WO2024114660A1 - 一种一体式电池化成设备 - Google Patents

一种一体式电池化成设备 Download PDF

Info

Publication number
WO2024114660A1
WO2024114660A1 PCT/CN2023/134905 CN2023134905W WO2024114660A1 WO 2024114660 A1 WO2024114660 A1 WO 2024114660A1 CN 2023134905 W CN2023134905 W CN 2023134905W WO 2024114660 A1 WO2024114660 A1 WO 2024114660A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrated battery
heat
heat exchanger
fan
formation
Prior art date
Application number
PCT/CN2023/134905
Other languages
English (en)
French (fr)
Inventor
蔡琳
邓映翔
张文科
Original Assignee
珠海泰坦新动力电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海泰坦新动力电子有限公司 filed Critical 珠海泰坦新动力电子有限公司
Publication of WO2024114660A1 publication Critical patent/WO2024114660A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6565Gases with forced flow, e.g. by blowers with recirculation or U-turn in the flow path, i.e. back and forth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the power box of the formation equipment generally relies on its own cooling fan for temperature control.
  • a plurality of formation equipment are usually densely placed in a workshop, and the heat generated by the power box is dissipated into the environment of the workshop, which will increase the ambient temperature, reduce the environmental comfort of the workshop, and affect the health of the staff.
  • the temperature fluctuation in the workshop may also interfere with the formation room.
  • the power box since the current of the formation equipment is large when it is running, the power box generates severe heat. It is difficult to meet the heat dissipation requirements of the power box with only the built-in cooling fan, and the power box is prone to failure.
  • the temperature control cost of the formation equipment in the prior art is high, the energy consumption is large, and the temperature control method needs to be improved.
  • the present application provides an integrated battery formation device that can reduce temperature control costs and energy consumption, while reducing the impact of temperature control of a power box on ambient temperature.
  • an integrated battery formation device including a formation module, a power module, a heat medium pipe and a refrigerant pipe
  • the formation module including a storage position and a first temperature control device
  • the storage position forms a formation chamber for placing lithium batteries
  • the first temperature control device includes a first fan assembly and a first heat exchanger
  • the first fan assembly is used to circulate air between the storage position and the first heat exchanger
  • the power module and the formation module are spaced apart from each other
  • the power module includes a power box and a second temperature control device
  • the second temperature control device includes a second heat exchanger
  • the second heat exchanger is heat-transfer connected to the power box
  • the heat medium pipe is used to access the heat medium pipe network
  • the heat medium pipe is heat-transfer connected to the first heat exchanger
  • the refrigerant pipe is used to access the refrigerant pipe network
  • the refrigerant pipe is heat-transfer connected to the second heat exchanger.
  • the first fan assembly includes a first fan and a second fan
  • the first temperature control device includes a heat exchange air duct
  • the first heat exchanger is located in the heat exchange air duct
  • the air inlet and the air outlet of the heat exchange air duct are respectively connected to the formation chamber
  • the first fan is located at the air inlet
  • the second fan is located at the air outlet.
  • the storage location includes a needle bed located in the formation chamber, the air inlet faces the side of the needle bed, and the air outlet faces the top of the needle bed.
  • the wall surface of the formation chamber is provided with a thermal insulation layer.
  • the second temperature control device includes a second fan assembly, the second fan assembly includes a third fan, the third fan is arranged on the air inlet side of the second heat exchanger, and the third fan is used for air cooling and heat dissipation of the second heat exchanger.
  • the storage location includes a first wiring area, the first wiring area is provided with a first terminal, the power box includes a second wiring area, the second wiring area is provided with a second terminal, and the first terminal and the second terminal are plugged into each other or electrically connected through a cable.
  • the storage location includes a material inlet, and the material inlet is located on a side of the storage location away from the aisle.
  • the first wiring area is located on a side of the storage location close to the aisle, and the second wiring area is located on a side of the power box close to the aisle.
  • the integrated battery formation equipment includes a wire rack, which is installed in the The first wiring area and the second wiring area, the wire rack is used to guide the cables.
  • the integrated battery formation equipment provided by the present application has a first fan assembly that allows the air in the formation chamber to enter the first temperature control device, the air exchanges heat with the first heat exchanger, and then is sent back to the formation chamber, thereby controlling the temperature of the formation chamber, the power box exchanges heat with the second heat exchanger, thereby cooling the power box, the second heat exchanger exchanges heat with the refrigerant in the refrigerant pipeline, and the refrigerant carries heat back to the refrigerant pipeline network.
  • the second heat exchanger is provided to improve the heat dissipation effect of the power box, and improve the reliability and stability of the operation of the power box.
  • the heat generated by the power box is sent to the refrigerant pipeline through the refrigerant. It will not be directly released into the environment around the integrated battery formation equipment, thereby reducing the impact of the temperature control process of the power box on the ambient temperature.
  • the integrated battery formation equipment can better control the temperature of the power box.
  • the integrated battery formation equipment controls the temperature of the formation chamber by heat exchange, and the high-temperature temperature control area is limited to the formation chamber.
  • the formation chambers of multiple integrated battery formation equipment can share a heat medium pipe network, and the heat medium in the heat medium pipe network can be recycled and reused, and can even be directly applied to other processes of battery production, thereby reducing the energy consumption and cost of the integrated battery formation equipment.
  • FIG1 is an isometric schematic diagram of an integrated battery formation device according to an embodiment of the present application, wherein the integrated battery formation device hides some housing parts in order to better reflect the internal structure;
  • FIG2 is a schematic front view of an integrated battery formation device according to an embodiment of the present application.
  • FIG3 is a schematic top view of an integrated battery formation device according to an embodiment of the present application.
  • FIG. 4 is a side view schematic diagram of an integrated battery formation device according to an embodiment of the present application.
  • “several” means one or more, “more” means more than two, “greater than”, “less than”, “exceed”, etc. are understood to exclude the number itself, and “above”, “below”, “within”, etc. are understood to include the number itself. If there is a description of "first” or “second”, it is only used for the purpose of distinguishing technical features, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features or implicitly indicating the order of the indicated technical features.
  • an integrated battery formation device provided in an embodiment of the present application includes a formation module, a power module, a heat medium pipe and a refrigerant pipe.
  • the formation module includes a storage position and a first temperature control device.
  • the storage position forms a formation chamber for placing lithium batteries.
  • the first temperature control device includes a first fan assembly and a first heat exchanger 110.
  • the first fan assembly is used to circulate air between the storage position and the first heat exchanger 110.
  • the power module and the formation module are spaced apart from each other.
  • the power module includes a power box 310 and a second temperature control device.
  • the second temperature control device includes a second heat exchanger 410.
  • the second heat exchanger 410 is heat-transfer connected to the power box 310.
  • the heat medium pipe is used to access the heat medium pipe network.
  • the heat medium pipe is heat-transfer connected to the first heat exchanger 110.
  • the refrigerant pipe is used to access the refrigerant pipe network.
  • the refrigerant pipe is heat-transfer connected to the second heat exchanger 410.
  • the first fan assembly allows the air in the formation chamber to enter the first temperature control device, and the air exchanges heat with the first heat exchanger 110, and then is sent back to the formation chamber, thereby controlling the temperature of the formation chamber, and the power box 310 exchanges heat with the second heat exchanger 410, thereby controlling the temperature of the power box 310, and the second heat exchanger 410 exchanges heat with the refrigerant in the refrigerant pipeline, and the refrigerant carries heat back to the refrigerant network.
  • the power module and the formation module are spaced apart from each other, which reduces the mutual influence of the temperature between the two.
  • the second heat exchanger 410 is provided to improve the heat dissipation effect of the power box 310 and improve the reliability and stability of the operation of the power box 310.
  • the heat generated by the power box 310 is sent out through the refrigerant, thereby reducing the influence of the temperature control process of the power box 310 on the ambient temperature.
  • the integrated battery formation equipment can better control the temperature of the power box 310.
  • the temperature control of the process is carried out by heat exchange in the present application, and the temperature control area is limited to the formation chamber.
  • the formation chambers of multiple integrated battery formation equipment or multiple formation chambers of the same integrated battery formation equipment can share the heat medium pipeline network, thereby reducing the energy consumption and cost of the integrated battery formation equipment.
  • the power supply box 310 is a complex component.
  • the power supply box 310 generally includes a shell, and the shell integrates components such as a power supply, a control panel, and a cooling fan. Therefore, the power supply box 310 itself also has a certain heat dissipation capacity. However, in the formation scenario, the heat dissipation capacity of the power supply box 310 itself is often insufficient to meet the demand, so an external second temperature control device is required to further dissipate heat for the power supply box 310.
  • the second heat exchanger 410 and the power supply box 310 are heat-transfer connected in a specific manner that the heat exchange surface of the second heat exchanger 410 fits the shell surface of the power supply box 310 and performs heat exchange with the shell.
  • the shell may be provided with an avoidance hole, and part of the second heat exchanger 410 is located in the shell, and the heat exchange surface of the second heat exchanger 410 directly contacts the heating part of the power supply box 310 for heat exchange.
  • the structures of the first heat exchanger 110 and the second heat exchanger 410 belong to the prior art.
  • Heat exchange tubes for hot medium and cold medium are arranged in the first heat exchanger 110 and the second heat exchanger 410, respectively.
  • the heat exchange function can be realized by connecting the heat exchange tubes to the cold medium pipeline and the hot medium pipeline, respectively.
  • the hot medium and cold medium are generally liquids, such as hot water and cold water. Based on the actual temperature requirements of the formation, the temperature of the hot water is generally 60°C to 70°C.
  • the first fan assembly generates a circulating airflow through a plurality of fans.
  • the first fan assembly includes a first fan 120 and a second fan 130.
  • the first temperature control device includes a heat exchange duct 140.
  • the first heat exchanger 110 is located in the heat exchange duct 140.
  • the air inlet and the air outlet of the heat exchange duct 140 are respectively connected to the formation chamber.
  • the first fan 120 is located at the air inlet, and the second fan 130 is located at the air outlet.
  • the storage location includes a needle bed 210 located in the formation chamber, the air inlet is facing the side of the needle bed 210, and the air outlet is facing the top of the needle bed 210.
  • the needle bed 210 belongs to a type of formation fixture commonly used in the art. First, the first fan 120 draws the air in the formation chamber into the heat exchange air duct 140 from the side, and then the second fan 130 blows the hot air that has undergone heat exchange from the top to the needle bed. The air outlet blowing from the top can make the hot air blow more evenly to each lithium battery on the needle bed, thereby improving the stability and consistency of the temperature control of the lithium battery.
  • the air inlet may be directed toward the top of the needle bed 210
  • the air outlet may be directed toward the side of the needle bed 210 .
  • the wall of the formation chamber is provided with an insulation layer.
  • the insulation layer can hinder the heat exchange between the high-temperature air in the formation chamber and the external environment. On the one hand, it can reduce heat loss, and on the other hand, it can reduce the impact of temperature fluctuations in the external environment on the formation chamber. From another perspective, the insulation layer can also reduce the heat exchange between the formation chamber and the power box 310, and reduce the impact of high-temperature formation on the operation of the power box 310.
  • the insulation layer can be an insulation coating or an insulation sleeve.
  • the second temperature control device includes a second fan assembly
  • the second fan assembly includes a third fan 420
  • the third fan 420 is arranged on the air inlet side of the second heat exchanger 410
  • the third fan 420 is used to air-cool the second heat exchanger 410.
  • the third fan 420 can be started and stopped according to actual needs. Air-cooling and heat dissipation can promote the heat release of the second heat exchanger 410, improve the heat dissipation effect of the power box 310, and avoid the failure of the power box 310 due to insufficient heat dissipation efficiency.
  • the heat of the power box 310 is mainly discharged to the refrigerant pipe network through the refrigerant, and the third fan 420 mainly plays a role in auxiliary heat dissipation.
  • the impact of the third fan 420 on the ambient temperature can be controlled within an acceptable range.
  • the storage location includes a first wiring area, the first wiring area is provided with a first terminal, the power supply box 310 includes a second wiring area, the second wiring area is provided with a second terminal, and the first terminal and the second terminal are plugged into each other or electrically connected through a cable 710.
  • the needle bed 210 and other devices in the storage location are connected to the first terminal, the power supply and other devices in the power supply box 310 are connected to the second terminal, and then indirectly connected through the connection between the first terminal and the second terminal.
  • the integrated battery formation equipment still has the problem of being difficult to maintain.
  • the formation module and the power module in the prior art are usually set against the wall, so the maintenance personnel need to stand in front of the integrated battery formation equipment to maintain the needle bed 210.
  • two storage locations are provided in the vertical direction, and the feed port of the storage location is located at the front side of the integrated battery formation equipment.
  • the stacker will send the tray carrying lithium batteries into the storage location from the front for formation. If the solution of the prior art is adopted, when one of the storage locations is maintained, for safety reasons, the two storage locations need to be shut down at the same time, and then put into use at the same time after the maintenance is completed.
  • the integrated battery formation equipment includes an aisle 720 and an electric control cabinet 730 , the formation module and the power module are located on the same side of the aisle 720 , and the electric control cabinet 730 is located on the other side of the aisle 720 .
  • the integrated battery formation equipment has a rack 750 ,
  • the rack 750 forms an aisle 720 and a first zone and a second zone respectively located at both sides of the aisle, the formation module and the power module are located in the first zone, and the electric control cabinet 730 is located in the second zone.
  • the maintenance personnel can maintain the formation module in the aisle, which will not hinder the normal operation of the stacker.
  • the maintenance personnel can also maintain the power module and the electric control cabinet 730 in the aisle 720.
  • the formation module and the power module are located in the first zone, which can facilitate the wiring of the power box 310 and the needle bed 210, reduce the length of the cable 710, thereby reducing the loss and reducing the cost.
  • the feed port is located on the side of the storage location away from the aisle 720.
  • the first wiring area is located on the side of the storage location close to the aisle 720
  • the second wiring area is located on the side of the power box 310 close to the aisle 720.
  • the integrated battery formation equipment includes a wire rack 740, which is installed in the first wiring area and the second wiring area, and the wire rack 740 is used to guide the cables 710.
  • the wire rack 740 can guide and position each cable 710, thereby facilitating the induction and arrangement of the cables 710, making the layout of the cables 710 clearer and easier to maintain.
  • the integrated battery formation equipment has a rack 750, and the rack 750 forms an aisle 720 and a first zone and a second zone respectively located on both sides of the aisle.
  • the integrated battery formation equipment includes a formation module, a power module, a heat medium pipeline, a refrigerant pipeline and an electric control cabinet 730.
  • the formation module, the power module, the heat medium pipeline and the refrigerant pipeline are located in the first zone, and the electric control cabinet 730 is located in the second zone.
  • the formation module includes two storage locations and two first temperature control devices.
  • the two storage locations are stacked in a vertical direction (the storage location located at the top is hidden), and the storage locations form a formation chamber for placing lithium batteries.
  • the wall surface of the formation chamber (hidden in the figure) is provided with a thermal insulation layer, a needle bed 210 is installed in the formation chamber, and the front of the storage location has a feed port connected to the formation chamber.
  • the first temperature control device is located on the side of the storage location, and the first temperature control device includes a first fan assembly, a heat exchange air duct 140 (hidden in Fig. 1) and a first heat exchanger 110.
  • the first heat exchanger 110 is located in the heat exchange air duct 140, and the air inlet and air outlet of the heat exchange air duct 140 are connected to the heat exchange air duct 140.
  • the first blower 120 is located at the air inlet, and the second blower 130 is located at the air outlet.
  • the air inlet faces the side of the needle bed 210, and the air outlet faces the top of the needle bed 210.
  • the power module includes two power boxes 310 and two second temperature control devices.
  • the two power boxes 310 are stacked in a vertical direction.
  • One of the second temperature control devices is arranged at the bottom of the power box 310, and the other second temperature control device is arranged at the top of the power box 310.
  • the second temperature control device includes a second heat exchanger 410 and a third fan 420.
  • the second heat exchanger 410 is heat-transferably connected to the power box 310.
  • the third fan 420 is arranged on the air inlet side of the second heat exchanger 410.
  • the third fan 420 is used for air cooling and heat dissipation of the second heat exchanger 410.
  • the storage location includes a first wiring area
  • the power box 310 includes a second wiring area
  • the first wiring area is located on one side of the storage location close to the aisle 720
  • the second wiring area is located on one side of the power box 310 close to the aisle 720
  • the first wiring area is provided with a first terminal
  • the second wiring area is provided with a second terminal
  • the first terminal and the second terminal are electrically connected through a cable 710.
  • the integrated battery formation equipment also has a wire rack 740, which is installed in the first wiring area and the second wiring area, and the wire rack 740 is used to guide the cable 710.
  • the heat medium pipeline is used to access the heat medium network.
  • the heat medium pipeline is heat-transfer connected to the first heat exchanger 110 .
  • the heat medium pipeline includes a hot water inlet pipe 510 and a hot water outlet pipe 520 .
  • the refrigerant pipeline is used to access the refrigerant network.
  • the refrigerant pipeline is heat-transferably connected to the second heat exchanger 410 .
  • the refrigerant pipeline includes a cold water inlet pipe 610 and a cold water outlet pipe 620 .
  • the electric control cabinet 730 is electrically connected to the formation module and the power module to control the formation process, power output, temperature control, etc.
  • a first heat exchanger 110 A first fan 120; A second fan 130; Heat exchange air duct 140; Needle bed 210; Power supply box 310; A second heat exchanger 410; The third fan 420; Hot water inlet pipe 510; Hot water outlet pipe 520; Cold water inlet pipe 610; Cold water outlet pipe 620; Cable 710; Aisle 720; Electric control cabinet 730; Wire rack 740; Rack 750.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

公开一种一体式电池化成设备,其包括化成模块、电源模块、热媒管道和冷媒管道。本申请一体式电池化成设备能够降低温控成本以及能耗,同时减小电源箱的温控对环境温度的影响。

Description

一种一体式电池化成设备
本申请要求于2022年12月02日提交中国专利局、申请号为202223236315.5、发明名称为“一种一体式电池化成设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及化成设备领域,特别是一种一体式电池化成设备。
背景技术
环境温度对锂电池的化成效果具有重要的影响,为此,现有的锂电池化成工序会在高温的温控车间内进行,从而准确控制环境温度。搭建高温的温控车间需要较大的成本,同时运行能耗巨大。
为了解决这一问题,现有技术中出现了专门的化成设备,化成设备将化成治具置于密闭的化成室内,因此只需要保证化成室处于高温即可,化成设备可以在常温的车间中使用。但是,目前通常使用电加热管加热化成室内的空气实现温控效果,电加热管成本较高,并且由于化成时间较长,电加热管需要持续运行,使用寿命较短。
现有技术中,化成设备的电源箱一般靠自带的散热风机进行温控,一方面,车间中通常会密集摆放多个化成设备,电源箱产生的热量散发至车间的环境中,会使得环境温度升高,降低车间的环境舒适度,影响工作人员的健康,车间内的温度波动也可能对化成室产生干扰,另一方面,由于化成设备在运行时电流较大,电源箱发热严重,仅凭自带的散热风机难以满足电源箱的散热需求,电源箱容易出现故障。
因此,现有技术中化成设备的温控成本较高、能耗较大,温控方式有待改善。
技术问题
本申请提供一种一体式电池化成设备,能够降低温控成本以及能耗,同时减小电源箱的温控对环境温度的影响。
技术解决方案
本申请一些实施例提供一体式电池化成设备,包括化成模块、电源模块、热媒管道和冷媒管道,所述化成模块包括库位和第一温控装置,所述库位形成用于安放锂电池的化成室,所述第一温控装置包括第一风机组件和第一换热器,所述第一风机组件用于使气流在所述库位和所述第一换热器之间循环流动,所述电源模块与所述化成模块相互间隔,所述电源模块包括电源箱和第二温控装置,所述第二温控装置包括第二换热器,所述第二换热器与所述电源箱传热连接,所述热媒管道用于接入热媒管网,所述热媒管道与所述第一换热器传热连接,所述冷媒管道用于接入冷媒管网,所述冷媒管道与所述第二换热器传热连接。
在一些实施例中,所述第一风机组件包括第一风机和第二风机,所述第一温控装置包括换热风道,所述第一换热器位于所述换热风道内,所述换热风道的入风口和出风口分别与所述化成室连通,所述第一风机位于所述入风口,所述第二风机位于所述出风口。
在一些实施例中,所述库位包括位于所述化成室内的针床,所述入风口朝向所述针床的侧面,所述出风口朝向所述针床的顶部。
在一些实施例中,所述化成室的壁面设置有保温层。
在一些实施例中,所述第二温控装置包括第二风机组件,所述第二风机组件包括第三风机,所述第三风机设于所述第二换热器的进风侧,所述第三风机用于对所述第二换热器风冷散热。
在一些实施例中,所述库位包括第一接线区,所述第一接线区设置有第一端子,所述电源箱包括第二接线区,所述第二接线区设置有第二端子,所述第一端子和所述第二端子相互插接或者通过线缆电连接。
在一些实施例中,一体式电池化成设备包括过道和电控柜,所述化成模块和所述电源模块位于所述过道的同一侧,所述电控柜位于所述过道的另一侧。
在一些实施例中,所述库位包括进料口,所述进料口位于所述库位远离所述过道的一侧。
在一些实施例中,所述第一接线区位于所述库位靠近所述过道的一侧,所述第二接线区位于所述电源箱靠近所述过道的一侧。
在一些实施例中,所述一体式电池化成设备包括线架,所述线架安装在所 述第一接线区和所述第二接线区,所述线架用于引导所述线缆。
有益效果
相较于现有技术,本申请提供的一体式电池化成设备,第一风机组件使化成室的空气进入第一温控装置,空气与第一换热器发生热交换,之后再送回化成室,从而对化成室进行控温,电源箱与第二换热器发生热交换,从而对电源箱进行降温,第二换热器与冷媒管道内的冷媒发生热交换,冷媒携带热量返回冷媒管网,首先,设置第二换热器能够提高电源箱的散热效果,提高电源箱运行的可靠性和稳定性,其次,电源箱产生的热量通过冷媒送出,不会直接释放到一体式电池化成设备周围的环境中,从而降低了电源箱的温控过程对环境温度的影响,一体式电池化成设备能够更好地对电源箱进行温控,最后,一体式电池化成设备通过换热方式对化成室进行温控,且高温温控区域局限在化成室内,多个一体式电池化成设备的化成室能够共用热媒管网,热媒管网中的热媒能够循环重复使用,甚至可以直接应用至电池生产的其他工序中,从而降低了一体式电池化成设备的能耗和成本。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请实施例的一体式电池化成设备的轴测示意图,其中,为了更好地体现内部结构,一体式电池化成设备隐藏了部分壳体零件;
图2是本申请实施例的一体式电池化成设备的主视示意图;
图3是本申请实施例的一体式电池化成设备的俯视示意图;
图4是本申请实施例的一体式电池化成设备的侧视示意图。
本发明的实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
参照图1,本申请实施例提供的一体式电池化成设备,包括化成模块、电源模块、热媒管道和冷媒管道,化成模块包括库位和第一温控装置,库位形成用于安放锂电池的化成室,第一温控装置包括第一风机组件和第一换热器110,第一风机组件用于使气流在库位和第一换热器110之间循环流动,电源模块与化成模块相互间隔,电源模块包括电源箱310和第二温控装置,第二温控装置包括第二换热器410,第二换热器410与电源箱310传热连接,热媒管道用于接入热媒管网,热媒管道与第一换热器110传热连接,冷媒管道用于接入冷媒管网,冷媒管道与第二换热器410传热连接。
根据本申请实施例提供的一体式电池化成设备,第一风机组件使化成室的空气进入第一温控装置,空气与第一换热器110发生热交换,之后再送回化成室,从而对化成室进行控温,电源箱310与第二换热器410发生热交换,从而对电源箱310进行控温,第二换热器410与冷媒管道内的冷媒发生热交换,冷媒携带热量返回冷媒管网,首先,电源模块和化成模块相互间隔,降低了二者之间温度的相互影响,设置第二换热器410能够提高电源箱310的散热效果,提高电源箱310运行的可靠性和稳定性,其次,电源箱310产生的热量通过冷媒送出,从而降低了电源箱310的温控过程对环境温度的影响,一体式电池化成设备能够更好地对电源箱310进行温控。最后,相比于使用加热管进行化成 工序的温控,本申请通过换热方式进行温控,且温控区域局限在化成室内,多个一体式电池化成设备的化成室或者同一一体式电池化成设备的多个化成室可以共用热媒管网,因此降低了一体式电池化成设备的能耗和成本。
参照图1,可以理解的是,电源箱310是一个复杂的组件,电源箱310一般包括壳体,壳体内集成有电源、控制板、散热风扇等器件,因此电源箱310自身也具有一定的散热能力,但是在化成场景中,电源箱310自身的散热能力往往不足以满足需求,因此需要外部的第二温控装置为电源箱310进行进一步的散热。第二换热器410与电源箱310传热连接具体可以是第二换热器410的换热面与电源箱310的壳体表面相贴合,与壳体进行热交换,在另一些实施例中,也可以是壳体开设有避让孔,第二换热器410的部分位于壳体内,第二换热器410的换热面直接与电源箱310的发热部位相接触进行热交换。
第一换热器110、第二换热器410的结构属于现有技术,第一换热器110、第二换热器410内分别会布置有热媒、冷媒的换热管,将换热管分别接入冷媒管道和热媒管道即可实现换热功能。热媒、冷媒一般为液体,例如热水、冷水,基于化成的实际温度需求,热水的温度一般在60℃到70℃。
第一风机组件通过若干个风机产生循环气流,在一些实施例中,第一风机组件包括第一风机120和第二风机130,第一温控装置包括换热风道140,第一换热器110位于换热风道140内,换热风道140的入风口和出风口分别与化成室连通,第一风机120位于入风口,第二风机130位于出风口。
具体请参照图2,在一些实施例中,库位包括位于化成室内的针床210,入风口朝向针床210的侧面,出风口朝向针床210的顶部。针床210属于本领域常用的一类化成治具。首先第一风机120从侧面将化成室的空气抽入换热风道140,之后第二风机130将经过换热的热空气从顶部吹向针床。出风口从顶部吹风能够使得热空气更加均匀地吹向针床上的各个锂电池,提高锂电池温度控制的稳定性以及一致性。
当然,在另外的实施例中,也可以使入风口朝向针床210的顶部,而出风口朝向针床210的侧面。
为了进一步提高化成工序的温控效果,在一些实施例中,化成室的壁面设置有保温层。保温层能够阻碍化成室内的高温空气与外部环境的热交换,一方 面减少热量流失,另一方面能降低外部环境的温度波动对化成室的影响。从另一个角度来说,保温层也能够减小化成室与电源箱310之间的热交换,降低高温化成对电源箱310运行的影响。具体地,保温层可以为保温涂层或者保温套等。
在一些实施例中,第二温控装置包括第二风机组件,第二风机组件包括第三风机420,第三风机420设于第二换热器410的进风侧,第三风机420用于对第二换热器410风冷散热。第三风机420可以根据实际需要启停,风冷散热能够促进第二换热器410的热量释放,提高电源箱310的散热效果,避免因为散热效率不足导致电源箱310故障。需要注意的是,此时电源箱310的热量主要还是通过冷媒排往冷媒管网,第三风机420主要起到辅助散热的作用,第三风机420对环境温度的影响可以控制在可接受的范围内。
根据本申请的一些实施例,参照图3,库位包括第一接线区,第一接线区设置有第一端子,电源箱310包括第二接线区,第二接线区设置有第二端子,第一端子和第二端子相互插接或者通过线缆710电连接。首先针床210以及库位中的其它器件连接到第一端子,电源以及电源箱310中的其它器件连接到第二端子,之后再通过第一端子和第二端子之间的连接间接导通,因此无需在库位设置过线孔或者过线槽,从而提高库位的密封效果,能够保证电源箱310与库位不连通,两者不会产生气体交换,降低电源箱310与库位之间的相互影响。
现有技术中,一体式电池化成设备还存在不易维护的问题。具体来说,现有技术中的化成模块和电源模块通常会靠墙设置,因而维护人员需要站立在一体式电池化成设备的前方对针床210进行维护。以图1的实施例为例,竖直方向上设有两个库位,库位的进料口位于一体式电池化成设备的前侧,化成时,堆垛机会从前方将载有锂电池的托盘送入库位进行化成,若采用现有技术的方案,对其中一个库位进行维护时,出于安全考虑,需要将两个库位同时停机,在维护完成后再同时投入使用。
为此,在本申请的一些实施例中,参照图2,一体式电池化成设备包括过道720和电控柜730,化成模块和电源模块位于过道720的同一侧,电控柜730位于过道720的另一侧。具体参照图1,一体式电池化成设备具有机架750, 机架750形成过道720以及分别位于过道两侧的第一区、第二区,化成模块和电源模块位于第一区,电控柜730位于第二区,维护人员可以在过道上对化成模块进行维护,不会妨碍堆垛机的正常运行,因此当对一个库位进行维护时,其它库位可以正常进行化成。维护人员也可以在过道720上对电源模块以及电控柜730进行维护。此外,化成模块和电源模块位于第一区,能够便于电源箱310和针床210接线,减少线缆710的长度,从而减少损耗,降低成本。
相应地,此时进料口位于库位远离过道720的一侧。
为了便于在过道720上进行维护工作,在一些实施例中,参照图3和图4,第一接线区位于库位靠近过道720的一侧,第二接线区位于电源箱310靠近过道720的一侧。在一些实施例中,一体式电池化成设备包括线架740,线架740安装在第一接线区和第二接线区,线架740用于引导线缆710。线架740能够对各个线缆710进行导向和定位,从而方便线缆710的归纳和整理,使线缆710的布局更加清晰,便于维护。
下面参考图1、图2、图3、图4以一个具体的实施例详细描述本申请实施例的一体式电池化成设备。值得理解的是,下述描述仅是示例性说明,而不是对本申请的具体限制。本具体的实施例也可以被上述相应的技术特征替换或与上述的技术特征结合。
可以理解的是,为了方便地显示一体式电池化成设备的内部结构,一体式电池化成设备的部分外壳结构被隐藏。
参照图1,一体式电池化成设备具有机架750,机架750形成过道720以及分别位于过道两侧的第一区、第二区。一体式电池化成设备包括化成模块、电源模块、热媒管道、冷媒管道和电控柜730。化成模块、电源模块、热媒管道和冷媒管道位于第一区,电控柜730位于第二区。
参照图1和图2,化成模块包括两个库位和两个第一温控装置。两个库位在竖直方向堆叠布置(位于上方的库位被隐藏),库位形成用于安放锂电池的化成室,化成室的壁面(图中被隐藏)设置有保温层,化成室内安装有针床210,库位的正面具有连通化成室的进料口。第一温控装置位于库位的侧面,第一温控装置包括第一风机组件、换热风道140(图1中被隐藏)和第一换热器110,第一换热器110位于换热风道140内,换热风道140的入风口和出风 口分别与化成室连通,第一风机120位于入风口,第二风机130位于出风口。入风口朝向针床210的侧面,出风口朝向针床210的顶部。
电源模块包括两个电源箱310和两个第二温控装置,两个电源箱310在竖直方向堆叠布置,其中一个第二温控装置布置在电源箱310的底部,另外一个第二温控装置布置在电源箱310的顶部,第二温控装置包括第二换热器410和第三风机420,第二换热器410与电源箱310传热连接,第三风机420设于第二换热器410的进风侧,第三风机420用于对第二换热器410风冷散热。
参照图3和图4,库位包括第一接线区,电源箱310包括第二接线区,第一接线区位于库位靠近过道720的一侧,第二接线区位于电源箱310靠近过道720的一侧,第一接线区设置有第一端子,第二接线区设置有第二端子,第一端子和第二端子通过线缆710电连接。一体式电池化成设备还具有线架740,线架740安装在第一接线区和第二接线区,线架740用于引导线缆710。
热媒管道用于接入热媒管网,热媒管道与第一换热器110传热连接,热媒管道包括热水进水管510和热水出水管520。
冷媒管道用于接入冷媒管网,冷媒管道与第二换热器410传热连接,冷媒管道包括冷水进水管610和冷水出水管620。
电控柜730与化成模块以及电源模块电连接,对化成工序、电源输出、温度控制等进行控制。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。
附图标记:
第一换热器110;
第一风机120;
第二风机130;
换热风道140;
针床210;
电源箱310;
第二换热器410;
第三风机420;
热水进水管510;
热水出水管520;
冷水进水管610;
冷水出水管620;
线缆710;
过道720;
电控柜730;
线架740;
机架750。

Claims (10)

  1. 一种一体式电池化成设备,其中,包括:
    化成模块,所述化成模块包括库位和第一温控装置,所述库位形成用于安放锂电池的化成室,所述第一温控装置包括第一风机组件和第一换热器,所述第一风机组件用于使气流在所述库位和所述第一换热器之间循环流动;
    电源模块,所述电源模块与所述化成模块相互间隔,所述电源模块包括电源箱和第二温控装置,所述第二温控装置包括第二换热器,所述第二换热器与所述电源箱传热连接;
    热媒管道,所述热媒管道用于接入热媒管网,所述热媒管道与所述第一换热器传热连接;
    冷媒管道,所述冷媒管道用于接入冷媒管网,所述冷媒管道与所述第二换热器传热连接。
  2. 根据权利要求1所述的一体式电池化成设备,其中,所述第一风机组件包括第一风机和第二风机,所述第一温控装置包括换热风道,所述第一换热器位于所述换热风道内,所述换热风道的入风口和出风口分别与所述化成室连通,所述第一风机位于所述入风口,所述第二风机位于所述出风口。
  3. 根据权利要求2所述的一体式电池化成设备,其中,所述库位包括位于所述化成室内的针床,所述入风口朝向所述针床的侧面,所述出风口朝向所述针床的顶部。
  4. 根据权利要求1至3任一项所述的一体式电池化成设备,其中,所述化成室的壁面设置有保温层。
  5. 根据权利要求1至4任一项所述的一体式电池化成设备,其中,所述第二温控装置包括第二风机组件,所述第二风机组件包括第三风机,所述第三风机设于所述第二换热器的进风侧,所述第三风机用于对所述第二换热器风冷散热。
  6. 根据权利要求1至5任一项所述的一体式电池化成设备,其中,所述库位包括第一接线区,所述第一接线区设置有第一端子,所述电源箱包括第二接线区,所述第二接线区设置有第二端子,所述第一端子和所述第二端子相互插接或者通过线缆电连接。
  7. 根据权利要求1至6任一项所述的一体式电池化成设备,其中,一体式电池化成设备包括过道和电控柜,所述化成模块和所述电源模块位于所述过道的同一侧,所述电控柜位于所述过道的另一侧。
  8. 根据权利要求1至7任一项所述的一体式电池化成设备,其中,所述库位包括进料口,所述进料口位于所述库位远离所述过道的一侧。
  9. 根据权利要求6至8任一项所述的一体式电池化成设备,其中,所述第一接线区位于所述库位靠近所述过道的一侧,所述第二接线区位于所述电源箱靠近所述过道的一侧。
  10. 根据权利要求6所述的一体式电池化成设备,其中,所述一体式电池化成设备包括线架,所述线架安装在所述第一接线区和所述第二接线区,所述线架用于引导所述线缆。
PCT/CN2023/134905 2022-12-02 2023-11-29 一种一体式电池化成设备 WO2024114660A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202223236315.5U CN218957806U (zh) 2022-12-02 2022-12-02 一种一体式电池化成设备
CN202223236315.5 2022-12-02

Publications (1)

Publication Number Publication Date
WO2024114660A1 true WO2024114660A1 (zh) 2024-06-06

Family

ID=86102383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/134905 WO2024114660A1 (zh) 2022-12-02 2023-11-29 一种一体式电池化成设备

Country Status (2)

Country Link
CN (1) CN218957806U (zh)
WO (1) WO2024114660A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218957806U (zh) * 2022-12-02 2023-05-02 珠海泰坦新动力电子有限公司 一种一体式电池化成设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1689857A (zh) * 2004-04-21 2005-11-02 米其林创意开发股份有限公司 包括用冷却液冷却的电子耗散元件的车辆的电传动系
CN204011567U (zh) * 2014-06-25 2014-12-10 深圳市盛弘电气有限公司 电池化成设备
CN110867621A (zh) * 2019-11-29 2020-03-06 浙江杭可科技股份有限公司 一种方形锂离子电池化成分容充放电设备
CN111146517A (zh) * 2019-12-19 2020-05-12 珠海泰坦新动力电子有限公司 电池化成恒温设备及控制方法
CN112864470A (zh) * 2021-03-10 2021-05-28 浙江杭可科技股份有限公司 一种水冷一体式集成化成分容设备
CN113054276A (zh) * 2019-12-26 2021-06-29 奥动新能源汽车科技有限公司 换电站内部换热循环控制方法
CN215834612U (zh) * 2021-05-12 2022-02-15 南京研旭电气科技有限公司 一种储能变流器
CN217217304U (zh) * 2022-02-28 2022-08-16 三一技术装备有限公司 一种电源装置、化成柜及分容柜
CN218957806U (zh) * 2022-12-02 2023-05-02 珠海泰坦新动力电子有限公司 一种一体式电池化成设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1689857A (zh) * 2004-04-21 2005-11-02 米其林创意开发股份有限公司 包括用冷却液冷却的电子耗散元件的车辆的电传动系
CN204011567U (zh) * 2014-06-25 2014-12-10 深圳市盛弘电气有限公司 电池化成设备
CN110867621A (zh) * 2019-11-29 2020-03-06 浙江杭可科技股份有限公司 一种方形锂离子电池化成分容充放电设备
CN111146517A (zh) * 2019-12-19 2020-05-12 珠海泰坦新动力电子有限公司 电池化成恒温设备及控制方法
CN113054276A (zh) * 2019-12-26 2021-06-29 奥动新能源汽车科技有限公司 换电站内部换热循环控制方法
CN112864470A (zh) * 2021-03-10 2021-05-28 浙江杭可科技股份有限公司 一种水冷一体式集成化成分容设备
CN215834612U (zh) * 2021-05-12 2022-02-15 南京研旭电气科技有限公司 一种储能变流器
CN217217304U (zh) * 2022-02-28 2022-08-16 三一技术装备有限公司 一种电源装置、化成柜及分容柜
CN218957806U (zh) * 2022-12-02 2023-05-02 珠海泰坦新动力电子有限公司 一种一体式电池化成设备

Also Published As

Publication number Publication date
CN218957806U (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2024114660A1 (zh) 一种一体式电池化成设备
US9101078B2 (en) Data center cooling with an air-side economizer and liquid-cooled electronics rack(s)
EP1085272B1 (en) Heating-element accommodating-box cooling apparatus and method of controlling the same
WO2017148047A1 (zh) 用于机柜的冷却装置和机柜
WO2022166130A1 (zh) 储能***散热装置及储能***散热方法
JP5296457B2 (ja) 空調システム
US20120113584A1 (en) Cooling system for server and cooling method for electronic apparatus
JP2017015386A (ja) マシンラック空調ガイド機制
WO2013044862A1 (zh) 一种带辅助冷却装置的电子设备冷却***
US20200112073A1 (en) Immersed heat dissipation device for power battery
CN112566450B (zh) 一种高热密度机房热管理方法
CN113015417A (zh) 一种新型液冷模块化机架电源
CN205670900U (zh) 一种充电机散热***
EP3911134A1 (en) Containerized data system
CN111596705A (zh) 一种通讯柜的智能温控***
CN211376741U (zh) 一种动力锂电池热管理箱
US20230397377A1 (en) Classified heat dissipation system and data center
CN213300521U (zh) 一种涂覆散热涂料的高效散热器
CN218336894U (zh) 一种集装箱式数据中心
US20230397375A1 (en) Combined air-cooling and liquid-cooling refrigeration system and data center
CN217389285U (zh) 一种自动化专业机房设备支架
CN113865142B (zh) 一种撬装式高效制冷装置
EP4383486A1 (en) Electrical cabinet, electrical cabinet combination and electrical cabinet working group
CN221381615U (zh) 散热逆变器及便携式储能电源
CN215642583U (zh) 一种计算机的温控装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896807

Country of ref document: EP

Kind code of ref document: A1