WO2024113292A1 - 电池单体、电池以及用电装置 - Google Patents

电池单体、电池以及用电装置 Download PDF

Info

Publication number
WO2024113292A1
WO2024113292A1 PCT/CN2022/135735 CN2022135735W WO2024113292A1 WO 2024113292 A1 WO2024113292 A1 WO 2024113292A1 CN 2022135735 W CN2022135735 W CN 2022135735W WO 2024113292 A1 WO2024113292 A1 WO 2024113292A1
Authority
WO
WIPO (PCT)
Prior art keywords
boss
battery cell
wall
groove
electrode terminal
Prior art date
Application number
PCT/CN2022/135735
Other languages
English (en)
French (fr)
Inventor
林蹬华
杨道伟
陈新祥
郑于炼
王鹏
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/135735 priority Critical patent/WO2024113292A1/zh
Priority to CN202310796759.4A priority patent/CN118137032A/zh
Publication of WO2024113292A1 publication Critical patent/WO2024113292A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, and more specifically, to a battery cell, a battery, and an electrical device.
  • Batteries are widely used in electronic devices, such as mobile phones, laptop computers, electric vehicles, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes, and electric tools, etc.
  • Battery cells can include nickel-cadmium battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, and secondary alkaline zinc-manganese battery cells, etc.
  • the present application provides a battery cell, a battery, and an electrical device, which can improve the safety performance of the battery cell.
  • a battery cell provided according to an embodiment of the present application includes a shell, an electrode terminal and a seal; the shell has a first wall, the first wall has a through hole; the electrode terminal is arranged on the first wall, the electrode terminal has an end face facing the first wall, and at least a part of the end face is arranged opposite to the through hole; the seal is at least partially arranged around the circumference of the through hole, and at least a part of the seal is abutted between the end face and the first wall; wherein the seal has one of a boss and a groove, at least one of the electrode terminal and the first wall has the other of the boss and the groove, and the boss and the groove cooperate with each other.
  • the battery cell provided in the embodiment of the present application has a seal having one of a boss and a groove, and at least one of the electrode terminal and the first wall has the other of the boss and the groove.
  • the boss and the groove cooperate with each other.
  • the size of the boss is h
  • the distance between the boss and the center line of the through hole is d
  • 1.8mm 2 ⁇ h*d ⁇ 120mm 2 is beneficial to further ensure the sealing effect of the seal, reduce the risk of electrolyte leakage of the battery cell, and further improve the safety performance of the battery cell.
  • setting h*d ⁇ 120mm 2 can ensure the energy density of the battery cell as much as possible while ensuring the sealing effect of the seal.
  • 2 mm 2 ⁇ h*d ⁇ 90 mm 2 is conducive to ensuring the sealing effect of the sealing member while ensuring the energy density of the battery cell.
  • the first wall has a boss and the seal has a groove.
  • the boss and the groove cooperate with each other to increase the matching area between the first wall and the seal.
  • the boss and the groove can also cooperate to provide a certain limit effect on the seal in a direction parallel to the first wall, thereby reducing the risk of sealing failure caused by the seal moving relative to the first wall and the electrode terminal when the battery cell is subjected to impact, vibration and other loads.
  • the electrode terminal has a boss, which is protruding toward the seal, and the seal has a groove.
  • the boss of the electrode terminal and the groove of the seal cooperate with each other to limit the displacement of the seal relative to the electrode terminal.
  • the seal has a boss, and at least one of the first wall and the electrode terminal has a groove. Providing the seal with a boss improves the structural strength of the seal itself and helps to ensure the reliability of the mutual cooperation between the seal and the first wall, or the seal and the electrode terminal, and helps to reduce the risk of sealing failure of the seal when the battery cell is subjected to impact, vibration and other loads.
  • the size h of the boss satisfies: h ⁇ 3 mm. In this way, the risk of the boss cracking can be effectively reduced, which is further conducive to ensuring that the boss and the groove maintain a mutually matched posture and reducing the risk of sealing failure of the seal.
  • 0.2 mm ⁇ h ⁇ 3 mm In some embodiments, 0.2 mm ⁇ h ⁇ 3 mm. This arrangement can effectively reduce the risk of the boss being separated from the groove, and when the battery cell is subjected to loads such as impact or vibration, the boss and the groove can still be matched with each other, which is beneficial to improving the sealing effect of the seal and improving the safety performance of the battery cell.
  • the size of the boss is ⁇ 0.2 mm
  • the first direction is a direction passing through the geometric center of the seal and perpendicular to the thickness direction of the first wall.
  • the boss is disposed on the outer edge of the peripheral side of the seal. Arranging the boss on the outer edge of the peripheral side of the seal is conducive to maintaining the mutual engagement state of the boss and the groove when the battery cell is subjected to loads such as vibration and impact, reducing the risk of the boss and the groove being separated from each other, thereby reducing the risk of the seal failure of the seal on the battery cell, and is conducive to improving the safety performance of the battery cell.
  • the seal has an escape recess, which is arranged at an edge of the seal facing away from the boss, and at least a portion of the escape recess is arranged opposite to the convex portion.
  • the electrode terminal has a groove, so that the groove of the electrode terminal cooperates with the boss of the seal to limit the seal, and maintain the sealing performance of the seal on the battery cell when the battery cell is subjected to loads such as vibration and impact.
  • the distance d1 between the boss and the inner wall of the groove satisfies: 0.05 mm ⁇ d1 ⁇ 0.2 mm. This arrangement helps to reduce the difficulty of assembling the boss and the groove while ensuring the matching reliability of the boss and the groove.
  • the electrode terminal includes a conductive part and an injection molding part, the injection molding part is arranged on the peripheral side of the conductive part, and the groove is formed in the injection molding part. This is beneficial to increase the area of electrical connection between the electrode terminal and the tab and improve the current carrying capacity of the electrode terminal. Moreover, the groove is formed in the injection molding part, which has strong processability.
  • the electrode terminal further includes a welding portion, which is disposed inside the injection molding portion, and the minimum distance d2 from the edge of the injection molding portion to the welding portion satisfies: d2 ⁇ 0.2 mm. This is beneficial for ensuring the insulation effect of the injection molding portion on the welding portion and the conductive portion while ensuring the structural strength of the injection molding portion.
  • the seal has a protrusion protruding toward the first wall, and the protrusion is located in the through hole.
  • the inner wall of the through hole limits the protrusion, thereby reducing the risk of the seal detaching from the first wall, which is conducive to further ensuring the sealing effect of the seal and improving the safety performance of the battery cell.
  • the seal has a groove
  • the first wall has a boss
  • the boss is protruding toward the seal.
  • the boss is formed on the edge of the first wall near the through hole. In this way, the boss is easy to process, and during the assembly process, the boss and the groove are easy to cooperate with each other. In addition, by providing a groove near the through hole on the seal, the internal stress of the seal can be reduced, which is conducive to reducing the risk of cracking of the seal due to excessive internal stress.
  • an embodiment of the present application provides a battery, comprising a battery cell as in any embodiment of the first aspect.
  • the battery provided according to the embodiment of the present application has the same technical effect as the battery cell provided by any of the above embodiments, which will not be described in detail here.
  • an embodiment of the present application provides an electrical device, including a battery as in the embodiment of the second aspect, and the battery is used to provide electrical energy.
  • the electric device provided in the embodiment of the present application has the same technical effect as the battery provided in the embodiment of the present application, and thus will not be described in detail here.
  • FIG1 is a schematic structural diagram of a vehicle provided in one embodiment of the present application.
  • FIG2 is an exploded schematic diagram of a battery provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of a battery module in a battery provided in an embodiment of the present application.
  • FIG4 is an exploded schematic diagram of a battery cell with some structures omitted provided in some embodiments of the present application.
  • FIG5 is a front view of a partial structure of a battery cell provided in an embodiment of the present application.
  • Fig. 6 is a schematic cross-sectional view of the structure along A-A of Fig. 5;
  • FIG7 is a partial enlarged schematic diagram of point B in FIG6;
  • Fig. 8 is another cross-sectional structural schematic diagram along A-A of Fig. 5;
  • Fig. 9 is another schematic cross-sectional view of the structure along the line A-A of Fig. 5;
  • FIG10 is a front view of a sealing member in a battery cell provided in an embodiment of the present application.
  • Fig. 11 is a schematic cross-sectional view of the structure along C-C of Fig. 10;
  • Fig. 12 is another schematic diagram of the cross-sectional structure of Fig. 10 along C-C.
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells or magnesium-ion battery cells, etc., and the embodiments of the present application do not limit this.
  • Battery cells may be cylindrical, flat, rectangular or other shapes, etc., and the embodiments of the present application do not limit this. Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application do not limit this.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in the present application may include a battery module or a battery pack.
  • the battery generally includes a box for encapsulating one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • a battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell mainly relies on the movement of metal ions between the positive electrode sheet and the negative electrode sheet to work.
  • the positive electrode sheet includes a positive current collector and a positive active material layer, and the positive active material layer is coated on the surface of the positive current collector;
  • the positive current collector includes a positive current collector and a positive convex portion protruding from the positive current collector, the positive current collector is coated with the positive active material layer, at least part of the positive convex portion is not coated with the positive active material layer, and the positive convex portion serves as a positive electrode ear.
  • the material of the positive current collector can be aluminum, the positive active material layer includes a positive active material, and the positive active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode current collector; the negative electrode current collector includes a negative electrode current collector and a negative electrode protrusion protruding from the negative electrode current collector, the negative electrode current collector is coated with a negative electrode active material layer, at least part of the negative electrode protrusion is not coated with the negative electrode active material layer, and the negative electrode protrusion serves as a negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material layer includes a negative electrode active material, and the negative electrode active material may be carbon or silicon, etc.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the separator may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the electrode assembly may be a winding structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the inventors have improved the structure of the battery cell.
  • the technical solutions described in the embodiments of the present application are applicable to the battery cell, the battery including the battery cell, and the electrical device using the battery.
  • the battery cell provided according to the embodiment of the present application includes a shell, an electrode terminal and a seal, wherein the shell has a first wall, and the first wall has a through hole.
  • the electrode terminal is arranged on the first wall, and the electrode terminal has an end face facing the first wall, and at least a portion of the end face is arranged opposite to the through hole.
  • the seal is at least partially arranged around the circumference of the through hole, and at least a portion of the seal abuts between the end face and the first wall, wherein the seal has one of a boss and a groove, and at least one of the electrode terminal and the first wall has the other of the boss and the groove, and the boss and the groove cooperate with each other.
  • the battery cell provided in the embodiment of the present application is provided with a seal having one of a boss and a groove, and at least one of the electrode terminal and the first wall is provided with the other of the boss and the groove.
  • the boss and the groove cooperate with each other, and when the battery cell is subjected to an impact load, the risk of the seal coming off and causing sealing failure is reduced, thereby reducing the risk of electrolyte leakage in the battery cell, which is beneficial to improving the safety performance of the battery cell.
  • the electrical device may be a vehicle, a mobile phone, a portable device, a laptop computer, a ship, a spacecraft, an electric toy, an electric tool, and the like.
  • the vehicle may be a fuel vehicle, a gas vehicle, or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle, or an extended-range vehicle, and the like;
  • the spacecraft includes an airplane, a rocket, a space shuttle, and a spacecraft, and the like;
  • the electric toy includes a fixed or mobile electric toy, such as a game console, an electric car toy, an electric ship toy, and an electric airplane toy, and the like;
  • the electric tool includes a metal cutting electric tool, a grinding electric tool, an assembly electric tool, and an electric tool for railways, such as an electric drill, an electric grinder, an electric wrench, an electric screwdriver, an electric hammer, an impact drill, a concrete vibrator, and an electric planer, and the like.
  • a battery 10 is provided inside the vehicle 1.
  • the battery 10 may be provided at the bottom, head, or tail of the vehicle 1.
  • the battery 10 may be used to power the vehicle 1, for example, the battery 10 may be used as an operating power source for the vehicle 1.
  • the vehicle 1 may further include a controller 1b and a motor 1a.
  • the controller 1b is used to control the battery 10 to supply power to the motor 1a, for example, to meet the power requirements of the vehicle 1 during starting, navigation and driving.
  • the battery 10 can not only serve as an operating power source for the vehicle 1, but also serve as a driving power source for the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
  • the battery 10 includes a battery cell (not shown in FIG2 ).
  • the battery 10 may also include a box for accommodating the battery cell.
  • the box body is used to accommodate battery cells, and the box body can be in various structural forms.
  • the box body may include a first box body portion 11 and a second box body portion 12.
  • the first box body portion 11 and the second box body portion 12 cover each other.
  • the first box body portion 11 and the second box body portion 12 jointly define a storage space for accommodating battery cells.
  • the second box body portion 12 can be a hollow structure with an opening at one end, and the first box body portion 11 is a plate-like structure.
  • the first box body portion 11 covers the open side of the second box body portion 12 to form a box body with a storage space; the first box body portion 11 and the second box body portion 12 can also be hollow structures with an opening on one side.
  • the open side of the first box body portion 11 covers the open side of the second box body portion 12 to form a box body with a storage space.
  • the first box body portion 11 and the second box body portion 12 can be in various shapes, such as a cylinder, a cuboid, etc.
  • a sealing member such as a sealant, a sealing ring, etc., can be further provided between the first box body 11 and the second box body 12.
  • the first box body portion 11 covers the second box body portion 12
  • the first box body portion 11 can also be referred to as an upper box cover
  • the second box body portion 12 can also be referred to as a lower box body.
  • the battery 10 there can be one or more battery cells. If there are more than one battery cell, the battery cells can be connected in series, in parallel, or in a mixed connection.
  • a mixed connection means that the battery cells are connected in series and in parallel.
  • the battery cells can be directly connected in series, in parallel, or in a mixed connection, and then the whole formed by the battery cells can be accommodated in the box.
  • the battery cells can be first connected in series, in parallel, or in a mixed connection to form a battery module 20.
  • the battery modules 20 are then connected in series, in parallel, or in a mixed connection to form a whole, and then accommodated in the box.
  • FIG3 is a schematic diagram of the structure of the battery module 20 shown in FIG2.
  • the battery module 20 there are multiple battery cells 30.
  • the multiple battery cells 30 are first connected in series, in parallel, or in mixed series to form the battery module 20.
  • the multiple battery modules 20 are then connected in series, in parallel, or in mixed series to form a whole, and are accommodated in the box.
  • the multiple battery cells 30 in the battery module 20 may be electrically connected via a busbar component to achieve parallel connection, series connection, or mixed connection of the multiple battery cells 30 in the battery module 20 .
  • Fig. 4 is an exploded schematic diagram of the battery cell 30 shown in Fig. 3.
  • the battery cell 30 provided in the embodiment of the present application includes an electrode assembly 32 and a shell 31, wherein the shell 31 has a receiving cavity, and the electrode assembly 32 is received in the receiving cavity.
  • the housing 31 may include a shell 311 and an end cap 312, wherein the shell 311 is a hollow structure with one side open, and the end cap 312 covers the opening 311a of the shell 311 and forms a sealed connection to form a sealed space for accommodating the electrode assembly 32 and the electrolyte.
  • the electrode assembly 32 When assembling the battery cell 30 , the electrode assembly 32 may be placed in the housing 311 first, the end cap 312 may be closed on the opening 311 a of the housing 311 , and then the electrolyte may be injected into the housing 311 through the electrolyte injection port on the end cap 312 .
  • the housing 31 may also be used to contain electrolyte, such as electrolyte.
  • the housing 31 may be in various structural forms.
  • FIG. 4 shows a schematic structural diagram of a battery cell 30 provided in an embodiment of the present application.
  • the shell 311 can be in various shapes, such as a cylinder, a cuboid, etc.
  • the shape of the shell 311 can be determined according to the specific shape of the electrode assembly 32. For example, if the electrode assembly 32 is a cylindrical structure, the shell 311 can be selected as a cylindrical structure. If the electrode assembly 32 is a cuboid structure, the shell 311 can be selected as a cuboid structure. In FIG. 4, illustratively, the shell 311 and the electrode assembly 32 are both cuboid structures.
  • the shell 311 can be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, etc., and the embodiment of the present application does not impose any special restrictions on this.
  • Electrodes assemblies 32 There may be one or more electrode assemblies 32 housed in the housing 311. In Fig. 4, there are two electrode assemblies 32 housed in the housing 311.
  • the electrode assembly 32 further includes a positive electrode sheet, a negative electrode sheet, and a separator.
  • the electrode assembly 32 may be a wound structure formed by winding the positive electrode sheet, the separator, and the negative electrode sheet.
  • the electrode assembly 32 may also be a stacked structure formed by stacking the positive electrode sheet, the separator, and the negative electrode sheet.
  • the positive electrode sheet may include a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the negative electrode sheet may include a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the separator is between the positive electrode sheet and the negative electrode sheet, and is used to isolate the positive electrode sheet from the negative electrode sheet to reduce the risk of short circuit between the positive electrode sheet and the negative electrode sheet.
  • the tabs in the electrode assembly 32 are divided into positive tabs and negative tabs.
  • the positive tabs may be the portion of the positive current collector that is not coated with the positive active material layer.
  • the negative tabs may be the portion of the negative current collector that is not coated with the negative active material layer.
  • the battery cell 30 provided according to the embodiment of the present application includes a housing 31, an electrode terminal 33 and a seal 34.
  • the housing 31 has a first wall 313, and the first wall 313 has a through hole 313a.
  • the electrode terminal 33 is arranged on the first wall 313, and the electrode terminal 33 has an end face 33a facing the first wall 313, and at least a portion of the end face 33a is arranged opposite to the through hole 313a.
  • the seal 34 is at least partially arranged around the circumference of the through hole 313a, and at least a portion of the seal 34 abuts between the end face 33a and the first wall 313, wherein the seal 34 has one of a boss 30a and a groove 30b, and at least one of the electrode terminal 33 and the first wall 313 has the other of the boss 30a and the groove 30b, and the boss 30a and the groove 30b cooperate with each other.
  • the first wall 313 may be a part of the shell 311 of the outer shell 31, or the first wall 313 may be a part of the end cover 312 of the shell 311.
  • the shell 311 and the end cover 312 of the outer shell 31 have the first wall 313, and the specific selection may be made according to actual needs.
  • the end face 33a of the electrode assembly 32 is arranged toward the first wall 313, and at least a portion of the end face 33a is arranged opposite to the through hole 313a, so that the electrode tab of the electrode assembly 32 is connected to the end face 33a through the through hole 313a, or, the transition component connects the end face 33a and the electrode tab through the through hole 313a, thereby realizing the electrical connection between the electrode assembly 32 of the battery cell 30 and the electrode terminal 33.
  • At least part of the seal 34 is arranged around the through hole 313a.
  • the seal 34 can be arranged around the through hole 313a, or part of the seal 34 can be arranged around the through hole 313a and the other part can be located inside the through hole 313a.
  • the through hole 313a may be a round hole, a waist-shaped hole or other shapes. At least part of the sealing member 34 is disposed around the through hole 313a and abuts between the first wall 313 and the end face 33a. The through hole 313a is sealed by the compression deformation of the sealing member 34, thereby reducing the risk of the electrolyte in the battery cell 30 leaking out through the through hole 313a.
  • the sealing member 34 has one of a boss 30 a and a groove 30 b , and at least one of the electrode terminal 33 and the first wall 313 has the other of the boss 30 a and the groove 30 b , and the boss 30 a and the groove 30 b cooperate with each other.
  • the sealing member 34 may have a boss 30a, and one of the electrode terminal 33 and the first wall 313 may have a groove 30b, or both the electrode terminal 33 and the first wall 313 may have a groove 30b; or, the sealing member 34 may have a groove 30b, and one of the electrode terminal 33 and the first wall 313 may have a boss 30a.
  • both the electrode terminal 33 and the first wall 313 may have a groove 30b.
  • the seal 34 may also be provided with both a groove 30b and a boss 30a.
  • the first wall 313 or the electrode terminal 33 may be provided with a groove 30b or a boss 30a, so as to achieve mutual cooperation between the seal 34 and at least one of the first wall 313 and the electrode terminal 33 through the boss 30a and the groove 30b.
  • the connection strength between the seal 34 and the electrode terminal 33 or the seal 34 and the first wall 313 is improved.
  • the cooperation between the boss 30a and the groove 30b can provide a certain limiting effect on the seal 34, limiting the relative position of the seal 34, the electrode terminal 33 and the first wall 313.
  • the seal 34 is not easy to separate from the electrode terminal 33 or the seal 34, which is conducive to maintaining the sealing effect of the seal 34 on the through hole 313a of the first wall 313, thereby reducing the risk of electrolyte leakage of the battery cell 30.
  • the battery cell 30 provided in the embodiment of the present application is provided with a seal 34 having one of a boss 30a and a groove 30b, and at least one of the electrode terminal 33 and the first wall 313 has the other of the boss 30a and the groove 30b, and the boss 30a and the groove 30b cooperate with each other.
  • the seal 34 can still maintain a state of mutual cooperation with the electrode terminal 33 and the first wall 313, thereby reducing the risk of the seal 34 detaching from the electrode terminal 33 or the first wall 313 and causing sealing failure, which is beneficial to reducing the risk of electrolyte leakage in the battery cell 30, and further beneficial to improving the safety performance of the battery cell 30.
  • the size of the boss 30 a is h
  • the distance between the boss 30 a and the center line of the through hole 313 a is d
  • 1.8 mm 2 ⁇ h*d ⁇ 120 mm 2 is 1.8 mm 2 ⁇ h*d ⁇ 120 mm 2 .
  • h*d may be 1.8 mm 2 , 2 mm 2 , 10 mm 2 , 20 mm 2 , 30 mm 2 , 40 mm 2 , 50 mm 2 , 60 mm 2 , 70 mm 2 , 80 mm 2 , 90 mm 2 , 100 mm 2 , 110 mm 2 or 120 mm 2 , etc.
  • the inventors found that by setting 1.8mm 2 ⁇ h*d, when the battery cell 30 is subjected to loads such as impact and vibration, the boss 30a and the groove 30b can still maintain a good matching relationship, which is conducive to further ensuring the sealing effect of the seal 34 on the battery cell 30, reducing the risk of electrolyte leakage in the battery cell 30, and further improving the safety performance of the battery cell 30.
  • the energy density of the battery cell 30 can be guaranteed as much as possible under the premise of ensuring the sealing effect of the seal 34.
  • 2 mm 2 ⁇ h*d ⁇ 90 mm 2 In some embodiments, 2 mm 2 ⁇ h*d ⁇ 90 mm 2 .
  • h*d may be 2 mm 2 , 20 mm 2 , 30 mm 2 , 40 mm 2 , 50 mm 2 , 60 mm 2 , 70 mm 2 , 80 mm 2 or 90 mm 2 , etc.
  • h*d is set to be ⁇ 120 mm 2 .
  • setting 1.8 mm 2 ⁇ h*d ⁇ 120 mm 2 can effectively improve the connection reliability between the boss 30 a and the groove 30 b while ensuring that the battery cell 30 has a higher energy density, which is beneficial to improving the sealing effect of the seal 34 and further improving the safety performance of the battery cell 30 .
  • the first wall 313 has a boss 30 a and the sealing member 34 has a groove 30 b .
  • the boss 30 a of the first wall 313 is convexly arranged toward the sealing member 34
  • the groove 30 b of the sealing member 34 is concavely arranged toward the first wall 313 , and the two are arranged opposite to each other to achieve mutual cooperation.
  • the boss 30a and the groove 30b cooperate with each other to increase the matching area between the first wall 313 and the seal 34.
  • the boss 30a and the groove 30b can also be used to provide a certain limiting effect on the seal 34 in a direction parallel to the first wall 313, thereby reducing the risk of sealing failure caused by the seal 34 moving relative to the first wall 313 and the electrode terminal 33 when the battery cell 30 is subjected to loads such as impact and vibration.
  • the electrode terminal 33 has a boss 30 a, the boss 30 a is protruded toward the sealing member 34, and the sealing member 34 has a groove 30 b.
  • the boss 30 a of the electrode terminal 33 is protruded toward the sealing member 34 , and the groove 30 b of the sealing member 34 is protruded away from the electrode terminal 33 , so that the boss 30 a of the electrode terminal 33 and the groove 30 b of the sealing member 34 cooperate with each other.
  • the electrode terminal 33 is formed by injection molding, and the electrode terminal 33 includes a conductive portion 331, an injection molding portion 332, and a welding portion 333.
  • the conductive portion 331 is used to be electrically connected to the tab of the electrode assembly 32.
  • the injection molding portion 332 and the welding portion 333 are respectively formed by injection molding with the conductive portion 331.
  • the welding portion 333 is used to be welded to the first wall 313, so as to achieve the connection between the first wall 313 and the electrode terminal 33 while maintaining the mutual insulation between the conductive portion 331 and the first wall 313.
  • the boss 30a of the electrode terminal 33 can be formed on the conductive portion 331, or the boss 30a of the electrode terminal 33 can be formed on the injection molding portion 332.
  • the boss 30a of the electrode terminal 33 and the groove 30b of the seal 34 cooperate with each other to limit the displacement of the seal 34 relative to the electrode terminal 33.
  • the sealing member 34 has a boss 30 a , and at least one of the first wall 313 and the electrode terminal 33 has a groove 30 b .
  • one of the first wall 313 and the electrode terminal 33 may be provided with the groove 30 b , or both of the first wall 313 and the electrode terminal 33 may be provided with the groove 30 b .
  • the boss 30a of the sealing member 34 may be arranged to protrude toward the first wall 313, or the boss 30a of the sealing member 34 may be arranged to protrude toward the electrode terminal 33.
  • the sealing member 34 may have both a boss 30a protruding toward the first wall 313 and a boss 30a protruding toward the electrode terminal 33.
  • the boss 30a and the groove 30b may be arranged according to the need for mutual cooperation.
  • the seal 34 is provided with a boss 30a, which helps to ensure the reliability of the mutual cooperation between the seal 34 and the first wall 313, or the seal 34 and the electrode terminal 33, while improving the structural strength of the seal 34 itself.
  • a boss 30a helps to ensure the reliability of the mutual cooperation between the seal 34 and the first wall 313, or the seal 34 and the electrode terminal 33, while improving the structural strength of the seal 34 itself.
  • a dimension h of the boss 30 a satisfies: h ⁇ 3 mm.
  • h may be 3 mm, 2.8 mm, 2.5 mm, 2 mm, 1.5 mm or 1 mm, etc.
  • the structure of the boss 30a is unstable, especially the boss 30a on the seal 34. If h is too high, the structure of the boss 30a is unstable and prone to deformation. In addition, the strength of the boss 30a is low. Under the action of loads such as vibration and impact, the boss 30a on the seal 34 has a certain risk of cracking.
  • 0.2 mm ⁇ h ⁇ 3 mm In some embodiments, 0.2 mm ⁇ h ⁇ 3 mm.
  • h may be 0.2 mm, 0.5 mm, 0.8 mm, 1 mm, 1.2 mm, 1.5 mm, 1.8 mm, 2.2 mm, 2.8 mm or 3 mm, etc.
  • the dimension ⁇ of the boss 30 a is ⁇ 0.2 mm
  • the first direction X is a direction passing through the geometric center of the seal 34 and perpendicular to the thickness direction of the first wall 313 .
  • may be 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm or 1 mm, etc.
  • the boss 30a has a higher risk of falling out of the groove 30b.
  • the boss 30 a is disposed on the outer edge of the peripheral side of the sealing member 34 .
  • setting the boss 30a at the outer edge of the peripheral side of the seal 34 is beneficial to maintaining the mutual engagement state of the boss 30a and the groove 30b when the battery cell 30 is subjected to loads such as vibration and impact, reducing the risk of the boss 30a and the groove 30b being separated from each other, and further reducing the risk of sealing failure of the seal 34 on the battery cell 30, which is beneficial to improving the safety performance of the battery cell 30.
  • the seal 34 has an avoidance recess 34a, which is arranged at the edge of the seal 34 facing away from the boss 30a, and at least a portion of the avoidance recess 34a is arranged opposite to the convex portion.
  • the seal 34 will have a risk of cracking due to a certain internal stress.
  • the avoidance recess 34a the internal stress of the seal 34 can be relieved by the avoidance recess 34a, reducing the risk of cracking due to excessive internal stress, which is conducive to improving the structural strength of the seal 34.
  • the electrode terminal 33 has a groove 30 b.
  • the groove 30 b of the electrode terminal 33 may be recessed in a direction away from the sealing member 34 , and correspondingly, a boss 30 a matching the groove 30 b is formed on the sealing member 34 .
  • the electrode terminal 33 is provided with a groove 30b, and the groove 30b of the electrode terminal 33 can cooperate with the boss 30a of the seal 34 to limit the seal 34 and maintain the sealing performance of the seal 34 on the battery cell 30 when the battery cell 30 is subjected to loads such as vibration and impact.
  • the distance d1 between the boss 30 a and the inner wall of the groove 30 b satisfies: 0.05 mm ⁇ d1 ⁇ 0.2 mm.
  • d1 may be 0.05 mm, 0.1 mm, 0.15 mm, or 0.2 mm, etc.
  • the electrode terminal 33 includes a conductive portion 331 and an injection molded portion 332 .
  • the injection molded portion 332 is disposed on a peripheral side of the conductive portion 331 , and the groove 30 b is formed in the injection molded portion 332 .
  • the end surface 33a located at the conductive portion 331 can be used for electrical connection with the tab of the electrode assembly 32, which is beneficial to increase the area of electrical connection between the electrode terminal 33 and the tab and improve the current carrying capacity of the electrode terminal 33.
  • the groove 30b is formed in the injection molding portion 332, which has strong processability.
  • the electrode terminal 33 further includes a welding portion 333 .
  • the welding portion 333 is disposed inside the injection portion 332 .
  • the minimum distance d2 from the edge of the injection portion 332 to the welding portion 333 satisfies: d2 ⁇ 0.2 mm.
  • d2 may be 0.2 mm, 0.4 mm, 0.5 mm or 0.8 mm, etc.
  • the injection molding part 332 and the welding part 333 are integrally injection molded, and the injection molding part 332 can provide a certain insulation effect on the welding part 333 and the conductive part 331, the inventors found after long-term research and a large number of experiments that when d2 is set to 0.2 mm,
  • the sealing member 34 has a protrusion 34 b protruding toward the first wall 313 , and the protrusion 34 b is located in the through hole 313 a .
  • the protrusion 34b is located in the through hole 313a, and the inner wall of the through hole 313a can be used to provide a certain limiting effect for the protrusion 34b.
  • the limiting effect of the inner wall of the through hole 313a on the protrusion 34b can reduce the risk of the seal 34 detaching from the first wall 313, which is beneficial to further ensure the sealing effect of the seal 34 and improve the safety performance of the battery cell 30.
  • the sealing member 34 has the groove 30 b , and the first wall 313 has the boss 30 a , and the boss 30 a is arranged to protrude toward the sealing member 34 .
  • the groove 30b of the seal 34 is recessed toward the direction of the first wall 313, and the boss 30a of the first wall 313 cooperates with the groove 30b of the seal 34 to limit the displacement of the seal 34 relative to the first wall 313.
  • the boss 30 a is formed on an edge of the first wall 313 close to the through hole 313 a .
  • the boss 30a is formed at the edge of the first wall 313 near the through hole 313a, and the groove 30b is formed at the position of the seal 34 corresponding to the boss 30a.
  • the boss 30a is easy to process, and during the assembly process, the boss 30a and the groove 30b are easy to cooperate with each other.
  • the groove 30b is provided at the position near the through hole 313a on the seal 34, the internal stress of the seal 34 can be reduced, which is conducive to reducing the risk of cracking of the seal 34 due to excessive internal stress.
  • the battery 10 provided according to an embodiment of the present application includes the battery cell 30 provided in any of the above embodiments.
  • the battery 10 provided in the embodiment of the present application has the same technical effect as the battery cell 30 provided in any of the above embodiments, and thus will not be described in detail here.
  • the electrical device provided according to the embodiment of the present application includes the battery 10 provided in the above embodiment, and the battery 10 is used to provide electrical energy.
  • the electric device provided in the embodiment of the present application has the same technical effect as the battery 10 provided in the embodiment of the present application, and thus will not be described in detail here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供一种电池单体、电池以及用电装置,电池单体包括外壳、电极端子和密封件;外壳具有第一壁,第一壁具有通孔;电极端子设置于第一壁,电极端子具有朝向第一壁的端面,端面的至少部分与通孔相对设置;密封件至少部分围设于通孔的周侧,密封件的至少部分抵接于端面和第一壁之间;密封件具有凸台和凹槽中的一者,电极端子和第一壁中的至少一者具有凸台和凹槽中的另一者,凸台与凹槽相互配合。本申请提供的电池单体,在电池单体受到冲击、振动等载荷时,密封件仍能够保持与电极端子和第一壁相互配合的状态,降低密封件脱离电极端子或者第一壁而造成密封失效的风险,有利于降低电池单体电解液泄露的风险,进而有利于提高电池单体的安全性能。

Description

电池单体、电池以及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池单体、电池以及用电装置。
背景技术
电池广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池单体技术的发展中,除了提高电池单体的使用性能外,如何电提高电池单体的安全性能也是一个不可忽视的问题。因此,如何提高电池单体的安全性能,是电池单体技术中一个持续改进的技术问题。
发明内容
本申请提供了一种电池单体、电池以及用电装置,能够提高电池单体的安全性能。
第一方面,根据本申请实施例提供的电池单体包括外壳、电极端子和密封件;外壳具有第一壁,第一壁具有通孔;电极端子设置于第一壁,电极端子具有朝向第一壁的端面,端面的至少部分与通孔相对设置;密封件至少部分围设于通孔的周侧,密封件的至少部分抵接于端面和第一壁之间;其中,密封件具有凸台和凹槽中的一者,电极端子和第一壁中的至少一者具有凸台和凹槽中的另一者,凸台与凹槽相互配合。
本申请实施例提供的电池单体,通过设置密封件具有凸台和凹槽中的一者,电极端子和第一壁中的至少一者具有凸台和凹槽中的另一者,凸台与凹槽相互配合,在电池单体受到冲击、振动等载荷时,密封件仍能够保持与电极端子和第一壁相互配合的状态,降低密封件脱离电极端子或者第一壁而造成密封失效的风险,有利于降低电池单体电解液泄露的风险,进而有利于提高电池单体的安全性能。
在一些实施例中,沿第一壁的厚度方向,凸台的尺寸为h,凸台与通孔的中心线的间距为d,1.8mm 2≤h*d≤120mm 2。设置1.8mm 2≤h*d可以在电池单体受到冲击、振动等载荷时,凸台与凹槽仍然能够保持良好的配合关系,有利于进一步保证密封件的密封效果,降低电池单体的电解液泄漏的风险,以进一步提高电池单体的安全性能。同时设置h*d≤120mm 2可以在保证密封件的密封效果的前提下,尽可能地保证电池单 体的能量密度。
在一些实施例中,2mm 2≤h*d≤90mm 2。如此设置,在保证电池单体的能量密度的前提下,进一步有利于保证密封件的密封效果。
在一些实施例中,第一壁具有凸台,密封件具有凹槽。凸台与凹槽相互配合,可以增大第一壁与密封件的配合面积,同时,还可以利用凸台与凹槽的配合,对密封件提供一定沿平行于第一壁方向的限位作用,降低电池单体在受到冲击、振动等载荷时,密封件相对第一壁和电极端子移动而造成密封失效的风险。
在一些实施例中,电极端子具有凸台,凸台朝向密封件凸出设置,密封件具有凹槽。电极端子的凸台与密封件的凹槽相互配合,以限制密封件相对电极端子的位移,在电池单体受到冲击振动等载荷的作用时,电极端子和第一壁产生变形的情况下,有利于保持密封件与电极端子仍处于相互配合状态,进而有利于保证密封件的密封效果。
在一些实施例中,密封件具有凸台,第一壁和电极端子的至少一者具有凹槽。设置密封件具有凸台,在提高密封件自身的结构强度的同时,有利于保证密封与第一壁,或者密封件与电极端子的相互配合的可靠性,在电池单体受到冲击、振动等载荷时,有利于降低密封件密封失效的风险。
在一些实施例中,沿第一壁的厚度方向,凸台的尺寸h满足:h≤3mm。如此,可以有效地降低凸台开裂的风险,进一步有利于保证凸台和凹槽保持相互配合的姿态,降低密封件密封失效的风险。
在一些实施例中,0.2mm≤h≤3mm。如此设置,可以有效地降低凸台脱离凹槽的风险,在电池单体受到冲击或者振动等载荷时,依然能够保持凸台与凹槽的相互配合,有利于提高密封件的密封效果,提高电池单体的安全性能。
在一些实施例中,沿第一方向,凸台的尺寸δ≥0.2mm,第一方向为经过密封件的几何中心且垂直于第一壁的厚度方向的方向。如此,可以在保证凸台的可制造性的同时,降低凸台与凹槽脱离的风险,进一步提高密封件的密封效果和电池单体的安全性能。
在一些实施例中,凸台设置于密封件的周侧的外边缘。设置凸台位于密封件的周侧的外边缘,在电池单体受到振动、冲击等载荷的作用下,有利于保持凸台与凹槽的相互卡接的状态,降低凸台与凹槽相互脱离的风险,进而降低密封件对电池单体的密封失效的风险,有利于提高电池单体的安全性能。
在一些实施例中,密封件具有避让凹部,避让凹部设置于密封件背向凸台一侧的边缘,避让凹部的至少部分与凸部相对设置。通过设置避让凹部,可以通过避让凹部缓解密封件的内应力,降低其因内应力过大而开裂的风险,有利于提高密封件的结构强度。
在一些实施例中,电极端子具有凹槽。如此,通过电极端子的凹槽与密封件的凸台相互配合,以对密封件进行限位,在电池单体受到振动、冲击等载荷时保持密封件对电池单体的密封性能。
在一些实施例中,凸台与凹槽的内壁的间距d1满足:0.05mm≤d1≤0.2mm。如此设置,在保证凸台与凹槽的配合可靠性的基础上,有利于降低凸台与凹槽的装配 难度。
在一些实施例中,电极端子包括导电部和注塑部,注塑部设置于导电部的周侧,凹槽形成于注塑部。有利于提高电极端子与极耳电连接的面积,提高电极端子的过流能力。且凹槽形成于注塑部,具有较强的可加工性。
在一些实施例中,电极端子还包括焊接部,焊接部设置于注塑部的内部,注塑部的边缘到焊接部的最小距离d2满足:d2≥0.2mm。有利于在保证注塑部的结构强度的前提下,保证注塑部对焊接部和导电部的绝缘效果。
在一些实施例中,密封件具有朝向第一壁的方向凸出设置的凸起,凸起位于通孔内。在电池单体受到冲击、振动等载荷时,通过通孔的内壁对凸起的限位作用,降低密封件脱离第一壁的风险,有利于进一步保证密封件的密封效果,提高电池单体的安全性能。
在一些实施例中,密封件具有凹槽,第一壁具有凸台,凸台朝向密封件凸出设置。在电池单体受到冲击、振动等载荷时,降低密封件密封失效的可能性,有利于提高电池单体的安全性能。
在一些实施例中,凸台形成于第一壁靠近通孔一侧的边缘。如此,凸台易于加工,且在装配的过程中,便于凸台与凹槽的相互配合。另外,通过在密封件上靠近通孔的位置设置凹槽,可以降低密封件的内应力,有利于降低密封件因内应力过大而开裂的风险。
第二方面,本申请实施例提供了一种电池,包括如第一方面任一实施例的电池单体。
根据本申请实施例提供的电池,由于采用上述任一实施例提供的电池单体,因而具有同样的技术效果,在此不再赘述。
第三方面,本申请实施例提供了一种用电装置,包括如第二方面实施例的电池,电池用于提供电能。
根据本申请实施例提供的用电装置,由于采用了本申请实施例提供的电池,因而具有同样的技术效果,在此不再赘述。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一实施例提供的车辆的结构示意图;
图2为本申请一实施例提供的电池的***示意图;
图3为本申请实施例提供的电池中电池模块的结构示意图;
图4为本申请一些实施例提供的一种电池单体省略部分结构后的***示意图;
图5为本申请实施例提供的电池单体中部分结构的主视图;
图6为图5沿A-A的一种剖视结构示意图;
图7为图6中B处的局部放大示意图;
图8为图5沿A-A的另一种剖视结构示意图;
图9为图5沿A-A的又一种剖视结构示意图;
图10为本申请实施例提供的电池单体中密封件的主视图;
图11为图10沿C-C的一种剖视结构示意图;
图12为图10沿C-C的另一种剖视结构示意图。
在附图中,附图并未按照实际的比例绘制。
附图标记说明:
1、车辆;1a、马达;1b、控制器;
10、电池;11、第一箱体部;12、第二箱体部;
20、电池模块;
30、电池单体;30a、凸台;30b、凹槽;31、外壳;311、壳体;311a、开口;312、端盖;313、第一壁;313a、通孔;32、电极组件;33、电极端子;33a、端面;331、导电部;332、注塑部;333、焊接部;34、密封件;34a、避让凹部;34b、凸起;
X、第一方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,C和/或D,可以表示:单独存在C,同时存在C和D,单独存在D这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件包括正极极片、负极极片和分隔件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和凸出于正极集流部的正极凸部,正极集流部涂覆有正极活性物质层,正极凸部的至少部分未涂覆正极活性物质层,正极凸部作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和凸出于负极集流部的负极凸部,负极集流部涂覆有负极活性物质层,负极凸部的至少部分未涂覆负极活性物质层,负极凸部作为负极极耳。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。分隔件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
发明人发现电池安全性能不足的问题后,便对电池单体的结构和工作过程进行了***的分析和研究。结果发现,电池单体在使用的过程中,不可避免地会承受一些冲击、振动等载荷,随着电池单体所承受的冲击、振动等载荷的次数的增多,电池单体中位于电极端子和端盖之间的密封件会发生变形甚至脱落的现象,电池单体的外壳的密封性受到破坏,外壳内部的电解液存在泄漏的风险,如此,严重影响电池单体的安全性能。
基于发明人发现的上述问题,发明人对电池单体的结构进行了改进,本申请实施例描述的技术方案适用于电池单体、包含电池单体的电池以及使用电池的用电装置。
根据本申请实施例提供的电池单体包括外壳、电极端子和密封件,外壳,具有第一壁,第一壁具有通孔。电极端子设置于第一壁,电极端子具有朝向第一壁的端面,端面的至少部分与通孔相对设置。密封件,至少部分围设于通孔的周侧,密封件的至少部分抵接于端面和第一壁之间,其中,密封件具有凸台和凹槽中的一者,电极端子和第一壁中的至少一者具有凸台和凹槽中的另一者,凸台与凹槽相互配合。
本申请实施例提供的电池单体,通过设置密封件具有凸台和凹槽中的一者,电极端子和第一壁中的至少一者设置有凸台和凹槽的另一者,凸台和凹槽相互配合,在电池单体受到冲击载荷时,降低密封件脱出而导致密封失效的风险,进而降低电池单体的电解液泄漏的风险,如此,有利于提高电池单体的安全性能。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
如图1所示,车辆1的内部设置有电池10。电池10可以设置在车辆1的底部或头部或尾部。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源。
车辆1还可以包括控制器1b和马达1a。控制器1b用来控制电池10为马达1a供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
参见图2所示,电池10包括电池单体(图2未示出)。电池10还可以包括用于容纳电池单体的箱体。
箱体用于容纳电池单体,箱体可以是多种结构形式。在一些实施例中,箱体可以包括第一箱体部部11和第二箱体部12。第一箱体部11与第二箱体部12相互盖合。第一箱体部11和第二箱体部12共同限定出用于容纳电池单体的容纳空间。第二箱体部12可以是一端开口的空心结构,第一箱体部11为板状结构,第一箱体部11盖合于第二箱体部12的开口侧,以形成具有容纳空间的箱体;第一箱体部11和第二箱体部12也可以均为一侧开口的空心结构。第一箱体部11的开口侧盖合于第二箱体部12的开口侧,以形成具有容纳空间的箱体。当然,第一箱体部11和第二箱体部12可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部11和第二箱体部12连接后的密封性,第一箱体部11和第二 箱体部12之间还可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部11盖合于第二箱体部12,第一箱体部11亦可称之为上箱盖,第二箱体部12亦可称之为下箱体。
在电池10中,电池单体可以是一个,也可以是多个。若电池单体为多个,多个电池单体之间可串联或并联或混联。混联是指多个电池单体中既有串联又有并联。多个电池单体之间可直接串联或并联或混联在一起,再将多个电池单体构成的整体容纳于箱体内,也可以是多个电池单体先串联或并联或混联组成电池模块20。多个电池模块20再串联或并联或混联形成一个整体,并容纳于箱体内。
在一些实施例中,如图3所示,图3为图2所示的电池模块20的结构示意图。在电池模块20中,电池单体30为多个。多个电池单体30先串联或并联或混联组成电池模块20。多个电池模块20再串联或并联或混联形成一个整体,并容纳于箱体内。
在一些实施例,电池模块20中的多个电池单体30之间可通过汇流部件实现电连接,以实现电池模块20中的多个电池单体30的并联或串联或混联。
请参照图4,图4为图3所示的电池单体30的***示意图。本申请实施例提供的电池单体30包括电极组件32和外壳31,外壳31具有容置腔,电极组件32容纳于容置腔内。
在一些实施例中,外壳31可以包括壳体311和端盖312,壳体311为一侧开口的空心结构,端盖312盖合于壳体311的开口311a处并形成密封连接,以形成用于容纳电极组件32和电解质的密封空间。
在组装电池单体30时,可先将电极组件32放入壳体311内,再将端盖312盖合于壳体311的开口311a,然后经由端盖312上的电解质注入口将电解质注入壳体311内。
在一些实施例中,外壳31还可用于容纳电解质,例如电解液。外壳31可以是多种结构形式。
如图4示出了本申请实施例提供的电池单体30的结构示意图。
壳体311可以是多种形状,比如,圆柱体、长方体等。壳体311的形状可以根据电极组件32的具体形状来确定。例如,若电极组件32为圆柱体结构,壳体311则可选用为圆柱体结构。若电极组件32为长方体结构,壳体311则可选用长方体结构。在图4中,示例性地,壳体311和电极组件32均为长方体结构。
壳体311的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金等,本申请实施例对此不作特殊限制。
容纳于壳体311内的电极组件32可以是一个或多个。在图4中,容纳于壳体311内的电极组件32为两个。
在一些实施例中,电极组件32还包括正极极片、负极极片和分隔件。电极组件32可以是由正极极片、分隔件和负极极片通过卷绕形成的卷绕式结构。电极组件32也可以是由正极极片、分隔件和负极极片通过层叠布置形成的层叠式结构。
正极极片可以包括正极集流体和正极活性物质层。正极活性物质层涂覆于正极集流体的表面。负极极片可以包括负极集流体和负极极活性物质层。负极活性物质层 涂覆于负极集流体的表面。分隔件在正极极片与负极极片之间,用于将正极极片与负极极片隔离,以降低正极极片与负极极片之间出现短路的风险。
电极组件32中的极耳分为正极耳和负极耳。正极耳可以是正极集流体中未涂覆正极活性物质层的部分。负极耳可以是负极集流体中未涂覆负极活性物质层的部分。
如图4、图5、图6和图7所示,根据本申请实施例提供的电池单体30包括外壳31、电极端子33和密封件34。外壳31具有第一壁313,第一壁313具有通孔313a。电极端子33设置于第一壁313,电极端子33具有朝向第一壁313的端面33a,端面33a的至少部分与通孔313a相对设置。密封件34至少部分围设于通孔313a的周侧,密封件34的至少部分抵接于端面33a和第一壁313之间,其中,密封件34具有凸台30a和凹槽30b中的一者,电极端子33和第一壁313中的至少一者具有凸台30a和凹槽30b中的另一者,凸台30a与凹槽30b相互配合。
可选地,第一壁313可以是外壳31的壳体311的一部分,或者,第一壁313为壳体311的端盖312的一部分,当然,也可以设置,外壳31的壳体311和端盖312均具有第一壁313,具体可以根据实际需求进行选取。
电极组件32的端面33a朝向第一壁313设置,且端面33a的至少部分与通孔313a相对设置,以使电极组件32的极耳通过通孔313a与端面33a连接,或者,转接构件通过通孔313a连接端面33a和极耳,进而实现电池单体30的电极组件32与电极端子33的电连接。
密封件34的至少部分围设于通孔313a的周侧,则可以设置密封件34均围设与通孔313a的周侧,或者,设置密封件34的一部分围设于通孔313a的周侧,另一部分可以位于通孔313a的内部。
通孔313a可以为圆孔、腰型孔或者其它形状。密封件34的至少部分围设于通孔313a的周侧,并抵接于第一壁313与端面33a之间,通过密封件34的压缩形变实现对通孔313a的密封,降低电池单体30内部的电解液通过通孔313a泄露出去的风险。
密封件34具有凸台30a和凹槽30b中的一者,电极端子33和第一壁313中的至少一者具有凸台30a和凹槽30b中的另一者,凸台30a与凹槽30b相互配合。
可选地,可以设置密封件34具有凸台30a,电极端子33和第一壁313中的一者具凹槽30b,或者,电极端子33和第一壁313均具有凹槽30b;或者,设置密封件34具有凹槽30b,电极端子33和第一壁313中的一者具有凸台30a,当然,也可以设置电极端子33和第一壁313均具有凹槽30b。
当然,也可以设置密封件34既具有凹槽30b,又具有凸台30a,根据密封件34上凸台30a或者凹槽30b的位置,设置第一壁313或者电极端子33具有凹槽30b或者凸台30a,以实现密封件34与第一壁313和电极端子33中的至少一者通过凸台30a与凹槽30b相互配合。
通过凸台30a与凹槽30b的配合,提高密封件34与电极端子33或者密封件34与第一壁313的连接强度,另外,凸台30a与凹槽30b的配合,可以对密封件34提供一定的限位作用,限制密封件34与电极端子33和第一壁313的相对位置,在电池单体30受到冲击、振动等载荷的作用时,密封件34不易与电极端子33或者密封件34脱离, 有利于保持密封件34对第一壁313的通孔313a的密封效果,降低电池单体30的电解液泄漏的风险。
本申请实施例提供的电池单体30,通过设置密封件34具有凸台30a和凹槽30b中的一者,电极端子33和第一壁313中的至少一者具有凸台30a和凹槽30b中的另一者,凸台30a与凹槽30b相互配合,在电池单体30受到冲击、振动等载荷时,密封件34仍能够保持与电极端子33和第一壁313相互配合的状态,降低密封件34脱离电极端子33或者第一壁313而造成密封失效的风险,有利于降低电池单体30电解液泄露的风险,进而有利于提高电池单体30的安全性能。
在一些实施例中,凸台30a的尺寸为h,凸台30a与通孔313a的中心线的间距为d,1.8mm 2≤h*d≤120mm 2
示例性地,h*d可以为1.8mm 2、2mm 2、10mm 2、20mm 2、30mm 2、40mm 2、50mm 2、60mm 2、70mm 2、80mm 2、90mm 2、100mm 2、110mm 2或者120mm 2等。
可以理解的是,在电池单体30受到冲击、振动等载荷的工况下,电极端子33和第一壁313产生形变,且由于悬臂梁效应,距离通孔313a的中心线越近,电极端子33和第一壁313的形变量越大,二者之间的距离也越大。因此,为了在电极端子33与第一壁313产生形变的情况下,凸台30a与凹槽30b仍然能够保持良好的配合,凸台30a距离通孔313a的中心线越近,要求凸台30a的高度也越高,即,凸台30a与通孔313a的中心线的间距d越小,要求凸台30a的尺寸h越大。
发明人经过长期的研究和大量的实验后发现,设置1.8mm 2≤h*d,可以在电池单体30受到冲击、振动等载荷时,凸台30a与凹槽30b仍然能够保持良好的配合关系,有利于进一步保证密封件34对电池单体30的密封效果,降低电池单体30的电解液泄漏的风险,以进一步提高电池单体30的安全性能。同时设置h*d≤120mm 2,可以在保证密封件34的密封效果的前提下,尽可能地保证电池单体30的能量密度。
在一些实施例中,2mm 2≤h*d≤90mm 2
示例性地,h*d可以为2mm 2、20mm 2、30mm 2、40mm 2、50mm 2、60mm 2、70mm 2、80mm 2或者90mm 2等。
发明人经过进一步的研究和实验后发现,设置2mm 2≤h*d≤90mm 2,可以在保证电池单体30的能量密度的前提下,进一步有利于保证密封件34的密封效果。
下面结合实施例1至6以及对比例1至2说明h*d对电池单体30的性能的影响,其中实施例1至6、对比例1至2中的电池单体30的凸台30a与通孔313a的中心线的间距d、凸台30a的尺寸h分别如表1所示,表1中,h和d的单位均为mm,h*d的单位为mm 2
分别提供实施例1至6、对比例1至2中的电池单体30各20个,对各电池单体30进行底球测试,底球测试的具体方法为:将电池单体30夹紧,电极端子33朝向推头,推头直径50mm,沿平行于通孔313a的中心线的方向推推头,使得电极端子33变形>4mm,观察或者测试电池单体30是否存在电解液泄漏或者开裂等不良现象。结果如表1所示。
表1 h*d对电池单体30的性能的影响
Figure PCTCN2022135735-appb-000001
由表1可知,在h*d小于1.8mm 2的对比例中,20个电池单体30中有17个电池单体30在经过底球测试后存在电解液泄漏或者电池单体30开裂等不良的现象。而在h*d大于或者等于1.8mm 2的实施例中,电池单体30在经过底球测试后,均不存在漏液的现象,说明电池单体30的密封件34的密封性能良好。
发明人进一步研究发现,h*d数值大于120mm 2的情况下,电极端子33和密封件34会占用较多的空间,限制了电池单体30的能量密度的提升,为此,设置h*d≤120mm 2
因此,设置1.8mm 2≤h*d≤120mm 2,可以在保证电池单体30具有较高的能量密度的前提下,有效地提高凸台30a和凹槽30b的连接可靠性,有利于提高密封件34的密封效果,进而提高电池单体30的安全性能。
请继续参阅图5、图6和图7,在一些实施例中,第一壁313具有凸台30a,密封件34具有凹槽30b。
第一壁313的凸台30a朝向密封件34凸出设置,密封件34的凹槽30b朝向第一壁313下凹设置,且二者相对设置,以实现二者的相互配合。
如此,凸台30a与凹槽30b相互配合,可以增大第一壁313与密封件34的配合面积,同时,还可以利用凸台30a与凹槽30b的配合,对密封件34提供一定沿平行于第一壁313方向的限位作用,降低电池单体30在受到冲击、振动等载荷时,密封件34相对第一壁313和电极端子33移动而造成密封失效的风险。
在一些实施例中,电极端子33具有凸台30a,凸台30a朝向密封件34凸出设置,密封件34具有凹槽30b。
电极端子33的凸台30a朝向密封件34凸出设置,密封件34的凹槽30b背向电极端子33凸出设置,以实现电极端子33的凸台30a与密封件34的凹槽30b相互配合。
可选地,电极端子33通过注塑成型的方式形成,则电极端子33包括导电部331、注塑部332和焊接部333,导电部331用于与电极组件32的极耳电连接,注塑部332和焊接部333分别与导电部331通过注塑成型的方式形成,焊接部333用于与第一壁313焊接连接,实现第一壁313与电极端子33的连接的同时,也保持导电部331与第一壁313的相互绝缘。电极端子33的凸台30a可以形成于导电部331,或者,电极端子33的凸台30a形成于注塑部332。
如此,电极端子33的凸台30a与密封件34的凹槽30b相互配合,以限制密封 件34相对电极端子33的位移,在电池单体30受到冲击振动等载荷的作用时,电极端子33和第一壁313产生变形的情况下,有利于保持密封件34与电极端子33仍处于相互配合状态,进而有利于保证密封件34的密封效果。
如图5至图9所示,在一些实施例中,密封件34具有凸台30a,第一壁313和电极端子33的至少一者具有凹槽30b。
可选地,可以设置第一壁313和电极端子33中的一者具有凹槽30b,或者,设置第一壁313和电极端子33均具有凹槽30b。
密封件34的凸台30a可以朝向第一壁313凸出设置,或者,密封件34的凸台30a朝向电极端子33凸出设置。或者,密封件34的既有朝向第一壁313凸出设置的凸台30a,又有朝向电极端子33凸出设置的凸台30a。具体根据凸台30a与凹槽30b的相互配合的需要进行设置。
设置密封件34具有凸台30a,在提高密封件34自身的结构强度的同时,有利于保证密封件34与第一壁313,或者密封件34与电极端子33的相互配合的可靠性,在电池单体30受到冲击、振动等载荷时,有利于降低密封件34对电池单体30的密封失效的风险。
在一些实施例中,沿第一壁313的厚度方向,凸台30a的尺寸h满足:h≤3mm。
示例性地,h可以为3mm、2.8mm、2.5mm、2mm、1.5mm或者1mm等。
可以理解的是,h过高,则凸台30a的结构不稳定,尤其是密封件34上的凸台30a,h过高,则凸台30a的结构不稳定,易产生变形,且凸台30a的强度较低,在振动、冲击等载荷的作用下,密封件34上的凸台30a有一定的开裂风险。
发明人经过***的分析和大量的实验后,结果发现,设置h≤3mm,可以有效地降低凸台30a开裂的风险,进一步有利于保证凸台30a和凹槽30b保持相互配合的姿态,降低密封件34密封失效的风险。
在一些实施例中,0.2mm≤h≤3mm。
示例性地,h可以为0.2mm、0.5mm、0.8mm、1mm、1.2mm、1.5mm、1.8mm、2.2mm、2.8mm或者3mm等。
发明人经过***的研究和大量的实验后,结果发现,设置0.2mm≤h,可以有效地降低凸台30a脱离凹槽30b的风险,在电池单体30受到冲击或者振动等载荷时,依然能够保持凸台30a与凹槽30b的相互配合,有利于提高密封件34的密封效果,提高电池单体30的安全性能。
如图10和图11所示,在一些实施例中,沿第一方向X,凸台30a的尺寸δ≥0.2mm,第一方向X为经过密封件34的几何中心且垂直于第一壁313的厚度方向的方向。
示例性地,δ可以为0.2mm、0.4mm、0.6mm、0.8mm或者1mm等。
可以理解的是,δ越小,凸台30a的结构强度越小、凸台30a的可制造性较差,凸台30a与凹槽30b相互配合的强度也越小,在电池单体30受到冲击、振动等载荷的作用时,凸台30a具有较高的脱出凹槽30b的风险。
发明人经过***的研究和大量的实验后发现,设置δ≥0.2mm可以在保证凸台 30a的可制造性的同时,降低凸台30a与凹槽30b脱离的风险,进一步提高密封件34的密封效果和电池单体30的安全性能。
如图10、图11和图12所示,在一些实施例中,凸台30a设置于密封件34的周侧的外边缘。
可以理解的是,电池单体30受到冲击、振动等载荷时,由于悬臂梁效应,越靠近通孔313a的中心线,电极端子33和第一壁313之间的形变量越大,对应的电极端子33和第一壁313之间的距离越大。而越远离通孔313a的中心线,电极端子33和第一壁313之间产生形变后的距离越小。
因此,设置凸台30a位于密封件34的周侧的外边缘,在电池单体30受到振动、冲击等载荷的作用下,有利于保持凸台30a与凹槽30b的相互卡接的状态,降低凸台30a与凹槽30b相互脱离的风险,进而降低密封件34对电池单体30的密封失效的风险,有利于提高电池单体30的安全性能。
如图5、图6、图9以及图12所示,在一些实施例中,密封件34具有避让凹部34a,避让凹部34a设置于密封件34背向凸台30a一侧的边缘,避让凹部34a的至少部分与凸部相对设置。
凸台30a与凹槽30b配合后,若二者的配合较为紧密,则密封件34将因受到一定的内应力而具有开裂的风险。通过设置避让凹部34a,可以通过避让凹部34a缓解密封件34的内应力,降低其因内应力过大而开裂的风险,有利于提高密封件34的结构强度。
在一些实施例中,电极端子33具有凹槽30b。
电极端子33的凹槽30b可以沿背离密封件34的方向下凹设置,对应地,密封件34上形成有与凹槽30b配合的凸台30a。
设置电极端子33具有凹槽30b,可以通过电极端子33的凹槽30b与密封件34的凸台30a相互配合,以对密封件34进行限位,在电池单体30受到振动、冲击等载荷时保持密封件34对电池单体30的密封性能。
如图7所示,在一些实施例中,凸台30a与凹槽30b的内壁的间距d1满足:0.05mm≤d1≤0.2mm。
示例性地,d1可以为0.05mm、0.1mm、0.15mm或者0.2mm等。
可以理解的是,凸台30a与凹槽30b的内壁的最小间距过大,凸台30a与凹槽30b的配合可靠性较低,而凸台30a与凹槽30b的内壁的最小间距过小,则对凸台30a与凹槽30b的制造精度要求较高,且在装配的过程中,不易于凸台30a和凹槽30b的相互配合。
发明人经过***的研究和大量的实验之后,结果发现,设置0.05mm≤d1≤0.2mm,在保证凸台30a与凹槽30b的配合可靠性的基础上,有利于降低凸台30a与凹槽30b的装配难度。
如图5至图9所示,在一些实施例中,电极端子33包括导电部331和注塑部332,注塑部332设置于导电部331的周侧,凹槽30b形成于注塑部332。
如此,端面33a位于导电部331的部分可以用于与电极组件32的极耳电连接, 有利于提高电极端子33与极耳电连接的面积,提高电极端子33的过流能力。且凹槽30b形成于注塑部332,具有较强的可加工性。
请继续参阅图5至图9,在一些实施例中,电极端子33还包括焊接部333,焊接部333设置于注塑部332的内部,注塑部332的边缘到焊接部333的最小距离d2满足:d2≥0.2mm。
示例性地,d2可以为0.2mm、0.4mm、0.5mm或者0.8mm等。
由于注塑部332与焊接部333一体注塑成型设置,且注塑部332能够对焊接部333和导电部331提供一定的绝缘效果,发明人经过长期的研究和大量的实验后发现,设置d2≥0.2mm,
在一些实施例中,密封件34具有朝向第一壁313的方向凸出设置的凸起34b,凸起34b位于通孔313a内。
凸起34b位于通孔313a内,则可以利用通孔313a的内壁为凸起34b提供一定的限位作用,在电池单体30受到冲击、振动等载荷时,通过通孔313a的内壁对凸起34b的限位作用,降低密封件34脱离第一壁313的风险,有利于进一步保证密封件34的密封效果,提高电池单体30的安全性能。
在一些实施例中,密封件34具有所述凹槽30b,第一壁313具有所述凸台30a,凸台30a朝向密封件34凸出设置。
密封件34的凹槽30b朝向第一壁313的方向下凹设置,第一壁313的凸台30a与密封件34的凹槽30b相互配合,以限制密封件34相对于第一壁313的位移,在电池单体30受到冲击、振动等载荷时,降低密封件34密封失效的可能性,有利于提高电池单体30的安全性能。
在一些实施例中,凸台30a形成于所述第一壁313靠近通孔313a一侧的边缘。
凸台30a形成于第一壁313靠近通孔313a一侧的边缘,则凹槽30b形成于密封件34与凸台30a相对应的位置,如此,凸台30a易于加工,且在装配的过程中,便于凸台30a与凹槽30b的相互配合。另外,通过在密封件34上靠近通孔313a的位置设置凹槽30b,可以降低密封件34的内应力,有利于降低密封件34因内应力过大而开裂的风险。
根据本申请实施例提供的电池10,包括上述任一实施例提供过的电池单体30。
本申请实施例提供的电池10,由于采用了上述任一实施例提供的电池单体30,因而具有同样的技术效果,在此不再赘述。
根据本申请实施例提供的用电装置,包括上述实施例提供的电池10,电池10用于提供电能。
本申请实施例提供的用电装置,由于采用了本申请实施例提供的电池10,因而具有同样的技术效果,在此不再赘述。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种电池单体,包括:
    外壳,具有第一壁,所述第一壁具有通孔;
    电极端子,设置于第一壁,所述电极端子具有朝向第一壁的端面,所述端面的至少部分与所述通孔相对设置;
    密封件,至少部分围设于所述通孔的周侧,所述密封件的至少部分抵接于所述端面和所述第一壁之间;
    其中,所述密封件具有凸台和凹槽中的一者,所述电极端子和所述第一壁中的至少一者具有所述凸台和所述凹槽中的另一者,所述凸台与所述凹槽相互配合。
  2. 根据权利要求1所述的电池单体,其中,沿所述第一壁的厚度方向,所述凸台的尺寸为h,所述凸台与所述通孔的中心线的间距为d,1.8mm 2≤h*d≤120mm 2
  3. 根据权利要求2所述的电池单体,其中,2mm 2≤h*d≤90mm 2
  4. 根据权利要求1至3任一项所述的电池单体,其中,所述第一壁具有所述凸台,所述密封件具有所述凹槽。
  5. 根据权利要求1至4任一项所述的电池单体,其中,所述电极端子具有所述凸台,所述凸台朝向所述密封件凸出设置,所述密封件具有所述凹槽。
  6. 根据权利要求1至5任一项所述的电池单体,其中,所述密封件具有所述凸台,所述第一壁和所述电极端子的至少一者具有所述凹槽。
  7. 根据权利要求1至6任一项所述的电池单体,其中,沿所述第一壁的厚度方向,所述凸台的尺寸h满足:h≤3mm。
  8. 根据权利要求7所述的电池单体,其中,0.2mm≤h≤3mm。
  9. 根据权利要求1至8任一项所述的电池单体,其中,沿第一方向,所述凸台的尺寸δ≥0.2mm,所述第一方向为经过所述密封件的几何中心且垂直于所述第一壁的厚度方向的方向。
  10. 根据权利要求6所述的电池单体,其中,所述凸台设置于所述密封件的周侧的外边缘。
  11. 根据权利要求10所述的电池单体,其中,所述密封件具有避让凹部,所述避让凹部设置于所述密封件背向所述凸台一侧的边缘,所述避让凹部的至少部分与所述凸部相对设置。
  12. 根据权利要求6、10或者11所述的电池单体,其中,所述电极端子具有所述凹槽。
  13. 根据权利要求12所述的电池单体,其中,所述凸台与所述凹槽的内壁的间距d1满足:0.05mm≤d1≤0.2mm。
  14. 根据权利要求12或13所述的电池单体,其中,所述电极端子包括导电部和注塑部,所述注塑部设置于所述导电部的周侧,所述凹槽形成于所述注塑部。
  15. 根据权利要求14所述的电池单体,其中,所述电极端子还包括焊接部,所述焊 接部设置于所述注塑部的内部,所述注塑部的边缘到所述焊接部的最小距离d2满足:d2≥0.2mm。
  16. 根据权利要求1至15任一项所述的电池单体,其中,所述密封件具有朝向所述第一壁的方向凸出设置的凸起,所述凸起位于所述通孔内。
  17. 根据权利要求1至16任一项所述的电池单体,其中,所述密封件具有所述凹槽,所述第一壁具有所述凸台,所述凸台朝向所述密封件凸出设置。
  18. 根据权利要求17所述的电池单体,其中,所述凸台形成于所述第一壁靠近所述通孔一侧的边缘。
  19. 一种电池,包括如权利要求1至18任一项所述的电池单体。
  20. 一种用电装置,包括如权利要求19所述的电池,所述电池用于提供电能。
PCT/CN2022/135735 2022-12-01 2022-12-01 电池单体、电池以及用电装置 WO2024113292A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/135735 WO2024113292A1 (zh) 2022-12-01 2022-12-01 电池单体、电池以及用电装置
CN202310796759.4A CN118137032A (zh) 2022-12-01 2023-06-30 电池单体、电池、用电装置和制备端盖组件的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/135735 WO2024113292A1 (zh) 2022-12-01 2022-12-01 电池单体、电池以及用电装置

Publications (1)

Publication Number Publication Date
WO2024113292A1 true WO2024113292A1 (zh) 2024-06-06

Family

ID=91234555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135735 WO2024113292A1 (zh) 2022-12-01 2022-12-01 电池单体、电池以及用电装置

Country Status (2)

Country Link
CN (1) CN118137032A (zh)
WO (1) WO2024113292A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215220848U (zh) * 2021-05-13 2021-12-17 湖北亿纬动力有限公司 一种顶盖组件
CN215731940U (zh) * 2021-05-13 2022-02-01 湖北亿纬动力有限公司 一种电池顶盖组件
WO2022209059A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 二次電池およびその製造方法
CN217740662U (zh) * 2022-07-29 2022-11-04 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池及用电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209059A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 二次電池およびその製造方法
CN215220848U (zh) * 2021-05-13 2021-12-17 湖北亿纬动力有限公司 一种顶盖组件
CN215731940U (zh) * 2021-05-13 2022-02-01 湖北亿纬动力有限公司 一种电池顶盖组件
CN217740662U (zh) * 2022-07-29 2022-11-04 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池及用电装置

Also Published As

Publication number Publication date
CN118137032A (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
US20240079693A1 (en) End cover assembly, battery cell, battery, and electrical apparatus
WO2024027034A1 (zh) 端盖组件、电池单体、电池以及用电装置
US20230344068A1 (en) End cap, battery cell, battery, and power consuming device
US20240055646A1 (en) Wound electrode assembly, battery cell, battery, and electrical device
US20230198054A1 (en) Battery cell, battery, and electrical consuming device
US20230216154A1 (en) Current collecting member, battery cell, battery, and power consuming device
US20230223644A1 (en) Pressure relief apparatus, battery cell, battery, and electrical device
WO2023097871A1 (zh) 电池单体及其制造方法和设备、电池以及用电装置
EP4391183A1 (en) End cover, battery cell, battery, and electric apparatus
WO2023025104A1 (zh) 电池单体、电池以及用电装置
WO2023082155A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
WO2024113292A1 (zh) 电池单体、电池以及用电装置
KR20230057469A (ko) 압력 완화 장치, 배터리 셀, 배터리 및 전기 기기
WO2024103201A1 (zh) 端盖组件、电池单体、电池和用电装置
WO2024066169A1 (zh) 电池单体、电池以及用电装置
US20230155233A1 (en) Battery cell, manufacturing method and manufacturing system thereof, battery, and powered device
WO2024082141A1 (zh) 电池单体、电池及用电设备
US20240106039A1 (en) Battery cell, battery, electrical device, and method and device for manufacturing battery cell
US20230198089A1 (en) Pressure relief apparatus, battery cell, battery and electric apparatus
CN220066027U (zh) 电池单体、电池及用电设备
WO2024082138A1 (zh) 电池单体、电池及用电设备
WO2024045048A1 (zh) 电池单体、电池以及用电装置
WO2024007115A1 (zh) 电池单体、电池以及用电装置
WO2023220886A1 (zh) 端盖、电池单体、电池及用电设备
US20230395906A1 (en) End cap, battery cell, battery and power consuming device