WO2024113801A1 - 中央烟机***的控制方法、控制装置、***和存储介质 - Google Patents

中央烟机***的控制方法、控制装置、***和存储介质 Download PDF

Info

Publication number
WO2024113801A1
WO2024113801A1 PCT/CN2023/102742 CN2023102742W WO2024113801A1 WO 2024113801 A1 WO2024113801 A1 WO 2024113801A1 CN 2023102742 W CN2023102742 W CN 2023102742W WO 2024113801 A1 WO2024113801 A1 WO 2024113801A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
range hood
total pressure
control method
air volume
Prior art date
Application number
PCT/CN2023/102742
Other languages
English (en)
French (fr)
Inventor
李昱澎
王文煜
陈志夫
胡斯特
李佳阳
郑志伟
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2024113801A1 publication Critical patent/WO2024113801A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of smoke exhaust equipment, and in particular to a control method, a control device, a central smoke exhaust system and a computer-readable storage medium.
  • the central range hood system can control the operation of each terminal range hood according to the terminal range hood model and the terminal range hood installation location.
  • users may request to change the terminal range hood model, which may cause two problems: first, the fan performance varies when the terminal range hood model is different, which will cause the original control model and the corresponding open-loop control algorithm to be inaccurate or even invalid; second, the smoke hood structures of different terminal range hoods are different, so the air volume required to achieve the same fume extraction effect is also different.
  • Embodiments of the present application provide a control method, a control device, a central range hood system, and a computer-readable storage medium.
  • the physical parameters of all turned-on branch range hoods are obtained through a local database and/or a server;
  • the control algorithm is used to calculate the rotation speed required to meet the required air volume and the rotation speed is sent to the branch range hood so that the branch range hood operates according to the rotation speed.
  • the above control method can obtain the physical parameters of all turned-on branch range hoods through the local database and/or server, and adjust the control algorithm accordingly to obtain the required speed, so that even if the user changes the range hood model, the operation of the branch range hood can be controlled more accurately, thereby improving the user experience.
  • obtaining the physical parameters of all turned-on branch range hoods through the local database and/or the server includes:
  • the model that fails to match is sent to the server, and the physical parameters returned by the server are received.
  • obtaining the physical parameters of all turned-on branch range hoods through the local database and/or the server includes:
  • the models of all turned-on branch range hoods are sent to the server, and the physical parameters of all turned-on branch range hoods returned by the server are received.
  • control method comprises:
  • the physical parameters returned by the server are used to update the physical parameters of the range hood stored in the local database.
  • control method further comprises:
  • the control algorithm is used to calculate the required rotation speed of the top fan and send the rotation speed to the top fan so that the top fan runs according to the rotation speed.
  • the top fan is connected to the outlet of the common smoke exhaust duct.
  • using the control algorithm to calculate the speed required to meet the required air volume includes:
  • the control algorithm is used to calculate the total pressure of the common smoke exhaust duct downstream of each branch outlet of the common smoke exhaust duct, the branch range hood pressure, The tee confluence loss and branch bellows loss in the layer;
  • the required total pressure rise of branch range hoods on each floor is calculated to determine the layer where the minimum total pressure rise is located and the required air volume of the branch range hoods on that layer, and the rotational speed required to meet the required air volume is determined in the preset aerodynamic characteristic relationship of the range hood and the rotational speed is set to the rotational speed of the branch range hood on the layer where the minimum total pressure rise is located.
  • the rotation speed required to meet the required air volume is determined as the lowest rotation speed in the preset range hood aerodynamic characteristic relationship.
  • the total pressure of the common smoke exhaust pipe downstream of each branch outlet includes the total pressure downstream of the top-layer branch outlet and the total pressure downstream of the m-th layer branch outlet excluding the top layer.
  • Calculating the total pressure of the common smoke exhaust duct downstream of each branch outlet of the common smoke exhaust duct using the control algorithm includes:
  • the total pressure downstream of the m+1th branch outlet is calculated based on the total pressure downstream of the m+1th branch outlet, the along-the-way loss from the downstream of the m+1th branch outlet to the upstream of the m+1th branch outlet in the common smoke exhaust duct, and the mainstream direct current loss of the m+1th layer.
  • the total pressure rise required for the mth branch range hood is obtained by deducting the mth layer three-way confluence loss and the branch bellows loss from the total pressure of the common smoke exhaust duct downstream of the mth layer branch outlet.
  • control method comprises:
  • the total pressure rise required by the branch range hoods on each floor except the floor where the minimum total pressure rise value is located and the static pressure rise required by the top fan are corrected;
  • the rotation speed of the branch range hoods on each floor is calculated based on the corrected total pressure rise required for the branch range hoods on each floor and the required air volume of the branch range hoods on each floor, and the rotation speed of the top fan is calculated using the corrected required static pressure rise and the air volume of the top fan.
  • the physical parameters include a first relationship between the total pressure rise and the rotational speed and the air volume of the range hood, a second relationship between the required air volume and the gear position of the range hood, a third relationship between the bellows resistance coefficient and the air volume, a first distance between the top branch outlet and the top fan inlet, and a second distance between the mth branch outlet and the m+1th branch outlet.
  • the first relationship, the second relationship, the third relationship, the first distance and the second distance are physical parameters related to the branch range hood model.
  • control method comprises:
  • the electric control valve is controlled to be opened in linkage, and the electric control valve connects the branch range hood and the common smoke exhaust duct.
  • control method comprises:
  • the parameters related to the installation position of the branch range hood in the control algorithm are adjusted according to the installation position information.
  • a control device for a central range hood system includes a processor and a memory, wherein the memory stores a computer program, and when the computer program is executed by the processor, the steps of the control method of any of the above embodiments are implemented.
  • a central range hood system includes the control device of the above embodiment.
  • An embodiment of the present application provides a computer-readable storage medium having a computer program stored thereon.
  • the computer program is executed by a processor, the steps of the control method of any of the above embodiments are implemented.
  • the above-mentioned control device, central range hood system and computer-readable storage medium can obtain the physical parameters of all turned-on branch range hoods through the local database and/or server, and adjust the control algorithm accordingly to obtain the required rotation speed, so that even if the user changes the range hood model, the operation of the branch range hood can be controlled more accurately, thereby improving the user experience.
  • FIG1 is a schematic flow chart of a control method according to an embodiment of the present application.
  • FIG2 is a schematic diagram of the installation of a central range hood system according to an embodiment of the present application.
  • FIG3 is a schematic flow chart of a control method according to an embodiment of the present application.
  • FIG4 is a one-dimensional pneumatic module schematic diagram of the flow of the central range hood system according to an embodiment of the present application.
  • 5 to 6 are schematic flow charts of a control method according to an embodiment of the present application.
  • FIG7 is a schematic diagram of a module of a central range hood system according to an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of a conventional smoke exhaust system for a high-rise residential building in the related art
  • FIG9 is a schematic structural diagram of a centralized central range hood system in the related art.
  • FIG. 10 is a schematic diagram of the structure of a distributed central range hood system in the related art.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection.
  • It can be a mechanical connection or an electrical connection.
  • It can be directly connected or indirectly connected through an intermediate medium.
  • It can be the internal connection of two elements or the interaction relationship between two elements.
  • a first feature being “on” or “under” a second feature may include the first and second features being in direct contact, or may include the first and second features not being in direct contact but being in contact through another feature between them.
  • the traditional smoke exhaust system of high-rise residential buildings consists of a public smoke exhaust duct and branches at each user end.
  • the oil smoke at the user end is discharged from the branch to the public smoke exhaust duct, then flows upward along the public smoke exhaust duct and is discharged from the top of the public smoke exhaust duct.
  • the smoke exhaust resistance mainly comes from the public smoke exhaust duct, including the loss along the public smoke exhaust duct and the confluence loss when flowing through the branch smoke exhaust ports of the users on the upper open floors. Therefore, when the number of open floors is large, the smoke exhaust resistance of the low-level users is high, the range hood suction air volume is insufficient, and the actual smoke exhaust effect is poor.
  • the central smoke exhaust system generally uses the top fan located at the outlet of the public smoke exhaust duct as the main or only power source. According to the air volume required by the user, the host computer coordinates and controls the working status of each component of the entire smoke exhaust system in real time, and can meet the smoke exhaust needs of the user under all working conditions.
  • the central range hood system can be divided into two types: centralized and distributed.
  • the schematic diagrams of the two types of central range hood systems are shown in Figure 9. As shown in Figure 10.
  • the branch of the centralized central range hood system has no range hood, but only a smoke hood.
  • the entire system uses the top fan as the only power source.
  • the branch of the centralized central range hood system and the public exhaust pipe interface are equipped with an electric control valve with an adjustable valve opening angle. When the system is working, the branch air volume distribution can be achieved by adjusting the valve opening angle.
  • the branch of the distributed central hood system has an adjustable speed range hood.
  • the entire system uses the top fan as the main power source and the branch range hood as the auxiliary power source.
  • the branch outlet of the distributed central hood system is equipped with an electric control valve for the valve opening angle.
  • the check valve has two states: ON/OFF (fully open/fully closed). When the system is working, the branch air volume distribution can be achieved by adjusting the speed of the branch range hood.
  • the two types of central range hood systems each have their own advantages.
  • the advantages of the centralized central range hood system are mainly reflected in: the public exhaust duct must be full flue negative pressure, which can strictly prevent oil smoke from flowing back into the user's kitchen from the public exhaust duct; since there is no range hood in the branch, the branch noise is greatly reduced, with a reduction of up to 10dB; in addition, since the branch of the centralized central range hood system does not occupy space for range hoods, the branch smoke hood occupies a smaller size, and the appearance design can be more flexible and more beautiful.
  • the advantages of the distributed central range hood system are mainly reflected in the following: since the branch check valve of the distributed central range hood system always keeps the system in a fully open state when the branch is working, the system resistance is lower than that of the centralized type under the same working conditions, so the overall energy consumption level is also better than that of the centralized type; the branch range hoods of the distributed system can realize the oil fume separation function of traditional range hoods, and it is not easy for dirt to accumulate in the branch flue; since the distributed central range hood system has branch range hoods as auxiliary power sources, the working parameters of the top fan are relatively low, and when the top fan fails, the branch range hoods can still be relied on to realize the exhaust function, the system has large redundancy and high reliability.
  • all branch range hoods of the related technology are of the same model, and the one-dimensional pneumatic model and the corresponding open-loop control strategy are also established under this condition, and the terminal air volume is also uniformly given according to the fume hood characteristics of the range hood of this model.
  • the present application proposes a central range hood system that is compatible with multiple models of terminal range hoods and a corresponding control method based on an open-loop control strategy.
  • a control method of a central range hood system 100 includes:
  • Step 101 the step is to obtain the model information and gear information of all the turned-on branch range hoods 12, and the branch range hoods 12 are connected to the public exhaust pipe 14;
  • Step 103 according to the model information of the branch range hood 12, the physical parameters of all turned-on branch range hoods 12 are obtained through the local database and/or the server 24;
  • Step 105 adjusting the corresponding aerodynamic parameters in the control algorithm according to the physical parameters of the branch range hood 12;
  • Step 107 calculating the required air volume of the branch range hood 12 according to the model information and gear information of the branch range hood 12;
  • Step 109 using a control algorithm to calculate the speed required to meet the required air volume and sending the speed to the branch range hood 12 so that the branch range hood 12 operates according to the speed.
  • the above-mentioned control method can obtain the physical parameters of all turned-on branch range hoods 12 through the local database and/or server 24, and adjust the control algorithm accordingly to obtain the required rotation speed, so that even if the user changes the range hood model, the control method can more accurately control the operation of the branch range hood 12, thereby improving the user experience.
  • the central range hood system 100 of the present embodiment can be a distributed central range hood system 100, and the control method is compatible with various types of branch range hoods 12 (terminal range hoods) based on the open-loop control strategy.
  • the central range hood system 100 includes: branch range hoods 12, bellows 16, electric control valve 18, common smoke exhaust duct 14, top fan 20 and main unit 22.
  • the entire central range hood system 100 is divided into two parts, one is the smoke exhaust flow channel, and the other is the control system.
  • the smoke exhaust flow channel includes: the outlet of the branch range hood 12 and one end of the bellows 16
  • the other end of the bellows 16 is connected to the electric control valve 18, and the branch range hood 12, the bellows 16 and the electric control valve 18 together form a branch.
  • Multiple branches are connected to the side wall of the common exhaust pipe 14; the upper outlet of the common exhaust pipe 14 is connected to the top fan 20.
  • the valve plate of the electric control valve 18 can be opened and closed under the push of the motor, and the electric control valve 18 has two states of fully open and fully closed when working.
  • the control system includes: the rotation speeds of the branch range hoods 12 and the top fan 20 are adjustable; the host 22 can communicate data with each branch range hood 12; the host 22 can communicate data with the top fan 20; the host 22 includes a control center that can receive data, perform data calculations, and send data; the host 22 can communicate data with the server 24; the electric control valve 18 in each branch can determine whether the branch range hood 12 is turned on by communicating data with the branch range hood 12 or identifying the power of the branch range hood 12.
  • the data information sent by the branch range hood 12 to the host 22 is the range hood ID, range hood model information, and range hood gear information.
  • the data sent by the host 22 to the range hood is the rotation speed of each branch range hood 12.
  • the data sent by the host 22 to the top fan 20 is the rotation speed of the top fan 20.
  • the data sent by the host 22 to the server 24 is the range hood model information under the control of the host 22.
  • the data sent by the server 24 to the host 22 is the physical parameters of all range hood models under the control of the host 22.
  • the physical parameters include but are not limited to the pneumatic performance of each model of range hood, the position of the air outlet, the corresponding relationship between the gear and the required air volume, etc.
  • the opened branch range hood 12 may be a branch range hood 12 whose fan is in an opened state, and the rotation speed may be the rotation speed of the fan. After the branch range hood 12 is opened, its model information and gear information may be reported to the host 22 in a wired or wireless manner.
  • the corresponding electric control valve 18 is opened in linkage, so that the branch range hood 12 can discharge the oil smoke into the public exhaust pipe 14.
  • the host 22 can obtain the physical parameters of all turned-on branch range hoods 12 through the local database and/or the server 24 .
  • step 103 includes:
  • Step 111 matching the model of the branch range hood 12 with the range hood models stored in the local database;
  • Step 113 if there is a successfully matched model, determine the physical parameters of the branch range hood 12 according to the local database;
  • Step 115 if there is a model that fails to match, send the model that fails to match to the server 24, and receive the physical parameters returned by the server 24. In this way, matching can be performed in the local database first, and then the physical parameters corresponding to the model that fails to match are obtained through the server 24, which improves efficiency.
  • the local database can be located in the host 22, or in a branch range hood 12, or part of the local database can be located in the host 22, and the other part can be located in one or some branch range hoods 12, or the local database can be dispersed in different branch range hoods 12, which is not specifically limited here.
  • the server 24 may be a cloud server 24, and the physical parameters of all types of range hoods are stored in the server 24.
  • the server 24 returns the physical parameters corresponding to the range hood model information under the control of the host 22 to the host 22, and the host 22 may update the local database.
  • step 103 includes:
  • the models of all the opened branch range hoods 12 are sent to the server 24, and the physical parameters of all the opened branch range hoods 12 returned by the server 24 are received. In this way, the physical parameters of all the opened branch range hoods 12 can be directly obtained through the server 24.
  • the current required air volume of each branch range hood 12 can be calculated based on the model information and gear information of each branch range hood 12. Specifically, the correspondence between the model information of the branch range hood 12, the gear information, and the required air volume can be pre-calibrated and stored. The correspondence can be pre-stored in the branch range hood 12, can be pre-stored in the host 22, and can be pre-stored in the server 24. When the model of the branch range hood 12 fails to match in the local database, the host 22 can obtain the corresponding correspondence through the server 24.
  • the current required air volume of each branch range hood 12 can be calculated using the above correspondence.
  • the corresponding relationship is: the model of the branch range hood 12 is A, and the gears include gear 1, gear 2, and gear 3, and the air volumes corresponding to the gears are 200 cubic meters/hour, 300 cubic meters/hour, and 400 cubic meters/hour, respectively.
  • the host 22 can determine that the required air volume of the branch range hood 12 is 200 cubic meters/hour.
  • the gear can be selected by the user, or the branch range hood 12 can determine it by itself according to the amount of oil smoke.
  • the branch range hood 12 has a smoke sensing function, and the branch range hood 12 can determine the gear by itself according to the amount of oil smoke.
  • the branch range hood 12 with the smoke sensing function includes an oil smoke sensor.
  • Each branch range hood 12 and the top fan 20 adjusts the speed according to the received speed information to complete the air volume control process.
  • the branch electric control valve 18 can be closed along with the range hood after identifying the shutdown action of the range hood, and at the same time, the branch range hood 12 no longer uploads information to the host 22.
  • control method comprises:
  • the physical parameters returned by the server 24 are used to update the range hood physical parameters stored in the local database. In this way, the physical parameters of the branch range hood 12 can be quickly obtained later.
  • the host 22 can directly and quickly obtain the physical parameters of all branch range hoods 12 in the local database, thereby improving efficiency.
  • control method further comprises:
  • the control algorithm is used to calculate the required rotation speed of the top fan 20 and send the rotation speed to the top fan 20 so that the top fan 20 runs according to the rotation speed, and the top fan 20 is connected to the outlet of the common smoke exhaust duct 14. In this way, the top fan 20 can be controlled.
  • step 109 may be performed in step 109, or may be performed simultaneously with step 109, or may be performed before or after step 109, and are not specifically limited here.
  • the central range hood system 100 includes a top fan 20.
  • the top fan 20 cooperates with the branch range hood 12 to optimize the smoke extraction effect of the branch range hood 12 and improve the noise. For example, after the top fan 20 is turned on, the pressure of the common smoke exhaust duct 14 is reduced, and the resistance of the branch range hood 12 is reduced. When the required air volume is the same, the speed of the branch range hood 12 can be lower, which reduces the noise of the branch range hood 12. Or when the speed of the branch range hood 12 is the same, the branch range hood 12 provides a larger air volume, which improves the smoke extraction effect.
  • control algorithm may be an open-loop control algorithm, and the aerodynamic characteristics of the system components may be experimentally calibrated or estimated by empirical formulas in advance.
  • the flow of the central range hood system 100 can be simplified into a one-dimensional aerodynamic model, as shown in FIG4 , which can be divided into the following components: branch range hood 12; bellows 16; tee 26; common smoke exhaust duct 14; top fan 20.
  • the tee 26 is a three-way area composed of the branch to the common smoke exhaust duct 14 inlet and the common smoke exhaust duct 14: when the branch flow passes through the three-way area and flows into the common smoke exhaust duct 14, a three-way confluence loss will be generated; when the common smoke exhaust duct 14 flows through the three-way area, a three-way direct current loss will be generated; when the valve plate opening angle is constant, the three-way confluence loss coefficient and the three-way direct current loss coefficient are determined by the air volume ratio (Q/Q_main) between the branch and the common smoke exhaust duct 14 (Formula 3-4 below).
  • the aerodynamic characteristics of each component can be determined by experiments, simulations or empirical formula estimation methods.
  • Pt_yanji the total pressure rise of the range hood
  • N_yanji —range hood speed
  • ⁇ _b drag coefficient of bellows 16
  • ⁇ _con branch tee confluence loss coefficient
  • ⁇ _dir direct current loss coefficient of the tee of the public smoke exhaust duct 14;
  • Q_main the required air volume of the common smoke exhaust duct 14 after merging
  • Ps_dingduan static pressure rise of top fan 20
  • N_dingduan top fan 20 speed
  • Q_total total air volume of public smoke exhaust duct 14 (required air volume of top fan 20);
  • Q_main m total required air volume of the public smoke exhaust duct 14 downstream of the mth floor
  • the host 22 receives the model information and gear information of all currently turned on branch range hoods 12, and determines the required air volume Qi of each branch range hood 12 based on this information, so that the air volume distribution Q_main m and Q_total of the common exhaust duct 14 can be obtained according to equations 7 and 8, and then the resistance characteristic parameters ⁇ _b, ⁇ _con, ⁇ _dir, and ⁇ of the system can be obtained through equations 2-5.
  • the static pressure provided by the top fan 20 is Ps_X
  • V_fan is the average wind speed at the outlet of the top fan 20
  • is the air density, which can be calculated based on Q_total and the outlet area of the top fan 20.
  • the total pressure Pt_down of the common smoke exhaust pipe 14 downstream of each branch outlet can be obtained first.
  • the total pressure Pt_down M downstream of the top (Mth) branch outlet can be obtained by subtracting the loss along the way from the downstream of the top (Mth) branch outlet to the inlet of the top fan 20 from Pt_dingduan (Formula 10).
  • ⁇ M resistance coefficient of the common smoke exhaust pipe 14 downstream of the branch outlet of the top layer (Mth layer);
  • LM the distance between the top (Mth) branch outlet and the top fan 20 inlet
  • V_main M average wind speed of the common smoke exhaust duct 14 downstream of the branch outlet on the top floor (Mth floor), equivalent to V_fan.
  • ⁇ m is the resistance coefficient of the common smoke exhaust duct 14 downstream of the m-th layer branch outlet
  • ⁇ _dir m+1 DC loss coefficient of the public smoke exhaust duct 14 tee at the outlet of the branch on the m+1th floor.
  • formula 10 can be used to calculate the total downstream pressure Pt_down 10 of the branch outlet on the top floor (10th floor), and formula 11 can be used to calculate the total downstream pressure Pt_down 9 of the branch outlet on the 9th floor based on Pt_down 10 of the 10th floor.
  • the total downstream pressure Pt_down 8 of the branch outlet on the 8th floor can be calculated based on the total downstream pressure Pt_down 9 of the branch outlet on the 9th floor, ..., until the lowest floor where the branch range hood 12 is turned on, and so on.
  • the total pressure rise Pt_yanji m required by the m-th branch range hood 12 can be obtained by subtracting the sum of the three-way confluence loss of this layer and the loss of the branch bellows 16 from Pt_down (Formula 12).
  • ⁇ _con m is the confluence loss coefficient of the branch tee at the mth layer
  • ⁇ _b m the resistance coefficient of the bellows 16 of the mth layer
  • the layer j where the minimum total pressure rise (Pt_yanji j ) is located and the preset air volume Q j of the layer can be found according to the total pressure rise (Pt_yanji 1 , Pt_yanji 2 ...Pt_yanji M ) required by each branch range hood 12.
  • the minimum speed N_yanji j required to meet Q j is found in the calibrated range hood aerodynamic characteristic line (Formula 1) and set as the speed of the layer.
  • the fan speed N_yanji_real i of the branch range hoods 12 on each floor is calculated using Formula 1 using the corrected real total pressure rise Pt_yanji_real i of the branch range hoods 12 on each floor and the preset air volume Qi of each floor;
  • the speed N_dingduan_real of the top fan 20 is calculated using Formula 6 using the corrected real static pressure rise Ps_dingduan_real of the top fan 20 and the air volume Q_total of the top fan 20.
  • step 109 includes:
  • Step 117 using a control algorithm to calculate the total pressure of the common smoke exhaust duct 14 downstream of each branch outlet of the common smoke exhaust duct 14, the three-way confluence loss of the layer where the branch range hood 12 is located, and the loss of the branch bellows 16; 111
  • Step 119 calculating the total pressure rise required for the branch range hood 12 on the mth floor according to the total pressure of the common exhaust pipe 14 downstream of each branch outlet, the three-way confluence loss of the floor where the branch range hood 12 is located, and the loss of the branch bellows 16; 113
  • Step 121 determine the floor where the minimum total pressure rise is located and the required air volume Q j of the branch range hood 12 on the floor from the calculated total pressure rise required by the branch range hood 12 on each floor, and determine the speed required to meet the required air volume Q j in the preset range hood aerodynamic characteristic relationship and set the speed to the speed of the branch range hood 12 where the minimum total pressure rise is located.
  • the layer where the total pressure rise is minimum may be the jth layer, and the total pressure of the common smoke exhaust duct 14 downstream of each branch outlet may be Pt_down.
  • the total pressure Pt_down of the common smoke exhaust duct 14 downstream of each branch outlet may be calculated using the above-mentioned Formulas 10 and 11.
  • the total pressure Pt_down of the common smoke exhaust duct 14 downstream of each branch outlet includes the total pressure Pt_down M downstream of the branch outlet of the top layer and the total pressure Pt_down m downstream of the branch outlet of the mth layer excluding the top layer.
  • the aerodynamic characteristic relationship may be an aerodynamic characteristic line, which may be determined by the above-mentioned formula 1.
  • the aerodynamic characteristic line represents the corresponding relationship between the total pressure rise of the branch range hood 12 and the rotation speed and the air volume.
  • the rotation speed required to meet the required air volume Qj is determined as the lowest rotation speed in the preset range hood aerodynamic characteristic relationship. In this way, the noise of the branch range hood 12 can be further optimized. Specifically, when the required air volume is met, the rotation speed of the branch range hood 12 can be the lowest rotation speed.
  • the rotation speed of the branch range hood 12 corresponding to the minimum value of the total pressure rise can be randomly obtained as a rotation speed, or a smaller rotation speed, in the aerodynamic characteristic relationship.
  • the total pressure rise required by the m-th branch range hood 12 is obtained by subtracting the m-th layer three-way confluence loss and the branch bellows 16 loss from the total pressure of the common exhaust pipe 14 downstream of the m-th layer branch outlet. In this way, the calculation method of the total pressure rise required by the m-th layer branch range hood 12 is simple.
  • the total pressure rise required by the mth branch range hood 12 may be Pt_yanji m
  • the total pressure of the common smoke exhaust duct 14 downstream of the mth branch outlet may be Pt_down m .
  • the total pressure rise Pt_yanji m required by the mth branch range hood 12 may be calculated by the above formula 12.
  • the total pressure of the common smoke exhaust pipe 14 downstream of each branch outlet includes the total pressure downstream of the top-layer branch outlet and the total pressure downstream of the m-th layer branch outlet except the top layer.
  • Step 117 includes:
  • the total pressure downstream of the top branch outlet is calculated based on the total pressure at the inlet of the top fan 20 and the loss along the way from the downstream of the top branch outlet to the inlet of the top fan 20;
  • the total pressure downstream of the m+1th layer branch outlet is calculated based on the total pressure downstream of the m+1th layer branch outlet, the loss along the way from the m+1th layer branch outlet downstream to the m+1th layer branch outlet upstream in the common smoke exhaust duct 14, and the m+1th layer mainstream direct current loss. In this way, the total pressure of the common smoke exhaust duct 14 downstream of each branch outlet is calculated.
  • the total pressure downstream of the top branch outlet can be Pt_down M
  • the total pressure at the inlet of the top fan 20 can be Pt_dingduan
  • the loss along the way from the downstream of the top branch outlet (Mth layer) to the inlet of the top fan 20 can be The total pressure downstream of the top branch outlet Pt_down M can be calculated by formula 10.
  • the total pressure downstream of the mth branch outlet can be Pt_down m
  • the total pressure downstream of the m+1th branch outlet can be Pt_down m+1
  • the loss along the path from the downstream of the mth branch outlet to the upstream of the m+1th branch outlet in the common smoke exhaust duct 14 can be
  • the mainstream DC loss of the m+1th layer can be
  • the total pressure downstream of the m-th layer branch outlet Pt_down m can be calculated by the above formula 11.
  • V can be determined by a calculation method similar to V_fan.
  • control method includes:
  • Step 123 calculating the actual total pressure rise at the outlet of the branch range hood 12 at the floor where the minimum total pressure rise value is located, and the system pressure correction value according to the rotation speed and required air volume of the branch range hood 12 at the floor where the minimum total pressure rise value is located;
  • Step 125 according to the system pressure correction value, correct the total pressure rise required by the branch range hoods 12 on each floor except the floor where the minimum total pressure rise value is located and the static pressure rise required by the top fan 20;
  • Step 127 the rotation speed N_yanji_real i of the branch range hoods 12 of each floor is calculated according to the corrected total pressure rise required by the branch range hoods 12 of each floor and the required air volume Qi of each floor, and the rotation speed N_dingduan_real of the top fan 20 is calculated using the corrected required static pressure rise Ps_dingduan_real of the top fan 20 and the air volume of the top fan 20. In this way, the rotation speeds of the branch range hoods 12 and the top fan 20 of other floors can be determined.
  • the layer where the minimum total pressure rise is located may be the jth layer.
  • the real total pressure rise at the outlet of the jth layer branch range hood 12 may be further determined.
  • the real total pressure rise at the outlet of the jth layer branch range hood 12 may be Pt_yanji_real j , which is determined by Formula 1.
  • the system pressure correction value ⁇ p may be determined by Formula 13.
  • the total pressure rise (real total pressure rise) required by the branch range hoods 12 on each floor may be Pt_yanji_real i , which may be determined by equation 14.
  • the static pressure rise (real total pressure rise) required by the top fan 20 may be Ps_dingduan_real , which may be determined by equation 15.
  • the fan speed N_yanji_real i of the branch range hoods 12 on each floor is calculated by formula 1 using the corrected real total pressure rise Pt_yanji_real i of the branch range hoods 12 on each floor and the required air volume Qi of each floor.
  • the speed N_dingduan_real of the top fan 20 is calculated by formula 6 using the corrected real static pressure rise Ps_dingduan_real of the top fan 20 and the air volume Q_total of the top fan 20.
  • the corresponding speed is issued to the branch range hoods 12 and the top fan 20, so that the branch range hoods 12 and the top fan 20 run at the issued speed.
  • the rotational speed of the j-th branch range hood 12 corresponding to the minimum total pressure rise is the lowest rotational speed, and the rotational speeds of other branch range hoods 12 required to meet the required air volume are also the lowest rotational speeds, thereby optimizing the noise and power consumption of the branch range hoods 12.
  • the physical parameters include a first relationship between the total pressure rise of the range hood and the rotation speed and the air volume, a second relationship between the required air volume of the range hood and the gear position, a third relationship between the resistance coefficient of the bellows 16 and the air volume, a first distance between the top branch outlet and the top fan 20 inlet, and a second distance between the mth branch outlet and the m+1th branch outlet.
  • the first relationship, the second relationship, the third relationship, the first distance, and the second distance are parameters related to the model of the branch range hood 12. In this way, when the model of the branch range hood 12 changes, the relevant physical parameters can be obtained to achieve accurate control.
  • the model of the branch range hood 12 changes, the following four types of physical parameters in the above control algorithm depend on the model of the branch range hood 12, and thus can be updated through data interaction between the host 22 and the server 24:
  • the central range hood system 100 can be low-cost and simple to control.
  • this solution cannot optimize the minimum speed of the branch range hood 12. It is worth noting that this solution can be used as a backup emergency solution when the top fan 20 of the original solution fails or the top fan 20 is repaired.
  • control method comprises:
  • the electric control valve 18 When the branch range hood 12 is turned on, the electric control valve 18 is controlled to be opened in conjunction, and the electric control valve 18 connects the branch range hood 12 and the side wall of the public exhaust pipe 14. In this way, the backflow of oil smoke can be prevented.
  • the electric control valve 18 is opened in conjunction, so that the opened branch range hood 12 can exhaust smoke smoothly, and for the unopened branch range hood 12, it can also prevent the smoke from the public flue from flowing back into the kitchen where the branch range hood 12 is located.
  • the electric control valve 18 has two states: ON/OFF (fully open/fully closed). In the ON state, the valve plate of the electric control valve 18 fully opens the branch circuit, and in the OFF state, the valve plate of the electric control valve 18 fully closes the branch circuit.
  • the opening angle of the valve plate 18 is adjustable.
  • the valve opening angle of the electric control valve 18 is adjustable, and data communication can be performed between the electric control valve 18 and the host 22.
  • the electric control valve 18 has only two states, ON/OFF (fully open/fully closed), under certain extreme working conditions, the calculated operating speed may exceed the working range of the branch range hood 12.
  • the valve opening angle of the electric control valve 18 can be adjusted, and the air volume distribution can be assisted by adjusting the valve opening angle of the electric control valve 18 under such extreme working conditions. Accordingly, in this embodiment, it is necessary to consider the influence of the valve opening angle on the aerodynamic characteristics of the three-way in the pneumatic calibration and control algorithm of the three-way.
  • the three-way resistance characteristics of the system are jointly determined by the two values of the air volume ratio (Q/Qmain) between the branch and the common smoke exhaust duct 14 and the valve opening angle ( ⁇ ), that is, replace Formula 3 and Formula 4 with Formula 18 and Formula 19 respectively.
  • ⁇ _con F 3 (Q/Q_main, ⁇ ) (Equation 18)
  • ⁇ _dir F 4 (Q/Q_main, ⁇ ) (Equation 19)
  • the central range hood system 100 of this embodiment can expand the scope of applicable working conditions.
  • the electric control valve 18 is replaced by a traditional passive flue check valve.
  • the influence of the branch air volume on the three-way aerodynamic characteristics needs to be additionally considered in the three-way aerodynamic characteristics calibration and control algorithm.
  • the three-way resistance characteristics of the system are jointly determined by the branch and public exhaust duct 14 air volume ratio (Q/Q_mian) and the branch air volume (Q), that is, Formula 3 and Formula 4 are replaced by Formula 16 and Formula 17 respectively.
  • ⁇ _con F 3 (Q/Q_main,Q) (Equation 16)
  • ⁇ _dir F 4 (Q/Q_main,Q) (Equation 17)
  • control method comprises:
  • the parameters related to the installation position of the branch range hood 12 in the control algorithm are adjusted according to the installation position information.
  • the user may initiate reporting of the installation position information after the installation position of the branch range hood 12 is changed.
  • the installation position information of the branch range hood 12 may be reported to the server 24 or the local branch range hood 12 in a customized manner, and then the installation position information is sent to the host 22 through data communication between the server 24 or the local branch range hood 12 and the host 22.
  • the first distance and the second distance can be measured by the user and reported to the server 24 or the local branch range hood 12.
  • the user measures the horizontal distance and the vertical distance between the smoke outlet of the branch range hood 12 and the interface of the public smoke exhaust duct 14, and reports to the server 24 or the local branch range hood 12.
  • the host 22 can determine the relationship between the resistance coefficient of the bellows 16 and the air volume according to the horizontal distance and the vertical distance.
  • control method of the central range hood system 100 of the embodiment of the present application has the following innovative features:
  • the three-dimensional flow of the smoke exhaust system is simplified into a one-dimensional pneumatic system through dimensionality reduction, which greatly improves the calculation efficiency while ensuring the accuracy of air volume control and can achieve rapid response.
  • it is proposed to disassemble the system into several independent components for aerodynamic performance calibration.
  • control algorithm While ensuring the air volume required by the user, the control algorithm provides a function for optimizing additional limiting conditions, which can support optimizing the fan speed of the branch range hood 12 to achieve the purpose of reducing noise at the user.
  • the corresponding parameters in the control algorithm can be automatically modified according to the different models of branch range hoods 12, so as to achieve compatibility with various models of range hoods, allowing users to independently choose the range hood model according to usage habits and personal preferences.
  • the present application takes into account the influence of the range hood model on the matching relationship between the oil fume extraction effect and the required air volume, so as to achieve a good correspondence between the gear position and the oil fume extraction effect.
  • the local database only stores the necessary range hood physical parameters, and uses the data interaction between the host 22 and the server 24 to automatically update the necessary range hood physical parameters, which has lower software and hardware update and maintenance costs while ensuring local response speed.
  • control method of the central range hood system 100 of the embodiment of the present application can at least achieve the following technical effects:
  • the optimization can be carried out according to the principle of the lowest speed of branch range hood 12, which can significantly reduce the user-side noise on the basis of meeting the user-side required air volume;
  • the branch range hood 12 air volume is given to achieve a good match between the gear position and the range hood extraction effect
  • the local database only stores the necessary range hood physical parameters, and uses the data interaction between the host 22 and the server 24 to automatically update the necessary range hood physical parameters, which has lower software and hardware update and maintenance costs while ensuring local response speed.
  • a control device 200 of a central range hood system 100 includes a processor 28 and a memory 30.
  • the memory 30 stores a computer program. When the computer program is executed by the processor 28, the steps of the control method of any of the above embodiments are implemented.
  • control device 200 may include a host 22, and the control device 200 may be installed at a suitable location in a building to facilitate maintenance by relevant personnel.
  • a central range hood system 100 includes a control device 200 according to the above embodiment.
  • An embodiment of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the control method of any of the above embodiments are implemented.
  • control device 200 central range hood system 100 and computer-readable storage medium of the embodiment of the present application. To avoid redundancy, they will not be elaborated here.
  • the steps of the control method implemented include:
  • Step 101 the step is to obtain the model information and gear information of all the turned-on branch range hoods 12, and the branch range hoods 12 are connected to the public exhaust pipe 14;
  • Step 103 according to the model information of the branch range hood 12, the physical parameters of all turned-on branch range hoods 12 are obtained through the local database and/or the server 24;
  • Step 105 adjusting the corresponding aerodynamic parameters in the control algorithm according to the physical parameters of the branch range hood 12;
  • Step 107 calculating the required air volume of the branch range hood 12 according to the model information and gear information of the branch range hood 12;
  • Step 109 using a control algorithm to calculate the speed required to meet the required air volume and sending the speed to the branch range hood 12 so that the branch range hood 12 operates according to the speed.
  • control device 200 central range hood system 100 and computer-readable storage medium can obtain the physical parameters of all turned-on branch range hoods 12 through the local database and/or server 24, and adjust the control algorithm accordingly to obtain the required rotation speed, so that even if the user changes the range hood model, the control method can more accurately control the operation of the branch range hood 12, thereby improving the user experience.
  • a computer program includes computer program code.
  • the computer program code may be in source code form, object code form, executable file or some intermediate form.
  • Computer readable storage media may include: any entity or device capable of carrying computer program code, recording medium, USB flash drive, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM), random access memory (RAM), and software distribution medium.
  • the processor may be a central processing unit, or other general-purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ventilation (AREA)

Abstract

一种中央烟机***的控制方法、控制装置、中央烟机***和计算机可读存储介质。中央烟机***的控制方法包括:获取所有已开启的支路油烟机(12)的型号信息和档位信息,支路油烟机(12)连接公共排烟管道(14);根据支路油烟机(12)的型号信息,通过本地数据库和/或服务器(24)获取所有已开启的支路油烟机(12)的物理参数;根据支路油烟机(12)的物理参数调整控制算法中的气动力参数;根据支路油烟机(12)的型号信息和档位信息计算支路油烟机(12)的需求风量;利用控制算法计算满足需求风量所需的转速并发下转速至支路油烟机(12)以使支路油烟机(12)根据转速运行。

Description

中央烟机***的控制方法、控制装置、***和存储介质
优先权信息
本申请请求2022年11月30日向中国国家知识产权局提交的、专利申请号为202211527721.9的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及排烟设备技术领域,特别涉及一种中央烟机***的控制方法、控制装置、中央烟机***和计算机可读存储介质。
背景技术
在相关技术中,中央烟机***可根据终端烟机型号和终端烟机安装位置来控制各个终端烟机运行。然而,因使用习惯或个人喜好等原因用户可能会要求更换终端烟机型号,这可能会造成两个方面的问题:第一,终端烟机型号不同时,风机性能存在差异,这会导致原控制模型和相应的开环控制算法失准甚至失效;第二,不同型号终端烟机的集烟罩结构不同,因此达到相同吸油烟效果时所需的风量也不尽相同。
发明内容
本申请实施方式提供一种中央烟机***的控制方法、控制装置、中央烟机***和计算机可读存储介质。
本申请实施方式的一种中央烟机***的控制方法包括:
获取所有已开启的支路油烟机的型号信息和档位信息,所述支路油烟机连接公共排烟管道;
根据所述支路油烟机的型号信息,通过本地数据库和/或服务器获取所有已开启的支路油烟机的物理参数;
根据所述支路油烟机的物理参数调整控制算法中的气动力参数;
根据所述支路油烟机的型号信息和所述档位信息计算所述支路油烟机的需求风量;
利用所述控制算法计算满足所述需求风量所需的转速并发下所述转速至所述支路油烟机以使所述支路油烟机根据所述转速运行。
上述控制方法,可以通过本地数据库和/或服务器获取所有已开启的支路油烟机的物理参数,并相应调整控制算法获得所需的转速,使得即使用户更换了油烟机型号,也能够较为准确地控制支路油烟机运行,提升了用户体验。
在某些实施方式中,根据所述支路油烟机的型号信息,通过本地数据库和/或服务器获取所有已开启的支路油烟机的物理参数包括:
利用所述本地数据库已存储的油烟机型号对所述支路油烟机的型号进行匹配;
在存在匹配成功的型号的情况下,根据所述本地数据库确定所述支路油烟机的物理参数;
在存在匹配失败的型号的情况下,发送匹配失败的型号至所述服务器,并接收所述服务器返回的物理参数。
在某些实施方式中,根据所述支路油烟机的型号信息,通过本地数据库和/或服务器获取所有已开启的支路油烟机的物理参数包括:
将所有已开启的支路油烟机的型号发送至所述服务器,并接收所述服务器返回的所有已开启的支路油烟机的物理参数。
在某些实施方式中,所述控制方法包括:
利用所述服务器返回的物理参数更新所述本地数据库已存储的油烟机物理参数。
在某些实施方式中,所述控制方法还包括:
利用所述控制算法计算顶端风机所需的转速并发下所述转速至所述顶端风机以使所述顶端风机根据所述转速运行,所述顶端风机连通所述公共排烟管道的出口。
在某些实施方式中,利用所述控制算法计算满足所述需求风量所需的转速包括:
利用所述控制算法计算公共排烟管道的各支路出口下游的公共排烟管道总压力、所述支路油烟机所 在层的三通合流损失和支路波纹管损失;
根据所述各支路出口下游的公共排烟管道总压力、所述支路油烟机所在层的三通合流损失和所述支路波纹管损失计算第m层支路油烟机所需总压升;
在计算所得的各层支路油烟机所需总压升中确定总压升最小值所在层以及所在层的支路油烟机需求风量,并在预设的油烟机气动特性关系中确定满足所述需求风量所需的转速并将所述转速设定为总压升最小值所在层的支路油烟机的转速。
在某些实施方式中,在预设的油烟机气动特性关系中确定满足所述需求风量所需的转速为最低转速。
在某些实施方式中,所述各支路出口下游的公共排烟管道总压力包括顶层支路出口下游总压力和除顶层外第m层支路出口下游总压力,
利用所述控制算法计算公共排烟管道的各支路出口下游的公共排烟管道总压力包括:
根据顶端风机入口处的总压、顶层支路出口下游到顶端风机入口的沿程损失计算所述顶层支路出口下游总压力;
根据第m+1层支路出口下游总压力、公共排烟管道中第m层支路出口下游到第m+1层支路出口上游的沿程损失、第m+1层的主流直流损失,计算得到所述第m层支路出口下游总压力。
在某些实施方式中,所述第m层支路油烟机所需总压升由所述第m层支路出口下游的公共排烟管道总压力减去第m层的三通合流损失与所述支路波纹管损失求得。
在某些实施方式中,所述控制方法包括:
根据总压升最小值所在层的支路油烟机的转速和需求风量,计算总压升最小值所在层的支路油烟机出口真实总压升,及***压力修正值;
根据所述***压力修正值,修正除总压升最小值所在层外各层支路油烟机所需总压升与所述顶端风机所需静压升;
根据修正后得到的各层支路油烟机所需总压升与各层支路油烟机的需求风量计算各层支路油烟机的转速,及利用修正后得到的顶端风机的所需静压升与顶端风机风量计算所述顶端风机的转速。
在某些实施方式中,所述物理参数包括油烟机总压升与转速以及与风量的第一关系、油烟机需求风量与档位的第二关系、波纹管阻力系数与风量的第三关系、顶层支路出口距顶端风机入口之间的第一距离、第m层支路出口与第m+1层支路出口之间的第二距离,所述第一关系、所述第二关系、所述第三关系、所述第一距离和所述第二距离为与所述支路油烟机型号相关的物理参数。
在某些实施方式中,所述控制方法包括:
在所述支路油烟机开启后,控制电控阀联动开启,所述电控阀连接所述支路油烟机和所述公共排烟管道。
在某些实施方式中,所述控制方法包括:
获取所述支路油烟机的安装位置信息;
根据所述安装位置信息调整所述控制算法中与所述支路油烟机安装位置相关的参数。
本申请实施方式的一种中央烟机***的控制装置包括处理器和存储器,所述存储器存储有计算机程序,所述计算机程序在被所述处理器执行时实现上述任一实施方式的控制方法的步骤。
本申请实施方式的一种中央烟机***包括上述实施方式的控制装置。
本申请实施方式提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序在被处理器执行时,实现上述任一实施方式的控制方法的步骤。
上述控制装置、中央烟机***和计算机可读存储介质,可以通过本地数据库和/或服务器获取所有已开启的支路油烟机的物理参数,并相应调整控制算法获得所需的转速,使得即使用户更换了油烟机型号,也能够较为准确地控制支路油烟机运行,提升了用户体验。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的控制方法的流程示意图;
图2是本申请实施方式的中央烟机***的安装示意图;
图3是本申请实施方式的控制方法的流程示意图;
图4是本申请实施方式的中央烟机***流动的一维气动模块示意图;
图5至图6是本申请实施方式的控制方法的流程示意图;
图7是本申请实施方式的中央烟机***的模块示意图;
图8是相关技术中高层居民楼传统排烟***的结构示意图;
图9是相关技术中集中式中央吸油烟机***的结构示意图;
图10是相关技术中分布式中央吸油烟机***的结构示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。
本文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,本文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在相关技术中,高层居民楼的传统排烟***由公共排烟管道和各个用户端的支路组成。如图8所示,用户端的油烟从支路排向公共排烟管道,随后沿公共排烟管道向上流动并从公共排烟管道顶端排出。对于低层用户,排烟阻力主要来自于公共排烟管道,包括公共排烟管道沿程损失和流经上方各开启层用户支路排烟口时的合流损失。因此当开启层数较多时,低层用户的排烟阻力较高,油烟机抽吸风量不足,实际排烟效果较差。
虽然目前油烟机产品技术一直朝着大风量、低噪声方向迭代,但是部分实际使用情况下极高的排烟阻力使得风量大小和噪声水平无法兼顾。同时,由于高层用户和低层用户的排烟阻力存在较大差距,造成高层用户实际风量过剩而低层用户实际风量不足的尴尬状况,在低层用户排烟效果较差的同时又带来了高层用户能源的浪费。此外,为防止公共排烟管道的油烟倒灌进入用户端,在用户端的支路与公共排烟管道的接口处通常都会加装被动式烟道止回阀。当支路油烟机关闭时,烟道止回阀通常在弹簧弹力和阀片重力的作用下维持关闭状态,使公共排烟管道的油烟无法流入用户端的支路;当支路油烟机开启时,支路中向公共排烟管道排出的流体会克服烟道止回阀的弹簧弹力和阀片重力使阀片开启。但是这类被动止回阀存在以下几个缺点:①当支路风量较低时阀片开启角度过小,排烟阻力很大;②烟道止回阀弹簧老化失效、阀片油烟附着等问题会影响阀片闭合时的密封性,导致油烟倒灌。
由此可见,高层居民楼的排烟问题是一个***性问题,需要采用***级的调控手段来解决。为此,中央烟机***应运而生。中央烟机***一般以位于公共排烟管道出口处的顶端风机为主要或唯一动力源,根据用户端需求风量通过主机实时协同调控整个排烟***各个部件的工作状态,可以在全工况下满足用户端的排烟需求。
按支路动力分配方式,中央烟机***可分为集中式和分布式两类,两类中央烟机***的示意图如图9 和图10所示。
请参图9,集中式中央烟机***的支路没有油烟机,只有一个集烟罩,整个***以顶端风机作为唯一动力源。集中式中央烟机***的支路与公共排烟管道接口处配备一个阀片开启角度可调的电控阀,***工作时可以通过调节阀片的开启角度来实现支路风量分配。
请参图10,分布式中央烟机***支路有可调速油烟机,整个***以顶端风机作为主要动力源,支路油烟机作为辅助动力源。分布式中央烟机***的支路出口处配备一个阀片开启角度的电控阀,该止回阀有ON/OFF(完全开启/完全关闭)两种状态。***工作时可以通过调节支路油烟机转速实现支路风量分配。
由于***组件和工作机制的差异,两类中央烟机***各有自身的优势。集中式中央烟机***的优势主要体现在:公共排烟管道一定是全烟道负压的,可以严格杜绝油烟从公共排烟管道倒灌入用户厨房;由于支路无油烟机,因此支路噪声大幅降低,降幅可达10dB;另外,由于集中式中央烟机***支路无油烟机占用空间,支路集烟罩占用尺寸更小,外形设计可以更灵活更美观。
分布式中央烟机***的优势主要体现在:由于分布式中央烟机***的支路止回阀在支路工作时始终保持***完全开启状态,相同工况下***阻力要低于集中式,因此整体能耗水平也优于集中式;分布式***的支路油烟机可以实现传统油烟机的油烟分离功能,支路烟道内不容易集污;分布式中央烟机***由于有支路油烟机作为辅助动力源,因此对顶端风机的工作参数要求较低,且当顶端风机失效时仍可依靠支路油烟机实现排烟功能,***冗余大,可靠性高。
然而无论是集中式还是分布式中央烟机***,如何实现高效准确的支路风量分配是最关键的问题。主流的风量分配控制方法有两类:一类是基于压力传感器或流速传感器反馈控制的闭环控制***,而由于排烟***中油烟污染严重,极易造成传感器失效,***可靠性较差,并且传感器自身成本与后期维护成本也是一个现实问题;另一类,是基于***一维气动模型的开环控制方法,在实际应用中具有更低的成本和更高的可靠性。
对于分布式中央烟机***,相关技术的所有支路油烟机为同一型号,一维气动模型以及相应的开环控制策略也是在该条件下建立的,并且终端风量也是按照该型号油烟机的集烟罩特性统一给定的。但是对于分布式中央烟机***,因使用习惯或个人喜好等原因用户可能会要求更换终端油烟机型号,这可能会造成两个方面的问题:第一,油烟机型号时,风机性能以及支路波纹管安装状态存在差异,这会导致原一维气动模型和相应的开环控制算法失准甚至失效;第二,不同型号油烟机的集烟罩结构不同,因此达到相同吸油烟效果时所需的风量也不尽相同。基于此,本申请在开环控制策略的基础上提出了一种中央烟机***可兼容多种型号的终端油烟机以及相应的控制方法。
请参图1和图2,本申请实施方式的一种中央烟机***100的控制方法包括:
步骤101,步骤获取所有已开启的支路油烟机12的型号信息和档位信息,支路油烟机12连接公共排烟管道14;
步骤103,根据支路油烟机12的型号信息,通过本地数据库和/或服务器24获取所有已开启的支路油烟机12的物理参数;
步骤105,根据支路油烟机12的物理参数调整控制算法中相应的气动力参数;
步骤107,根据支路油烟机12的型号信息和档位信息计算支路油烟机12的需求风量;
步骤109,利用控制算法计算满足需求风量所需的转速并发下转速至支路油烟机12以使支路油烟机12根据转速运行。
上述控制方法,可以通过本地数据库和/或服务器24获取所有已开启的支路油烟机12的物理参数,并相应调整控制算法获得所需的转速,使得即使用户更换了油烟机型号,控制方法能够较为准确地控制支路油烟机12运行,提升了用户体验。
具体地,本实施方式的中央烟机***100可以是分布式中央烟机***100,控制方法是在开环控制策略的基础上可兼容多种型号的支路油烟机12(终端油烟机)。请参图2,中央烟机***100包括:支路油烟机12、波纹管16、电控阀18、公共排烟管道14、顶端风机20和主机22。整个中央烟机***100分为两个部分,其一为排烟流道,其二为控制***。排烟流道包括:支路油烟机12出口与波纹管16的一端 连接,波纹管16的另一端与电控阀18连接,支路油烟机12、波纹管16和电控阀18共同组成支路。多个支路与公共排烟管道14的侧壁连接;公共排烟管道14的上方出口与顶端风机20相连接。电控阀18的阀片可在电机的推动下完成开启和关闭动作,电控阀18工作时有完全开启和完全关闭两个状态。
控制***包括:支路油烟机12和顶端风机20的转速可调节;主机22与各支路油烟机12可进行数据通讯;主机22与顶端风机20可进行数据通讯;主机22包含可进行数据接收、数据运算以及数据发送的控制中台;主机22与服务器24可进行数据通讯;各支路中的电控阀18可通过与该支路油烟机12进行数据通讯或对该支路油烟机12进行功率识别等方式判断该支路油烟机12是否开机。
支路油烟机12向主机22发送的数据信息为油烟机ID、油烟机型号信息、油烟机档位信息,主机22向油烟机发送的数据为各支路油烟机12的转速,主机22向顶端风机20发送的数据为顶端风机20的转速。主机22向服务器24发送的数据为该主机22控制下的油烟机型号信息,服务器24向主机22发送的数据为主机22控制下的全部油烟机型号的物理参数。该物理参数包括但不限于各型号油烟机的气动性能、出风口位置、档位与需求风量对应关系等。
已开启的支路油烟机12可以是支路油烟机12的风机处于开启状态的支路油烟机12,转速可以是风机的转速。支路油烟机12开启后,可以通过有线或无线的方式将自身的型号信息和档位信息上报至主机22。相应的电控阀18联动开启,使支路油烟机12可以将油烟排入公共排烟管道14。
主机22在获取到所有已开启的支路油烟机12的型号信息后,可以通过本地数据库和/或服务器24获取所有已开启的支路油烟机12的物理参数。
在某些实施方式中,请参图3,步骤103包括:
步骤111,利用本地数据库已存储的油烟机型号对支路油烟机12的型号进行匹配;
步骤113,在存在匹配成功的型号的情况下,根据本地数据库确定支路油烟机12的物理参数;
步骤115,在存在匹配失败的型号的情况下,发送匹配失败的型号至服务器24,并接收服务器24返回的物理参数。如此,可以先在本地数据库进行匹配,然后再通过服务器24获取匹配失败的型号对应的物理参数,提升了效率。
具体地,本地数据库可以位于主机22,也可以位于某一支路油烟机12,也可以是本地数据库的一部分位于主机22,另一部分位于某一或某些支路油烟机12,也可以是本地数据库存可以分散位于不同的支路油烟机12,在此不作具体限定。通过先在本地数据库存进行匹配,减少了因网络问题而造成的延时,提升了效率。
服务器24可以是云端服务器24,服务器24内储存着全部型号油烟机的物理参数。服务器24会将主机22控制下的油烟机型号信息对应的物理参数返回给该主机22,主机22可更新本地数据库。
在某些实施方式中,步骤103包括:
将所有已开启的支路油烟机12的型号发送至服务器24,并接收服务器24返回的所有已开启的支路油烟机12的物理参数。如此,可以直接通过服务器24获取所有已开启的支路油烟机12的物理参数。
在一个实施方式中,在获取所有已开启的支路油烟机12的物理参数的情况下,可以根据各支路油烟机12的型号信息和档位信息计算得到各支路油烟机12的当前需求风量。具体地,支路油烟机12的型号信息与档位信息和需求风量的对应关系,可以预先标定并存储。该对应关系可以预先存储在支路油烟机12中,也可以预先存储在主机22中,还可以预先存储在服务器24中。当支路油烟机12型号在本地数据库匹配失败后,主机22可以通过服务器24获取相应的对应关系。
在一个实施方式中,可以在获取到各支路油烟机12的型号信息和档位信息后,就可以利用上述对应关系计算得到各支路油烟机12的当前需求风量。
在一个例子中,该对应关系为:支路油烟机12的型号为A,档位包括1档、2档、3档,各档位对应的风量分别是200方/小时、300方/小、400方/小时。在型号为A的支路油烟机12开启后,且档位信息为1档的情况下,主机22可以确定该支路油烟机12的需求风量是200方/小时。档位可以由用户来选择,也可以是支路油烟机12可以根据油烟量自行确定。具体地,支路油烟机12具有随烟感功能,支路油烟机12可以根据油烟量自行确定档位。具有随烟感功能的支路油烟机12包括油烟传感器。
各支路油烟机12和顶端风机20按接收到的转速信息进行转速调节,完成风量控制过程。当支路油 烟机12关闭时,该支路电控阀18可通过识别油烟机的关机动作后随油烟机联动关闭,同时该支路油烟机12不再向主机22上传信息。
在某些实施方式中,控制方法包括:
利用服务器24返回的物理参数更新本地数据库已存储的油烟机物理参数。如此,后续可以快速获取支路油烟机12的物理参数。
具体地,通过利用服务器24返回的物理参数更新本地数据库的油烟机物理参数,在支路油烟机12再次开启时,主机22可以直接在本地数据库快速获取所有支路油烟机12的物理参数,提升了效率。
在某些实施方式中,控制方法还包括:
利用控制算法计算顶端风机20所需的转速并发下转速至顶端风机20以使顶端风机20根据转速运行,顶端风机20连通公共排烟管道14的出口。如此,可以对顶端风机20进行控制。
具体地,上述步骤可以在步骤109中进行,也可以与步骤109同时进行,也可以在步骤109之前或之后进行,在此不作具体限定。
在图2所示的实施方式中,中央烟机***100包括顶端风机20。顶端风机20与支路油烟机12的相互配合,可以优化支路油烟机12的吸烟效果和改善噪声。例如,顶端风机20开启后,公共排烟管道14的压力减少,支路油烟机12的阻力减少,在达到同等需求风量的情况下,支路油烟机12转速可以更小,降低了支路油烟机12的噪声。或在同等支路油烟机12转速的情况下,支路油烟机12提供的风量更大,提升了吸烟效果。
在本申请实施方式中,控制算法可为开环控制算法,可提前对***组件的气动特性进行试验标定或经验公式估计。中央烟机***100的流动可简化为一维气动模型,如图4所示,可将其拆分为如下几个组件:支路油烟机12;波纹管16;三通26;公共排烟管道14;顶端风机20。其中,三通26为支路向公共排烟管道14入流口与公共排烟管道14组成的三通区域:支路流动通过该三通区域流入公共排烟管道14时会产生三通合流损失;公共排烟管道14流动流过该三通区域时会产生三通直流损失;当阀片开启角度一定时,三通合流损失系数和三通直流损失系数由支路与公共排烟管道14的风量比(Q/Q_main)决定(下式3-4)。各组件的气动特性可以通过试验、仿真或经验公式估计的方法确定。各组件气动特性表达关系式如下:
Pt_yanji=F1(N_yanji,Q)   (式1)
ξ_b=F2(Q)   (式2)
ξ_con=F3(Q/Q_main)   (式3)
ξ_dir=F4(Q/Q_main)   (式4)
λ=F5(Q_main)   (式5)
Ps_dingduan=F6(N_dingduan,Q_total)   (式6)

其中,Pt_yanji——油烟机总压升;
N_yanji——油烟机转速;
Q——油烟机需求风量;
ξ_b——波纹管16阻力系数;
ξ_con——支路三通合流损失系数;
ξ_dir——公共排烟管道14三通直流损失系数;
λ——公共排烟管道14沿程损失系数;
Q_main——合流后的公共排烟管道14的需求风量;
Ps_dingduan——顶端风机20静压升;
N_dingduan——顶端风机20转速;
Q_total——公共排烟管道14总风量(顶端风机20需求风量);
Q_mainm——第m层下游的公共排烟管道14总需求风量;
Qi——第i层的支路油烟机12需求风量;
M——总层数;
m——第m层;
i——第i层;
***运行时,主机22接收到当前所有已开启的支路油烟机12的型号信息和档位信息,依据该信息确定各支路油烟机12的需求风量Qi,从而可以根据式7和式8求得公共排烟管道14风量分配Q_mainm和Q_total,进而可通过式2-5求得***的阻力特性参数ξ_b、ξ_con、ξ_dir、λ。假设顶端风机20提供的静压升为Ps_X,则在顶端风机20入口处的总压可表示为
Pt_dingduan=0.5·ρV_fan2-Ps_X  (式9)
其中,V_fan——顶端风机20出口平均风速,ρ—空气密度,可根据Q_total和顶端风机20出口面积求得。
可先求得各支路出口下游的公共排烟管道14总压力Pt_down。顶层(第M层)支路出口下游总压力Pt_downM,可由Pt_dingduan减去顶层(第M层)支路出口下游到顶端风机20入口的沿程损失求得(式10)。
其中,λM—顶层(第M层)支路出口下游的公共排烟管道14的阻力系数;
De—公共排烟管道14的水力直径;
LM—顶层(第M层)支路出口距顶端风机20入口的距离;
ρ—空气密度;
V_mainM—顶层(第M层)支路出口下游的公共排烟管道14平均风速,相当于V_fan。
除最顶层外第m层支路出口下游总压力Pt_downm,可由m+1层支路出口下游总压力Pt_downm+1减去公共排烟管道14中第m层支路出口下游到第m+1层支路出口上游的沿程损失,及减去第m+1层的主流直流损失求得(式11)。因此,可依次求得全部楼层支路出口下游公共排烟管道14的总压力Pt_down。
其中,λm——第m层支路出口下游的公共排烟管道14的阻力系数;
Lm——第m层与第m+1层支路出口的间距;
ξ_dirm+1——第m+1层支路出口处的公共排烟管道14三通直流损失系数。
例如,当楼层总数为10层时,且10层的支路油烟机12均开启,可利用式10,计算出顶层(第10层)支路出口下游总压力Pt_down10,利用式11,根据第10层的Pt_down10计算第9层的支路出口下游总压力Pt_down9,根据第9层的支路出口下游总压力Pt_down9可计算第8层的支路出口下游总压力Pt_down8,…,一直到已开启支路油烟机12所在的最低楼层,以此类推。
其次,第m层支路油烟机12所需总压升Pt_yanjim,可由Pt_down减去该层三通合流损失与支路波纹管16损失之和求得(式12)。
其中,ξ_conm——第m层的支路三通合流损失系数;
ξ_bm——第m层的波纹管16阻力系数;
Vm——第m层支路的平均风速。
再次,可依支路油烟机12转速最低的优化原则,根据求得的各支路油烟机12所需总压升(Pt_yanji1、Pt_yanji2…Pt_yanjiM)中找到总压升最小值(Pt_yanjij)所在层j以及该层预设风量Qj。在已标定好的油烟机气动特性线(式1)中找到满足Qj所需的最低转速N_yanjij设定为该层转速。接着通过式1求得该层(第j层)油烟机出口真实总压升记为Pt_yanji_realj,***压力修正值Δp为
Δp=Pt_yanji_realj-Pt_yanjij   (式13)
随后,修正各层支路油烟机12所需总压升与顶端风机20所需静压升:
Pt_yanji_reali=Pt_yanjii+Δp   (式14)
Ps_dingduan_real=Ps_X+Δp   (式15)
之后,利用修正后得到的各层支路油烟机12真实总压升Pt_yanji_reali与各层预设风量Qi通过式1求得各层支路油烟机12的风机转速N_yanji_reali;利用修正后得到的顶端风机20真实静压升Ps_dingduan_real与顶端风机20风量Q_total通过式6求得顶端风机20的转速N_dingduan_real。
在某些实施方式中,请参图5,步骤109包括:
步骤117,利用控制算法计算公共排烟管道14的各支路出口下游的公共排烟管道14总压力、支路油烟机12所在层的三通合流损失和支路波纹管16损失;111
步骤119,根据各支路出口下游的公共排烟管道14总压力、支路油烟机12所在层的三通合流损失和支路波纹管16损失计算第m层支路油烟机12所需总压升;113
步骤121,在计算所得的各层支路油烟机12所需总压升中确定总压升最小值所在层以及所在层的支路油烟机12需求风量Qj,并在预设的油烟机气动特性关系中确定满足需求风量Qj所需的转速并将转速设定为总压升最小值所在的支路油烟机12的转速。115
如此,可以确定总压升最小值对应的支路油烟机12的转速。
具体地,总压升最小值所在层可以是第j层,各支路出口下游的公共排烟管道14总压力可以是Pt_down,可以利用上述的式10和式11计算各支路出口下游的公共排烟管道14总压力Pt_down,各支路出口下游的公共排烟管道14总压力Pt_down包括顶层支路出口下游总压力Pt_downM和除顶层外第m层支路出口下游总压力Pt_downm
气动特性关系可以是气动特性线,可以是由上述式1确定,该气动特性线表示支路油烟机12的总压升与转速和风量的对应关系。
在一个实施方式中,在预设的油烟机气动特性关系中确定满足需求风量Qj所需的转速为最低转速。如此,可以进一步优化支路油烟机12的噪声。具体地,在满足需求风量的情况下,支路油烟机12的转速可以是最低的转速。
可以理解,在其他实施方式中,总压升最小值对应的支路油烟机12的转速,可以在气动特性关系中随机获取一个转速,或较小的一个转速。
在某些实施方式中,第m层支路油烟机12所需总压升由第m层支路出口下游的公共排烟管道14总压力减去第m层的三通合流损失与支路波纹管16损失求得。如此,第m层支路油烟机12所需总压升的计算方法简单。
具体地,第m层支路油烟机12所需总压升可以是Pt_yanjim,第m层支路出口下游的公共排烟管道14总压力可以是Pt_downm,可以通过上述式12计算得到第m层支路油烟机12所需总压升Pt_yanjim
在某些实施方式中,各支路出口下游的公共排烟管道14总压力包括顶层支路出口下游总压力和除顶层外第m层支路出口下游总压力,
步骤117包括:
根据顶端风机20入口处的总压、顶层支路出口下游到顶端风机20入口的沿程损失计算顶层支路出口下游总压力;
根据第m+1层支路出口下游总压力、公共排烟管道14中第m层支路出口下游到第m+1层支路出口上游的沿程损失、第m+1层的主流直流损失,计算得到第m层支路出口下游总压力。如此,计算得到各支路出口下游的公共排烟管道14总压力。
具体地,顶层支路出口下游总压力可以是Pt_downM,顶端风机20入口处的总压可以是Pt_dingduan,顶层(第M层)支路出口下游到顶端风机20入口的沿程损失可以是顶层支路出口下游总压力Pt_downM可以通过式10来计算。
第m层支路出口下游总压力可以是Pt_downm,第m+1层支路出口下游总压力可以是Pt_downm+1,公共排烟管道14中第m层支路出口下游到第m+1层支路出口上游的沿程损失可以是 第m+1层的主流直流损失可以是第m层支路出口下游总压力Pt_downm可以通过上述式11来计算。V可以通过类似于V_fan计算方式确定。
在某些实施方式中,请参图6,控制方法包括:
步骤123,根据总压升最小值所在层的支路油烟机12的转速和需求风量,计算总压升最小值所在层的支路油烟机12出口真实总压升,及***压力修正值;
步骤125,根据***压力修正值,修正除总压升最小值所在层外各层支路油烟机12所需总压升与顶端风机20所需静压升;
步骤127,根据修正后得到的各层支路油烟机12所需总压升与各层需求风量Qi计算各层支路油烟机12的转速N_yanji_reali,及利用修正后得到的顶端风机20的所需静压升Ps_dingduan_real与顶端风机20风量计算顶端风机20的转速N_dingduan_real。如此,可以确定其他层的支路油烟机12和顶端风机20的转速。
具体地,总压升最小值所在层可以是第j层,在先确定总压升最小值所对应的第j层支路油烟机12的转速(如最低转速)后,可以进一步确定第j层的支路油烟机12出口真实总压升,第j层的支路油烟机12出口真实总压升可以是Pt_yanji_realj,通过式1确定Pt_yanji_realj。***压力修正值Δp可以通过式13来确定。
各层支路油烟机12所需总压升(真实总压升)可以是Pt_yanji_reali,可以通过式14来确定Pt_yanji_reali。顶端风机20所需静压升(真实总压升)可以是Ps_dingduan_real,可以通过式15来确定Ps_dingduan_real。
利用修正后得到的各层支路油烟机12真实总压升Pt_yanji_reali与各层需求风量Qi通过式1求得各层支路油烟机12的风机转速N_yanji_reali,利用修正后得到的顶端风机20真实静压升Ps_dingduan_real与顶端风机20风量Q_total通过式6求得顶端风机20的转速N_dingduan_real,并下发相应转速至支路油烟机12和顶端风机20,使支路油烟机12和顶端风机20按下发的转速运行。
在一个实施方式中,在先确定总压升最小值所对应的第j层支路油烟机12的转速为最低转速,其他支路油烟机12在满足需求风量所需的转速也为最低转速,进而优化了支路油烟机12的噪声和功耗。
在某些实施方式中,物理参数包括油烟机总压升与转速以及与风量的第一关系、油烟机需求风量与档位的第二关系、波纹管16阻力系数与风量的第三关系、顶层支路出口距顶端风机20入口之间的第一距离、第m层支路出口与第m+1层支路出口之间的第二距离,第一关系、第二关系、第三关系、第一距离和第二距离为与支路油烟机12型号相关的参数。如此,在支路油烟机12型号发生变化时,能够获取到相关的物理参数,以实现准确控制。
具体地,在支路油烟机12型号发生改变时,上述控制算法中的以下四类物理参数取决于支路油烟机12的型号,因此可以通过主机22与服务器24间的数据交互进行更新:
a)其中油烟机总压升与转速以及与风量的第一关系(式1);
b)油烟机需求风量Q与档位的第二关系;
c)波纹管16阻力系数与风量的第三关系ξ_b=F2(Q)
d)顶层(第M层)支路出口距顶端风机20入口之间的第一距离LM以及第m层与第m+1层支路出口之间的第二距离Lm
在其他实施方式中,中央烟机***100也可以省略顶端风机20,则有Ps_X=0,因此可直接由式9-12计算出各支路油烟机12的真实总压升Pt_yanji_real,从而根据式1求得各支路油烟机12的风机转速N_yanji_real。如此,可以实现中央烟机***100的成本低,控制简单。但该方案无法对支路油烟机12转速最低寻优。值得注意的是,该方案可以在原方案的顶端风机20失效或顶端风机20维修时作为备用应急方案。
在某些实施方式中,控制方法包括:
在支路油烟机12开启时,控制电控阀18联动开启,电控阀18连接支路油烟机12和公共排烟管道14的侧壁。如此,可以防止油烟倒灌。
具体地,支路油烟机12开机时,电控阀18联动开启,使得已开启的支路油烟机12能够顺利排烟,而且对于未开启的支路油烟机12,也以防止公共烟道的油烟倒灌至支路油烟机12所在的厨房。
在一个实施方式中,电控阀18有ON/OFF(完全开启/完全关闭)两种状态,在ON状态下,电控阀18的阀片完全打开支路,在OFF状态下,电控阀18的阀片完全关闭支路。在一个实施方式中,电控阀 18的阀片开启角度可调,除ON/OFF(完全开启/完全关闭)两种状态外,还有处于ON/OFF(完全开启/完全关闭)两种状态之间的至少一个中间状态,中间状态下,电控阀18的阀片可处于完全开启和完全关闭两个位置之间的任一位置。
具体地,电控阀18的阀片开启角度可调,电控阀18与主机22之间可进行数据通讯。在电控阀18只有ON/OFF(完全开启/完全关闭)两种状态的方案中,在某些部分极端工况下,计算得到的工作转速可能会超过支路油烟机12的工作范围。电控阀18的阀片开启角度可以调节,则可以在这类极端工况下通过调节电控阀18的阀片开启角度协助进行风量分配。相应地,在本实施方式中,需要在三通的气动标定和控制算法中考虑阀片开启角度对三通气动特性的影响,该情况下***的三通阻力特性由支路与公共排烟管道14风量比(Q/Qmain)和阀片开启角度(θ)这两个值共同决定,即将式3和式4分别替换为式18和式19。
ξ_con=F3(Q/Q_main,θ)       (式18)
ξ_dir=F4(Q/Q_main,θ)          (式19)
因此,本实施方式的中央烟机***100能够扩大适用工况范围。
在其他实施方式中,将电控阀18替换为传统的被动式烟道止回阀。该方案中,需要在三通的气动特性标定和控制算法中额外考虑支路风量对三通气动特性的影响,该情况下***的三通阻力特性由支路与公共排烟管道14风量比(Q/Q_mian)和支路风量(Q)这两个值共同决定,即将式3和式4分别替换为式16和式17。
ξ_con=F3(Q/Q_main,Q)        (式16)
ξ_dir=F4(Q/Q_main,Q)        (式17)
因此,这种情况下进行标定工作和控制算法。该方案的优势是***成本较低。
在某些实施方式中,控制方法包括:
获取支路油烟机12的安装位置信息;
根据安装位置信息调整控制算法中与支路油烟机12安装位置相关的参数。
具体地,由于实际使用场景下,支路油烟机12的安装位置可能与默认位置不同,因此支路油烟机12安装位置变更后,可以由用户发起将安装位置信息上报。具体地,支路油烟机12安装位置信息可通过自定义方式上报服务器24或本地支路油烟机12,随后通过服务器24或本地支路油烟机12与主机22的数据通讯将安装位置信息发送给主机22。主机22根据用户自定义的安装位置调整控制算法中相应参数,比如波纹管16阻力系数与风量的关系ξ_b=F2(Q)、顶层(第M层)支路出口距顶端风机20入口之间的第一距离LM、第m层与第m+1层支路出口之间的第二距离Lm
安装位置变更后,上述第一距离和第二距离可以是用户测量并上报至服务器24或本地支路油烟机12。用户测量支路油烟机12的出烟口与公共排烟管道14接口的水平距离和垂直距离,并上报至服务器24或本地支路油烟机12,主机22可以根据上述水平距离和垂直距离确定波纹管16阻力系数与风量的关系。
综上所述,本申请实施方式的中央烟机***100的控制方法具有以下创新点:
①基于排烟***一维气动力模型搭建控制算法:
将排烟***的三维流动通过降维简化为一维气动***,在保证风量控制精度的同时大幅提升计算效率,能够实现快速响应;同时一维气动***的气动力标定性能中,提出将***拆解为几个相互独立的组件进行气动性能标定。
②采用开环控制策略:
由于排烟***油烟浓度较高,极易造成传感器污染从而引发控制失效。因此基于传感器的闭环控制的***可靠性较差,并且***成本和维护成本较高。本申请采用开环控制策略,从根本上杜绝了控制失效的问题,并且***成本和维护成本更有优势。
③可实现支路油烟机12转速最低寻优:
在保证用户端需求风量的同时,本控制算法提供了对额外限定条件寻优的功能,可支持对支路油烟机12的风机转速寻优,实现降低用户端噪声的目的。
④可兼容多种型号的油烟机:
可根据支路油烟机12型号的不同自动修改控制算法中的相应参数,实现对多种型号油烟机的兼容,可以让用户根据使用习惯和个人喜好自主选择油烟机型号。
⑤基于档位和油烟机型号给定用户端风量,实现档位与吸油烟效果的良好匹配:
由于集烟罩结构对吸油烟效果有影响,本申请考虑了油烟机型号对吸油烟效果与需求风量的匹配关系的影响,实现档位与吸油烟效果的良好对应。
⑥本地数据库只储存必需的油烟机物理参数,利用主机22与服务器24的数据交互来自动更新必需的油烟机物理参数,在保证本地响应速度的基础上有着更低的软硬件更新维护成本。
本申请实施方式的中央烟机***100的控制方法至少可以实现以下技术效果:
①将公共排烟***流动简化为一维气动模型,控制算法计算效率高,单片机单次计算时间为ms级;支持用户更换支路油烟机12;
②采用开环控制策略,无需额外传感器,***成本和维护成本低,***可靠性高;
③可按支路油烟机12转速最低原则进行寻优,在满足用户端需求风量的基础上大幅降低用户端噪声;
④可兼容多种型号的油烟机;
⑤基于档位和油烟机型号给定支路油烟机12风量,实现档位与吸油烟效果的良好匹配;
⑥本地数据库只储存必需的油烟机物理参数,利用主机22与服务器24的数据交互来自动更新必需的油烟机物理参数,在保证本地响应速度的基础上有着更低的软硬件更新维护成本。
请参图7,本申请实施方式的一种中央烟机***100的控制装置200包括处理器28和存储器30,存储器30存储有计算机程序,计算机程序在被处理器28执行时实现上述任一实施方式的控制方法的步骤。
具体地,控制装置200可以包括主机22,控制装置200可以安装在楼宇里合适的位置,方便相关人员维护。
请参图7,本申请实施方式的一种中央烟机***100包括上述实施方式的控制装置200。
本申请实施方式提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序在被处理器执行时,实现上述任一实施方式的控制方法的步骤。
需要说明的是,上述实施方式的控制方法和有益效果的解释说明,也适应用于本申请实施方式的控制装置200、中央烟机***100和计算机可读存储介质,为避免冗余,在此不作详细展开。
在一个实施方式中,计算机程序在被处理器28执行时,实现的控制方法的步骤包括:
步骤101,步骤获取所有已开启的支路油烟机12的型号信息和档位信息,支路油烟机12连接公共排烟管道14;
步骤103,根据支路油烟机12的型号信息,通过本地数据库和/或服务器24获取所有已开启的支路油烟机12的物理参数;
步骤105,根据支路油烟机12的物理参数调整控制算法中相应的气动力参数;
步骤107,根据支路油烟机12的型号信息和档位信息计算支路油烟机12的需求风量;
步骤109,利用控制算法计算满足需求风量所需的转速并发下转速至支路油烟机12以使支路油烟机12根据转速运行。
上述控制装置200、中央烟机***100和计算机可读存储介质,可以通过本地数据库和/或服务器24获取所有已开启的支路油烟机12的物理参数,并相应调整控制算法获得所需的转速,使得即使用户更换了油烟机型号,控制方法能够较为准确地控制支路油烟机12运行,提升了用户体验。
可以理解,计算机程序包括计算机程序代码。计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读存储介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、以及软件分发介质等。处理器可以是中央处理器,还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具 体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一者实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施方式,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施方式进行多种变化、组合、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (16)

  1. 一种中央烟机***的控制方法,其特征在于,包括:
    获取所有已开启的支路油烟机的型号信息和档位信息,所述支路油烟机连接公共排烟管道;
    根据所述支路油烟机的型号信息,通过本地数据库和/或服务器获取所有已开启的支路油烟机的物理参数;
    根据所述支路油烟机的物理参数调整控制算法中的气动力参数;
    根据所述支路油烟机的型号信息和所述档位信息计算所述支路油烟机的需求风量;
    利用所述控制算法计算满足所述需求风量所需的转速并发下所述转速至所述支路油烟机以使所述支路油烟机根据所述转速运行。
  2. 根据权利要求1所述的控制方法,其特征在于,根据所述支路油烟机的型号信息,通过本地数据库和/或服务器获取所有已开启的支路油烟机的物理参数包括:
    利用所述本地数据库已存储的油烟机型号对所述支路油烟机的型号进行匹配;
    在存在匹配成功的型号的情况下,根据所述本地数据库确定所述支路油烟机的物理参数;
    在存在匹配失败的型号的情况下,发送匹配失败的型号至所述服务器,并接收所述服务器返回的物理参数。
  3. 根据权利要求1或2所述的控制方法,其特征在于,根据所述支路油烟机的型号信息,通过本地数据库和/或服务器获取所有已开启的支路油烟机的物理参数包括:
    将所有已开启的支路油烟机的型号发送至所述服务器,并接收所述服务器返回的所有已开启的支路油烟机的物理参数。
  4. 根据权利要求3所述的控制方法,其特征在于,所述控制方法包括:
    利用所述服务器返回的物理参数更新所述本地数据库已存储的油烟机物理参数。
  5. 根据权利要求1-4任一项所述的控制方法,其特征在于,所述控制方法还包括:
    利用所述控制算法计算顶端风机所需的转速并发下所述转速至所述顶端风机以使所述顶端风机根据所述转速运行,所述顶端风机连通所述公共排烟管道的出口。
  6. 根据权利要求5所述的控制方法,其特征在于,利用所述控制算法计算满足所述需求风量所需的转速包括:
    利用所述控制算法计算公共排烟管道的各支路出口下游的公共排烟管道总压力、所述支路油烟机所在层的三通合流损失和支路波纹管损失;
    根据所述各支路出口下游的公共排烟管道总压力、所述支路油烟机所在层的三通合流损失和所述支路波纹管损失计算第m层支路油烟机所需总压升;
    在计算所得的各层支路油烟机所需总压升中确定总压升最小值所在层以及所在层的支路油烟机需求风量,并在预设的油烟机气动特性关系中确定满足所述需求风量所需的转速并将所述转速设定为总压升最小值所在层的支路油烟机的转速。
  7. 根据权利要求6所述的控制方法,其特征在于,在预设的油烟机气动特性关系中确定满足所述需求风量所需的转速为最低转速。
  8. 根据权利要求6所述的控制方法,其特征在于,所述各支路出口下游的公共排烟管道总压力包括顶层支路出口下游总压力和除顶层外第m层支路出口下游总压力,
    利用所述控制算法计算公共排烟管道的各支路出口下游的公共排烟管道总压力包括:
    根据顶端风机入口处的总压、顶层支路出口下游到顶端风机入口的沿程损失计算所述顶层支路出口下游总压力;
    根据第m+1层支路出口下游总压力、公共排烟管道中第m层支路出口下游到第m+1层支路出口上游的沿程损失、第m+1层的主流直流损失,计算得到所述第m层支路出口下游总压力。
  9. 根据权利要求6所述的控制方法,其特征在于,所述第m层支路油烟机所需总压升由所述第m层支路出口下游的公共排烟管道总压力减去第m层的三通合流损失与所述支路波纹管损失求得。
  10. 根据权利要求6所述的控制方法,其特征在于,所述控制方法包括:
    根据总压升最小值所在层的支路油烟机的转速和需求风量,计算总压升最小值所在层的支路油烟机 出口真实总压升,及***压力修正值;
    根据所述***压力修正值,修正除总压升最小值所在层外各层支路油烟机所需总压升与所述顶端风机所需静压升;
    根据修正后得到的各层支路油烟机所需总压升与各层支路油烟机的需求风量计算各层支路油烟机的转速,及利用修正后得到的顶端风机的所需静压升与顶端风机风量计算所述顶端风机的转速。
  11. 根据权利要求1-10任一项所述的控制方法,其特征在于,所述物理参数包括油烟机总压升与转速以及与风量的第一关系、油烟机需求风量与档位的第二关系、波纹管阻力系数与风量的第三关系、顶层支路出口距顶端风机入口之间的第一距离、第m层支路出口与第m+1层支路出口之间的第二距离,所述第一关系、所述第二关系、所述第三关系、所述第一距离和所述第二距离为与所述支路油烟机型号相关的物理参数。
  12. 根据权利要求1-11任一项所述的控制方法,其特征在于,所述控制方法包括:
    在所述支路油烟机开启后,控制电控阀联动开启,所述电控阀连接所述支路油烟机和所述公共排烟管道。
  13. 根据权利要求1-12任一项所述的控制方法,其特征在于,所述控制方法包括:
    获取所述支路油烟机的安装位置信息;
    根据所述安装位置信息调整所述控制算法中与所述支路油烟机安装位置相关的参数。
  14. 一种中央烟机***的控制装置,其特征在于,包括:
    处理器;和
    存储器,所述存储器存储有计算机程序,所述计算机程序在被所述处理器执行时实现权利要求1-13任一项所述的控制方法的步骤。
  15. 一种中央烟机***,其特征在于,包括权利要求14所述的控制装置。
  16. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序在被处理器执行时,实现权利要求1-13任一项所述的控制方法的步骤。
PCT/CN2023/102742 2022-11-30 2023-06-27 中央烟机***的控制方法、控制装置、***和存储介质 WO2024113801A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211527721.9A CN115789731A (zh) 2022-11-30 2022-11-30 中央烟机***的控制方法、控制装置、***和存储介质
CN202211527721.9 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024113801A1 true WO2024113801A1 (zh) 2024-06-06

Family

ID=85444350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102742 WO2024113801A1 (zh) 2022-11-30 2023-06-27 中央烟机***的控制方法、控制装置、***和存储介质

Country Status (2)

Country Link
CN (1) CN115789731A (zh)
WO (1) WO2024113801A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115789731A (zh) * 2022-11-30 2023-03-14 广东美的白色家电技术创新中心有限公司 中央烟机***的控制方法、控制装置、***和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186092A (zh) * 2019-05-30 2019-08-30 杭州老板电器股份有限公司 集中排烟***的风量控制装置、方法及集中排烟***
CN110375365A (zh) * 2019-07-24 2019-10-25 宁波方太厨具有限公司 一种楼宇智能排烟***及其控制方法
CN113464991A (zh) * 2020-03-30 2021-10-01 宁波方太厨具有限公司 楼宇集中式排烟***中室内吸油烟机目标风量的预设方法
KR102360475B1 (ko) * 2021-04-22 2022-02-09 주식회사 에어젠 음식점 설비용 예비덕트 장치
CN114183785A (zh) * 2021-10-27 2022-03-15 宁波方太厨具有限公司 一种兼容式楼宇集中式排烟***的运行控制方法
CN216772239U (zh) * 2022-02-22 2022-06-17 杭州老板电器股份有限公司 终端设备的检测装置和中央吸油烟机的控制***
CN114992688A (zh) * 2022-06-17 2022-09-02 杭州老板电器股份有限公司 中央吸油烟机***的控制方法、装置和电子设备
CN115789731A (zh) * 2022-11-30 2023-03-14 广东美的白色家电技术创新中心有限公司 中央烟机***的控制方法、控制装置、***和存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110186092A (zh) * 2019-05-30 2019-08-30 杭州老板电器股份有限公司 集中排烟***的风量控制装置、方法及集中排烟***
CN110375365A (zh) * 2019-07-24 2019-10-25 宁波方太厨具有限公司 一种楼宇智能排烟***及其控制方法
CN113464991A (zh) * 2020-03-30 2021-10-01 宁波方太厨具有限公司 楼宇集中式排烟***中室内吸油烟机目标风量的预设方法
KR102360475B1 (ko) * 2021-04-22 2022-02-09 주식회사 에어젠 음식점 설비용 예비덕트 장치
CN114183785A (zh) * 2021-10-27 2022-03-15 宁波方太厨具有限公司 一种兼容式楼宇集中式排烟***的运行控制方法
CN216772239U (zh) * 2022-02-22 2022-06-17 杭州老板电器股份有限公司 终端设备的检测装置和中央吸油烟机的控制***
CN114992688A (zh) * 2022-06-17 2022-09-02 杭州老板电器股份有限公司 中央吸油烟机***的控制方法、装置和电子设备
CN115789731A (zh) * 2022-11-30 2023-03-14 广东美的白色家电技术创新中心有限公司 中央烟机***的控制方法、控制装置、***和存储介质

Also Published As

Publication number Publication date
CN115789731A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2024113801A1 (zh) 中央烟机***的控制方法、控制装置、***和存储介质
CN110186092B (zh) 集中排烟***的风量控制装置、方法及集中排烟***
WO2020107851A1 (zh) 基于既有大型公共建筑空调***的低成本调适方法及调适***
US9350562B2 (en) Energy management control system and method based on cloud computing
CN101782260A (zh) 一种空调水***优化控制方法及装置
CN102953745B (zh) 一种高效节能的矿井多级机站通风监控技术***
JP5203768B2 (ja) 換気システムおよび換気システムの制御方法
CN201255459Y (zh) 气候补偿器
CN103452824B (zh) 基于流量-功率曲线的最小功率算法的风机水泵节能***
CN114046259B (zh) 一种基于双神经网络模型的离心泵变频控制方法
CN105333474A (zh) 共用排油烟立管***及其控制方法
CN104481893B (zh) 一种水泵优化节能控制方法
CN209295225U (zh) 一种厨房烟道***
CN111207423A (zh) 一种高层楼宇烟道止回阀的预设角度控制方法
CN102840182B (zh) 火电厂轴流风机低负荷防振方法及旁路风道控制回路
CN115657486B (zh) 变海拔条件下燃料电池空气供给***oer预测控制方法
CN113983675B (zh) 一种旁通压差变频调节空调冷冻水***及其水力平衡方法
CN107192098A (zh) 医院通风调控方法及调控***
CN111197777B (zh) 一种高层楼宇中央烟道***的流量分配控制方法
CN111207424A (zh) 一种吸油烟机的流量自适应电动阀的控制方法
CN115081141A (zh) 一种优化输水工程停泵水锤防护参数的方法
CN111207421A (zh) 一种高层楼宇烟道止回阀的预设角度控制方法
CN202732432U (zh) 用于火电厂轴流风机低负荷防振的旁路风道控制回路
CN101290155A (zh) 一种用于变风量末端装置的温度控制方法
CN115751414A (zh) 中央吸油烟机***及其控制方法、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23895965

Country of ref document: EP

Kind code of ref document: A1