度数が-0.12以上+0.12以下であり、好ましくは-0.09以上+0.09以下である。球面度数は、偏光レンズ1の表側の凸面の横軸Xの方向に沿う曲がり度合と裏側の凹面の横軸Xの方向に沿う曲がり度合との間の大きさの相違で生じる光の屈折力の度数をd1とし、偏光レンズ1の表側の凸面の縦軸Yの方向に沿う曲がり度合と裏側の凹面の縦軸Yの方向に沿う曲がり度合との間の大きさの相違で生じる光の屈折力の度数をd2として、(d1+d2)/2で表わされる。ISO規格では、-0.12以上+0.12以下が合格基準とされており、球面度数がゼロに近い程、好ましい。
 上述した球面度数は、偏光レンズ1の素材(支持板13)の屈折率、偏光レンズ1の厚み、偏光レンズ1の表側の凸面10Aの曲がり度合(曲率半径)、偏光レンズ1の裏側の凹面10Bの曲がり度合(曲率半径)が大きな要素となる。例えば、偏光レンズ1の厚みが薄いと球面度数は小さくなり、偏光レンズ1の曲がり度合が小さいと球面度数は小さくなる。偏光レンズ1の設計の際には、これらの要素に基づいてアイポイント想定領域4の球面度数が計算される。
 アイポイント想定領域4の球面度数を-0.12以上+0.12以下にするための例として、偏光膜12の両面にポリカーボネート製の支持板13が積層された厚み0.9mmの積層板11を用いて偏光レンズ1を構成し、アイポイント想定領域4の横軸Xの方向に沿う曲がり度合及び縦軸Yの方向に沿う曲がり度合をともに6R以下とした偏光レンズ1を挙げることができる。なお、曲がり度合は、偏光レンズ1の表側の凸面10Aの曲がり度合いである。
 この例では、具体的には、以下の表1の例1-2に示す曲がり度合で偏光レンズ1を設計することができる。例1-2に示す曲がり度合を有する偏光レンズ1は、外側領域3の側方領域31が8R×8Rの球面状に湾曲しているため、8R×8Rの球面状に湾曲した偏光レンズに適合した既存のフレームにも装着できる。
Figure JPOXMLDOC01-appb-T000001
 アイポイント想定領域4の球面度数を-0.12以上+0.12以下にするための他の例として、偏光膜12の両面にポリカーボネート製の支持板13が積層された厚み1.5mmの積層板11を用いて偏光レンズ1を構成し、アイポイント想定領域4の横軸Xの方向に沿う曲がり度合及び縦軸Yの方向に沿う曲がり度合をともに5R以下とした偏光レンズ1を挙げることができる。なお、曲がり度合は、偏光レンズ1の表側の凸面10Aの曲がり度合いである。
 この例では、具体的には、以下の表2の例3-4に示す曲がり度合で偏光レンズ1を設計することができる。例3-4に示す曲がり度合を有する偏光レンズ1は、外側領域の側方領域が6R×6Rの球面状に湾曲しているため、6R×6Rの球面状に湾曲した偏光レンズに適合した既存のフレームにも装着できる。
Figure JPOXMLDOC01-appb-T000002
 ポリカーボネート(PC)の屈折率は約1.583であり、ガラスの屈折率(約1.523)、アクリル樹脂(PMMA)の屈折率(約1.492)、ポリアミド樹脂(PA)の屈折率(約1.530)よりも大きい。そのため、上述した例1-4に示す曲がり度合で偏光レンズ1を設計した場合、支持板13の素材がポリカーボネートではなく、例えばガラス、アクリル樹脂、ポリアミド樹脂、ポリビニルアルコールなどであっても、アイポイント想定領域4の球面度数を-0.12以上+0.12以下にすることができるのは容易に認識できる。
 球面度数は、望遠鏡、接眼レンズ、測定チャートなどのISO規格に準ずる測定機器を用いて、偏光レンズ1から製作されるレンズ玉をフレームに装着したことを想定して偏光レンズ1を水平方向及び垂直方向にそれぞれ傾斜させた状態にして、測定することができる。望遠鏡は、例えばLiNOS社製の読み取り望遠鏡(集光範囲1200mmから∞、軸観測、接眼レンズ無しで1.2×倍率)を用いることができ、接眼レンズは、例えばLiNOS社製の接眼レンズ(倍率10倍)を用いることができ、測定チャートは、例えば4.4mm用Power&プリズムチャートを用いることができる。また、例えばELECOM社製のUVC WEBカメラ(最大画素数1600×1200ピクセル)を用いて測定チャートをパソコンに表示させることができる。
 測定チャートと望遠鏡の間の距離を4.4mに設定し、ピント合わせのダイヤル位置をゼロの状態でピントが合うように接眼レンズを調整する。球面度数が-0.12の基準となる偏光レンズをセットし、チャートと望遠鏡の十字マークを合わせた状態で、ピントを合わせてダイヤル目盛を確認し、マイナス方向の13目盛であれば校正不要である。そして、測定対象の偏光レンズをセットし、まずチャートの縦線にピントを合わせてダイヤル目盛を確認する。次にチャートの横線にピントを合わせてダイヤル目盛を確認する。以下の表3に示す目盛換算表を用いてそれぞれのダイヤル目盛から度数d1,d2に換算することで、計算式(d1+d2)/2から球面度数を求めることができる。
Figure JPOXMLDOC01-appb-T000003
 また、アイポイント想定領域4では、好ましくは非点収差度数が0.12以下である。非点収差度数は、d1とd2の屈折力の差|d1-d2|を表していて偏光レンズ1の曲面の歪みの大きさを示すパラメータである。非点収差度数の値が小さい程、歪みが小さいことを意味するため、好ましい。レンズ歪みが小さいことで、ユーザの眼に悪影響を及ぼすのを抑制することができる。
 非点収差度数は、上述した球面度数の測定で得られた上記度数d1,d2を用いて計算式|d1-d2|から求めることができる。
 上述した本実施形態の偏光レンズ1では、外側領域3の少なくとも側方領域31の曲がり度合について、例えば8R×8Rや6R×6Rの球面状に湾曲した偏光レンズの曲がり度合を維持しつつ、内側領域2の中でユーザの瞳孔が当たると想定されるアイポイント想定領域4における横軸Xの方向に沿う曲がり度合及び縦軸Yの方向に沿う曲がり度合を外側領域3よりも小さくして、アイポイント想定領域4の球面度数を-0.12以上+0.12以下、好ましくは-0.09以上+0.09以下としている。これにより、アイポイント想定領域4における光の屈折力を低減することができるため、本実施形態の偏光レンズ1によれば、眼に対する悪影響を抑制することができ、かつ、既存の球面状に湾曲した偏光レンズに適合したフレームにも装着できる。
 また、本実施形態の偏光レンズ1では、外側領域3は、横軸Xの方向に沿って、レンズ中心C側の中央領域30及び該偏光レンズ1の外縁側の側方領域31に分けられており、中央領域30の横軸Xの方向に沿う曲がり度合は、側方領域31の横軸Xの方向に沿う曲がり度合より小さい。そのため、本実施形態の偏光レンズ1によれば、横軸Xの方向に沿う曲がり度合が偏光レンズ1の外縁からレンズ中心C、偏光レンズ1の内縁にわたって段階的に小さくなるように変化しており、外側から内側に向かって横軸Xの方向に沿うカーブが徐々に緩やかになっている。これにより、偏光レンズ1を横軸Xの方向に沿って滑らかに湾曲させることができる。
 また、本実施形態の偏光レンズ1では、内側領域2は、横軸Xから該偏光レンズ1の上縁及び下縁のそれぞれの方に向かって、内側第一領域20、内側第二領域21及び内側第三領域22に分かれており、内側第一領域20、内側第二領域21及び内側第三領域22の順で縦軸Yの方向に沿う曲がり度合が大きい。さらに、外側領域3における中央領域30は、横軸Xから該偏光レンズ1の上縁及び下縁のそれぞれの方に向かって、中央第一領域300及び中央第二領域301に分けられており、中央第二領域301の縦軸Yの方向に沿う曲がり度合が中央第一領域300の縦軸Yの方向に沿う曲がり度合より大きい。そのため、本実施形態の偏光レンズ1によれば、偏光レンズ1の縦軸Yの方向に沿う曲がり度合が、最も大きい外側領域3の側方領域31から最も小さい内側領域2の内側第一領域20にわたって段階的に小さくなるように変化しており、縦軸Yの方向に沿うカーブが徐々に緩やかになっている。これにより、偏光レンズ1を縦軸Yの方向に沿って滑らかに湾曲させることができる。
 また、本実施形態の偏光レンズ1では、アイポイント想定領域4の非点収差度数が0.12以下である。そのため、本実施形態の偏光レンズ1によれば、レンズ歪みが小さいので、ユーザの眼に悪影響を及ぼすのを抑制することができることができる。
 以上、本開示の偏光レンズの一実施形態について説明したが、本開示の偏光レンズは上述した実施形態に限定されるものではなく、本開示の趣旨を逸脱しない限りにおいて種々の変形が可能である。
 以下、本開示の偏光レンズの実施例について説明する。
 実施例1の偏光レンズは、偏光膜の両面に厚み0.4mmのポリカーボネート製の支持板がそれぞれ積層された厚み0.9mmの積層板を曲げ加工により非球面状に湾曲させたものである。偏光レンズの大きさは横軸の方向の長さが80mm、縦軸の方向の長さが60mmである。図2に示すように、偏光レンズは、レンズ中心を境にして内側領域と外側領域とに分けられている。また、内側領域は、縦軸の方向に沿って偏光レンズの上縁から下縁の間において内側第三領域、内側第二領域、内側第一領域、内側第二領域、内側第三領域に分けられ、それぞれの縦軸の方向の長さは、10mm、10mm、20mm、10mm、10mmである。外側領域は、中央領域及び側方領域に分けられ、それぞれの横軸の方向の長さは、20mm、20mmである。また、中央領域は、縦軸の方向に沿って上縁から下縁の間において中央第二領域、中央第一領域、中央第二領域に分けられ、それぞれの縦軸の方向の長さは、20mm、20mm、20mmである。アイポイント想定領域は、内側領域において、直径20mmの仮想円を、該仮想円の中心がレンズ中心から横軸の方向に10mm離れた位置から21mm離れた位置まで到達するよう前記仮想円を移動させることでできる仮想領域としており、内側第一領域に含まれている。
 実施例1の偏光レンズの各領域は、上述した表1の例1に示された曲がり度合を有する。
 実施例2の偏光レンズは、偏光膜の両面に厚み0.7mmのポリカーボネート製の支持板がそれぞれ積層された厚み1.5mmの積層板を曲げ加工により非球面状に湾曲させたものである。偏光レンズの大きさは横軸の方向の長さが80mm、縦軸の方向の長さが60mmである。図2に示すように、偏光レンズは、レンズ中心を境にして内側領域と外側領域とに分けられている。また、内側領域は、縦軸の方向に沿って偏光レンズの上縁から下縁の間において内側第三領域、内側第二領域、内側第一領域、内側第二領域、内側第三領域に分けられ、それぞれの縦軸の方向の長さは、10mm、10mm、20mm、10mm、10mmである。外側領域は、中央領域及び側方領域に分けられ、それぞれの横軸の方向の長さは、20mm、20mmである。また、中央領域は、縦軸の方向に沿って上縁から下縁の間において中央第二領域、中央第一領域、中央第二領域に分けられ、それぞれの縦軸の方向の長さは、20mm、20mm、20mmである。アイポイント想定領域は、内側領域において、直径20mmの仮想円を、該仮想円の中心がレンズ中心から横軸の方向に10mm離れた位置から18mm離れた位置まで到達するよう前記仮想円を移動させることでできる仮想領域としており、内側第一領域に含まれている。
 実施例2の偏光レンズの各領域は、上述した表2の例3に示された曲がり度合を有する。
 実施例3の偏光レンズは、偏光膜の両面に厚み0.5mmのポリカーボネート製の支持板がそれぞれ積層された厚み1.1mmの積層板を曲げ加工により非球面状に湾曲させたものである。偏光レンズの大きさは横軸の方向の長さが80mm、縦軸の方向の長さが60mmである。図2に示すように、偏光レンズは、レンズ中心を境にして内側領域と外側領域とに分けられている。また、内側領域は、縦軸の方向に沿って偏光レンズの上縁から下縁の間において内側第三領域、内側第二領域、内側第一領域、内側第二領域、内側第三領域に分けられ、それぞれの縦軸の方向の長さは、10mm、10mm、20mm、10mm、10mmである。外側領域は、中央領域及び側方領域に分けられ、それぞれの横軸の方向の長さは、20mm、20mmである。また、中央領域は、縦軸の方向に沿って上縁から下縁の間において中央第二領域、中央第一領域、中央第二領域に分けられ、それぞれの縦軸の方向の長さは、20mm、20mm、20mmである。アイポイント想定領域は、内側領域において、直径20mmの仮想円を、該仮想円の中心がレンズ中心から横軸の方向に10mm離れた位置から21mm離れた位置まで到達するよう前記仮想円を移動させることでできる仮想領域としており、内側第一領域に含まれている。
 実施例3の偏光レンズの各領域は、上述した表1の例1に示された曲がり度合を有する。
 比較例1の偏光レンズは、偏光膜の両面に厚み0.4mmのポリカーボネート製の支持板がそれぞれ積層された厚み0.9mmの積層板を曲げ加工により、横軸の方向に沿う曲がり度合及び縦軸の方向に沿う曲がり度合がともに8Rの球面状に湾曲させたものである。偏光レンズの大きさは横軸の方向の長さが80mm、縦軸の方向の長さが60mmである。
 比較例2の偏光レンズは、偏光膜の両面に厚み0.7mmのポリカーボネート製の支持板がそれぞれ積層された厚み1.5mmの積層板を曲げ加工により、横軸の方向に沿う曲がり度合及び縦軸の方向に沿う曲がり度合がともに6Rの球面状に湾曲させたものである。偏光レンズの大きさは横軸の方向の長さが80mm、縦軸の方向の長さが60mmである。
 比較例3の偏光レンズは、偏光膜の両面に厚み0.5mmのポリカーボネート製の支持板がそれぞれ積層された厚み1.1mmの積層板を曲げ加工により、横軸の方向に沿う曲がり度合及び縦軸の方向に沿う曲がり度合がともに8Rの球面状に湾曲させたものである。偏光レンズの大きさは横軸の方向の長さが80mm、縦軸の方向の長さが60mmである。
 実施例1及び比較例1の偏光レンズについて、レンズ玉をフレームに装着した想定の条件で、レンズ中心から横軸の方向に沿って内側に10mm離れた位置(図6(B)のP1を参照)と、レンズ中心から横軸の方向に沿って内側に21mm離れた位置(図6(B)のP2を参照)における球面度数及び非点収差度数をISO規格に準ずる測定機器を用いて測定した。
 また、実施例2及び比較例2の偏光レンズについて、レンズ玉をフレームに装着した想定の条件で、レンズ中心から横軸の方向に沿って内側に10mm離れた位置(図6(B)のP1を参照)と、レンズ中心から横軸の方向に沿って内側に18mm離れた位置(図6(B)のP2を参照)における球面度数及び非点収差度数をISO規格に準ずる測定機器を用いて測定した。
 実施例3及び比較例3の偏光レンズについて、レンズ玉をフレームに装着した想定の条件で、レンズ中心から横軸の方向に沿って内側に10mm離れた位置(図6(B)のP1を参照)と、レンズ中心から横軸の方向に沿って内側に21mm離れた位置(図6(B)のP2を参照)における球面度数及び非点収差度数をISO規格に準ずる測定機器を用いて測定した。
 これらの測定結果を表4から表6に示す。なお、合否はISO規格の合格基準に基づき判定した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表4から表6によれば、本開示の非球面に湾曲した実施例1-3の偏光レンズは、アイポイント想定領域の球面度数が±0.12の範囲内にあり、ISO規格の合格基準をクリアできるのに対して、単なる球面状に湾曲した比較例1-3の偏光レンズは、アイポイント想定領域の球面度数が±0.12の範囲外にあり、ISO規格の合格基準をクリアできないことが確認された。
 さらに、実施例1-3及び比較例1-3の偏光レンズについて、レンズ中心の位置における球面度数及び非点収差度数を測定した結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 本開示の非球面に湾曲した実施例1-3の偏光レンズは、レンズ中心の球面度数も±0.12の範囲内にあり、ISO規格の合格基準をクリアできるのに対して、単なる球面状に湾曲した比較例1-3の偏光レンズは、レンズ中心の球面度数も±0.12の範囲外にあり、ISO規格の合格基準をクリアできないことが確認された。
 次に偏光レンズを実際に眼鏡フレームのリムの形状にカットしてリムに装着し、眼鏡フレームのアイポイント位置における球面度数及び非点収差度数をISO規格に準ずる測定機器を用いて測定した。
 偏光レンズは、偏光膜の両面に厚み0.5mmのポリカーボネート製の支持板がそれぞれ積層された厚み1.1mmの積層板を曲げ加工により非球面状に湾曲させたものである。偏光レンズの大きさは横軸の方向の長さが80mm、縦軸の方向の長さが60mmである。図2に示すように、偏光レンズは、レンズ中心を境にして内側領域と外側領域とに分けられている。また、内側領域は、縦軸の方向に沿って偏光レンズの上縁から下縁の間において内側第三領域、内側第二領域、内側第一領域、内側第二領域、内側第三領域に分けられ、それぞれの縦軸の方向の長さは、10mm、10mm、20mm、10mm、10mmである。外側領域は、中央領域及び側方領域に分けられ、それぞれの横軸の方向の長さは、20mm、20mmである。また、中央領域は、縦軸の方向に沿って上縁から下縁の間において中央第二領域、中央第一領域、中央第二領域に分けられ、それぞれの縦軸の方向の長さは、20mm、20mm、20mmである。アイポイント想定領域は、内側領域において、直径20mmの仮想円を、該仮想円の中心がレンズ中心から横軸の方向に10mm離れた位置から21mm離れた位置まで到達するよう前記仮想円を移動させることでできる仮想領域としており、内側第一領域に含まれている。
 眼鏡フレームのリムに装着する前の偏光レンズの球面度数及び非点収差度数は以下の表8のとおりであり、アイポイント想定領域(レンズ中心より8mmから21mm内側に離れた位置)の球面度数が±0.12の範囲内である。
Figure JPOXMLDOC01-appb-T000008
 偏光レンズは、図7に示すように、レンズ中心が眼鏡フレームのリムの中心に一致するとともにリムの形状に合うようにエッジングカットを行い、カット後に眼鏡フレームのリムに装着した。眼鏡フレームは、一般的な形状及び大きさである以下の実施例4-9の眼鏡フレームを用いた。眼鏡フレームのアイポイントは、人の瞳孔間距離を64mmとして、ブリッジの中心から外側に32mm離れた位置となる。
(1)実施例4(Oakley社製の眼鏡フレーム)
・ブリッジの横幅:20mm
・リムの横幅:60mm
・テンプル傾斜:前傾斜5°
・リム傾斜:前傾斜16° 水平傾斜25°
・リムカーブ:約7R
・アイポイント位置:リムの中心(レンズ中心)から8mm内側に離れた位置
(2)実施例5(CARRERA社製の眼鏡フレーム)
・ブリッジの横幅:20mm
・リムの横幅:62mm
・テンプル傾斜:前傾斜8°
・リム傾斜:前傾斜16° 水平傾斜25°
・リムカーブ:約6.5R
・アイポイント位置:リムの中心(レンズ中心)から9mm内側に離れた位置
(3)実施例6(SUNTVER社製の眼鏡フレーム)
・ブリッジの横幅:20mm
・リムの横幅:60mm
・テンプル傾斜:前傾斜4°
・リム傾斜:前傾斜15° 水平傾斜28°
・リムカーブ:約7R
・アイポイント位置:リムの中心(レンズ中心)から8mm内側に離れた位置
(4)実施例7(ハート光学社製の眼鏡フレーム)
・ブリッジの横幅:22mm
・リムの横幅:62mm
・テンプル傾斜:前傾斜3°
・リム傾斜:前傾斜16° 水平傾斜25°
・リムカーブ:約7R
・アイポイント位置:リムの中心(レンズ中心)から10mm内側に離れた位置
(5)実施例8(CLEAR LAKE社製の眼鏡フレーム)
・ブリッジの横幅:22mm
・リムの横幅:62mm
・テンプル傾斜:前傾斜7°
・リム傾斜:前傾斜18° 水平傾斜26°
・リムカーブ:約7R
・アイポイント位置:リムの中心(レンズ中心)から10mm内側に離れた位置
(6)実施例9(Timberland社製の眼鏡フレーム)
・ブリッジの横幅:21mm
・リムの横幅:59mm
・テンプル傾斜:前傾斜1°
・リム傾斜:前傾斜16° 水平傾斜26°
・リムカーブ:約7R
・アイポイント位置:リムの中心(レンズ中心)から8mm内側に離れた位置
 実施例4-9について、アイポイント位置、及び、リムの中心(レンズ中心)から21mm内側に離れた位置において測定した球面度数及び非点収差度数の結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 偏光レンズについてアイポイント想定領域をレンズ中心から内側に8mmから21mmの範囲に定めることで、偏光レンズを一般的な形状及び大きさの眼鏡フレームのリムの形状に合わせてカットしてリムに装着した際に、眼鏡フレームの実際のアイポイントがアイポイント想定領域と一致し、アイポイント位置の球面度数が±0.12の範囲内となって、ISO規格の合格基準をクリアできることが確認された。よって、本発明の偏光レンズによれば、眼に対する悪影響を抑制することができることが分かる。
 1   偏光レンズ
 2   内側領域
 3   外側領域
 4   アイポイント想定領域
 10A 凸面
 10B 凹面
 20  内側第一領域
 21  内側第二領域
 22  内側第三領域
 30  中央領域
 31  側方領域
 300 中央第一領域
 301 中央第二領域
 C   レンズ中心
 X   横軸
 Y   縦軸

Claims (9)

  1.  表側が凸面、裏側が凹面となるよう湾曲する単眼用の偏光レンズであって、
     横軸と縦軸との交点であるレンズ中心よりも内側領域における少なくともアイポイント領域の前記横軸の方向に沿う曲がり度合及び前記縦軸の方向に沿う曲がり度合が、前記レンズ中心よりも外側領域の前記横軸の方向に沿う曲がり度合及び前記縦軸の方向に沿う曲がり度合より小さく、
     前記アイポイント想定領域は、前記内側領域において、直径20mmの仮想円を、該仮想円の中心が前記レンズ中心から前記横軸の方向に第一距離d1離れた位置から第二距離d2離れた位置まで到達するように移動させることでできる仮想領域であり、
     前記第一距離D1は8mm以上11mm以下であり、前記第二距離D2は18mm以上21mm以下であり、
     前記アイポイント想定領域の球面度数が-0.12以上+0.12以下である、偏光レンズ。
  2.  前記外側領域は、前記横軸の方向に沿って、前記レンズ中心側の中央領域及び該偏光レンズの外縁側の側方領域に分けられており、
     前記中央領域の前記横軸の方向に沿う曲がり度合は、前記側方領域の前記横軸の方向に沿う曲がり度合より小さい、請求項1に記載の偏光レンズ。
  3.  前記内側領域は、前記横軸から該偏光レンズの上縁及び下縁のそれぞれの方に向かって、内側第一領域、内側第二領域及び内側第三領域に分かれており、
     前記内側第一領域、前記内側第二領域及び前記内側第三領域の順で前記縦軸の方向に沿う曲がり度合が大きく、
     前記内側第一領域に前記アイポイント想定領域が含まれる、請求項1に記載の偏光レンズ。
  4.  前記内側第一領域の前記縦軸の方向に沿う曲がり度合と、前記内側領域の前記横軸の方向に沿う曲がり度合とが等しい値である、請求項3に記載の偏光レンズ。
  5.  前記中央領域は、前記横軸から該偏光レンズの上縁及び下縁のそれぞれの方に向かって、中央第一領域及び中央第二領域に分けられており、
     前記中央第二領域の前記縦軸の方向に沿う曲がり度合は、前記中央第一領域の前記縦軸の方向に沿う曲がり度合より大きい、請求項2に記載の偏光レンズ。
  6.  前記側方領域の前記横軸の方向に沿う曲がり度合と、前記側方領域の前記縦軸の方向に沿う曲がり度合とが等しい値である、請求項2に記載の偏光レンズ。
  7.  前記アイポイント想定領域の非点収差度数が0.12以下である、請求項1に記載の偏光レンズ。
  8.  請求項1から7のいずれか一項に記載の偏光レンズであって、
     該偏光レンズは、偏光膜の両面にポリカーボネート製の支持板が積層された積層板により構成されており、
     該偏光レンズの厚みが0.9mmであり、
     前記アイポント想定領域の前記横軸の方向に沿う曲がり度合及び前記縦軸の方向に沿う曲がり度合がともに6R以下であり、
     前記側方領域の前記横軸の方向に沿う曲がり度合及び前記縦軸の方向に沿う曲がり度合がともに8Rである、偏光レンズ。
  9.  請求項1から7のいずれか一項に記載の偏光レンズであって、
     該偏光レンズは、偏光膜の両面にポリカーボネート製の支持板が積層された積層板により構成されており、
     該偏光レンズの厚みが1.5mmであり、
     前記アイポント想定領域の前記横軸の方向に沿う曲がり度合及び前記縦軸の方向に沿う曲がり度合がともに5R以下であり、
     前記側方領域の前記横軸の方向に沿う曲がり度合及び前記縦軸の方向に沿う曲がり度合がともに6Rである、偏光レンズ。
PCT/JP2023/042449 2022-11-28 2023-11-28 偏光レンズ WO2024117101A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-189597 2022-11-28
JP2022189597 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024117101A1 true WO2024117101A1 (ja) 2024-06-06

Family

ID=91324109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042449 WO2024117101A1 (ja) 2022-11-28 2023-11-28 偏光レンズ

Country Status (1)

Country Link
WO (1) WO2024117101A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171761A (ja) * 1998-12-07 2000-06-23 Wintec International Japan:Kk サングラス用偏光レンズおよびその製法並びにその製造装置
JP2006047586A (ja) * 2004-08-03 2006-02-16 Wintec International Japan:Kk 度付き偏光プラスチックレンズ用偏光シート、その偏光シートの製法、その偏光シートの製造装置、および度付き偏光プラスチックレンズ
JP2006301553A (ja) * 2005-03-25 2006-11-02 Optical Ventures Inc サングラス用レンズおよびその製法並びにその製造装置
JP2011180265A (ja) * 2010-02-26 2011-09-15 Yamamoto Kogaku Co Ltd 1眼タイプ偏光眼鏡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171761A (ja) * 1998-12-07 2000-06-23 Wintec International Japan:Kk サングラス用偏光レンズおよびその製法並びにその製造装置
JP2006047586A (ja) * 2004-08-03 2006-02-16 Wintec International Japan:Kk 度付き偏光プラスチックレンズ用偏光シート、その偏光シートの製法、その偏光シートの製造装置、および度付き偏光プラスチックレンズ
JP2006301553A (ja) * 2005-03-25 2006-11-02 Optical Ventures Inc サングラス用レンズおよびその製法並びにその製造装置
JP2011180265A (ja) * 2010-02-26 2011-09-15 Yamamoto Kogaku Co Ltd 1眼タイプ偏光眼鏡

Similar Documents

Publication Publication Date Title
JP6279110B2 (ja) 色収差のないヘッドマウント機器用広角レンズ及びヘッドマウント機器
CN106338820B (zh) 一种微显示目镜、头戴目镜***和头戴可视设备
CN105511078B (zh) 一种目镜镜头、头戴显示光学***和头戴设备
US20220082864A1 (en) Spectacle lens and method for designing the same
CN210573061U (zh) 一种双面非球面近视眼镜片
TWI664460B (zh) 目鏡光學系統
TWI781987B (zh) 鏡頭及其製造方法
KR20180133866A (ko) 근거리 광 증폭 모듈, 안경, 헬멧 및 가상현실 시스템
TWI768063B (zh) 鏡頭及其製造方法
JPS6239724B2 (ja)
JP2021015308A (ja) 眼鏡用レンズ
CN206411339U (zh) 一种用于虚拟现实头盔的降低畸变与色散的光学结构
CN106371214B (zh) 用于虚拟现实头盔的降低畸变与色散的光学结构
JP5115364B2 (ja) 眼鏡レンズの傾き角算出方法、眼鏡、眼鏡の製造方法
WO2024117101A1 (ja) 偏光レンズ
CN205450452U (zh) 一种目镜镜头、头戴显示光学***和头戴设备
TWI766975B (zh) 鏡頭及其製造方法
CN111323893B (zh) 镜头及其制造方法
TWI628464B (zh) 適眼距可調目鏡系統
CN219676368U (zh) 一种具有长出瞳距离目镜的光学***
CN218037539U (zh) 一种光波导片与透镜集成镜片及ar眼镜
JP4530207B2 (ja) ベンディング角を有するフレームに用いる眼鏡レンズの設計方法及びベンディング角を有するフレームに用いる眼鏡レンズ
CN216526503U (zh) 一种小型液态镜头光学***
CN220271692U (zh) 一种多点离焦近视延缓眼镜
US11789290B2 (en) Method for preparing double-sided composite thinning zoom concave lens