WO2024114391A1 - Wireless measurement configuration techniques - Google Patents

Wireless measurement configuration techniques Download PDF

Info

Publication number
WO2024114391A1
WO2024114391A1 PCT/CN2023/131917 CN2023131917W WO2024114391A1 WO 2024114391 A1 WO2024114391 A1 WO 2024114391A1 CN 2023131917 W CN2023131917 W CN 2023131917W WO 2024114391 A1 WO2024114391 A1 WO 2024114391A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
measurement gap
integer
sfn
gap
Prior art date
Application number
PCT/CN2023/131917
Other languages
French (fr)
Inventor
Xiubin Sha
Yuan Gao
He Huang
Bo Dai
Eswar Kalyan Vutukuri
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2023/131917 priority Critical patent/WO2024114391A1/en
Publication of WO2024114391A1 publication Critical patent/WO2024114391A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • This document is directed generally to digital wireless communications.
  • LTE Long-Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • LTE-A LTE Advanced
  • 5G The 5th generation of wireless system, known as 5G, advances the LTE and LTE-A wireless standards and is committed to supporting higher data-rates, large number of connections, ultra-low latency, high reliability and other emerging business needs.
  • a first example wireless communication method includes transmitting, by a communication device to a network device, a capability information that indicates that the communication device is capable of performing a measurement without a measurement gap; and receiving, by the communication device, a radio resource configuration that does not include a measurement gap configuration.
  • the capability information includes a radio configuration condition with which the communication device is capable of performing the measurement without the measurement gap.
  • the method further comprises performing, by the communication device, the measurement in an occasion that is not for a control channel monitoring and a reception of a shared channel.
  • the radio resource configuration includes a measurement gap periodicity for the measurement, a measurement duration of the measurement, or a measurement prohibit timer between performing two measurements by the communication device.
  • the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerShortCycle.
  • the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerLongCycle. In some embodiments, the measurement is performed every one or an integer multiple of a connected mode discontinuous reception (C-DRX) periodicity immediately before a start of an on-durationTimer with a timerOffset equal to the measurement duration.
  • C-DRX connected mode discontinuous reception
  • a second example wireless communication method includes transmitting, by a communication device to a network device, a capability information that includes information that indicates whether the communication device supports a non-integer measurement gap periodicity.
  • the method further comprises receiving, by the communication device, configuration that includes a value for the non-integer measurement gap periodicity; and performing, by the communication device, a measurement based on the measurement gap that is decided based on the value for the non-integer measurement gap periodicity.
  • the non-integer measurement gap periodicity is configured by the network device, and a measurement start occasion is determined by the communication device based on the non-integer measurement gap periodicity.
  • the non-integer measurement gap periodicity is a measurement gap repetition period (MGRP) that has a non-integer value.
  • MGRP measurement gap repetition period
  • the method further comprises receiving, by the communication device, multiple measurement gap configuration that includes a periodicity; and performing, by the communication device, a measurement at each measurement gap indicated in the multiple measurement gap configuration.
  • the periodicity in the multiple measurement gap configuration is associated with a non-integer periodicity of a service that is associated with an integer periodicity of another service.
  • the integer periodicity is 50 milliseconds or an integer multiple of 50 milliseconds.
  • a first subframe of each measurement gap occurs at a system frame number (SFN) and at a subframe meeting the following condition:
  • a third example wireless communication method includes receiving, by a communication device from a network device, multiple sets of cell discontinuous transmission (DTX) and/or discontinuous reception (DRX) pattern configuration, where each serving cell is configured with a cell DTX and/or DRX pattern index that indicates which set of cell DTX and/or DRX pattern configuration is used in a serving cell; or where each set of cell DTX and/or DRX pattern configuration includes an identity, and each serving cell is configured with a first identity associated with a second identity of a set of cell DTX and/or DRX pattern configuration that indicates which set of cell DTX and/or DRX pattern configuration is used in the serving cell; and determining by the communication device, the cell DTX and/or DRX pattern configuration that is used in each serving cell based on the multiple sets of DTX and/or DRX pattern configuration, and the cell DTX and/or DRX pattern index of each serving cell or identity configured in each serving cell.
  • DTX discontinuous transmission
  • a fourth example wireless communication method includes receiving, by a network device from a communication device, a capability information that indicates that the communication device is capable of performing a measurement without a measurement gap; and transmitting, by the network device, a radio resource configuration that does not include a measurement gap configuration.
  • the radio resource configuration includes a measurement gap periodicity for the measurement, a measurement duration of the measurement, or a measurement prohibit timer between performing two measurements by the communication device.
  • the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerShortCycle.
  • the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerLongCycle.
  • the measurement is performed every one or an integer multiple of a connected mode discontinuous reception (C-DRX) periodicity immediately before a start of an on-durationTimer with a timerOffset equal to the measurement duration.
  • a fifth example wireless communication method includes receiving, by a network device from a communication device, a capability information that includes information that indicates whether the communication device supports a non-integer measurement gap periodicity; and transmitting, by the network device, configuration that includes a value for the non-integer measurement gap periodicity.
  • the non-integer measurement gap periodicity is configured by the network device, and a measurement start occasion is based on the non-integer measurement gap periodicity.
  • the non-integer measurement gap periodicity is a measurement gap repetition period (MGRP) that has a non-integer value.
  • the method further comprises transmitting, by the communication device, multiple measurement gap configuration that includes a periodicity.
  • the periodicity in the multiple measurement gap configuration is associated with a non-integer periodicity of a service that is associated with an integer periodicity of another service.
  • the integer periodicity is 50 milliseconds or an integer multiple of 50 milliseconds.
  • a first subframe of each measurement gap occurs at a system frame number (SFN) and at a subframe meeting the following condition:
  • a sixth example wireless communication method transmitting, by a network device to a communication device, multiple sets of cell discontinuous transmission (DTX) and/or discontinuous reception (DRX) pattern configuration, where each serving cell is configured with a cell DTX and/or DRX pattern index that indicates which set of cell DTX and/or DRX pattern configuration is used in a serving cell; or where each set of cell DTX and/or DRX pattern configuration includes an identity, and each serving cell is configured with a first identity associated with a second identity of a set of cell DTX and/or DRX pattern configuration that indicates which set of cell DTX and/or DRX pattern configuration is used in the serving cell.
  • DTX discontinuous transmission
  • DRX discontinuous reception
  • the above-described methods are embodied in the form of processor-executable code and stored in a non-transitory computer-readable storage medium.
  • the code included in the computer readable storage medium when executed by a processor, causes the processor to implement the methods described in this patent document.
  • a device that is configured or operable to perform the above-described methods is disclosed.
  • FIG. 1 shows an example scenario where a data burst and a Measurement gap occasion may overlap or partially overlap in some measurement gap period.
  • FIG. 2 shows an example flowchart of operations performed by a user equipment (UE) and a base station (gNB) where the gNB can configure the radio resource to avoid measurement gap configuration.
  • UE user equipment
  • gNB base station
  • FIG. 3 shows an example flowchart of operations performed by a UE and gNB where the UE perform measurement adaptively in non-scheduling occasion.
  • FIG. 4A shows that an end occasion of measurement duration is or is immediately before the start occasion of the on-durationTimer for performing measurement every one connected mode discontinuous reception (C-DRX) periodicity.
  • C-DRX connected mode discontinuous reception
  • FIG. 4B shows that an end occasion of measurement duration is or is immediately before the start occasion of the on-durationTimer for performing measurement every two C-DRX periodicity.
  • FIG. 5 shows an example flowchart of operations performed by a UE and gNB for non-integer gap periodicity scenario.
  • FIG. 6 shows an example flowchart of operations performed by a UE and gNB for a multiple gap pattern scenario.
  • FIG. 7 shows an exemplary block diagram of a hardware platform that may be a part of a network device or a communication device.
  • FIG. 8 shows an example of wireless communication including a base station (BS) and user equipment (UE) based on some implementations of the disclosed technology.
  • BS base station
  • UE user equipment
  • FIG. 9 shows an exemplary flowchart for receiving a radio resource configuration.
  • FIG. 10 shows an exemplary flowchart for transmitting a capability information related to a non-integer measurement gap periodicity.
  • FIG. 11 shows an exemplary flowchart for determining a cell discontinuous transmission (DTX) and/or discontinuous reception (DRX) pattern configuration that is used in each serving cell.
  • DTX cell discontinuous transmission
  • DRX discontinuous reception
  • FIG. 12 shows an exemplary flowchart for transmitting a radio resource configuration.
  • FIG. 13 shows an exemplary flowchart for transmitting configuration that includes a value for the non-integer measurement gap periodicity configuration.
  • FIG. 14 shows an exemplary flowchart for transmitting multiple sets of cell DTX and/or DRX pattern configuration.
  • the frame rates of some wireless services such as extended reality (XR) services (e.g., 15 frames per second (fps) , 30 fps, 45 fps, 60 fps, 72 fps, 90 fps and 120fps) can respectively correspond to non-integer periodicities of (66.66 micro second (ms) , 33.33 ms, 22.22 ms, 16.66 ms, 13.88 ms, 11.11 ms and 8.33 ms) which are not multiples of the measurement gap periodicity (e.g.
  • XR extended reality
  • Measurement Gap Repetition Period (MGRP) , with value of 20ms, 40ms, 80ms, or 160ms)
  • the Measurement Gap Repetition Period is a measurement periodicity that network configured for UE to determine the measurement gap time domain position.
  • the measurement gap is the periods that network configured for UE to perform measurements, during the measurement GAP the UE does not perform dedicated uplink transmission or receive dedicated downlink information.
  • some data burst e.g., XR data burst
  • Measurement gap occasion e.g., Measurement Gap Length, MGL, as indicated in FIG. 1 should not be overlapped.
  • the data burst of XR services arrives with non-integer periodicity, and the measurement GAP can only be configured with integer-periodicity in the current 3GPP specification, the data burst and measurement GAP may overlap or partially overlap in some measurement gap period, as shown in FIG. 1 with dashed box.
  • This patent document describes techniques to configure the measurement parameters to match the non-integer periodicity of some services (e.g., XR services) with the measurement gap to, for example, avoid the overlapping between data burst time and Measurement gap or avoid the overlapping between C-DRX on-duration and Measurement GAP.
  • some services e.g., XR services
  • some no measurement gap or optimized measurement gap configuration method are supported, e.g. UE can report its measurement capability that measurement gap is not need for measurement, and gNB will not configure measurement gap to UE for measurement; but may mean that the UE have higher capability for measurement without measurement gap in any radio configuration cases and the equipment cost of the UE can be high.
  • the gNB sends the radio configuration to UE, the gNB sends the request in RRCReconfiguration or in RRCResume message for the UE to report measurement gap requirement information, and then UE reports the measurement gap requirement information to gNB in RRCReconfigurationComplete or in RRCResumeComplete message.
  • gNB can configure suitable measurement Gap parameters to UE, or does not configure measurement gap if the UE reports that measurement gap is not needed for measurement with the current radio configuration.
  • This method can improve the radio resource efficiency, but since radio resource configuration has been sent to UE, if UE needs gap for measurement while using the configured radio resource configuration, it will be difficult for gNB to configure the measurement parameters (e.g. measurement GAP) to match the non-integer periodicity of some services (e.g., XR services) so that, for example, it may be difficult for gNB to avoid the overlapping between data burst and Measurement gap or avoid the overlapping between C-DRX on-duration and Measurement GAP.
  • this patent document describes example techniques for a base station to configure measurement parameters to match non-integer periodicity of a service (e.g., XR service) .
  • Embodiment 1 (UE Report No Gap Condition)
  • NR UE can support some high performance features e.g., NE-DC, multiple layers MIMO etc., which needs multiple Rx antenna, for the XR service, not all the high performance features may be necessary.
  • UE can report UE capability that includes the radio configuration condition that indicates that (or under which) the measurement gap is not necessary to perform measurements by the UE.
  • gNB Based on the no measurement gap capability indicated with the radio configuration condition, gNB can configure the radio resource to avoid measurement gap configuration as shown in FIG. 2.
  • the UE can transmit the UE capability including the radio configuration condition with no measurement GAP requirement using a RRC message (e.g. in UECapabilityInformation) if the UE determines that the measurement gap is not necessary with the radio configuration condition.
  • a RRC message e.g. in UECapabilityInformation
  • the radio configuration condition under which the measurement gap is not necessary to perform measurements can comprise any one or more of: the maximal number of MIMO layers below which measurement gap is not necessary to perform measurements; the maximal number of DL MIMO layers below which measurement gap is not necessary to perform measurements; the maximal number of ports that can be configured below which measurement gap is not necessary to perform measurements; the maximal number of secondary cells (scells) that can be configured below which measurement gap is not necessary to perform measurements; the maximal number of frequencies to be measured below which measurement gap is not necessary to perform measurements; the indication of features or feature combinations that measurement gap is not necessary to perform measurements; the indication of physical layer configurations or combination of physical layer configurations that measurement gap is not necessary to perform measurements; the indication of frequencies or frequency combinations that measurement gap is not necessary to perform measurements; the indication of frequency bands that measurement gap is not necessary to perform measurements; whether the active BWP is the initial BWP; the maximal frequency span between the current operating frequency and the initial BWP below which measurement gap is not necessary to perform measurements; the maximal frequency span between the active BWP and the initial BWP
  • the radio configuration condition for no measurement gap can be reported by differentiating SSB based measurement and/or CSI-RS based measurement.
  • Embodiment 2 (UE Performs Measurement Adaptively in Non- Scheduling Occasion)
  • UE can know the occasions when PDCCH monitoring and/or DL-SCH reception are not necessary, e.g. based on C-DRX (DRX for UE in RRC_CCONNECTED state) configuration, PDCCH configuration, search space configuration and/or PDCCH skipping etc. In such cases, UE can automatically (or without being indicated to do so by the base station) select some occasions that are not configured for (or that are not associated with) PDCCH monitoring and DL-SCH reception for measurement, and thus no measurement gap is configured. The occasions selected by the UE can be used by the UE to perform measurements.
  • C-DRX DRX for UE in RRC_CCONNECTED state
  • PDCCH configuration search space configuration and/or PDCCH skipping etc.
  • UE can automatically (or without being indicated to do so by the base station) select some occasions that are not configured for (or that are not associated with) PDCCH monitoring and DL-SCH reception for measurement, and thus no measurement gap is configured.
  • the occasions selected by the UE
  • FIG. 3 shows an example procedure for this embodiment.
  • network may provide some mechanism to aid the automatic measurement by the UE, e.g., the measurement periodicity, measurement duration, measurement prohibit timer between performing two measurements, search space switching triggered by DCI or MAC CE to reserve time occasion for UE to perform automatic measurement; PDCCH skipping indication to reserve time occasion for UE to perform automatic measurement etc.
  • the measurement periodicity is one or an integer multiple of the C-DRX periodicity
  • the UE can perform measurement every one or an integer multiple of the C-DRX periodicity just immediately before the start of the on-durationTimer with an timerOffset equal to the measurement duration.
  • the end occasion of measurement duration is or is immediately before the start occasion of the on-durationTimer, as shown in FIG.
  • the measurement end SFN and end subframe is determined based on the following equation:
  • the measurement start occasion is the time occasion before the measurement end SFN and end subframe with a timeoffset (e.g. with a value of the measurement duration length) .
  • a timeoffset e.g. with a value of the measurement duration length
  • the: N*drx-ShortCycle, N*drx-LongCycle, drx-NonIntegerShortCycle *N, and/or drx-NonIntegerLongCycle*N are measurement gap periodicity.
  • the other parameters e.g.
  • DRX_SFN_COUNTER drx-NonIntegerShortCycle, drx-NonIntegerLongCycle, etc., ) used in the equations are the same as that in the C-DRX formular to decide the occasion to start the on-DurationTimer.
  • Embodiment 3 (Non-Integer Gap Periodicity)
  • non-integer measurement gap periodicity e.g. MGRP having a non-integer value
  • the measurement start occasion is determined by the UE based on one of the following example methods.
  • the measurement start occasion is determined by the measurement gap start occasion and the measurement GAP duration (e.g. MGL) , where the measurement GAP duration is configured by the gNB to the UE, and where the measurement gap start occasion is determined by the UE based on the SFN and subframe number (also known as subframe time occasion) .
  • Example Method 1 the first subframe of each gap occurs at an SFN and subframe meeting the following condition:
  • the MGRP in the equations above is the measurement gap repetition period configured by network, expressed by unit of ms, which can be equal to one or an integer multiple of the traffic non-integer periodicity, and can be configured by a burst frequency, or non-integer ms value and/or coupled with a multiple value, e.g., configured with x fps, x hz, x. yyy ms, and/or a multiple n. If multiple n is configured, then MGRP will be n*x fps, n*x hz, or n*x. yyy ms.
  • gapOffset is the gap offset of the gap pattern with MGRP indicated in the field mgrp, and the value range of gapOffset is integer from 0 to floor (MGRP) -1.
  • GAP_SFN_COUNTER is initialized to 1; Otherwise, GAP_SFN_COUNTER is initialized to 0, and GAP_SFN_COUNTER is with increment by 1 every SFN changes to 0, ,
  • ⁇ MGRP is a non-integer with unit of ms, configured by gNB or transferred from the measurement gap periodicity (e.g. with unit of hz, fps, or ms) configured by gNB.
  • Example Method 2 the first subframe of the n th gap occurs at an SFN and subframe meeting the following condition:
  • the MGRP in the equation above is the measurement gap repetition period configured by network, expressed by unit of ms, which equal to one or an integer multiple of the traffic non-integer periodicity, and can be configured by a burst frequency, or non-integer ms value and/or coupled with a multiple value. e.g. configured with x fps, x hz, x. yyy ms, and/or a multiple n. if multiple n is configured, then MGRP will be n*x fps, n*x hz, or n*x. yyy ms, where x, y, and n are integers
  • SFN start time and subframe start time are respectively the SFN and the subframe number of the first (1 st ) measurement gap start occasion where the measurement gap is (re-)configured.
  • Example Method 3 the first subframe of n th gap occurs at an SFN and subframe meeting the following condition:
  • the SFN ceil ( [ (SFN start time ) ⁇ 10 + subframe start time +n ⁇ MGRP] div (10240) ) modulo 1024
  • the MGRP in the equations above is the measurement gap repetition period configured by network, expressed by unit of ms. which equal to one or an integer multiple of the traffic non-integer periodicity, and can be configured by a burst frequency, or non-integer ms value and/or coupled with a multiple value. e.g. configured with x fps, x hz, x. yyy ms, and/or a multiple n. if multiple n is configured, then MGRP will be n*x fps, n*x hz, or n*x. yyy ms.
  • SFN start time and slot start time are respectively the SFN and the subframe number of the first (1 st ) measurement gap start occasion where the measurement gap is (re-) configured.
  • ceil (X) is to get the integer that is larger than or equal to the X, it can also be substituted by floor (X) , e.g., to get the integer that is less than or equal to the X.
  • UE capability report to indicate whether non-Integer Measurement gap periodicity (also known as Measurement gap enhancement) is necessary; only if the UE supports non-Integer Measurement gap periodicity, network can configure a value for the non-Integer Measurement gap periodicity (e.g., non-Integer MGRP) to UE. And only the value for the non-Integer Measurement gap periodicity (e.g., non-Integer MGRP) is configured, UE perform the measurement based on measurement gap determined with the configured value for the non-Integer Measurement gap periodicity and at least one of the equations above. The UE can transmit it’s capability using a RRC message (e.g. in UECapabilityInformation) to indicate to gNB whether non-Integer Measurement gap periodicity (also known as Measurement gap enhancement) is necessary.
  • FIG. 5 shows an example procedure for the technique described in this embodiment.
  • Embodiment 4 Multiple gap pattern
  • multiple integer measurement gap periodicity configuration can be used to associate and/or formulate the non-integer measurement gap periodicity so that effect or result of multiple integer measurement gap periodicity configuration is the same as that of the non-integer measurement GAP periodicity.
  • the non-integer measurement gap periodicity is the measurement gap periodicity (e.g., MGRP) with a non-integer value.
  • MGRP measurement gap periodicity
  • three integer measurement gap configuration with different gap start offset can be configured to the UE to match a non-integer measurement GAP periodicity.
  • the periodicity is 16.667ms, which can be transferred to three measurement gap configuration with integer periodicities (50ms) as follows:
  • MGRP values should be introduced, e.g. 50ms, 100ms, 200ms. Since these MGRP values are not a integer factor of SFN periodicity (10240 ms) , some mechanism is necessary to deal with the SRN wraparound issue. E. g. the first subframe of each gap occurs at an SFN and subframe meeting the following condition when new MGRP value is configured in the multiple measurement gap configuration, wherein the new MGRP value is not an integer factor of SFN periodicity (10240 ms)
  • gapOffset is the gap offset of the gap pattern with MGRP indicated in the field mgrp, which is used to determine the start occasion of each gap, and the value range of gapOffset is integer from 0 to MGRP -1.
  • GAP_SFN_COUNTER is initialized to 1; Otherwise, GAP_SFN_COUNTER is initialized to 0, and GAP_SFN_COUNTER is with increment by 1 every SFN changes to 0.
  • Measurement gap enhancement e.g., multiple measurement gap configuration with a periodicity of 50ms or with a periodicity of an integer multiple of 50ms
  • network can configure multiple measurement gap configuration with periodicity of 50ms or multiple 50ms to UE.
  • FIG. 6 shows an example procedure for this embodiment. The UE can determine each measurement gap using each measurement gap start occasion (indicated in the multiple measurement gap configuration) and the measurement gap length (MGL) .
  • DTX cell discontinuous transmission
  • DRX discontinuous reception
  • per current 3GPP specification at most 31 secondary cell (e.g. SCell) can be configured. But for UE complicity reduction, at most two cell DTX/DRX patterns can be configured per MAC entity for different serving cells. Thus, different cells configured for one UE may use same cell DTX/DRX pattern.
  • one cell DTX/DRX pattern configuration may include many parameters, to simplify the configuration, simplify Uu interface (e.g.
  • multiple sets of cell DTX/DRX pattern configuration are configured in the MAC configuration or radio resource configuration (e.g. in RRCReconfiguration and RRCResume message, or included in radioBearerConfig or CellGroupConfig IE etc) , and each serving cell is configured with a cell DTX/DRX pattern index to indicate which set of cell DTX/DRX pattern configuration is used in this serving cell; or multiple sets of cell DTX/DRX pattern configuration are configured in the MAC configuration or radio resource configuration (e.g.
  • each set of cell DTX/DRX pattern configuration includes an Identity
  • each serving cell is configured with an Identity associated with the Identity of a set of cell DTX/DRX pattern configuration to indicate which set of cell DTX/DRX pattern configuration is used in this serving cell.
  • This method can also be used for similar cases that multiple sets of radio parameters configuration can be configured per UE or per MAC entity, and different serving cell configured to the UE may use same or different set of radio parameters configuration.
  • multiple sets of radio parameters configuration are configured by the network, and each serving cell is configured with a radio parameters configuration index that indicates which set of radio parameters configuration is used in the serving cell ; or multiple sets of radio parameters configuration are configured by the network, each set of multiple sets of radio parameters configuration configured by the network includes an Identity, and each serving cell is configured with a first Identity associated with a second Identity of a multiple sets of radio parameters configuration that indicates which set of multiple sets of radio parameters is used in the serving cell.
  • the IE MAC-CellGroupConfig is used to configure MAC parameters for a cell group, including DRX.
  • CellDTXDRX-Config The IE CellDTXDRX-Config is used to configure cell DTX/DRX related parameters. Cell DTX is configured only when C-DRX is configured.
  • the IE ServingCellConfig is used to configure (add or modify) the UE with a serving cell, which may be the SpCell or an SCell of an MCG or SCG.
  • the parameters herein are mostly UE specific but partly also cell specific (e.g. in additionally configured bandwidth parts) . Reconfiguration between a PUCCH and PUCCHless SCell is only supported using an SCell release and add.
  • Value 0 indicates that the cell DRX/DRX pattern in the first entry of cellDTXDRX-ConfigList-r18 is used in this cell
  • Value 1 indicates that the cell DRX/DRX pattern in the second entry of cellDTXDRX-ConfigList-r18 is used in this cell
  • the IE MAC-CellGroupConfig is used to configure MAC parameters for a cell group, including DRX.
  • CellDTXDRX-Config The IE CellDTXDRX-Config is used to configure cell DTX/DRX related parameters. Cell DTX is configured only when C-DRX is configured.
  • the IE ServingCellConfig is used to configure (add or modify) the UE with a serving cell, which may be the SpCell or an SCell of an MCG or SCG.
  • the parameters herein are mostly UE specific but partly also cell specific (e.g. in additionally configured bandwidth parts) . Reconfiguration between a PUCCH and PUCCHless SCell is only supported using an SCell release and add.
  • cellDTXDRX-ConfigIdentity –Used to indicate the identity id cell DRX/DRX pattern which is used in this cell.
  • cellDTXDRX-ConfigList-r18 can also be configured in RRCReconfiguration and RRCResume message, or included in radioBearerConfig or CellGroupConfig IE etc.
  • FIG. 7 shows an exemplary block diagram of a hardware platform 700 that may be a part of a network device (e.g., base station) or a communication device (e.g., a user equipment (UE) ) .
  • the hardware platform 700 includes at least one processor 710 and a memory 705 having instructions stored thereupon. The instructions upon execution by the processor 710 configure the hardware platform 700 to perform the operations described in FIGS. 1 to 6 and 8 to 14 and in the various embodiments described in this patent document.
  • the transmitter 715 transmits or sends information or data to another device.
  • a network device transmitter can send a message to a user equipment.
  • the receiver 720 receives information or data transmitted or sent by another device.
  • a user equipment can receive a message from a network device.
  • FIG. 8 shows an example of a wireless communication system (e.g., a 5G or NR cellular network) that includes a base station 820 and one or more user equipment (UE) 811, 812 and 813.
  • the UEs access the BS (e.g., the network) using a communication link to the network (sometimes called uplink direction, as depicted by dashed arrows 831, 832, 833) , which then enables subsequent communication (e.g., shown in the direction from the network to the UEs, sometimes called downlink direction, shown by arrows 841, 842, 843) from the BS to the UEs.
  • a wireless communication system e.g., a 5G or NR cellular network
  • the UEs access the BS (e.g., the network) using a communication link to the network (sometimes called uplink direction, as depicted by dashed arrows 831, 832, 833) , which then enables subsequent communication (e.
  • the BS send information to the UEs (sometimes called downlink direction, as depicted by arrows 841, 842, 843) , which then enables subsequent communication (e.g., shown in the direction from the UEs to the BS, sometimes called uplink direction, shown by dashed arrows 831, 832, 833) from the UEs to the BS.
  • the UE may be, for example, a smartphone, a tablet, a mobile computer, a machine to machine (M2M) device, an Internet of Things (IoT) device, and so on.
  • M2M machine to machine
  • IoT Internet of Things
  • FIG. 9 shows an exemplary flowchart for receiving a radio resource configuration.
  • Operation 902 includes transmitting, by a communication device to a network device, a capability information that indicates that the communication device is capable of performing a measurement without a measurement gap.
  • Operation 904 includes receiving, by the communication device, a radio resource configuration that does not include a measurement gap configuration.
  • the capability information includes a radio configuration condition with which the communication device is capable of performing the measurement without the measurement gap.
  • the method further comprises performing, by the communication device, the measurement in an occasion that is not for a control channel monitoring and a reception of a shared channel.
  • the radio resource configuration includes a measurement gap periodicity for the measurement, a measurement duration of the measurement, or a measurement prohibit timer between performing two measurements by the communication device.
  • the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerShortCycle.
  • the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerLongCycle. In some embodiments, the measurement is performed every one or an integer multiple of a connected mode discontinuous reception (C-DRX) periodicity immediately before a start of an on-durationTimer with a timerOffset equal to the measurement duration.
  • C-DRX connected mode discontinuous reception
  • FIG. 10 shows an exemplary flowchart for transmitting a capability information related to a non-integer measurement gap periodicity.
  • Operation 1002 includes transmitting, by a communication device to a network device, a capability information that includes information that indicates whether the communication device supports a non-integer measurement gap periodicity.
  • the method further comprises receiving, by the communication device, configuration that includes a value for the non-integer measurement gap periodicity; and performing, by the communication device, a measurement based on the measurement gap that is decided based on the value for the non-integer measurement gap periodicity.
  • the non-integer measurement gap periodicity is configured by the network device, and a measurement start occasion is determined by the communication device based on the non-integer measurement gap periodicity.
  • the non-integer measurement gap periodicity is a measurement gap repetition period (MGRP) that has a non-integer value.
  • MGRP measurement gap repetition period
  • the method further comprises receiving, by the communication device, multiple measurement gap configuration that includes a periodicity; and performing, by the communication device, a measurement at each measurement gap indicated in the multiple measurement gap configuration.
  • the periodicity in the multiple measurement gap configuration is associated with a non-integer periodicity of a service that is associated with an integer periodicity of another service.
  • the integer periodicity is 50 milliseconds or an integer multiple of 50 milliseconds.
  • a first subframe of each measurement gap occurs at a system frame number (SFN) and at a subframe meeting the following condition:
  • FIG. 11 shows an exemplary flowchart for determining a cell DTX and/or DRX pattern configuration that is used in each serving cell.
  • Operation 1102 includes receiving, by a communication device from a network device, multiple sets of cell discontinuous transmission (DTX) and/or discontinuous reception (DRX) pattern configuration, where each serving cell is configured with a cell DTX and/or DRX pattern index that indicates which set of cell DTX and/or DRX pattern configuration is used in a serving cell; or where each set of cell DTX and/or DRX pattern configuration includes an identity, and each serving cell is configured with a first identity associated with a second identity of a set of cell DTX and/or DRX pattern configuration that indicates which set of cell DTX and/or DRX pattern configuration is used in the serving cell.
  • DTX discontinuous transmission
  • DRX discontinuous reception
  • Operation 1104 includes determining by the communication device, the cell DTX and/or DRX pattern configuration that is used in each serving cell based on the multiple sets of DTX and/or DRX pattern configuration, and the cell DTX and/or DRX pattern index of each serving cell or identity configured in each serving cell.
  • FIG. 12 shows an exemplary flowchart for transmitting a radio resource configuration.
  • Operation 1202 includes receiving, by a network device from a communication device, a capability information that indicates that the communication device is capable of performing a measurement without a measurement gap.
  • Operation 1204 includes transmitting, by the network device, a radio resource configuration that does not include a measurement gap configuration.
  • the radio resource configuration includes a measurement gap periodicity for the measurement, a measurement duration of the measurement, or a measurement prohibit timer between performing two measurements by the communication device.
  • the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerShortCycle.
  • the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerLongCycle.
  • the measurement is performed every one or an integer multiple of a connected mode discontinuous reception (C-DRX) periodicity immediately before a start of an on-durationTimer with a timerOffset equal to the measurement duration.
  • FIG. 13 shows an exemplary flowchart for transmitting configuration that includes a value for the non-integer measurement gap periodicity configuration.
  • Operation 1302 includes receiving, by a network device from a communication device, a capability information that includes information that indicates whether the communication device supports a non-integer measurement gap periodicity.
  • Operation 1304 includes transmitting, by the network device, configuration that includes a value for the non-integer measurement gap periodicity.
  • the non-integer measurement gap periodicity is configured by the network device, and a measurement start occasion is based on the non-integer measurement gap periodicity.
  • the non-integer measurement gap periodicity is a measurement gap repetition period (MGRP) that has a non-integer value.
  • the method further comprises transmitting, by the communication device, multiple measurement gap configuration that includes a periodicity.
  • the periodicity in the multiple measurement gap configuration is associated with a non-integer periodicity of a service that is associated with an integer periodicity of another service.
  • the integer periodicity is 50 milliseconds or an integer multiple of 50 milliseconds.
  • a first subframe of each measurement gap occurs at a system frame number (SFN) and at a subframe meeting the following condition:
  • FIG. 14 shows an exemplary flowchart for transmitting multiple sets of cell DTX and/or DRX pattern configuration.
  • Operation 1402 transmitting, by a network device to a communication device, multiple sets of cell discontinuous transmission (DTX) and/or discontinuous reception (DRX) pattern configuration, where each serving cell is configured with a cell DTX and/or DRX pattern index that indicates which set of cell DTX and/or DRX pattern configuration is used in a serving cell; or where each set of cell DTX and/or DRX pattern configuration includes an identity, and each serving cell is configured with a first identity associated with a second identity of a set of cell DTX and/or DRX pattern configuration that indicates which set of cell DTX and/or DRX pattern configuration is used in the serving cell.
  • DTX discontinuous transmission
  • DRX discontinuous reception
  • a computer-readable medium may include removable and non-removable storage devices including, but not limited to, Read Only Memory (ROM) , Random Access Memory (RAM) , compact discs (CDs) , digital versatile discs (DVD) , etc. Therefore, the computer-readable media can include a non-transitory storage media.
  • program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • Computer-or processor-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps or processes.
  • a hardware circuit implementation can include discrete analog and/or digital components that are, for example, integrated as part of a printed circuit board.
  • the disclosed components or modules can be implemented as an Application Specific Integrated Circuit (ASIC) and/or as a Field Programmable Gate Array (FPGA) device.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • DSP digital signal processor
  • the various components or sub-components within each module may be implemented in software, hardware or firmware.
  • the connectivity between the modules and/or components within the modules may be provided using any one of the connectivity methods and media that is known in the art, including, but not limited to, communications over the Internet, wired, or wireless networks using the appropriate protocols.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Techniques are described for measurement related configuration. A first example wireless communication method includes transmitting, by a communication device to a network device, a capability information that indicates that the communication device is capable of performing a measurement without a measurement gap; and receiving, by the communication device, a radio resource configuration that does not include a measurement gap configuration.

Description

WIRELESS MEASUREMENT CONFIGURATION TECHNIQUES TECHNICAL FIELD
This document is directed generally to digital wireless communications.
BACKGROUND
Mobile telecommunication technologies are moving the world toward an increasingly connected and networked society. In comparison with the existing wireless networks, next generation systems and wireless communication techniques will need to support a much wider range of use-case characteristics and provide a more complex and sophisticated range of access requirements and flexibilities.
Long-Term Evolution (LTE) is a standard for wireless communication for mobile devices and data terminals developed by 3rd Generation Partnership Project (3GPP) . LTE Advanced (LTE-A) is a wireless communication standard that enhances the LTE standard. The 5th generation of wireless system, known as 5G, advances the LTE and LTE-A wireless standards and is committed to supporting higher data-rates, large number of connections, ultra-low latency, high reliability and other emerging business needs.
SUMMARY
Techniques are disclosed for measurement related configuration. A first example wireless communication method includes transmitting, by a communication device to a network device, a capability information that indicates that the communication device is capable of performing a measurement without a measurement gap; and receiving, by the communication device, a radio resource configuration that does not include a measurement gap configuration.
In some embodiments, the capability information includes a radio configuration condition with which the communication device is capable of performing the measurement without the measurement gap. In some embodiments, the method further comprises performing, by the communication device, the measurement in an occasion that is not for a control channel monitoring and a reception of a shared channel. In some embodiments, the radio resource configuration includes a measurement gap periodicity for the measurement, a measurement duration of the measurement, or a measurement prohibit timer between performing two measurements by the communication device. In some embodiments, the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerShortCycle. In some embodiments, the measurement gap periodicity is one or an  integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerLongCycle. In some embodiments, the measurement is performed every one or an integer multiple of a connected mode discontinuous reception (C-DRX) periodicity immediately before a start of an on-durationTimer with a timerOffset equal to the measurement duration.
A second example wireless communication method includes transmitting, by a communication device to a network device, a capability information that includes information that indicates whether the communication device supports a non-integer measurement gap periodicity.
In some embodiments, the method further comprises receiving, by the communication device, configuration that includes a value for the non-integer measurement gap periodicity; and performing, by the communication device, a measurement based on the measurement gap that is decided based on the value for the non-integer measurement gap periodicity. In some embodiments, the non-integer measurement gap periodicity is configured by the network device, and a measurement start occasion is determined by the communication device based on the non-integer measurement gap periodicity. In some embodiments, the non-integer measurement gap periodicity is a measurement gap repetition period (MGRP) that has a non-integer value. In some embodiments, the measurement start occasion is determined using the following equation: floor ( [ (GAP_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] modulo (MGRP) ) = (gapOffset) modulo (MGRP) , where MGRP is a measurement gap repetition period configured by the network device with a non-integer value and with unit of milliseconds, where SFN and subframe are respectively the system frame number and the system subframe number of the measurement GAP start occasion, and where gapOffset is the gap offset of the gap pattern with MGRP indicated in the field mgrp, and the value range of gapOffset is integer from 0 to floor (MGRP) -1.
In some embodiments, the measurement start occasion is determined using the following equation: SFN×10 + subframe =ceil ( [ (SFNstart time) ×10 + subframestart time +n×MGRP ] modulo (10240) ) , where MGRP is a measurement gap repetition period configured by the network device and equal to one or an integer multiple of the non-integer measurement gap periodicity, and where SFNstart time and slotstart time are respectively a SFN and a subframe number of a first measurement gap start occasion where a measurement gap is configured or  reconfigured, and where the SFN and the subframe are respectively a system frame number and a system subframe number of the measurement gap start occasion. In some embodiments, the measurement start occasion is determined using the following equation: SFN =ceil ( [ (SFN_ (start time) ) ×10 + subframe_ (start time) +n×MGRP] div (10240) ) modulo 1024, where MGRP is a measurement gap repetition period configured by the network device and equal to one or an integer multiple of the non-integer measurement gap periodicity, where SFNstart time and slotstart time are respectively a SFN and a subframe number of a first measurement gap start occasion where a measurement gap is configured or reconfigured, and where the SFN and the subframe are respectively a system frame number and a system subframe number of the measurement GAP start occasion.
In some embodiments, the method further comprises receiving, by the communication device, multiple measurement gap configuration that includes a periodicity; and performing, by the communication device, a measurement at each measurement gap indicated in the multiple measurement gap configuration. In some embodiments, the periodicity in the multiple measurement gap configuration is associated with a non-integer periodicity of a service that is associated with an integer periodicity of another service. In some embodiments, the integer periodicity is 50 milliseconds or an integer multiple of 50 milliseconds. In some embodiments, a first subframe of each measurement gap occurs at a system frame number (SFN) and at a subframe meeting the following condition: Floor [ (Gap_SFN_Counter × 1024 + SFN) mod T] = gapOffset /10; subframe = gapOffset mod 10; where T = MGRP/10, where gapOffset is a gap offset of a gap pattern with the MGRP and is used to determine a start occasion of each measurement gap, and wherein the gapOffset is the gap offset of the gap pattern with MGRP indicated in a field mgrp, and a value range of gapOffset is an integer from 0 to MGRP -1.
A third example wireless communication method includes receiving, by a communication device from a network device, multiple sets of cell discontinuous transmission (DTX) and/or discontinuous reception (DRX) pattern configuration, where each serving cell is configured with a cell DTX and/or DRX pattern index that indicates which set of cell DTX and/or DRX pattern configuration is used in a serving cell; or where each set of cell DTX and/or DRX pattern configuration includes an identity, and each serving cell is configured with a first identity associated with a second identity of a set of cell DTX and/or DRX pattern configuration  that indicates which set of cell DTX and/or DRX pattern configuration is used in the serving cell; and determining by the communication device, the cell DTX and/or DRX pattern configuration that is used in each serving cell based on the multiple sets of DTX and/or DRX pattern configuration, and the cell DTX and/or DRX pattern index of each serving cell or identity configured in each serving cell.
A fourth example wireless communication method includes receiving, by a network device from a communication device, a capability information that indicates that the communication device is capable of performing a measurement without a measurement gap; and transmitting, by the network device, a radio resource configuration that does not include a measurement gap configuration.
In some embodiments, the method of claim 20, wherein the capability information includes a radio configuration condition with which the communication device is capable of performing the measurement without the measurement gap. In some embodiments, the radio resource configuration includes a measurement gap periodicity for the measurement, a measurement duration of the measurement, or a measurement prohibit timer between performing two measurements by the communication device. In some embodiments, the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerShortCycle. In some embodiments, the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerLongCycle. In some embodiments, the measurement is performed every one or an integer multiple of a connected mode discontinuous reception (C-DRX) periodicity immediately before a start of an on-durationTimer with a timerOffset equal to the measurement duration.
A fifth example wireless communication method includes receiving, by a network device from a communication device, a capability information that includes information that indicates whether the communication device supports a non-integer measurement gap periodicity; and transmitting, by the network device, configuration that includes a value for the non-integer measurement gap periodicity.
In some embodiments, the non-integer measurement gap periodicity is configured by the network device, and a measurement start occasion is based on the non-integer measurement gap periodicity. In some embodiments, the non-integer measurement gap periodicity is a measurement gap repetition period (MGRP) that has a non-integer value. In some embodiments,  the measurement start occasion is based on the following equation: floor ( [ (GAP_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] modulo (MGRP) ) = (gapOffset) modulo (MGRP) , where MGRP is a measurement gap repetition period configured by the network device with a non-integer value and with unit of milliseconds, where SFN and subframe are respectively the system frame number and the system subframe number of the measurement GAP start occasion, and where gapOffset is the gap offset of the gap pattern with MGRP indicated in the field mgrp, and the value range of gapOffset is integer from 0 to floor (MGRP) -1.
In some embodiments, the measurement start occasion is based on the following equation: SFN×10 + subframe =ceil ( [ (SFNstart time) ×10 + subframestart time +n× MGRP ] modulo (10240) ) , where MGRP is a measurement gap repetition period configured by the network device and equal to one or an integer multiple of the non-integer measurement gap periodicity, where SFNstart time and slotstart time are respectively a SFN and a subframe number of a first measurement gap start occasion where a measurement gap is configured or reconfigured, and where the SFN and the subframe are respectively a system frame number and a system subframe number of the measurement gap start occasion. In some embodiments, the measurement start occasion is determined using the following equation: SFN = ceil ( [ (SFN_ (start time) ) ×10 + subframe_ (start time) +n×MGRP] div (10240) ) modulo 1024, where MGRP is a measurement gap repetition period configured by the network device and equal to one or an integer multiple of the non-integer measurement gap periodicity, where SFNstart time and slotstart time are respectively a SFN and a subframe number of a first measurement gap start occasion where a measurement gap is configured or reconfigured, and where the SFN and the subframe are respectively a system frame number and a system subframe number of the measurement GAP start occasion.
In some embodiments, the method further comprises transmitting, by the communication device, multiple measurement gap configuration that includes a periodicity. In some embodiments, the periodicity in the multiple measurement gap configuration is associated with a non-integer periodicity of a service that is associated with an integer periodicity of another service. In some embodiments, the integer periodicity is 50 milliseconds or an integer multiple of 50 milliseconds. In some embodiments, a first subframe of each measurement gap occurs at a  system frame number (SFN) and at a subframe meeting the following condition: Floor [ (Gap_SFN_Counter × 1024 + SFN) mod T] = gapOffset /10; subframe = gapOffset mod 10; where T = MGRP/10, where gapOffset is a gap offset of a gap pattern with the MGRP and is used to determine a start occasion of each measurement gap, and where the gapOffset is the gap offset of the gap pattern with MGRP indicated in a field mgrp, and a value range of gapOffset is an integer from 0 to MGRP -1.
A sixth example wireless communication method transmitting, by a network device to a communication device, multiple sets of cell discontinuous transmission (DTX) and/or discontinuous reception (DRX) pattern configuration, where each serving cell is configured with a cell DTX and/or DRX pattern index that indicates which set of cell DTX and/or DRX pattern configuration is used in a serving cell; or where each set of cell DTX and/or DRX pattern configuration includes an identity, and each serving cell is configured with a first identity associated with a second identity of a set of cell DTX and/or DRX pattern configuration that indicates which set of cell DTX and/or DRX pattern configuration is used in the serving cell.
In yet another exemplary aspect, the above-described methods are embodied in the form of processor-executable code and stored in a non-transitory computer-readable storage medium. The code included in the computer readable storage medium when executed by a processor, causes the processor to implement the methods described in this patent document.
In yet another exemplary embodiment, a device that is configured or operable to perform the above-described methods is disclosed.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 shows an example scenario where a data burst and a Measurement gap occasion may overlap or partially overlap in some measurement gap period.
FIG. 2 shows an example flowchart of operations performed by a user equipment (UE) and a base station (gNB) where the gNB can configure the radio resource to avoid measurement gap configuration.
FIG. 3 shows an example flowchart of operations performed by a UE and gNB where the UE perform measurement adaptively in non-scheduling occasion.
FIG. 4A shows that an end occasion of measurement duration is or is immediately before the start occasion of the on-durationTimer for performing measurement every one connected mode discontinuous reception (C-DRX) periodicity.
FIG. 4B shows that an end occasion of measurement duration is or is immediately before the start occasion of the on-durationTimer for performing measurement every two C-DRX periodicity.
FIG. 5 shows an example flowchart of operations performed by a UE and gNB for non-integer gap periodicity scenario.
FIG. 6 shows an example flowchart of operations performed by a UE and gNB for a multiple gap pattern scenario.
FIG. 7 shows an exemplary block diagram of a hardware platform that may be a part of a network device or a communication device.
FIG. 8 shows an example of wireless communication including a base station (BS) and user equipment (UE) based on some implementations of the disclosed technology.
FIG. 9 shows an exemplary flowchart for receiving a radio resource configuration.
FIG. 10 shows an exemplary flowchart for transmitting a capability information related to a non-integer measurement gap periodicity.
FIG. 11 shows an exemplary flowchart for determining a cell discontinuous transmission (DTX) and/or discontinuous reception (DRX) pattern configuration that is used in each serving cell.
FIG. 12 shows an exemplary flowchart for transmitting a radio resource configuration.
FIG. 13 shows an exemplary flowchart for transmitting configuration that includes a value for the non-integer measurement gap periodicity configuration.
FIG. 14 shows an exemplary flowchart for transmitting multiple sets of cell DTX and/or DRX pattern configuration.
DETAILED DESCRIPTION
The frame rates of some wireless services such as extended reality (XR) services (e.g., 15 frames per second (fps) , 30 fps, 45 fps, 60 fps, 72 fps, 90 fps and 120fps) can respectively correspond to non-integer periodicities of (66.66 micro second (ms) , 33.33 ms, 22.22 ms, 16.66 ms, 13.88 ms, 11.11 ms and 8.33 ms) which are not multiples of the measurement gap periodicity (e.g. Measurement Gap Repetition Period (MGRP) , with value of 20ms, 40ms, 80ms,  or 160ms) , where the Measurement Gap Repetition Period is a measurement periodicity that network configured for UE to determine the measurement gap time domain position. The measurement gap is the periods that network configured for UE to perform measurements, during the measurement GAP the UE does not perform dedicated uplink transmission or receive dedicated downlink information. Thus, some data burst (e.g., XR data burst) and the Measurement gap occasion (e.g., Measurement Gap Length, MGL, as indicated in FIG. 1) should not be overlapped. But since the data burst of XR services arrives with non-integer periodicity, and the measurement GAP can only be configured with integer-periodicity in the current 3GPP specification, the data burst and measurement GAP may overlap or partially overlap in some measurement gap period, as shown in FIG. 1 with dashed box. This patent document describes techniques to configure the measurement parameters to match the non-integer periodicity of some services (e.g., XR services) with the measurement gap to, for example, avoid the overlapping between data burst time and Measurement gap or avoid the overlapping between C-DRX on-duration and Measurement GAP.
In the current 3GPP specification, some no measurement gap or optimized measurement gap configuration method are supported, e.g. UE can report its measurement capability that measurement gap is not need for measurement, and gNB will not configure measurement gap to UE for measurement; but may mean that the UE have higher capability for measurement without measurement gap in any radio configuration cases and the equipment cost of the UE can be high. In another method, when the gNB sends the radio configuration to UE, the gNB sends the request in RRCReconfiguration or in RRCResume message for the UE to report measurement gap requirement information, and then UE reports the measurement gap requirement information to gNB in RRCReconfigurationComplete or in RRCResumeComplete message. Based on the measurement gap requirement information, gNB can configure suitable measurement Gap parameters to UE, or does not configure measurement gap if the UE reports that measurement gap is not needed for measurement with the current radio configuration. This method can improve the radio resource efficiency, but since radio resource configuration has been sent to UE, if UE needs gap for measurement while using the configured radio resource configuration, it will be difficult for gNB to configure the measurement parameters (e.g. measurement GAP) to match the non-integer periodicity of some services (e.g., XR services) so that, for example, it may be difficult for gNB to avoid the overlapping between data burst and  Measurement gap or avoid the overlapping between C-DRX on-duration and Measurement GAP. To address at least these technical problems, this patent document describes example techniques for a base station to configure measurement parameters to match non-integer periodicity of a service (e.g., XR service) .
The example headings for the various sections below are used to facilitate the understanding of the disclosed subject matter and do not limit the scope of the claimed subject matter in any way. Accordingly, one or more features of one example section can be combined with one or more features of another example section. Furthermore, 5G (e.g. NR) terminology is used for the sake of clarity of explanation, but the techniques disclosed in the present document are not limited to 5G technology only, and may be used in wireless systems that implemented other protocols.
I. Embodiment 1 (UE Report No Gap Condition)
Considering that NR UE can support some high performance features e.g., NE-DC, multiple layers MIMO etc., which needs multiple Rx antenna, for the XR service, not all the high performance features may be necessary. Thus, UE can report UE capability that includes the radio configuration condition that indicates that (or under which) the measurement gap is not necessary to perform measurements by the UE. Based on the no measurement gap capability indicated with the radio configuration condition, gNB can configure the radio resource to avoid measurement gap configuration as shown in FIG. 2.
In some embodiments, the UE can transmit the UE capability including the radio configuration condition with no measurement GAP requirement using a RRC message (e.g. in UECapabilityInformation) if the UE determines that the measurement gap is not necessary with the radio configuration condition. And the radio configuration condition under which the measurement gap is not necessary to perform measurements can comprise any one or more of: the maximal number of MIMO layers below which measurement gap is not necessary to perform measurements; the maximal number of DL MIMO layers below which measurement gap is not necessary to perform measurements; the maximal number of ports that can be configured below which measurement gap is not necessary to perform measurements; the maximal number of secondary cells (scells) that can be configured below which measurement gap is not necessary to perform measurements; the maximal number of frequencies to be measured below which measurement gap is not necessary to perform measurements; the indication of features or feature  combinations that measurement gap is not necessary to perform measurements; the indication of physical layer configurations or combination of physical layer configurations that measurement gap is not necessary to perform measurements; the indication of frequencies or frequency combinations that measurement gap is not necessary to perform measurements; the indication of frequency bands that measurement gap is not necessary to perform measurements; whether the active BWP is the initial BWP; the maximal frequency span between the current operating frequency and the initial BWP below which measurement gap is not necessary to perform measurements; the maximal frequency span between the active BWP and the initial BWP below which measurement gap is not necessary to perform measurements; a maximum allowed layers for multiple monitoring below which measurement gap is not necessary to perform measurements; the maximal number of NR SSB inter-frequency carriers to be measured below which measurement gap is not necessary to perform measurements; the maximal number of NR inter-frequency carriers including SSB and CSI-RS in total below which measurement gap is not necessary to perform measurements; the maximal number of E-UTRA TDD inter-RAT carriers excluding E-UTRA serving carriers to be measured below which measurement gap is not necessary to perform measurements; the maximal number of E-UTRA FDD inter-RAT carriers excluding E-UTRA serving carriers to be measured below which measurement gap is not necessary to perform measurements; the maximal number of UTRA FDD inter-RAT carriers to be measured below which measurement gap is not necessary to perform measurements; whether non-NR RAT is allowed when measurement gap is not configured to perform measurements; whether FR1 measurement is allowed if the current operating FR is used when measurement gap is not configured to perform measurements; whether FR2 measurement is allowed if the current operating FR is used when measurement gap is not configured to perform measurements.
The radio configuration condition for no measurement gap can be reported by differentiating SSB based measurement and/or CSI-RS based measurement.
II. Embodiment 2 (UE Performs Measurement Adaptively in Non- Scheduling Occasion)
In some cases, UE can know the occasions when PDCCH monitoring and/or DL-SCH reception are not necessary, e.g. based on C-DRX (DRX for UE in RRC_CCONNECTED state) configuration, PDCCH configuration, search space configuration and/or PDCCH skipping etc. In such cases, UE can automatically (or without being indicated to do so by the base station) select  some occasions that are not configured for (or that are not associated with) PDCCH monitoring and DL-SCH reception for measurement, and thus no measurement gap is configured. The occasions selected by the UE can be used by the UE to perform measurements. Considering that legacy UE does not support automatic measurement gap decision by itself, UE capability report for automatic measurement occasion selection without measurement gap configuration can be sent for gNB to decide whether to configure measurement gap and/or configure radio parameters to reserve some occasions for UE to perform automatic measurement. FIG. 3 shows an example procedure for this embodiment.
In some cases, network may provide some mechanism to aid the automatic measurement by the UE, e.g., the measurement periodicity, measurement duration, measurement prohibit timer between performing two measurements, search space switching triggered by DCI or MAC CE to reserve time occasion for UE to perform automatic measurement; PDCCH skipping indication to reserve time occasion for UE to perform automatic measurement etc. For example, if the network indicate the measurement periodicity is one or an integer multiple of the C-DRX periodicity, then the UE can perform measurement every one or an integer multiple of the C-DRX periodicity just immediately before the start of the on-durationTimer with an timerOffset equal to the measurement duration. The end occasion of measurement duration is or is immediately before the start occasion of the on-durationTimer, as shown in FIG. 4A for performing measurement every one C-DRX periodicity; and the end occasion of measurement duration is or is immediately before the start occasion of the on-durationTimer as shown in FIG. 4B for performing measurement every two C-DRX periodicity. The measurement end SFN and end subframe is determined based on the following equation:
● if the measurement gap periodicity is one or an integer multiple of the C-DRX drx-ShortCycle, and [ (SFN × 10) + subframe number] modulo (N*drx-ShortCycle) = (drx-StartOffset) modulo (N*drx-ShortCycle) ;
● if the measurement gap periodicity is one or an integer multiple of the C-DRX drx-LongCycle, and [ (SFN × 10) + subframe number] modulo (N*drx-LongCycle) = drx-StartOffset;
● if the measurement gap periodicity is one or an integer multiple of the C-DRX drx-NonIntegerShortCycle, and floor ( [ (DRX_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] modulo (drx-NonIntegerShortCycle *N) ) = [drx-StartOffset] modulo (drx-NonIntegerShortCycle*N) ;
● if the measurement gap periodicity is one or an integer multiple of the C-DRX drx-NonIntegerLongCycle, and floor ( [ (DRX_SFN_COUNTER × 10240) + (SFN × 10) +subframe number] modulo (drx-NonIntegerLongCycle *N) ) = [drx-StartOffset] modulo (drx-NonIntegerLongCycle*N)
The measurement start occasion is the time occasion before the measurement end SFN and end subframe with a timeoffset (e.g. with a value of the measurement duration length) . In the equations above, the: N*drx-ShortCycle, N*drx-LongCycle, drx-NonIntegerShortCycle *N, and/or drx-NonIntegerLongCycle*N are measurement gap periodicity. And the other parameters (e.g. DRX_SFN_COUNTER, drx-NonIntegerShortCycle, drx-NonIntegerLongCycle, etc., ) used in the equations are the same as that in the C-DRX formular to decide the occasion to start the on-DurationTimer.
III. Embodiment 3 (Non-Integer Gap Periodicity)
In this embodiment, a solution is provided to map the measurement gap with the non-integer XR periodicity. In this embodiment, non-integer measurement gap periodicity (e.g. MGRP having a non-integer value) is configured by the gNB, and the measurement start occasion is determined by the UE based on one of the following example methods. The measurement start occasion is determined by the measurement gap start occasion and the measurement GAP duration (e.g. MGL) , where the measurement GAP duration is configured by the gNB to the UE, and where the measurement gap start occasion is determined by the UE based on the SFN and subframe number (also known as subframe time occasion) .
Example Method 1: the first subframe of each gap occurs at an SFN and subframe meeting the following condition:
floor ( [ (GAP_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] modulo (MGRP) ) = (gapOffset) modulo (MGRP)
The MGRP in the equations above is the measurement gap repetition period configured by network, expressed by unit of ms, which can be equal to one or an integer multiple of the traffic non-integer periodicity, and can be configured by a burst frequency, or non-integer ms value and/or coupled with a multiple value, e.g., configured with x fps, x hz, x. yyy ms, and/or a multiple n. If multiple n is configured, then MGRP will be n*x fps, n*x hz, or n*x. yyy ms.
● gapOffset is the gap offset of the gap pattern with MGRP indicated in the field mgrp, and the value range of gapOffset is integer from 0 to floor (MGRP) -1.
● GAP_SFN_COUNTER is used to deal with the SFN wraparound issue associated with a gap-ReferenceSFN. Wherein gap-ReferenceSFN is sent from gNB to UE with the value of SFN=0 or SFN=512, which indicates the closest SFN with the indicated number preceding the reception of the MGRP configured. And when drx-ReferenceSFN is configured to 512 and the RRC signalling containing this gap-ReferenceSFN is received during the first half of a hyper frame (i.e., SFN is between 0 and 511) , GAP_SFN_COUNTER is initialized to 1; Otherwise, GAP_SFN_COUNTER is initialized to 0, and GAP_SFN_COUNTER is with increment by 1 every SFN changes to 0, ,
● MGRP is a non-integer with unit of ms, configured by gNB or transferred from the measurement gap periodicity (e.g. with unit of hz, fps, or ms) configured by gNB.
Example Method 2: the first subframe of the nth gap occurs at an SFN and subframe meeting the following condition:
● SFN×10 + subframe =ceil ( [ (SFNstart time) ×10 + subframestart time +n×MGRP ] modulo (10240) )
The MGRP in the equation above is the measurement gap repetition period configured by network, expressed by unit of ms, which equal to one or an integer multiple of the traffic non-integer periodicity, and can be configured by a burst frequency, or non-integer ms value and/or coupled with a multiple value. e.g. configured with x fps, x hz, x. yyy ms, and/or a multiple n. if multiple n is configured, then MGRP will be n*x fps, n*x hz, or n*x. yyy ms, where x, y, and n are integers
SFNstart time and subframestart time are respectively the SFN and the subframe number of the first (1st) measurement gap start occasion where the measurement gap is (re-)configured.
Example Method 3: the first subframe of nth gap occurs at an SFN and subframe meeting the following condition:
● The SFN = ceil ( [ (SFNstart time) ×10 + subframestart time +n×MGRP] div (10240) ) modulo 1024
● The subframe number = ceil ( [ (SFNstart time) ×10+ subframestart time +n×MGRP] modulo (10) )
The MGRP in the equations above is the measurement gap repetition period configured by network, expressed by unit of ms. which equal to one or an integer multiple of the traffic non-integer periodicity, and can be configured by a burst frequency, or non-integer ms value and/or coupled with a multiple value. e.g. configured with x fps, x hz, x. yyy ms, and/or a multiple n. if multiple n is configured, then MGRP will be n*x fps, n*x hz, or n*x. yyy ms.
SFNstart time and slotstart time are respectively the SFN and the subframe number of the first (1st) measurement gap start occasion where the measurement gap is (re-) configured.
In this patent document, the ceil (X) is to get the integer that is larger than or equal to the X, it can also be substituted by floor (X) , e.g., to get the integer that is less than or equal to the X.
To use this method, UE capability report to indicate whether non-Integer Measurement gap periodicity (also known as Measurement gap enhancement) is necessary; only if the UE supports non-Integer Measurement gap periodicity, network can configure a value for the non-Integer Measurement gap periodicity (e.g., non-Integer MGRP) to UE. And only the value for the non-Integer Measurement gap periodicity (e.g., non-Integer MGRP) is configured, UE perform the measurement based on measurement gap determined with the configured value for the non-Integer Measurement gap periodicity and at least one of the equations above. The UE can transmit it’s capability using a RRC message (e.g. in UECapabilityInformation) to indicate to gNB whether non-Integer Measurement gap periodicity (also known as Measurement gap enhancement) is necessary. FIG. 5 shows an example procedure for the technique described in this embodiment.
IV. Embodiment 4 (Multiple gap pattern)
Considering frame rates of the XR services (e.g., 15 fps (frame per second) , 30 fps, 45 fps, 60 fps, 72 fps, 90 fps and 120fps) respectively correspond to non-integer periodicities of (200/3 ms (micro second) , 100/3 ms, 200/9 ms, 50/3 ms, 125/9 ms, 100/9 ms and 50/6 ms) , multiple integer measurement gap periodicity configuration can be used to associate and/or formulate the non-integer measurement gap periodicity so that effect or result of multiple integer measurement gap periodicity configuration is the same as that of the non-integer measurement GAP periodicity. The non-integer measurement gap periodicity is the measurement gap  periodicity (e.g., MGRP) with a non-integer value. For instance, three integer measurement gap configuration with different gap start offset can be configured to the UE to match a non-integer measurement GAP periodicity. For example, for 60fps service, the periodicity is 16.667ms, which can be transferred to three measurement gap configuration with integer periodicities (50ms) as follows:
To support this solution, some MGRP values should be introduced, e.g. 50ms, 100ms, 200ms. Since these MGRP values are not a integer factor of SFN periodicity (10240 ms) , some mechanism is necessary to deal with the SRN wraparound issue. E. g. the first subframe of each gap occurs at an SFN and subframe meeting the following condition when new MGRP value is configured in the multiple measurement gap configuration, wherein the new MGRP value is not an integer factor of SFN periodicity (10240 ms) 
● FLOOR [ (GAP_SFN_COUNTER × 1024 + SFN) mod T] = gapOffset /10;
● subframe = gapOffset mod 10;
● with T = MGRP/10;
In the above equation, gapOffset is the gap offset of the gap pattern with MGRP indicated in the field mgrp, which is used to determine the start occasion of each gap, and the value range of gapOffset is integer from 0 to MGRP -1. GAP_SFN_COUNTER is used to deal with the SFN wrap around issue associated with a gap-ReferenceSFN, Wherein gap-ReferenceSFN is sent from gNB to UE with the value of SFN=0 or SFN=512, which indicates the closest SFN with the indicated number preceding the reception of the gap-ReferenceSFN configured. And when drx-ReferenceSFN is configured to 512 and the RRC signalling containing this gap-ReferenceSFN is received during the first half of a hyper frame (i.e., SFN is between 0 and 511) , GAP_SFN_COUNTER is initialized to 1; Otherwise, GAP_SFN_COUNTER is initialized to 0, and GAP_SFN_COUNTER is with increment by 1 every SFN changes to 0.
To use this method, UE capability report to indicate whether Measurement gap enhancement (e.g., multiple measurement gap configuration with a periodicity of 50ms or with a periodicity of an integer multiple of 50ms) is necessary; only if the UE supports Measurement gap enhancement, network can configure multiple measurement gap configuration with periodicity of 50ms or multiple 50ms to UE. FIG. 6 shows an example procedure for this embodiment. The UE can determine each measurement gap using each measurement gap start occasion (indicated in the multiple measurement gap configuration) and the measurement gap length (MGL) .
V. Embodiment 5
For network power saving, cell discontinuous transmission (DTX) and/or discontinuous reception (DRX) are supported. Per current 3GPP specification, at most 31 secondary cell (e.g. SCell) can be configured. But for UE complicity reduction, at most two cell DTX/DRX patterns can be configured per MAC entity for different serving cells. Thus, different cells configured for one UE may use same cell DTX/DRX pattern. Considering that one cell DTX/DRX pattern configuration may include many parameters, to simplify the configuration, simplify Uu interface (e.g. the interface between UE and gNB) load consumption and to specify the restriction that at most two cell DTX/DRX patterns can be configured per MAC entity for different serving cells, multiple sets of cell DTX/DRX pattern configuration are configured in the MAC configuration or radio resource configuration (e.g. in RRCReconfiguration and RRCResume message, or included in radioBearerConfig or CellGroupConfig IE etc) , and each serving cell is configured with a cell DTX/DRX pattern index to indicate which set of cell DTX/DRX pattern configuration is used in this serving cell; or multiple sets of cell DTX/DRX pattern configuration are configured in the MAC configuration or radio resource configuration (e.g. in RRCReconfiguration and RRCResume message, or included in radioBearerConfig or CellGroupConfig IE etc., ) , each set of cell DTX/DRX pattern configuration includes an Identity, and each serving cell is configured with an Identity associated with the Identity of a set of cell DTX/DRX pattern configuration to indicate which set of cell DTX/DRX pattern configuration is used in this serving cell.
This method can also be used for similar cases that multiple sets of radio parameters configuration can be configured per UE or per MAC entity, and different serving cell configured to the UE may use same or different set of radio parameters configuration. e.g. multiple sets of  radio parameters configuration are configured by the network, and each serving cell is configured with a radio parameters configuration index that indicates which set of radio parameters configuration is used in the serving cell ; or multiple sets of radio parameters configuration are configured by the network, each set of multiple sets of radio parameters configuration configured by the network includes an Identity, and each serving cell is configured with a first Identity associated with a second Identity of a multiple sets of radio parameters configuration that indicates which set of multiple sets of radio parameters is used in the serving cell.
Following are the examples to support this (the bold italicized underlined text are new text introduced) .
Example 1:
MAC-CellGroupConfig -The IE MAC-CellGroupConfig is used to configure MAC parameters for a cell group, including DRX.



CellDTXDRX-Config –The IE CellDTXDRX-Config is used to configure cell DTX/DRX related parameters. Cell DTX is configured only when C-DRX is configured.

ServingCellConfig –The IE ServingCellConfig is used to configure (add or modify) the UE with a serving cell, which may be the SpCell or an SCell of an MCG or SCG. The parameters herein are mostly UE specific but partly also cell specific (e.g. in additionally configured bandwidth parts) . Reconfiguration between a PUCCH and PUCCHless SCell is only supported using an SCell release and add.





ServingCellConfig field descriptions
cellDTXDRX-ConfigIndex –Used to indicate which cell DRX/DRX pattern is used in this cell. Value 0 indicates that the cell DRX/DRX pattern in the first entry of cellDTXDRX-ConfigList-r18 is used in this cell, and Value 1 indicates that the cell DRX/DRX pattern in the second entry of cellDTXDRX-ConfigList-r18 is used in this cell,
Example 2:
MAC-CellGroupConfig –The IE MAC-CellGroupConfig is used to configure MAC parameters for a cell group, including DRX.



CellDTXDRX-Config –The IE CellDTXDRX-Config is used to configure cell DTX/DRX related parameters. Cell DTX is configured only when C-DRX is configured.

ServingCellConfig –The IE ServingCellConfig is used to configure (add or modify) the UE with a serving cell, which may be the SpCell or an SCell of an MCG or SCG. The parameters herein are mostly UE specific but partly also cell specific (e.g. in additionally  configured bandwidth parts) . Reconfiguration between a PUCCH and PUCCHless SCell is only supported using an SCell release and add.




ServingCellConfig field descriptions
cellDTXDRX-ConfigIdentity –Used to indicate the identity id cell DRX/DRX pattern which is used in this cell.
Where the cellDTXDRX-ConfigList-r18 can also be configured in RRCReconfiguration and RRCResume message, or included in radioBearerConfig or CellGroupConfig IE etc.
FIG. 7 shows an exemplary block diagram of a hardware platform 700 that may be a part of a network device (e.g., base station) or a communication device (e.g., a user equipment (UE) ) . The hardware platform 700 includes at least one processor 710 and a memory 705 having  instructions stored thereupon. The instructions upon execution by the processor 710 configure the hardware platform 700 to perform the operations described in FIGS. 1 to 6 and 8 to 14 and in the various embodiments described in this patent document. The transmitter 715 transmits or sends information or data to another device. For example, a network device transmitter can send a message to a user equipment. The receiver 720 receives information or data transmitted or sent by another device. For example, a user equipment can receive a message from a network device.
The implementations as discussed above will apply to a wireless communication. FIG. 8 shows an example of a wireless communication system (e.g., a 5G or NR cellular network) that includes a base station 820 and one or more user equipment (UE) 811, 812 and 813. In some embodiments, the UEs access the BS (e.g., the network) using a communication link to the network (sometimes called uplink direction, as depicted by dashed arrows 831, 832, 833) , which then enables subsequent communication (e.g., shown in the direction from the network to the UEs, sometimes called downlink direction, shown by arrows 841, 842, 843) from the BS to the UEs. In some embodiments, the BS send information to the UEs (sometimes called downlink direction, as depicted by arrows 841, 842, 843) , which then enables subsequent communication (e.g., shown in the direction from the UEs to the BS, sometimes called uplink direction, shown by dashed arrows 831, 832, 833) from the UEs to the BS. The UE may be, for example, a smartphone, a tablet, a mobile computer, a machine to machine (M2M) device, an Internet of Things (IoT) device, and so on.
FIG. 9 shows an exemplary flowchart for receiving a radio resource configuration. Operation 902 includes transmitting, by a communication device to a network device, a capability information that indicates that the communication device is capable of performing a measurement without a measurement gap. Operation 904 includes receiving, by the communication device, a radio resource configuration that does not include a measurement gap configuration.
In some embodiments, the capability information includes a radio configuration condition with which the communication device is capable of performing the measurement without the measurement gap. In some embodiments, the method further comprises performing, by the communication device, the measurement in an occasion that is not for a control channel monitoring and a reception of a shared channel. In some embodiments, the radio resource configuration includes a measurement gap periodicity for the measurement, a measurement  duration of the measurement, or a measurement prohibit timer between performing two measurements by the communication device. In some embodiments, the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerShortCycle. In some embodiments, the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerLongCycle. In some embodiments, the measurement is performed every one or an integer multiple of a connected mode discontinuous reception (C-DRX) periodicity immediately before a start of an on-durationTimer with a timerOffset equal to the measurement duration.
FIG. 10 shows an exemplary flowchart for transmitting a capability information related to a non-integer measurement gap periodicity. Operation 1002 includes transmitting, by a communication device to a network device, a capability information that includes information that indicates whether the communication device supports a non-integer measurement gap periodicity.
In some embodiments, the method further comprises receiving, by the communication device, configuration that includes a value for the non-integer measurement gap periodicity; and performing, by the communication device, a measurement based on the measurement gap that is decided based on the value for the non-integer measurement gap periodicity. In some embodiments, the non-integer measurement gap periodicity is configured by the network device, and a measurement start occasion is determined by the communication device based on the non-integer measurement gap periodicity. In some embodiments, the non-integer measurement gap periodicity is a measurement gap repetition period (MGRP) that has a non-integer value. In some embodiments, the measurement start occasion is determined using the following equation: floor ( [ (GAP_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] modulo (MGRP) ) = (gapOffset) modulo (MGRP) , where MGRP is a measurement gap repetition period configured by the network device with a non-integer value and with unit of milliseconds, where SFN and subframe are respectively the system frame number and the system subframe number of the measurement GAP start occasion, and where gapOffset is the gap offset of the gap pattern with MGRP indicated in the field mgrp, and the value range of gapOffset is integer from 0 to floor (MGRP) -1.
In some embodiments, the measurement start occasion is determined using the following equation: SFN×10 + subframe =ceil ( [ (SFNstart time) ×10 + subframestart time +n×MGRP ] modulo (10240) ) , where MGRP is a measurement gap repetition period configured by the network device and equal to one or an integer multiple of the non-integer measurement gap periodicity, and where SFNstart time and slotstart time are respectively a SFN and a subframe number of a first measurement gap start occasion where a measurement gap is configured or reconfigured, and where the SFN and the subframe are respectively a system frame number and a system subframe number of the measurement gap start occasion. In some embodiments, the measurement start occasion is determined using the following equation: SFN =ceil ( [ (SFN_ (start time) ) ×10 + subframe_ (start time) +n×MGRP] div (10240) ) modulo 1024, where MGRP is a measurement gap repetition period configured by the network device and equal to one or an integer multiple of the non-integer measurement gap periodicity, where SFNstart time and slotstart time are respectively a SFN and a subframe number of a first measurement gap start occasion where a measurement gap is configured or reconfigured, and where the SFN and the subframe are respectively a system frame number and a system subframe number of the measurement GAP start occasion.
In some embodiments, the method further comprises receiving, by the communication device, multiple measurement gap configuration that includes a periodicity; and performing, by the communication device, a measurement at each measurement gap indicated in the multiple measurement gap configuration. In some embodiments, the periodicity in the multiple measurement gap configuration is associated with a non-integer periodicity of a service that is associated with an integer periodicity of another service. In some embodiments, the integer periodicity is 50 milliseconds or an integer multiple of 50 milliseconds. In some embodiments, a first subframe of each measurement gap occurs at a system frame number (SFN) and at a subframe meeting the following condition: Floor [ (Gap_SFN_Counter × 1024 + SFN) mod T] = gapOffset /10; subframe = gapOffset mod 10; where T = MGRP/10, where gapOffset is a gap offset of a gap pattern with the MGRP and is used to determine a start occasion of each measurement gap, and wherein the gapOffset is the gap offset of the gap pattern with MGRP indicated in a field mgrp, and a value range of gapOffset is an integer from 0 to MGRP -1.
FIG. 11 shows an exemplary flowchart for determining a cell DTX and/or DRX pattern configuration that is used in each serving cell. Operation 1102 includes receiving, by a  communication device from a network device, multiple sets of cell discontinuous transmission (DTX) and/or discontinuous reception (DRX) pattern configuration, where each serving cell is configured with a cell DTX and/or DRX pattern index that indicates which set of cell DTX and/or DRX pattern configuration is used in a serving cell; or where each set of cell DTX and/or DRX pattern configuration includes an identity, and each serving cell is configured with a first identity associated with a second identity of a set of cell DTX and/or DRX pattern configuration that indicates which set of cell DTX and/or DRX pattern configuration is used in the serving cell. Operation 1104 includes determining by the communication device, the cell DTX and/or DRX pattern configuration that is used in each serving cell based on the multiple sets of DTX and/or DRX pattern configuration, and the cell DTX and/or DRX pattern index of each serving cell or identity configured in each serving cell.
FIG. 12 shows an exemplary flowchart for transmitting a radio resource configuration. Operation 1202 includes receiving, by a network device from a communication device, a capability information that indicates that the communication device is capable of performing a measurement without a measurement gap. Operation 1204 includes transmitting, by the network device, a radio resource configuration that does not include a measurement gap configuration.
In some embodiments, the method of claim 20, wherein the capability information includes a radio configuration condition with which the communication device is capable of performing the measurement without the measurement gap. In some embodiments, the radio resource configuration includes a measurement gap periodicity for the measurement, a measurement duration of the measurement, or a measurement prohibit timer between performing two measurements by the communication device. In some embodiments, the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerShortCycle. In some embodiments, the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerLongCycle. In some embodiments, the measurement is performed every one or an integer multiple of a connected mode discontinuous reception (C-DRX) periodicity immediately before a start of an on-durationTimer with a timerOffset equal to the measurement duration.
FIG. 13 shows an exemplary flowchart for transmitting configuration that includes a value for the non-integer measurement gap periodicity configuration. Operation 1302 includes receiving, by a network device from a communication device, a capability information that  includes information that indicates whether the communication device supports a non-integer measurement gap periodicity. Operation 1304 includes transmitting, by the network device, configuration that includes a value for the non-integer measurement gap periodicity.
In some embodiments, the non-integer measurement gap periodicity is configured by the network device, and a measurement start occasion is based on the non-integer measurement gap periodicity. In some embodiments, the non-integer measurement gap periodicity is a measurement gap repetition period (MGRP) that has a non-integer value. In some embodiments, the measurement start occasion is based on the following equation: floor ( [ (GAP_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] modulo (MGRP) ) = (gapOffset) modulo (MGRP) , where MGRP is a measurement gap repetition period configured by the network device with a non-integer value and with unit of milliseconds, where SFN and subframe are respectively the system frame number and the system subframe number of the measurement GAP start occasion, and where gapOffset is the gap offset of the gap pattern with MGRP indicated in the field mgrp, and the value range of gapOffset is integer from 0 to floor (MGRP) -1.
In some embodiments, the measurement start occasion is based on the following equation: SFN×10 + subframe =ceil ( [ (SFNstart time) ×10 + subframestart time +n×MGRP ] modulo (10240) ) , where MGRP is a measurement gap repetition period configured by the network device and equal to one or an integer multiple of the non-integer measurement gap periodicity, where SFNstart time and slotstart time are respectively a SFN and a subframe number of a first measurement gap start occasion where a measurement gap is configured or reconfigured, and where the SFN and the subframe are respectively a system frame number and a system subframe number of the measurement gap start occasion. In some embodiments, the measurement start occasion is determined using the following equation: SFN =ceil ( [ (SFN_ (start time) ) ×10 + subframe_ (start time) +n×MGRP] div (10240) ) modulo 1024, where MGRP is a measurement gap repetition period configured by the network device and equal to one or an integer multiple of the non-integer measurement gap periodicity, where SFNstart time and slotstart time are respectively a SFN and a subframe number of a first measurement gap start occasion where a measurement gap is  configured or reconfigured, and where the SFN and the subframe are respectively a system frame number and a system subframe number of the measurement GAP start occasion.
In some embodiments, the method further comprises transmitting, by the communication device, multiple measurement gap configuration that includes a periodicity. In some embodiments, the periodicity in the multiple measurement gap configuration is associated with a non-integer periodicity of a service that is associated with an integer periodicity of another service. In some embodiments, the integer periodicity is 50 milliseconds or an integer multiple of 50 milliseconds. In some embodiments, a first subframe of each measurement gap occurs at a system frame number (SFN) and at a subframe meeting the following condition: Floor [ (Gap_SFN_Counter × 1024 + SFN) mod T] = gapOffset /10; subframe = gapOffset mod 10; where T = MGRP/10, where gapOffset is a gap offset of a gap pattern with the MGRP and is used to determine a start occasion of each measurement gap, and where the gapOffset is the gap offset of the gap pattern with MGRP indicated in a field mgrp, and a value range of gapOffset is an integer from 0 to MGRP -1.
FIG. 14 shows an exemplary flowchart for transmitting multiple sets of cell DTX and/or DRX pattern configuration. Operation 1402 transmitting, by a network device to a communication device, multiple sets of cell discontinuous transmission (DTX) and/or discontinuous reception (DRX) pattern configuration, where each serving cell is configured with a cell DTX and/or DRX pattern index that indicates which set of cell DTX and/or DRX pattern configuration is used in a serving cell; or where each set of cell DTX and/or DRX pattern configuration includes an identity, and each serving cell is configured with a first identity associated with a second identity of a set of cell DTX and/or DRX pattern configuration that indicates which set of cell DTX and/or DRX pattern configuration is used in the serving cell.
In this document the term “exemplary” is used to mean “an example of” and, unless otherwise stated, does not imply an ideal or a preferred embodiment.
Some of the embodiments described herein are described in the general context of methods or processes, which may be implemented in one embodiment by a computer program product, embodied in a computer-readable medium, including computer-executable instructions, such as program code, executed by computers in networked environments. A computer-readable medium may include removable and non-removable storage devices including, but not limited to, Read Only Memory (ROM) , Random Access Memory (RAM) , compact discs (CDs) , digital  versatile discs (DVD) , etc. Therefore, the computer-readable media can include a non-transitory storage media. Generally, program modules may include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Computer-or processor-executable instructions, associated data structures, and program modules represent examples of program code for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represents examples of corresponding acts for implementing the functions described in such steps or processes.
Some of the disclosed embodiments can be implemented as devices or modules using hardware circuits, software, or combinations thereof. For example, a hardware circuit implementation can include discrete analog and/or digital components that are, for example, integrated as part of a printed circuit board. Alternatively, or additionally, the disclosed components or modules can be implemented as an Application Specific Integrated Circuit (ASIC) and/or as a Field Programmable Gate Array (FPGA) device. Some implementations may additionally or alternatively include a digital signal processor (DSP) that is a specialized microprocessor with an architecture optimized for the operational needs of digital signal processing associated with the disclosed functionalities of this application. Similarly, the various components or sub-components within each module may be implemented in software, hardware or firmware. The connectivity between the modules and/or components within the modules may be provided using any one of the connectivity methods and media that is known in the art, including, but not limited to, communications over the Internet, wired, or wireless networks using the appropriate protocols.
While this document contains many specifics, these should not be construed as limitations on the scope of an invention that is claimed or of what may be claimed, but rather as descriptions of features specific to particular embodiments. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination  may be directed to a sub-combination or a variation of a sub-combination. Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
Only a few implementations and examples are described and other implementations, enhancements and variations can be made based on what is described and illustrated in this disclosure.

Claims (38)

  1. A wireless communication method, comprising:
    transmitting, by a communication device to a network device, a capability information that indicates that the communication device is capable of performing a measurement without a measurement gap; and
    receiving, by the communication device, a radio resource configuration that does not include a measurement gap configuration.
  2. The method of claim 1, wherein the capability information includes a radio configuration condition with which the communication device is capable of performing the measurement without the measurement gap.
  3. The method of claim 1, further comprising:
    performing, by the communication device, the measurement in an occasion that is not for a control channel monitoring and a reception of a shared channel.
  4. The method of claim 1, wherein the radio resource configuration includes a measurement gap periodicity for the measurement, a measurement duration of the measurement, or a measurement prohibit timer between performing two measurements by the communication device.
  5. The method of claim 4, wherein the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerShortCycle.
  6. The method of claim 4, wherein the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerLongCycle.
  7. The method of claim 4, wherein the measurement is performed every one or an integer multiple of a connected mode discontinuous reception (C-DRX) periodicity immediately before a start of an on-durationTimer with a timerOffset equal to the measurement duration.
  8. A wireless communication method, comprising:
    transmitting, by a communication device to a network device, a capability information that includes information that indicates whether the communication device supports a non-integer measurement gap periodicity.
  9. The method of claim 8, further comprising:
    receiving, by the communication device, configuration that includes a value for the non-integer measurement gap periodicity; and
    performing, by the communication device, a measurement based on the measurement gap that is decided based on the value for the non-integer measurement gap periodicity.
  10. The method of claim 9,
    wherein the non-integer measurement gap periodicity is configured by the network device, and
    wherein a measurement start occasion is determined by the communication device based on the non-integer measurement gap periodicity.
  11. The method of claim 10, wherein the non-integer measurement gap periodicity is a measurement gap repetition period (MGRP) that has a non-integer value.
  12. The method of claim 10, wherein the measurement start occasion is determined using the following equation:
    floor ( [ (GAP_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] 
    modulo (MGRP) ) = (gapOffset) modulo (MGRP) ,
    wherein MGRP is a measurement gap repetition period configured by the network device with a non-integer value and with unit of milliseconds,
    wherein SFN and subframe are respectively the system frame number and the system subframe number of the measurement GAP start occasion, and
    wherein gapOffset is the gap offset of the gap pattern with MGRP indicated in the field mgrp, and the value range of gapOffset is integer from 0 to floor (MGRP) -1.
  13. The method of claim 10, wherein the measurement start occasion is determined using the following equation:
    SFN×10 + subframe =ceil ( [ (SFNstart time) ×10 + subframestart time + 
    n×MGRP] modulo (10240) ) ,
    wherein MGRP is a measurement gap repetition period configured by the network device and equal to one or an integer multiple of the non-integer measurement gap periodicity,
    wherein SFNstart time and slotstart time are respectively a SFN and a subframe number of a first measurement gap start occasion where a measurement gap is configured or reconfigured, and
    wherein the SFN and the subframe are respectively a system frame number and a system subframe number of the measurement gap start occasion.
  14. The method of claim 10, wherein the measurement start occasion is determined using the following equation:
    SFN = ceil ( [ (SFN_ (start time) ) ×10 + subframe_ (start time) +n× 
    MGRP] div (10240) ) modulo 1024,
    wherein MGRP is a measurement gap repetition period configured by the network device and equal to one or an integer multiple of the non-integer measurement gap periodicity,
    wherein SFNstart time and slotstart time are respectively a SFN and a subframe number of a first measurement gap start occasion where a measurement gap is configured or reconfigured, and
    wherein the SFN and the subframe are respectively a system frame number and a system subframe number of the measurement GAP start occasion.
  15. The method of claim 8, further comprising:
    receiving, by the communication device, multiple measurement gap configuration that includes a periodicity; and
    performing, by the communication device, a measurement at each measurement gap indicated in the multiple measurement gap configuration.
  16. The method of claim 15, wherein the periodicity in the multiple measurement gap configuration is associated with a non-integer periodicity of a service that is associated with an integer periodicity of another service.
  17. The method of claim 16, wherein the integer periodicity is 50 milliseconds or an integer multiple of 50 milliseconds.
  18. The method of claim 15, wherein a first subframe of each measurement gap occurs at a system frame number (SFN) and at a subframe meeting the following condition:
    Floor [ (Gap_SFN_Counter × 1024 + SFN) mod T] = gapOffset /10;
    subframe = gapOffset mod 10;
    wherein T = MGRP/10,
    wherein gapOffset is a gap offset of a gap pattern with the MGRP and is used to determine a start occasion of each measurement gap, and
    wherein the gapOffset is the gap offset of the gap pattern with MGRP indicated in a field mgrp, and a value range of gapOffset is an integer from 0 to MGRP -1.
  19. A wireless communication method, comprising:
    receiving, by a communication device from a network device, multiple sets of cell discontinuous transmission (DTX) and/or discontinuous reception (DRX) pattern configuration,
    wherein each serving cell is configured with a cell DTX and/or DRX pattern index that indicates which set of cell DTX and/or DRX pattern configuration is used in a serving cell; or
    wherein each set of cell DTX and/or DRX pattern configuration includes an identity, and each serving cell is configured with a first identity associated with a second identity of a set of cell DTX and/or DRX pattern configuration that indicates which set of cell DTX and/or DRX pattern configuration is used in the serving cell;
    determining by the communication device, the cell DTX and/or DRX pattern configuration that is used in each serving cell based on the multiple sets of DTX and/or DRX pattern configuration, and the cell DTX and/or DRX pattern index of each serving cell or identity configured in each serving cell.
  20. A wireless communication method, comprising:
    receiving, by a network device from a communication device, a capability information that indicates that the communication device is capable of performing a measurement without a measurement gap; and
    transmitting, by the network device, a radio resource configuration that does not include a measurement gap configuration.
  21. The method of claim 20, wherein the capability information includes a radio configuration condition with which the communication device is capable of performing the measurement without the measurement gap.
  22. The method of claim 20, wherein the radio resource configuration includes a measurement gap periodicity for the measurement, a measurement duration of the measurement, or a measurement prohibit timer between performing two measurements by the communication device.
  23. The method of claim 22, wherein the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerShortCycle.
  24. The method of claim 22, wherein the measurement gap periodicity is one or an integer multiple of a connected mode discontinuous reception (C-DRX) drx-NonIntegerLongCycle.
  25. The method of claim 22, wherein the measurement is performed every one or an integer multiple of a connected mode discontinuous reception (C-DRX) periodicity immediately before a start of an on-durationTimer with a timerOffset equal to the measurement duration.
  26. A wireless communication method, comprising:
    receiving, by a network device from a communication device, a capability information that includes information that indicates whether the communication device supports a non-integer measurement gap periodicity; and
    transmitting, by the network device, configuration that includes a value for the non-integer measurement gap periodicity.
  27. The method of claim 26,
    wherein the non-integer measurement gap periodicity is configured by the network device, and
    wherein a measurement start occasion is based on the non-integer measurement gap periodicity.
  28. The method of claim 27, wherein the non-integer measurement gap periodicity is a measurement gap repetition period (MGRP) that has a non-integer value.
  29. The method of claim 27, wherein the measurement start occasion is based on the following equation:
    floor ( [ (GAP_SFN_COUNTER × 10240) + (SFN × 10) + subframe number] 
    modulo (MGRP) ) = (gapOffset) modulo (MGRP) ,
    wherein MGRP is a measurement gap repetition period configured by the network  device with a non-integer value and with unit of milliseconds,
    wherein SFN and subframe are respectively the system frame number and the system subframe number of the measurement GAP start occasion, and
    wherein gapOffset is the gap offset of the gap pattern with MGRP indicated in the field mgrp, and the value range of gapOffset is integer from 0 to floor (MGRP) -1.
  30. The method of claim 27, wherein the measurement start occasion is based on the following equation:
    SFN×10 + subframe =ceil ( [ (SFNstart time) ×10 + subframestart time + 
    n×MGRP] modulo (10240) ) ,
    wherein MGRP is a measurement gap repetition period configured by the network device and equal to one or an integer multiple of the non-integer measurement gap periodicity,
    wherein SFNstart time and slotstart time are respectively a SFN and a subframe number of a first measurement gap start occasion where a measurement gap is configured or reconfigured, and
    wherein the SFN and the subframe are respectively a system frame number and a system subframe number of the measurement gap start occasion.
  31. The method of claim 27, wherein the measurement start occasion is determined using the following equation:
    SFN = ceil ( [ (SFN_ (start time) ) ×10 + subframe_ (start time) +n× 
    MGRP] div (10240) ) modulo 1024,
    wherein MGRP is a measurement gap repetition period configured by the network device and equal to one or an integer multiple of the non-integer measurement gap periodicity,
    wherein SFNstart time and slotstart time are respectively a SFN and a subframe number of a first measurement gap start occasion where a measurement gap is configured or reconfigured, and
    wherein the SFN and the subframe are respectively a system frame number and a system subframe number of the measurement GAP start occasion.
  32. The method of claim 26, further comprising:
    transmitting, by the communication device, multiple measurement gap configuration that includes a periodicity.
  33. The method of claim 32, wherein the periodicity in the multiple measurement gap configuration is associated with a non-integer periodicity of a service that is associated with an integer periodicity of another service.
  34. The method of claim 33, wherein the integer periodicity is 50 milliseconds or an integer multiple of 50 milliseconds.
  35. The method of claim 32, wherein a first subframe of each measurement gap occurs at a system frame number (SFN) and at a subframe meeting the following condition:
    Floor [ (Gap_SFN_Counter × 1024 + SFN) mod T] = gapOffset /10;
    subframe = gapOffset mod 10;
    wherein T = MGRP/10,
    wherein gapOffset is a gap offset of a gap pattern with the MGRP and is used to determine a start occasion of each measurement gap, and
    wherein the gapOffset is the gap offset of the gap pattern with MGRP indicated in a field mgrp, and a value range of gapOffset is an integer from 0 to MGRP -1.
  36. A wireless communication method, comprising:
    transmitting, by a network device to a communication device, multiple sets of cell discontinuous transmission (DTX) and/or discontinuous reception (DRX) pattern configuration,
    wherein each serving cell is configured with a cell DTX and/or DRX pattern index that indicates which set of cell DTX and/or DRX pattern configuration  is used in a serving cell; or
    wherein each set of cell DTX and/or DRX pattern configuration includes an identity, and each serving cell is configured with a first identity associated with a second identity of a set of cell DTX and/or DRX pattern configuration that indicates which set of cell DTX and/or DRX pattern configuration is used in the serving cell.
  37. An apparatus for wireless communication comprising a processor, configured to implement a method recited in one or more of claims 1 to 36.
  38. A non-transitory computer readable program storage medium having code stored thereon, the code, when executed by a processor, causing the processor to implement a method recited in one or more of claims 1 to 36.
PCT/CN2023/131917 2023-11-16 2023-11-16 Wireless measurement configuration techniques WO2024114391A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/131917 WO2024114391A1 (en) 2023-11-16 2023-11-16 Wireless measurement configuration techniques

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/131917 WO2024114391A1 (en) 2023-11-16 2023-11-16 Wireless measurement configuration techniques

Publications (1)

Publication Number Publication Date
WO2024114391A1 true WO2024114391A1 (en) 2024-06-06

Family

ID=91322965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131917 WO2024114391A1 (en) 2023-11-16 2023-11-16 Wireless measurement configuration techniques

Country Status (1)

Country Link
WO (1) WO2024114391A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106233765A (en) * 2014-04-30 2016-12-14 Lg电子株式会社 The method and apparatus of allocating and measuring gap in a wireless communication system
CN114223149A (en) * 2019-08-16 2022-03-22 高通股份有限公司 Evaluation period for beam fault detection and candidate beam detection in multi-beam NR-U
CN115428390A (en) * 2020-04-28 2022-12-02 高通股份有限公司 Minimum Positioning Reference Signal (PRS) processing when measurement gaps are not configured
WO2023107962A1 (en) * 2021-12-09 2023-06-15 Qualcomm Incorporated Enhanced radio resource management (rrm) measurement gap procedure
WO2023130307A1 (en) * 2022-01-06 2023-07-13 Apple Inc. Inter radio access technology measurement without measurement gap

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106233765A (en) * 2014-04-30 2016-12-14 Lg电子株式会社 The method and apparatus of allocating and measuring gap in a wireless communication system
CN114223149A (en) * 2019-08-16 2022-03-22 高通股份有限公司 Evaluation period for beam fault detection and candidate beam detection in multi-beam NR-U
CN115428390A (en) * 2020-04-28 2022-12-02 高通股份有限公司 Minimum Positioning Reference Signal (PRS) processing when measurement gaps are not configured
WO2023107962A1 (en) * 2021-12-09 2023-06-15 Qualcomm Incorporated Enhanced radio resource management (rrm) measurement gap procedure
WO2023130307A1 (en) * 2022-01-06 2023-07-13 Apple Inc. Inter radio access technology measurement without measurement gap

Similar Documents

Publication Publication Date Title
US11540323B2 (en) 2-step random access
CN111345050B (en) Temporary handling of wireless communication device capabilities
EP3968538A1 (en) Method and apparatus for beam failure detection regarding multiple transmission/reception points in a wireless communication system
US10182422B2 (en) Wireless communications system, mobile station, base station, and communication method
EP2768257A2 (en) Method in which a terminal transceives a signal in a wireless communication system and apparatus for same
CN112771959B (en) Resource set monitoring method, equipment and storage medium
CN113508637A (en) Methods and apparatus to facilitate multiplexing wake-up signals with other resources
US11265925B2 (en) Downlink radio resource control message transmission in 2-step random access
CN110447201B (en) Method for allocating reference signal resources in wireless communication system and apparatus therefor
EP4000322A1 (en) Persistent paging occasion collision avoidance for multi-sim user equipments
US20140036851A1 (en) Method for sending and receiving signals for alleviating inter-cell interference in a wireless communication system and a device therefor
CN113872740A (en) Method and user equipment for wireless communication
AU2020223256A1 (en) Random access method and apparatus
US20230345545A1 (en) Downlink Radio Resource Control Message Transmission in 2-Step Random Access
US20230067619A1 (en) Methods and systems for reference signaling in wireless communication networks
CN110234136B (en) LTE uplink carrier synchronization method and device
WO2024114391A1 (en) Wireless measurement configuration techniques
US11917464B2 (en) 5G NR efficient FR1/FR2 operation
WO2023141845A1 (en) Multiple carrier transmission techniques
WO2023133681A1 (en) Wireless communication method and apparatus
US11800495B2 (en) Power saving for reduced capability devices
WO2023056605A1 (en) Method and apparatus for beam determination
US20240089895A1 (en) Method and apparatus for positioning in rrc_idle or rrc_inactive state
KR101600450B1 (en) Communication system and method for updating system information
WO2024065163A1 (en) Methods and apparatuses of supporting lower layer mobility