WO2024116324A1 - Bearing for marine vessel propulsion shaft and bearing restoration method - Google Patents

Bearing for marine vessel propulsion shaft and bearing restoration method Download PDF

Info

Publication number
WO2024116324A1
WO2024116324A1 PCT/JP2022/044167 JP2022044167W WO2024116324A1 WO 2024116324 A1 WO2024116324 A1 WO 2024116324A1 JP 2022044167 W JP2022044167 W JP 2022044167W WO 2024116324 A1 WO2024116324 A1 WO 2024116324A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc piece
shell
arc
bearing
group
Prior art date
Application number
PCT/JP2022/044167
Other languages
French (fr)
Japanese (ja)
Inventor
正孝 四方
大輝 池本
賢司 横垣
Original Assignee
株式会社 ミカサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ミカサ filed Critical 株式会社 ミカサ
Priority to PCT/JP2022/044167 priority Critical patent/WO2024116324A1/en
Publication of WO2024116324A1 publication Critical patent/WO2024116324A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings

Definitions

  • Non-Patent Document 1 which summarizes the structure and characteristics of such bearings, water-lubricated bearings are being used in place of the conventional oil-lubricated bearings for bearings in small and medium-sized ships, and it is said that in the future, the shift to water-lubricated bearings will progress even in large ships.
  • Various water-lubricated bearings are also proposed in patent documents.
  • Patent Document 1 proposes a bearing in which a pair of positioning plates and a number of sealed arc pieces and gap-shaped arc pieces are arranged on the inner circumferential surface of a cylindrical shell that supports the propeller shaft of a ship, the positioning plates are fixed at opposing positions on the horizontal axis of the shell, the sealed arc pieces are arranged on the underside of the shell below the positioning plates and are subjected to the load of the propeller shaft, the gap-shaped arc pieces are arranged on the upper surface of the shell opposite the sealed arc pieces and have grooves on both side edges for circulating cooling water, and both the sealed arc pieces and the gap-shaped arc pieces have a three-layer structure consisting of a sliding layer, an intermediate layer made of an elastic material, and a base that is in close contact with the inner circumferential surface of the shell.
  • This bearing has a sliding layer made of a material with a smooth surface and excellent wear resistance and heat resistance, and an elastic layer that can equalize the load from the propeller shaft, and is said to have low friction, wear resistance, and durability, and also has excellent corrosion resistance because the elastic layer is protected from water or seawater.
  • Patent Document 2 proposes a split bearing in which the sliding material of the bearing member is made of rubber to form a first bearing member (20a), the sliding material of the bearing member provided in the approximately lower half (L) of the shell is made of fluororesin to form a second bearing member (20b), and stoppers (30, 30a) are provided between the approximately upper and lower halves of the shell to prevent circumferential movement of the bearing member.
  • This split bearing is said to have less sliding resistance to the propeller shaft than conventional split bearings, and to improve the fuel efficiency of ships.
  • split bearings have been used as bearings that support the propeller shaft of ships, and it is described that split bearings have the advantage of being easy to repair, since only the bearing members that are most worn can be replaced.
  • Patent Documents 1 and 2 are not only highly wear-resistant, but also have the advantage that the bearing members (arc pieces) that form the bearings can be stored in reserve and only those bearing members that are severely worn can be replaced.
  • the range of bearing members that need to be replaced is not necessarily narrow, and the replacement work of bearing members is not easy.
  • emergency measures are required due to unexpected damage to bearing members caused by poor alignment, whirling of the propeller shaft, or sailing with the propeller half submerged, and in such cases, rapid response is required.
  • bearing wear progresses in the lower part of the stern side, which supports most of the propeller load. For this reason, from the standpoint of safety and propulsion efficiency, an upper limit on the amount of wear in this area is generally set, and appropriate management of the amount of wear is required.
  • the present invention aims to provide a water-lubricated bearing that is not only excellent in wear resistance and durability, but also allows the bearing components that make up the bearing to be easily and quickly replaced without the need for spare parts, in response to such conventional problems and demands, and to provide a method for regenerating the bearing.
  • the bearing according to the present invention comprises a pair of positioning plates fixed to the inner peripheral surface of a cylindrical shell supporting a ship's propulsion shaft, facing each other on the horizontal axis of the shell, an anchor member fixed to the lowest point Pb of the shell, and an arc piece, the arc piece comprising a bottom arc piece that fits into the anchor member, an upper arc piece disposed on the upper part of the positioning plate, and a lower arc piece disposed on the lower part.
  • the horizontal axis refers to the axis perpendicular to the center line of gravity of the propulsion shaft in the cross section of the shell.
  • the arc piece that contacts the lower edge of the positioning plate has a shape that can be replaced with the bottom arc piece.
  • the lower plate can be pulled out of the shell with a predetermined pulling force when all the arc pieces are arranged on the inner peripheral surface of the shell.
  • the upper plate is grounded against a circular arc piece that contacts it, and the lower plate is grounded against a circular arc piece that contacts it.
  • the upper arc piece can be a gap-type arc piece
  • the lower arc piece can be a gap-type arc piece or a closed arc piece.
  • the bearing regeneration method is a bearing regeneration method for a cylindrical shell that supports a ship's propulsion shaft, which has a pair of positioning plates fixed to the inner peripheral surface of the shell in opposition to each other on the horizontal axis of the shell, an anchor member fixed to the lowest point Pb of the shell, and an arc piece, the arc pieces having a bottom arc piece that fits into the anchor member, an upper arc piece disposed on the upper part of the positioning plate, and a lower arc piece disposed on the lower part, and when the wear depth of the lowest point Pb part reaches a predetermined value in the worn part W occurring on the stern side of the lower arc piece, the arc pieces 15 that are less worn are arranged closer to the lowest point Pb of the inner peripheral surface of the shell 11, and the arc pieces 15 that are more worn are arranged farther from the lowest point Pb.
  • the horizontal axis refers to an axis perpendicular to the center line of the propulsion shaft in the cross section of the shell.
  • the rearrangement of the arc pieces should be performed in a manner that ensures the continuity of the wear cross section of the worn portion W.
  • the bearing according to the present invention can be a bearing having a pair of positioning plates fixed to the inner peripheral surface of a cylindrical shell supporting a ship's propulsion shaft, facing each other on the horizontal axis of the shell, an anchor member fixed to the lowest point Pb of the shell, and an arc piece, the positioning plate being a band-shaped body formed by meshing with an upper plate having a shell fixing means and a lower plate held on the inner peripheral surface of the shell via the upper plate, the arc piece having a bottom arc piece that fits into the anchor member, an upper arc piece disposed on the upper part of the positioning plate, and a lower arc piece disposed on the lower part, the lower arc piece having an arc piece that contacts the lower edge of the arc piece that contacts the lower edge of the positioning plate, and a substitute arc piece that can be replaced with the bottom arc piece.
  • the horizontal axis refers to an axis perpendicular to the center line of the propulsion shaft in the cross section of the shell.
  • the bearing regeneration method according to the present invention is carried out by first pulling out the lower plate from the shell, then pulling out the right arc piece group from the shell as a group, reversing the axial direction and re-arranging the group as a group in the shell, and pulling out the left arc piece group from the shell as a group, reversing the axial direction and re-arranging the group as a group in the shell, thereby rearranging the arc pieces.
  • the vertical axis refers to the axis that is opposite to the direction of the center of gravity of the propeller shaft that is perpendicular to the horizontal axis
  • the right side of the vertical axis refers to the right side of the shell cross section.
  • the bearing regeneration method according to the present invention is carried out by first pulling out the lower plate from the shell, then pulling out the right arc piece group from the shell as a group, reversing the axial direction and re-arranging the group as a group in the shell, and then pulling out the left arc piece group from the shell as a group, reversing the axial direction and re-arranging the group as a group in the shell, and rearranging the arc pieces as a group in the shell.
  • the vertical axis refers to the axis that is opposite to the direction of the center of gravity of the propeller shaft that is perpendicular to the horizontal axis
  • the right side of the vertical axis refers to the right side of the shell cross section.
  • the bearing according to the present invention allows the arc pieces to be easily and quickly arranged on the inner peripheral surface of the shell, and has excellent wear resistance and durability.
  • the bearing regeneration method according to the present invention rearranges arc pieces that are severely worn or damaged as a group with arc pieces that are less worn or damaged or are in good condition, so that the bearing can be regenerated easily and quickly without using spare parts.
  • FIG. 1A is a front view and a side view of a bearing in which the arc pieces are made up of only gap-type arc pieces
  • FIG. 1B is a side view of a bearing in which the arc pieces are made up of gap-type arc pieces and closed-type arc pieces
  • FIG. 2(a) is a detailed view of part A in FIG. 1(a)
  • FIG. 2(b) is an enlarged view of the positioning plate portion.
  • Fig. 3(a) shows an enlarged partial cross-sectional view of the anchor member, in which two bottom arc pieces (gap-type arc pieces) on the left and right are fitted to the anchor member
  • 3(b) shows a case in which one arc piece (closed arc piece) is fitted to the anchor member.
  • 4(a) is a diagram showing the shape and configuration of various arc pieces.
  • Fig. 4(b) is a diagram explaining the configuration of the closed arc piece.
  • Fig. 4(c) is a diagram explaining the arrangement of the groove of the bottom arc piece that fits into the anchor member.
  • Fig. 4(d) is a diagram explaining the notch provided on the side end of the closed arc piece that contacts the lower edge of the positioning plate.
  • 1A to 1C are schematic diagrams showing a worn state of a bearing and an explanatory diagram of a bearing regeneration method.
  • FIG. 2 is an explanatory diagram of a bearing regeneration method.
  • FIG. 1 shows a front view and a side view of the bearing. As shown in the side view, the bearing is divided into upper and lower halves by a horizontal axis (HA).
  • the bearing according to the present invention is a barrel-type bearing in which an arc piece is held on the inner circumferential surface of a cylindrical shell that supports the propulsion shaft of a ship. As shown in FIG. 1, the arc piece is held on the inner circumferential surface of a shell 11 having an axially long main body 110 and a flange 111 provided on its end surface. In this example, the flange side of the bearing 10 is on the stern side.
  • This bearing 10 comprises a pair of positioning plates 12 fixed to the inner circumferential surface of the cylindrical shell 11 that supports the propulsion shaft of the ship, facing each other on the horizontal axis of the shell 11, an anchor member 13 fixed to the lowest point Pb of the shell, and an arc piece 15.
  • the arc pieces 15 are composed of a bottom arc piece 15b that fits into the anchor member 13, an upper arc piece disposed on the upper part of the positioning plate 12, and a lower arc piece disposed on the lower part.
  • the horizontal axis is an axis perpendicular to the center of gravity of the propeller shaft in the cross section of the shell 11. Note that FIG. 1(a) shows a bearing consisting of only gap-type arc pieces, which will be described below, and FIG.
  • FIG. 1(b) shows a side view of a bearing consisting of an upper arc piece consisting of a gap-type arc piece and a lower arc piece consisting of a closed arc piece.
  • the bearing 10 in this example has a flange 111 as described above, but there are also bearings without the flange 111.
  • the mounting direction of the bearing may be reversed from that of the bearing 10 in this example, with the flange side facing the bow.
  • the positioning plate 12 is an integral band-shaped body formed by the upper plate 121 and the lower plate 122 engaging with each other.
  • the upper plate 121 has a shell fixing means, and in this example, is screwed to the shell 11.
  • the upper plate 121 and the lower plate 122 have an engaging surface 123, and the lower plate 122 is held on the inner surface of the shell 11 via the upper plate 121 so as not to fall off or become loose.
  • the lower plate 122 can be pulled out from the bearing 10 in which the positioning plate 12 and the arc piece 15 are arranged with a predetermined pulling force.
  • the upper plate 121 and the lower plate 122 have a tapered shape such that the engaging surface 123 becomes thicker (wider) toward the stern side, as shown in FIG. 2(b). It is preferable that the lower plate 122 can be pulled out with a pulling force of 0.1 to 20.0 tons. This allows bearings to be easily and quickly reconditioned using the bearing reconditioning method described below.
  • the structure of the mating surface 123 of the positioning plate 12 is not limited to this example and may be of other configurations. For example, it may be of a configuration in which a wedge is driven between the upper plate and the lower plate to fix them together.
  • the anchor member 13 is provided at the lowest point Pb of the inner peripheral surface of the shell 11 and is fixed so as to extend in the axial direction of the shell 11.
  • the anchor member 13 is screwed to the shell 11.
  • the anchor member 13 has the function of fixing the bottom arc piece 15b in a predetermined position.
  • the arc piece 15 is disposed on the inner peripheral surface of the shell based on the bottom arc piece 15b fitted into the anchor member 13. This allows the assembly work of the arc piece 15 to be performed easily and quickly.
  • the anchor member 13 in this example is strip-shaped, it may be a rod-shaped anchor member.
  • the surface pressure acting on the bottom arc piece 15b is uniform.
  • the groove 155 of the bottom arc piece 15b that fits into the anchor member 13 is short (Figs. 1 and 4). It is also preferable that the groove 155 of the bottom arc piece 15b does not exist at the lowest point Pb of the shell on the stern side of the bearing 10, which receives high loads.
  • the length of the anchor member 13 is 50% to 75% of the length of the bottom arc piece 15b (the length of the shell 11).
  • the anchor member 13 is arranged so that the bottom arc piece 15b is inserted from the stern side of the bearing 10 and fits into it.
  • the anchor member 13 in this example is structured to fit into the groove 155 of the bottom arc piece 15b, but it is also possible to structure the bottom arc piece 15b to have a convex rib portion and the anchor member 13 to have a groove that fits into the convex rib portion.
  • the arc piece 15 has a width with a predetermined arc length or chord length on the inner peripheral surface of the shell 11, and a length extending in the axial direction of the shell 11. Depending on its shape, the arc piece 15 is classified as a gap-type arc piece 15g or a closed arc piece 15p, as shown in FIG. 4.
  • the bearing 10 shown in FIG. 1(a) is an example in which the inner peripheral surface of the shell 11 is formed by a gap-type arc piece 15g.
  • FIG. 1(b) is an example in which the upper side of the inner peripheral surface of the shell 11 is formed by a gap-type arc piece 15g, and the lower side is formed by a closed arc piece 15p.
  • a bottom arcuate piece 15b is provided at the lowest point P B of the shell 11.
  • the bottom arcuate piece 15b can also be of a gap type (arc piece 15gb) or a closed type (arc piece 15pb).
  • the bottom arcuate piece 15b can be arranged symmetrically on the anchor member 13 in two bottom arcuate pieces 15b (15pb) (FIG. 3(a)), or in one bottom arcuate piece 15b (15pb) (FIG. 3(b)).
  • the bottom arcuate piece 15b can have a groove 155 that fits into the anchor member 13 at the bottom edge or bottom center of the bottom arcuate piece 15b.
  • the arc piece 15gm or arc piece 15pm (Figs. 1 and 2) that contacts the positioning plate 12 should be ground against the positioning plate 12.
  • the positioning plate 12 is made up of an upper plate 121 and a lower plate 122, so the arc piece 15 arranged on the upper side of the inner circumferential surface of the shell 11 is ground against the upper plate 121, and the arc piece 15 arranged on the lower side of the inner circumferential surface of the shell 11 is ground against the lower plate 122. Grinding refers to "a manual finishing process to create a highly accurate flat surface.
  • the surface is ground against a grinding table and finished by scraping with a scraper (Kojien).
  • This is a processing method that is described as “precision surface finishing by burnishing, precision surface finishing; mating by rubbing together (Weblio English-Japanese Dictionary/Japanese-English Dictionary: https://ejje.weblio.jp/content/%E6%93%A6%E3%82%8A%E5%90%88%E3%82%8F%E3%81%9B).
  • the arc piece 15 that contacts the positioning plate 12 is a closed arc piece 15pm, it is preferable to provide a notch 156 in the side edge that contacts the positioning plate 12, as shown in FIG. 4(d). This notch 156 can prevent the end surface of the sliding layer 153 from lifting up, and can suppress stress concentration and wear of the sliding layer 153.
  • the arc piece 15 is preferably made of a three-layer structure consisting of a sliding layer 153 with excellent abrasion resistance and heat resistance, an intermediate layer 152 made of an elastic body, and a base 151.
  • the base 151 can be made of metal or resin.
  • a copper alloy that has good machinability and excellent corrosion resistance can be used for the metal base 151.
  • a fiber-reinforced thermosetting resin, for example, carbon fiber-reinforced phenolic resin, can be used for the resin base 151.
  • the intermediate layer 152 is preferably an elastic body with a hardness (Shore A) of 50° to 95°.
  • nitrile rubber (NBR) with a hardness (Shore A) of 50° to 95° can be used.
  • NBR nitrile rubber
  • the intermediate layer is rubber
  • the three-layer structure is preferably formed by vulcanization adhesion. This allows for the formation of a strong adhesive structure.
  • Such an intermediate layer 152 can equalize the load from the drive shaft, suppress heat generation on the sliding surface of the sliding layer 153 of the drive shaft, and improve the wear resistance and durability of the arc piece 15.
  • the elastic deformation of the intermediate layer 152 is limited to the vertical direction as viewed from the rotation axis of the drive shaft. Therefore, no shear deformation acts on the joint surface between the sliding layer 153 and the intermediate layer 152, and deterioration of the adhesion portion between the sliding layer 153 and the intermediate layer 152 can be suppressed.
  • the sliding layer 153 is preferably a synthetic polymer compound containing fluorine atoms (F) in the molecule from the viewpoints of low friction, wear resistance, and heat resistance.
  • fluororesins such as polytetrafluoroethylene (PTFE) resin, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) resin, and tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA) resin can be used.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkoxyethylene copolymer
  • polyamide resin or phenolic resin can be used.
  • the upper arc piece is formed from a gap-type arc piece, while the lower arc piece can be formed from a gap-type arc piece or a sealed arc piece.
  • the upper arc piece of the bearing is formed from an odd number of arc pieces so that the arc pieces are arranged symmetrically on the left and right of the arc piece at the top of the shell.
  • FIG. 5 is a schematic diagram showing the wear state of the bearing 10 during operation. Wear occurs on the lower arc piece of the bearing 10, especially around the lowest point Pb on the stern side.
  • the planar shape of the worn part W is a triangle that is larger on the stern side and gradually becomes smaller toward the bow.
  • the A-A cross-sectional shape of the worn part W has a smoothly descending slope with the lowest point Pb being the valley, with the most severe wear at the lowest point Pb. In this way, the wear of the bearing 10 is partial, with some parts barely worn. For this reason, when the worn part W of the bearing 10 reaches a predetermined wear state, the bearing 10 can be regenerated by rearranging the worn arc piece with the arc piece that is not worn or has hardly worn at all. The bearing 10 can be regenerated with the propeller shaft inserted.
  • the wear state of the bearing 10 is partial as described above, and it has a smooth inclined surface. For this reason, rather than rearranging the arc pieces individually, it is preferable to rearrange them in a group (set) to ensure continuity of the wear surface. If the arc pieces are rearranged to ensure continuity of the wear surface, it is possible to prevent steps from appearing on the sliding surface of the bearing due to a change in the order of the arc pieces. This makes it possible to prevent abnormal wear of the arc pieces and vibration of the drive shaft.
  • the rearrangement of the arc pieces 15 can be done, for example, by dividing the lower arc piece into two using the bottom arc piece 15b as a reference, and rearranging each into a group. That is, the lower arc pieces can be rearranged so that the right side of the lowest point Pb of the shell 11 is one group, and the left side of the lowest point Pb of the shell 11 is another group, with the axial directions (from the stern to the bow or fore-aft direction) reversed. In this case, the rearrangement is done as shown by the dashed line in Figure 5.
  • the less worn arc pieces 15 are arranged closer to the lowest point Pb of the inner surface of the shell 11, and the more worn arc pieces 15 are arranged farther from the lowest point Pb. That is, the bottom arc piece 15b is rearranged to the position furthest from the lowest point Pb of the shell 11.
  • the bearing for recycling should be rearranged for a group of arc pieces excluding the arc piece 15 (15gm, 15pm) that contacts the lower plate 122 of the positioning plate 12, taking into consideration that the arc piece 15 (15gm, 15pm) that contacts the lower edge of the positioning plate 12 (lower plate 122) is grounded against the lower plate 122.
  • the arc piece 15 that contacts the lower edge of the arc piece 15 that contacts the lower edge of the positioning plate 12 is arranged at the bottom arc piece position when the group of arc pieces is rearranged.
  • the arc piece 15 that contacts the lower edge of the arc piece 15 that contacts the lower edge of the positioning plate 12 is arranged as an arc piece that can be replaced with the bottom arc piece 15b.
  • This replaceable arc piece is used as a substitute arc piece for the bottom arc piece 15b.
  • Recycling bearings differ according to the type of bottom arc piece 15b of the bearing.
  • the substitute arc piece 15bl' on the right side has the same shape as the bottom arc piece 15bl, but is arranged in the opposite direction
  • the substitute arc piece 15br' on the left side has the same shape as the bottom arc piece 15br, but is arranged in the opposite direction.
  • the substitute arc pieces 15b' on the left and right sides have the same shape as the bottom arc piece 15b, but are arranged in the opposite direction.
  • the left and right sides of the bearing (10, 10A, or 10B) or arc piece 15 are defined based on the vertical axis VA of the cross section of shell 11.
  • the vertical axis refers to the axis in the opposite direction to the center of gravity of the propeller shaft, which is perpendicular to the horizontal axis, and the right side of the vertical axis is called the right side of the shell cross section.
  • the bearing is remanufactured as follows. First, the right substitute arc piece 15bl' to the bottom arc piece 15br are defined as the right arc piece group 15R, and the left substitute arc piece 15br' to the bottom arc piece 15bl are defined as the left arc piece group 15L. Next, the lower plate 122 is pulled out from the shell 11. Then, the right arc piece group 15R is pulled out as a group from the shell 11, the axial direction is reversed, and the group is re-arranged in the shell 11 as a group.
  • the left arc piece group 15L is pulled out as a group from the shell 11, the axial direction is reversed, and the group is re-arranged in the shell 11 as a group, and the arc pieces are rearranged.
  • the axial direction is the direction from the stern to the bow of the bearing.
  • the regeneration of the bearing is performed as follows.
  • the right-side substitute arc piece 15b' to the bottom arc piece 15b are defined as the right arc piece group 15R
  • the left-side substitute arc piece 15b to the arc piece 15 that is in contact with the bottom arc piece 15b are defined as the left arc piece group 15L.
  • the right-side substitute arc piece 15b' to the arc piece that is in contact with the bottom arc piece 15b are defined as the right arc piece group 15R
  • the left-side substitute arc piece 15b' to the bottom arc piece 15b are defined as the left arc piece group 15L.
  • the bottom arc piece 15b can be included in the right arc piece group 15R or the left arc piece group 15L, and this can be determined based on the state of the worn portion W.
  • the lower plate 122 is pulled out from the shell 11.
  • the right arc piece group 15R is pulled out of the shell 11 as a group, the axial direction is reversed, and the group is reinstalled in the shell 11 as a group.
  • the left arc piece group 15L is pulled out of the shell 11 as a group, the axial direction is reversed, and the group is reinstalled in the shell 11 as a group, and the arrangement of the arc pieces is changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

The present invention relates to a barrel-type bearing which uses water lubrication, which supports a propulsion shaft of a marine vessel, and in which a plurality of arc pieces are held and retained at the inner circumferential surface of the bearing. A bearing according to the present invention has, at the inner circumferential surface of a cylindrical shell that supports a propulsion shaft of a marine vessel, a pair of positioning plates which are fixed opposite each other on the horizontal axis of the shell, a key member which is fixed to the bottom point Pb part of the shell, a bottom arc piece which engages with the key member, arc pieces which are provided to an upper part of the positioning plates, and arc pieces which are provided to a lower part. The horizontal axis is orthogonal to the center-of-gravity line of the propulsion shaft in a transverse section of the shell. This bearing makes it possible to easily hold and retain arc pieces at the inner circumferential surface of the bearing, and makes it possible to transfer arc pieces that are worn and arc pieces that are not worn to easily restore the bearing.

Description

船舶推進軸用の軸受及び軸受再生方法Bearing for ship propulsion shaft and bearing reconditioning method
 本発明は、船舶の推進軸を支持する水潤滑を利用した軸受にかかり、特にバレル型の軸受及び軸受再生方法に関する。 The present invention relates to a water-lubricated bearing that supports the propulsion shaft of a ship, and in particular to a barrel-type bearing and a bearing restoration method.
 船舶推進軸用の軸受において、水や海水等の水潤滑作用を利用した水潤滑軸受は、油潤滑を利用した油潤滑軸受に対し環境保護の観点から注目されている。かかる軸受について軸受の構成、特徴等をまとめた非特許文献1によると、小型船及び中型船の軸受は、従来の油潤滑軸受から水潤滑軸受が使用されるようになっており、今後は大型船にも水潤滑軸受への変換が進むとされる。また、特許文献においても種々の水潤滑軸受が提案されている。 In the case of bearings for ship propulsion shafts, water-lubricated bearings that utilize the water lubrication effect of water or seawater have attracted attention from the perspective of environmental protection, as opposed to oil-lubricated bearings that use oil lubrication. According to Non-Patent Document 1, which summarizes the structure and characteristics of such bearings, water-lubricated bearings are being used in place of the conventional oil-lubricated bearings for bearings in small and medium-sized ships, and it is said that in the future, the shift to water-lubricated bearings will progress even in large ships. Various water-lubricated bearings are also proposed in patent documents.
 例えば、特許文献1に、船舶の推進軸を支持する円筒状のシェルの内周面に、一対の位置決めプレートと、複数の密閉形円弧片及び隙間形円弧片が配設されてなる軸受であって、前記位置決めプレートは、前記シェルの水平軸上の対向する位置に固定され、前記密閉形円弧片は、前記位置決めプレートの下方、前記シェルの下面側に配設されて前記推進軸の負荷にかかり、前記隙間形円弧片は、前記密閉形円弧片に対向して前記シェルの上面側に配設され、両側縁部に冷却水を流通させる溝形成部を有し、前記密閉形円弧片及び隙間形円弧片はともに摺動層、弾性体からなる中間層及び前記シェルの内周面に密接する基台の三層構造を有してなる軸受が提案されている。この軸受は、平滑な表面を有し耐摩耗性及び耐熱性に優れた材質からなる摺動層と、推進軸からの負荷を均一化することができる弾性体層を有しており、低摩擦性、耐摩耗性及び耐久性に優れ、また弾性体層が水又は海水から保護されるので耐食性に優れるとされる。 For example, Patent Document 1 proposes a bearing in which a pair of positioning plates and a number of sealed arc pieces and gap-shaped arc pieces are arranged on the inner circumferential surface of a cylindrical shell that supports the propeller shaft of a ship, the positioning plates are fixed at opposing positions on the horizontal axis of the shell, the sealed arc pieces are arranged on the underside of the shell below the positioning plates and are subjected to the load of the propeller shaft, the gap-shaped arc pieces are arranged on the upper surface of the shell opposite the sealed arc pieces and have grooves on both side edges for circulating cooling water, and both the sealed arc pieces and the gap-shaped arc pieces have a three-layer structure consisting of a sliding layer, an intermediate layer made of an elastic material, and a base that is in close contact with the inner circumferential surface of the shell. This bearing has a sliding layer made of a material with a smooth surface and excellent wear resistance and heat resistance, and an elastic layer that can equalize the load from the propeller shaft, and is said to have low friction, wear resistance, and durability, and also has excellent corrosion resistance because the elastic layer is protected from water or seawater.
 特許文献2には、軸受部材を、 その摺動材をゴム材で構成して第一軸受部材(20a)とし、前記シェルの略下半部(L)に設けられる前記軸受部材を、 その摺動材をフッ素樹脂材で構成して第二軸受部材(20b)とし、前記シェルの略上半部と略下半部の間に、 前記軸受部材の円周方向移動を防止するためのストッパ(30、30a)を設けたことを特徴とする割型軸受が提案されている。この割型軸受は、従来の割型軸受よりも推進軸に対する摺動抵抗が小さく、船舶の燃費効率がよいとされる。そして、近年、割型軸受が船舶の推進軸を支持する軸受として使用されており、割型軸受は摩耗の激しい軸受部材のみを交換することができるので、補修が容易である等の利点を有していると記載されている。 Patent Document 2 proposes a split bearing in which the sliding material of the bearing member is made of rubber to form a first bearing member (20a), the sliding material of the bearing member provided in the approximately lower half (L) of the shell is made of fluororesin to form a second bearing member (20b), and stoppers (30, 30a) are provided between the approximately upper and lower halves of the shell to prevent circumferential movement of the bearing member. This split bearing is said to have less sliding resistance to the propeller shaft than conventional split bearings, and to improve the fuel efficiency of ships. In recent years, split bearings have been used as bearings that support the propeller shaft of ships, and it is described that split bearings have the advantage of being easy to repair, since only the bearing members that are most worn can be replaced.
国際公開第2021/260965号International Publication No. 2021/260965 実用新案登録第3183964号Utility model registration No. 3183964
 特許文献1又は2に示す水潤滑軸受は、耐摩耗性に優れているのみならず、軸受を形成する軸受部材(円弧片)を予備保管し、摩耗の激しい軸受部材のみを交換することができる利点を有しているとされる。しかしながら、交換に必要な軸受部材の範囲は必ずしも狭くなく、軸受部材の交換作業も容易でない。一方、アライメント不良、推進軸の振れ回り、プロペラの半水没航行等によって軸受部材が不測の損傷を受け緊急対応が必要な場合があり、かかる場合に迅速な対応が求められている。また、軸受の摩耗はプロペラ荷重を多く支える船尾側下部で進行するケースが多い。このため安全上及び推進効率の観点から一般的に当該部分の摩耗量の上限が定められており、その摩耗量の適切な管理が求められている。 The water-lubricated bearings shown in Patent Documents 1 and 2 are not only highly wear-resistant, but also have the advantage that the bearing members (arc pieces) that form the bearings can be stored in reserve and only those bearing members that are severely worn can be replaced. However, the range of bearing members that need to be replaced is not necessarily narrow, and the replacement work of bearing members is not easy. On the other hand, there are cases where emergency measures are required due to unexpected damage to bearing members caused by poor alignment, whirling of the propeller shaft, or sailing with the propeller half submerged, and in such cases, rapid response is required. Furthermore, in many cases, bearing wear progresses in the lower part of the stern side, which supports most of the propeller load. For this reason, from the standpoint of safety and propulsion efficiency, an upper limit on the amount of wear in this area is generally set, and appropriate management of the amount of wear is required.
 本発明は、かかる従来の問題点又は要請に対し、耐摩性、耐久性に優れるばかりでなく、軸受を構成する軸受部材を容易かつ迅速に予備品を用いることなく再配置することができる水潤滑軸受の提供及び軸受再生方法を提供することを目的とする。 The present invention aims to provide a water-lubricated bearing that is not only excellent in wear resistance and durability, but also allows the bearing components that make up the bearing to be easily and quickly replaced without the need for spare parts, in response to such conventional problems and demands, and to provide a method for regenerating the bearing.
 本発明に係る軸受は、船舶の推進軸を支持する円筒状のシェルの内周面に、そのシェルの水平軸上に対向して固着される一対の位置決めプレートと、シェルの最下点Pb部分に固着されるアンカー部材と、円弧片と、を有し、前記円弧片は、前記アンカー部材に嵌合するボトム円弧片と、前記位置決めプレートの上側部分に配設される上側円弧片及び下側部分に配設される下側円弧片を有してなる。ここで、水平軸とはシェルの横断面において推進軸の重心線に直交する軸をいう。 The bearing according to the present invention comprises a pair of positioning plates fixed to the inner peripheral surface of a cylindrical shell supporting a ship's propulsion shaft, facing each other on the horizontal axis of the shell, an anchor member fixed to the lowest point Pb of the shell, and an arc piece, the arc piece comprising a bottom arc piece that fits into the anchor member, an upper arc piece disposed on the upper part of the positioning plate, and a lower arc piece disposed on the lower part. Here, the horizontal axis refers to the axis perpendicular to the center line of gravity of the propulsion shaft in the cross section of the shell.
 上記発明において、位置決めプレートの下縁に接する円弧片のさらにその下縁に接する円弧片は、ボトム円弧片と交換可能な形状を有しているのがよい。 In the above invention, it is preferable that the arc piece that contacts the lower edge of the positioning plate has a shape that can be replaced with the bottom arc piece.
 また、上記発明において、ボトム円弧片は、アンカー部材に嵌合する溝が底部中央部分又は底部側縁部分に設けられてなるものとすることができる。 In addition, in the above invention, the bottom arc piece may have a groove in the bottom center portion or the bottom side edge portion that fits into the anchor member.
 また、上記発明において、上側円弧片は、位置決めプレートを介してシェルの上側内周面に相互に押圧保持され、下側円弧片は、前記位置決めプレートとボトム円弧片を介してシェルの下側内周面に相互に押圧保持されてなるのがよい。そして、位置決めプレートは、シェル固着手段を有する上側プレートと、その上側プレートを介してシェルの内周面に保持される下側プレートとがかみ合って一体になる帯状体であるのがよい。 In the above invention, it is preferable that the upper arc piece is pressed against the upper inner peripheral surface of the shell via a positioning plate, and the lower arc piece is pressed against the lower inner peripheral surface of the shell via the positioning plate and the bottom arc piece. The positioning plate is preferably a band-shaped body that is integrated by meshing with an upper plate having a shell fixing means and a lower plate that is held against the inner peripheral surface of the shell via the upper plate.
 また、下側プレートは、シェル内周面にすべての円弧片が配設された状態においてシェルから所定の引抜力で引き抜くことができるのがよい。 Furthermore, it is preferable that the lower plate can be pulled out of the shell with a predetermined pulling force when all the arc pieces are arranged on the inner peripheral surface of the shell.
 また、上側プレートはこれに接する円弧片とすり合わせが行われ、下側プレートはこれに接する円弧片とすり合わせが行われてなるのがよい。 Furthermore, it is preferable that the upper plate is grounded against a circular arc piece that contacts it, and the lower plate is grounded against a circular arc piece that contacts it.
 また、上側円弧片は、シェル頂部の円弧片を含めて奇数個とされるのがよい。 In addition, it is preferable to have an odd number of upper arc pieces, including the arc piece at the top of the shell.
 また、上記発明において、上側円弧片は隙間形円弧片からなり、下側円弧片は隙間形円弧片もしくは密閉形円弧片からなるものとすることができる。 In addition, in the above invention, the upper arc piece can be a gap-type arc piece, and the lower arc piece can be a gap-type arc piece or a closed arc piece.
本発明に係る軸受再生方法は、船舶の推進軸を支持する円筒状のシェルの内周面に、そのシェルの水平軸上に対向して固着される一対の位置決めプレートと、シェルの最下点Pb部分に固着されるアンカー部材と、円弧片と、を有し、前記円弧片は、前記アンカー部材に嵌合するボトム円弧片と、前記位置決めプレートの上側部分に配設される上側円弧片及び下側部分に配設される下側円弧片を有してなる軸受の再生方法であって、前記下側円弧片の船尾側に生じる摩耗部分Wにおいて、前記最下点Pb部分の摩耗深さが所定値に達したとき、摩耗が進んでいない円弧片15ほどシェル11の内周面の最下点Pbに近い部分に配設され、摩耗が進んでいる円弧片15ほど最下点Pbから離れた部分に配設されるように円弧片の配置換えを行う軸受の再生方法。ここで、水平軸とはシェルの横断面において推進軸の重心線に直交する軸をいう。 The bearing regeneration method according to the present invention is a bearing regeneration method for a cylindrical shell that supports a ship's propulsion shaft, which has a pair of positioning plates fixed to the inner peripheral surface of the shell in opposition to each other on the horizontal axis of the shell, an anchor member fixed to the lowest point Pb of the shell, and an arc piece, the arc pieces having a bottom arc piece that fits into the anchor member, an upper arc piece disposed on the upper part of the positioning plate, and a lower arc piece disposed on the lower part, and when the wear depth of the lowest point Pb part reaches a predetermined value in the worn part W occurring on the stern side of the lower arc piece, the arc pieces 15 that are less worn are arranged closer to the lowest point Pb of the inner peripheral surface of the shell 11, and the arc pieces 15 that are more worn are arranged farther from the lowest point Pb. Here, the horizontal axis refers to an axis perpendicular to the center line of the propulsion shaft in the cross section of the shell.
上記軸受再生方法において、円弧片の配置換えは、摩耗部分Wの摩耗断面の連続性が確保されるように行うのがよい。 In the above bearing reconditioning method, the rearrangement of the arc pieces should be performed in a manner that ensures the continuity of the wear cross section of the worn portion W.
 また、本発明に係る軸受は、船舶の推進軸を支持する円筒状のシェルの内周面に、そのシェルの水平軸上に対向して固着される一対の位置決めプレートと、シェルの最下点Pb部分に固着されるアンカー部材と、円弧片と、を有し、前記位置決めプレートは、シェル固着手段を有する上側プレートと、その上側プレートを介してシェルの内周面に保持される下側プレートとがかみ合って一体になる帯状体であり、前記円弧片は、前記アンカー部材に嵌合するボトム円弧片と、前記位置決めプレートの上側部分に配設される上側円弧片及び下側部分に配設される下側円弧片を有し、前記下側円弧片のうち前記位置決めプレートの下縁に接する円弧片のさらにその下縁に接する円弧片が前記ボトム円弧片と交換可能な代用円弧片を有してなる軸受、とすることができる。ここで、水平軸とはシェルの横断面において推進軸の重心線に直交する軸をいう。 The bearing according to the present invention can be a bearing having a pair of positioning plates fixed to the inner peripheral surface of a cylindrical shell supporting a ship's propulsion shaft, facing each other on the horizontal axis of the shell, an anchor member fixed to the lowest point Pb of the shell, and an arc piece, the positioning plate being a band-shaped body formed by meshing with an upper plate having a shell fixing means and a lower plate held on the inner peripheral surface of the shell via the upper plate, the arc piece having a bottom arc piece that fits into the anchor member, an upper arc piece disposed on the upper part of the positioning plate, and a lower arc piece disposed on the lower part, the lower arc piece having an arc piece that contacts the lower edge of the arc piece that contacts the lower edge of the positioning plate, and a substitute arc piece that can be replaced with the bottom arc piece. Here, the horizontal axis refers to an axis perpendicular to the center line of the propulsion shaft in the cross section of the shell.
 また、本発明に係る軸受再生方法は、上記軸受において、右側の代用円弧片からボトム円弧片までを右円弧片群そして左側の代用円弧片からボトム円弧片までを左円弧片群とし、先ずシェルから下側プレートを引き抜き、次に、前記右円弧片群を一群として前記シェルから引き抜き、軸方向を逆にしてその一群のまま前記シェルに再配設するとともに、前記左円弧片群を一群として前記シェルから引き抜き、軸方向を逆にしてその一群のまま前記シェルに再配設して円弧片間の配置換えを行うことにより実施される。ここで、垂直軸とは、水平軸に直交する推進軸の重心線の方向と逆向きの軸をいい、垂直軸の右側をシェル横断面の右側という。 The bearing regeneration method according to the present invention is carried out by first pulling out the lower plate from the shell, then pulling out the right arc piece group from the shell as a group, reversing the axial direction and re-arranging the group as a group in the shell, and pulling out the left arc piece group from the shell as a group, reversing the axial direction and re-arranging the group as a group in the shell, thereby rearranging the arc pieces. Here, the vertical axis refers to the axis that is opposite to the direction of the center of gravity of the propeller shaft that is perpendicular to the horizontal axis, and the right side of the vertical axis refers to the right side of the shell cross section.
 また、本発明に係る軸受再生方法は、上記軸受において、右側の代用円弧片からボトム円弧片までを右円弧片群そして左側の代用円弧片からボトム円弧片に接する円弧片までを左円弧片群とし、または、右側の代用円弧片からボトム円弧片に接する円弧片までを右円弧片群そして左側の代用円弧片からボトム円弧片までを左円弧片群とし、先ずシェルから下側プレートを引き抜き、次に、前記右円弧片群を一群として前記シェルから引き抜き、軸方向を逆にしてその一群のまま前記シェルに再配設するとともに、前記左円弧片群を一群として前記シェルから引き抜き、軸方向を逆にしてその一群のまま前記シェルに再配設して円弧片間の配置換えを行うことにより実施される。ここで、垂直軸とは、水平軸に直交する推進軸の重心線の方向と逆向きの軸をいい、垂直軸の右側をシェル横断面の右側という。 The bearing regeneration method according to the present invention is carried out by first pulling out the lower plate from the shell, then pulling out the right arc piece group from the shell as a group, reversing the axial direction and re-arranging the group as a group in the shell, and then pulling out the left arc piece group from the shell as a group, reversing the axial direction and re-arranging the group as a group in the shell, and rearranging the arc pieces as a group in the shell. Here, the vertical axis refers to the axis that is opposite to the direction of the center of gravity of the propeller shaft that is perpendicular to the horizontal axis, and the right side of the vertical axis refers to the right side of the shell cross section.
 本発明に係る軸受は、シェル内周面に円弧片を容易かつ迅速に配設することができ、また、耐摩耗性及び耐久性に優れる。そして、本発明に係る軸受再生方法は、摩耗や損傷の進んだ円弧片と摩耗や損傷の少ない又は健全な円弧片とを一群として配置換えを行うので予備品を用いることなく容易かつ迅速に軸受の再生を行うことができる。 The bearing according to the present invention allows the arc pieces to be easily and quickly arranged on the inner peripheral surface of the shell, and has excellent wear resistance and durability. The bearing regeneration method according to the present invention rearranges arc pieces that are severely worn or damaged as a group with arc pieces that are less worn or damaged or are in good condition, so that the bearing can be regenerated easily and quickly without using spare parts.
本発明に係る軸受の構成を説明する説明図である。図1(a)は、円弧片が隙間形円弧片のみからなる軸受の正面図及び側面図である。図1(b)は、円弧片が隙間形円弧片と密閉形円弧片からなる軸受の側面図である。1A is a front view and a side view of a bearing in which the arc pieces are made up of only gap-type arc pieces, and FIG. 1B is a side view of a bearing in which the arc pieces are made up of gap-type arc pieces and closed-type arc pieces. 図2(a)は、図1(a)のA部詳細図、図2(b)は位置決めプレート部分の拡大図を示す。FIG. 2(a) is a detailed view of part A in FIG. 1(a), and FIG. 2(b) is an enlarged view of the positioning plate portion. アンカー部材部分の拡大一部断面図を示す。図3(a)は、左右2つのボトム円弧片(隙間形円弧片)がアンカー部材に嵌合する場合、図3(b)は、1つの円弧片(密閉形円弧片)がアンカー部材に嵌合する場合を示す。Fig. 3(a) shows an enlarged partial cross-sectional view of the anchor member, in which two bottom arc pieces (gap-type arc pieces) on the left and right are fitted to the anchor member, and Fig. 3(b) shows a case in which one arc piece (closed arc piece) is fitted to the anchor member. 各種円弧片の形状・構成を示す図面である。図4(a)は密閉形円弧片の構成を説明する図面、図4(b)は隙間形円弧片の構成を説明する図面、図4(c)はアンカー部材に嵌合するボトム円弧片の溝の配置に係る説明図、図4(d)は位置決めプレートの下縁に接する密閉形円弧片の側端部に設けられる切欠の説明図である。4(a) is a diagram showing the shape and configuration of various arc pieces. Fig. 4(b) is a diagram explaining the configuration of the closed arc piece. Fig. 4(c) is a diagram explaining the arrangement of the groove of the bottom arc piece that fits into the anchor member. Fig. 4(d) is a diagram explaining the notch provided on the side end of the closed arc piece that contacts the lower edge of the positioning plate. 軸受の摩耗状態の模式図及び軸受再生方法の説明図である。1A to 1C are schematic diagrams showing a worn state of a bearing and an explanatory diagram of a bearing regeneration method. 軸受再生方法の説明図である。FIG. 2 is an explanatory diagram of a bearing regeneration method.
 以下、本発明を実施するための形態について説明する。本発明に係る軸受の例を図1に示す。図1は、軸受の正面図と側面図を示す。側面図に示すように、軸受は水平軸(HA)により上側と下側に二分されている。本発明に係る軸受は、船舶の推進軸を支持する円筒状のシェルの内周面に円弧片が保持されるバレル型の軸受である、図1に示すように、円弧片が、軸方向に長い本体110とその端面に設けられるフランジ111を有するシェル11の内周面に保持されている。本例の軸受10は、フランジ側が船尾側になっている。本軸受10は、船舶の推進軸を支持する円筒状のシェル11の内周面に、そのシェル11の水平軸上に対向して固着される一対の位置決めプレート12と、シェルの最下点Pb部分に固着されるアンカー部材13と、円弧片15と、を有してなる。そして、その円弧片15は、アンカー部材13に嵌合するボトム円弧片15bと、位置決めプレート12の上側部分に配設される上側円弧片及び下側部分に配設される下側円弧片を有してなる。ここで、水平軸は、シェル11の横断面において推進軸の重心線に直交する軸である。なお、図1(a)は、以下に説明する隙間形円弧片のみからなる軸受を示し、図1(b)は、上側円弧片が隙間形円弧片からなり下側円弧片が密閉形円弧片からなる軸受の側面図を示す。本例の軸受10は上述のようにフランジ111を有するが、フランジ111のない軸受もある。また、軸受の取付方向が本例の軸受10と逆になり、フランジ側が船首側になる場合もある。 The following describes the form for carrying out the present invention. An example of a bearing according to the present invention is shown in FIG. 1. FIG. 1 shows a front view and a side view of the bearing. As shown in the side view, the bearing is divided into upper and lower halves by a horizontal axis (HA). The bearing according to the present invention is a barrel-type bearing in which an arc piece is held on the inner circumferential surface of a cylindrical shell that supports the propulsion shaft of a ship. As shown in FIG. 1, the arc piece is held on the inner circumferential surface of a shell 11 having an axially long main body 110 and a flange 111 provided on its end surface. In this example, the flange side of the bearing 10 is on the stern side. This bearing 10 comprises a pair of positioning plates 12 fixed to the inner circumferential surface of the cylindrical shell 11 that supports the propulsion shaft of the ship, facing each other on the horizontal axis of the shell 11, an anchor member 13 fixed to the lowest point Pb of the shell, and an arc piece 15. The arc pieces 15 are composed of a bottom arc piece 15b that fits into the anchor member 13, an upper arc piece disposed on the upper part of the positioning plate 12, and a lower arc piece disposed on the lower part. Here, the horizontal axis is an axis perpendicular to the center of gravity of the propeller shaft in the cross section of the shell 11. Note that FIG. 1(a) shows a bearing consisting of only gap-type arc pieces, which will be described below, and FIG. 1(b) shows a side view of a bearing consisting of an upper arc piece consisting of a gap-type arc piece and a lower arc piece consisting of a closed arc piece. The bearing 10 in this example has a flange 111 as described above, but there are also bearings without the flange 111. In addition, the mounting direction of the bearing may be reversed from that of the bearing 10 in this example, with the flange side facing the bow.
 位置決めプレート12は、図2に示すように、上側プレート121と下側プレート122がかみ合って一体の帯状体をなしている。上側プレート121は、シェル固着手段を有しており、本例の場合はシェル11に螺着されるようになっている。上側プレート121と下側プレート122はかみ合い面123を有しており、下側プレート122は上側プレート121を介して脱落、緩み等がないようにシェル11の内周面上に保持される。また、下側プレート122は、位置決めプレート12及び円弧片15が配設された軸受10から、所定の引抜力で引き抜くことができる。上側プレート121と下側プレート122は、機能性及び作業性を考慮すると、図2(b)に示すようにかみ合い面123が船尾側に向かって厚く(幅広に)なるようなテーパ状になっているのがよい。そして、下側プレート122は引抜力が0.1~20.0トンで引き抜くことができるのが良い。これにより、以下に説明する軸受再生方法によって軸受の再生を容易かつ迅速に行うことができる。なお、位置決めプレート12のかみ合い面123の構造は、本例に限らず他の形態のものであってもよい。例えば、上側プレートと下側プレートの間にくさびを打ち込んで一体に固定する形態のものであってもよい。  As shown in FIG. 2, the positioning plate 12 is an integral band-shaped body formed by the upper plate 121 and the lower plate 122 engaging with each other. The upper plate 121 has a shell fixing means, and in this example, is screwed to the shell 11. The upper plate 121 and the lower plate 122 have an engaging surface 123, and the lower plate 122 is held on the inner surface of the shell 11 via the upper plate 121 so as not to fall off or become loose. The lower plate 122 can be pulled out from the bearing 10 in which the positioning plate 12 and the arc piece 15 are arranged with a predetermined pulling force. Considering functionality and workability, it is preferable that the upper plate 121 and the lower plate 122 have a tapered shape such that the engaging surface 123 becomes thicker (wider) toward the stern side, as shown in FIG. 2(b). It is preferable that the lower plate 122 can be pulled out with a pulling force of 0.1 to 20.0 tons. This allows bearings to be easily and quickly reconditioned using the bearing reconditioning method described below. The structure of the mating surface 123 of the positioning plate 12 is not limited to this example and may be of other configurations. For example, it may be of a configuration in which a wedge is driven between the upper plate and the lower plate to fix them together.
 アンカー部材13は、図1又は3に示すように、シェル11の内周面の最下点P部分に設けられ、シェル11の軸方向に延在するように固着される。本例の場合、アンカー部材13はシェル11に螺着されている。アンカー部材13は、ボトム円弧片15bを所定位置に固定する機能を有する。このアンカー部材13に嵌合されたボトム円弧片15bを基準に円弧片15がシェル内周面に配設される。これにより、円弧片15の組付作業を容易かつ迅速に行うことができる。なお、本例のアンカー部材13は、帯状であるが、棒状のアンカー部材であってもよい。 As shown in Fig. 1 or 3, the anchor member 13 is provided at the lowest point Pb of the inner peripheral surface of the shell 11 and is fixed so as to extend in the axial direction of the shell 11. In this example, the anchor member 13 is screwed to the shell 11. The anchor member 13 has the function of fixing the bottom arc piece 15b in a predetermined position. The arc piece 15 is disposed on the inner peripheral surface of the shell based on the bottom arc piece 15b fitted into the anchor member 13. This allows the assembly work of the arc piece 15 to be performed easily and quickly. Although the anchor member 13 in this example is strip-shaped, it may be a rod-shaped anchor member.
 ボトム円弧片15bに作用する面圧は均一であるのが好ましい。このためには、アンカー部材13に嵌合するボトム円弧片15bの溝155部分は短いのがよい(図1、図4)。また、高負荷を受ける軸受10の船尾側のシェルの最下点Pb部分にボトム円弧片15bの溝155がないのが好ましい。面圧の均一性と所定の嵌合長さを確保するため、アンカー部材13の長さは、ボトム円弧片15bの長さ(シェル11の長さ)に対して50%~75%にするのがよい。そして、アンカー部材13は、ボトム円弧片15bが軸受10の船尾側から差し込まれて嵌合するように配置されるのがよい。なお、本例のアンカー部材13はボトム円弧片15bの溝155に嵌合する構造であるが、ボトム円弧片15bが凸条部を有し、アンカー部材13がその凸条部に嵌合する溝を有する構造にすることができる。 It is preferable that the surface pressure acting on the bottom arc piece 15b is uniform. For this purpose, it is preferable that the groove 155 of the bottom arc piece 15b that fits into the anchor member 13 is short (Figs. 1 and 4). It is also preferable that the groove 155 of the bottom arc piece 15b does not exist at the lowest point Pb of the shell on the stern side of the bearing 10, which receives high loads. In order to ensure uniformity of the surface pressure and a predetermined fitting length, it is preferable that the length of the anchor member 13 is 50% to 75% of the length of the bottom arc piece 15b (the length of the shell 11). It is also preferable that the anchor member 13 is arranged so that the bottom arc piece 15b is inserted from the stern side of the bearing 10 and fits into it. Note that the anchor member 13 in this example is structured to fit into the groove 155 of the bottom arc piece 15b, but it is also possible to structure the bottom arc piece 15b to have a convex rib portion and the anchor member 13 to have a groove that fits into the convex rib portion.
 円弧片15は、シェル11の内周面上に所定の弧長又は弦長を有する幅と、シェル11の軸方向に延在する長さを有する。円弧片15は、その形状によって、図4に示すように隙間形円弧片15gと密閉形円弧片15pがある。図1(a)に示す軸受10は、シェル11の内周面が隙間形円弧片15gにより形成されている例である。図1(b)は、シェル11の内周面の上側が隙間形円弧片15gで形成され、下側が密閉形円弧片15pで形成されている例である。 The arc piece 15 has a width with a predetermined arc length or chord length on the inner peripheral surface of the shell 11, and a length extending in the axial direction of the shell 11. Depending on its shape, the arc piece 15 is classified as a gap-type arc piece 15g or a closed arc piece 15p, as shown in FIG. 4. The bearing 10 shown in FIG. 1(a) is an example in which the inner peripheral surface of the shell 11 is formed by a gap-type arc piece 15g. FIG. 1(b) is an example in which the upper side of the inner peripheral surface of the shell 11 is formed by a gap-type arc piece 15g, and the lower side is formed by a closed arc piece 15p.
 シェル11の最下点PB部分にはボトム円弧片15bが設けられる。ボトム円弧片15bにおいても、隙間形(円弧片15gb)と密閉形(円弧片15pb)がある。また、ボトム円弧片15bは、図3に示すようにアンカー部材13に、2つのボトム円弧片15b(15pb)が対称に配設される場合(図3(a))と、1つのボトム円弧片15b(15pb)が配設される場合(図3(b))がある。このため、ボトム円弧片15bは、図4(c)に示すように、アンカー部材13に嵌合する溝155がボトム円弧片15bの底部側縁部分又は底部中央部分に設けられる場合がある。本例のように貫通しない溝155が底部側縁部分にあるボトム円弧片15bにおいては、左側円弧片15blと右側円弧片15brがある。 A bottom arcuate piece 15b is provided at the lowest point P B of the shell 11. The bottom arcuate piece 15b can also be of a gap type (arc piece 15gb) or a closed type (arc piece 15pb). As shown in FIG. 3, the bottom arcuate piece 15b can be arranged symmetrically on the anchor member 13 in two bottom arcuate pieces 15b (15pb) (FIG. 3(a)), or in one bottom arcuate piece 15b (15pb) (FIG. 3(b)). For this reason, as shown in FIG. 4(c), the bottom arcuate piece 15b can have a groove 155 that fits into the anchor member 13 at the bottom edge or bottom center of the bottom arcuate piece 15b. In the bottom arcuate piece 15b with the non-through groove 155 at the bottom edge as in this example, there is a left arcuate piece 15bl and a right arcuate piece 15br.
 位置決めプレート12に接する円弧片15gm又は円弧片15pm(図1、図2)は、位置決めプレート12とすり合わせを行うのがよい。これにより、シェル11の内周面に配設される円弧片15は、相互に押圧された状態でシェル内周面に所定の保持力で保持されるようになる。本軸受10は、位置決めプレート12が上側プレート121と下側プレート122からなるので、シェル11の内周面の上側に配設される円弧片15は上側プレート121とすり合わせが行われ、シェル11の内周面の下側に配設される円弧片15は下側プレート122とすり合わせが行われる。なお、すり合わせは、「高精度の平面を作るための手仕上げ作業。表面を摺合せ定盤ですり合わせ、きさげで削って仕上げる(広辞苑)。」ことをいう。また、「precision surface finishing by burnishing 、precision surface finishing; mating by rubbing together (Weblio 英和辞典・和英辞典:https://ejje.weblio.jp/content/%E6%93%A6%E3%82%8A%E5%90%88%E3%82%8F%E3%81%9B)」とされる加工方法である。なお、位置決めプレート12に接する円弧片15が密閉形円弧片15pmである場合は、図4(d)に示すように、位置決めプレート12に接する側縁部に切欠156を設けるのが好ましい。この切欠156は、摺動層153の端面部の浮き上がりを防止することができ、摺動層153の応力集中及び摩耗を抑制することができる。 The arc piece 15gm or arc piece 15pm (Figs. 1 and 2) that contacts the positioning plate 12 should be ground against the positioning plate 12. This allows the arc piece 15 arranged on the inner circumferential surface of the shell 11 to be held against the shell's inner circumferential surface with a predetermined holding force while pressed against each other. In this bearing 10, the positioning plate 12 is made up of an upper plate 121 and a lower plate 122, so the arc piece 15 arranged on the upper side of the inner circumferential surface of the shell 11 is ground against the upper plate 121, and the arc piece 15 arranged on the lower side of the inner circumferential surface of the shell 11 is ground against the lower plate 122. Grinding refers to "a manual finishing process to create a highly accurate flat surface. The surface is ground against a grinding table and finished by scraping with a scraper (Kojien)." This is a processing method that is described as "precision surface finishing by burnishing, precision surface finishing; mating by rubbing together (Weblio English-Japanese Dictionary/Japanese-English Dictionary: https://ejje.weblio.jp/content/%E6%93%A6%E3%82%8A%E5%90%88%E3%82%8F%E3%81%9B)." If the arc piece 15 that contacts the positioning plate 12 is a closed arc piece 15pm, it is preferable to provide a notch 156 in the side edge that contacts the positioning plate 12, as shown in FIG. 4(d). This notch 156 can prevent the end surface of the sliding layer 153 from lifting up, and can suppress stress concentration and wear of the sliding layer 153.
 円弧片15は、図4に示すように、耐摩耗性及び耐熱性に優れる摺動層153、弾性体からなる中間層152及び基台151の三層構造体からなるものにするのがよい。基台151は、金属製又は樹脂製とすることができる。金属製の基台151として、機械加工性がよく耐食性に優れる銅合金を使用することができる。樹脂製の基台151として、繊維強化熱硬化性樹脂、例えば、炭素繊維強化フェノール樹脂を使用することができる。 As shown in FIG. 4, the arc piece 15 is preferably made of a three-layer structure consisting of a sliding layer 153 with excellent abrasion resistance and heat resistance, an intermediate layer 152 made of an elastic body, and a base 151. The base 151 can be made of metal or resin. A copper alloy that has good machinability and excellent corrosion resistance can be used for the metal base 151. A fiber-reinforced thermosetting resin, for example, carbon fiber-reinforced phenolic resin, can be used for the resin base 151.
 中間層152は、硬度(ショアA)50°~95°の弾性体が好ましい。例えば、硬度(ショアA)50°~95°のニトリルゴム(NBR)を使用することができる。中間層がゴムの場合は、三層構造体は加硫接着により成形するのがよい。これにより強固な接着構造体を成形することができる。かかる中間層152は、推進軸からの負荷を均一化し、推進軸の摺動層153の摺動面における発熱を抑制し、円弧片15の耐摩性及び耐久性を向上させることができる。そして、密閉形円弧片15pがシェル11の内周面の下側に配置されている場合は、中間層152の弾性変形は推進軸の回転軸心から見て垂直方向に限定される。このため、摺動層153と中間層152の接合面においては剪断方向の変形が作用せず、摺動層153と中間層152の付着部分の劣化を抑制することができる。 The intermediate layer 152 is preferably an elastic body with a hardness (Shore A) of 50° to 95°. For example, nitrile rubber (NBR) with a hardness (Shore A) of 50° to 95° can be used. When the intermediate layer is rubber, the three-layer structure is preferably formed by vulcanization adhesion. This allows for the formation of a strong adhesive structure. Such an intermediate layer 152 can equalize the load from the drive shaft, suppress heat generation on the sliding surface of the sliding layer 153 of the drive shaft, and improve the wear resistance and durability of the arc piece 15. When the closed arc piece 15p is disposed on the lower side of the inner peripheral surface of the shell 11, the elastic deformation of the intermediate layer 152 is limited to the vertical direction as viewed from the rotation axis of the drive shaft. Therefore, no shear deformation acts on the joint surface between the sliding layer 153 and the intermediate layer 152, and deterioration of the adhesion portion between the sliding layer 153 and the intermediate layer 152 can be suppressed.
 摺動層153は、低摩擦性、耐摩耗性及び耐熱性の観点から分子中にふっ素原子(F)を含有する合成高分子化合物が好ましい。例えば、四フッ化エチレン(PTFE)樹脂、四フッ化エチレン・六フッ化プロピレン共重合(FEP)樹脂、四フッ化エチレン・パーフルオロアルコキシエチレン共重合(PFA)樹脂等のフッ素系樹脂を使用することができる。または、ポリアミド樹脂又はフェノール樹脂を使用することができる。 The sliding layer 153 is preferably a synthetic polymer compound containing fluorine atoms (F) in the molecule from the viewpoints of low friction, wear resistance, and heat resistance. For example, fluororesins such as polytetrafluoroethylene (PTFE) resin, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) resin, and tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA) resin can be used. Alternatively, polyamide resin or phenolic resin can be used.
 以上、本発明に係る軸受について説明した。本軸受は、上側円弧片が隙間形円弧片から形成されてなるが、下側円弧片は隙間形円弧片もしくは密閉形円弧片から構成することができる。軸受の冷却が重要視される場合は下側円弧片を隙間形円弧片とする構成が採用され、負荷が重要視される場合は下側円弧片を密閉形円弧片とする構成が採用される。また、軸受の上側円弧片の構成は、シェル頂部の円弧片とその左右に対称に円弧片が配設されるように奇数個の円弧片から形成されてなるのがよい。これにより、シェル頂部の円弧片とボトム円弧片の間の寸法を管理することにより、以下に説明するように軸受10の最も摩耗が激しいボトム円弧片の摺動面の摩耗深さを計測・管理することができ、軸受10の摩耗状態を精度良く計測・管理することができる。 The above describes the bearing according to the present invention. In this bearing, the upper arc piece is formed from a gap-type arc piece, while the lower arc piece can be formed from a gap-type arc piece or a sealed arc piece. When cooling of the bearing is important, a configuration in which the lower arc piece is a gap-type arc piece is adopted, and when load is important, a configuration in which the lower arc piece is a sealed arc piece is adopted. In addition, it is preferable that the upper arc piece of the bearing is formed from an odd number of arc pieces so that the arc pieces are arranged symmetrically on the left and right of the arc piece at the top of the shell. In this way, by controlling the dimension between the arc piece at the top of the shell and the bottom arc piece, it is possible to measure and control the wear depth of the sliding surface of the bottom arc piece, which is the most worn of the bearing 10, as described below, and the wear state of the bearing 10 can be measured and controlled with high accuracy.
 図5は、稼働中の軸受10の摩耗状態を示す模式図である。摩耗は軸受10の下側円弧片に生じ、特に船尾側の最下点Pb部分を中心に生じる。摩耗部分Wの平面形状は、船尾側が大きく、船首方向に向けて次第に小さくなる三角形状をしている。そして、摩耗部分WのA-A断面形状は、最下点Pb部分の摩耗が激しく最下点Pb部分を谷とする滑らかに下降する傾斜面を有している。このように軸受10の摩耗は、部分的であり、ほとんど摩耗を生じていない部分がある。このため、軸受10の摩耗部分Wが所定の摩耗状態になったとき、摩耗が進んだ円弧片と摩耗が生じていない又はほとんど進んでいない円弧片の配置換えを行うことにより、軸受10の再生を図ることができる。なお、本軸受10の再生は、推進軸を挿入した状態で行うことができる。 Figure 5 is a schematic diagram showing the wear state of the bearing 10 during operation. Wear occurs on the lower arc piece of the bearing 10, especially around the lowest point Pb on the stern side. The planar shape of the worn part W is a triangle that is larger on the stern side and gradually becomes smaller toward the bow. The A-A cross-sectional shape of the worn part W has a smoothly descending slope with the lowest point Pb being the valley, with the most severe wear at the lowest point Pb. In this way, the wear of the bearing 10 is partial, with some parts barely worn. For this reason, when the worn part W of the bearing 10 reaches a predetermined wear state, the bearing 10 can be regenerated by rearranging the worn arc piece with the arc piece that is not worn or has hardly worn at all. The bearing 10 can be regenerated with the propeller shaft inserted.
 本軸受10の摩耗状態は、上記のように部分的であり、滑らかな傾斜面を有している。このため、個々に円弧片の配置換えを行うよりは、摩耗面の連続性を確保するように一群に(セットで)配置換えを行うのが好ましい。摩耗面の連続性を確保するように円弧片の配置換えを行うならば、円弧片の順列が変わることによって軸受の摺動面に段差が生ずるのを防止することができる。そして円弧片の異常摩耗、また推進軸の振動の発生を防止することができる。 The wear state of the bearing 10 is partial as described above, and it has a smooth inclined surface. For this reason, rather than rearranging the arc pieces individually, it is preferable to rearrange them in a group (set) to ensure continuity of the wear surface. If the arc pieces are rearranged to ensure continuity of the wear surface, it is possible to prevent steps from appearing on the sliding surface of the bearing due to a change in the order of the arc pieces. This makes it possible to prevent abnormal wear of the arc pieces and vibration of the drive shaft.
 円弧片15の配置換えは、例えば、ボトム円弧片15bを基準にして下側円弧片を二分割にし、それぞれを一群に配置換えを行うのがよい。すなわち、下側円弧片においてシェル11の最下点Pbから右側を一群とし、シェル11の最下点Pbから左側を一群とし、それぞれ軸方向(船尾側から船首側又は前後方向)が逆になるように配置換えを行うのがよい。この場合は、図5の一点鎖線で示すように配置換えが行われる。摩耗が進んでいない円弧片15ほどシェル11の内周面の最下点Pbに近い部分に配設され、摩耗が進んでいる円弧片15ほど最下点Pbから離れた部分に配設される。すなわち、ボトム円弧片15bはシェル11の最下点Pbから最も離れた位置に配置換えされる。 The rearrangement of the arc pieces 15 can be done, for example, by dividing the lower arc piece into two using the bottom arc piece 15b as a reference, and rearranging each into a group. That is, the lower arc pieces can be rearranged so that the right side of the lowest point Pb of the shell 11 is one group, and the left side of the lowest point Pb of the shell 11 is another group, with the axial directions (from the stern to the bow or fore-aft direction) reversed. In this case, the rearrangement is done as shown by the dashed line in Figure 5. The less worn arc pieces 15 are arranged closer to the lowest point Pb of the inner surface of the shell 11, and the more worn arc pieces 15 are arranged farther from the lowest point Pb. That is, the bottom arc piece 15b is rearranged to the position furthest from the lowest point Pb of the shell 11.
 再生用の軸受は、図1、図2に示すように、位置決めプレート12の下側プレート122に接する円弧片15(15gm、15pm)が下側プレート122とすり合わせが行われることを考慮し、位置決めプレート12(下側プレート122)の下縁に接する円弧片15(15gm、15pm)を除いた一群の円弧片について配置換えが行うのがよい。この場合、位置決めプレート12の下縁に接する円弧片15のさらにその下縁に接する円弧片15は、一群の円弧片について配置換えが行われると、ボトム円弧片位置に配設される。すなわち、位置決めプレート12の下縁に接する円弧片15のさらにその下縁に接する円弧片15は、ボトム円弧片15bと交換可能な円弧片が配設される。この交換可能な円弧片は、ボトム円弧片15bの代用円弧片とされる。 As shown in Figures 1 and 2, the bearing for recycling should be rearranged for a group of arc pieces excluding the arc piece 15 (15gm, 15pm) that contacts the lower plate 122 of the positioning plate 12, taking into consideration that the arc piece 15 (15gm, 15pm) that contacts the lower edge of the positioning plate 12 (lower plate 122) is grounded against the lower plate 122. In this case, the arc piece 15 that contacts the lower edge of the arc piece 15 that contacts the lower edge of the positioning plate 12 is arranged at the bottom arc piece position when the group of arc pieces is rearranged. In other words, the arc piece 15 that contacts the lower edge of the arc piece 15 that contacts the lower edge of the positioning plate 12 is arranged as an arc piece that can be replaced with the bottom arc piece 15b. This replaceable arc piece is used as a substitute arc piece for the bottom arc piece 15b.
 再生用の軸受は、軸受のボトム円弧片15bの形式によって異なる。ボトム円弧片15bが図6(a)のように底部側縁部分に溝155を有する形式の再生用軸受10Aと、ボトム円弧片15bが図6(b)のように底部中央部分に溝155を有する形式の再生用軸受10Bがある。再生用軸受10Aは、右側の代用円弧片15bl’がボトム円弧片15blと形状は同一であるが配設方向が前後逆になっており、左側の代用円弧片15br’がボトム円弧片15brと形状は同一であるが配設方向が逆になっている。再生用軸受10Bは、左右の代用円弧片15b’がボトム円弧片15bと形状は同一であるが配設方向が逆になっている。なお、軸受(10、10A又は10B)又は円弧片15において左右とは、シェル11の横断面の垂直軸VAを基準に定める。垂直軸とは、水平軸に直交する推進軸の重心線の逆向き方向の軸をいい、垂直軸の右側をシェル横断面の右側という。 Recycling bearings differ according to the type of bottom arc piece 15b of the bearing. There are recycling bearings 10A in which the bottom arc piece 15b has a groove 155 on the bottom side edge as shown in FIG. 6(a), and recycling bearings 10B in which the bottom arc piece 15b has a groove 155 on the bottom center as shown in FIG. 6(b). In recycling bearing 10A, the substitute arc piece 15bl' on the right side has the same shape as the bottom arc piece 15bl, but is arranged in the opposite direction, and the substitute arc piece 15br' on the left side has the same shape as the bottom arc piece 15br, but is arranged in the opposite direction. In recycling bearing 10B, the substitute arc pieces 15b' on the left and right sides have the same shape as the bottom arc piece 15b, but are arranged in the opposite direction. Note that the left and right sides of the bearing (10, 10A, or 10B) or arc piece 15 are defined based on the vertical axis VA of the cross section of shell 11. The vertical axis refers to the axis in the opposite direction to the center of gravity of the propeller shaft, which is perpendicular to the horizontal axis, and the right side of the vertical axis is called the right side of the shell cross section.
 図6(a)に示す再生用軸受10Aにおいては、軸受の再生を以下のように行う。先ず、右側の代用円弧片15bl’からボトム円弧片15brまでを右円弧片群15Rとし、左側の代用円弧片15br’からボトム円弧片15blまでを左円弧片群15Lとする。次に、シェル11から下側プレート122を引き抜く。そして、右円弧片群15Rを一群としてシェル11から引き抜き、軸方向を逆にしてその一群のままシェル11に再配設する。そして、左円弧片群15Lを一群としてシェル11から引き抜き、軸方向を逆にしてその一群のままシェル11に再配設して円弧片間の配置換えを行う。なお、軸方向とは軸受の船尾から船首に向かう方向である。 In the remanufactured bearing 10A shown in FIG. 6(a), the bearing is remanufactured as follows. First, the right substitute arc piece 15bl' to the bottom arc piece 15br are defined as the right arc piece group 15R, and the left substitute arc piece 15br' to the bottom arc piece 15bl are defined as the left arc piece group 15L. Next, the lower plate 122 is pulled out from the shell 11. Then, the right arc piece group 15R is pulled out as a group from the shell 11, the axial direction is reversed, and the group is re-arranged in the shell 11 as a group. Then, the left arc piece group 15L is pulled out as a group from the shell 11, the axial direction is reversed, and the group is re-arranged in the shell 11 as a group, and the arc pieces are rearranged. The axial direction is the direction from the stern to the bow of the bearing.
 図6(b)に示す再生用軸受10Bにおいては、軸受の再生を以下のように行う。先ず、右側の代用円弧片15b’からボトム円弧片15bまでを右円弧片群15Rとし、左側の代用円弧片15bからボトム円弧片15bに接する円弧片15までを左円弧片群15Lとする。または、右側の代用円弧片15b’からボトム円弧片15bに接する円弧片までを右円弧片群15Rとし、左側の代用円弧片15b’からボトム円弧片15bまでを左円弧片群15Lとする。ただし、ボトム円弧片15bは、右円弧片群15R又は左円弧片群15Lに含めることができ、摩耗部分Wの状態によって判断することができる。次に、シェル11から下側プレート122を引き抜く。そして、右円弧片群15Rを一群としてシェル11から引き抜き、軸方向を逆にしてその一群のままシェル11に再配設する。そして、左円弧片群15Lを一群としてシェル11から引き抜き、軸方向を逆にしてその一群のままシェル11に再配設して円弧片間の配置換えを行う。 In the bearing 10B for regeneration shown in FIG. 6(b), the regeneration of the bearing is performed as follows. First, the right-side substitute arc piece 15b' to the bottom arc piece 15b are defined as the right arc piece group 15R, and the left-side substitute arc piece 15b to the arc piece 15 that is in contact with the bottom arc piece 15b are defined as the left arc piece group 15L. Alternatively, the right-side substitute arc piece 15b' to the arc piece that is in contact with the bottom arc piece 15b are defined as the right arc piece group 15R, and the left-side substitute arc piece 15b' to the bottom arc piece 15b are defined as the left arc piece group 15L. However, the bottom arc piece 15b can be included in the right arc piece group 15R or the left arc piece group 15L, and this can be determined based on the state of the worn portion W. Next, the lower plate 122 is pulled out from the shell 11. Then, the right arc piece group 15R is pulled out of the shell 11 as a group, the axial direction is reversed, and the group is reinstalled in the shell 11 as a group. Then, the left arc piece group 15L is pulled out of the shell 11 as a group, the axial direction is reversed, and the group is reinstalled in the shell 11 as a group, and the arrangement of the arc pieces is changed.
10 軸受
 11 シェル
  110 本体
    111 フランジ
 12 位置決めプレート
  121 上側プレート
  122 下側プレート
  123 かみ合い面
 13 アンカー部材
 15、円弧片
  151 基台
  152 中間層
  153 摺動層
  154 溝形成部
  155 溝 
  156 切欠
REFERENCE SIGNS LIST 10 bearing 11 shell 110 body 111 flange 12 positioning plate 121 upper plate 122 lower plate 123 mating surface 13 anchor member 15 arcuate piece 151 base 152 intermediate layer 153 sliding layer 154 groove forming portion 155 groove
156 Notch

Claims (14)

  1.  船舶の推進軸を支持する円筒状のシェルの内周面に、そのシェルの水平軸上に対向して固着される一対の位置決めプレートと、シェルの最下点Pb部分に固着されるアンカー部材と、円弧片と、を有し、
    前記円弧片は、前記アンカー部材に嵌合するボトム円弧片と、前記位置決めプレートの上側部分に配設される上側円弧片及び下側部分に配設される下側円弧片を有してなる軸受。
     ここで、水平軸とはシェルの横断面において推進軸の重心線に直交する軸をいう。
    The device has a pair of positioning plates fixed to an inner peripheral surface of a cylindrical shell supporting a ship's propulsion shaft on a horizontal axis of the shell in opposing relation to each other, an anchor member fixed to a lowest point Pb of the shell, and a circular arc piece,
    The arcuate piece includes a bottom arcuate piece that fits into the anchor member, an upper arcuate piece disposed on an upper portion of the positioning plate, and a lower arcuate piece disposed on a lower portion of the positioning plate.
    Here, the horizontal axis refers to an axis perpendicular to the center line of gravity of the propeller shaft in the cross section of the shell.
  2.  位置決めプレートの下縁に接する円弧片のさらにその下縁に接する円弧片は、ボトム円弧片と交換可能な形状を有していることを特徴とする請求項1に記載の軸受。 The bearing according to claim 1, characterized in that the arc piece that contacts the lower edge of the positioning plate and the arc piece that contacts the lower edge of the positioning plate have a shape that is interchangeable with the bottom arc piece.
  3.  ボトム円弧片は、アンカー部材に嵌合する溝が底部中央部分又は底部側縁部分に設けられてなるものであることを特徴とする請求項1又は2に記載の軸受。 The bearing according to claim 1 or 2, characterized in that the bottom arc piece has a groove in the center part or the side edge part of the bottom that fits into the anchor member.
  4.  上側円弧片は、位置決めプレートを介してシェルの上側内周面に相互に押圧保持され、
    下側円弧片は、前記位置決めプレートとボトム円弧片を介してシェルの下側内周面に相互に押圧保持されてなることを特徴とする請求項1又は2に記載の軸受。
    The upper arcuate piece is pressed against and held against the upper inner peripheral surface of the shell via a positioning plate,
    3. A bearing according to claim 1, wherein the lower arc piece is pressed and held against the lower inner peripheral surface of the shell via the positioning plate and the bottom arc piece.
  5.  位置決めプレートは、シェル固着手段を有する上側プレートと、その上側プレートを介してシェルの内周面に保持される下側プレートとがかみ合って一体になる帯状体であることを特徴とする請求項1又は2に記載の軸受。 The bearing according to claim 1 or 2, characterized in that the positioning plate is a strip-shaped body that is integrally formed by engaging an upper plate having a shell fixing means with a lower plate that is held by the inner peripheral surface of the shell via the upper plate.
  6.  下側プレートは、シェル内周面にすべての円弧片が配設された状態においてシェルから所定の引抜力で引き抜くことができることを特徴とする請求項5に記載の軸受。 The bearing described in claim 5, characterized in that the lower plate can be pulled out of the shell with a predetermined pulling force when all the arc pieces are arranged on the inner peripheral surface of the shell.
  7.  上側プレートはこれに接する円弧片とすり合わせが行われ、下側プレートはこれに接する円弧片とすり合わせが行われてなることを特徴とする請求項5に記載の軸受。 The bearing described in claim 5, characterized in that the upper plate is fitted with a circular arc piece that contacts it, and the lower plate is fitted with a circular arc piece that contacts it.
  8.  上側円弧片は、シェル頂部の円弧片を含めて奇数個とされることを特徴とする請求項1又は2に記載の軸受。 The bearing according to claim 1 or 2, characterized in that the upper arc pieces are an odd number, including the arc piece at the top of the shell.
  9.  上側円弧片は隙間形円弧片からなり、下側円弧片は隙間形円弧片もしくは密閉形円弧片からなることを特徴とする請求項1又は2に記載の軸受。 The bearing according to claim 1 or 2, characterized in that the upper arc piece is a gap-type arc piece, and the lower arc piece is a gap-type arc piece or a closed arc piece.
  10.  船舶の推進軸を支持する円筒状のシェルの内周面に、そのシェルの水平軸上に対向して固着される一対の位置決めプレートと、シェルの最下点Pb部分に固着されるアンカー部材と、円弧片と、を有し、
    前記円弧片は、前記アンカー部材に嵌合するボトム円弧片と、前記位置決めプレートの上側部分に配設される上側円弧片及び下側部分に配設される下側円弧片を有してなる軸受の再生方法であって、
    前記下側円弧片の船尾側に生じる摩耗部分Wにおいて、前記最下点Pb部分の摩耗深さが所定値に達したとき、摩耗が進んでいない円弧片ほどシェルの内周面の最下点Pbに近い部分に配設され、摩耗が進んでいる円弧片ほど最下点Pbから離れた部分に配設されるように円弧片の配置換えを行う軸受の再生方法。
    ここで、水平軸とはシェルの横断面において推進軸の重心線に直交する軸をいう。
    The device has a pair of positioning plates fixed to an inner peripheral surface of a cylindrical shell supporting a ship's propulsion shaft on a horizontal axis of the shell in opposing relation to each other, an anchor member fixed to a lowest point Pb of the shell, and a circular arc piece,
    a method for regenerating a bearing, the method comprising the steps of:
    A bearing regeneration method in which, when the wear depth of the lowest point Pb portion of the worn portion W occurring on the stern side of the lower arc piece reaches a predetermined value, the arc piece which is less worn is arranged closer to the lowest point Pb of the inner surface of the shell, and the arc piece which is more worn is arranged farther from the lowest point Pb.
    Here, the horizontal axis refers to an axis perpendicular to the center line of gravity of the propeller shaft in the cross section of the shell.
  11. 円弧片の配置換えは、摩耗部分Wの摩耗断面の連続性が確保されるように行うことを特徴とする請求項10に記載の軸受の再生方法。 The bearing regeneration method described in claim 10, characterized in that the rearrangement of the arc pieces is performed so as to ensure continuity of the wear cross section of the worn portion W.
  12.  船舶の推進軸を支持する円筒状のシェルの内周面に、そのシェルの水平軸上に対向して固着される一対の位置決めプレートと、シェルの最下点Pb部分に固着されるアンカー部材と、円弧片と、を有し、
    前記位置決めプレートは、シェル固着手段を有する上側プレートと、その上側プレートを介してシェルの内周面に保持される下側プレートとがかみ合って一体になる帯状体であり、
    前記円弧片は、前記アンカー部材に嵌合するボトム円弧片と、前記位置決めプレートの上側部分に配設される上側円弧片及び下側部分に配設される下側円弧片を有し、
      前記下側円弧片のうち前記位置決めプレートの下縁に接する円弧片のさらにその下縁に接する円弧片が前記ボトム円弧片と交換可能な代用円弧片である軸受。
     ここで、水平軸とはシェルの横断面において推進軸の重心線に直交する軸をいう。
    The device has a pair of positioning plates fixed to an inner peripheral surface of a cylindrical shell supporting a ship's propulsion shaft on a horizontal axis of the shell in opposing relation to each other, an anchor member fixed to a lowest point Pb of the shell, and a circular arc piece,
    the positioning plate is a band-shaped body in which an upper plate having a shell fastening means and a lower plate held by the inner peripheral surface of the shell via the upper plate are engaged with each other to form a single body,
    the arc piece includes a bottom arc piece that fits into the anchor member, an upper arc piece that is disposed on an upper portion of the positioning plate, and a lower arc piece that is disposed on a lower portion of the positioning plate;
    A bearing in which the lower arc piece, which is in contact with the lower edge of the arc piece in contact with the lower edge of the positioning plate, is a substitute arc piece that is replaceable with the bottom arc piece.
    Here, the horizontal axis refers to an axis perpendicular to the center line of gravity of the propeller shaft in the cross section of the shell.
  13.  請求項12に記載の軸受において、右側の代用円弧片からボトム円弧片までを右円弧片群及び左側の代用円弧片からボトム円弧片までを左円弧片群とし、
     先ずシェルから下側プレートを引き抜き、
    次に、前記右円弧片群を一群として前記シェルから引き抜き、軸方向を逆にしてその一群のまま前記シェルに再配設するとともに、前記左円弧片群を一群として前記シェルから引き抜き、軸方向を逆にしてその一群のまま前記シェルに再配設して円弧片間の配置換えを行う軸受再生方法。
    ここで、垂直軸とは、水平軸に直交する推進軸の重心線の方向と逆向きの軸をいい、垂直軸の右側をシェル横断面の右側という。
    In the bearing according to claim 12, a right arc piece group is made up of a right substitute arc piece to a bottom arc piece, and a left arc piece group is made up of a left substitute arc piece to a bottom arc piece,
    First, pull the lower plate out from the shell.
    Next, the right group of arc-shaped pieces is pulled out as a group from the shell, the axial direction is reversed and they are reinstalled as a group in the shell, and the left group of arc-shaped pieces is pulled out as a group from the shell, the axial direction is reversed and they are reinstalled as a group in the shell, thereby rearranging the arc-shaped pieces.
    Here, the vertical axis refers to the axis that is opposite to the direction of the center of gravity of the propeller shaft that is perpendicular to the horizontal axis, and the right side of the vertical axis is called the right side of the shell cross section.
  14.  請求項12に記載の軸受において、右側の代用円弧片からボトム円弧片までを右円弧片群及び左側の代用円弧片からボトム円弧片に接する円弧片までを左円弧片群とし、または、右側の代用円弧片からボトム円弧片に接する円弧片までを右円弧片群及び左側の代用円弧片からボトム円弧片までを左円弧片群とし、
    先ずシェルから下側プレートを引き抜き、
    次に、前記右円弧片群を一群として前記シェルから引き抜き、軸方向を逆にしてその一群のまま前記シェルに再配設するとともに、前記左円弧片群を一群として前記シェルから引き抜き、軸方向を逆にしてその一群のまま前記シェルに再配設して円弧片間の配置換えを行う軸受再生方法。
    ここで、垂直軸とは、水平軸に直交する推進軸の重心線の方向と逆向きの軸をいい、垂直軸の右側をシェル横断面の右側という。
    In the bearing according to claim 12, a right arc piece group is formed from the substitute arc piece on the right side to the bottom arc piece, and a left arc piece group is formed from the substitute arc piece on the left side to the arc piece tangent to the bottom arc piece, or a right arc piece group is formed from the substitute arc piece on the right side to the arc piece tangent to the bottom arc piece, and a left arc piece group is formed from the substitute arc piece on the left side to the bottom arc piece,
    First, pull the lower plate out from the shell.
    Next, the right group of arc-shaped pieces is pulled out as a group from the shell, the axial direction is reversed and they are reinstalled as a group in the shell, and the left group of arc-shaped pieces is pulled out as a group from the shell, the axial direction is reversed and they are reinstalled as a group in the shell, thereby rearranging the arc-shaped pieces.
    Here, the vertical axis refers to the axis that is opposite to the direction of the center of gravity of the propeller shaft that is perpendicular to the horizontal axis, and the right side of the vertical axis is called the right side of the shell cross section.
PCT/JP2022/044167 2022-11-30 2022-11-30 Bearing for marine vessel propulsion shaft and bearing restoration method WO2024116324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044167 WO2024116324A1 (en) 2022-11-30 2022-11-30 Bearing for marine vessel propulsion shaft and bearing restoration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044167 WO2024116324A1 (en) 2022-11-30 2022-11-30 Bearing for marine vessel propulsion shaft and bearing restoration method

Publications (1)

Publication Number Publication Date
WO2024116324A1 true WO2024116324A1 (en) 2024-06-06

Family

ID=91323121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044167 WO2024116324A1 (en) 2022-11-30 2022-11-30 Bearing for marine vessel propulsion shaft and bearing restoration method

Country Status (1)

Country Link
WO (1) WO2024116324A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195919A (en) * 1981-05-27 1982-12-01 Shinsaku Kaguchi Bearing for stern tube
JP3183964U (en) * 2013-03-28 2013-06-06 オーツケミカル株式会社 Ship split bearings
KR20140075232A (en) * 2012-12-11 2014-06-19 현대중공업 주식회사 Supporting apparatus for propeller shaft of ship
JP2019113099A (en) * 2017-12-22 2019-07-11 三菱重工コンプレッサ株式会社 Journal bearing, rotary machine, and method of manufacturing journal bearing
WO2021260965A1 (en) * 2020-06-25 2021-12-30 株式会社ミカサ Bearing for ship propulsion shaft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195919A (en) * 1981-05-27 1982-12-01 Shinsaku Kaguchi Bearing for stern tube
KR20140075232A (en) * 2012-12-11 2014-06-19 현대중공업 주식회사 Supporting apparatus for propeller shaft of ship
JP3183964U (en) * 2013-03-28 2013-06-06 オーツケミカル株式会社 Ship split bearings
JP2019113099A (en) * 2017-12-22 2019-07-11 三菱重工コンプレッサ株式会社 Journal bearing, rotary machine, and method of manufacturing journal bearing
WO2021260965A1 (en) * 2020-06-25 2021-12-30 株式会社ミカサ Bearing for ship propulsion shaft

Similar Documents

Publication Publication Date Title
US3971606A (en) Water lubricated bearing device
CA1120982A (en) Water lubricated sleeve bearing
CN102322476A (en) Tilting-pad water-lubricated rubber alloy bearing
US6648510B2 (en) SPA super demountable bearing
US3407779A (en) Marine bearing
CN102042330A (en) Laths combined type water-lubricated rubber alloy bearing
WO2024116324A1 (en) Bearing for marine vessel propulsion shaft and bearing restoration method
US20190195272A1 (en) Half thrust bearing
CN102278374A (en) Low-noise split type water-lubricating rubber bearing
US3606505A (en) Marine bearing
KR20110100217A (en) Pillow block for a segmented, media-lubricated plain bearing
JP7343940B2 (en) Bearings for ship propulsion shafts
CN102141151A (en) Novel static-ring structure of mechanical sealing device
RU206477U1 (en) Stern tube plain bearing
JP3229489U (en) Split bearings for ships
CN215171577U (en) High-bearing silt-resistant water lubricating bearing
CN219221036U (en) Corrosion-resistant composite ball bearing of marine oil cylinder
CN220060522U (en) Stern shaft sealing device
CN117774290B (en) Water lubrication bearing bush with bionic sardine scale microstructure and preparation method thereof
CN111503142A (en) Water lubrication tail bearing with function partition structure
CN110155291B (en) Ship water-lubricated propeller bearing capable of controlling transverse dynamic excitation of shafting propeller
RU2385256C1 (en) Super marine ship propeller shaft bearing
KR20180113843A (en) journing bearing having double tilting pads and shaft supporting apparatus
CN105673547A (en) Water-lubricated thrust bearing assembly
SU1523755A1 (en) Stern-tube device