WO2024116604A1 - Processing machine and control method - Google Patents

Processing machine and control method Download PDF

Info

Publication number
WO2024116604A1
WO2024116604A1 PCT/JP2023/036678 JP2023036678W WO2024116604A1 WO 2024116604 A1 WO2024116604 A1 WO 2024116604A1 JP 2023036678 W JP2023036678 W JP 2023036678W WO 2024116604 A1 WO2024116604 A1 WO 2024116604A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
workpiece
cutting tool
processing machine
stage
Prior art date
Application number
PCT/JP2023/036678
Other languages
French (fr)
Japanese (ja)
Inventor
正人 松本
聡 澤野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024116604A1 publication Critical patent/WO2024116604A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/18Compensation of tool-deflection due to temperature or force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia

Definitions

  • the present invention relates to a processing machine and a control method.
  • the present invention provides a processing machine etc. that prevents deterioration of processing quality.
  • the processing machine is a processing machine that includes a spindle that rotatably supports a cutting tool, a stage on which a workpiece is placed, a measurement unit that measures a physical quantity resulting from contact between the cutting tool and the workpiece, a comparison unit that calculates the cutting depth of the workpiece by the cutting tool based on the physical quantity and compares the calculated cutting depth with a reference cutting depth, and an adjustment unit that adjusts the position of at least one of the cutting tool, the spindle, and the stage based on the result of the comparison by the comparison unit.
  • the processing machine of the present invention can suppress deterioration of processing quality.
  • FIG. 2 is a schematic diagram showing a configuration of a processing machine according to an embodiment.
  • FIG. 4 is a flow chart showing a control method for a processing machine in an embodiment.
  • 5 is an explanatory diagram showing an example of a correspondence relationship between cutting resistance and cutting depth in the embodiment.
  • FIG. FIG. 13 is a schematic diagram showing an example of cutting depth by a processing machine in a comparative example.
  • FIG. 4 is a schematic diagram showing a first example of cutting depth by a processing machine in an embodiment.
  • FIG. 11 is a schematic diagram showing a second example of the cutting depth of the processing machine in the embodiment.
  • FIG. 13 is a schematic diagram showing a configuration of a processing machine in a modified example of the embodiment.
  • thermal deformation may occur in the spindle or cutting tool.
  • Thermal deformation of the spindle or cutting tool may result in a decrease in machining quality.
  • Degradation in machining quality may include, for example, the cutting depth of the workpiece not matching a reference value, or the appearance of a pattern (such as a striped or spotted pattern) on the machined surface of the workpiece (also called the machined surface).
  • Patent Document 1 uses sensors to measure the positions of the spindle and stage, calculates the relative displacement between the spindle and stage, and controls the position of the spindle or stage to reduce the relative displacement between the spindle and stage, thereby preventing degradation of processing quality.
  • controlling the relative positions of the spindle and stage based on measuring the positions of the spindle and stage may not be able to sufficiently prevent deterioration in machining quality. For example, if the position of the cutting tool tip has been displaced from the correct position due to thermal deformation of the spindle or cutting tool, measuring the amount of displacement of the spindle cannot accurately determine the amount of displacement of the cutting tool tip position. In this case, controlling the relative positions of the spindle and stage to be appropriate may not be able to prevent deterioration in machining quality.
  • the present invention provides a processing machine etc. that prevents deterioration of processing quality.
  • a processing machine comprising: a spindle that rotatably supports a cutting tool; a stage on which a workpiece is placed; a measuring unit that measures a physical quantity resulting from contact between the cutting tool and the workpiece; a comparing unit that calculates a cutting depth of the workpiece by the cutting tool based on the physical quantity and compares the calculated cutting depth with a reference cutting depth; and an adjusting unit that adjusts the position of at least one of the cutting tool, the spindle, and the stage based on the result of the comparison by the comparing unit.
  • the processing machine adjusts the position of at least one of the cutting tool, the spindle, and the stage using the cutting depth calculated from the measured physical quantity.
  • the measured physical quantity changes in relation to the cutting depth by the processing machine. Therefore, the processing machine can calculate the cutting depth estimated from the physical quantity, and control the subsequent cutting depth based on the calculated cutting depth.
  • This suppresses deterioration of processing quality by controlling the cutting depth using a physical quantity that can be measured relatively easily, without measuring the actual cutting depth.
  • there is no need to measure the cutting depth there is an effect that it can be applied even in cases where it is difficult to measure the cutting depth. In this way, the processing machine according to the present disclosure can suppress deterioration of processing quality.
  • the processing machine uses the cutting depth calculated from the measured physical quantity to adjust the position of at least one of the cutting tool, the spindle, and the stage, thereby making it possible to bring the cutting depth of the processing machine closer to the reference cutting depth, which contributes to preventing deterioration in the quality of the processed product. Therefore, the processing machine according to the present disclosure can further prevent deterioration in the quality of the processing.
  • the processing machine cuts the workpiece using the cutting resistance, which is relatively easy to measure, as a physical quantity. Therefore, the processing machine according to the present disclosure can more easily suppress deterioration in processing quality.
  • the reference cutting depth is (a) a target depth that is a predetermined target value for the cutting depth of the workpiece by the processing machine, or (b) a cutting depth of the workpiece calculated based on the physical quantity measured by the measuring unit at a point in time when the processing machine is cutting the workpiece.
  • the processing machine can more appropriately control the cutting depth of the workpiece by using a predetermined target depth or an estimated cutting depth at a certain point in time during cutting as the reference cutting depth.
  • a predetermined target depth as the reference cutting depth contributes to achieving a predetermined processing quality.
  • using an estimated cutting depth at a certain point in time during cutting as the reference cutting depth contributes to achieving processing quality of the standard by using the above-mentioned point in time as the standard for processing quality.
  • the processing machine according to the present disclosure can achieve a predetermined processing quality while suppressing deterioration of processing quality.
  • the processing machine cuts the workpiece using the position, speed, or acceleration of the stage, which are relatively easy to measure, as physical quantities. Therefore, the processing machine according to the present disclosure can more easily suppress deterioration in processing quality.
  • the processing machine can reduce the number of components involved in adjusting the position of at least one of the cutting tool, spindle, and stage based on the physical quantity measured by the measurement unit, which has the effect of reducing the processing load, reducing the processing time, or reducing costs. Therefore, the processing machine according to the present disclosure can suppress deterioration in processing quality while reducing the processing load, reducing the processing time, or reducing costs.
  • a processing machine according to any one of (1) to (6), in which the measuring unit measures the physical quantity as the average or effective value of the physical quantity over the time required for the cutting tool to rotate once or over an integer multiple of that time.
  • the time required for one rotation which is the smallest unit of the cutting operation of the cutting tool, is used as the unit time, and the average value of the physical quantity within that unit time is taken as the measured value of the physical quantity.
  • a method for controlling a processing machine comprising a spindle that rotatably supports a cutting tool and a stage on which a workpiece is placed, the control method measuring a physical quantity resulting from contact between the cutting tool and the workpiece, calculating a cutting depth of the workpiece by the cutting tool based on the physical quantity, comparing the calculated cutting depth with a reference cutting depth, and adjusting the position of at least one of the cutting tool, the spindle, and the stage based on the result of the comparison.
  • control method achieves the same effects as the above processing machine.
  • FIG. 1 is a schematic diagram showing the configuration of a processing machine 10 in this embodiment.
  • the processing machine 10 is a processing machine that performs cutting processing (also simply called cutting) on a workpiece W.
  • the Z axis is the vertical direction.
  • the positive and negative sides of the Z axis direction are sometimes referred to as up (upward direction) and down (downward direction), respectively.
  • the processing machine 10 includes a control unit 11, servo amplifiers 12A, 12B, and 12C, motors 13A, 13B, and 13C, a spindle 14, a cutting tool 15, a stage 16, and a measuring unit 17.
  • a workpiece W to be cut by the processing machine 10 is placed on the stage 16.
  • the processing machine 10 is set with a predetermined target value (also called a target depth) for the cutting depth of the workpiece W.
  • the control unit 11 controls the components of the processing machine 10.
  • the control unit 11 includes a processor (e.g., a CPU (Central Processing Unit)) (not shown), and performs the above control by the processor executing a predetermined program using a memory (not shown).
  • a processor e.g., a CPU (Central Processing Unit)
  • CPU Central Processing Unit
  • the control unit 11 controls the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 so that the cutting tool 15 is positioned to cut the workpiece W.
  • control unit 11 can control the position of the spindle 14 in the Z-axis direction, and the control unit 11 can also control the positions of the stage 16 in the X-axis direction and the Y-axis direction.
  • the processing machine 10 controls the position of the spindle 14 so that the cutting tool 15 is located at an appropriate position in the Z-axis direction (also called the reference position), and also controls the position of the stage 16 so that the workpiece W moves at an appropriate speed (also called the reference speed) in the negative X-axis direction (i.e., the stage 16 moves at the reference speed in the negative X-axis direction).
  • the reference position is the position where the cutting tool 15 cuts the workpiece W at the target depth.
  • control unit 11 controls the position of the spindle 14 or cutting tool 15 in the Z-axis direction, it sends a signal to the servo amplifier 12A indicating the position of the spindle 14 after control in the Z-axis direction (also called the control position, the same applies below).
  • the adjustment unit 112 controls the position of the stage 16, it sends a signal to the servo amplifier 12C indicating at least one of the control positions of the stage 16 in the X-axis direction and the Y-axis direction.
  • the control unit 11 also controls the rotational speed of the spindle 14 and the cutting tool 15 so that the cutting tool 15 cuts the workpiece W.
  • the control unit 11 also adjusts the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 using a physical quantity generated by contact between the cutting tool 15 and the workpiece W.
  • the control unit 11 has a comparison unit 111 and an adjustment unit 112 as functional units that perform the above adjustments.
  • the comparison unit 111 acquires the cutting resistance, which is an example of a physical quantity (described later) measured by the measurement unit 17, from the measurement unit 17, calculates the cutting depth of the workpiece W by the cutting tool 15 based on the acquired cutting resistance, and compares the calculated cutting depth with a reference cutting depth.
  • the comparison unit 111 Before cutting is performed by the processing machine 10, the comparison unit 111 already stores a correspondence relationship between the cutting resistance that the workpiece W exerts on the cutting tool 15 during cutting and the cutting depth of the workpiece W by the cutting tool 15.
  • the correspondence relationship between the cutting resistance and the cutting depth is expressed, for example, as a table in which multiple cutting resistances are associated with the cutting depths corresponding to each of the multiple cutting resistances, and this case will be described as an example.
  • the cutting depth corresponding to a cutting resistance not listed in the table can be calculated by interpolation (more specifically, linear interpolation, etc.).
  • the correspondence relationship between the cutting resistance and the cutting depth may be expressed as a mathematical formula that represents the relationship between the cutting resistance and the cutting depth, in addition to the above.
  • the reference cutting depth is a predetermined target depth, or the cutting depth of the workpiece W calculated based on the cutting resistance measured by the measuring unit 17 at a point in time when the processing machine 10 is cutting the workpiece W.
  • the adjustment unit 112 adjusts the position of at least one of the cutting tool 15, the spindle 14, and the stage 16.
  • the adjustment unit 112 sends a signal to the servo amplifier 12A indicating the adjusted position of the spindle 14 in the Z-axis direction (also referred to as the adjusted position, the same applies below).
  • the adjustment unit 112 sends a signal to the servo amplifier 12C indicating the adjusted position of at least one of the X-axis direction and the Y-axis direction of the stage 16.
  • the adjustment unit 112 adjusts the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 based on the result of the comparison by the comparison unit 111. At this time, the adjustment unit 112 performs control to adjust the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 based on the result of the comparison by the comparison unit 111 so as to bring the cutting depth of the workpiece W by the cutting tool 15 closer to the reference cutting depth.
  • the adjustment unit 112 can send a signal indicating the adjusted rotation speed of the spindle 14 (also called the adjusted rotation speed, the same applies below) to the servo amplifier 12B.
  • the servo amplifier 12A is a servo amplifier that drives the motor 13A by supplying power to the motor 13A.
  • the servo amplifier 12A receives a signal from the control unit 11 indicating the adjustment position of the spindle 14 in the Z-axis direction, it calculates the drive amount of the motor 13A to position the spindle 14 at that position, and supplies power to the motor 13A to drive the motor 13A with the calculated drive amount.
  • the servo amplifier 12A can receive information indicating the position of the spindle 14 in the Z-axis direction as feedback from the motor 13A, and can adjust the position of the spindle 14 in the Z-axis direction using the feedback.
  • Motor 13A is a motor that controls the position of spindle 14 in the Z-axis direction. Motor 13A controls the position of spindle 14 in the Z-axis direction by being driven by power supplied from servo amplifier 12A. Motor 13A can also feed back information indicating the position of spindle 14 in the Z-axis direction to servo amplifier 12A.
  • Servo amplifier 12B is a servo amplifier that drives motor 13B by supplying power to motor 13B.
  • servo amplifier 12B receives a signal indicating the adjusted rotation speed of spindle 14 from control unit 11, it calculates the drive amount of motor 13B for rotating spindle 14 at the adjusted rotation speed, and supplies power to motor 13B for driving motor 13B at the calculated drive amount.
  • servo amplifier 12B can receive the rotation speed of spindle 14 as feedback from motor 13B, and can adjust the rotation speed of spindle 14 using the feedback.
  • Motor 13B is a motor that controls the rotation speed of spindle 14. Motor 13B controls the rotation speed of spindle 14 by being driven by power supplied from servo amplifier 12B. Motor 13B can also feed back information indicating the rotation speed of spindle 14 to servo amplifier 12B.
  • the servo amplifier 12C is a servo amplifier that drives the motor 13C by supplying power to the motor 13C.
  • the servo amplifier 12C receives a signal from the control unit 11 indicating an adjustment position of at least one of the X-axis and Y-axis directions of the stage 16, it calculates the drive amount of the motor 13C to position the stage 16 at that adjustment position, and supplies power to the motor 13C to drive the motor 13C with the calculated drive amount.
  • the servo amplifier 12C can also receive the positions of the stage 16 in the X-axis and Y-axis directions as feedback from the motor 13C, and can adjust the positions of the stage 16 in at least one of the X-axis and Y-axis directions using the feedback.
  • Motor 13C is a motor that controls the position of spindle 14 in the X-axis direction and the Y-axis direction. Motor 13C is driven by power supplied from servo amplifier 12C to control at least one of the positions of spindle 14 in the X-axis direction and the Y-axis direction. Motor 13C can also feed back information indicating the positions of spindle 14 in the X-axis direction and the Y-axis direction to servo amplifier 12C.
  • the spindle 14 rotatably supports the cutting tool 15. Specifically, the spindle 14 has a jig such as a chuck that holds the cutting tool 15, and holds the cutting tool 15 using the jig. The spindle 14 also rotates the cutting tool 15 around a pivot axis parallel to the Z-axis (in other words, spins on its own axis). The rotation speed is, for example, about 1000 rpm to 40000 rpm, but is not limited to this.
  • the cutting tool 15 is a tool that cuts the workpiece W.
  • the cutting tool 15 is supported by the spindle 14 so that it can rotate around a rotation axis parallel to the Z axis.
  • the rotating cutting tool 15 comes into contact with the workpiece W to cut the workpiece W.
  • the stage 16 moves in the X-axis and Y-axis directions while the position of the cutting tool 15 in the Z-axis direction is kept constant, thereby cutting the top surface of the workpiece W.
  • the cutting depth of the workpiece W (in other words, the distance from the surface of the workpiece W to the tip of the cutting tool 15 that is cutting the workpiece W) changes.
  • the stage 16 is a stage on which the workpiece W is placed.
  • the stage 16 can move horizontally, that is, in the X-axis direction and the Y-axis direction, and the position of at least one of the X-axis direction and the Y-axis direction is changed by driving the motor 13C.
  • the workpiece W is fixed on the stage 16, and the workpiece W also moves as the stage 16 moves.
  • the measuring unit 17 measures a physical quantity that occurs due to contact between the cutting tool 15 and the workpiece W.
  • the physical quantity is, for example, the cutting resistance that the workpiece W being cut by the cutting tool 15 exerts on the cutting tool 15, and this case will be described as an example. Note that cases in which other physical quantities are used will be described in modified examples described later.
  • the cutting resistance is the same magnitude as the cutting force, which is the force that the cutting tool 15 that is cutting the workpiece W exerts on the workpiece W, and is a force in the opposite direction to the cutting force.
  • the measuring unit 17 can measure the cutting resistance using, for example, a cutting dynamometer.
  • the measurement unit 17 provides the measured cutting resistance to the control unit 11 (more specifically, the comparison unit 111).
  • the measuring unit 17 may take the average or effective value of the cutting resistance over the time required for the cutting tool 15 to rotate once (for example, about 0.0015 seconds to 0.06 seconds) or an integer multiple of the above time as the measured value of the cutting resistance.
  • FIG. 2 is a flow diagram showing a method for controlling the processing machine 10 in this embodiment.
  • FIG. 3 is an explanatory diagram showing an example of the correspondence between cutting resistance and cutting depth in this embodiment. The method for controlling the processing machine 10 will be explained with reference to FIGS. 2 and 3.
  • the comparison unit 111 Before executing step S101, the comparison unit 111 already has a table (see Figure 3) that shows the correspondence between cutting resistance and cutting depth.
  • multiple cutting resistances are associated with cutting depths corresponding to each of the multiple cutting resistances.
  • cutting depth D1 is associated with cutting resistance R1
  • cutting depth D2 is associated with cutting resistance R2.
  • the processing machine 10 starts processing in step S101 while cutting is in progress.
  • step S101 the measurement unit 17 measures the cutting resistance.
  • the measurement unit 17 provides the measured cutting resistance to the control unit 11 (more specifically, the comparison unit 111).
  • step S102 the comparison unit 111 calculates the cutting depth based on the cutting resistance measured and provided in step S101.
  • the comparison unit 111 uses a table (see FIG. 3) that indicates the correspondence between the cutting resistance and the cutting depth. That is, if the comparison unit 111 finds a cutting resistance in the table that matches the cutting resistance measured in step S101, it obtains the cutting depth that corresponds to that cutting resistance, and if it does not find a cutting resistance that matches the cutting resistance measured in step S101, it calculates the cutting depth by interpolating using the table and obtaining the cutting depth that corresponds to that cutting resistance.
  • step S103 the comparison unit 111 compares the cutting depth calculated in step S102 with the reference cutting depth.
  • step S104 the adjustment unit 112 performs control to adjust the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 based on the result of the comparison in step S103. Specifically, the adjustment unit 112 calculates an adjustment position of at least one of the cutting tool 15, the spindle 14, and the stage 16, and performs control to adjust the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 by driving the motor 13A, etc. via the servo amplifier 12A, etc.
  • the processing machine 10 can prevent deterioration in processing quality.
  • the cutting depth of the workpiece W will be explained below, comparing cutting by the processing machine in the comparative example with cutting by the processing machine 10 in this embodiment.
  • FIG. 4 is a schematic diagram showing an example of cutting depth by a processing machine in a comparative example.
  • the processing machine in the comparative example is a processing machine that performs cutting processing similar to that of processing machine 10 in the present embodiment.
  • the processing machine in the comparative example is equipped with a sensor S1 that measures the position of the spindle 94 in the Z-axis direction, and is capable of adjusting the position of the spindle 94 in the Z-axis direction based on the measurement value from the sensor S1.
  • the processing machine in the comparative example is also equipped with a sensor S2 that measures the positions of the stage 96 in the X-axis direction and the Y-axis direction, and is capable of adjusting the positions of the stage 96 in the X-axis direction and the Y-axis direction based on the measurement value from the sensor S2.
  • the processing machine in the comparative example does not have the comparison unit 111 and adjustment unit 112 that are equipped in the processing machine 10.
  • FIG. 4 shows the components around the workpiece W (spindle 94, cutting tool 95, stage 96, etc.) at the start of cutting.
  • the spindle 94 of the processing machine in the comparative example is located at a reference position.
  • the stage 96 moves in the negative X-axis direction at a reference speed.
  • the cutting tool 95 cuts the workpiece W at a cutting depth D1.
  • the cutting depth D1 corresponds to the reference cutting depth.
  • Figure 4(b) shows the components around the workpiece W (spindle 94, cutting tool 95, stage 96, etc.) at a point in time when the processing machine in the comparative example is performing cutting after the state shown in Figure 4(a).
  • thermal deformation V1 or V2 may occur.
  • Deformations V1 and V2 cause the Z-axis position of the cutting tool 95 to move downward (toward the negative Z-axis direction) compared to the case in FIG. 4A.
  • Deformation V1 may be, for example, deformation caused by heat generated by the driving of motors 13A and 13B.
  • Deformation V2 may be deformation caused by heat generated by cutting the workpiece W.
  • the processing machine in the comparative example is capable of adjusting the positions of the spindle 94, cutting tool 95, and stage 96 based on the measurement values of sensors S1 and S2. However, it is not possible to adjust the positions of the spindle 94, cutting tool 95, and stage 96 based on changes in position that cannot be measured by sensors S1 and S2 (for example, changes in position due to deformation V2 of the cutting tool 95).
  • the cutting tool 15 cuts the workpiece W at a cutting depth D2 that is greater than the cutting depth D1.
  • the processing machine in the comparative example cuts at a cutting depth D2 that is greater than the reference cutting depth D1, resulting in relatively low processing quality.
  • FIGS. 5 and 6 are schematic diagrams showing examples of cutting depths by the processing machine 10 in this embodiment.
  • Figure 5 shows the components around the workpiece W (spindle 14, cutting tool 15, stage 16, etc.) at the start of cutting.
  • the spindle 14 of the processing machine 10 is located at a reference position.
  • the stage 16 moves in the negative X-axis direction at a reference speed.
  • the cutting tool 15 cuts the workpiece W at a cutting depth D1.
  • the cutting depth D1 corresponds to the reference cutting depth.
  • the workpiece W exerts a cutting resistance R1 on the cutting tool 15.
  • FIG. 6 shows the components around the workpiece W (spindle 14, cutting tool 15, stage 16, etc.) at a point in time when the processing machine 10 is cutting after the state shown in FIG. 5.
  • thermal deformation V1 or V2 may occur, as in FIG. 4(b).
  • Deformations V1 and V2 cause the position of the cutting tool 15 in the Z-axis direction to move downward (toward the negative Z-axis direction) compared to the case in FIG. 5.
  • the cutting tool 15 cuts the workpiece W at a cutting depth D2. At this time, the workpiece W exerts a cutting resistance RA on the cutting tool 15.
  • the cutting resistance RA is greater than the cutting resistance R1.
  • the measuring unit 17 measures the cutting resistance RA and provides it to the control unit 11.
  • the comparing unit 111 calculates the cutting depth DA from the provided cutting resistance RA and compares the cutting depth DA with the cutting depth D1, which is the reference cutting depth.
  • the adjusting unit 112 adjusts the position of the spindle 14 upward (towards the positive Z-axis direction) by a distance D3 so that the cutting depth approaches D1.
  • Figure 6(b) shows the configuration around the workpiece W (spindle 14, cutting tool 15, stage 16, etc.) at a certain point in time after the position of the spindle 14 has been adjusted.
  • the position of the spindle 14 has been adjusted upward (toward the positive Z-axis direction) by a distance D3, resulting in the cutting tool 15 cutting the workpiece W at a cutting depth D1.
  • the machining device 10 can cut the workpiece W while maintaining the standard cutting depth D1, and the machining quality is relatively high.
  • the comparison unit 111 and the adjustment unit 112 are described as being provided in the control unit 11, but the servo amplifier 12A, 12B, or 12C may also be provided with the comparison unit 111 and the adjustment unit 112.
  • the servo amplifier 12C that drives the motor 13C that controls the position of the stage 16 in the X-axis or Y-axis direction may be provided with a comparison unit 111. In this way, it is possible to reduce the number of components involved in controlling the position of the stage 16 in the X-axis or Y-axis direction based on the measurement value of the measurement unit 17, which has the effect of reducing the processing load, shortening the processing time, and reducing costs.
  • FIG. 7 is a schematic diagram showing the configuration of a processing machine 10A in this modified example. Note that the same components as those in the processing machine 10 in the above embodiment are given the same reference numerals, and detailed descriptions may be omitted.
  • the processing machine 10A includes a control unit 11A, servo amplifiers 12A, 12B, and 12C, motors 13A, 13B, and 13C, a spindle 14, a cutting tool 15, a stage 16, and a measurement unit 17A.
  • a workpiece W to be cut by the processing machine 10W is placed on the stage 16.
  • the processing machine 10A differs from the processing machine 10 of the above embodiment in that it includes a control unit 11A and a measurement unit 17A. These components will be described in detail.
  • control unit 11A controls the components of the processing machine 10.
  • the control unit 11A also controls the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 so that the cutting tool 15 is positioned to cut the workpiece W.
  • control unit 11A has a comparison unit 114 and an adjustment unit 112.
  • the comparison unit 114 acquires the speed of the stage 16, which is an example of a physical quantity measured by the measurement unit 17A, from the measurement unit 17A, and estimates the cutting force that the cutting tool 15 exerts on the workpiece W based on the acquired speed. The comparison unit 114 also calculates the cutting depth of the workpiece W by the cutting tool 15 using the estimated cutting force. The comparison unit 114 then compares the calculated cutting depth with a reference cutting depth.
  • the adjustment unit 112 of the control unit 11A is the same as the adjustment unit 112 in the above embodiment, so a detailed description will be omitted.
  • the measurement unit 17A measures the effect of thermal deformation on the position of the stage 16. Specifically, the measurement unit 17A measures the position, speed or acceleration of the stage 16. When deformation V1 or V2, which is thermal deformation, occurs, the effect of the deformation V1 or V2 extends to the position, speed or acceleration of the stage 16, so the position, speed or acceleration measured by the measurement unit 17A is affected by the thermal deformation.
  • the measurement unit 17A can use a position sensor, a speed sensor or an acceleration sensor to measure the position, speed or acceleration, respectively.
  • the speed of the stage 16 can be calculated by differentiating the measured position with respect to time, and the calculated speed can be used to perform the same processing as when the measurement unit 17A measures the speed of the stage 16.
  • the speed of the stage 16 can be calculated by integrating the measured acceleration, and the calculated speed can be used to perform the same processing as when the measurement unit 17A measures the speed of the stage 16.
  • FIG. 8 is a flow diagram showing a method for controlling the processing machine 10A in this modified example.
  • FIG. 9 is an explanatory diagram showing an example of the correspondence between cutting force and cutting depth in this modified example. The control method for the processing machine 10A will be explained with reference to FIGS. 8 and 9.
  • the comparison unit 114 already has a table (see Figure 9) that shows the correspondence between cutting force and cutting depth.
  • multiple cutting forces are associated with cutting depths corresponding to each of the multiple cutting forces.
  • cutting force P1 is associated with cutting depth D1
  • cutting force P2 is associated with cutting depth D2.
  • the processing machine 10A starts processing in step S101A while cutting is in progress.
  • step S101A the measurement unit 17A measures the speed of the stage 16.
  • the measurement unit 17A provides the measured speed of the stage 16 to the control unit 11A (more specifically, the comparison unit 114).
  • step S101B the comparison unit 114 estimates the cutting force based on the speed measured and provided in step S101A.
  • estimation by a disturbance observer can be used (Non-Patent Document 1).
  • step S102A the comparison unit 114 calculates the cutting depth based on the cutting force estimated in step S101B.
  • the comparison unit 114 uses a table (see FIG. 9) showing the correspondence between the cutting force and the cutting depth.
  • step S103 the comparison unit 114 compares the cutting depth calculated in step S102A with the reference cutting depth.
  • step S104 the adjustment unit 112 adjusts the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 based on the result of the comparison in step S103. Specifically, the adjustment unit 112 calculates the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 after adjustment, and adjusts the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 by driving the motor 13A, etc. via the servo amplifier 12A, etc.
  • the processing machine 10A can prevent deterioration in processing quality.
  • each component may be configured with dedicated hardware, or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or processor reading and executing a software program recorded on a recording medium such as a hard disk or semiconductor memory.
  • the software that realizes the machine control method of the above embodiments and variations is a program such as the following.
  • this program causes a computer to execute a control method for a processing machine, the processing machine having a spindle that rotatably supports a cutting tool and a stage on which a workpiece is placed, the control method measuring a physical quantity resulting from contact between the cutting tool and the workpiece, calculating the cutting depth of the workpiece by the cutting tool based on the physical quantity, comparing the calculated cutting depth with a reference cutting depth, and adjusting the position of at least one of the cutting tool, the spindle, and the stage based on the result of the comparison.
  • the present invention can be used in machines that cut workpieces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

A processing machine (10) comprises: a spindle (14) that rotatably supports a cutting tool (15); a stage (16) on which a workpiece (W) is placed; a measurement unit (17) that measures a physical quantity caused by contact between the cutting tool (15) and the workpiece (W); a comparator (111) that calculates the cutting depth of the workpiece (W) by the cutting tool (15) on the basis of the physical quantity and compares the calculated cutting depth with a reference cutting depth; and an adjustment unit (112) that adjusts the position of at least one of the cutting tool (15), the spindle (14), and the stage (16) on the basis of the comparison result by the comparator (111).

Description

加工機、および、制御方法Processing machine and control method
 本発明は、加工機、および、制御方法に関する。 The present invention relates to a processing machine and a control method.
 切削工具を用いてワークを加工する加工機において、加工により生ずる熱により、主軸または切削工具が熱変形し、加工品質の低下を招くことがある。このような熱変形がある場合に、主軸、および、ワークが載置されるステージの相対位置を制御する技術がある(特許文献1参照)。 In processing machines that use cutting tools to process workpieces, the heat generated by the process can cause thermal deformation of the spindle or cutting tool, resulting in a decrease in processing quality. When such thermal deformation occurs, there is a technique for controlling the relative positions of the spindle and the stage on which the workpiece is placed (see Patent Document 1).
特許第7103136号公報Patent No. 7103136
 しかしながら、主軸およびステージの相対位置の制御によっても、加工品質の低下を十分に抑制できないことがある。 However, even controlling the relative positions of the spindle and stage may not be enough to prevent a decrease in machining quality.
 そこで、本発明は、加工の品質の低下を抑制する加工機等を提供する。 The present invention provides a processing machine etc. that prevents deterioration of processing quality.
 本発明の一態様に係る加工機は、切削工具を回転可能に支持する主軸と、ワークが載置されるステージと、前記切削工具と前記ワークとの接触により生ずる物理量を測定する測定部と、前記物理量に基づいて前記切削工具による前記ワークの切削深さを算出し、算出した前記切削深さと、基準切削深さとの比較を行う比較部と、前記比較部による前記比較の結果に基づいて、前記切削工具、前記主軸および前記ステージの少なくとも1つの位置を調整する調整部とを備える加工機である。 The processing machine according to one embodiment of the present invention is a processing machine that includes a spindle that rotatably supports a cutting tool, a stage on which a workpiece is placed, a measurement unit that measures a physical quantity resulting from contact between the cutting tool and the workpiece, a comparison unit that calculates the cutting depth of the workpiece by the cutting tool based on the physical quantity and compares the calculated cutting depth with a reference cutting depth, and an adjustment unit that adjusts the position of at least one of the cutting tool, the spindle, and the stage based on the result of the comparison by the comparison unit.
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 These comprehensive or specific aspects may be realized as a system, method, integrated circuit, computer program, or computer-readable recording medium such as a CD-ROM, or may be realized as any combination of a system, method, integrated circuit, computer program, and recording medium.
 本発明の加工機は、加工の品質の低下を抑制することができる。 The processing machine of the present invention can suppress deterioration of processing quality.
実施の形態における加工機の構成を示す模式図である。FIG. 2 is a schematic diagram showing a configuration of a processing machine according to an embodiment. 実施の形態における加工機の制御方法を示すフロー図である。FIG. 4 is a flow chart showing a control method for a processing machine in an embodiment. 実施の形態における切削抵抗と切削深さとの対応関係の例を示す説明図である。5 is an explanatory diagram showing an example of a correspondence relationship between cutting resistance and cutting depth in the embodiment. FIG. 比較例における加工機による切削の切削深さの例を示す模式図である。FIG. 13 is a schematic diagram showing an example of cutting depth by a processing machine in a comparative example. 実施の形態における加工機による切削の切削深さの第一例を示す模式図である。FIG. 4 is a schematic diagram showing a first example of cutting depth by a processing machine in an embodiment. 実施の形態における加工機による切削の切削深さの第二例を示す模式図である。FIG. 11 is a schematic diagram showing a second example of the cutting depth of the processing machine in the embodiment. 実施の形態の変形例における加工機の構成を示す模式図である。FIG. 13 is a schematic diagram showing a configuration of a processing machine in a modified example of the embodiment. 実施の形態の変形例における加工機の制御方法を示すフロー図である。FIG. 11 is a flowchart showing a control method for a processing machine in a modified example of the embodiment. 実施の形態の変形例における切削力と切削深さとの対応関係の例を示す説明図である。13 is an explanatory diagram showing an example of a correspondence relationship between cutting force and cutting depth in a modified example of the embodiment. FIG.
 (本発明の基礎となった知見)
 本発明者は、「背景技術」の欄において記載した、加工機に関する技術に関し、以下の問題が生じることを見出した。
(Findings on which the present invention is based)
The present inventors have found that the following problems arise with the technology relating to processing machines described in the "Background Art" section.
 切削工具を用いてワークを加工する加工機において、主軸または切削工具に熱変形が生ずることがある。主軸または切削工具に熱変形が生ずると、加工品質の低下を招くことがある。加工品質の低下は、例えば、ワークの切削深さが基準値に一致しないこと、または、ワークの加工された面(加工面ともいう)に模様(縞模様または斑模様など)が生ずることを含む。 In a processing machine that uses a cutting tool to machine a workpiece, thermal deformation may occur in the spindle or cutting tool. Thermal deformation of the spindle or cutting tool may result in a decrease in machining quality. Degradation in machining quality may include, for example, the cutting depth of the workpiece not matching a reference value, or the appearance of a pattern (such as a striped or spotted pattern) on the machined surface of the workpiece (also called the machined surface).
 特許文献1に記載された技術は、センサにより主軸およびステージの位置を計測することで、主軸とステージとの相対的な変位を算出し、主軸とステージとの相対的な変位を小さくするように主軸またはステージの位置を制御することで、加工品質の低下を抑制する。 The technology described in Patent Document 1 uses sensors to measure the positions of the spindle and stage, calculates the relative displacement between the spindle and stage, and controls the position of the spindle or stage to reduce the relative displacement between the spindle and stage, thereby preventing degradation of processing quality.
 しかしながら、主軸とステージとの位置の計測に基づく主軸およびステージの相対位置の制御によっても、加工品質の低下を十分に抑制できないことがある。例えば、主軸または切削工具の熱変形により切削工具の刃先の位置が適正な位置から変位している場合には、主軸の変位量を測定しても、切削工具の刃先の位置の変位量を正確に知ることができない。この場合、主軸およびステージの相対位置を適切にするように制御しても、加工品質の低下を抑制することができないことがある。 However, even controlling the relative positions of the spindle and stage based on measuring the positions of the spindle and stage may not be able to sufficiently prevent deterioration in machining quality. For example, if the position of the cutting tool tip has been displaced from the correct position due to thermal deformation of the spindle or cutting tool, measuring the amount of displacement of the spindle cannot accurately determine the amount of displacement of the cutting tool tip position. In this case, controlling the relative positions of the spindle and stage to be appropriate may not be able to prevent deterioration in machining quality.
 そこで、本発明は、加工の品質の低下を抑制する加工機等を提供する。 The present invention provides a processing machine etc. that prevents deterioration of processing quality.
 以下、本明細書の開示内容から得られる発明を例示し、その発明から得られる効果等を説明する。 Below, we will present examples of inventions that can be obtained from the disclosures in this specification, and explain the effects and other aspects that can be obtained from these inventions.
 (1)切削工具を回転可能に支持する主軸と、ワークが載置されるステージと、前記切削工具と前記ワークとの接触により生ずる物理量を測定する測定部と、前記物理量に基づいて前記切削工具による前記ワークの切削深さを算出し、算出した前記切削深さと、基準切削深さとの比較を行う比較部と、前記比較部による前記比較の結果に基づいて、前記切削工具、前記主軸および前記ステージの少なくとも1つの位置を調整する調整部とを備える、加工機。 (1) A processing machine comprising: a spindle that rotatably supports a cutting tool; a stage on which a workpiece is placed; a measuring unit that measures a physical quantity resulting from contact between the cutting tool and the workpiece; a comparing unit that calculates a cutting depth of the workpiece by the cutting tool based on the physical quantity and compares the calculated cutting depth with a reference cutting depth; and an adjusting unit that adjusts the position of at least one of the cutting tool, the spindle, and the stage based on the result of the comparison by the comparing unit.
 上記態様によれば、加工機は、測定した物理量から算出した切削深さを用いて、切削工具、主軸およびステージの少なくとも1つの位置を調整する。測定される物理量は、加工機による切削深さに関係して変化している。そのため、加工機は、物理量から推定される切削深さを算出し、算出した切削深さに基づいて、その後の切削深さを制御することができる。これにより、実際の切削深さを測定することなく、比較的容易に測定され得る物理量を用いて切削深さを制御することで、加工品質の低下を抑制する。また、切削深さを計測する必要がないので、切削深さを計測することが難しい場合にも適用できる効果がある。このように、本開示に係る加工機は、加工の品質の低下を抑制することができる。 According to the above aspect, the processing machine adjusts the position of at least one of the cutting tool, the spindle, and the stage using the cutting depth calculated from the measured physical quantity. The measured physical quantity changes in relation to the cutting depth by the processing machine. Therefore, the processing machine can calculate the cutting depth estimated from the physical quantity, and control the subsequent cutting depth based on the calculated cutting depth. This suppresses deterioration of processing quality by controlling the cutting depth using a physical quantity that can be measured relatively easily, without measuring the actual cutting depth. In addition, since there is no need to measure the cutting depth, there is an effect that it can be applied even in cases where it is difficult to measure the cutting depth. In this way, the processing machine according to the present disclosure can suppress deterioration of processing quality.
 (2)前記調整部は、前記比較部による前記比較の結果に基づいて、前記切削工具による前記ワークの切削深さを前記基準切削深さに近づけるように、前記切削工具、前記主軸および前記ステージの前記少なくとも1つの位置を調整する、(1)に記載の加工機。 (2) The machining device described in (1), wherein the adjustment unit adjusts the position of at least one of the cutting tool, the spindle, and the stage based on the result of the comparison by the comparison unit so as to bring the cutting depth of the workpiece by the cutting tool closer to the reference cutting depth.
 上記態様によれば、加工機は、測定した物理量から算出した切削深さを用いて、切削工具、主軸およびステージの少なくとも1つの位置を調整することで、加工機による切削深さを基準切削深さに近づけることができ、加工品品質の低下の抑制に寄与する。よって、本開示に係る加工機は、加工の品質の低下をより一層抑制することができる。 According to the above aspect, the processing machine uses the cutting depth calculated from the measured physical quantity to adjust the position of at least one of the cutting tool, the spindle, and the stage, thereby making it possible to bring the cutting depth of the processing machine closer to the reference cutting depth, which contributes to preventing deterioration in the quality of the processed product. Therefore, the processing machine according to the present disclosure can further prevent deterioration in the quality of the processing.
 (3)前記測定部は、前記物理量として、前記切削工具により切削されている前記ワークが前記切削工具に及ぼす切削抵抗を測定し、前記比較部は、前記測定部が測定した前記切削抵抗を前記物理量として用いて前記比較を行う、(1)または(2)に記載の加工機。 (3) The machining device according to (1) or (2), wherein the measurement unit measures, as the physical quantity, the cutting resistance exerted on the cutting tool by the workpiece being cut by the cutting tool, and the comparison unit performs the comparison using the cutting resistance measured by the measurement unit as the physical quantity.
 上記態様によれば、加工機は、測定が比較的容易である切削抵抗を物理量として用いて、ワークの切削を行う。よって、本開示に係る加工機は、より容易に、加工の品質の低下を抑制することができる。 According to the above aspect, the processing machine cuts the workpiece using the cutting resistance, which is relatively easy to measure, as a physical quantity. Therefore, the processing machine according to the present disclosure can more easily suppress deterioration in processing quality.
 (4)前記基準切削深さは、(a)前記加工機による前記ワークの切削深さの予め定められた目標値である目標深さ、または、(b)前記加工機が前記ワークを切削している一の時点において前記測定部が測定した前記物理量に基づいて算出される前記ワークの切削深さである、(1)~(3)のいずれかに記載の加工機。 (4) A processing machine according to any one of (1) to (3), wherein the reference cutting depth is (a) a target depth that is a predetermined target value for the cutting depth of the workpiece by the processing machine, or (b) a cutting depth of the workpiece calculated based on the physical quantity measured by the measuring unit at a point in time when the processing machine is cutting the workpiece.
 上記態様によれば、加工機は、予め定められた目標深さ、または、切削中の一の時点の推定される切削深さを基準切削深さとして用いることで、ワークの切削深さをより適切に制御することができる。例えば、基準切削深さとして予め定められた目標深さを用いることで、予め定められた加工品質を達成することに寄与する。また、基準切削深さとして、切削中の一の時点の推定される切削深さを用いることで、上記一の時点を加工品質の基準として、その基準の加工品質を達成することに寄与する。よって、本開示に係る加工機は、加工の品質の低下を抑制しながら、所定の加工品質を達成することができる。 According to the above aspect, the processing machine can more appropriately control the cutting depth of the workpiece by using a predetermined target depth or an estimated cutting depth at a certain point in time during cutting as the reference cutting depth. For example, using a predetermined target depth as the reference cutting depth contributes to achieving a predetermined processing quality. Furthermore, using an estimated cutting depth at a certain point in time during cutting as the reference cutting depth contributes to achieving processing quality of the standard by using the above-mentioned point in time as the standard for processing quality. Thus, the processing machine according to the present disclosure can achieve a predetermined processing quality while suppressing deterioration of processing quality.
 (5)前記測定部は、前記物理量として、前記ステージの位置、速度または加速度を測定し、前記比較部は、前記測定部が測定した前記位置、前記速度または前記加速度を用いて前記切削工具が前記ワークに及ぼす切削力を推定し、推定した前記切削力を用いて前記切削工具による前記ワークの切削深さを算出し、算出した前記切削深さと前記基準切削深さとの比較を行う、(1)または(2)に記載の加工機。 (5) The machining device according to (1) or (2), wherein the measurement unit measures the position, speed or acceleration of the stage as the physical quantity, and the comparison unit estimates the cutting force exerted by the cutting tool on the workpiece using the position, speed or acceleration measured by the measurement unit, calculates the cutting depth of the workpiece by the cutting tool using the estimated cutting force, and compares the calculated cutting depth with the reference cutting depth.
 上記態様によれば、加工機は、測定が比較的容易であるステージの位置、速度または加速度を物理量として用いて、ワークの切削を行う。よって、本開示に係る加工機は、より容易に、加工の品質の低下を抑制することができる。 According to the above aspect, the processing machine cuts the workpiece using the position, speed, or acceleration of the stage, which are relatively easy to measure, as physical quantities. Therefore, the processing machine according to the present disclosure can more easily suppress deterioration in processing quality.
 (6)前記加工機は、前記ステージを移動させるモータを駆動するサーボアンプを備え、前記サーボアンプは、前記比較部を有する、(5)に記載の加工機。 (6) The processing machine according to (5), further comprising a servo amplifier that drives a motor that moves the stage, and the servo amplifier has the comparison unit.
 上記態様によれば、加工機は、測定部が測定した物理量に基づく切削工具、主軸およびステージの少なくとも1つの位置の調整に関わる構成要素を少なくすることができ、処理負荷の低減、処理時間の削減、または、低コスト化の効果がある。よって、本開示に係る加工機は、処理負荷の低減、処理時間の削減、または、低コスト化をしながら、加工の品質の低下を抑制することができる。 According to the above aspect, the processing machine can reduce the number of components involved in adjusting the position of at least one of the cutting tool, spindle, and stage based on the physical quantity measured by the measurement unit, which has the effect of reducing the processing load, reducing the processing time, or reducing costs. Therefore, the processing machine according to the present disclosure can suppress deterioration in processing quality while reducing the processing load, reducing the processing time, or reducing costs.
 (7)前記測定部は、前記切削工具が1回転するのに要する時間、または、前記時間の整数倍の時間に亘る、前記物理量の平均値または実効値を、前記物理量として測定する、(1)~(6)のいずれかに記載の加工機。 (7) A processing machine according to any one of (1) to (6), in which the measuring unit measures the physical quantity as the average or effective value of the physical quantity over the time required for the cutting tool to rotate once or over an integer multiple of that time.
 上記態様によれば、切削工具の切削動作の最小単位である1回転に要する時間を、単位時間として用い、その単位時間内での物理量の平均値を、物理量の計測値とする。これにより、切削工具の1回転に要する時間より短い時間間隔での物理量の変動にとらわれることなく、それより長い時間に亘る物理量の振る舞いに基づいて、切削深さを適切に制御することができる。よって、本開示に係る加工機は、より適切に、加工の品質の低下を抑制することができる。 According to the above aspect, the time required for one rotation, which is the smallest unit of the cutting operation of the cutting tool, is used as the unit time, and the average value of the physical quantity within that unit time is taken as the measured value of the physical quantity. This makes it possible to appropriately control the cutting depth based on the behavior of the physical quantity over a longer period of time, without being affected by fluctuations in the physical quantity over time intervals shorter than the time required for one rotation of the cutting tool. Therefore, the processing machine according to the present disclosure can more appropriately suppress deterioration in processing quality.
 (8)加工機の制御方法であって、前記加工機は、切削工具を回転可能に支持する主軸と、ワークが載置されるステージと、を備え、前記制御方法は、前記切削工具と前記ワークとの接触により生ずる物理量を測定し、前記物理量に基づいて前記切削工具による前記ワークの切削深さを算出し、算出した前記切削深さと、基準切削深さとの比較を行い、前記比較の結果に基づいて、前記切削工具、前記主軸および前記ステージの少なくとも1つの位置を調整する、制御方法。 (8) A method for controlling a processing machine, the processing machine comprising a spindle that rotatably supports a cutting tool and a stage on which a workpiece is placed, the control method measuring a physical quantity resulting from contact between the cutting tool and the workpiece, calculating a cutting depth of the workpiece by the cutting tool based on the physical quantity, comparing the calculated cutting depth with a reference cutting depth, and adjusting the position of at least one of the cutting tool, the spindle, and the stage based on the result of the comparison.
 上記態様によれば、制御方法は、上記加工機と同様の効果を奏する。  According to the above aspect, the control method achieves the same effects as the above processing machine.
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。 These comprehensive or specific aspects may be realized as a system, method, integrated circuit, computer program, or computer-readable recording medium such as a CD-ROM, or may be realized as any combination of a system, method, integrated circuit, computer program, or recording medium.
 以下、実施の形態について、図面を参照しながら具体的に説明する。 The following describes the embodiment in detail with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 The embodiments described below are all comprehensive or specific examples. The numerical values, shapes, materials, components, component placement and connection forms, steps, and order of steps shown in the following embodiments are merely examples and are not intended to limit the present invention. Furthermore, among the components in the following embodiments, components that are not described in an independent claim that indicates the highest concept are described as optional components.
 (実施の形態)
 本実施の形態において、加工の品質の低下を抑制する加工機などについて説明する。
(Embodiment)
In this embodiment, a processing machine that suppresses deterioration of processing quality will be described.
 図1は、本実施の形態における加工機10の構成を示す模式図である。加工機10は、ワークWに対して切削加工(単に切削ともいう)を施す加工機である。 FIG. 1 is a schematic diagram showing the configuration of a processing machine 10 in this embodiment. The processing machine 10 is a processing machine that performs cutting processing (also simply called cutting) on a workpiece W.
 なお、下記説明において、各図面中に示すXYZ座標軸を用いた説明を行う場合もある。Z軸は、鉛直方向である。Z軸方向のプラス側およびマイナス側を、それぞれ、上(上方向)及び下(下方向)ということもある。 In the following explanation, the XYZ coordinate axes shown in each drawing may be used. The Z axis is the vertical direction. The positive and negative sides of the Z axis direction are sometimes referred to as up (upward direction) and down (downward direction), respectively.
 図1に示されるように、加工機10は、制御部11と、サーボアンプ12A、12Bおよび12Cと、モータ13A、13Bおよび13Cと、主軸14と、切削工具15と、ステージ16と、測定部17とを備える。ステージ16上には、加工機10による切削の対象であるワークWが載置されている。また、加工機10には、ワークWの切削深さの予め定められた目標値(目標深さともいう)が設定されているとする。 As shown in FIG. 1, the processing machine 10 includes a control unit 11, servo amplifiers 12A, 12B, and 12C, motors 13A, 13B, and 13C, a spindle 14, a cutting tool 15, a stage 16, and a measuring unit 17. A workpiece W to be cut by the processing machine 10 is placed on the stage 16. In addition, the processing machine 10 is set with a predetermined target value (also called a target depth) for the cutting depth of the workpiece W.
 制御部11は、加工機10が備える構成要素を制御する。制御部11は、プロセッサ(例えばCPU(Central Processing Unit))(不図示)を備え、プロセッサがメモリ(不図示)を用いて所定のプログラムを実行することで、上記制御を行う。 The control unit 11 controls the components of the processing machine 10. The control unit 11 includes a processor (e.g., a CPU (Central Processing Unit)) (not shown), and performs the above control by the processor executing a predetermined program using a memory (not shown).
 制御部11は、切削工具15がワークWを切削する位置に位置するように、切削工具15、主軸14およびステージ16の少なくとも1つの位置を制御する。 The control unit 11 controls the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 so that the cutting tool 15 is positioned to cut the workpiece W.
 ここでは、制御部11が主軸14のZ軸方向の位置を制御可能であり、また、制御部11がステージ16のX軸方向およびY軸方向の位置を制御可能である場合を例として説明する。この場合、加工機10は、切削工具15がZ軸方向の適切な位置(基準位置ともいう)に位置するように主軸14の位置を制御し、また、ワークWがX軸方向マイナス側へ適切な速度(基準速度ともいう)で移動するようにステージ16の位置を制御する(つまり、ステージ16をX軸方向マイナス側へ基準速度で移動させる)。基準位置は、切削工具15が目標深さでワークWを切削する位置である。 Here, an example will be described in which the control unit 11 can control the position of the spindle 14 in the Z-axis direction, and the control unit 11 can also control the positions of the stage 16 in the X-axis direction and the Y-axis direction. In this case, the processing machine 10 controls the position of the spindle 14 so that the cutting tool 15 is located at an appropriate position in the Z-axis direction (also called the reference position), and also controls the position of the stage 16 so that the workpiece W moves at an appropriate speed (also called the reference speed) in the negative X-axis direction (i.e., the stage 16 moves at the reference speed in the negative X-axis direction). The reference position is the position where the cutting tool 15 cuts the workpiece W at the target depth.
 制御部11は、主軸14または切削工具15のZ軸方向の位置を制御する場合には、サーボアンプ12Aに対して主軸14のZ軸方向の制御後の位置(制御位置ともいう、以下同様)を示す信号を送信する。また、調整部112は、ステージ16の位置を制御する場合には、サーボアンプ12Cに対してステージ16のX軸方向およびY軸方向の少なくとも一方の制御位置を示す信号を送信する。 When the control unit 11 controls the position of the spindle 14 or cutting tool 15 in the Z-axis direction, it sends a signal to the servo amplifier 12A indicating the position of the spindle 14 after control in the Z-axis direction (also called the control position, the same applies below). When the adjustment unit 112 controls the position of the stage 16, it sends a signal to the servo amplifier 12C indicating at least one of the control positions of the stage 16 in the X-axis direction and the Y-axis direction.
 また、制御部11は、切削工具15がワークWを切削するように、主軸14および切削工具15の回転速度を制御する。 The control unit 11 also controls the rotational speed of the spindle 14 and the cutting tool 15 so that the cutting tool 15 cuts the workpiece W.
 また、制御部11は、切削工具15とワークWとの接触により生ずる物理量を用いて、切削工具15、主軸14およびステージ16の少なくとも1つの位置を調整する。制御部11は、上記調整を行う機能部として、比較部111と調整部112とを有する。 The control unit 11 also adjusts the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 using a physical quantity generated by contact between the cutting tool 15 and the workpiece W. The control unit 11 has a comparison unit 111 and an adjustment unit 112 as functional units that perform the above adjustments.
 比較部111は、測定部17が測定した物理量(後述)の一例である切削抵抗を測定部17から取得し、取得した切削抵抗に基づいて切削工具15によるワークWの切削深さを算出し、算出した切削深さと、基準切削深さとの比較を行う。 The comparison unit 111 acquires the cutting resistance, which is an example of a physical quantity (described later) measured by the measurement unit 17, from the measurement unit 17, calculates the cutting depth of the workpiece W by the cutting tool 15 based on the acquired cutting resistance, and compares the calculated cutting depth with a reference cutting depth.
 比較部111は、加工機10による切削を行う前に、切削時にワークWが切削工具15に及ぼす切削抵抗と、切削工具15によるワークWの切削深さとの対応関係を予め保有している。切削抵抗と切削深さとの対応関係は、例えば、複数の切削抵抗と、複数の切削抵抗それぞれに対応する切削深さとが対応付けられたテーブルとして表現され、この場合を例として説明する。この場合、テーブルに記載されていない切削抵抗に対応する切削深さは、内挿(より具体的には、線形内挿等)により算出され得る。なお、切削抵抗と切削深さとの対応関係は、上記のほか、切削抵抗と切削深さとの関係を表す数式として表現されてもよい。 Before cutting is performed by the processing machine 10, the comparison unit 111 already stores a correspondence relationship between the cutting resistance that the workpiece W exerts on the cutting tool 15 during cutting and the cutting depth of the workpiece W by the cutting tool 15. The correspondence relationship between the cutting resistance and the cutting depth is expressed, for example, as a table in which multiple cutting resistances are associated with the cutting depths corresponding to each of the multiple cutting resistances, and this case will be described as an example. In this case, the cutting depth corresponding to a cutting resistance not listed in the table can be calculated by interpolation (more specifically, linear interpolation, etc.). Note that the correspondence relationship between the cutting resistance and the cutting depth may be expressed as a mathematical formula that represents the relationship between the cutting resistance and the cutting depth, in addition to the above.
 基準切削深さは、予め定められた目標深さ、または、加工機10がワークWを切削している一の時点において測定部17が測定した切削抵抗に基づいて算出されるワークWの切削深さである。 The reference cutting depth is a predetermined target depth, or the cutting depth of the workpiece W calculated based on the cutting resistance measured by the measuring unit 17 at a point in time when the processing machine 10 is cutting the workpiece W.
 調整部112は、切削工具15、主軸14およびステージ16の少なくとも1つの位置を調整する。調整部112は、主軸14または切削工具15の位置を調整する場合には、サーボアンプ12Aに対して主軸14のZ軸方向の調整後の位置(調整位置ともいう、以下同様)を示す信号を送信する。また、調整部112は、ステージ16の位置を調整する場合には、サーボアンプ12Cに対してステージ16のX軸方向およびY軸方向の少なくとも一方の調整後の位置を示す信号を送信する。 The adjustment unit 112 adjusts the position of at least one of the cutting tool 15, the spindle 14, and the stage 16. When adjusting the position of the spindle 14 or the cutting tool 15, the adjustment unit 112 sends a signal to the servo amplifier 12A indicating the adjusted position of the spindle 14 in the Z-axis direction (also referred to as the adjusted position, the same applies below). When adjusting the position of the stage 16, the adjustment unit 112 sends a signal to the servo amplifier 12C indicating the adjusted position of at least one of the X-axis direction and the Y-axis direction of the stage 16.
 調整部112は、具体的には、比較部111による比較の結果に基づいて、切削工具15、主軸14およびステージ16の少なくとも1つの位置を調整する。このとき、調整部112は、比較部111による比較の結果に基づいて、切削工具15によるワークWの切削深さを基準切削深さに近づけるように、切削工具15、主軸14およびステージ16の少なくとも1つの位置を調整する制御をする。 Specifically, the adjustment unit 112 adjusts the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 based on the result of the comparison by the comparison unit 111. At this time, the adjustment unit 112 performs control to adjust the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 based on the result of the comparison by the comparison unit 111 so as to bring the cutting depth of the workpiece W by the cutting tool 15 closer to the reference cutting depth.
 また、調整部112は、主軸14の回転速度を調整する場合には、サーボアンプ12Bに対して主軸14の調整後の回転速度(調整回転速度ともいう、以下同様)を示す信号を送信することができる。 In addition, when adjusting the rotation speed of the spindle 14, the adjustment unit 112 can send a signal indicating the adjusted rotation speed of the spindle 14 (also called the adjusted rotation speed, the same applies below) to the servo amplifier 12B.
 サーボアンプ12Aは、モータ13Aに電力を供給することでモータ13Aを駆動するサーボアンプである。サーボアンプ12Aは、主軸14のZ軸方向の調整位置を示す信号を制御部11から受信した場合に、その位置に主軸14を位置させるためのモータ13Aの駆動量を算出し、算出した駆動量でモータ13Aを駆動させる電力をモータ13Aに供給する。また、サーボアンプ12Aは、主軸14のZ軸方向の位置を示す情報を、モータ13Aからのフィードバックとして受けることができ、フィードバックを用いて主軸14のZ軸方向の位置の調整をすることができる。 The servo amplifier 12A is a servo amplifier that drives the motor 13A by supplying power to the motor 13A. When the servo amplifier 12A receives a signal from the control unit 11 indicating the adjustment position of the spindle 14 in the Z-axis direction, it calculates the drive amount of the motor 13A to position the spindle 14 at that position, and supplies power to the motor 13A to drive the motor 13A with the calculated drive amount. In addition, the servo amplifier 12A can receive information indicating the position of the spindle 14 in the Z-axis direction as feedback from the motor 13A, and can adjust the position of the spindle 14 in the Z-axis direction using the feedback.
 モータ13Aは、主軸14のZ軸方向の位置を制御するモータである。モータ13Aは、サーボアンプ12Aから供給される電力によって駆動することで、主軸14のZ軸方向の位置を制御する。また、モータ13Aは、主軸14のZ軸方向の位置を示す情報をサーボアンプ12Aにフィードバックすることができる。 Motor 13A is a motor that controls the position of spindle 14 in the Z-axis direction. Motor 13A controls the position of spindle 14 in the Z-axis direction by being driven by power supplied from servo amplifier 12A. Motor 13A can also feed back information indicating the position of spindle 14 in the Z-axis direction to servo amplifier 12A.
 サーボアンプ12Bは、モータ13Bに電力を供給することでモータ13Bを駆動するサーボアンプである。サーボアンプ12Bは、主軸14の調整回転速度を示す信号を制御部11から受信した場合に、その調整回転速度で主軸14を回転させるためのモータ13Bの駆動量を算出し、算出した駆動量でモータ13Bを駆動させる電力を、モータ13Bに供給する。また、サーボアンプ12Bは、主軸14の回転速度を、モータ13Bからのフィードバックとして受けることができ、フィードバックを用いて主軸14の回転速度の調整をすることができる。 Servo amplifier 12B is a servo amplifier that drives motor 13B by supplying power to motor 13B. When servo amplifier 12B receives a signal indicating the adjusted rotation speed of spindle 14 from control unit 11, it calculates the drive amount of motor 13B for rotating spindle 14 at the adjusted rotation speed, and supplies power to motor 13B for driving motor 13B at the calculated drive amount. In addition, servo amplifier 12B can receive the rotation speed of spindle 14 as feedback from motor 13B, and can adjust the rotation speed of spindle 14 using the feedback.
 モータ13Bは、主軸14の回転速度を制御するモータである。モータ13Bは、サーボアンプ12Bから供給される電力によって駆動することで、主軸14の回転速度を制御する。また、モータ13Bは、主軸14の回転速度を示す情報をサーボアンプ12Bにフィードバックすることができる。 Motor 13B is a motor that controls the rotation speed of spindle 14. Motor 13B controls the rotation speed of spindle 14 by being driven by power supplied from servo amplifier 12B. Motor 13B can also feed back information indicating the rotation speed of spindle 14 to servo amplifier 12B.
 サーボアンプ12Cは、モータ13Cに電力を供給することでモータ13Cを駆動するサーボアンプである。サーボアンプ12Cは、ステージ16のX軸方向およびY軸方向の少なくとも一方の調整位置を示す信号を制御部11から受信した場合に、その調整位置にステージ16を位置させるためのモータ13Cの駆動量を算出し、算出した駆動量でモータ13Cを駆動させる電力を、モータ13Cに供給する。また、サーボアンプ12Cは、ステージ16のX軸方向およびY軸方向の位置を、モータ13Cからのフィードバックとして受けることができ、フィードバックを用いてステージ16のX軸方向およびY軸方向の少なくとも一方の位置の調整をすることができる。 The servo amplifier 12C is a servo amplifier that drives the motor 13C by supplying power to the motor 13C. When the servo amplifier 12C receives a signal from the control unit 11 indicating an adjustment position of at least one of the X-axis and Y-axis directions of the stage 16, it calculates the drive amount of the motor 13C to position the stage 16 at that adjustment position, and supplies power to the motor 13C to drive the motor 13C with the calculated drive amount. The servo amplifier 12C can also receive the positions of the stage 16 in the X-axis and Y-axis directions as feedback from the motor 13C, and can adjust the positions of the stage 16 in at least one of the X-axis and Y-axis directions using the feedback.
 モータ13Cは、主軸14のX軸方向およびY軸方向の位置を制御するモータである。モータ13Cは、サーボアンプ12Cから供給される電力によって駆動することで、主軸14のX軸方向およびY軸方向の少なくとも一方の位置を制御する。また、モータ13Cは、主軸14のX軸方向およびY軸方向の位置を示す情報をサーボアンプ12Cにフィードバックすることができる。 Motor 13C is a motor that controls the position of spindle 14 in the X-axis direction and the Y-axis direction. Motor 13C is driven by power supplied from servo amplifier 12C to control at least one of the positions of spindle 14 in the X-axis direction and the Y-axis direction. Motor 13C can also feed back information indicating the positions of spindle 14 in the X-axis direction and the Y-axis direction to servo amplifier 12C.
 主軸14は、切削工具15を回転可能に支持する。具体的には、主軸14は、切削工具15を把持するチャック等の治具を有し、治具を用いて切削工具15を把持する。また、主軸14は、Z軸に平行な旋回軸まわりに切削工具15を回転(言い換えれば自転)させる。回転速度は、例えば1000rpm~40000rpm程度であるが、これに限定されない。 The spindle 14 rotatably supports the cutting tool 15. Specifically, the spindle 14 has a jig such as a chuck that holds the cutting tool 15, and holds the cutting tool 15 using the jig. The spindle 14 also rotates the cutting tool 15 around a pivot axis parallel to the Z-axis (in other words, spins on its own axis). The rotation speed is, for example, about 1000 rpm to 40000 rpm, but is not limited to this.
 切削工具15は、ワークWを切削する工具である。切削工具15は、主軸14によってZ軸に平行な旋回軸まわりに回転可能に支持される。回転している切削工具15がワークWに接触することでワークWが切削される。また、切削工具15のZ軸方向の位置が一定である状態でステージ16がX軸方向およびY軸方向に移動することで、ワークWの上面が切削される。 The cutting tool 15 is a tool that cuts the workpiece W. The cutting tool 15 is supported by the spindle 14 so that it can rotate around a rotation axis parallel to the Z axis. The rotating cutting tool 15 comes into contact with the workpiece W to cut the workpiece W. In addition, the stage 16 moves in the X-axis and Y-axis directions while the position of the cutting tool 15 in the Z-axis direction is kept constant, thereby cutting the top surface of the workpiece W.
 切削工具15がワークWを切削しているときに、切削工具15のZ軸方向の位置が変化すると、ワークWの切削深さ(言い換えれば、ワークWの表面から、ワークWを切削している切削工具15の先端までの距離)が変化する。ワークWの切削深さは、切削工具15のZ座標が小さいほど、より大きい。 When the cutting tool 15 is cutting the workpiece W, if the position of the cutting tool 15 in the Z-axis direction changes, the cutting depth of the workpiece W (in other words, the distance from the surface of the workpiece W to the tip of the cutting tool 15 that is cutting the workpiece W) changes. The smaller the Z coordinate of the cutting tool 15, the greater the cutting depth of the workpiece W.
 ステージ16は、ワークWが載置されるステージである。ステージ16は、水平方向、つまり、X軸方向およびY軸方向に移動可能であり、モータ13Cが駆動することでX軸方向およびY軸方向の少なくとも一方の位置が変更される。ステージ16上には、ワークWが固定されており、ステージ16が移動するのに伴ってワークWも移動する。 The stage 16 is a stage on which the workpiece W is placed. The stage 16 can move horizontally, that is, in the X-axis direction and the Y-axis direction, and the position of at least one of the X-axis direction and the Y-axis direction is changed by driving the motor 13C. The workpiece W is fixed on the stage 16, and the workpiece W also moves as the stage 16 moves.
 測定部17は、切削工具15とワークWとの接触により生ずる物理量を測定する。上記物理量は、例えば、切削工具15により切削されているワークWが切削工具15に及ぼす切削抵抗であり、この場合を例として説明する。なお、他の物理量を用いる場合については、後述する変形例で説明する。 The measuring unit 17 measures a physical quantity that occurs due to contact between the cutting tool 15 and the workpiece W. The physical quantity is, for example, the cutting resistance that the workpiece W being cut by the cutting tool 15 exerts on the cutting tool 15, and this case will be described as an example. Note that cases in which other physical quantities are used will be described in modified examples described later.
 切削抵抗は、ワークWを切削している切削工具15が、ワークWに及ぼしている力である切削力と同じ大きさであり、上記切削力の向きとは反対向きの力である。測定部17は、例えば、切削動力計を用いて切削抵抗を計測することができる。 The cutting resistance is the same magnitude as the cutting force, which is the force that the cutting tool 15 that is cutting the workpiece W exerts on the workpiece W, and is a force in the opposite direction to the cutting force. The measuring unit 17 can measure the cutting resistance using, for example, a cutting dynamometer.
 測定部17は、計測した切削抵抗を制御部11(より具体的には比較部111)に提供する。 The measurement unit 17 provides the measured cutting resistance to the control unit 11 (more specifically, the comparison unit 111).
 なお、測定部17は、切削工具15が1回転するのに要する時間(例えば0.0015秒~0.06秒程度)または、上記時間の整数倍の時間に亘る、切削抵抗の平均値または実効値を、切削抵抗の測定値としてもよい。 The measuring unit 17 may take the average or effective value of the cutting resistance over the time required for the cutting tool 15 to rotate once (for example, about 0.0015 seconds to 0.06 seconds) or an integer multiple of the above time as the measured value of the cutting resistance.
 図2は、本実施の形態における加工機10の制御方法を示すフロー図である。図3は、本実施の形態における切削抵抗と切削深さとの対応関係の例を示す説明図である。図2および図3を参照しながら、加工機10の制御方法を説明する。 FIG. 2 is a flow diagram showing a method for controlling the processing machine 10 in this embodiment. FIG. 3 is an explanatory diagram showing an example of the correspondence between cutting resistance and cutting depth in this embodiment. The method for controlling the processing machine 10 will be explained with reference to FIGS. 2 and 3.
 ステップS101の実行前に、比較部111は、切削抵抗と切削深さとの対応関係を示すテーブル(図3参照)を予め保有している。 Before executing step S101, the comparison unit 111 already has a table (see Figure 3) that shows the correspondence between cutting resistance and cutting depth.
 図3において、複数の切削抵抗と、複数の切削抵抗それぞれに対応する切削深さとが対応付けられている。例えば、図3において、切削抵抗R1に対して切削深さD1が対応付けられており、切削抵抗R2に対して切削深さD2が対応付けられている。 In FIG. 3, multiple cutting resistances are associated with cutting depths corresponding to each of the multiple cutting resistances. For example, in FIG. 3, cutting depth D1 is associated with cutting resistance R1, and cutting depth D2 is associated with cutting resistance R2.
 加工機10は、切削を行っている状態において、ステップS101の処理を開始する。 The processing machine 10 starts processing in step S101 while cutting is in progress.
 ステップS101において、測定部17は、切削抵抗を測定する。測定部17は、測定した切削抵抗を制御部11(より具体的には比較部111)に提供する。 In step S101, the measurement unit 17 measures the cutting resistance. The measurement unit 17 provides the measured cutting resistance to the control unit 11 (more specifically, the comparison unit 111).
 ステップS102において、比較部111は、ステップS101で測定され提供された切削抵抗に基づいて、切削深さを算出する。切削抵抗から切削深さを算出する際には、比較部111は、切削抵抗と切削深さとの対応関係を示すテーブル(図3参照)を用いる。すなわち、比較部111は、上記テーブルにおいて、ステップS101で測定された切削抵抗に一致する切削抵抗を発見した場合には、その切削抵抗に対応付けられている切削深さを取得し、ステップS101で測定された切削抵抗に一致する切削抵抗を発見しない場合には、上記テーブルを用いて内挿することで、その切削抵抗に対応付けられている切削深さを取得することで、切削深さを算出する。 In step S102, the comparison unit 111 calculates the cutting depth based on the cutting resistance measured and provided in step S101. When calculating the cutting depth from the cutting resistance, the comparison unit 111 uses a table (see FIG. 3) that indicates the correspondence between the cutting resistance and the cutting depth. That is, if the comparison unit 111 finds a cutting resistance in the table that matches the cutting resistance measured in step S101, it obtains the cutting depth that corresponds to that cutting resistance, and if it does not find a cutting resistance that matches the cutting resistance measured in step S101, it calculates the cutting depth by interpolating using the table and obtaining the cutting depth that corresponds to that cutting resistance.
 ステップS103において、比較部111は、ステップS102で算出した切削深さと、基準切削深さとを比較する。 In step S103, the comparison unit 111 compares the cutting depth calculated in step S102 with the reference cutting depth.
 ステップS104において、調整部112は、ステップS103での比較の結果に基づいて、切削工具15、主軸14およびステージ16の少なくとも1つの位置を調整する制御をする。具体的には、調整部112は、切削工具15、主軸14およびステージ16の少なくとも1つの調整位置を算出し、サーボアンプ12A等を介してモータ13A等を駆動させることで、切削工具15、主軸14およびステージ16の少なくとも1つの位置を調整する制御をする。 In step S104, the adjustment unit 112 performs control to adjust the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 based on the result of the comparison in step S103. Specifically, the adjustment unit 112 calculates an adjustment position of at least one of the cutting tool 15, the spindle 14, and the stage 16, and performs control to adjust the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 by driving the motor 13A, etc. via the servo amplifier 12A, etc.
 このようにすることで、加工機10は、加工の品質の低下を抑制することができる。 By doing this, the processing machine 10 can prevent deterioration in processing quality.
 以降において、ワークWの切削深さについて、比較例における加工機による切削の場合と、本実施の形態における加工機10による切削の場合とを比較しながら説明する。 The cutting depth of the workpiece W will be explained below, comparing cutting by the processing machine in the comparative example with cutting by the processing machine 10 in this embodiment.
 図4は、比較例における加工機による切削の切削深さの例を示す模式図である。比較例における加工機は、本実施の形態における加工機10と同様の切削加工をする加工機である。 FIG. 4 is a schematic diagram showing an example of cutting depth by a processing machine in a comparative example. The processing machine in the comparative example is a processing machine that performs cutting processing similar to that of processing machine 10 in the present embodiment.
 比較例における加工機は、主軸94のZ軸方向の位置を計測するセンサS1を備え、センサS1による計測値に基づいて主軸94のZ軸方向の位置を調整可能である。また、比較例における加工機は、ステージ96のX軸方向およびY軸方向の位置を計測するセンサS2を備え、センサS2による計測値に基づいてステージ96のX軸方向およびY軸方向の位置を調整可能である。比較例における加工機は、加工機10が備える比較部111および調整部112を備えない。 The processing machine in the comparative example is equipped with a sensor S1 that measures the position of the spindle 94 in the Z-axis direction, and is capable of adjusting the position of the spindle 94 in the Z-axis direction based on the measurement value from the sensor S1. The processing machine in the comparative example is also equipped with a sensor S2 that measures the positions of the stage 96 in the X-axis direction and the Y-axis direction, and is capable of adjusting the positions of the stage 96 in the X-axis direction and the Y-axis direction based on the measurement value from the sensor S2. The processing machine in the comparative example does not have the comparison unit 111 and adjustment unit 112 that are equipped in the processing machine 10.
 図4の(a)には、切削の開始時におけるワークWの周辺の構成要素(主軸94、切削工具95およびステージ96等)が示されている。 (a) in FIG. 4 shows the components around the workpiece W (spindle 94, cutting tool 95, stage 96, etc.) at the start of cutting.
 比較例における加工機が備える主軸94は、基準位置に位置している。また、ステージ96は、X軸方向マイナス側へ基準速度で移動する。ワークWが切削工具95に近づき、接触すると、切削工具95は、切削深さD1でワークWを切削する。切削深さD1は、基準切削深さに相当する。 The spindle 94 of the processing machine in the comparative example is located at a reference position. The stage 96 moves in the negative X-axis direction at a reference speed. When the workpiece W approaches and comes into contact with the cutting tool 95, the cutting tool 95 cuts the workpiece W at a cutting depth D1. The cutting depth D1 corresponds to the reference cutting depth.
 図4の(b)には、図4の(a)に示される状態のあとで、比較例における加工機が切削をしている一の時点におけるワークWの周辺の構成要素(主軸94、切削工具95およびステージ96等)が示されている。 Figure 4(b) shows the components around the workpiece W (spindle 94, cutting tool 95, stage 96, etc.) at a point in time when the processing machine in the comparative example is performing cutting after the state shown in Figure 4(a).
 図4の(b)に示されるように、ワークWの切削が進むと、熱による変形V1またはV2が生じ得る。変形V1およびV2により、切削工具95のZ軸方向の位置は、図4の(a)における場合よりも下方向(Z軸方向マイナス側)に移動している。変形V1は、例えば、モータ13Aおよび13Bが駆動することで生じた熱に起因する変形であり得る。変形V2は、ワークWの切削により生じた熱に起因する変形であり得る。 As shown in FIG. 4B, as cutting of the workpiece W progresses, thermal deformation V1 or V2 may occur. Deformations V1 and V2 cause the Z-axis position of the cutting tool 95 to move downward (toward the negative Z-axis direction) compared to the case in FIG. 4A. Deformation V1 may be, for example, deformation caused by heat generated by the driving of motors 13A and 13B. Deformation V2 may be deformation caused by heat generated by cutting the workpiece W.
 比較例における加工機は、センサS1およびS2の計測値に基づいて主軸94、切削工具95およびステージ96の位置の調整が可能である。しかしながら、センサS1およびS2により計測できない位置の変化(例えば、切削工具95の変形V2による位置の変化)に基づく、主軸94、切削工具95およびステージ96の位置の調整は不可能である。 The processing machine in the comparative example is capable of adjusting the positions of the spindle 94, cutting tool 95, and stage 96 based on the measurement values of sensors S1 and S2. However, it is not possible to adjust the positions of the spindle 94, cutting tool 95, and stage 96 based on changes in position that cannot be measured by sensors S1 and S2 (for example, changes in position due to deformation V2 of the cutting tool 95).
 その結果、切削工具15は、切削深さD1より大きな切削深さD2で、ワークWを切削することになる。 As a result, the cutting tool 15 cuts the workpiece W at a cutting depth D2 that is greater than the cutting depth D1.
 このように、比較例における加工機は、基準切削深さである切削深さD1よりも大きな切削深さD2での切削を行うことになり、加工品質が比較的低い。 In this way, the processing machine in the comparative example cuts at a cutting depth D2 that is greater than the reference cutting depth D1, resulting in relatively low processing quality.
 図5および図6は、本実施の形態における加工機10による切削の切削深さの例を示す模式図である。 FIGS. 5 and 6 are schematic diagrams showing examples of cutting depths by the processing machine 10 in this embodiment.
 図5には、切削の開始時におけるワークWの周辺の構成要素(主軸14、切削工具15およびステージ16等)が示されている。 Figure 5 shows the components around the workpiece W (spindle 14, cutting tool 15, stage 16, etc.) at the start of cutting.
 加工機10が備える主軸14は、基準位置に位置している。また、ステージ16は、X軸方向マイナス側へ基準速度で移動する。ワークWが切削工具15に近づき、接触すると、切削工具15は、切削深さD1でワークWを切削する。切削深さD1は、基準切削深さに相当する。このとき、ワークWは、切削工具15に対して切削抵抗R1を及ぼしている。 The spindle 14 of the processing machine 10 is located at a reference position. The stage 16 moves in the negative X-axis direction at a reference speed. When the workpiece W approaches and comes into contact with the cutting tool 15, the cutting tool 15 cuts the workpiece W at a cutting depth D1. The cutting depth D1 corresponds to the reference cutting depth. At this time, the workpiece W exerts a cutting resistance R1 on the cutting tool 15.
 図6の(a)には、図5に示される状態のあとで、加工機10が切削をしている一の時点におけるワークWの周辺の構成要素(主軸14、切削工具15およびステージ16等)が示されている。 (a) of FIG. 6 shows the components around the workpiece W (spindle 14, cutting tool 15, stage 16, etc.) at a point in time when the processing machine 10 is cutting after the state shown in FIG. 5.
 図6の(a)に示されるように、ワークWの切削が進むと、図4の(b)の場合と同様に、熱による変形V1またはV2が生じ得る。変形V1およびV2により、切削工具15のZ軸方向の位置は、図5における場合よりも下方向(Z軸方向マイナス側)に移動している。 As shown in FIG. 6(a), as cutting of the workpiece W progresses, thermal deformation V1 or V2 may occur, as in FIG. 4(b). Deformations V1 and V2 cause the position of the cutting tool 15 in the Z-axis direction to move downward (toward the negative Z-axis direction) compared to the case in FIG. 5.
 加工機10は、熱による変形V1またはV2が生じた場合、切削工具15は、切削深さD2でワークWを切削する。このとき、ワークWは、切削工具15に対して切削抵抗RAを及ぼす。切削抵抗RAは、切削抵抗R1より大きい。 When thermal deformation V1 or V2 occurs in the processing machine 10, the cutting tool 15 cuts the workpiece W at a cutting depth D2. At this time, the workpiece W exerts a cutting resistance RA on the cutting tool 15. The cutting resistance RA is greater than the cutting resistance R1.
 測定部17は、切削抵抗RAを計測し、制御部11に提供する。比較部111は、提供された切削抵抗RAから切削深さDAを算出し、基準切削深さである切削深さD1と切削深さDAとの比較を行う。調整部112は、切削深さをD1に近づけるように主軸14の位置を距離D3だけ、上方向(Z軸方向プラス側)に調整する。 The measuring unit 17 measures the cutting resistance RA and provides it to the control unit 11. The comparing unit 111 calculates the cutting depth DA from the provided cutting resistance RA and compares the cutting depth DA with the cutting depth D1, which is the reference cutting depth. The adjusting unit 112 adjusts the position of the spindle 14 upward (towards the positive Z-axis direction) by a distance D3 so that the cutting depth approaches D1.
 図6の(b)には、主軸14の位置の調整後の一の時点におけるワークWの周辺の構成(主軸14、切削工具15およびステージ16等)が示されている。図6の(b)では、図6の(a)における場合と比較して、主軸14の位置が距離D3だけ上方向(Z軸方向プラス側)に調整された結果、切削工具15が切削深さD1でワークWを切削している。 Figure 6(b) shows the configuration around the workpiece W (spindle 14, cutting tool 15, stage 16, etc.) at a certain point in time after the position of the spindle 14 has been adjusted. In Figure 6(b), compared to the case in Figure 6(a), the position of the spindle 14 has been adjusted upward (toward the positive Z-axis direction) by a distance D3, resulting in the cutting tool 15 cutting the workpiece W at a cutting depth D1.
 なお、実際には、切削抵抗R1の大きさと切削抵抗RAの大きさとの差異は、切削抵抗R1の大きさに対して極めて小さく、これにより、切削深さD1と切削深さDAとの差異も、切削深さD1に対して極めて小さい。そのため、切削深さD1と切削深さDAとの差異は、加工品質の低下を引き起こさない。 In reality, the difference between the magnitude of cutting resistance R1 and the magnitude of cutting resistance RA is extremely small compared to the magnitude of cutting resistance R1, and as a result, the difference between cutting depth D1 and cutting depth DA is also extremely small compared to cutting depth D1. Therefore, the difference between cutting depth D1 and cutting depth DA does not cause a decrease in processing quality.
 このように、加工機10は、基準切削深さである切削深さD1を維持しながらワークWを切削することができ、加工品質が比較的高い。 In this way, the machining device 10 can cut the workpiece W while maintaining the standard cutting depth D1, and the machining quality is relatively high.
 なお、本実施の形態において、比較部111および調整部112は、制御部11に備えられるとして説明したが、サーボアンプ12A、12Bまたは12Cが比較部111および調整部112を備えてもよい。 In this embodiment, the comparison unit 111 and the adjustment unit 112 are described as being provided in the control unit 11, but the servo amplifier 12A, 12B, or 12C may also be provided with the comparison unit 111 and the adjustment unit 112.
 より具体的には、ステージ16のX軸方向またはY軸方向の位置を制御するモータ13Cを駆動するサーボアンプ12Cが、比較部111を備えてもよい。このようにすることで、測定部17の測定値に基づくステージ16のX軸方向またはY軸方向の位置の制御に関わる構成要素を少なくすることができ、処理負荷の低減、処理時間の削減、または、低コスト化の効果がある。 More specifically, the servo amplifier 12C that drives the motor 13C that controls the position of the stage 16 in the X-axis or Y-axis direction may be provided with a comparison unit 111. In this way, it is possible to reduce the number of components involved in controlling the position of the stage 16 in the X-axis or Y-axis direction based on the measurement value of the measurement unit 17, which has the effect of reducing the processing load, shortening the processing time, and reducing costs.
 (実施の形態の変形例)
 本変形例において、加工の品質の低下を抑制する加工機などについて説明する。本変形例における加工機は、上記実施の形態の加工機10が切削深さを調整するために切削抵抗を用いたのに対して、ステージの位置に及ぼされる熱変形の影響を用いる。
(Modification of the embodiment)
In this modified example, a processing machine that suppresses deterioration of processing quality will be described. The processing machine in this modified example uses the effect of thermal deformation on the position of the stage, whereas the processing machine 10 in the above embodiment uses the cutting resistance to adjust the cutting depth.
 図7は、本変形例における加工機10Aの構成を示す模式図である。なお、上記実施の形態における加工機10と同じ構成要素については、同じ符号を付し、詳細な説明を省略することがある。 FIG. 7 is a schematic diagram showing the configuration of a processing machine 10A in this modified example. Note that the same components as those in the processing machine 10 in the above embodiment are given the same reference numerals, and detailed descriptions may be omitted.
 図7に示されるように、加工機10Aは、制御部11Aと、サーボアンプ12A、12Bおよび12Cと、モータ13A、13Bおよび13Cと、主軸14と、切削工具15と、ステージ16と、測定部17Aとを備える。ステージ16上には、加工機10Wによる切削の対象であるワークWが載置されている。 As shown in FIG. 7, the processing machine 10A includes a control unit 11A, servo amplifiers 12A, 12B, and 12C, motors 13A, 13B, and 13C, a spindle 14, a cutting tool 15, a stage 16, and a measurement unit 17A. A workpiece W to be cut by the processing machine 10W is placed on the stage 16.
 加工機10Aは、制御部11Aと、測定部17Aとを備える点で、上記実施の形態の加工機10と異なる。これらの構成要素について詳しく説明する。 The processing machine 10A differs from the processing machine 10 of the above embodiment in that it includes a control unit 11A and a measurement unit 17A. These components will be described in detail.
 制御部11Aは、上記実施の形態における制御部11と同様に、加工機10が備える構成要素を制御する。また、制御部11Aは、切削工具15がワークWを切削する位置に位置するように、切削工具15、主軸14およびステージ16の少なくとも1つの位置を制御する。 Similar to the control unit 11 in the above embodiment, the control unit 11A controls the components of the processing machine 10. The control unit 11A also controls the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 so that the cutting tool 15 is positioned to cut the workpiece W.
 制御部11Aは、具体的には、比較部114と調整部112とを有する。 Specifically, the control unit 11A has a comparison unit 114 and an adjustment unit 112.
 比較部114は、測定部17Aが測定した物理量の一例である、ステージ16の速度を測定部17Aから取得し、取得した速度に基づいて切削工具15がワークWに及ぼす切削力を推定する。また、比較部114は、推定した切削力を用いて切削工具15によるワークWの切削深さを算出する。そして、比較部114は、算出した切削深さと、基準切削深さとの比較を行う。 The comparison unit 114 acquires the speed of the stage 16, which is an example of a physical quantity measured by the measurement unit 17A, from the measurement unit 17A, and estimates the cutting force that the cutting tool 15 exerts on the workpiece W based on the acquired speed. The comparison unit 114 also calculates the cutting depth of the workpiece W by the cutting tool 15 using the estimated cutting force. The comparison unit 114 then compares the calculated cutting depth with a reference cutting depth.
 制御部11Aが有する調整部112は、上記実施の形態における調整部112と同じであるので詳細な説明を省略する。 The adjustment unit 112 of the control unit 11A is the same as the adjustment unit 112 in the above embodiment, so a detailed description will be omitted.
 測定部17Aは、ステージ16の位置に及ぼされる熱変形の影響を測定する。具体的には、測定部17Aは、ステージ16の位置、速度または加速度を測定する。熱変形である変形V1またはV2が生じた場合に、その変形V1またはV2の影響がステージ16の位置、速度または加速度に及ぶので、測定部17Aが測定する位置、速度または加速度は、熱変形の影響を受けている。測定部17Aは、位置、速度または加速度の測定には、それぞれ、位置センサ、速度センサ、または、加速度センサを用いることができる。 The measurement unit 17A measures the effect of thermal deformation on the position of the stage 16. Specifically, the measurement unit 17A measures the position, speed or acceleration of the stage 16. When deformation V1 or V2, which is thermal deformation, occurs, the effect of the deformation V1 or V2 extends to the position, speed or acceleration of the stage 16, so the position, speed or acceleration measured by the measurement unit 17A is affected by the thermal deformation. The measurement unit 17A can use a position sensor, a speed sensor or an acceleration sensor to measure the position, speed or acceleration, respectively.
 ここでは、測定部17Aがステージ16の速度を測定する場合を例として説明する。 Here, we will explain an example in which the measurement unit 17A measures the speed of the stage 16.
 なお、測定部17Aがステージ16の位置を測定する場合には、測定した位置を時間で微分することでステージ16の速度を算出することができ、算出した速度を用いて、測定部17Aがステージ16の速度を測定する場合と同様の処理が可能である。 When the measurement unit 17A measures the position of the stage 16, the speed of the stage 16 can be calculated by differentiating the measured position with respect to time, and the calculated speed can be used to perform the same processing as when the measurement unit 17A measures the speed of the stage 16.
 また、測定部17Aがステージ16の加速度を測定する場合には、測定した加速度を積分することでステージ16の速度を算出することができ、算出した速度を用いて、測定部17Aがステージ16の速度を測定する場合と同様の処理が可能である。 In addition, when the measurement unit 17A measures the acceleration of the stage 16, the speed of the stage 16 can be calculated by integrating the measured acceleration, and the calculated speed can be used to perform the same processing as when the measurement unit 17A measures the speed of the stage 16.
 図8は、本変形例における加工機10Aの制御方法を示すフロー図である。図9は、本変形例における切削力と切削深さとの対応関係の例を示す説明図である。図8および図9を参照しながら、加工機10Aの制御方法を説明する。 FIG. 8 is a flow diagram showing a method for controlling the processing machine 10A in this modified example. FIG. 9 is an explanatory diagram showing an example of the correspondence between cutting force and cutting depth in this modified example. The control method for the processing machine 10A will be explained with reference to FIGS. 8 and 9.
 比較部114は、切削力と切削深さとの対応関係を示すテーブル(図9参照)を予め保有している。 The comparison unit 114 already has a table (see Figure 9) that shows the correspondence between cutting force and cutting depth.
 図9において、複数の切削力と、複数の切削力それぞれに対応する切削深さとが対応付けられている。例えば、図9において、切削力P1に対して切削深さD1が対応付けられており、切削力P2に対して切削深さD2が対応付けられている。 In FIG. 9, multiple cutting forces are associated with cutting depths corresponding to each of the multiple cutting forces. For example, in FIG. 9, cutting force P1 is associated with cutting depth D1, and cutting force P2 is associated with cutting depth D2.
 加工機10Aは、切削を行っている状態において、ステップS101Aの処理を開始する。 The processing machine 10A starts processing in step S101A while cutting is in progress.
 ステップS101Aにおいて、測定部17Aは、ステージ16の速度を測定する。測定部17Aは、測定したステージ16の速度を制御部11A(より具体的には比較部114)に提供する。 In step S101A, the measurement unit 17A measures the speed of the stage 16. The measurement unit 17A provides the measured speed of the stage 16 to the control unit 11A (more specifically, the comparison unit 114).
 ステップS101Bにおいて、比較部114は、ステップS101Aで測定され提供された速度に基づいて、切削力を推定する。ステージ16の速度から切削力を推定する際には、外乱オブザーバによる推定を用いることができる(非特許文献1)。 In step S101B, the comparison unit 114 estimates the cutting force based on the speed measured and provided in step S101A. When estimating the cutting force from the speed of the stage 16, estimation by a disturbance observer can be used (Non-Patent Document 1).
 ステップS102Aにおいて、比較部114は、ステップS101Bで推定した切削力に基づいて、切削深さを算出する。切削力から切削深さを算出する際には、比較部114は、切削力と切削深さとの対応関係を示すテーブル(図9参照)を用いる。 In step S102A, the comparison unit 114 calculates the cutting depth based on the cutting force estimated in step S101B. When calculating the cutting depth from the cutting force, the comparison unit 114 uses a table (see FIG. 9) showing the correspondence between the cutting force and the cutting depth.
 ステップS103において、比較部114は、ステップS102Aで算出した切削深さと、基準切削深さとを比較する。 In step S103, the comparison unit 114 compares the cutting depth calculated in step S102A with the reference cutting depth.
 ステップS104において、調整部112は、ステップS103での比較の結果に基づいて、切削工具15、主軸14およびステージ16の少なくとも1つの位置を調整する。具体的には、調整部112は、調整後の切削工具15、主軸14およびステージ16の少なくとも1つの位置を算出し、サーボアンプ12A等を介してモータ13A等の駆動させることで、切削工具15、主軸14およびステージ16の少なくとも1つの位置を調整する。 In step S104, the adjustment unit 112 adjusts the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 based on the result of the comparison in step S103. Specifically, the adjustment unit 112 calculates the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 after adjustment, and adjusts the position of at least one of the cutting tool 15, the spindle 14, and the stage 16 by driving the motor 13A, etc. via the servo amplifier 12A, etc.
 このようにすることで、加工機10Aは、加工の品質の低下を抑制することができる。 By doing this, the processing machine 10A can prevent deterioration in processing quality.
 なお、上記実施の形態および変形例において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記実施の形態および変形例の加工機の制御方法などを実現するソフトウェアは、次のようなプログラムである。 In the above embodiments and variations, each component may be configured with dedicated hardware, or may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU or processor reading and executing a software program recorded on a recording medium such as a hard disk or semiconductor memory. Here, the software that realizes the machine control method of the above embodiments and variations is a program such as the following.
 すなわち、このプログラムは、コンピュータに、加工機の制御方法であって、前記加工機は、切削工具を回転可能に支持する主軸と、ワークが載置されるステージと、を備え、前記制御方法は、前記切削工具と前記ワークとの接触により生ずる物理量を測定し、前記物理量に基づいて前記切削工具による前記ワークの切削深さを算出し、算出した前記切削深さと、基準切削深さとの比較を行い、前記比較の結果に基づいて、前記切削工具、前記主軸および前記ステージの少なくとも1つの位置を調整する制御方法を実行させるプログラムである。 In other words, this program causes a computer to execute a control method for a processing machine, the processing machine having a spindle that rotatably supports a cutting tool and a stage on which a workpiece is placed, the control method measuring a physical quantity resulting from contact between the cutting tool and the workpiece, calculating the cutting depth of the workpiece by the cutting tool based on the physical quantity, comparing the calculated cutting depth with a reference cutting depth, and adjusting the position of at least one of the cutting tool, the spindle, and the stage based on the result of the comparison.
 以上、一つまたは複数の態様に係る加工機などについて、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。  The processing machines and the like according to one or more aspects have been described above based on the embodiments, but the present invention is not limited to these embodiments. As long as they do not deviate from the spirit of the present invention, various modifications conceivable by those skilled in the art to the present embodiments, and forms constructed by combining components in different embodiments, may also be included within the scope of one or more aspects.
 本発明は、ワークを切削加工する加工機に利用可能である。 The present invention can be used in machines that cut workpieces.
 10、10A  加工機
 11、11A  制御部
 12A、12B、12C  サーボアンプ
 13A、13B、13C  モータ
 14、94  主軸
 15、95  切削工具
 16、96  ステージ
 17、17A  測定部
 111、114  比較部
 112  調整部
 R1、RA  切削抵抗
 S1、S2  センサ
 V1、V2  変形
 W  ワーク
10, 10A Processing machine 11, 11A Control unit 12A, 12B, 12C Servo amplifier 13A, 13B, 13C Motor 14, 94 Spindle 15, 95 Cutting tool 16, 96 Stage 17, 17A Measurement unit 111, 114 Comparison unit 112 Adjustment unit R1, RA Cutting resistance S1, S2 Sensor V1, V2 Deformation W Workpiece

Claims (8)

  1.  切削工具を回転可能に支持する主軸と、
     ワークが載置されるステージと、
     前記切削工具と前記ワークとの接触により生ずる物理量を測定する測定部と、
     前記物理量に基づいて前記切削工具による前記ワークの切削深さを算出し、算出した前記切削深さと、基準切削深さとの比較を行う比較部と、
     前記比較部による前記比較の結果に基づいて、前記切削工具、前記主軸および前記ステージの少なくとも1つの位置を調整する調整部とを備える
     加工機。
    A spindle that rotatably supports the cutting tool;
    A stage on which a workpiece is placed;
    a measurement unit that measures a physical quantity generated by contact between the cutting tool and the workpiece;
    a comparison unit that calculates a cutting depth of the workpiece by the cutting tool based on the physical quantity and compares the calculated cutting depth with a reference cutting depth;
    an adjustment unit that adjusts a position of at least one of the cutting tool, the spindle, and the stage based on a result of the comparison by the comparison unit.
  2.  前記調整部は、
     前記比較部による前記比較の結果に基づいて、前記切削工具による前記ワークの切削深さを前記基準切削深さに近づけるように、前記切削工具、前記主軸および前記ステージの前記少なくとも1つの位置を調整する
     請求項1に記載の加工機。
    The adjustment unit is
    The machining apparatus according to claim 1 , further comprising: a cutting section for adjusting a cutting depth of the workpiece by the cutting tool based on a result of the comparison by the comparison section, the cutting section adjusting a position of the cutting tool, the spindle, and the stage so as to bring the cutting depth of the workpiece by the cutting tool closer to the reference cutting depth.
  3.  前記測定部は、
     前記物理量として、前記切削工具により切削されている前記ワークが前記切削工具に及ぼす切削抵抗を測定し、
     前記比較部は、
     前記測定部が測定した前記切削抵抗を前記物理量として用いて前記比較を行う
     請求項1に記載の加工機。
    The measurement unit includes:
    As the physical quantity, a cutting resistance exerted on the cutting tool by the workpiece being cut by the cutting tool is measured;
    The comparison unit is
    The processing machine according to claim 1 , wherein the comparison is performed using the cutting resistance measured by the measurement unit as the physical quantity.
  4.  前記基準切削深さは、
     (a)前記加工機による前記ワークの切削深さの予め定められた目標値である目標深さ、または、
     (b)前記加工機が前記ワークを切削している一の時点において前記測定部が測定した前記物理量に基づいて算出される前記ワークの切削深さである
     請求項1に記載の加工機。
    The reference cutting depth is
    (a) a target depth, which is a predetermined target value of the cutting depth of the workpiece by the processing machine; or
    The processing machine according to claim 1 , wherein (b) the cutting depth of the workpiece is calculated based on the physical quantity measured by the measuring unit at a point in time when the processing machine is cutting the workpiece.
  5.  前記測定部は、
     前記物理量として、前記ステージの位置、速度または加速度を測定し、
     前記比較部は、
     前記測定部が測定した前記位置、前記速度または前記加速度を用いて前記切削工具が前記ワークに及ぼす切削力を推定し、推定した前記切削力を用いて前記切削工具による前記ワークの切削深さを算出し、算出した前記切削深さと前記基準切削深さとの比較を行う
     請求項1に記載の加工機。
    The measurement unit includes:
    As the physical quantity, a position, a velocity, or an acceleration of the stage is measured;
    The comparison unit is
    The machining center according to claim 1, further comprising: a cutting unit that estimates a cutting force applied to the workpiece by the cutting tool using the position, the speed or the acceleration measured by the measurement unit; a cutting depth of the workpiece by the cutting tool is calculated using the estimated cutting force; and a comparison is made between the calculated cutting depth and the reference cutting depth.
  6.  前記加工機は、前記ステージを移動させるモータを駆動するサーボアンプを備え、
     前記サーボアンプは、前記比較部を有する
     請求項5に記載の加工機。
    the processing machine includes a servo amplifier that drives a motor that moves the stage,
    The processing machine according to claim 5 , wherein the servo amplifier includes the comparison unit.
  7.  前記測定部は、前記切削工具が1回転するのに要する時間、または、前記時間の整数倍の時間に亘る、前記物理量の平均値または実効値を、前記物理量として測定する
     請求項1~6のいずれか1項に記載の加工機。
    The machining tool according to any one of claims 1 to 6, wherein the measurement unit measures, as the physical quantity, an average value or an effective value of the physical quantity over a time required for the cutting tool to rotate once or over a time that is an integer multiple of the time.
  8.  加工機の制御方法であって、
     前記加工機は、
     切削工具を回転可能に支持する主軸と、
     ワークが載置されるステージと、
     を備え、
     前記制御方法は、
     前記切削工具と前記ワークとの接触により生ずる物理量を測定し、
     前記物理量に基づいて前記切削工具による前記ワークの切削深さを算出し、算出した前記切削深さと、基準切削深さとの比較を行い、
     前記比較の結果に基づいて、前記切削工具、前記主軸および前記ステージの少なくとも1つの位置を調整する
     制御方法。
    A method for controlling a processing machine, comprising the steps of:
    The processing machine is
    A spindle that rotatably supports the cutting tool;
    A stage on which a workpiece is placed;
    Equipped with
    The control method includes:
    measuring a physical quantity generated by contact between the cutting tool and the workpiece;
    Calculating a cutting depth of the workpiece by the cutting tool based on the physical quantity, and comparing the calculated cutting depth with a reference cutting depth;
    and adjusting a position of at least one of the cutting tool, the spindle, and the stage based on a result of the comparison.
PCT/JP2023/036678 2022-12-01 2023-10-10 Processing machine and control method WO2024116604A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022193073 2022-12-01
JP2022-193073 2022-12-01

Publications (1)

Publication Number Publication Date
WO2024116604A1 true WO2024116604A1 (en) 2024-06-06

Family

ID=91323613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036678 WO2024116604A1 (en) 2022-12-01 2023-10-10 Processing machine and control method

Country Status (1)

Country Link
WO (1) WO2024116604A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062677A (en) * 1999-08-24 2001-03-13 Canon Inc Machining method and device in machine tool
JP2002366212A (en) * 2001-06-07 2002-12-20 Yoshiaki Kakino Numerical control machine tool
JP2012254499A (en) * 2011-06-09 2012-12-27 Hitachi Ltd Device and method for detecting abnormal machining of machine tool
CN111650891A (en) * 2020-06-23 2020-09-11 佛山市普拉迪数控科技有限公司 Five-axis precise small gantry numerical control machining center with constant-force adaptive control method
JP2022039922A (en) * 2020-08-28 2022-03-10 国立大学法人 東京大学 Adaptation method for processing resistance estimation, adaptation program for processing resistance estimation and machine tool
JP2022042825A (en) * 2020-09-03 2022-03-15 オークマ株式会社 Machine tool control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062677A (en) * 1999-08-24 2001-03-13 Canon Inc Machining method and device in machine tool
JP2002366212A (en) * 2001-06-07 2002-12-20 Yoshiaki Kakino Numerical control machine tool
JP2012254499A (en) * 2011-06-09 2012-12-27 Hitachi Ltd Device and method for detecting abnormal machining of machine tool
CN111650891A (en) * 2020-06-23 2020-09-11 佛山市普拉迪数控科技有限公司 Five-axis precise small gantry numerical control machining center with constant-force adaptive control method
JP2022039922A (en) * 2020-08-28 2022-03-10 国立大学法人 東京大学 Adaptation method for processing resistance estimation, adaptation program for processing resistance estimation and machine tool
JP2022042825A (en) * 2020-09-03 2022-03-15 オークマ株式会社 Machine tool control device

Similar Documents

Publication Publication Date Title
JP6342935B2 (en) Servo control device, control method and computer program for machine tool for rocking cutting
JP6243260B2 (en) Spindle motor control device
JP6727041B2 (en) Machine Tools
JP3699458B2 (en) Cutting force detection method, machining control method using cutting force, and control device
JP6592143B2 (en) Electric motor control device
JP6653542B2 (en) Motor control device
JP2008290188A (en) Vibration suppressing apparatus
JP2010120150A (en) Estimation method for thermal deformation compensation of machine tool
JP2019152936A (en) Machine tool machining simulation device
JP2016181193A (en) Parameter setting method for positioning device and positioning device
WO2024116604A1 (en) Processing machine and control method
JP6490368B2 (en) Machine tool control device, machine tool control method, and program
JP3926739B2 (en) Threading control method and apparatus
JP5929065B2 (en) NC data correction device
US12030148B2 (en) NC program generation system and NC program generation method
KR20130042140A (en) Method for correcting position caused by deformation of ballscrew of machine tool in real-time and machine tool
JP6647422B2 (en) Feed axis control method and feed axis control device for machine tool
CN111230586B (en) Control device and control method
JP5369718B2 (en) Machine Tools
CN114578753A (en) Workpiece processing control method and device, computer equipment and computer readable medium
JP2020110922A (en) Grinding device, work-piece manufacturing method, and grinding system
JP2021111026A (en) Machine tool machining control method
JP2001277073A (en) Tool position correcting method for machining device
WO2023139663A1 (en) Vibration factor estimating device
JP5890275B2 (en) High-speed synchronous axis position controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897263

Country of ref document: EP

Kind code of ref document: A1