WO2024113864A1 - 一种光纤测距的方法和设备 - Google Patents

一种光纤测距的方法和设备 Download PDF

Info

Publication number
WO2024113864A1
WO2024113864A1 PCT/CN2023/105312 CN2023105312W WO2024113864A1 WO 2024113864 A1 WO2024113864 A1 WO 2024113864A1 CN 2023105312 W CN2023105312 W CN 2023105312W WO 2024113864 A1 WO2024113864 A1 WO 2024113864A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
onu
olt
ranging request
detection signal
Prior art date
Application number
PCT/CN2023/105312
Other languages
English (en)
French (fr)
Inventor
李昊江
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024113864A1 publication Critical patent/WO2024113864A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular to a method and device for optical fiber ranging.
  • OLT optical line terminal
  • ODN optical distribution network
  • the PON system is a multi-point-to-point topology
  • multiple ONUs share the backbone fiber.
  • the distance between each ONU and the OLT must be known to determine the time required for the uplink message of the ONU to reach the backbone fiber.
  • the OLT After the OLT sends a ranging message to the ONU, it receives a response message sent by the ONU. Based on the time interval between sending the ranging message and receiving the response message, combined with the propagation speed of light in the optical fiber, the distance between the OLT and the ONU is calculated.
  • the time interval between sending the ranging message and receiving the response message is affected by the response time of the ONU processing the ranging message, and the response time of the ONU processing the ranging message is affected by the operation of the ONU and the design of the ONU itself, it is impossible to use the time interval between sending the ranging message and receiving the response message to accurately calculate the optical fiber length between the ONU and the OLT.
  • the embodiments of the present application provide a method and device for optical fiber distance measurement, which are used to accurately measure the length of an optical fiber between an ONU and an OLT using an optical signal.
  • the present application provides a method for optical fiber ranging, comprising: an optical line terminal OLT obtains a first distance, where the first distance is the product of an inherent delay of the OLT and a first speed, where the first speed is the propagation speed of light in an optical fiber; the OLT sends a first ranging request to a first optical network unit ONU; the OLT obtains a second distance and a third distance, where the second distance is the product of a circuit delay of the first ONU and the first speed, and the third distance is the product of a signal processing delay of the first ONU and the first speed; the OLT obtains a response to the first ranging request sent by the first ONU; the OLT calculates the distance between the OLT and the first ONU according to the first distance, the second distance, the third distance, the first ranging request, and the response to the first ranging request.
  • the OLT obtains the first distance, the first distance is the product of the time delay of the OLT and/or the time delay of the first ONU circuit and the first speed, the OLT sends at least two first ranging requests to the first ONU, and obtains responses to at least two first ranging requests, and the OLT calculates the distance between the OLT and the first ONU according to the first distance, the at least two first ranging requests, and the responses to the at least two first ranging requests.
  • the first distance can be used to eliminate the ranging error caused by the time delay of the OLT and/or the time delay of the first ONU circuit, thereby improving the measurement accuracy of the distance between the OLT and the ONU.
  • the OLT calculates the distance between the OLT and the first ONU according to the first distance, the second distance, the third distance, the first ranging request, and a response to the first ranging request, including: the OLT calculates a time difference between sending the first ranging request and obtaining a response to the first ranging request to obtain a first duration; the OLT calculates the product of the first duration and the first speed to obtain a fourth distance; the OLT calculates a difference between the fourth distance and the first distance, the second distance, and the third distance to obtain the distance between the OLT and the first ONU.
  • the OLT calculates the distance between the OLT and the first ONU based on the first distance, the second distance, the third distance, the first ranging request and the response to the first ranging request.
  • the first duration can be obtained by calculating the time difference between sending the first ranging request and obtaining the response to the first ranging request; the OLT calculates the product of the first duration and the first speed to obtain the fourth distance, and the OLT calculates the difference between the fourth distance and the first distance, the second distance and the third distance to obtain the distance between the OLT and the first ONU.
  • the fourth distance is obtained by calculating the propagation time of the optical signal in the optical fiber according to the first duration of the optical signal transmission, and then the difference between the fourth distance and the first distance, the second distance and the third distance is calculated to obtain the distance between the OLT and the first ONU.
  • the first ranging request carries the identity of the first ONU, and the second distance and the third distance have a corresponding relationship with the identity of the first ONU; the OLT obtains the second distance and the third distance, including: the OLT obtains the second distance and the third distance according to the corresponding relationship between the identity of the first ONU and the second distance, the third distance and the identity of the first ONU.
  • the first ranging request carries the identity of the first ONU. According to the identity of the first ONU, a second distance and a third distance corresponding to the identity of the first ONU are obtained. The second distance and the third distance corresponding to the identity of the first ONU are selected from the distance list stored in the OLT using the identity of the first ONU, thereby improving the utilization efficiency of the storage in the OLT.
  • the method further includes: the OLT acquiring an optical signal sent by a first end of the first ONU, the optical signal carrying an optical fiber identifier; the OLT calculating a topological structure of a passive optical network PON based on a distance between the OLT and the first ONU and the optical fiber identifier, the PON including the OLT and the first ONU.
  • the method can also calculate the topological structure of the PON according to the distance between the OLT and the first ONU and the optical fiber identifier after the OLT obtains the optical signal sent by the first end of the first ONU, wherein the PON includes the OLT and the first ONU, wherein the optical signal carries the optical fiber identifier.
  • the optical fiber identifier of the optical fiber between the first end of the first ONU and the OLT is obtained by using the optical signal sent by the first end of the ONU, and the topological relationship of the PON is calculated by using the optical fiber identifier and the distance between the first ONU and the OLT.
  • the topological structure in the PON is obtained efficiently and accurately without the need for manual configuration and inspection, thereby improving the working efficiency of the PON.
  • the PON further includes a second ONU.
  • the PON may include a second ONU, and the PON may include multiple ONUs, thereby improving the utilization efficiency of the PON.
  • the method further includes: the OLT sends a first detection signal to the first ONU, the first detection signal being used to detect whether the path between the OLT and the first ONU is reachable; the OLT sends a second detection signal to the second ONU, the second detection signal being used to detect whether the path between the OLT and the second ONU is reachable; the OLT obtains a response signal to the first detection signal sent by the first ONU; if the distance between the OLT and the first ONU is less than the distance between the OLT and the second ONU, the OLT determines, based on the response signal to the first detection signal, that a fault occurs in a trunk road between the first ONU and the second ONU or in a branch road where the second ONU is located; if the distance between the OLT and the first ONU is greater than or equal to the distance between the OLT and the second ONU, the OLT determines, based on the response signal to the first detection signal, that a fault occurs in a branch road
  • the OLT also sends a first detection signal to the first ONU, and the first detection signal is used to detect whether the path between the OLT and the first ONU is reachable; the OLT sends a second detection signal to the second ONU, and the second detection signal is used to detect whether the path between the OLT and the second ONU is reachable; if the path between the first ONU and the OLT is reachable, the OLT obtains a response signal of the first detection signal sent by the first ONU.
  • the OLT determines that the main road between the first ONU and the second ONU or the branch where the second ONU is located has a fault. If the distance between the OLT and the first ONU is greater than or equal to the distance between the OLT and the second ONU, the OLT determines that the branch where the second ONU is located has a fault.
  • the topological structure of the PON is calculated, and the network diagnosis of the PON is performed using the calculated topological structure of the PON and the detection signal, which reduces the difficulty of the network diagnosis of the PON and improves the reliability of the PON.
  • a second aspect of the present application provides a device for optical fiber ranging, comprising:
  • An acquisition unit configured to acquire a first distance, where the first distance is a product of an inherent delay of the OLT and a first speed, where the first speed is a propagation speed of light in an optical fiber;
  • a sending unit configured to send a first ranging request to a first optical network unit ONU;
  • the acquisition unit is further used to acquire a second distance and a third distance, wherein the second distance is the product of a circuit delay of the first ONU and the first speed, and the third distance is the product of a signal processing delay of the first ONU and the first speed;
  • the acquiring unit is further configured to acquire a response to the first ranging request sent by the first ONU;
  • a calculation unit is used to calculate the distance between the OLT and the first ONU according to the first distance, the second distance, the third distance, the first ranging request, and a response to the first ranging request.
  • the computing unit is specifically configured to:
  • the difference between the fourth distance and the first distance, the second distance and the third distance is calculated to obtain the distance between the OLT and the first ONU.
  • the first ranging request carries an identity of the first ONU, and the second distance and the third distance have a corresponding relationship with the identity of the first ONU;
  • the acquisition unit is specifically configured to acquire the second distance and the third distance according to a correspondence between the identity of the first ONU and the second distance and the third distance and the identity of the first ONU.
  • the acquisition unit is further used to acquire an optical signal sent by the first end of the first ONU, where the optical signal carries an optical fiber identifier;
  • the calculation unit is further used to calculate the topology of a passive optical network PON according to the distance between the OLT and the first ONU and the optical fiber identifier, and the PON includes the OLT and the first ONU.
  • the PON further includes a second ONU.
  • the sending unit is further used to send a first detection signal to the first ONU, where the first detection signal is used to detect whether a path between the OLT and the first ONU is reachable;
  • the sending unit is further used to send a second detection signal to the second ONU, where the second detection signal is used to detect whether a path between the OLT and the second ONU is reachable;
  • the acquisition unit is further used to acquire a response signal of the first detection signal sent by the first ONU;
  • the device further includes a judgment unit, which is used to judge, if the distance between the OLT and the first ONU is smaller than the distance between the OLT and the second ONU, whether a main line between the first ONU and the second ONU or a branch line where the second ONU is located is faulty according to a response signal to the first detection signal;
  • the judging unit is further configured to judge, based on a response signal to the first detection signal, that a branch where the second ONU is located has a fault if the distance between the OLT and the first ONU is greater than or equal to the distance between the OLT and the second ONU.
  • a third aspect of an embodiment of the present application provides a device for optical fiber ranging, including a processor and a memory, wherein the memory is used to store instructions, and the processor is used to execute the instructions.
  • the processor executes the instructions, the method described in the first aspect or any possible implementation manner of the first aspect is executed.
  • a fourth aspect of an embodiment of the present application provides a computer-readable storage medium, including a program, which, when executed on a computer, enables the computer to execute the method described in the first aspect or any possible implementation of the first aspect.
  • a fifth aspect of the embodiments of the present application provides a computer program product comprising instructions, which, when executed on a computer, enables the computer to execute the method described in the first aspect or any possible implementation manner of the first aspect.
  • FIG1 is a schematic diagram of a flow chart of a method for optical fiber ranging provided in an embodiment of the present application
  • FIG2 is a schematic diagram of a correspondence relationship between ONU models and compensation distances for circuit delays provided in an embodiment of the present application
  • FIG3a is a schematic diagram showing a distribution of a first ONU signal processing delay compensation distance provided in an embodiment of the present application
  • FIG3b is another distribution diagram of the first ONU signal processing delay compensation distance provided in an embodiment of the present application.
  • FIG4 is another schematic flow chart of the optical fiber ranging method provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a topological structure of a PON provided in an embodiment of the present application.
  • FIG6 is another schematic flow chart of the optical fiber ranging method provided in an embodiment of the present application.
  • FIG7 is another schematic diagram of a topological structure of a PON provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a structure of a fiber optic ranging device provided in an embodiment of the present application.
  • FIG. 9 is another schematic diagram of the structure of the optical fiber ranging device provided in an embodiment of the present application.
  • optical fibers have entered thousands of households, and fiber-to-the-home cannot be separated from the PON system.
  • the optical signal emitted by the OLT is transmitted to the ONU through the ODN to form the PON system.
  • the OLT is a device managed by the operator, responsible for allocating data from the upper-layer service network to users
  • the ONU is a device for users to connect to the network, responsible for receiving data sent by the OLT and directly providing services to users.
  • the PON system is a multi-point-to-point topology
  • multiple ONUs share the backbone fiber.
  • the distance between each ONU and the OLT must be known to determine the time required for the uplink message of the ONU to reach the backbone fiber.
  • the OLT After the OLT sends a ranging message to the ONU, it receives a response message sent by the ONU. Based on the time interval between sending the ranging message and receiving the response message, combined with the propagation speed of light in the optical fiber, the distance between the OLT and the ONU is calculated.
  • the time interval between sending the ranging message and receiving the response message is not entirely the time for the optical signal to propagate in the optical fiber, which includes the time for the OLT to process the signal, the time for the optical signal to propagate in the optical fiber, and the time for the ONU to process the signal, it is impossible to accurately calculate the optical fiber length between the ONU and the OLT using the time interval between sending the ranging message and receiving the response message.
  • the present application proposes that the time for OLT to process signals and the time for ONU to process signals can be calculated and pre-stored in the OLT, wherein the time for ONU to process signals includes the internal circuit delay and signal processing delay of the ONU, and the internal circuit delay and signal processing delay of different models of ONU devices are different. Therefore, the OLT system needs to maintain a list of internal circuit delay compensation distances of the ONU devices and signal processing delay compensation distances of the ONU devices corresponding to different brands and models of ONUs.
  • the OLT calculates the calculated distance between the OLT and the ONU based on the feedback message of the ranging request fed back by the ONU and the ranging request, and then subtracts the inherent delay compensation distance of the OLT, the internal circuit delay compensation distance of the ONU device, and the signal processing delay compensation distance of the ONU device stored in the OLT from the calculated distance between the OLT and the ONU, to obtain the distance between the OLT and the ONU.
  • FIG. 1 is a flow chart of a method for optical fiber ranging provided in an embodiment of the present application.
  • the OLT obtains a first distance
  • the OLT When the OLT measures the distance of the first ONU, it obtains a first distance, which is a compensation distance of the inherent delay of the OLT pre-set in the OLT.
  • the first distance is the product of the inherent delay of the OLT and a first speed, which is a propagation speed of light in the optical fiber.
  • step 102 can be executed before step 104.
  • step 102 can be executed before step 104.
  • the order of steps 101 to 104 should be set in combination with specific application scenarios, and no limitation is made here.
  • the OLT sends a first ranging request to the first ONU;
  • the OLT When performing ranging on the first ONU, the OLT sends a first ranging request to the first ONU.
  • the OLT may send a Ranging request message to the first ONU to trigger the first ONU to send a response message of the first ranging request to the OLT.
  • the description of the first ranging request as a ranging request message here is only an example. In actual applications, the OLT should send the first ranging request to the first ONU based on the specific application scenario, and there is no limitation here.
  • step 102 can be executed before step 104.
  • step 102 can be executed before step 104.
  • the order of steps 101 to 104 should be set in combination with specific application scenarios, and no limitation is made here.
  • the OLT obtains the second distance and the third distance
  • the OLT When the OLT measures the distance of the first ONU, the OLT obtains a second distance and a third distance pre-stored in the OLT, wherein the second distance is the product of the circuit delay of the first ONU and the first speed, that is, the distance compensation of the circuit delay of the first ONU, and the third distance is the product of the signal processing delay of the first ONU and the first speed, that is, the distance compensation of the signal processing delay of the first ONU.
  • the OLT may pre-store a schematic diagram of the correspondence between the ONU model that may exist in the PON system and the compensation distance of the circuit delay corresponding to the ONU model, and the ONU model that may exist in the PON system and the compensation distance of the signal processing delay corresponding to the ONU model.
  • the schematic diagram of the correspondence between the ONU model and the compensation distance of the circuit delay please refer to Figure 2, which is a schematic diagram of the correspondence between the ONU model and the compensation distance of the circuit delay provided in an embodiment of the present application.
  • the OLT obtains the second distance from the corresponding relationship diagram between the ONU model and the compensation distance of the circuit delay, and obtains the third distance from the corresponding relationship diagram between the ONU model and the compensation distance of the signal processing delay.
  • the description of the corresponding relationship diagram between the ONU model and the compensation distance of the circuit delay here is only an example.
  • the ONU model and the compensation distance of the circuit delay can also be stored in the OLT in other forms, which is not limited here.
  • step 102 can be executed before step 104.
  • step 102 can be executed before step 104.
  • the order of steps 101 to 104 should be set in combination with specific application scenarios, and no limitation is made here.
  • the OLT obtains a response to the first ranging request sent by the first ONU;
  • the OLT After sending the first ranging request, the OLT obtains a response to the first ranging request sent by the first ONU.
  • step 102 can be executed before step 104.
  • step 102 can be executed before step 104.
  • the order of steps 101 to 104 should be set in combination with specific application scenarios, and no limitation is made here.
  • the OLT calculates the distance between the OLT and the first ONU.
  • the OLT After acquiring the first distance, the second distance, the third distance, the first ranging request and the response to the first ranging request, the OLT calculates the distance between the OLT and the first ONU according to the first distance, the second distance, the third distance, the first ranging request and the response to the first ranging request.
  • the OLT calculates the time difference between sending the first ranging request and obtaining the response to the first ranging request to obtain a first duration.
  • the OLT calculates the product of the first duration and the first speed to obtain a fourth speed.
  • the OLT calculates the difference between the fourth distance and the first distance, the second distance, and the third distance to obtain the distance between the OLT and the first ONU.
  • t is the first duration
  • v is the first speed
  • l 1 is the first distance
  • l 2 is the second distance
  • l 3 is the third distance
  • L is the distance between the OLT and the first ONU.
  • the method proposed in the present application of pre-storing the first distance, the second distance and the third distance in the OLT for subsequent use is only an example.
  • the OLT may also pre-store the OLT inherent delay, the circuit delay of the first ONU and the signal processing delay of the first ONU, which is not limited here.
  • the OLT calculates the distance between the OLT and the first ONU according to the first distance, the second distance, the third distance, the first ranging request and the response to the first ranging request.
  • the first duration can be obtained by calculating the time difference between sending the first ranging request and obtaining the response to the first ranging request; the OLT calculates the product of the first duration and the first speed to obtain the fourth distance, and the OLT calculates the difference between the fourth distance and the first distance, the second distance and the third distance to obtain the distance between the OLT and the first ONU.
  • the fourth distance is calculated according to the first duration of the optical signal transmission, and then the difference between the fourth distance and the first distance, the second distance and the third distance is calculated to obtain the distance between the OLT and the first ONU.
  • the accuracy of measuring the distance between the OLT and the first ONU is improved.
  • the OLT obtains the first distance, the first distance is the product of the time delay of the OLT and/or the time delay of the first ONU circuit and the first speed, the OLT sends at least two first ranging requests to the first ONU, and obtains responses to at least two first ranging requests, and the OLT calculates the distance between the OLT and the first ONU according to the first distance, the at least two first ranging requests, and the responses to the at least two first ranging requests.
  • the first distance can be used to eliminate the ranging error caused by the time delay of the OLT and/or the time delay of the first ONU circuit, thereby improving the measurement accuracy of the distance between the OLT and the ONU.
  • the signal processing delay compensation distance calculated by multiple ranging experiments can be used to fit the distribution curve of the signal processing delay compensation distance of the ONU, and then the data in the confidence interval of the signal processing delay compensation distance of the ONU is obtained according to the fitted Gaussian curve, and the average value of the data is calculated, which is the signal processing delay compensation distance of the ONU.
  • the description of calculating the average value of the data for the portion of the signal processing delay compensation distance of the ONU located in the confidence interval is only an example.
  • the confidence interval should be selected according to the actual situation, and after the data is obtained, the data should be calculated by taking the average value according to the actual situation, or after the data is obtained, the data can also be calculated by weighted average. There is no limitation here.
  • FIG. 1 The method described in FIG. 1 can also be applied to a variety of different application scenarios.
  • the following will introduce the solution proposed in this application in combination with different application scenarios:
  • the PON system may change continuously, regular detection scanning of the PON system can timely learn the structural changes of the PON system, and then better utilize the structure of the PON system for network management.
  • the present application proposes that the topological structure of the PON system can be obtained by using the distance between the OLT and the first ONU calculated by the OLT.
  • Figure 4 is another flow chart of the method for optical fiber ranging provided in an embodiment of the present application.
  • the OLT obtains a first distance.
  • the OLT sends a first ranging request to the first ONU;
  • the OLT obtains the second distance and the third distance.
  • the OLT obtains a response to the first ranging request sent by the first ONU;
  • the OLT calculates the distance between the OLT and the first ONU.
  • steps 401 to 405 The specific implementation of steps 401 to 405 is similar to that of steps 101 to 105 in FIG. 1 , and will not be described in detail here. Please refer to the introduction of steps 101 to 105 in FIG. 1 .
  • the OLT obtains the optical fiber identifier sent by the first end of the first ONU;
  • the OLT obtains an optical signal sent by the first end of the first ONU, the optical signal carrying an optical fiber identifier, and the OLT identifies a connection relationship between the first end of the first ONU and the OLT using the optical fiber identifier in the optical signal.
  • the OLT calculates the topology of the PON according to the distance between the OLT and the first ONU and the optical fiber identifier.
  • the OLT After performing distance measurement on the first ONU and the second ONU and acquiring the optical fiber identifier, the OLT calculates the topology structure of the PON according to the distance measurement results of the first ONU and the second ONU and the corresponding relationship between the optical fiber identifiers.
  • FIG. 5 is a schematic diagram of a topological structure of a PON provided in an embodiment of the present application.
  • the PON includes an OLT, a first ONU, and a second ONU, wherein the OLT provides services for the first ONU and the second ONU, and the distance between the OLT and the first ONU is greater than or equal to the distance between the OLT and the second ONU. Since there is a common optical fiber line between the first ONU and the second ONU, the topological structure of the PON is shown in FIG5 .
  • the description of the topological structure of the PON here is only an example.
  • the PON may include an OLT and at least one ONU.
  • the PON includes two or more ONUs, there is no restriction on the distance relationship between the two or more ONUs and the OLT, and the length of the optical fiber line portion shared by the two or more ONUs.
  • the method can also calculate the topological structure of the PON according to the distance between the OLT and the first ONU and the optical fiber identifier after the OLT obtains the optical signal sent by the first end of the first ONU, wherein the PON includes the OLT and the first ONU, wherein the optical signal carries the optical fiber identifier.
  • the optical fiber identifier of the optical fiber between the first end of the first ONU and the OLT is obtained by using the optical signal sent by the first end of the ONU, and the topological relationship of the PON is calculated by using the optical fiber identifier and the distance between the first ONU and the OLT.
  • the topological structure in the PON is obtained efficiently and accurately without the need for manual configuration and inspection, thereby improving the working efficiency of the PON.
  • one OLT usually manages multiple ONUs. Multiple ONUs and lines between OLT and multiple ONUs may fail, and technicians need to perform routine inspections and maintenance, which results in high maintenance costs. How to reduce the human and material input of technicians for daily inspections while ensuring the operational safety of the PON system?
  • This application proposes that based on the calculated PON topology, the signal sent by the OLT to the ONU, and the feedback obtained, it can be determined whether there is a fault in the PON and the specific area where the fault occurs.
  • FIG6 is another flow chart of the optical fiber ranging method provided in an embodiment of the present application.
  • the OLT obtains a first distance
  • the OLT sends a first ranging request to the first ONU;
  • the OLT obtains the second distance and the third distance
  • the OLT obtains a response to the first ranging request sent by the first ONU;
  • the OLT calculates the distance between the OLT and the first ONU.
  • the OLT obtains the optical fiber identifier sent by the first end of the first ONU;
  • the OLT calculates the topology of the PON according to the distance between the OLT and the first ONU and the optical fiber identifier;
  • steps 601 to 607 is similar to that of steps 401 to 407 in FIG. 4 , and will not be described in detail here. Please refer to the introduction of steps 401 to 407 in FIG. 4 .
  • the OLT sends a first detection signal to the first ONU;
  • the OLT After completing a PON topology calculation, the OLT sends a first detection signal to the first ONU, where the first detection signal is used to detect whether a path between the OLT and the first ONU is reachable.
  • step 608 can be executed before step 610.
  • the order of step 608 to step 610 can be determined based on actual conditions, and no limitation is made here.
  • the OLT sends a second detection signal to the second ONU.
  • the OLT After completing a PON topology calculation, the OLT sends a second detection signal to the second ONU, where the second detection signal is used to detect whether a path between the OLT and the second ONU is reachable.
  • step 608 can be executed before step 610.
  • the order of step 608 to step 610 can be determined based on actual conditions, and no limitation is made here.
  • the OLT obtains a response signal to the first detection signal sent by the first ONU;
  • the OLT After sending the first detection signal to the first ONU, the OLT obtains a response signal to the first detection signal sent by the first ONU, so there is no fault in the optical path from the first ONU to the OLT.
  • step 608 can be executed before step 610.
  • the order of step 608 to step 610 can be determined based on actual conditions, and no limitation is made here.
  • the OLT determines the fault occurrence area.
  • the OLT determines the area where the fault occurs according to the distance between the OLT and the first ONU and the distance between the OLT and the second ONU.
  • Figure 7 is another schematic diagram of the topological structure of the PON provided in an embodiment of the present application.
  • the OLT determines that a fault occurs in the trunk line between the first ONU and the second ONU or in the branch line where the second ONU is located according to the topological structure of the PON and the response signal of the first detection signal.
  • the PON includes an OLT, a first ONU, and a second ONU, wherein the OLT provides services for the first ONU and the second ONU, and the distance between the OLT and the first ONU is smaller than the distance between the OLT and the second ONU. Since there is a common optical fiber line between the first ONU and the second ONU, the topological structure of the PON is shown in Figure 7.
  • the OLT determines that a branch where the first ONU and the second ONU are located has a fault according to the topology of the PON and the response signal of the first detection signal.
  • OLT should determine the fault area in combination with the specific network topology.
  • description of OLT sending a detection signal and obtaining a response signal to the detection signal sent by ONU is an example.
  • the detection signal sent by OLT may be received by both In the case of a corresponding response signal, there is no fault in the PON at this time, and the specific operation will not be repeated here.
  • the OLT also sends a first detection signal to the first ONU, and the first detection signal is used to detect whether the path between the OLT and the first ONU is reachable; the OLT sends a second detection signal to the second ONU, and the second detection signal is used to detect whether the path between the OLT and the second ONU is reachable; if the path between the first ONU and the OLT is reachable, the OLT obtains a response signal of the first detection signal sent by the first ONU.
  • the OLT determines that the main road between the first ONU and the second ONU or the branch where the second ONU is located has a fault. If the distance between the OLT and the first ONU is greater than or equal to the distance between the OLT and the second ONU, the OLT determines that the branch where the second ONU is located has a fault.
  • the topological structure of the PON is calculated, and the network diagnosis of the PON is performed using the calculated topological structure of the PON and the detection signal, which reduces the difficulty of the network diagnosis of the PON and improves the reliability of the PON.
  • FIG8 is a schematic diagram of the structure of a fiber optic ranging device provided in an embodiment of the present application.
  • Fiber optic ranging equipment includes:
  • An acquisition unit 801 is configured to acquire a first distance, where the first distance is a product of an intrinsic delay of the OLT and a first speed, where the first speed is a propagation speed of light in an optical fiber;
  • the sending unit 802 is used to send a first ranging request to the first optical network unit ONU;
  • the acquisition unit 801 is further configured to acquire a second distance and a third distance, wherein the second distance is a product of a circuit delay of the first ONU and the first speed, and the third distance is a product of a signal processing delay of the first ONU and the first speed;
  • the acquiring unit 801 is further configured to acquire a response to the first ranging request sent by the first ONU;
  • the calculating unit 803 is configured to calculate the distance between the OLT and the first ONU according to the first distance, the second distance, the third distance, the first ranging request, and a response to the first ranging request.
  • calculation unit 803 is specifically configured to:
  • the difference between the fourth distance and the first distance, the second distance and the third distance is calculated to obtain the distance between the OLT and the first ONU.
  • the first ranging request carries an identity of the first ONU, and the second distance and the third distance correspond to the identity of the first ONU;
  • the acquisition unit 801 is specifically configured to acquire the second distance and the third distance according to a correspondence between the identity of the first ONU and the second distance and the third distance and the identity of the first ONU.
  • the acquisition unit 801 is further used to acquire an optical signal sent by the first end of the first ONU, where the optical signal carries an optical fiber identifier;
  • the calculation unit 803 is further configured to calculate a topology structure of a passive optical network PON according to the distance between the OLT and the first ONU and the optical fiber identifier, wherein the PON includes the OLT and the first ONU.
  • the PON also includes a second ONU.
  • the sending unit 802 is further used to send a first detection signal to the first ONU, where the first detection signal is used to detect whether a path between the OLT and the first ONU is reachable;
  • the sending unit 802 is further configured to send a second detection signal to the second ONU, where the second detection signal is used to detect whether a path between the OLT and the second ONU is reachable;
  • the acquisition unit 801 is further configured to acquire a response signal to the first detection signal sent by the first ONU;
  • the device further includes a judgment unit 804, which is used to judge, if the distance between the OLT and the first ONU is smaller than the distance between the OLT and the second ONU, whether a main line between the first ONU and the second ONU or a branch line where the second ONU is located is faulty according to a response signal to the first detection signal;
  • the judging unit 804 if the distance between the OLT and the first ONU is greater than or equal to the distance between the OLT and the second ONU, It is also used to determine whether a branch where the second ONU is located has a fault according to a response signal to the first detection signal.
  • FIG. 9 is another structural schematic diagram of the fiber optic distance measurement device provided in an embodiment of the present application.
  • the optical fiber ranging device 900 is used to implement the functions performed in FIG. 1 , FIG. 4 or FIG. 6 .
  • the optical fiber ranging device 900 is implemented by one or more servers.
  • the optical fiber ranging device 900 may have relatively large differences due to different configurations or performances, and may include one or more central processing units (CPU) 922 (for example, one or more central processing units) and memory 932, and one or more storage media 930 (for example, one or more storage devices).
  • the memory 932 and the storage medium 930 may be temporary storage or permanent storage.
  • the program stored in the storage medium 930 may include one or more modules (not shown in the figure), and each module may include a series of instruction operations in the optical fiber ranging device 900.
  • the central processing unit 922 may be configured to communicate with the storage medium 930, and execute a series of instruction operations in the storage medium 930 on the optical fiber ranging device 900.
  • the optical fiber ranging device 900 may also include one or more power supplies 926 , one or more wired or wireless network interfaces 950 , and/or one or more input and output interfaces 958 .
  • the central processor 922 is used to execute the method in the embodiment corresponding to Figure 1, Figure 4 or Figure 6.
  • the central processor 922 can be used to: the optical line terminal OLT obtains a first distance, the first distance is the product of the inherent delay of the OLT and the first speed, and the first speed is the propagation speed of light in the optical fiber; the OLT sends a first ranging request to the first optical network unit ONU; the OLT obtains a second distance and a third distance, the second distance is the product of the circuit delay of the first ONU and the first speed, and the third distance is the product of the signal processing delay of the first ONU and the first speed; the OLT obtains a response to the first ranging request sent by the first ONU; the OLT calculates the distance between the OLT and the first ONU according to the first distance, the second distance, the third distance, the first ranging request and the response to the first ranging request.
  • central processing unit 922 can also be used to execute any step in the method embodiments corresponding to Figures 1, 4 or 6 in the present application.
  • the specific content can be found in the description of the method embodiments shown in the previous part of the present application, and will not be repeated here.
  • An embodiment of the present application also provides a computer-readable storage medium, including computer-readable instructions.
  • the computer-readable instructions When the computer-readable instructions are executed on a computer, the computer executes any one of the implementation methods shown in the aforementioned method embodiments.
  • the embodiments of the present application also provide a computer program product, which includes a computer program or instructions.
  • a computer program product which includes a computer program or instructions.
  • the computer program or instructions When the computer program or instructions are executed on a computer, the computer executes any one of the implementation methods shown in the aforementioned method embodiments.
  • the present application also provides a chip or chip system, which may include a processor.
  • the chip may also include a memory (or storage module) and/or a transceiver (or communication module), or the chip is coupled to a memory (or storage module) and/or a transceiver (or communication module), wherein the transceiver (or communication module) can be used to support the chip for wired and/or wireless communication, and the memory (or storage module) can be used to store a program or a set of instructions, and the processor calls the program or the set of instructions to implement the above method embodiment, and the operation performed by the terminal or network device in any possible implementation of the method embodiment.
  • the chip system may include the above chip, and may also include the above chip and other discrete devices, such as a memory (or storage module) and/or a transceiver (or communication module).
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed over multiple network units. Some or all of the units may be selected to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions to enable a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例提供了一种光纤测距的方法和设备,用于利用光信号精准测量ONU与OLT之间的光纤长度。本申请实施例方法包括:OLT通过获取第一距离,第一距离为OLT的时延和/或第一ONU电路的时延与第一速度的乘积,OLT向第一ONU发送至少两个第一测距请求,并获取到至少两个第一测距请求的响应,OLT根据第一距离、至少两个第一测距请求和至少两个第一测距请求的响应计算OLT与第一ONU的距离。在获取到第一距离后,可以利用第一距离消除OLT的时延和/或第一ONU电路的时延导致的测距误差,提升了OLT与ONU之间距离的测量精度。

Description

一种光纤测距的方法和设备
本申请要求于2022年11月30日提交中国专利局、申请号为CN202211521725.6、申请名称为“一种光纤测距的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种光纤测距的方法和设备。
背景技术
随着高速网络的普及,光纤走进了千家万户,而光纤入户离不开无源光网络(passive optical network,PON)***。光线路终端(optical line terminal,OLT)发出的光信号,经过光分配网络(optical distribution network,ODN)传输至光网络单元(optical network unit,ONU)构成了PON***。其中,OLT为运营商管理的设备,负责为用户分配上层业务网络的数据,ONU是用户连接网络的设备,负责接收OLT发送的数据,并直接为用户提供服务。
由于PON***为多点到点拓扑,多个ONU共享主干段光纤,为了合理安排各ONU的上行消息,保障ONU的上行消息在主干段光纤传递的时隙不重叠,必须获知各ONU与OLT之间的距离,以确定ONU的上行消息到达主干段光纤所需要的时间。OLT向ONU发送测距消息后接收到ONU发送的响应消息,根据发送测距消息与接收到响应消息的时间间隔,结合光在光纤中的传播速度,计算OLT与ONU之间的距离。
由于发送测距消息以及收到响应消息的时间间隔受到ONU处理测距消息的响应时长影响,而ONU处理测距消息的响应时长受到ONU的运行情况以及ONU本身的设计影响,因此无法利用发送测距消息以及收到响应消息的时间间隔准确的计算出ONU与OLT之间的光纤长度。
发明内容
本申请实施例提供了一种光纤测距的方法和设备,用于利用光信号精准测量ONU与OLT之间的光纤长度。
本申请第一方面提供了一种光纤测距的方法,包括:光线路终端OLT获取第一距离,所述第一距离为所述OLT的固有时延与第一速度的乘积,所述第一速度为光在光纤中的传播速度;所述OLT向第一光网络单元ONU发送第一测距请求;所述OLT获取第二距离和第三距离,所述第二距离为所述第一ONU的电路时延与所述第一速度的乘积,所述第三距离为所述第一ONU的信号处理时延与所述第一速度的乘积;所述OLT获取所述第一ONU发送的所述第一测距请求的响应;所述OLT根据所述第一距离、所述第二距离、所述第三距离、所述第一测距请求和所述第一测距请求的响应计算所述OLT与所述第一ONU的距离。
本申请实施例中,OLT通过获取第一距离,第一距离为OLT的时延和/或第一ONU电路的时延与第一速度的乘积,OLT向第一ONU发送至少两个第一测距请求,并获取到至少两个第一测距请求的响应,OLT根据第一距离、至少两个第一测距请求和至少两个第一测距请求的响应计算OLT与第一ONU的距离。在获取到第一距离后,可以利用第一距离消除OLT的时延和/或第一ONU电路的时延导致的测距误差,提升了OLT与ONU之间距离的测量精度。
在第一方面一种可能的实施方式中,所述OLT根据所述第一距离、所述第二距离、所述第三距离、所述第一测距请求和所述第一测距请求的响应计算所述OLT与所述第一ONU的距离,包括:所述OLT计算发送所述第一测距请求和获取所述第一测距请求的响应的时间差,获得第一时长;所述OLT计算所述第一时长与所述第一速度的乘积,获得第四距离;所述OLT计算所述第四距离与所述第一距离、所述第二距离和所述第三距离的差值,获得所述OLT与所述第一ONU的距离。
本申请实施例中,OLT根据第一距离、第二距离、第三距离、第一测距请求和第一测距请求的响应计算OLT与第一ONU的距离,具体可以通过计算发送第一测距请求与获取第一测距请求的响应的时间差,获得第一时长;OLT计算第一时长与第一速度的乘积,获得第四距离,OLT计算第四距离与第一距离、第二距离和第三距离的差值,获得OLT与第一ONU的距离。通过计算光信号在光纤中的传播时间,根据光信号传输的第一时长计算获得第四距离,再计算第四距离与第一距离、第二距离和第三距离的差值,获得OLT与第一ONU的距离。通过消除第一距离、第二距离和第三距离对OLT与第一ONU的距离的干扰, 提升了测量OLT与第一ONU距离的准确度。
在第一方面一种可能的实施方式中,所述第一测距请求携带所述第一ONU的身份标识,所述第二距离和所述第三距离与所述第一ONU的身份标识有对应关系;所述OLT获取第二距离和第三距离,包括:所述OLT根据所述第一ONU的身份标识和所述第二距离和所述第三距离与所述第一ONU的身份标识之间的对应关系,获取所述第二距离和所述第三距离。
本申请实施例中,第一测距请求携带第一ONU的身份标识,根据第一ONU的身份标识,获取到与第一ONU的身份标识有对应关系的第二距离和第三距离,利用第一ONU的身份标识在OLT中存储的距离清单中选取到与第一ONU的身份标识有对应关系的第二距离和第三距离,提升了OLT中存储的利用效率。
在第一方面一种可能的实施方式中,所述方法还包括:所述OLT获取所述第一ONU的第一端发送的光信号,所述光信号携带光纤标识;所述OLT根据所述OLT与所述第一ONU的距离和所述光纤标识计算无源光网络PON的拓扑结构,所述PON包括所述OLT与所述第一ONU。
本申请实施例中,该方法还可以在OLT获取第一ONU的的第一端发送的光信号后,根据OLT与第一ONU的距离和光纤标识计算PON的拓扑结构,PON中包括OLT与第一ONU,其中光信号携带光纤标识。通过在计算第一ONU和OLT之间的距离后,利用ONU的第一端发送的光信号,获知第一ONU的第一端与OLT之间的光纤的光纤标识,并利用光纤标识和第一ONU和OLT之间的距离计算PON的拓扑关系。高效准确的获知PON中的拓扑结构,无需人为进行配置和检查,提升了PON的工作效率。
在第一方面一种可能的实施方式中,所述PON还包括第二ONU。本申请实施例中,PON中可以包括第二ONU,PON中可以包括多个ONU,提升了PON的利用效率。
在第一方面一种可能的实施方式中,所述方法还包括:所述OLT向所述第一ONU发送第一探测信号,所述第一探测信号用于探测所述OLT和所述第一ONU之间的路径是否可达;所述OLT向所述第二ONU发送第二探测信号,所述第二探测信号用于探测所述OLT和所述第二ONU之间的路径是否可达;所述OLT获取所述第一ONU发送的所述第一探测信号的响应信号;若所述OLT与所述第一ONU的距离小于所述OLT与所述第二ONU的距离,所述OLT根据所述第一探测信号的响应信号判断所述第一ONU与所述第二ONU之间的主干路或所述第二ONU所在支路出现故障;若所述OLT与所述第一ONU的距离大于或等于所述OLT与所述第二ONU的距离,所述OLT根据所述第一探测信号的响应信号判断所述第二ONU所在的支路出现故障。
本申请实施例中,OLT还向第一ONU发送第一探测信号,第一探测信号用于探测OLT与第一ONU之间的路径是否可达;OLT向第二ONU发送第二探测信号,第二探测信号用于探测OLT与第二ONU之间的路径是否可达;若第一ONU与OLT之间的路径可达,OLT获取到第一ONU发送的第一探测信号的响应信号。若第一ONU与OLT之间的距离小于第二ONU与OLT之间的距离,由于未接收到第二ONU发送的第二探测信号的相应信号,OLT判断第一ONU与第二ONU之间的主干路或第二ONU所在的支路出现故障,若OLT与第一ONU之间的距离大于或等于OLT与第二ONU的距离,OLT判断第二ONU所在的支路出现故障。利用光纤测距的方法完成PON中各ONU与OLT之间的距离测量后,计算PON的拓扑结构,并利用计算获得的PON的拓扑结构和探测信号对PON进行网络诊断,降低了PON的网络诊断的难度,提升了PON的可靠性。
本申请第二方面提供了一种光纤测距的设备,包括:
获取单元,用于获取第一距离,所述第一距离为所述OLT的固有时延与第一速度的乘积,所述第一速度为光在光纤中的传播速度;
发送单元,用于向第一光网络单元ONU发送第一测距请求;
所述获取单元,还用于获取第二距离和第三距离,所述第二距离为所述第一ONU的电路时延与所述第一速度的乘积,所述第三距离为所述第一ONU的信号处理时延与所述第一速度的乘积;
所述获取单元,还用于获取所述第一ONU发送的所述第一测距请求的响应;
计算单元,用于根据所述第一距离、所述第二距离、所述第三距离、所述第一测距请求和所述第一测距请求的响应计算所述OLT与所述第一ONU的距离。
在第二方面一种可能的实施方式中,所述计算单元,具体用于:
计算发送所述第一测距请求和获取所述第一测距请求的响应的时间差,获得第一时长;
计算所述第一时长与所述第一速度的乘积,获得第四距离;
计算所述第四距离与所述第一距离、所述第二距离和所述第三距离的差值,获得所述OLT与所述第一ONU的距离。
在第二方面一种可能的实施方式中,所述第一测距请求携带所述第一ONU的身份标识,所述第二距离和所述第三距离与所述第一ONU的身份标识有对应关系;
所述获取单元,具体用于根据所述第一ONU的身份标识和所述第二距离和所述第三距离与所述第一ONU的身份标识之间的对应关系,获取所述第二距离和所述第三距离。
在第二方面一种可能的实施方式中,所述获取单元,还用于获取所述第一ONU的第一端发送的光信号,所述光信号携带光纤标识;
所述计算单元,还用于根据所述OLT与所述第一ONU的距离和所述光纤标识计算无源光网络PON的拓扑结构,所述PON包括所述OLT与所述第一ONU。
在第二方面一种可能的实施方式中,所述PON还包括第二ONU。
在第二方面一种可能的实施方式中,所述发送单元,还用于向所述第一ONU发送第一探测信号,所述第一探测信号用于探测所述OLT和所述第一ONU之间的路径是否可达;
所述发送单元,还用于向所述第二ONU发送第二探测信号,所述第二探测信号用于探测所述OLT和所述第二ONU之间的路径是否可达;
所述获取单元,还用于获取所述第一ONU发送的所述第一探测信号的响应信号;
所述设备还包括判断单元,用于若所述OLT与所述第一ONU的距离小于所述OLT与所述第二ONU的距离,根据所述第一探测信号的响应信号判断所述第一ONU与所述第二ONU之间的主干路或所述第二ONU所在支路出现故障;
所述判断单元,若所述OLT与所述第一ONU的距离大于或等于所述OLT与所述第二ONU的距离,还用于根据所述第一探测信号的响应信号判断所述第二ONU所在的支路出现故障。
本申请实施例第三方面提供了一种光纤测距的设备,包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述指令,当所述处理器执行所述指令时,执行前述第一方面或第一方面任一种可能的实施方式中所述的方法。
本申请实施例第四方面提供了一种计算机可读存储介质,包括程序,当其在计算机上运行时,使得计算机执行前述第一方面或第一方面任一种可能的实施方式中所述的方法。
本申请实施例第五方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行前述第一方面或第一方面任一种可能的实施方式中所述的方法。
附图说明
图1为本申请实施例提供的一种光纤测距的方法的流程示意图;
图2为本申请实施例提供的ONU型号与电路时延的补偿距离的一种对应关系示意图;
图3a为本申请实施例提供的第一ONU信号处理时延补偿距离的一种分布示意图;
图3b为本申请实施例提供的第一ONU信号处理时延补偿距离的另一种分布示意图;
图4为本申请实施例提供的光纤测距的方法的另一种流程示意图;
图5为本申请实施例提供的PON的拓扑结构的一种示意图;
图6为本申请实施例提供的光纤测距的方法的另一种流程示意图;
图7为本申请实施例提供的PON的拓扑结构的另一种示意图;
图8为本申请实施例提供的光纤测距的设备的一种结构示意图;
图9为本申请实施例提供的光纤测距的设备的另一种结构示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。本发明的实施方式部分使用的术语仅用于对本发明的具体实施例进行解释,而非旨在限定本发明。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,其目的在于覆盖不排他的包含,以便包含一系列单元的过程、方法、***、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
随着高速网络的普及,光纤走进了千家万户,而光纤入户离不开PON***。OLT发出的光信号,经过ODN传输至ONU构成了PON***。其中,OLT为运营商管理的设备,负责为用户分配上层业务网络的数据,ONU是用户连接网络的设备,负责接收OLT发送的数据,并直接为用户提供服务。
由于PON***为多点到点拓扑,多个ONU共享主干段光纤,为了合理安排各ONU的上行消息,保障ONU的上行消息在主干段光纤传递的时隙不重叠,必须获知各ONU与OLT之间的距离,以确定ONU的上行消息到达主干段光纤所需要的时间。OLT向ONU发送测距消息后接收到ONU发送的响应消息,根据发送测距消息与接收到响应消息的时间间隔,结合光在光纤中的传播速度,计算OLT与ONU之间的距离。
由于发送测距消息以及收到响应消息的时间间隔并非完全为光信号在光纤中传播的时间,其中包括OLT进行信号处理的时间,光信号在光纤中传播的时间与ONU处理信号的时间。因此无法利用发送测距消息以及收到响应消息的时间间隔准确的计算出ONU与OLT之间的光纤长度。
本申请提出,可以将OLT进行信号处理的时间和ONU处理信号的时间进行计算,并预先存储于OLT中,其中,ONU处理信号的时间包括ONU的内部电路时延和信号处理时延,不同型号的ONU设备的内部电路时延和信号处理时延均不同,因此OLT的***中需要维护一份针对不同品牌不同型号的ONU对应的ONU设备的内部电路时延补偿距离和ONU设备的信号处理时延补偿距离,OLT在向ONU发送测距请求后,根据ONU反馈的测距请求的反馈消息和测距请求计算获得OLT与ONU之间的计算距离,再将OLT与ONU之间的计算距离减去OLT中存储的OLT固有时延补偿距离、ONU设备的内部电路时延补偿距离和ONU设备的信号处理时延补偿距离,获得OLT与ONU之间的距离。
下面就本申请实施例提出方案结合附图进行介绍:
请参阅图1,图1为本申请实施例提供的一种光纤测距的方法的流程示意图。
101、OLT获取第一距离;
OLT在对第一ONU进行测距时,获取第一距离,第一距离为OLT中预先设置的OLT固有时延的补偿距离,第一距离为OLT的固有时延与第一速度的乘积,第一速度为光在光纤中的传播速度。
需要说明的是,步骤101至步骤104没有明确的先后顺序,步骤102在步骤104之前执行即可,在实际应用中,应结合具体应用场景进行步骤101至步骤104先后顺序的设置,此处不做限制。
102、OLT向第一ONU发送第一测距请求;
OLT在对第一ONU进行测距时,向第一ONU发送第一测距请求。示例性的,OLT可以向第一ONU下发Ranging request消息,以触发第一ONU向OLT发送第一测距请求的响应消息。
可以理解的是,此处对第一测距请求为ranging request消息的描述仅为示例,在实际应用中,OLT应结合具体的应用场景向第一ONU发送第一测距请求,此处不做限制。
需要说明的是,步骤101至步骤104没有明确的先后顺序,步骤102在步骤104之前执行即可,在实际应用中,应结合具体应用场景进行步骤101至步骤104先后顺序的设置,此处不做限制。
103、OLT获取第二距离和第三距离;
OLT在对第一ONU进行测距时,OLT获取预先存储于OLT的第二距离和第三距离,其中,第二距离为第一ONU的电路时延与第一速度的乘积,也就是第一ONU的电路时延的距离补偿,第三距离为第一ONU的信号处理时延与第一速度的乘积,也就是第一ONU的信号处理时延的距离补偿。
示例性的,OLT可以预先存储PON***中可能存在的ONU的型号和该ONU的型号对应的电路时延的补偿距离对应关系示意图,PON***中可能存在的ONU型号和该ONU的型号对应的信号处理时延的补偿距离。以ONU型号与电路时延的补偿距离的对应关系示意图为例,请参阅图2,图2为本申请实施例提供的ONU型号与电路时延的补偿距离的一种对应关系示意图。
由图2可以看出当ONU的型号为UNP720Z时,该ONU的型号对应的电路时延的补偿距离为66.08m;当ONU的型号为UNG300Z时,该ONU的型号对应的电路时延的补偿距离为65.0559m;当ONU的型号为HS8546V5时,该ONU的型号对应的电路时延的补偿距离为-15m;...;当ONU的型号为H10g-13时,该ONU的型号对应的电路时延的补偿距离为164.9m。
OLT根据第一ONU的型号,从ONU型号与电路时延的补偿距离的对应关系示意图中查找获得第二距离,从ONU型号与信号处理时延的补偿距离的对应关系示意图中查找获得第三距离。
可以理解的是,此处对ONU型号与电路时延的补偿距离的对应关系示意图的描述仅为示例,在实际应用中,ONU型号与电路时延的补偿距离还可以以其他形式存储于OLT中,此处不做限制。
需要说明的是,步骤101至步骤104没有明确的先后顺序,步骤102在步骤104之前执行即可,在实际应用中,应结合具体应用场景进行步骤101至步骤104先后顺序的设置,此处不做限制。
104、OLT获取第一ONU发送的第一测距请求的响应;
OLT在发送第一测距请求后,获取到第一ONU发送的第一测距请求的响应。
需要说明的是,步骤101至步骤104没有明确的先后顺序,步骤102在步骤104之前执行即可,在实际应用中,应结合具体应用场景进行步骤101至步骤104先后顺序的设置,此处不做限制。
105、OLT计算OLT与第一ONU的距离。
OLT在获取到第一距离、第二距离、第三距离、第一测距请求和第一测距请求的响应后,根据第一距离、第二距离、第三距离、第一测距请求和第一测距请求的响应计算OLT与第一ONU的距离。
示例性的,OLT计算发送第一测距请求和获取第一测距请求的响应的时间差,获得第一时长。OLT计算第一时长与第一速度的乘积,获得第四速度。OLT计算第四距离与第一距离、第二距离和第三距离的差值获得OLT与第一ONU的距离。
请参阅如下公式:
其中,t为第一时长,v为第一速度,l1为第一距离,l2为第二距离,l3为第三距离,L为OLT与第一ONU的距离。
可以理解的是,本申请提出的OLT预存第一距离,第二距离和第三距离以便后续取用的方式仅为示例,在实际应用中,OLT中预存的还可以是OLT固有时延、第一ONU的电路时延和第一ONU的信号处理时延,此处不做限制。
本申请实施例中,OLT根据第一距离、第二距离、第三距离、第一测距请求和第一测距请求的响应计算OLT与第一ONU的距离,具体可以通过计算发送第一测距请求与获取第一测距请求的响应的时间差,获得第一时长;OLT计算第一时长与第一速度的乘积,获得第四距离,OLT计算第四距离与第一距离、第二距离和第三距离的差值,获得OLT与第一ONU的距离。通过计算光信号在光纤中的传播时间,根据光信号传输的第一时长计算获得第四距离,再计算第四距离与第一距离、第二距离和第三距离的差值,获得OLT与第一ONU的距离。通过消除第一距离、第二距离和第三距离对OLT与第一ONU的距离的干扰,提升了测量OLT与第一ONU距离的准确度。
本申请实施例中,OLT通过获取第一距离,第一距离为OLT的时延和/或第一ONU电路的时延与第一速度的乘积,OLT向第一ONU发送至少两个第一测距请求,并获取到至少两个第一测距请求的响应,OLT根据第一距离、至少两个第一测距请求和至少两个第一测距请求的响应计算OLT与第一ONU的距离。在获取到第一距离后,可以利用第一距离消除OLT的时延和/或第一ONU电路的时延导致的测距误差,提升了OLT与ONU之间距离的测量精度。
前述光纤测距的方法中,由于每次测距时,第一ONU的信号处理时延都是不一致的,经过多次测距,并对第四距离和第一距离、第二距离以及OLT与第一ONU的距离进行分析发现,第三距离在一定程度上符合高斯分布。因此,技术人员可以通过对同一型号的第一ONU进行多次测距,通过多次测距的结果可以获知第三距离。具体的,请参阅图3a和图3b,图3a为本申请实施例提供的第一ONU信号处理时延补偿距离的一种分布示意图,图3b为本申请实施例提供的第一ONU信号处理时延补偿距离的另一种分布 示意图。
利用ONUA和ONUB进行了多次测试光纤测距实验,针对ONUA采集到的数据计算获得的信号处理时延补偿距离分布情况如图3a所示,由图3a可以看出ONUA的信号处理时延补偿距离的分布符合高斯分布。而针对ONUB采集到的数据计算获得的信号处理实验补偿距离分布情况如图3b所示,有图3b可以看出,ONUB的信号处理时延补偿距离的分布也近似的符合高斯分布。经过多次尝试后,发现ONU的信号处理时延补偿距离的分布都近似的符合高斯分布。因此,可以利用多次测距实验计算获得的信号处理时延补偿距离,拟合出该ONU的信号处理时延补偿距离的分布曲线,再根据拟合的高斯曲线获取该ONU的信号处理时延补偿距离中位于置信区间的数据,计算数据的平均值,即为该ONU的信号处理时延补偿距离。
可以理解的是,此处对该ONU的信号处理时延补偿距离中位于置信区间的部分,进行数据的平均值计算的描述仅为示例,在实际应用中,应当根据实际情况进行置信区间的选取以及在获取到数据后,根据实际情况对数据采用取平均值的方式进行计算,或者在获取到数据后,还可以对数据进行加权平均的计算。此处均不做限制。
前述图1中所描述的方法还可以应用于多种不同的应用场景,下面将结合不同的应用场景对本申请提出的方案进行介绍:
示例性的,由于PON***可能会不断的发生变化,定期进行PON***的探测扫描可以及时获知PON***的结构变化,进而更好的利用PON***的结构进行网络管理。本申请提出,可以利用OLT计算获得的OLT与第一ONU的距离PON***的拓扑结构。具体的执行步骤请参阅图4,图4为本申请实施例提供的光纤测距的方法的另一种流程示意图。
401、OLT获取第一距离;
402、OLT向第一ONU发送第一测距请求;
403、OLT获取第二距离和第三距离;
404、OLT获取第一ONU发送的第一测距请求的响应;
405、OLT计算OLT与第一ONU的距离;
步骤401至步骤405的具体实施方式与前述图1中步骤101至步骤105类似,此处不做赘述,请参阅前述图1步骤101至步骤105的介绍。
406、OLT获取第一ONU的第一端发送的光纤标识;
OLT获取第一ONU的第一端发送的光信号,光信号中携带光纤标识,OLT利用光信号中的光纤标识识别第一ONU的第一端与OLT的连接关系。
407、OLT根据OLT与第一ONU的距离以及光纤标识计算PON的拓扑结构。
OLT在对第一ONU和第二ONU进行测距以及光纤标识获取后,根据第一ONU和第二ONU的测距结果以及光纤标识的对应关系计算PON的拓扑结构。
示例性的,请参阅图5,图5为本申请实施例提供的PON的拓扑结构的一种示意图。
由图5可知,PON中包括OLT、第一ONU和第二ONU,其中OLT为第一ONU和第二ONU提供服务,OLT与第一ONU之间的距离大于或等于OLT与第二ONU之间的距离。由于第一ONU与第二ONU之间会有公共使用的光纤线路,因此PON的拓扑结构如图5所示。
可以理解的是,此处对PON的拓扑结构的描述仅为示例,在实际应用中,PON中可以包括一个OLT以及至少一个ONU,当PON中包括两个或两个以上ONU时,对两个或两个以上ONU与OLT之间的距离关系,以及两个或两个以上ONU公用的光纤线路部分的长短不做限制。
本申请实施例中,该方法还可以在OLT获取第一ONU的第一端发送的光信号后,根据OLT与第一ONU的距离和光纤标识计算PON的拓扑结构,PON中包括OLT与第一ONU,其中光信号携带光纤标识。通过在计算第一ONU和OLT之间的距离后,利用ONU的第一端发送的光信号,获知第一ONU的第一端与OLT之间的光纤的光纤标识,并利用光纤标识和第一ONU和OLT之间的距离计算PON的拓扑关系。高效准确的获知PON中的拓扑结构,无需人为进行配置和检查,提升了PON的工作效率。
示例性的,由于PON***的网络结构中,通常由一个OLT管理多个ONU,在这样的网络结构中,OLT、 多个ONU以及OLT与多个ONU之间的线路均可能发生故障,由技术人员日常进行检查和维护,产生了高昂的维护费用,如何在保障PON***的运行安全性的同时,降低技术人员进行日常检查的人力物力投入,本申请提出,可以基于计算获得的PON的拓扑结构,以及OLT向ONU发送的信号以及获得的反馈,判断PON中是否存在故障,以及出现故障的具体区域。具体的实施方式请参阅图6,图6为本申请实施例提供的光纤测距的方法的另一种流程示意图。
601、OLT获取第一距离;
602、OLT向第一ONU发送第一测距请求;
603、OLT获取第二距离和第三距离;
604、OLT获取第一ONU发送的第一测距请求的响应;
605、OLT计算OLT与第一ONU的距离;
606、OLT获取第一ONU的第一端发送的光纤标识;
607、OLT根据OLT与第一ONU的距离以及光纤标识计算PON的拓扑结构;
步骤601至步骤607的具体实施方式与前述图4中步骤401至步骤407类似,此处不做赘述,请参阅前述图4步骤401至步骤407的介绍。
608、OLT向第一ONU发送第一探测信号;
OLT在完成一次PON的拓扑结构计算后,向第一ONU发送第一探测信号,第一探测信号用于探测OLT和第一ONU之间的路径是否可达。
需要说明的是,步骤608至步骤610并不存在明确的先后顺序,步骤608在步骤610之前执行即可,在实际应用中可以根据实际情况判断步骤608至步骤610的先后顺序,此处不做限制。
609、OLT向第二ONU发送第二探测信号;
OLT在完成一次PON的拓扑结构计算后,向第二ONU发送第二探测信号,二探测信号用于探测OLT和第二ONU之间的路径是否可达。
需要说明的是,步骤608至步骤610并不存在明确的先后顺序,步骤608在步骤610之前执行即可,在实际应用中可以根据实际情况判断步骤608至步骤610的先后顺序,此处不做限制。
610、OLT获取第一ONU发送的第一探测信号的响应信号;
OLT在向第一ONU发送第一探测信号后,获取到第一ONU发送的第一探测信号的响应信号,因此第一ONU到OLT的光路不存在故障。
需要说明的是,步骤608至步骤610并不存在明确的先后顺序,步骤608在步骤610之前执行即可,在实际应用中可以根据实际情况判断步骤608至步骤610的先后顺序,此处不做限制。
611、OLT判断故障发生区域。
OLT在获取到第一ONU发送的第一探测信号的响应信号,并在预设的时间内未获取到第二探测信号的响应信号时,ONT根据OLT与第一ONU之间的距离和OLT与第二ONU之间的距离,判断故障发生的区域。
当OLT与第一ONU之间的距离小于OLT与第二ONU之间的距离时,且PON的拓扑结构如图7所示时,图7为本申请实施例提供的PON的拓扑结构的另一种示意图。OLT根据PON的拓扑结构和第一探测信号的响应信号判断第一ONU与第二ONU之间的主干路或第二ONU所在支路出现故障。
由图7可知,PON中包括OLT、第一ONU和第二ONU,其中OLT为第一ONU和第二ONU提供服务,OLT与第一ONU之间的距离小于OLT与第二ONU之间的距离。由于第一ONU与第二ONU之间会有公共使用的光纤线路,因此PON的拓扑结构如图7所示。
当OLT与第一ONU之间的距离大于或等于OLT与第二ONU之间的距离时,且PON的拓扑结构如图5所示时,OLT根据PON的拓扑结构和第一探测信号的响应信号判断第一ONU与第二ONU所在的支路出现故障。
需要说明的是,此处对OLT判断故障发生区域的方法需要基于PON的拓扑结构,在实际应用中,OLT应结合具体的网络拓扑关系判断故障发生区域。除此以外,此处对OLT发送探测信号,以及获取到ONU发送的探测信号的响应信号的描述均为示例,在实际应用中,还会出现OLT发送的探测信号均获取到对 应的响应信号的情况,此时PON中不存在故障,具体的操作此处不再赘述。
本申请实施例中,OLT还向第一ONU发送第一探测信号,第一探测信号用于探测OLT与第一ONU之间的路径是否可达;OLT向第二ONU发送第二探测信号,第二探测信号用于探测OLT与第二ONU之间的路径是否可达;若第一ONU与OLT之间的路径可达,OLT获取到第一ONU发送的第一探测信号的响应信号。若第一ONU与OLT之间的距离小于第二ONU与OLT之间的距离,由于未接收到第二ONU发送的第二探测信号的相应信号,OLT判断第一ONU与第二ONU之间的主干路或第二ONU所在的支路出现故障,若OLT与第一ONU之间的距离大于或等于OLT与第二ONU的距离,OLT判断第二ONU所在的支路出现故障。利用光纤测距的方法完成PON中各ONU与OLT之间的距离测量后,计算PON的拓扑结构,并利用计算获得的PON的拓扑结构和探测信号对PON进行网络诊断,降低了PON的网络诊断的难度,提升了PON的可靠性。
以上结合示例对本申请实施例提供的方法进行了介绍,下面结合附图对本申请实施例提供的设备进行介绍。
请参阅图8,图8为本申请实施例提供的光纤测距的设备的一种结构示意图。
光纤测距的设备包括:
获取单元801,用于获取第一距离,所述第一距离为所述OLT的固有时延与第一速度的乘积,所述第一速度为光在光纤中的传播速度;
发送单元802,用于向第一光网络单元ONU发送第一测距请求;
所述获取单元801,还用于获取第二距离和第三距离,所述第二距离为所述第一ONU的电路时延与所述第一速度的乘积,所述第三距离为所述第一ONU的信号处理时延与所述第一速度的乘积;
所述获取单元801,还用于获取所述第一ONU发送的所述第一测距请求的响应;
计算单元803,用于根据所述第一距离、所述第二距离、所述第三距离、所述第一测距请求和所述第一测距请求的响应计算所述OLT与所述第一ONU的距离。
可选的,所述计算单元803,具体用于:
计算发送所述第一测距请求和获取所述第一测距请求的响应的时间差,获得第一时长;
计算所述第一时长与所述第一速度的乘积,获得第四距离;
计算所述第四距离与所述第一距离、所述第二距离和所述第三距离的差值,获得所述OLT与所述第一ONU的距离。
可选的,所述第一测距请求携带所述第一ONU的身份标识,所述第二距离和所述第三距离与所述第一ONU的身份标识有对应关系;
所述获取单元801,具体用于根据所述第一ONU的身份标识和所述第二距离和所述第三距离与所述第一ONU的身份标识之间的对应关系,获取所述第二距离和所述第三距离。
可选的,所述获取单元801,还用于获取所述第一ONU的第一端发送的光信号,所述光信号携带光纤标识;
所述计算单元803,还用于根据所述OLT与所述第一ONU的距离和所述光纤标识计算无源光网络PON的拓扑结构,所述PON包括所述OLT与所述第一ONU。
可选的,所述PON还包括第二ONU。
可选的,所述发送单元802,还用于向所述第一ONU发送第一探测信号,所述第一探测信号用于探测所述OLT和所述第一ONU之间的路径是否可达;
所述发送单元802,还用于向所述第二ONU发送第二探测信号,所述第二探测信号用于探测所述OLT和所述第二ONU之间的路径是否可达;
所述获取单元801,还用于获取所述第一ONU发送的所述第一探测信号的响应信号;
所述设备还包括判断单元804,用于若所述OLT与所述第一ONU的距离小于所述OLT与所述第二ONU的距离,根据所述第一探测信号的响应信号判断所述第一ONU与所述第二ONU之间的主干路或所述第二ONU所在支路出现故障;
所述判断单元804,若所述OLT与所述第一ONU的距离大于或等于所述OLT与所述第二ONU的距离, 还用于根据所述第一探测信号的响应信号判断所述第二ONU所在的支路出现故障。
本申请上述的各种设计的数据处理的有益效果请参考上述数据处理的实施例中一一对应的各种实现方式的有益效果,具体此处不再赘述。
需要说明的是,图8对应实施例所述的各模块/单元之间的信息交互、执行过程等内容,与本申请中读取数据或写数据的方法实施例基于同一构思,具体内容可参见本申请前述所示的方法实施例中的叙述,具体此处不再赘述。
下面介绍本申请实施例提供的一种光纤测距的设备,请参阅图9,图9为本申请实施例提供的光纤测距的设备的另一种结构示意图。
光纤测距的设备900上用于实现图1、图4或图6中执行的功能,具体的,光纤测距的设备900由一个或多个服务器实现,光纤测距的设备900可因配置或性能不同而产生比较大的差异,可以包括一个或一个以***处理器(central processing units,CPU)922(例如,一个或一个以***处理器)和存储器932,一个或一个以上的存储介质930(例如一个或一个以上存储设备)。其中,存储器932和存储介质930可以是短暂存储或持久存储。存储在存储介质930的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对光纤测距的设备900中的一系列指令操作。更进一步地,中央处理器922可以设置为与存储介质930通信,在光纤测距的设备900上执行存储介质930中的一系列指令操作。
光纤测距的设备900还可以包括一个或一个以上电源926,一个或一个以上有线或无线网络接口950,和/或,一个或一个以上输入输出接口958。
本申请实施例中,中央处理器922,用于执行图1、图4或图6对应实施例中的方法。例如,中央处理器922可以用于:光线路终端OLT获取第一距离,第一距离为OLT的固有时延与第一速度的乘积,第一速度为光在光纤中的传播速度;OLT向第一光网络单元ONU发送第一测距请求;OLT获取第二距离和第三距离,第二距离为第一ONU的电路时延与第一速度的乘积,第三距离为第一ONU的信号处理时延与第一速度的乘积;OLT获取第一ONU发送的第一测距请求的响应;OLT根据第一距离、第二距离、第三距离、第一测距请求和第一测距请求的响应计算OLT与第一ONU的距离。
需要说明的是,中央处理器922还可以用于执行与本申请中图1、图4或图6对应的方法实施例中任意一个步骤,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,包括计算机可读指令,当计算机可读指令在计算机上运行时,使得计算机执行如前述方法实施例所示任一项实现方式。
本申请实施例还提供的一种计算机程序产品,计算机程序产品包括计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如前述方法实施例所示任一项实现方式。
本申请还提供一种芯片或芯片***,该芯片可包括处理器。该芯片还可包括存储器(或存储模块)和/或收发器(或通信模块),或者,该芯片与存储器(或存储模块)和/或收发器(或通信模块)耦合,其中,收发器(或通信模块)可用于支持该芯片进行有线和/或无线通信,存储器(或存储模块)可用于存储程序或一组指令,该处理器调用该程序或该组指令可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端或者网络设备执行的操作。该芯片***可包括以上芯片,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或收发器(或通信模块)。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需 要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (15)

  1. 一种光纤测距的方法,其特征在于,包括:
    光线路终端OLT获取第一距离,所述第一距离为所述OLT的固有时延与第一速度的乘积,所述第一速度为光在光纤中的传播速度;
    所述OLT向第一光网络单元ONU发送第一测距请求;
    所述OLT获取第二距离和第三距离,所述第二距离为所述第一ONU的电路时延与所述第一速度的乘积,所述第三距离为所述第一ONU的信号处理时延与所述第一速度的乘积;
    所述OLT获取所述第一ONU发送的所述第一测距请求的响应;
    所述OLT根据所述第一距离、所述第二距离、所述第三距离、所述第一测距请求和所述第一测距请求的响应计算所述OLT与所述第一ONU的距离。
  2. 根据权利要求1所述的方法,其特征在于,所述OLT根据所述第一距离、所述第二距离、所述第三距离、所述第一测距请求和所述第一测距请求的响应计算所述OLT与所述第一ONU的距离,包括:
    所述OLT计算发送所述第一测距请求和获取所述第一测距请求的响应的时间差,获得第一时长;
    所述OLT计算所述第一时长与所述第一速度的乘积,获得第四距离;
    所述OLT计算所述第四距离与所述第一距离、所述第二距离和所述第三距离的差值,获得所述OLT与所述第一ONU的距离。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一测距请求携带所述第一ONU的身份标识,所述第二距离和所述第三距离与所述第一ONU的身份标识有对应关系;
    所述OLT获取第二距离和第三距离,包括:
    所述OLT根据所述第一ONU的身份标识和所述第二距离和所述第三距离与所述第一ONU的身份标识之间的对应关系,获取所述第二距离和所述第三距离。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述方法还包括:
    所述OLT获取所述第一ONU的第一端发送的光信号,所述光信号携带光纤标识;
    所述OLT根据所述OLT与所述第一ONU的距离和所述光纤标识计算无源光网络PON的拓扑结构,所述PON包括所述OLT与所述第一ONU。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述PON还包括第二ONU。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述OLT向所述第一ONU发送第一探测信号,所述第一探测信号用于探测所述OLT和所述第一ONU之间的路径是否可达;
    所述OLT向所述第二ONU发送第二探测信号,所述第二探测信号用于探测所述OLT和所述第二ONU之间的路径是否可达;
    所述OLT获取所述第一ONU发送的所述第一探测信号的响应信号;
    若所述OLT与所述第一ONU的距离小于所述OLT与所述第二ONU的距离,所述OLT根据所述第一探测信号的响应信号判断所述第一ONU与所述第二ONU之间的主干路或所述第二ONU所在支路出现故障;
    若所述OLT与所述第一ONU的距离大于或等于所述OLT与所述第二ONU的距离,所述OLT根据所述第一探测信号的响应信号判断所述第二ONU所在的支路出现故障。
  7. 一种光纤测距的设备,其特征在于,包括:
    获取单元,用于获取第一距离,所述第一距离为所述OLT的固有时延与第一速度的乘积,所述第一速度为光在光纤中的传播速度;
    发送单元,用于向第一光网络单元ONU发送第一测距请求;
    所述获取单元,还用于获取第二距离和第三距离,所述第二距离为所述第一ONU的电路时延与所述第一速度的乘积,所述第三距离为所述第一ONU的信号处理时延与所述第一速度的乘积;
    所述获取单元,还用于获取所述第一ONU发送的所述第一测距请求的响应;
    计算单元,用于根据所述第一距离、所述第二距离、所述第三距离、所述第一测距请求和所述第一测距请求的响应计算所述OLT与所述第一ONU的距离。
  8. 根据权利要求7所述的设备,其特征在于,所述计算单元,具体用于:
    计算发送所述第一测距请求和获取所述第一测距请求的响应的时间差,获得第一时长;
    计算所述第一时长与所述第一速度的乘积,获得第四距离;
    计算所述第四距离与所述第一距离、所述第二距离和所述第三距离的差值,获得所述OLT与所述第一ONU的距离。
  9. 根据权利要求7或8所述的设备,其特征在于,所述第一测距请求携带所述第一ONU的身份标识,所述第二距离和所述第三距离与所述第一ONU的身份标识有对应关系;
    所述获取单元,具体用于根据所述第一ONU的身份标识和所述第二距离和所述第三距离与所述第一ONU的身份标识之间的对应关系,获取所述第二距离和所述第三距离。
  10. 根据权利要求7至9任一所述的设备,其特征在于,所述获取单元,还用于获取所述第一ONU的第一端发送的光信号,所述光信号携带光纤标识;
    所述计算单元,还用于根据所述OLT与所述第一ONU的距离和所述光纤标识计算无源光网络PON的拓扑结构,所述PON包括所述OLT与所述第一ONU。
  11. 根据权利要求7至10任一所述的设备,其特征在于,所述PON还包括第二ONU。
  12. 根据权利要求11所述的设备,其特征在于,所述发送单元,还用于向所述第一ONU发送第一探测信号,所述第一探测信号用于探测所述OLT和所述第一ONU之间的路径是否可达;
    所述发送单元,还用于向所述第二ONU发送第二探测信号,所述第二探测信号用于探测所述OLT和所述第二ONU之间的路径是否可达;
    所述获取单元,还用于获取所述第一ONU发送的所述第一探测信号的响应信号;
    所述设备还包括判断单元,用于若所述OLT与所述第一ONU的距离小于所述OLT与所述第二ONU的距离,根据所述第一探测信号的响应信号判断所述第一ONU与所述第二ONU之间的主干路或所述第二ONU所在支路出现故障;
    所述判断单元,若所述OLT与所述第一ONU的距离大于或等于所述OLT与所述第二ONU的距离,还用于根据所述第一探测信号的响应信号判断所述第二ONU所在的支路出现故障。
  13. 一种光纤测距的设备,其特征在于,包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述指令,当所述处理器执行所述指令时,执行如权利要求1至6中任一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,包括程序,当其在计算机上运行时,使得计算机执行如权利要求1至6中任一项所述的方法。
  15. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至6中任一项所述的方法。
PCT/CN2023/105312 2022-11-30 2023-06-30 一种光纤测距的方法和设备 WO2024113864A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211521725.6A CN118157755A (zh) 2022-11-30 2022-11-30 一种光纤测距的方法和设备
CN202211521725.6 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024113864A1 true WO2024113864A1 (zh) 2024-06-06

Family

ID=91300491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105312 WO2024113864A1 (zh) 2022-11-30 2023-06-30 一种光纤测距的方法和设备

Country Status (2)

Country Link
CN (1) CN118157755A (zh)
WO (1) WO2024113864A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290213A (zh) * 2007-04-20 2008-10-22 华为技术有限公司 光纤长度测量方法、通信设备、通信***
CN101383692A (zh) * 2007-09-06 2009-03-11 日立通讯技术株式会社 通信***及其装置
US20090162064A1 (en) * 2007-12-21 2009-06-25 Masahiko Mizutani Network system and optical line terminal
CN101557539A (zh) * 2008-04-09 2009-10-14 华为技术有限公司 一种光网络发送数据的方法、***和设备
CN111866627A (zh) * 2020-07-20 2020-10-30 芯河半导体科技(无锡)有限公司 一种gpon精确测距的方法及***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290213A (zh) * 2007-04-20 2008-10-22 华为技术有限公司 光纤长度测量方法、通信设备、通信***
CN101383692A (zh) * 2007-09-06 2009-03-11 日立通讯技术株式会社 通信***及其装置
US20090162064A1 (en) * 2007-12-21 2009-06-25 Masahiko Mizutani Network system and optical line terminal
CN101557539A (zh) * 2008-04-09 2009-10-14 华为技术有限公司 一种光网络发送数据的方法、***和设备
CN111866627A (zh) * 2020-07-20 2020-10-30 芯河半导体科技(无锡)有限公司 一种gpon精确测距的方法及***

Also Published As

Publication number Publication date
CN118157755A (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
EP3029853B1 (en) Method, device, and system for optical fiber link identification
EP2512163A1 (en) Method, system for defining message in machine-to-machine platform, and machine-to-machine platform
CN109819352B (zh) 一种光纤数据处理***架构及处理方法
CN110659109A (zh) 一种openstack集群虚拟机监控***及方法
CN108429739B (zh) 一种识别蜜罐的方法、***及终端设备
EP3217683B1 (en) Method, device and system for working channel tuning
CN114125812B (zh) 一种数据同步方法、装置、服务器及存储介质
CN112184436A (zh) 数据同步方法、电子设备及可读存储介质
WO2024113864A1 (zh) 一种光纤测距的方法和设备
CN109214189B (zh) 识别程序漏洞的方法、装置、存储介质和电子设备
CN111064729A (zh) 报文的处理方法及装置、存储介质和电子装置
CN110032872A (zh) 一种业务逻辑漏洞检测方法及装置
CN111082860A (zh) 一种光分配节点的测试方法、服务器、***及存储介质
CN113630365B (zh) 海量异构数据的并行传输方法、装置、设备及存储介质
CN113573175B (zh) 光线路终端及其业务处理方法
JP7230216B2 (ja) 通信証明書共有サービスに基づく共有サービス指標の決定方法
WO2016086402A1 (zh) 数据通信的方法、装置和***
CN114297083A (zh) 代理测试方法、装置、电子设备和可读介质
CN113098936A (zh) 一种向移动端推送消息的方法、装置及设备
CN109995887B (zh) 一种dns解析方法、装置及计算机可读存储介质
CN107102874B (zh) 一种应用程序并发安装方法及***
CN113727218A (zh) 设置静态窗口长度的方法及相关设备
CN104022816A (zh) 以太网无源光网络中的报文模拟交互方法和报文模拟交互单元
CN110611678A (zh) 一种识别报文的方法及接入网设备
CN114301660B (zh) 多服务器认证方法、装置、设备及存储介质