WO2024113765A1 - 探测器的保护***、方法及计算机可读介质 - Google Patents

探测器的保护***、方法及计算机可读介质 Download PDF

Info

Publication number
WO2024113765A1
WO2024113765A1 PCT/CN2023/100536 CN2023100536W WO2024113765A1 WO 2024113765 A1 WO2024113765 A1 WO 2024113765A1 CN 2023100536 W CN2023100536 W CN 2023100536W WO 2024113765 A1 WO2024113765 A1 WO 2024113765A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
module
control module
branch
flow
Prior art date
Application number
PCT/CN2023/100536
Other languages
English (en)
French (fr)
Inventor
杨伟
龚伟婷
倪倚天
唐立
Original Assignee
上海新漫传感科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新漫传感科技有限公司 filed Critical 上海新漫传感科技有限公司
Publication of WO2024113765A1 publication Critical patent/WO2024113765A1/zh

Links

Definitions

  • the present application relates to the field of information technology, and in particular to a detector protection system, method and computer-readable medium.
  • the gas proportional counter is the "detector" in this article. It is actually a transducer. When used in X-rays, it converts the energy of the radiated X-ray photons into a pulse voltage with a certain amplitude through the counter tube, then amplifies it, and finally records the intensity of the electric pulse. In X-ray fluorescence analysis and electron probe analysis, the recorded electric pulses are used to perform qualitative and quantitative analysis of elements. The detector is also widely used in atomic energy and X-ray structure analysis.
  • detectors include Geiger-Mueller counters, etc.
  • Detectors are devices for observing and recording particles, and are indispensable equipment in nuclear physics and particle physics experimental research. Its usual structure is to fill a rarefied gas (usually a rare gas doped with halogen, such as helium, neon, argon, etc.) into a metal tube sealed at both ends with insulating materials, and a metal wire electrode is installed along the axis of the tube, and a voltage slightly lower than the breakdown voltage of the gas in the tube is applied between the metal tube wall and the metal wire electrode.
  • halogen such as helium, neon, argon, etc.
  • an ⁇ / ⁇ sample counter can generally be used to simultaneously measure the radiation of ⁇ particles and ⁇ particles, and automatically record the measurement results.
  • One purpose of the present application is to provide a detector protection system, at least to solve related technical problems such as the detector being easily damaged, the equipment being insecure, and the maintenance cost being high.
  • some embodiments of the present application provide a detector protection system, the system comprising: an air pressure stabilizing device, a mass flow control module, a switch control module, a detector, a first flow measurement module, and a gas one-way control module; wherein the number of the switch control modules, the detector, the first flow measurement module, and the gas one-way control module is N, and N is an integer greater than 1; the output end of the air pressure stabilizing device is connected to the input end of the mass control module, and each of the switch control module, the detector, the first flow measurement module, and the gas one-way control module are connected in sequence to form a gas branch, and the gas branches are connected in parallel, and the input end of each gas branch is respectively connected to the output end of the mass control module, and the output end of each gas branch is configured to output gas; the air pressure stabilizing device The device is configured to control the air pressure of the intake gas until the air pressure is stable; the quality control module is used to deliver the gas at a preset flow rate
  • Some embodiments of the present application also provide a detector protection method, which is applied in the above
  • the method includes: controlling the air pressure of the intake gas until the air pressure is stable; when the air pressure is stable, delivering the gas at a preset flow rate so that the gas is delivered to each gas branch; measuring the gas flow in each gas branch respectively to detect whether there is an abnormality in the gas flow, and controlling the gas in each gas branch to output unidirectionally; wherein, when it is detected that the gas flow is abnormal, the size of the preset flow rate is automatically adjusted, and the gas branch corresponding to the abnormal gas flow is controlled to be disconnected.
  • Some embodiments of the present application further provide a computer-readable medium having computer program instructions stored thereon, wherein the computer program instructions can be executed by a processor to implement the above method.
  • the air pressure of the intake gas is first controlled by an air pressure stabilizing device until the air pressure is stable. Then, when the air pressure is stable, the quality control module delivers gas at a preset flow rate so that the gas is delivered to each gas branch. The on and off of the corresponding gas branch is controlled by the switch control module. The gas flow in the corresponding gas branch after the reaction between the detector and the gas is measured by the first flow measurement module, so that the system can detect whether there is an abnormality in the gas flow. Thereafter, the gas in the corresponding gas branch is controlled to be output unidirectionally by the gas one-way control module.
  • the system controls the quality control module to adjust the size of the preset flow rate, and controls the switch control module of the gas branch corresponding to the abnormal gas flow to disconnect the corresponding gas branch. Because in the embodiment of the present application, through the pressure stabilization of the air pressure stabilization device, the gas flow control of the quality control module, and the guarantee of the gas one-way control module, the coordinated implementation of each link can improve the stability of the equipment; when the system detects that the gas flow is abnormal, the system controls the quality control module to adjust the size of the preset flow, so that once one or more detectors are damaged, the system gas pressure can be adjusted in time to keep the gas flow of other detectors unchanged, and the switch control module of the gas branch corresponding to the abnormal gas flow is also controlled to disconnect the corresponding gas branch. Therefore, the ionization detector does not need to withstand a large pressure gas flow, so that other detectors are protected, which is beneficial to reduce the replacement and maintenance costs of the detectors.
  • FIG1 is a schematic diagram of the structural connection of a detector protection system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of circuit connections of a detector protection system in an application example provided by an embodiment of the present application
  • FIG3 is a circuit connection diagram of a detector protection system in another application example provided in an embodiment of the present application.
  • FIG4 is a circuit connection diagram of a detector protection system in another application example provided in an embodiment of the present application.
  • FIG5 is a circuit connection diagram of a detector protection system in another application example provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of circuit connections of a detector protection system in another application example provided in an embodiment of the present application.
  • Pressure reducing valve It is a valve that reduces the inlet pressure to a certain required outlet pressure through regulation, and automatically maintains a stable outlet pressure by relying on the energy of the medium itself.
  • the pressure reducing valve is a throttling element with variable local resistance, that is, by changing the throttling area, the flow rate and the kinetic energy of the fluid are changed, resulting in different pressure losses, thereby achieving the purpose of reducing pressure. Then, by relying on the regulation of the control and regulation system, the fluctuation of the pressure behind the valve is balanced with the spring force, so that the pressure behind the valve remains constant within a certain error range.
  • Two-position two-way solenoid valve a mechanical principle that combines direct acting and pilot type.
  • Solenoid valves are divided into two categories based on principle: 1) Direct-acting solenoid valve: Principle: When power is on, the electromagnetic coil generates electromagnetic force to lift the closing part from the valve seat, and the valve opens; when power is off, the electromagnetic force disappears, the spring presses the closing part onto the valve seat, and the valve closes.
  • It can work normally under vacuum, negative pressure, and zero pressure, but the diameter is generally not more than 25mm.
  • Step-by-step direct-acting solenoid valve Principle: It is a direct-acting and The principle of pilot combination is that when there is no pressure difference between the inlet and the outlet, after power is turned on, the electromagnetic force directly lifts the pilot small valve and the main valve closing member upward in sequence, and the valve opens. When the inlet and outlet reach the starting pressure difference, after power is turned on, the electromagnetic force pilots the small valve, the pressure in the lower chamber of the main valve rises, and the pressure in the upper chamber drops, thereby using the pressure difference to push the main valve upward; when power is off, the pilot valve uses the spring force or the medium pressure to push the closing member downward to close the valve.
  • the above two types of two-position two-way solenoid valves are both applicable to the embodiments of the present application.
  • Mass flow controller the full name in English: Mass Flow Controller, referred to as "MFC" is an instrument used to accurately measure and control the mass flow of gas or liquid. It is usually composed of flow sensor, flow control valve, amplification control circuit and diverter control channel. Its working power supply and flow display and setting operations are provided by the matching flow display power supply.
  • a one-way valve also known as a check valve or non-return valve, is a device that allows gas to flow in only one direction but not backflow.
  • the rotor flowmeter also known as the variable flow area constant differential pressure flowmeter or float flowmeter, measures the fluid flow based on the throttling principle, but it changes the flow area of the fluid to keep the differential pressure above and below the rotor constant.
  • a protection system for the detector In order to improve the deficiencies in the related art, a protection system for the detector is proposed to solve the technical problem that abnormalities in the gas cannot be detected in time, and the technical problem that the gas can easily penetrate the detector over time, thereby causing damage to the detector and resulting in low stability of the equipment.
  • the protection system for the detector implemented in the present application can not only improve the stability of equipment such as the ⁇ / ⁇ sample counter, but also reduce maintenance costs and other expenses caused by damage to the detector.
  • the embodiment of the present application provides a detector protection system, the system comprising: a gas pressure stabilizing device 11, a mass flow control module, a switch control module 13, a detector 14, a first flow measurement module 15, and a gas one-way control module 16.
  • the number of the switch control module 13, the detector 14, the first flow measurement module 15, and the gas one-way control module 16 is N, and N is an integer greater than 1.
  • the output end of the gas pressure stabilizing device 11 is connected to the input end of the quality control module, and each of the switch control modules 13, the detector 14, the first flow measurement module 15 and the gas one-way control module 16 are sequentially connected to form a gas branch, and each gas branch is connected in parallel.
  • the input end of each gas branch is respectively connected to the output end of the quality control module, and the output end of each gas branch is configured to output gas;
  • the air pressure stabilizing device 11 is configured to control the air pressure of the intake gas until the air pressure is stable;
  • the quality control module is configured to deliver gas at a preset flow rate when the gas pressure is stable, so that the gas is delivered to each gas branch;
  • the switch control module 13 is configured to control the on and off of the corresponding gas branch
  • the first flow measurement module 15 is configured to measure the gas flow in the corresponding gas branch after the detector 14 reacts with the gas, so that the system can detect whether there is an abnormality in the gas flow;
  • the gas one-way control module 16 is configured to control the gas of the corresponding gas branch to be output one-way;
  • the system When the system detects that the gas flow is abnormal, the system controls the quality control module to adjust the preset flow, and controls the switch control module 13 of the gas branch corresponding to the abnormal gas flow to disconnect the corresponding gas branch.
  • the system controls the quality control module to increase the preset flow rate; if the number of detectors decreases (for example, if they are damaged), the system controls the quality control module to reduce the preset flow rate.
  • the input end of the air pressure stabilizing device 11 is connected to a gas container such as a mixed gas bottle.
  • the gas container is a P10 gas bottle.
  • the mass control module 12 is specifically a mass flow controller.
  • the switch control module 13 is specifically a two-position two-way solenoid valve.
  • the first flow measurement module 15 is specifically a flow sensor.
  • the gas one-way control module 16 is specifically a one-way valve.
  • the number of the gas branches is 4, 8, 10, or 12.
  • the number of the gas branches can be determined according to actual needs, and the embodiments of the present application do not specifically limit this.
  • the gas pressure stabilizing device 11 of the system receives the gas pressure of the intake gas discharged from the gas container until the gas pressure is stable, and then delivers the gas according to the preset flow rate through the quality control module 12. At this time, the N switch control modules 13 are automatically opened, and the gas pressure stabilizing device 11 of the system controls the gas pressure of the intake gas entering the gas branch to the gas pressure.
  • the N first flow measurement modules 15 respectively connected to the N detectors 14 will report the measured gas flow in the corresponding gas branch after the reaction between the detector 14 and the gas to the system, and then the gas one-way control module 16 will control the gas of the corresponding gas branch to output it one-way, so as to prevent external gas from entering the gas branch and then mixing the gas in the gas branch with the external gas, resulting in inaccurate measurement results.
  • the system controls the quality control module to adjust the size of the preset flow, and controls the switch control module 13 of the gas branch corresponding to the abnormal gas flow to disconnect the corresponding gas branch.
  • the switch control module 13, detector 14, first flow measurement module 15, quality control module 12, and gas one-way control module 16 corresponding to each gas branch are respectively: switch control module A to switch control module D, detector A to detector D, first flow measurement module A to first flow measurement module D, quality control module A to quality control module D, and gas one-way control module A to gas one-way control module D. If there is a gas leak or the leakage membrane of detector A is broken, the first flow measurement module A of gas branch A can detect the gas flow data and report the gas flow data to the system.
  • the system After the system analyzes the reported data and determines that there is an abnormality, it controls and adjusts the quality control module A to automatically adjust the size of the preset flow rate, such as automatically reducing the preset flow rate to 180 ml/min, and timely protects the gas flow of gas branch B to gas branch D within the normal range, thereby avoiding damage to detector B to detector D due to excessive gas pressure.
  • the system correspondingly turns off the switch control module A, which not only shuts off the gas branch with abnormality, but also avoids the waste of gas used in the system. So far, when one or some gas branches in the system are abnormal, the detectors 14 of other gas branches can be protected, so that other gas branches can work normally without affecting the use of users.
  • the protection system of the detector provided in the embodiment of the present application first controls the air pressure of the intake gas to be stable through the air pressure stabilizing device, and then when the air pressure is stable, the quality control module delivers the gas according to the preset flow rate so that the gas is delivered to each gas branch, and the on and off of the corresponding gas branch is controlled by the switch control module, and the first flow measurement module is used to control the on and off of the corresponding gas branch.
  • the gas flow in the corresponding gas branch after the detector and the gas react is measured so that the system can detect whether there is any abnormality in the gas flow.
  • the gas in the corresponding gas branch is then controlled to be output unidirectionally through the gas one-way control module.
  • the system controls the quality control module to adjust the size of the preset flow, and controls the switch control module of the gas branch corresponding to the abnormal gas flow to disconnect the corresponding gas branch.
  • the coordinated implementation of each link can improve the stability of the equipment; when the system detects that the gas flow is abnormal, the system controls the quality control module to adjust the size of the preset flow, so that once one or more detectors are damaged, the system gas pressure can be adjusted in time to keep the gas flow of other detectors unchanged, and the switch control module of the gas branch corresponding to the abnormal gas flow is also controlled to disconnect the corresponding gas branch. Therefore, the ionization detector does not need to withstand a large pressure gas flow, so that other detectors are protected, which is beneficial to reduce the replacement and maintenance costs of the detectors.
  • the number of the quality control modules is N; each of the quality control modules is connected to each of the switch control modules 13 in a one-to-one correspondence.
  • the number of quality control modules is the same as the number of gas branches, and each quality control module controls the gas flow of each gas branch.
  • the number of gas branches is 4, namely gas branch A to gas branch D, and the preset flow rate is 240ml/min
  • the normal flow rate of each gas branch is 60ml/min
  • the quality control modules 12, switch control modules 13, detectors 14, first flow measurement modules 15, and gas one-way control modules 16 corresponding to each gas branch are respectively: quality control module A to quality control module D, switch control module A to switch control module D, detectors A to detectors D, first flow measurement modules A to first flow measurement modules D, quality control modules A to quality control modules D, gas one-way control modules A to gas one-way control modules D, here, the gas flow rate controlled by each quality control module is 60ml/min.
  • each gas branch corresponds to The quality control module 12, the switch control module 13, the detector 14, the first flow measurement module 15, and the gas one-way control module 16 are respectively: quality control module A to quality control module D, switch control module A to switch control module D, detector A to detector D, first flow measurement module A to first flow measurement module D, quality control module A to quality control module D, and gas one-way control module A to gas one-way control module D.
  • the preset flow rate is 240 ml/min
  • the gas flow rate controlled by each quality control module is 60 ml/min.
  • the air pressure stabilizing device 11 may include a first decompression module, a 1-2 gas separation module, an exhaust switch, and a second decompression module.
  • the output end of the first decompression module is connected to the input end of the 1-2 gas separation module, and the output end of the 1-2 gas separation module is connected to a parallel branch consisting of the exhaust switch and the second decompression module.
  • the first decompression module is configured to reduce the pressure of the intake gas to a first pressure value
  • the 1-2 gas separation module is configured to divide the gas having the first pressure value into two gas paths, wherein one gas path is used as filling gas to discharge the remaining gas through an exhaust switch in an open state, and after the remaining gas is exhausted to a stable gas pressure, the exhaust switch is automatically closed to allow the other gas path to be input into the second pressure reducing module;
  • the second pressure reducing module is configured to reduce the input air pressure to a second pressure value, and the second pressure value is smaller than the first pressure value.
  • the first pressure reducing module is specifically a secondary pressure reducing valve.
  • the exhaust switch is specifically a two-position two-way solenoid valve.
  • the second pressure reducing module is specifically a three-stage pressure reducing valve.
  • the first pressure value is about 0.2 MPa
  • the second pressure value is about 0.05 MPa
  • the first decompression module receives the intake gas discharged from the gas container, and decompresses the air pressure of the intake gas to a first pressure value, and then the system automatically turns on the exhaust switch, and the 1-2 gas separation module divides the gas with the pressure of the first pressure value into two gas paths, one of which is used as a filling gas to discharge the existing residual gas in the system through the exhaust switch until the residual gas is exhausted to the pressure
  • the system automatically turns on the second decompression module.
  • the second decompression module decompresses the input air pressure to the second pressure value
  • the gas with the second pressure value is input to the quality control module 12.
  • the quality control module 12 delivers gas according to the preset flow rate. At this time, the system automatically turns on N switch control modules 13 to first use the delivered gas as filling gas to discharge the existing residual gas in the system until the air pressure of the system is stable. After the air pressure of the system is stable, the system automatically turns off the exhaust switch. At this point, the air pressure stabilization device 11 realizes the control of the air pressure stabilization of the air pressure of the system intake gas.
  • FIG3 shows a circuit connection diagram of a detector protection system in an application example.
  • the secondary pressure reducing valve receives the intake gas discharged from the gas container, and reduces the pressure of the intake gas to a first pressure value, and then the system automatically opens the two-position two-way solenoid valve, and the 1-2 gas separation module divides the gas with the pressure of the first pressure value into two gas paths, one of which is used as a filling gas to discharge the existing residual gas in the system through the two-position two-way solenoid valve, until the residual gas is exhausted to the stable pressure, the system automatically opens the three-stage pressure reducing valve, and the three-stage pressure reducing valve reduces the input pressure to a second pressure value, and then inputs the gas with the pressure of the second pressure value into the mass flow controller, and the mass flow controller delivers gas according to a preset flow rate, and at this time, the system automatically opens the 4-way two-position two-way solenoid valve, and the 1-2 gas separation module divides the gas with the pressure of the first pressure value into
  • the number of the quality control module is 1; the output end of the quality control module is connected to the input end of each of the gas branches through a gas separation module.
  • the number of quality control modules is 1. Assuming that the number of gas branches is 4, the output end of the quality control module divides the gas flow output by the quality control module into 4 parts by the gas splitting module, and then connects the gas splitting module to the input end of each gas branch. That is, assuming that the preset flow rate is 240ml/min, the gas splitting module The block evenly divides the preset flow of 240 ml/min into four flows of 60 ml/min, and outputs the 60 ml/min flows to the four gas branches respectively.
  • Figure 4 shows a schematic diagram of the circuit connection of the protection system of a detector in an application example.
  • the number of gas branches is 4, and the output end of the mass flow controller divides the gas flow into 4 parts through the 1-4 gas splitting module, and then connects the 1-4 gas splitting module to the input end of each gas branch.
  • the 1-4 gas splitting module divides the preset flow rate of 240ml/min into 4 parts of 60ml/min, and outputs the 60ml/min flow rate to the 4 gas branches respectively.
  • the embodiment of the present application is a system embodiment parallel to the embodiment corresponding to Figure 2. Since the cost of the quality control module is relatively high, in the embodiment of the present application, the number of quality control modules is set to 1 and the gas flow is equally divided and transmitted to each branch with the assistance of the gas separation module, which is beneficial to reduce costs.
  • the system is specifically configured to issue a prompt message indicating that the detector 14 of the gas branch corresponding to the gas flow is at risk of damage when an abnormality in the gas flow is detected.
  • the system sends out a prompt message that the detector 14 of the gas branch corresponding to the gas flow is at risk of damage, which helps the relevant users to immediately discover the possible damage risk and then deal with the damage risk in a timely manner, such as risk investigation, repair, and replacement of the detector 14.
  • the system is specifically configured to control the quality control module to adjust the size of the preset flow rate according to the preset flow rate and the number of the gas branches with abnormalities when an abnormality in the gas flow rate is detected.
  • the quality control module can adjust the preset flow rate to 480 ml/min; if the gas flow rates of two branches are abnormal, the quality control module can adjust the preset flow rate to 420 ml/min.
  • the system controls the quality control module to adjust the size of the preset flow rate according to the preset flow rate and the number of gas branches with abnormalities, so that the gas pressure of other gas branches except those with abnormalities can be maintained at a normal level without affecting the normal use of the user.
  • the system further includes: a gas combining module and a second flow measurement module; the output end of each of the gas branches is respectively connected to the input end of the gas combining module, and the output end of the gas combining module is connected to the input end of the second flow measurement module.
  • the gas combining module is configured to gather the gases outputted from each of the gas branches;
  • the second flow measurement module is configured to measure the flow of the gas output from each of the gas branches to obtain a measurement result so that the system can display the measurement result.
  • the second flow measurement module is specifically a rotor flowmeter.
  • the normal flow rate of each gas branch is 60ml/min. If the system operates normally, there is no leakage or the detector A leaks but the membrane is not broken, then the flow rate of the gas output from each gas branch gathered by the gas combination module should be 240ml/min, and the measurement result of 240ml/min should be displayed. Otherwise, if the flow rate of the gas output from each gas branch gathered by the gas combination module is 180ml/min, it means that one of the gas branches is abnormal. By displaying the 180ml/min, it is convenient for relevant staff to know the current operating status of the system.
  • the measurement results are specifically displayed on a display screen of a device on which the system operates.
  • FIG5 shows a circuit connection diagram of a detector protection system in an application example.
  • the number of gas branches is 4.
  • the preset flow rate is 240 ml/min
  • the normal flow rate of each gas branch is 60 ml/min. If the system operates normally, there is no leakage or the detector A leaks without membrane rupture, then the 1-4 gas module will be The flow rate of the gas output from each gas branch is gathered, and the measurement result measured by the rotor flowmeter should be 240ml/min, and the measurement result of 240ml/min is displayed.
  • the 1-4 gas combination module gathers the flow rate of the gas output from each gas branch, and the measurement result measured by the rotor flowmeter is 180ml/min, it means that one of the gas branches is abnormal. By displaying the 180ml/min, it is convenient for relevant staff to know the current operating status of the system.
  • the system displays the measurement results, which makes it convenient for relevant staff to intuitively understand the current operating status of the system and improve the work efficiency of relevant staff.
  • the system may further include a gas filtering module, and the gas filtering module is configured to filter the gas to be discharged before discharging it.
  • Fig. 6 shows a circuit connection diagram of a detector protection system in an application example.
  • the gas discharged from the two-position two-way solenoid valve representing the exhaust module can be filtered before being discharged, and the gas output by the rotor flowmeter can be filtered before being discharged, which is beneficial to environmental protection.
  • the embodiment of the present application also provides a detector protection method, which is applied to the system as described in any of the above embodiments, and the method includes: controlling the air pressure of the intake gas to be stable; when the air pressure is stable, delivering the gas at a preset flow rate so that the gas is delivered to each gas branch; measuring the gas flow rate in each gas branch respectively to detect whether there is an abnormality in the gas flow rate, and controlling the gas in each gas branch to output unidirectionally.
  • the preset flow rate is automatically adjusted, and the gas branch corresponding to the abnormal gas flow rate is controlled to be disconnected.
  • embodiments of the present application are method embodiments corresponding to the system embodiments.
  • the methods and systems in the embodiments of the present application correspond one to one.
  • the implementation details in any of the above-mentioned system embodiments are also applicable to the embodiments of the present application. To avoid repetition, they will not be repeated here.
  • the methods and/or embodiments in the embodiments of the present application may be implemented as a computer software program.
  • the embodiments of the present disclosure include a computer program product including a computer readable medium.
  • a computer program on a medium, the computer program comprising program codes for executing the method shown in the flowchart.
  • the computer program is executed by a processing unit, the above functions defined in the method of the present application are executed.
  • the computer-readable medium described in the present application may be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two.
  • the computer-readable medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above.
  • Computer-readable storage media may include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above.
  • a computer-readable medium may be any tangible medium containing or storing a program that can be used by or in combination with an instruction execution system, device or device.
  • a computer-readable signal medium may include a data signal propagated in a baseband or as part of a carrier wave, which carries a computer-readable program code. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which may send, propagate, or transmit a program used by or in conjunction with an instruction execution system, device, or device.
  • the program code contained on the computer-readable medium may be transmitted using any suitable medium, including but not limited to: wireless, wire, optical cable, RF, etc., or any suitable combination of the above.
  • Computer program code for performing the operations of the present application may be written in one or more programming languages, or a combination thereof, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional procedural programming languages such as "C" or similar programming languages.
  • the program code may be executed entirely on the user's computer, partially on the user's computer, as a separate software package, partially on the user's computer and partially on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to a server.
  • An external computer eg, connected via the Internet using an Internet Service Provider).
  • each box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function.
  • the functions marked in the box can also occur in a sequence different from that marked in the accompanying drawings. For example, two boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved.
  • each box in the block diagram and/or flow chart, and the combination of the boxes in the block diagram and/or flow chart can be implemented with a dedicated system for hardware that performs a specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
  • the embodiments of the present application further provide a computer-readable medium, which may be included in the device described in the above embodiments; or may exist independently without being assembled into the device.
  • the above computer-readable medium carries one or more computer-readable instructions, which may be executed by a processor to implement the steps of the methods and/or technical solutions of the above multiple embodiments of the present application.
  • the terminal and the equipment of the service network each include one or more processors (CPU), input/output interface, network interface and memory.
  • Memory may include non-permanent storage in a computer-readable medium, in the form of random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and can be implemented by any method or technology to store information.
  • the information can be computer-readable instructions, data structures, program modules or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, read-only compact disk (CD-ROM), digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store readable Information that is accessed by a computing device.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or
  • an embodiment of the present application further provides a computer program, which is stored in a computer device, so that the computer device executes the method for controlling code execution.
  • the present application can be implemented in software and/or a combination of software and hardware, for example, can be implemented using an application specific integrated circuit (ASIC), a general purpose computer or any other similar hardware device.
  • ASIC application specific integrated circuit
  • the software program of the present application can be executed by a processor to implement the above steps or functions.
  • the software program of the present application (including related data structures) can be stored in a computer-readable recording medium, for example, a RAM memory, a magnetic or optical drive or a floppy disk and similar devices.
  • some steps or functions of the present application can be implemented using hardware, for example, as a circuit that cooperates with a processor to perform each step or function.

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Flow Control (AREA)

Abstract

一种探测器的保护***、方法及计算机可读介质,该***先通过气压稳定装置(11)控制进气气体的气压至气压稳定,然后在气压稳定时,质量流量控制模块按照预设流量输送气体,使气体被输送至各气体支路,通过开关控制模块(13)控制对应气体支路的通断,通过第一流量测量模块(15)测量对应气体支路中,经探测器和气体反应后的气体流量,供***检测气体流量是否存在异常,再通过气体单向控制模块(16)控制对应气体支路的气体进行单向输出,当***检测到气体流量存在异常时,***控制质量流量控制模块调整预设流量的大小,并控制存在异常的气体流量所对应的气体支路的开关控制模块(13),以使对应的气体支路断开。

Description

探测器的保护***、方法及计算机可读介质
本申请要求在2022年11月29日提交中国专利局、申请号为202211520579.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及信息技术领域,尤其涉及一种探测器的保护***、方法及计算机可读介质。
背景技术
流气正比计数管即本文中的“探测器”,其实际上是一个换能器。用在X射线方面,就是将辐射的X射线光量子能量通过计数管转换成具有一定幅度的脉冲电压,然后进行放大等,最后将电脉冲强度记录下来。在X射线荧光分析方面与电子探针分析方面,由记录下来的电脉冲,进行元素的定性定量分析。探测器在原子能方面和X射线结构分析方面也有着广泛的应用。
相关技术中,常用的探测器有盖革-米勒计数管等,探测器是观察、记录粒子的装置,核物理和粒子物理实验研究中不可缺少的设备。其通常结构是在一根两端用绝缘物质密闭的金属管内充入稀薄气体(通常是掺加了卤素的稀有气体,如氦、氖、氩等),在沿管的轴线上安装有一根金属丝电极,并在金属管壁和金属丝电极之间加上略低于管内气体击穿电压的电压。这样在通常状态下,管内气体不放电;而当有高速粒子射入管内时,粒子的能量使管内气体电离导电,在丝极与管壁之间产生迅速的气体放电现象,从而输出一个脉冲电流信号。通过适当地选择加在丝极与管壁之间的电压,就可以对被探测粒子的最低能量,从而对其种类加以甄选。在相关技术中,一般可以使用α/β样品计数器同时对α粒子和β粒子进行辐射测量,并自动记录测量结果。
然而,发明人发现相关技术中至少存在如下技术问题:
在相关技术中,当存在气体漏气等情况导致气体压力不稳定或气体压 力过大时,往往不能够及时被发现,长此以往,气体很容易穿透探测器从而造成探测器的损坏,导致设备的稳定性不高;一旦其中的一个或多个探测器发生损坏而***气体压力保持原有状态的情况下,其他探测器由于要分担该发生损坏的探测器的气体流量而需要承受较大的压力,随即其他探测器也会发生损坏,而市面上的一个探测器的价格为2万元不等,较为昂贵,因此若探测器损坏,则由之造成的更换、维护成本等费用较高。
发明内容
本申请的一个目的是提供一种探测器的保护***,至少用以解决探测器容易损坏,设备稳定性不高、、维护费用较高等相关技术问题。
为实现上述目的,本申请的一些实施例提供了一种探测器的保护***,所述***包括:气压稳定装置、质量流量控制模块、开关控制模块、探测器、第一流量测量模块、气体单向控制模块;其中,所述开关控制模块、所述探测器、所述第一流量测量模块和气体单向控制模块的数量均为N个,所述N为大于1的整数;所述气压稳定装置的输出端与所述质量控制模块的输入端连接,每个所述开关控制模块、所述探测器、所述第一流量测量模块和气体单向控制模块依次连接形成气体支路,各气体支路之间并联连接,各气体支路的输入端分别与所述质量控制模块的输出端连接,各所述气体支路的输出端设置为进行气体输出;所述气压稳定装置,设置为控制进气气体的气压至气压稳定;所述质量控制模块,用于在气压稳定时,按照预设流量输送气体,以使所述气体被输送至各气体支路;所述开关控制模块,设置为控制对应气体支路的通断;所述第一流量测量模块,设置为测量对应气体支路中,经所述探测器和所述气体反应后的气体流量,以供所述***检测所述气体流量是否存在异常;所述气体单向控制模块,设置为控制对应气体支路的气体进行单向输出;其中,当所述***检测到所述气体流量存在异常时,所述***控制所述质量控制模块调整所述预设流量的大小,并控制存在异常的所述气体流量所对应的气体支路的开关控制模块,以使所述对应的气体支路断开。
本申请的一些实施例还提供了一种探测器的保护方法,应用在上述所 述的***,所述方法包括:控制进气气体的气压至气压稳定;在气压稳定时,按照预设流量输送气体,以使所述气体被输送至各气体支路;分别测量各气体支路中的气体流量,以检测所述气体流量是否存在异常,以及控制各气体支路的气体进行单向输出;其中,当检测到所述气体流量存在异常时,自动调整所述预设流量的大小,并控制存在异常的所述气体流量所对应的气体支路断开。
本申请的一些实施例还提供了一种计算机可读介质,其上存储有计算机程序指令,所述计算机程序指令可被处理器执行以实现上述的方法。
相较于相关技术,本申请实施例提供的方案中,首先通过气压稳定装置控制进气气体的气压至气压稳定,然后在气压稳定时,质量控制模块按照预设流量输送气体,以使所述气体被输送至各气体支路,通过开关控制模块控制对应气体支路的通断,通过第一流量测量模块测量对应气体支路中,经所述探测器和所述气体反应后的气体流量,以供所述***检测所述气体流量是否存在异常,之后通过气体单向控制模块控制对应气体支路的气体进行单向输出,当所述***检测到所述气体流量存在异常时,所述***控制所述质量控制模块调整所述预设流量的大小,并控制存在异常的所述气体流量所对应的气体支路的开关控制模块,以使所述对应的气体支路断开。由于本申请实施例中,通过气压稳定装置的压力维稳、质量控制模块的气体流量管控、气体单向控制模块的保障,各环节配合实施,可以提升设备的稳定性;当所述***检测到所述气体流量存在异常时,所述***控制所述质量控制模块调整所述预设流量的大小,可以使得一旦其中的一个或多个探测器发生损坏时及时调整***气体压力,使得其他探测器的气体流量保持不变,加之还控制存在异常的所述气体流量所对应的气体支路的开关控制模块,以使所述对应的气体支路断开,因此电离探测器无需承受较大的压力的气体流量,使得其他探测器得到了保护,有利于降低对探测器的更换、维护成本。
附图说明
图1为本申请实施例提供的一种探测器的保护***的结构连接示意图;
图2为本申请实施例提供的一种应用实例中的探测器的保护***的电路连接示意图;
图3为本申请实施例提供的另一种应用实例中的探测器的保护***的电路连接示意图;
图4为本申请实施例提供的另一种应用实例中的探测器的保护***的电路连接示意图;
图5为本申请实施例提供的另一种应用实例中的探测器的保护***的电路连接示意图;
图6为本申请实施例提供的另一种应用实例中的探测器的保护***的电路连接示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中使用以下术语。
减压阀:是通过调节,将进口压力减至某一需要的出口压力,并依靠介质本身的能量,使出口压力自动保持稳定的阀门。从流体力学的观点看,减压阀是一个局部阻力可以变化的节流元件,即通过改变节流面积,使流速及流体的动能改变,造成不同的压力损失,从而达到减压的目的。然后依靠控制与调节***的调节,使阀后压力的波动与弹簧力相平衡,使阀后压力在一定的误差范围内保持恒定。
二位二通电磁阀,一种直动和先导式相结合的机械原理。电磁阀从原理上分为二大类:1)直动式电磁阀:原理:通电时,电磁线圈产生电磁力把关闭件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。2)分步直动式电磁阀:原理:它是一种直动和 先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。其中,上述两类二位二通电磁阀均适用本申请实施例。
质量流量控制器,英文全称:Mass Flow Controller,简称“MFC”,是用来对气体或液体的质量流量进行精密测量和控制的仪器。它通常由流量传感器、流量调节阀、放大控制电路和分流器控制通道等部件组成,它的工作电源及流量显示和设定等操作由与其配套的流量显示电源提供。
单向阀,又称止回阀或逆止阀,是气体只能沿一个方向流通,却无法回流的装置。
转子流量计,又称变流通面积恒差压流量计或浮子流量计,是根据节流原理测量流体流量的,但是它是改变流体的流通面积来保持转子上下的差压恒定。
在相关技术中,发明人并未发现针对探测器的保护***,为了改善相关技术中的不足,提出了一种探测器的保护***,以解决在气体存在异常时不能够及时被发现的技术问题,以及长此以往,气体很容易穿透探测器从而造成探测器的损坏,导致设备的稳定性不高的技术问题,本申请实施中的探测器的保护***,不仅可以提高α/β样品计数器等设备的稳定性,还可以降低因探测器损坏而产生的维护成本等费用。
具体地,如图1所示,本申请实施例提供了一种探测器的保护***,所述***包括:气压稳定装置11、质量流量控制模块、开关控制模块13、探测器14、第一流量测量模块15、气体单向控制模块16。其中,所述开关控制模块13、所述探测器14、所述第一流量测量模块15和气体单向控制模块16的数量均为N个,所述N为大于1的整数。
所述气压稳定装置11的输出端与所述质量控制模块的输入端连接,每个所述开关控制模块13、所述探测器14、所述第一流量测量模块15和气体单向控制模块16依次连接形成气体支路,各气体支路之间并联连接, 各气体支路的输入端分别与所述质量控制模块的输出端连接,各所述气体支路的输出端设置为进行气体输出;
所述气压稳定装置11,设置为控制进气气体的气压至气压稳定;
所述质量控制模块,设置为在气压稳定时,按照预设流量输送气体,以使所述气体被输送至各气体支路;
所述开关控制模块13,设置为控制对应气体支路的通断;
所述第一流量测量模块15,设置为测量对应气体支路中,经所述探测器14和所述气体反应后的气体流量,以供所述***检测所述气体流量是否存在异常;
所述气体单向控制模块16,设置为控制对应气体支路的气体进行单向输出;
其中,当所述***检测到所述气体流量存在异常时,所述***控制所述质量控制模块调整所述预设流量的大小,并控制存在异常的所述气体流量所对应的气体支路的开关控制模块13,以使所述对应的气体支路断开。
需要说明的是,若探测器的数量增加,则所述***控制所述质量控制模块增大所述预设流量;若探测器的数量减少(比如发生损坏),则所述***控制所述质量控制模块减小所述预设流量。
在一些例子中,所述气压稳定装置11的输入端和混合气体瓶等气体容器连接。可选地,所述气体容器为P10气体瓶。
在一些例子中,所述质量控制模块12具体为质量流量控制器。
在一些例子中,所述开关控制模块13具体为二位二通电磁阀。
在一些例子中,所述第一流量测量模块15具体为流量传感器。
在一些例子中,所述气体单向控制模块16具体为单向阀。
在一些例子中,所述气体支路的数量为4个、8个、10个、12个。该气体支路的数量可根据实际需求来确定,本申请实施例对此不作具体限定。
具体地说,在气体容器的阀门开启后,所述***的气压稳定装置11接收从气体容器排出的进气气体的气压至气压稳定,然后通过质量控制模块12按照预设流量输送气体,此时N个开关控制模块13自动开启,所述***的气压稳定装置11控制进入所述气体支路的进气气体的气压至气压 稳定,之后,与N个探测器14分别连接的N个第一流量测量模块15将测量到的对应气体支路中,经所述探测器14和所述气体反应后的气体流量上报所述***,之后,气体单向控制模块16控制对应气体支路的气体进行单向输出,这样可以防止外部气体进入至所述气体支路中进而出现所述气体支路的气体和外部气体混合,导致测量结果不准确的现象。
进一步地,当第一流量测量模块15检测到所述气体流量存在异常时,所述***控制所述质量控制模块调整所述预设流量的大小,并控制存在异常的所述气体流量所对应的气体支路的开关控制模块13,以使所述对应的气体支路断开。
举例而言,假设气体支路的数量为4个,分别为气体支路A~气体支路D,预设流量为240ml/min,则每个气体支路的正常流量则为60ml/min,各气体支路对应的开关控制模块13、探测器14、第一流量测量模块15、质量控制模块12、气体单向控制模块16分别为:开关控制模块A~开关控制模块D、探测器A~探测器D、第一流量测量模块A~第一流量测量模块D、质量控制模块A~质量控制模块D、气体单向控制模块A~气体单向控制模块D。若存在漏气或者探测器A漏气膜破的现象,则气体支路A的第一流量测量模块A可以检测到所述气体流量数据,并将所述气体流量数据上报***,***分析上报数据确定存在异常后,控制调整质量控制模块A自动调整所述预设流量的大小,比如将预设流量自动减少为180ml/min,及时保护气体支路B~气体支路D的气体流量在正常范围,从而避免因探测器B~探测器D受到过大的气体压力而损坏。同时,***对应关闭开关控制模块A,这样不仅可以关断存在异常的气体支路,还可以避免***工作中使用的气体的浪费。至此,当***中的某一或某些气体支路存在异常时,可以保护到其他气体支路的探测器14,使其他气体支路可以正常工作,不影响用户的使用。
不难发现,与相关技术相比,本申请实施例提供的探测器的保护***,首先通过气压稳定装置控制进气气体的气压至气压稳定,然后在气压稳定时,质量控制模块按照预设流量输送气体,以使所述气体被输送至各气体支路,通过开关控制模块控制对应气体支路的通断,通过第一流量测量模块 测量对应气体支路中,经所述探测器和所述气体反应后的气体流量,以供所述***检测所述气体流量是否存在异常,之后通过气体单向控制模块控制对应气体支路的气体进行单向输出,当所述***检测到所述气体流量存在异常时,所述***控制所述质量控制模块调整所述预设流量的大小,并控制存在异常的所述气体流量所对应的气体支路的开关控制模块,以使所述对应的气体支路断开。
由于本申请实施例中,通过气压稳定装置的压力维稳、质量控制模块的气体流量管控、气体单向控制模块的保障,各环节配合实施,可以提升设备的稳定性;当所述***检测到所述气体流量存在异常时,所述***控制所述质量控制模块调整所述预设流量的大小,可以使得一旦其中的一个或多个探测器发生损坏时及时调整***气体压力,使得其他探测器的气体流量保持不变,加之还控制存在异常的所述气体流量所对应的气体支路的开关控制模块,以使所述对应的气体支路断开,因此电离探测器无需承受较大的压力的气体流量,使得其他探测器得到了保护,有利于降低对探测器的更换、维护成本。
在本申请一些实施例中,所述质量控制模块的数量为N个;每个所述质量控制模块和每个所述开关控制模块13一一对应连接。
其中,质量控制模块的数量和气体支路的数量相同,每个质量控制模块控制每个气体支路的气体流量。假设气体支路的数量为4个,分别为气体支路A~气体支路D,预设流量为240ml/min,则每个气体支路的正常流量则为60ml/min,各气体支路对应的质量控制模块12、开关控制模块13、探测器14、第一流量测量模块15、气体单向控制模块16分别为:质量控制模块A~质量控制模块D、开关控制模块A~开关控制模块D、探测器A~探测器D、第一流量测量模块A~第一流量测量模块D、质量控制模块A~质量控制模块D、气体单向控制模块A~气体单向控制模块D,这里,每个质量控制模块控制的气体流量为60ml/min。
可以参见图2所示,图2示出了一种应用实例中的探测器的保护***的电路连接示意图。该例子中气体支路的数量为4个,各气体支路对应的 质量控制模块12、开关控制模块13、探测器14、第一流量测量模块15、气体单向控制模块16分别为:质量控制模块A~质量控制模块D、开关控制模块A~开关控制模块D、探测器A~探测器D、第一流量测量模块A~第一流量测量模块D、质量控制模块A~质量控制模块D、气体单向控制模块A~气体单向控制模块D。假设预设流量为240ml/min,由于气体支路的数量为4个,则每个质量控制模块控制的气体流量为60ml/min。
在本申请一些实施例中,所述气压稳定装置11可以包括第一减压模块、1-2分气模块、排气开关、第二减压模块。所述第一减压模块的输出端与所述1-2分气模块的输入端连接,所述1-2分气模块的输出端与由所述排气开关和所述第二减压模块组成的并联支路连接。
所述第一减压模块,设置为对所述进气气体的气压进行减压至第一压力值;
所述1-2分气模块,设置为将压力为所述第一压力值的气体分为两路气体,其中一路气体作为填充气体通过处于开启状态的排气开关将余气排出,在所述余气排尽至气压稳定后,所述排气开关自动关闭,以使另一路气体输入至所述第二减压模块;
所述第二减压模块,设置为将输入的气压进行减压至第二压力值,所述第二压力值小于所述第一压力值。
在一些例子中,所述第一减压模块具体为二级减压阀。
在一些例子中,所述排气开关具体为二位二通电磁阀。
在一些例子中,所述第二减压模块具体为三级减压阀。
在一些例子中,若气体支路的数量为4,则所述第一压力值0.2兆帕左右,第二压力值为0.05兆帕左右。
具体地说,在人工开启气体容器的阀门并开启所述第一减压模块后,所述第一减压模块接收从气体容器排出的进气气体,对所述进气气体的气压进行减压至第一压力值,然后***自动开启排气开关,所述1-2分气模块将压力为所述第一压力值的气体分为两路气体,其中一路气体作为填充气体将***本来既有的余气通过排气开关排出,直到所述余气排尽至气压 稳定后,所述***自动开启第二减压模块,所述第二减压模块将输入的气压进行减压至第二压力值后,将压力为所述第二压力值的气体输入至质量控制模块12,质量控制模块12按照预设流量输送气体,此时***自动开启N个开关控制模块13先将输送的气体作为填充气体将***本来既有的余气排出直至所述***的气压稳定,在所述***的气压稳定后,***自动关闭所述排气开关。至此,气压稳定装置11实现了对***进气气体的气压进行气压稳定的控制。
可以如图3所示,图3示出了一种应用实例中的探测器的保护***的电路连接示意图。在人工开启气体容器的阀门并开启二级减压阀后,所述二级减压阀接收从气体容器排出的进气气体,对所述进气气体的气压进行减压至第一压力值,然后***自动开启二位二通电磁阀,所述1-2分气模块将压力为所述第一压力值的气体分为两路气体,其中一路气体作为填充气体将***本来既有的余气通过二位二通电磁阀排出,直到所述余气排尽至气压稳定后,所述***自动开启三级减压阀,所述三级减压阀将输入的气压进行减压至第二压力值后,将压力为所述第二压力值的气体输入至质量流量控制器,质量流量控制器按照预设流量输送气体,此时***自动开启4路二位二通电磁阀先将输送的气体作为填充气体将***本来既有的余气排出直至所述***的气压稳定,在所述***的气压稳定后,***自动关闭代表排气开关的二位二通电磁阀。至此,气压稳定装置11实现了对***进气气体的气压进行气压稳定的控制。
本申请实施中,只需要相关工作人员手动开启气体容器和二级减压阀即可,对于其他的部件均为***自动分析控制。
在本申请一些实施例中,所述质量控制模块的数量为1个;所述质量控制模块的输出端通过分气模块和各所述气体支路的输入端连接。
具体地说,在本申请实施例中,质量控制模块的数量为1个。假设气体支路的数量为4个,所述质量控制模块的输出端通过分气模块将所述质量控制模块输出的气体流量平均分为4份,然后通过分气模块和各所述气体支路的输入端连接。也就是说,假设预设流量为240ml/min,则分气模 块将该240ml/min的预设流量平均分为4份60ml/min的流量,并将该60ml/min的流量分别输出至该4个气体支路。
可以如图4所示,图4示出了一种应用实例中的探测器的保护***的电路连接示意图。该例子中,气体支路的数量为4个,所述质量流量控制器的输出端通过1-4分气模块将气体流量平均分为4份,然后通过1-4分气模块和各所述气体支路的输入端连接。也就是说,假设预设流量为240ml/min,则1-4分气模块将该240ml/min的预设流量平均分为4份60ml/min的流量,并将该60ml/min的流量分别输出至该4个气体支路。
其中,需要说明的是,在其他例子中,若气体支路的数量为8个,则可以使用1-8分气模块;若气体支路的数量为12个,则可以使用1-12分气模块,以此类推。
不难发现,本申请实施例为与图2所对应的实施例并列的***实施例,由于质量控制模块的成本较高,本申请实施例中,通过将质量控制模块的数量设置为1个并通过分气模块的辅助将气体流量平分并传输至各支路,有利于降低成本。
在本申请一些实施例中,所述***具体设置为在检测到所述气体流量存在异常时,发出表征所述气体流量所对应的气体支路的探测器14存在损坏风险的提示信息。
具体地说,所述***通过发出表征所述气体流量所对应的气体支路的探测器14存在损坏风险的提示信息,有利于相关用户即时发现可能存在的损坏风险,进而可以对该损坏风险进行及时的处理,比如对探测器14进行风险排查、维修、更换等。
在本申请一些实施例中,所述***具体设置为在检测到所述气体流量存在异常时,根据所述预设流量和存在异常的所述气体支路的数量,控制所述质量控制模块调整所述预设流量的大小。
举例而言,假设预设流量为480ml/min,预设气体支路的数量为8个,则各支路的气体流量为60ml/min,若其中的1个支路的气体流量存在异常, 则质量控制模块可以将所述预设流量调整为480ml/min;若其中的2个支路的气体流量存在异常,则质量控制模块可以将所述预设流量调整为420ml/min。
本申请实施例中,当***中的某一或某些气体支路存在异常时,***通过根据所述预设流量和存在异常的所述气体支路的数量,控制所述质量控制模块调整所述预设流量的大小,可以使得除存在异常外的其它气体支路的气体压力保持正常水平,不影响用户的正常使用。
在本申请一些实施例中,所述***还包括:合气模块和第二流量测量模块;各所述气体支路的输出端分别与所述合气模块的输入端连接,所述合气模块的的输出端与所述第二流量测量模块的输入端连接。
所述合气模块,设置为汇聚各所述气体支路输出的气体;
所述第二流量测量模块,设置为对汇聚的各所述气体支路输出的气体进行流量测量,得到测量结果,以使所述***展示所述测量结果。
在一些例子中,所述第二流量测量模块具体为转子流量计。
具体地说,假设气体支路的数量为4个,分别为气体支路A~气体支路D,预设流量为240ml/min,则每个气体支路的正常流量则为60ml/min,如果***运行正常,不存在漏气或者探测器A漏气未发生膜破的现象,则合气模块汇聚各所述气体支路输出的气体的流量应当为240ml/min,并将该240ml/min的测量结果展示出来。否则,若合气模块汇聚各所述气体支路输出的气体的流量为180ml/min,则说明其中的一个气体支路存在异常,通过将该180ml/min展示出来,方便相关工作人员知晓当前***的运行状态。
在一些例子中,具体将测量结果展示于***运行所依托的设备的显示屏上。
可以如图5所示,图5示出了一种应用实例中的探测器的保护***的电路连接示意图。在该例子中气体支路的数量为4个,假设预设流量为240ml/min,则每个气体支路的正常流量则为60ml/min,如果***运行正常,不存在漏气或者探测器A漏气未发生膜破的现象,则1-4合气模块汇 聚各所述气体支路输出的气体的流量,并通过转子流量计进行测量的测量结果应当为240ml/min,并将该240ml/min的测量结果展示出来。否则,若1-4合气模块汇聚各所述气体支路输出的气体的流量,并通过转子流量计进行测量的测量结果为180ml/min,则说明其中的一个气体支路存在异常,通过将该180ml/min展示出来,方便相关工作人员知晓当前***的运行状态。
不难发现,本申请实施例中,通过配合使用合气模块和第二流量测量模块,使所述***展示所述测量结果,方便相关工作人员可以直观的了解当前***的运行状态,方便提升相关工作人员的工作效率。
在本申请一些实施例中,所述***还可以包括气体过滤模块,所述气体过滤模块,设置为对待排出的气体进行过滤后再排出。
具体地说,如图6所示,图6示出了一种应用实例中的探测器的保护***的电路连接示意图。可以将表示排气模块的二位二通电磁阀排出的气体先进行过滤后再排出,并且可以将转子流量计输出的气体先进行过滤后再排出,这样做,有利于环境保护。
本申请实施例还提供了一种探测器的保护方法,应用在如上述任一实施例所述的***,所述方法包括:控制进气气体的气压至气压稳定;在气压稳定时,按照预设流量输送气体,以使所述气体被输送至各气体支路;分别测量各气体支路中的气体流量,以检测所述气体流量是否存在异常,以及控制各气体支路的气体进行单向输出。其中,当检测到所述气体流量存在异常时,自动调整所述预设流量的大小,并控制存在异常的所述气体流量所对应的气体支路断开。
不难发现,本申请实施例是与***实施例对应的方法实施例,本申请实施例中的方法和***一一对应,上述任意***实施例中的实现细节同样适用本申请实施例,为避免重复,此处不再赘述。
本申请实施例中的方法和/或实施例可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读 介质上的计算机程序,该计算机程序包含执行流程图所示的方法的程序代码。在该计算机程序被处理单元执行时,执行本申请的方法中限定的上述功能。
需要说明的是,本申请所述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。
而在本申请中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输由指令执行***、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写执行本申请的操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到 外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图或框图示出了按照本申请各种实施例的设备、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用来实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的针对硬件的***来实现,或者可以用专用硬件与计算机指令的组合来实现。
作为另一方面,本申请实施例还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的设备中所包含的;也可以是单独存在,而未装配入该设备中。上述计算机可读介质承载有一个或者多个计算机可读指令,所述计算机可读指令可被处理器执行以实现前述本申请的多个实施例的方法和/或技术方案的步骤。
在本申请一个典型的配置中,终端、服务网络的设备均包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可用来存储可 以被计算设备访问的信息。
此外,本申请实施例还提供了一种计算机程序,所述计算机程序存储于计算机设备,使得计算机设备执行所述控制代码执行的方法。
需要注意的是,本申请可在软件和/或软件与硬件的组合体中被实施,例如,可采用专用集成电路(ASIC)、通用目的计算机或任何其他类似硬件设备来实现。在一些实施例中,本申请的软件程序可以通过处理器执行以实现上文步骤或功能。同样地,本申请的软件程序(包括相关的数据结构)可以被存储到计算机可读记录介质中,例如,RAM存储器,磁或光驱动器或软磁盘及类似设备。另外,本申请的一些步骤或功能可采用硬件来实现,例如,作为与处理器配合从而执行各个步骤或功能的电路。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个单元或装置也可以由一个单元或装置通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。

Claims (10)

  1. 一种探测器的保护***,其中,所述***包括:气压稳定装置、质量流量控制模块、开关控制模块、探测器、第一流量测量模块、气体单向控制模块;其中,所述开关控制模块、所述探测器、所述第一流量测量模块和气体单向控制模块的数量均为N个,所述N为大于1的整数;
    所述气压稳定装置的输出端与所述质量控制模块的输入端连接,每个所述开关控制模块、所述探测器、所述第一流量测量模块和气体单向控制模块依次连接形成气体支路,各气体支路之间并联连接,各气体支路的输入端分别与所述质量控制模块的输出端连接,各所述气体支路的输出端设置为进行气体输出;
    所述气压稳定装置,设置为控制进气气体的气压至气压稳定;
    所述质量控制模块,设置为在气压稳定时,按照预设流量输送气体,以使所述气体被输送至各气体支路;
    所述开关控制模块,设置为控制对应气体支路的通断;
    所述第一流量测量模块,设置为测量对应气体支路中,经所述探测器和所述气体反应后的气体流量,以供所述***检测所述气体流量是否存在异常;
    所述气体单向控制模块,设置为控制对应气体支路的气体进行单向输出;
    其中,当所述***检测到所述气体流量存在异常时,所述***控制所述质量控制模块调整所述预设流量的大小,并控制存在异常的所述气体流量所对应的气体支路的开关控制模块,以使所述对应的气体支路断开。
  2. 根据权利要求1所述的***,其中,所述气压稳定装置包括第一减压模块、1-2分气模块、排气开关、第二减压模块;
    所述第一减压模块的输出端与所述1-2分气模块的输入端连接,所述1-2分气模块的输出端与由所述排气开关和所述第二减压模块组成的并联支路连接;
    所述第一减压模块,设置为对所述进气气体的气压进行减压至第一压力值;
    所述1-2分气模块,设置为将压力为所述第一压力值的气体分为两路气体,其中一路气体作为填充气体通过处于开启状态的排气开关将余气排出,在所述余气排尽至气压稳定后,所述排气开关自动关闭,以使另一 路气体输入至所述第二减压模块;
    所述第二减压模块,设置为将输入的气压进行减压至第二压力值,所述第二压力值小于所述第一压力值。
  3. 根据权利要求1所述的***,其中,所述质量控制模块的数量为N个;
    每个所述质量控制模块和每个所述开关控制模块一一对应连接。
  4. 根据权利要求1所述的***,其中,所述质量控制模块的数量为1个;
    所述质量控制模块的输出端通过分气模块和各所述气体支路的输入端连接。
  5. 根据权利要求1至4任意一项所述的***,其中,所述***具体设置为在检测到所述气体流量存在异常时,发出用来表征所述气体流量所对应的气体支路的探测器存在损坏风险的提示信息。
  6. 根据权利要求1至4任意一项所述的***,其中,所述***具体设置为在检测到所述气体流量存在异常时,根据所述预设流量和存在异常的所述气体支路的数量,控制所述质量控制模块调整所述预设流量的大小。
  7. 根据权利要求1所述的***,其中,所述***还包括:合气模块和第二流量测量模块;
    各所述气体支路的输出端分别与所述合气模块的输入端连接,所述合气模块的的输出端与所述第二流量测量模块的输入端连接;
    所述合气模块,设置为汇聚各所述气体支路输出的气体;
    所述第二流量测量模块,设置为对汇聚的各所述气体支路输出的气体进行流量测量,得到测量结果,以使所述***展示所述测量结果。
  8. 根据权利要求1所述的***,其中,所述***还包括气体过滤模块;
    所述气体过滤模块,设置为对待排出的气体进行过滤后再排出。
  9. 一种探测器的保护方法,其中,应用在权利要求1-8中任意一项所述的***,所述方法包括:
    控制进气气体的气压至气压稳定;
    在气压稳定时,按照预设流量输送气体,以使所述气体被输送至各气 体支路;
    分别测量各气体支路中的气体流量,以检测所述气体流量是否存在异常,以及控制各气体支路的气体进行单向输出;
    其中,当检测到所述气体流量存在异常时,自动调整所述预设流量的大小,并控制存在异常的所述气体流量所对应的气体支路断开。
  10. 一种计算机可读介质,其上存储有计算机程序指令,所述计算机程序指令可被处理器执行以实现如权利要求9所述的方法。
PCT/CN2023/100536 2022-11-29 2023-06-15 探测器的保护***、方法及计算机可读介质 WO2024113765A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211520579.5 2022-11-29
CN202211520579.5A CN115755158A (zh) 2022-11-29 2022-11-29 探测器的保护***、方法及计算机可读介质

Publications (1)

Publication Number Publication Date
WO2024113765A1 true WO2024113765A1 (zh) 2024-06-06

Family

ID=85341226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100536 WO2024113765A1 (zh) 2022-11-29 2023-06-15 探测器的保护***、方法及计算机可读介质

Country Status (2)

Country Link
CN (1) CN115755158A (zh)
WO (1) WO2024113765A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115755158A (zh) * 2022-11-29 2023-03-07 上海新漫传感科技有限公司 探测器的保护***、方法及计算机可读介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223538A (ja) * 1998-02-06 1999-08-17 Ckd Corp マスフローコントローラ流量検定システム
US20130092269A1 (en) * 2011-10-12 2013-04-18 Ckd Corporation Gas flow monitoring system
US20130220433A1 (en) * 2012-02-29 2013-08-29 Fujikin Incorporated Apparatus for dividing and supplying gas and method for dividing and supplying gas by use of this apparatus
JP2018026024A (ja) * 2016-08-11 2018-02-15 Ckd株式会社 ガス分流制御システム
CN109085812A (zh) * 2018-08-28 2018-12-25 武汉华星光电技术有限公司 气体流量监测***及监测和主备用切换方法
CN109490472A (zh) * 2018-11-12 2019-03-19 河南省日立信股份有限公司 具有稳定流量控制的在线自校准气体监测***及控制方法
CN211403235U (zh) * 2020-03-19 2020-09-01 北京晓韬科技有限公司 气体质量流量控制器检测模块及设备
CN115755158A (zh) * 2022-11-29 2023-03-07 上海新漫传感科技有限公司 探测器的保护***、方法及计算机可读介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223538A (ja) * 1998-02-06 1999-08-17 Ckd Corp マスフローコントローラ流量検定システム
US20130092269A1 (en) * 2011-10-12 2013-04-18 Ckd Corporation Gas flow monitoring system
US20130220433A1 (en) * 2012-02-29 2013-08-29 Fujikin Incorporated Apparatus for dividing and supplying gas and method for dividing and supplying gas by use of this apparatus
JP2018026024A (ja) * 2016-08-11 2018-02-15 Ckd株式会社 ガス分流制御システム
CN109085812A (zh) * 2018-08-28 2018-12-25 武汉华星光电技术有限公司 气体流量监测***及监测和主备用切换方法
CN109490472A (zh) * 2018-11-12 2019-03-19 河南省日立信股份有限公司 具有稳定流量控制的在线自校准气体监测***及控制方法
CN211403235U (zh) * 2020-03-19 2020-09-01 北京晓韬科技有限公司 气体质量流量控制器检测模块及设备
CN115755158A (zh) * 2022-11-29 2023-03-07 上海新漫传感科技有限公司 探测器的保护***、方法及计算机可读介质

Also Published As

Publication number Publication date
CN115755158A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2024113765A1 (zh) 探测器的保护***、方法及计算机可读介质
Weissler et al. Vacuum physics and technology
US10254189B2 (en) Static expansion method
CN104155417B (zh) 一种超高纯气体中痕量水分分析的前处理***及方法
CN102253168A (zh) 一种产生标准浓度汞气的方法及其装置
JP2010286476A (ja) 高感度ガス分析装置、ガス定量方法及び分析装置システム
Fedchak et al. Recommended practice for calibrating vacuum gauges of the ionization type
JP2007101298A (ja) X線用ガスフロー型比例計数管およびそれを備えるx線分析装置ならびにx線用ガスフロー型比例計数管の使用方法。
KR101068269B1 (ko) 미량 핵분열기체 시료의 정량적 측정 시스템
CA1262971A (en) Process and system for detecting and measuring a tritium gas leak
JP5495978B2 (ja) ガス中粒子計測システム
Ziyu et al. Study on internal pressure measurement of vacuum interrupter
JPH10213509A (ja) 圧力測定装置
CN208635983U (zh) 用于门类气体密封泄漏量的检测装置
JP2011226830A (ja) ナトリウム漏洩検出方法及びナトリウム漏洩検出装置
Jossem Admission of Pure Gases to Vacuum Systems
JP2010249752A (ja) 粒子数計測システム
CN110333273B (zh) 一种用于为电化学传感器提供标准气体的检测***
US3066220A (en) Means for the quantitative analysis of deuterium in hydrogen-containing compounds
JP2007046999A (ja) 放射線検出器
YUE Improving Fast Ejecting System of Targeted Sample (FESTA) and Gas Calibration
JPH075265A (ja) ガス圧力変動に伴う測定誤差を補正したガスフロー型比例計数管
CN219320506U (zh) 一种多平台中子剂量率在线测量仪模块
JPS62261026A (ja) 真空容器の真空もれ検出方法
CN109212396A (zh) 火星表面低气压放电试验环境模拟装置、***及方法