WO2024113276A1 - 一种通信定位方法、装置、设备及存储介质 - Google Patents

一种通信定位方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024113276A1
WO2024113276A1 PCT/CN2022/135684 CN2022135684W WO2024113276A1 WO 2024113276 A1 WO2024113276 A1 WO 2024113276A1 CN 2022135684 W CN2022135684 W CN 2022135684W WO 2024113276 A1 WO2024113276 A1 WO 2024113276A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
reference signal
information
srs configuration
configuration parameter
Prior art date
Application number
PCT/CN2022/135684
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/135684 priority Critical patent/WO2024113276A1/zh
Publication of WO2024113276A1 publication Critical patent/WO2024113276A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a communication positioning method, device, equipment and storage medium.
  • some low-power and high-precision positioning methods are mainly used for positioning methods in the inactive or idle state of radio resource control (RRC).
  • RRC radio resource control
  • the reference signals used for uplink positioning such as the sounding reference signal (SRS)
  • SRS sounding reference signal
  • the present disclosure provides a communication positioning method, device, equipment and storage medium.
  • a communication positioning method which is applied to a terminal and includes: determining a sounding reference signal SRS configuration parameter, where the SRS configuration parameter is applicable to multiple cells; and sending the SRS based on the SRS configuration parameter, where the SRS is used for positioning measurement.
  • a communication positioning method which is applied to a network device, and includes: receiving an SRS sent by a terminal based on a sounding reference signal SRS configuration parameter, the SRS configuration parameter being applicable to multiple cells; and performing positioning measurement based on the SRS.
  • a communication positioning device configured in a terminal and includes: a processing module for determining a sounding reference signal SRS configuration parameter, where the SRS configuration parameter is applicable to multiple cells; and a sending module for sending the SRS based on the SRS configuration parameter, where the SRS is used for positioning measurement.
  • a communication positioning device comprising: a receiving module, used to receive an SRS sent by a terminal based on a sounding reference signal SRS configuration parameter, the SRS configuration parameter being applicable to multiple cells; and a processing module, used to perform positioning measurement based on the SRS.
  • a communication positioning device comprising: a processor; and a memory for storing processor-executable instructions; wherein the processor is configured to: execute the method involved in the first aspect.
  • a communication positioning device comprising: a processor; a memory for storing processor executable instructions; wherein the processor is configured to: execute the method involved in the second aspect.
  • a non-temporary computer-readable storage medium When instructions in the storage medium are executed by a processor of a terminal, the terminal is enabled to execute the method involved in the first aspect.
  • a non-temporary computer-readable storage medium is provided.
  • the network device When instructions in the storage medium are executed by a processor of a network device, the network device is enabled to execute the method involved in the second aspect.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: by configuring SRS configuration parameters applicable to multiple cells, the power consumption caused by using SRS for positioning measurement may be reduced.
  • Fig. 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 is a flow chart of a communication positioning method according to an exemplary embodiment.
  • Fig. 3 is a flow chart of another communication positioning method according to an exemplary embodiment.
  • Fig. 4 is a flow chart of yet another communication positioning method according to an exemplary embodiment.
  • Fig. 5 is a flow chart of yet another communication positioning method according to an exemplary embodiment.
  • Fig. 6 is a flow chart of another communication positioning method according to an exemplary embodiment.
  • Fig. 7 is a flow chart of yet another communication positioning method according to an exemplary embodiment.
  • Fig. 8 is a flow chart of yet another communication positioning method according to an exemplary embodiment.
  • Fig. 9 is a flow chart of another communication positioning method according to an exemplary embodiment.
  • Fig. 10 is a flow chart of yet another communication positioning method according to an exemplary embodiment.
  • Fig. 11 is a flow chart of yet another communication positioning method according to an exemplary embodiment.
  • Fig. 12 is a flow chart of another communication positioning method according to an exemplary embodiment.
  • Fig. 13 is a schematic diagram of a communication positioning device according to an exemplary embodiment.
  • Fig. 14 is a schematic diagram of another communication positioning device according to an exemplary embodiment.
  • Fig. 15 is a schematic diagram of a communication positioning device according to an exemplary embodiment.
  • Fig. 16 is a schematic diagram of another communication positioning device according to an exemplary embodiment.
  • the communication method involved in the present disclosure can be applied to the wireless communication system 100 shown in Figure 1.
  • the network system may include a network device 110 and a terminal 120.
  • the wireless communication system shown in Figure 1 is only for schematic illustration, and the wireless communication system may also include other network devices, for example, core network devices, wireless relay devices, and wireless backhaul devices, which are not shown in Figure 1.
  • the embodiment of the present disclosure does not limit the number of network devices and the number of terminals included in the wireless communication system.
  • the wireless communication system of the embodiment of the present disclosure is a network that provides wireless communication functions.
  • the wireless communication system can adopt different communication technologies, such as Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency-Division Multiple Access (OFDMA), Single Carrier FDMA (SC-FDMA), and Carrier Sense Multiple Access with Collision Avoidance.
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single Carrier FDMA
  • Carrier Sense Multiple Access with Collision Avoidance According to the capacity, rate, latency and other factors of different networks, networks can be divided into 2G (English: Generation) networks, 3G networks, 4G networks or future evolution networks, such as the 5th Generation Wireless Communication System (5G) network.
  • the network device 110 involved in the present disclosure may also be referred to as a wireless access network device.
  • the wireless access network device may be: a base station, an evolved Node B (eNB), a home base station, an access point (AP) in a wireless fidelity (WIFI) system, a wireless relay node, a wireless backhaul node, a transmission point (TP) or a transmission and receiving point (TRP), etc. It may also be a gNB in an NR system, or it may also be a component or a part of a device constituting a base station, etc. When it is a vehicle-to-everything (V2X) communication system, the network device may also be a vehicle-mounted device.
  • V2X vehicle-to-everything
  • the network device 110 involved in the present disclosure may also be a core network device, and the core network device may include a location management function network element.
  • the location management function network element includes a location server (location server), and the location server may be implemented as any one of the following: Location Management Function (LMF), Enhanced Serving Mobile Location Centre (E-SMLC), Secure User Plane Location (SUPL), and Secure User Plane Location Platform (SUPL Location Platform, SUPL LP).
  • LMF Location Management Function
  • E-SMLC Enhanced Serving Mobile Location Centre
  • SUPL Secure User Plane Location
  • SUPL LP Secure User Plane Location Platform
  • the terminal 120 involved in the present disclosure may also be referred to as a terminal device, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), etc., which is a device that provides voice and/or data connectivity to users.
  • the terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • some examples of terminals are: a smart phone (Mobile Phone), a pocket computer (Pocket Personal Computer, PPC), a handheld computer, a personal digital assistant (Personal Digital Assistant, PDA), a laptop computer, a tablet computer, a wearable device, or a vehicle-mounted device, etc.
  • V2X vehicle-to-everything
  • the terminal device may also be a vehicle-mounted device. It should be understood that the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal.
  • the network device 110 and the terminal 120 may use any feasible wireless communication technology to achieve mutual data transmission.
  • the transmission channel corresponding to the data sent by the network device 110 to the terminal 120 is called a downlink channel (downlink, DL)
  • the transmission channel corresponding to the data sent by the terminal 120 to the network device 110 is called an uplink channel (uplink, UL).
  • the network device involved in the embodiments of the present disclosure may be a base station.
  • the network device may also be any other possible network device
  • the terminal may be any possible terminal, which is not limited by the present disclosure.
  • release (Rel) 18 which are mainly for positioning terminals in RRC_INACTIVE state or RRC_IDLE state.
  • the reference signal used for uplink positioning such as SRS, is configured per cell. When the terminal moves from one cell to another, it needs to re-obtain the SRS configuration. Obviously, this will lead to more power consumption.
  • the present disclosure provides a communication positioning method, apparatus, device and storage medium.
  • SRS configuration parameters applicable to multiple cells the power consumption caused by using SRS for positioning measurement can be reduced.
  • FIG2 is a flow chart of a communication positioning method according to an exemplary embodiment. As shown in FIG2 , the method is applied to a terminal and may include the following steps:
  • step S11 a sounding reference signal SRS configuration parameter is determined.
  • the terminal may determine an SRS configuration parameter, wherein the SRS configuration parameter is applicable to multiple cells.
  • the SRS configuration parameters may be some configuration parameters related to sending SRS, such as beam information related to SRS, path loss reference signal, etc.
  • the beam information may include spatial relationship information (spatialrelationinfo) or uplink transmission configuration indication state (uplink transmission configuration indication state, UL TCI state).
  • step S12 an SRS is sent based on the SRS configuration parameters.
  • the terminal may send an SRS to the network device based on the SRS configuration parameters determined in S11, so that the network device may perform positioning measurement based on the SRS sent by the terminal. It is understandable that the network device that performs positioning measurement based on the SRS includes a TRP.
  • the present disclosure can reduce the power consumption caused by using SRS for positioning measurement by configuring SRS configuration parameters that can be applicable to multiple cells.
  • determining the SRS configuration parameters in step S11 may include: receiving configuration parameter information of the SRS configuration parameters sent by a network device; and/or determining the SRS configuration parameters based on a default rule.
  • Fig. 3 is a flow chart of another communication positioning method according to an exemplary embodiment. As shown in Fig. 3, determining the SRS configuration parameters in step S11 may include the following steps:
  • step S21 configuration parameter information of SRS configuration parameters sent by a network device is received.
  • the terminal may receive parameter configuration information sent by the network device, where the parameter configuration information is configuration parameter information related to the SRS configuration parameters. It can be understood that the terminal may determine the corresponding SRS configuration parameters based on the parameter configuration information.
  • Fig. 4 is a flow chart of another communication positioning method according to an exemplary embodiment. As shown in Fig. 4, determining the SRS configuration parameters in step S11 may include the following steps:
  • step S31 SRS configuration parameters are determined based on default rules.
  • the terminal may determine the SRS configuration parameters based on a default rule.
  • the default rule may be pre-set or pre-defined in a protocol, which is not limited in the present disclosure.
  • the present disclosure provides a variety of methods for determining SRS configuration parameters to configure SRS configuration parameters applicable to multiple cells, thereby reducing power consumption when using SRS for positioning measurement.
  • the configuration parameter information in response to the SRS configuration parameter being associated with the reference signal, includes a reference signal identifier.
  • the SRS configuration parameters may be associated with a reference signal, in which case the configuration parameter information may include a reference signal identifier.
  • the SRS configuration parameters are associated with a reference signal, which may be understood as the beam information in the SRS configuration parameters being the beam corresponding to the reference signal, and the path loss reference signal in the SRS configuration parameters being the reference signal.
  • the spatial relationship information or quasi-co-location (QCL) type (Type) D information when the SRS is transmitted is the same as the spatial relationship information or QCL Type D information corresponding to the reference signal; the transmission power when the SRS is transmitted is determined by the signal strength received when the reference signal is received.
  • the identifier can be an identity (ID) or an index (index).
  • the terminal may receive configuration parameter information sent by the network device, and the configuration parameter information includes a reference signal identifier.
  • the terminal may determine the SRS configuration parameter corresponding to the reference signal identifier based on the reference signal identifier and the association relationship between the SRS configuration parameter and the reference signal, so that the terminal may send the SRS to the network device based on the SRS configuration parameter.
  • the terminal may determine configuration parameter information based on a preset default rule, and the configuration parameter information includes a reference signal identifier.
  • the terminal may determine the SRS configuration parameter corresponding to the reference signal identifier based on the reference signal identifier and the association relationship between the SRS configuration parameter and the reference signal. So that the terminal sends the SRS to the network device based on the SRS configuration parameter.
  • the SRS configuration parameter is associated with the reference signal, and it can be understood that the beam information in the SRS configuration parameter is the beam corresponding to the reference signal, and the path loss reference signal in the SRS configuration parameter is the reference signal.
  • the spatial relationship information or QCL Type D information when the SRS is sent is the same as the spatial relationship information or QCL Type D information corresponding to the reference signal; the transmission power when the SRS is sent is determined by the signal strength received when the reference signal is received.
  • the present disclosure associates SRS configuration parameters with reference signals, so that corresponding SRS configuration parameters applicable to multiple cells can be determined through reference signal identifiers, thereby reducing power consumption when using SRS for positioning measurement.
  • the default rule in response to determining the SRS configuration parameters based on the default rule, includes: determining the reference signal based on the signal strength of the received reference signal; and determining the SRS configuration parameters associated with the reference signal according to the reference signal.
  • the default rule in response to the terminal determining the SRS configuration parameter based on a default rule, may include: the terminal determining the SRS configuration parameter based on a signal strength of a received reference signal.
  • the terminal determines the signal strength of the reference signal. If the signal strength of the reference signal is greater than or equal to a preset reference signal threshold, the terminal can determine the SRS configuration parameters associated with the reference signal and send the SRS based on the SRS configuration parameters. Since the terminal already knows the SRS configuration parameters associated with the reference signal in advance, the terminal can determine the SRS configuration parameters associated with the reference signal based on the reference signal.
  • the terminal already knows the SRS configuration parameters associated with different reference signals in advance, and the terminal can determine that the SRS can be sent based on the SRS configuration parameters associated with the specified reference signal based on the signal strength of each reference signal, and the signal strength of the specified reference signal needs to be greater than or equal to the preset reference signal threshold.
  • the terminal can determine the reference signal receiving power (RSRP) of the SSB. If the RSRP of the SSB is greater than or equal to a preset SSB threshold, it can be determined that the SSB is a designated SSB, and it can be determined that the SRS can be sent based on the SRS configuration parameters associated with the designated SSB.
  • RSRP reference signal receiving power
  • the present disclosure can determine SRS configuration parameters applicable to multiple cells according to the signal strength of a reference signal, and can reduce power consumption when using SRS for positioning measurement.
  • the method may also include: determining the SRS resources corresponding to the reference signal based on the reference signal information, wherein the reference signal information includes the reference signal time domain position and/or the reference signal identifier; and/or determining the SRS resources corresponding to the reference signal based on the first information, wherein the first information includes the paging radio network temporary identity (RNTI) and/or the paging time domain position of the terminal.
  • RNTI paging radio network temporary identity
  • Fig. 5 is a flow chart of another communication positioning method according to an exemplary embodiment. As shown in Fig. 5, the method may further include the following steps:
  • step S41 an SRS resource corresponding to a reference signal is determined based on the reference signal information.
  • the terminal may determine the SRS resource corresponding to the reference signal based on the reference signal information.
  • the reference signal information may include the reference signal time domain position and/or the reference signal identifier. It can also be understood that the reference signal information has a certain correlation with the SRS resource.
  • the terminal can determine the SRS resource corresponding to the reference signal based on the reference signal time domain position and/or the reference signal identifier. Therefore, it can also be considered that the SRS resources corresponding to different reference signal time domain positions and/or reference signal identifiers are related to the reference signal information. It can be understood that the SRS resources are the resources used to send SRS. Of course, since the SRS configuration parameters are some configuration parameters related to sending SRS, the SRS resources can also be considered as the resources corresponding to the SRS configuration parameters. Among them, the correspondence between the reference signal information and the SRS resources can be determined based on the configuration information sent by the network device, or based on the default rules.
  • the SRS resource such as the SRS time domain resource
  • the SRS resource may be K1 symbols after the time domain position of the SSB.
  • the SRS resource such as the SRS time domain resource
  • the SRS resource may be K2 symbols after the time domain position of the TRS.
  • the reference signal information may also include any other possible information related to the reference signal, which is not limited in the present disclosure.
  • Fig. 6 is a flow chart of another communication positioning method according to an exemplary embodiment. As shown in Fig. 6, the method may further include the following steps:
  • step S51 an SRS resource corresponding to a reference signal is determined based on the first information.
  • the terminal may determine the SRS resource corresponding to the reference signal based on the first information.
  • the first information includes the paging RNTI and/or the paging time domain position of the terminal. It can also be understood that the first information has a certain correlation with the SRS resource.
  • the first information can be considered as terminal information related to the terminal.
  • the terminal may determine the SRS resource corresponding to the reference signal based on the paging RNTI and/or the paging time domain position of the terminal. Therefore, it can also be considered that the paging RNTI and/or the paging time domain position of the terminal are related to the SRS resource.
  • the first information may also include any other possible information related to the terminal, which is not limited in the present disclosure.
  • the present disclosure provides multiple ways to determine SRS resources, so that SRS with SRS configuration parameters applicable to multiple cells can be sent based on the SRS resources, which can reduce the power consumption caused by using SRS for positioning measurement.
  • SRS resources corresponding to the same reference signal information in different cells have the same configuration.
  • the configuration of SRS resources corresponding to the same reference signal information is the same.
  • the terminal in different cells can determine the SRS resources with the same configuration through the same reference signal information, so that the terminal can send SRS using the same SRS resources in different cells.
  • the present disclosure uses the same reference signal information to correspond to the same SRS resource, so that the terminal can use the same SRS resource in different cells to send SRS with SRS configuration parameters applicable to multiple cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • different reference signal information corresponds to different SRS configuration parameters.
  • different reference signal information corresponds to different SRS configuration parameters. It can also be considered that the SRS configuration parameters corresponding to the same reference signal information are the same.
  • the terminal may determine different SRS configuration parameters applicable to multiple cells through different reference signal information.
  • terminals in different cells can determine the same SRS configuration parameters through the same reference signal information.
  • the present disclosure corresponds the same SRS configuration parameters to the same reference signal information, so that the terminal can send SRS using the same SRS configuration parameters in different cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • the reference signal includes at least one of the following: a synchronization signal block SSB; a channel state information reference signal (CSI-RS); and a tracking reference signal TRS.
  • the reference signal may be an SSB.
  • the reference signal identifier may be an SSB ID.
  • the reference signal may be a CSI-RS.
  • the reference signal identifier may be a CSI-RS ID.
  • the reference signal may be a TRS.
  • the reference signal identifier may be a TRS ID.
  • the reference signal may be an SSB and a CSI-RS.
  • the reference signal identifier may be an SSB ID and a CSI-RS ID.
  • the reference signal may be an SSB and a TRS.
  • the reference signal identifier may be an SSB ID and a TRS ID.
  • the reference signal may be a CSI-RS and a TRS.
  • the reference signal identifier may be a CSI-RS ID and a TRS ID.
  • the reference signal may be SSB, CSI-RS, and TRS.
  • the reference signal identifier may be SSB ID, CSI-RS ID, and TRS.
  • the present disclosure is applicable to situations of a variety of different reference signals.
  • SRS configuration parameters applicable to a plurality of cells the power consumption caused by using SRS for positioning measurement can be reduced.
  • the configuration parameter information in response to the SRS configuration parameter being associated with the TCI state of the control resource set (CORESET), the configuration parameter information includes a CORESET identifier corresponding to the SRS configuration parameter.
  • the SRS configuration parameter may be associated with the TCI state of the CORESET.
  • the configuration parameter information may include a CORESET identifier corresponding to the SRS configuration parameter.
  • the terminal may receive configuration parameter information sent by the network device, and the configuration parameter information includes a CORESET identifier.
  • the terminal may determine the SRS configuration parameters corresponding to the CORESET identifier based on the CORESET identifier and the association between the SRS configuration parameters and the CORESET.
  • the CORESET identifier may indicate a specified CORESET, and then the TCI state of the specified CORESET may be determined.
  • the TCI state will indicate the reference signal identifier corresponding to QCL Type D, and/or the path loss reference signal identifier. Therefore, it can also be considered that the SRS configuration parameters can be determined based on the TCI state of the CORESET, and the terminal may send the SRS to the network device based on the SRS configuration parameters determined based on the TCI state of the CORESET.
  • the terminal may determine the configuration parameter information based on a preset default rule, and the configuration parameter information includes a CORESET identifier.
  • the terminal may determine the SRS configuration parameter corresponding to the CORESET identifier based on the CORESET identifier and the association relationship between the SRS configuration parameter and the CORESET. That is, the SRS configuration parameter may be determined based on the TCI state of the CORESET, because the TCI state indicates the reference signal identifier corresponding to QCL Type D and/or the path loss reference signal identifier, so that the terminal sends the SRS to the network device based on the SRS configuration parameter.
  • the present disclosure associates the SRS configuration parameters with the CORESET, so that the TCI state corresponding to the specified CORESET can be indicated by the CORESET identifier, and the corresponding SRS configuration parameters applicable to multiple cells can be determined, which can reduce the power consumption caused by using SRS for positioning measurement.
  • the default rules include: determining the SRS configuration parameters based on the TCI state of the CORESET corresponding to the paging information.
  • the default rule in response to the terminal determining the SRS configuration parameter based on a default rule, may include: the terminal determining the SRS configuration parameter based on the TCI state of the CORESET corresponding to the paging information.
  • the SRS configuration parameters are pre-associated with the TCI state of the CORESET, so the terminal can determine the SRS configuration parameters associated with the TCI state of the CORESET according to the TCI state of the CORESET corresponding to the paging information. That is, the SRS configuration parameters can be determined based on the TCI state of the CORESET, because the TCI state indicates the reference signal identifier corresponding to QCL Type D and/or the path loss reference signal identifier, so the terminal can determine the SRS configuration parameters based on the TCI state of the CORESET.
  • the present disclosure can determine SRS configuration parameters applicable to multiple cells according to the TCI state of the CORESET corresponding to the paging information, and can reduce the power consumption caused by using the SRS for positioning measurement.
  • FIG7 is a flow chart of another communication positioning method according to an exemplary embodiment. As shown in FIG7 , the method may further include the following steps:
  • step S61 the SRS resources corresponding to the CORESET are determined based on the second information.
  • the terminal may determine the SRS resources corresponding to the CORESET based on the second information.
  • the second information includes at least one of the paging time domain position, the paging identifier, and the paging RNTI. It can also be considered that the terminal determines the SRS resources corresponding to the TCI state of the CORESET based on the second information.
  • the second information may include a paging time domain position, a paging identifier and/or a paging RNTI. It can also be understood that the second information has a certain correlation with the SRS resource. The second information can be considered as paging information related to paging.
  • the terminal can determine the SRS resources corresponding to the CORESET based on the paging time domain position, the paging identifier and/or the paging RNTI. Therefore, it can also be considered that the paging time domain position, the paging identifier and/or the paging RNTI are related to the SRS resources.
  • the SRS resource such as the SRS time domain resource
  • the SRS time domain resource may be K3 symbols after the paging time domain position.
  • SRS resources are related to paging RNTI, that is, the SRS resources of terminals corresponding to different paging RNTIs can be distinguished to prevent collision.
  • the second information may also include any other possible information related to the paging, which is not limited in the present disclosure.
  • the present disclosure provides a method for determining SRS resources, so that an SRS with SRS configuration parameters applicable to multiple cells can be sent based on the SRS resources, which can reduce the power consumption caused by using SRS for positioning measurement.
  • the SRS resource configuration corresponding to the same second information in different cells is the same.
  • the SRS resource configurations corresponding to the same second information are the same.
  • the terminal in different cells can determine the SRS resources with the same configuration through the same second information, so that the terminal can send the SRS using the same SRS resources in different cells.
  • the present disclosure uses the same second information to correspond to the same SRS resource, so that the terminal can use the same SRS resource in different cells to send SRS with SRS configuration parameters applicable to multiple cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • different TCI states correspond to different SRS configuration parameters.
  • different TCI states correspond to different SRS configuration parameters. It can also be considered that the SRS configuration parameters corresponding to the same TCI state are the same.
  • the terminal can determine different SRS configuration parameters applicable to multiple cells through different TCI states.
  • Different TCI states refer to at least one of the reference signal identifier and/or path loss reference signal identifier corresponding to the QCL Type D indicated by the TCI state being different.
  • terminals in different cells can determine the same SRS configuration parameters through the same TCI state.
  • the terminal can determine the corresponding CORESET that sends paging based on the paging information, and determine the SRS configuration parameters based on the TCI state of the CORESET. Therefore, it can also be considered that the SRS configuration parameters corresponding to the paging information from different CORESETs are different.
  • the present disclosure corresponds the same SRS configuration parameters to the same TCI state, so that the terminal can send SRS using the same SRS configuration parameters in different cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • different SRS configuration parameters correspond to different SRS resources
  • the SRS resources include at least one of the following: time domain resources; frequency domain resources; and a reference signal sequence of the SRS.
  • the SRS resources may include time domain resources.
  • the SRS resources may include frequency domain resources.
  • the SRS resource may include a reference signal sequence of the SRS.
  • SRS resources may include time domain resources and frequency domain resources.
  • the SRS resource may include a time domain resource and a reference signal sequence of the SRS.
  • the SRS resources may include frequency domain resources and a reference signal sequence of the SRS.
  • the SRS resources may include time domain resources, frequency domain resources, and a reference signal sequence of the SRS.
  • the present disclosure provides multiple implementations of SRS resources, so that a terminal can use SRS resources in different cells to send SRSs with SRS configuration parameters applicable to multiple cells, thereby reducing power consumption when using SRS for positioning measurement.
  • the SRS configuration parameters include at least one of the following: spatial relationship information; uplink UL TCI status information; path loss (pathloss) reference signal (reference signal, RS).
  • the SRS configuration parameters may include spatialrelationinfo
  • the SRS configuration parameters may include UL TCI state information.
  • the SRS configuration parameters may include pathloss RS.
  • the SRS configuration parameters may include spatialrelationinfo and UL TCI state information.
  • SRS configuration parameters may include spatialrelationinfo and pathloss RS.
  • the SRS configuration parameters may include UL TCI state information and pathloss RS.
  • the SRS configuration parameters may include spatialrelationinfo, UL TCI state information and pathloss RS.
  • spatialrelationinfo and UL TCI state information can be considered as configuration parameters related to the SRS beam.
  • the present disclosure provides a variety of implementations of SRS configuration parameters. By configuring SRS configuration parameters that can be applicable to multiple cells, the power consumption caused by using SRS for positioning measurement can be reduced.
  • FIG8 is a flow chart of another communication positioning method according to an exemplary embodiment. As shown in FIG8, the method may also include the following steps:
  • step S71 downlink control information DCI is received.
  • the terminal may also receive downlink control information (DCI).
  • DCI may include specified paging information or paging early indication (PEI).
  • PEI paging early indication
  • the specified paging information or PEI is intended to instruct the terminal to send an SRS.
  • the specified paging information or PEI may include paging information corresponding to an RNTI for instructing the terminal to send an SRS, or the DCI may include an information field for instructing the terminal to send an SRS.
  • step S72 in response to the DCI including the specified paging information or PEI, the SRS is sent based on the SRS configuration parameters.
  • the terminal in response to the DCI received in S51 including designated paging information or PEI, the terminal may send an SRS to the network device based on an SRS configuration parameter.
  • the SRS when a terminal is instructed to send an SRS through DCI, the SRS is sent based on an SRS configuration parameter applicable to multiple cells, thereby reducing power consumption caused by using the SRS for positioning measurement.
  • the present disclosure also provides a communication positioning method suitable for execution by a network device.
  • FIG. 9 is a flow chart of another communication positioning method according to an exemplary embodiment. As shown in FIG. 9 , the method is applied to a network device and may include the following steps:
  • step S81 the receiving terminal sends an SRS based on the sounding reference signal SRS configuration parameters.
  • the network device may receive an SRS sent by a terminal, where the SRS is sent by the terminal based on an SRS configuration parameter, wherein the SRS configuration parameter is applicable to multiple cells.
  • the SRS configuration parameters may be some configuration parameters related to sending SRS, such as beam information related to SRS, path loss reference signal, etc.
  • the beam information may include spatialrelationinfo or UL TCI state.
  • step S82 positioning measurement is performed based on the SRS.
  • the network device may perform positioning measurement on the terminal based on the SRS received in S61. It is understandable that the network device that performs positioning measurement based on the SRS includes a TRP.
  • the present disclosure can reduce the power consumption caused by using SRS for positioning measurement by configuring SRS configuration parameters that can be applicable to multiple cells.
  • the method may further include: sending configuration parameter information of SRS configuration parameters; and/or, the SRS configuration parameters are determined based on default rules.
  • Fig. 10 is a flow chart of another communication positioning method according to an exemplary embodiment. As shown in Fig. 10, the method may further include the following steps:
  • step S91 configuration parameter information of SRS configuration parameters is sent.
  • the network device may send parameter configuration information to the terminal, where the parameter configuration information is configuration parameter information related to the SRS configuration parameters, so that the terminal may determine the corresponding SRS configuration parameters based on the parameter configuration information.
  • FIG11 is a flow chart of another communication positioning method according to an exemplary embodiment. As shown in FIG11 , the method may further include the following steps:
  • step S101 SRS configuration parameters are determined based on default rules.
  • the network device may determine the SRS configuration parameters based on a default rule.
  • the default rule may be pre-set or may be pre-defined in a protocol, which is not limited in the present disclosure.
  • the present disclosure provides a variety of methods for determining SRS configuration parameters to configure SRS configuration parameters applicable to multiple cells, thereby reducing power consumption when using SRS for positioning measurement.
  • the configuration parameter information in response to the SRS configuration parameter being associated with the reference signal, includes a reference signal identifier.
  • the SRS configuration parameter may be associated with a reference signal, in which case the configuration parameter information may include a reference signal identifier.
  • the SRS configuration parameter is associated with a reference signal, which may be understood as the beam information in the SRS configuration parameter being the beam corresponding to the reference signal, and the path loss reference signal in the SRS configuration parameter being the reference signal.
  • the spatial relationship information or QCL Type D information when the SRS is transmitted is the same as the spatial relationship information or QCL Type D information corresponding to the reference signal; the transmission power when the SRS is transmitted is determined by the signal strength received when the reference signal is received.
  • the identifier can be an ID or an index.
  • the network device may send configuration parameter information to the terminal, where the configuration parameter information includes a reference signal identifier.
  • the present disclosure associates SRS configuration parameters with reference signals, so that corresponding SRS configuration parameters applicable to multiple cells can be determined through reference signal identifiers, and the power consumption caused by using SRS for positioning measurement can be reduced.
  • the default rule in response to determining the SRS configuration parameters based on the default rule, includes: sending a reference signal, the reference signal is used by the terminal to determine the SRS configuration parameters associated with the reference signal.
  • the default rules may include: sending a reference signal to the terminal.
  • the reference signal can be used by the terminal to determine the SRS configuration parameters associated with the reference signal.
  • the SRS configuration parameters are associated with the reference signal, which can be understood as the beam information in the SRS configuration parameters being the beam corresponding to the reference signal, and the path loss reference signal in the SRS configuration parameters being the reference signal.
  • the spatial relationship information or QCL Type D information when the SRS is sent is the same as the spatial relationship information or QCL Type D information corresponding to the reference signal; the transmit power when the SRS is sent is determined by the signal strength received when the reference signal is received.
  • the network device sends a reference signal to the terminal, and the terminal determines the signal strength of the reference signal. If the signal strength of the reference signal is greater than or equal to a preset reference signal threshold, the terminal can determine the SRS configuration parameter associated with the reference signal and send the SRS based on the SRS configuration parameter. Since the terminal already knows the SRS configuration parameter associated with the reference signal in advance, the terminal can determine the SRS configuration parameter associated with the reference signal based on the reference signal.
  • the terminal already knows the SRS configuration parameters associated with different reference signals in advance, and the terminal can determine that the SRS can be sent based on the SRS configuration parameters associated with the specified reference signal based on the signal strength of each reference signal, and the signal strength of the specified reference signal needs to be greater than or equal to the preset reference signal threshold.
  • the present disclosure can determine SRS configuration parameters applicable to multiple cells according to the signal strength of a reference signal, and can reduce power consumption when using SRS for positioning measurement.
  • the SRS resources corresponding to the reference signal are determined based on the reference signal information, wherein the reference signal information includes the reference signal time domain position and/or the reference signal identifier; and/or, the SRS resources corresponding to the reference signal are determined based on the first information, wherein the first information includes the paging radio network temporary identifier paging RNTI and/or the paging time domain position of the terminal.
  • the SRS resource corresponding to the reference signal may be determined based on the reference signal information.
  • the reference signal information may include the reference signal time domain position and/or the reference signal identifier. It can also be understood that the reference signal information has a certain correlation with the SRS resource.
  • the SRS resource corresponding to the reference signal can be determined based on the reference signal time domain position and/or the reference signal identifier. Therefore, it can also be considered that the SRS resources corresponding to different reference signal time domain positions and/or reference signal identifiers are related to the reference signal information. It can be understood that the SRS resource is the resource used to send the SRS.
  • the SRS configuration parameters are some configuration parameters related to sending the SRS, the SRS resource can also be considered as the resource corresponding to the SRS configuration parameters.
  • the correspondence between the reference signal information and the SRS resource can be determined based on the configuration information sent by the network device, or it can be determined based on the default rule.
  • the SRS resource such as the SRS time domain resource
  • the SRS resource may be K1 symbols after the time domain position of the SSB.
  • the SRS resource such as the SRS time domain resource
  • the SRS resource may be K2 symbols after the time domain position of the TRS.
  • the reference signal information may also include any other possible information related to the reference signal, which is not limited in the present disclosure.
  • the SRS resource corresponding to the reference signal can be determined based on the first information.
  • the first information includes the paging RNTI and/or the paging time domain position of the terminal. It can also be understood that the first information has a certain correlation with the SRS resource.
  • the first information can be considered as terminal information related to the terminal.
  • the SRS resource corresponding to the reference signal can be determined based on the paging RNTI and/or the paging time domain position of the terminal. Therefore, it can also be considered that the paging RNTI and/or the paging time domain position of the terminal is related to the SRS resource.
  • the first information may also include any other possible information related to the terminal, which is not limited in the present disclosure.
  • the present disclosure provides multiple ways to determine SRS resources, so that SRS with SRS configuration parameters applicable to multiple cells can be sent based on the SRS resources, which can reduce the power consumption caused by using SRS for positioning measurement.
  • SRS resources corresponding to the same reference signal information in different cells have the same configuration.
  • the configuration of SRS resources corresponding to the same reference signal information is the same.
  • the present disclosure uses the same reference signal information to correspond to the same SRS resource, so that the terminal can use the same SRS resource in different cells to send SRS with SRS configuration parameters applicable to multiple cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • different reference signal information corresponds to different SRS configuration parameters.
  • different reference signal information corresponds to different SRS configuration parameters. It can also be considered that the SRS configuration parameters corresponding to the same reference signal information are the same.
  • the present disclosure corresponds the same SRS configuration parameters to the same reference signal information, so that the terminal can send SRS using the same SRS configuration parameters in different cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • the reference signal includes at least one of the following: a synchronization signal block SSB; a channel state information reference signal CSI-RS; and a tracking reference signal TRS.
  • the reference signal may be an SSB.
  • the reference signal identifier may be an SSB ID.
  • the reference signal may be a CSI-RS.
  • the reference signal identifier may be a CSI-RS ID.
  • the reference signal may be a TRS.
  • the reference signal identifier may be a TRS ID.
  • the reference signal may be an SSB and a CSI-RS.
  • the reference signal identifier may be an SSB ID and a CSI-RS ID.
  • the reference signal may be an SSB and a TRS.
  • the reference signal identifier may be an SSB ID and a TRS ID.
  • the reference signal may be a CSI-RS and a TRS.
  • the reference signal identifier may be a CSI-RS ID and a TRS ID.
  • the reference signal may be SSB, CSI-RS, and TRS.
  • the reference signal identifier may be SSB ID, CSI-RS ID, and TRS.
  • the present disclosure is applicable to situations of a variety of different reference signals.
  • SRS configuration parameters applicable to a plurality of cells the power consumption caused by using SRS for positioning measurement can be reduced.
  • the configuration parameter information in response to the SRS configuration parameter being associated with the TCI state of the CORESET, includes a CORESET identifier corresponding to the SRS configuration parameter.
  • the SRS configuration parameter may be associated with the TCI state of the CORESET.
  • the configuration parameter information may include a CORESET identifier corresponding to the SRS configuration parameter.
  • the configuration parameter information sent by the network device to the terminal may include a CORESET identifier.
  • the CORESET identifier can indicate a specified CORESET, and then the TCI state of the specified CORESET can be determined.
  • the TCI state will indicate the reference signal identifier corresponding to QCL Type D, and/or the path loss reference signal identifier. Therefore, it can also be considered that the SRS configuration parameters can be determined based on the TCI state of the CORESET, and the terminal can send the SRS to the network device based on the SRS configuration parameters determined based on the TCI state of the CORESET.
  • the present disclosure associates the SRS configuration parameters with the CORESET, so that the TCI state corresponding to the specified CORESET can be indicated by the CORESET identifier, and the corresponding SRS configuration parameters applicable to multiple cells can be determined, which can reduce the power consumption caused by using SRS for positioning measurement.
  • the default rules include: determining the SRS configuration parameters based on the TCI state of the CORESET corresponding to the paging information.
  • the default rule in response to determining the SRS configuration parameter based on a default rule, may include: determining the SRS configuration parameter based on a TCI state of a CORESET corresponding to the paging information.
  • the SRS configuration parameters are pre-associated with the TCI state of the CORESET, so the terminal can determine the SRS configuration parameters associated with the TCI state of the CORESET according to the TCI state of the CORESET corresponding to the paging information. That is, the SRS configuration parameters can be determined based on the TCI state of the CORESET, because the TCI state indicates the reference signal identifier corresponding to QCL Type D and/or the path loss reference signal identifier, so the terminal can determine the SRS configuration parameters based on the TCI state of the CORESET.
  • the present disclosure can determine SRS configuration parameters applicable to multiple cells according to the TCI state of the CORESET corresponding to the paging information, and can reduce the power consumption caused by using the SRS for positioning measurement.
  • the SRS resources corresponding to the CORESET are determined based on the second information, wherein the second information includes at least one of the paging time domain position, the paging identifier and the paging RNTI.
  • the SRS resources corresponding to the CORESET may be determined based on the second information.
  • the second information includes at least one of a paging time domain position, a paging identifier, and a paging RNTI. It may also be considered that the terminal determines the SRS resources corresponding to the TCI state of the CORESET based on the second information.
  • the second information may include a paging time domain position, a paging identifier and/or a paging RNTI. It can also be understood that the second information has a certain correlation with the SRS resource. The second information can be considered as paging information related to paging.
  • the SRS resources corresponding to the CORESET can be determined based on the paging time domain position, the paging identifier and/or the paging RNTI. Therefore, it can also be considered that the paging time domain position, the paging identifier and/or the paging RNTI are related to the SRS resources.
  • the SRS resource such as the SRS time domain resource
  • the SRS time domain resource may be K3 symbols after the paging time domain position.
  • SRS resources are related to paging RNTI, that is, the SRS resources of terminals corresponding to different paging RNTIs can be distinguished to prevent collision.
  • the second information may also include any other possible information related to the paging, which is not limited in the present disclosure.
  • the present disclosure provides a method for determining SRS resources, so that an SRS with SRS configuration parameters applicable to multiple cells can be sent based on the SRS resources, which can reduce the power consumption caused by using SRS for positioning measurement.
  • the SRS resource configuration corresponding to the same second information in different cells is the same.
  • the SRS resource configurations corresponding to the same second information are the same.
  • the present disclosure uses the same second information to correspond to the same SRS resource, so that the terminal can use the same SRS resource in different cells to send SRS with SRS configuration parameters applicable to multiple cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • different TCI states correspond to different SRS configuration parameters.
  • different TCI states correspond to different SRS configuration parameters. It can also be considered that the SRS configuration parameters corresponding to the same TCI state are the same.
  • different SRS configuration parameters applicable to multiple cells can be determined through different TCI states.
  • Different TCI states refer to at least one of the reference signal identifier and/or path loss reference signal identifier corresponding to the QCL Type D indicated by the TCI state being different.
  • the same SRS configuration parameters may be determined through the same TCI state.
  • the corresponding CORESET sending paging can be determined based on the paging information, and the SRS configuration parameters can be determined based on the TCI state of the CORESET. Therefore, it can also be considered that the SRS configuration parameters corresponding to the paging information from different CORESETs are different.
  • the present disclosure corresponds the same SRS configuration parameters to the same TCI state, so that the terminal can send SRS using the same SRS configuration parameters in different cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • different SRS configuration parameters correspond to different SRS resources
  • the SRS resources include at least one of the following: time domain resources; frequency domain resources; and a reference signal sequence of the SRS.
  • the SRS resources may include time domain resources.
  • the SRS resources may include frequency domain resources.
  • the SRS resource may include a reference signal sequence of the SRS.
  • SRS resources may include time domain resources and frequency domain resources.
  • the SRS resource may include a time domain resource and a reference signal sequence of the SRS.
  • the SRS resources may include frequency domain resources and a reference signal sequence of the SRS.
  • the SRS resources may include time domain resources, frequency domain resources, and a reference signal sequence of the SRS.
  • the present disclosure provides multiple implementations of SRS resources, so that a terminal can use SRS resources in different cells to send SRSs with SRS configuration parameters applicable to multiple cells, thereby reducing power consumption when using SRS for positioning measurement.
  • the SRS configuration parameters include at least one of the following: spatial relationship information; uplink UL TCI status information; path loss (pathloss) reference signal (reference signal, RS).
  • the SRS configuration parameters may include spatial relationship information (spatialrelationinfo).
  • the SRS configuration parameters may include UL TCI state information.
  • the SRS configuration parameters may include pathloss RS.
  • the SRS configuration parameters may include spatialrelationinfo and UL TCI state information.
  • SRS configuration parameters may include spatialrelationinfo and pathloss RS.
  • the SRS configuration parameters may include UL TCI state information and pathloss RS.
  • the SRS configuration parameters may include spatialrelationinfo, UL TCI state information and pathloss RS.
  • spatialrelationinfo and UL TCI state information can be considered as configuration parameters related to the SRS beam.
  • the present disclosure provides a variety of implementations of SRS configuration parameters. By configuring SRS configuration parameters that can be applicable to multiple cells, the power consumption caused by using SRS for positioning measurement can be reduced.
  • FIG12 is a flow chart of another communication positioning method according to an exemplary embodiment. As shown in FIG12, the method may also include the following steps:
  • step S111 downlink control information DCI is sent.
  • the network device may also send DCI to the terminal.
  • the DCI may include specified paging information or PEI.
  • the purpose of the specified paging information or PEI is to instruct the terminal to send SRS.
  • the specified paging information or PEI may include a paging information corresponding to an RNTI for instructing the terminal to send SRS, or the DCI may contain an information field indicating that the terminal sends SRS. Therefore, the specified paging information or PEI DCI may be used to instruct the terminal to send SRS based on the SRS configuration parameters.
  • the SRS when a terminal is instructed to send an SRS through DCI, the SRS is sent based on an SRS configuration parameter applicable to multiple cells, thereby reducing power consumption caused by using the SRS for positioning measurement.
  • the embodiments of the present disclosure also provide a communication positioning device and equipment.
  • the communication positioning device and equipment provided by the embodiments of the present disclosure include hardware structures and/or software modules corresponding to the execution of each function in order to realize the above functions.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the technical solution of the embodiments of the present disclosure.
  • Fig. 13 is a schematic diagram of a communication positioning device according to an exemplary embodiment.
  • the device 200 includes: a processing module 201, configured to determine a sounding reference signal SRS configuration parameter, the SRS configuration parameter being applicable to multiple cells; a sending module 202, configured to send an SRS based on the SRS configuration parameter, the SRS being used for positioning measurement.
  • a processing module 201 configured to determine a sounding reference signal SRS configuration parameter, the SRS configuration parameter being applicable to multiple cells
  • a sending module 202 configured to send an SRS based on the SRS configuration parameter, the SRS being used for positioning measurement.
  • the present disclosure can reduce the power consumption caused by using SRS for positioning measurement by configuring SRS configuration parameters that can be applicable to multiple cells.
  • the processing module 201 is further configured to: receive configuration parameter information of SRS configuration parameters sent by a network device; and/or determine the SRS configuration parameters based on a default rule.
  • the present disclosure provides a variety of methods for determining SRS configuration parameters to configure SRS configuration parameters applicable to multiple cells, thereby reducing power consumption when using SRS for positioning measurement.
  • the configuration parameter information in response to the SRS configuration parameter being associated with a reference signal, includes a reference signal identifier.
  • the present disclosure associates SRS configuration parameters with reference signals, so that corresponding SRS configuration parameters applicable to multiple cells can be determined through reference signal identifiers, thereby reducing power consumption when using SRS for positioning measurement.
  • the default rule in response to determining the SRS configuration parameter based on a default rule, includes: determining the reference signal based on a signal strength of a received reference signal; and determining the SRS configuration parameter associated with the reference signal according to the reference signal.
  • the present disclosure can determine SRS configuration parameters applicable to multiple cells according to the signal strength of a reference signal, and can reduce power consumption when using SRS for positioning measurement.
  • the processing module 201 is also used to: determine the SRS resources corresponding to the reference signal based on the reference signal information, wherein the reference signal information includes the reference signal time domain position and/or the reference signal identifier; and/or determine the SRS resources corresponding to the reference signal based on the first information, wherein the first information includes the paging radio network temporary identifier paging RNTI and/or the paging time domain position of the terminal.
  • the present disclosure provides multiple ways to determine SRS resources, so that SRS with SRS configuration parameters applicable to multiple cells can be sent based on the SRS resources, which can reduce the power consumption caused by using SRS for positioning measurement.
  • SRS resources corresponding to the same reference signal information in different cells have the same configuration.
  • the present disclosure uses the same reference signal information to correspond to the same SRS resource, so that the terminal can use the same SRS resource in different cells to send SRS with SRS configuration parameters applicable to multiple cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • different reference signal information corresponds to different SRS configuration parameters.
  • the present disclosure corresponds the same SRS configuration parameters to the same reference signal information, so that the terminal can send SRS using the same SRS configuration parameters in different cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • the reference signal includes at least one of the following: a synchronization signal block SSB; a channel state information reference signal CSI-RS; and a tracking reference signal TRS.
  • the present disclosure is applicable to situations of a variety of different reference signals.
  • SRS configuration parameters applicable to a plurality of cells the power consumption caused by using SRS for positioning measurement can be reduced.
  • the configuration parameter information in response to the SRS configuration parameter being associated with a transmission configuration indication TCI state of a control resource set CORESET, includes a CORESET identifier corresponding to the SRS configuration parameter.
  • the present disclosure associates the SRS configuration parameters with the CORESET, so that the TCI state corresponding to the specified CORESET can be indicated by the CORESET identifier, and the corresponding SRS configuration parameters applicable to multiple cells can be determined, which can reduce the power consumption caused by using SRS for positioning measurement.
  • the processing module 201 in response to determining the SRS configuration parameter based on the default rule, is further configured to: determine the SRS configuration parameter based on the TCI state of the CORESET corresponding to the paging information.
  • the present disclosure can determine SRS configuration parameters applicable to multiple cells according to the TCI state of the CORESET corresponding to the paging information, and can reduce the power consumption caused by using the SRS for positioning measurement.
  • the processing module 201 is also used to: determine the SRS resources corresponding to the CORESET based on the second information, wherein the second information includes at least one of the paging time domain position, the paging identifier and the paging RNTI.
  • the present disclosure provides a method for determining SRS resources, so that an SRS with SRS configuration parameters applicable to multiple cells can be sent based on the SRS resources, which can reduce the power consumption caused by using SRS for positioning measurement.
  • the SRS resource configurations corresponding to the same second information in different cells are the same.
  • the present disclosure uses the same second information to correspond to the same SRS resource, so that the terminal can use the same SRS resource in different cells to send SRS with SRS configuration parameters applicable to multiple cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • different TCI states correspond to different SRS configuration parameters.
  • the present disclosure corresponds the same SRS configuration parameters to the same TCI state, so that the terminal can send SRS using the same SRS configuration parameters in different cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • different SRS configuration parameters correspond to different SRS resources
  • the SRS resources include at least one of the following: time domain resources; frequency domain resources; and a reference signal sequence of the SRS.
  • the present disclosure provides multiple implementations of SRS resources, so that a terminal can use SRS resources in different cells to send SRSs with SRS configuration parameters applicable to multiple cells, thereby reducing power consumption when using SRS for positioning measurement.
  • the SRS configuration parameters include at least one of the following: spatial relationship information; uplink UL TCI status information; path loss reference signal.
  • the present disclosure provides a variety of implementations of SRS configuration parameters. By configuring SRS configuration parameters that can be applicable to multiple cells, the power consumption caused by using SRS for positioning measurement can be reduced.
  • the device 200 also includes: a receiving module 203, used to receive downlink control information DCI, the DCI includes specified paging information or paging early indication PEI; the sending module 202 is also used to: in response to the DCI including the specified paging information or PEI, send SRS based on SRS configuration parameters.
  • a receiving module 203 used to receive downlink control information DCI, the DCI includes specified paging information or paging early indication PEI
  • the sending module 202 is also used to: in response to the DCI including the specified paging information or PEI, send SRS based on SRS configuration parameters.
  • the SRS when a terminal is instructed to send an SRS through DCI, the SRS is sent based on an SRS configuration parameter applicable to multiple cells, thereby reducing power consumption caused by using the SRS for positioning measurement.
  • Fig. 14 is a schematic diagram of another communication positioning device according to an exemplary embodiment.
  • the device 300 includes: a receiving module 301, configured to receive an SRS sent by a terminal based on a sounding reference signal SRS configuration parameter, the SRS configuration parameter being applicable to multiple cells; and a processing module 302, configured to perform positioning measurement based on the SRS.
  • the present disclosure can reduce the power consumption caused by using SRS for positioning measurement by configuring SRS configuration parameters that can be applicable to multiple cells.
  • the apparatus 300 further includes: a sending module 303, configured to send configuration parameter information of an SRS configuration parameter; and/or the SRS configuration parameter is determined based on a default rule.
  • the present disclosure provides a variety of methods for determining SRS configuration parameters to configure SRS configuration parameters applicable to multiple cells, thereby reducing power consumption when using SRS for positioning measurement.
  • the configuration parameter information in response to the SRS configuration parameter being associated with a reference signal, includes a reference signal identifier.
  • the present disclosure associates SRS configuration parameters with reference signals, so that corresponding SRS configuration parameters applicable to multiple cells can be determined through reference signal identifiers, thereby reducing power consumption when using SRS for positioning measurement.
  • the sending module 303 in response to the SRS configuration parameter being determined based on a default rule, is further configured to: send a reference signal, where the reference signal is used by the terminal to determine the SRS configuration parameter associated with the reference signal.
  • the present disclosure can determine SRS configuration parameters applicable to multiple cells according to the signal strength of a reference signal, and can reduce power consumption when using SRS for positioning measurement.
  • the SRS resources corresponding to the reference signal are determined based on reference signal information, wherein the reference signal information includes the reference signal time domain position and/or the reference signal identifier; and/or, the SRS resources corresponding to the reference signal are determined based on first information, wherein the first information includes the paging radio network temporary identifier paging RNTI and/or the paging time domain position of the terminal.
  • the present disclosure provides multiple ways to determine SRS resources, so that SRS with SRS configuration parameters applicable to multiple cells can be sent based on the SRS resources, which can reduce the power consumption caused by using SRS for positioning measurement.
  • SRS resources corresponding to the same reference signal information in different cells have the same configuration.
  • the present disclosure uses the same reference signal information to correspond to the same SRS resource, so that the terminal can use the same SRS resource in different cells to send SRS with SRS configuration parameters applicable to multiple cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • different reference signal information corresponds to different SRS configuration parameters.
  • the present disclosure corresponds the same SRS configuration parameters to the same reference signal information, so that the terminal can send SRS using the same SRS configuration parameters in different cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • the reference signal includes at least one of the following: a synchronization signal block SSB; a channel state information reference signal CSI-RS; and a tracking reference signal TRS.
  • the present disclosure is applicable to situations of a variety of different reference signals.
  • SRS configuration parameters applicable to a plurality of cells the power consumption caused by using SRS for positioning measurement can be reduced.
  • the configuration parameter information in response to the SRS configuration parameter being associated with a transmission configuration indication TCI state of a control resource set CORESET, includes a CORESET identifier corresponding to the SRS configuration parameter.
  • the present disclosure associates the SRS configuration parameters with the CORESET, so that the TCI state corresponding to the specified CORESET can be indicated by the CORESET identifier, and the corresponding SRS configuration parameters applicable to multiple cells can be determined, which can reduce the power consumption caused by using SRS for positioning measurement.
  • the default rule in response to determining the SRS configuration parameter based on a default rule, includes: determining the SRS configuration parameter based on a TCI state of a CORESET corresponding to the paging information.
  • the present disclosure can determine SRS configuration parameters applicable to multiple cells according to the TCI state of the CORESET corresponding to the paging information, and can reduce the power consumption caused by using the SRS for positioning measurement.
  • the SRS resources corresponding to the CORESET are determined based on second information, wherein the second information includes at least one of a paging time domain position, a paging identifier, and a paging RNTI.
  • the present disclosure provides a method for determining SRS resources, so that an SRS with SRS configuration parameters applicable to multiple cells can be sent based on the SRS resources, which can reduce the power consumption caused by using SRS for positioning measurement.
  • the SRS resource configurations corresponding to the same second information in different cells are the same.
  • the present disclosure uses the same second information to correspond to the same SRS resource, so that the terminal can use the same SRS resource in different cells to send SRS with SRS configuration parameters applicable to multiple cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • different TCI states correspond to different SRS configuration parameters.
  • the present disclosure corresponds the same SRS configuration parameters to the same TCI state, so that the terminal can send SRS using the same SRS configuration parameters in different cells, thereby reducing the power consumption caused by using SRS for positioning measurement.
  • different SRS configuration parameters correspond to different SRS resources
  • the SRS resources include at least one of the following: time domain resources; frequency domain resources; and a reference signal sequence of the SRS.
  • the present disclosure provides multiple implementations of SRS resources, so that a terminal can use SRS resources in different cells to send SRSs with SRS configuration parameters applicable to multiple cells, thereby reducing power consumption when using SRS for positioning measurement.
  • the SRS configuration parameters include at least one of the following: spatial relationship information; uplink UL TCI status information; path loss reference signal.
  • the present disclosure provides a variety of implementations of SRS configuration parameters. By configuring SRS configuration parameters that can be applicable to multiple cells, the power consumption caused by using SRS for positioning measurement can be reduced.
  • the sending module 303 is further used to: send downlink control information DCI, where the DCI includes specified paging information or paging early indication PEI, wherein the DCI including the specified paging information or PEI is used to instruct the terminal to send SRS based on SRS configuration parameters.
  • the SRS when a terminal is instructed to send an SRS through DCI, the SRS is sent based on an SRS configuration parameter applicable to multiple cells, thereby reducing power consumption caused by using the SRS for positioning measurement.
  • Fig. 15 is a schematic diagram of a communication positioning device according to an exemplary embodiment.
  • the device 400 can be any terminal such as a mobile phone, a computer, a digital broadcast terminal, a message transceiver device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • device 400 may include one or more of the following components: a processing component 402 , a memory 404 , a power component 406 , a multimedia component 408 , an audio component 410 , an input/output (I/O) interface 412 , a sensor component 414 , and a communication component 416 .
  • a processing component 402 may include one or more of the following components: a processing component 402 , a memory 404 , a power component 406 , a multimedia component 408 , an audio component 410 , an input/output (I/O) interface 412 , a sensor component 414 , and a communication component 416 .
  • a processing component 402 may include one or more of the following components: a processing component 402 , a memory 404 , a power component 406 , a multimedia component 408 , an audio component 410 , an input/output (I/O) interface 412 , a sensor component 414 , and a communication component
  • the processing component 402 generally controls the overall operation of the device 400, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 402 may include one or more processors 420 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • the processing component 402 may include one or more modules to facilitate the interaction between the processing component 402 and other components.
  • the processing component 402 may include a multimedia module to facilitate the interaction between the multimedia component 408 and the processing component 402.
  • the memory 404 is configured to store various types of data to support operations on the device 400. Examples of such data include instructions for any application or method operating on the device 400, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 404 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 406 provides power to the various components of the device 400.
  • the power component 406 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 400.
  • the multimedia component 408 includes a screen that provides an output interface between the device 400 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 408 includes a front camera and/or a rear camera. When the device 400 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and the rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 410 is configured to output and/or input audio signals.
  • the audio component 410 includes a microphone (MIC), and when the device 400 is in an operating mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 404 or sent via the communication component 416.
  • the audio component 410 also includes a speaker for outputting audio signals.
  • I/O interface 412 provides an interface between processing component 402 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor assembly 414 includes one or more sensors for providing various aspects of status assessment for the device 400.
  • the sensor assembly 414 can detect the open/closed state of the device 400, the relative positioning of components, such as the display and keypad of the device 400, and the sensor assembly 414 can also detect the position change of the device 400 or a component of the device 400, the presence or absence of user contact with the device 400, the orientation or acceleration/deceleration of the device 400, and the temperature change of the device 400.
  • the sensor assembly 414 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor assembly 414 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 414 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 416 is configured to facilitate wired or wireless communication between the device 400 and other devices.
  • the device 400 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 416 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 416 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the device 400 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors, or other electronic components to perform the above methods.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors, or other electronic components to perform the above methods.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 404 including instructions, which can be executed by a processor 420 of the device 400 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • FIG16 is a schematic diagram of another communication positioning device according to an exemplary embodiment.
  • device 500 may be provided as a base station, or a server.
  • device 500 includes a processing component 522, which further includes one or more processors, and a memory resource represented by a memory 532 for storing instructions executable by the processing component 522, such as an application.
  • the application stored in the memory 532 may include one or more modules, each of which corresponds to a set of instructions.
  • the processing component 522 is configured to execute instructions to perform the above method.
  • the device 500 may also include a power supply component 526 configured to perform power management of the device 500, a wired or wireless network interface 550 configured to connect the device 500 to a network, and an input/output (I/O) interface 558.
  • the device 500 may operate based on an operating system stored in the memory 532, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, or the like.
  • the present disclosure can reduce the power consumption caused by frequently acquiring SRS configuration, and proposes SRS configuration applicable to multiple cells.
  • the spatialrelationinfo or UL TCI state (commonly known as beam) of the SRS of multiple cells and the reference signal for path loss estimation can be configured.
  • the present disclosure proposes an SRS related configuration method applicable to multiple cells, including spatialrelationinfo or UL TCI state (commonly known as beam) of SRS, and a reference signal for path loss estimation, so as to ensure high-precision positioning while reducing positioning power consumption.
  • plural refers to two or more than two, and other quantifiers are similar thereto.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the singular forms “a”, “the” and “the” are also intended to include the plural forms, unless the context clearly indicates other meanings.
  • first, second, etc. are used to describe various information, but such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other, and do not indicate a specific order or degree of importance. In fact, the expressions “first”, “second”, etc. can be used interchangeably.
  • the first information can also be referred to as the second information, and similarly, the second information can also be referred to as the first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种通信定位方法、装置、设备及存储介质。包括:确定探测参考信号SRS配置参数,SRS配置参数适用于多个小区;基于SRS配置参数发送SRS,SRS用于定位测量。通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。

Description

一种通信定位方法、装置、设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种通信定位方法、装置、设备及存储介质。
背景技术
目前,在一些低功耗高精确性的定位方法中,主要是针对处于无线资源控制(radio resource control,RRC)非激活状态(inactive)或空闲状态(idle)的定位方法。由于在传统方法中,用于上行定位的参考信号,如探测参考信号(sounding reference signal,SRS)是针对每个(per)小区(cell)进行配置的。那么终端从一个cell移动到另外一个cell时,就需要重新获得SRS的配置。但显然,这样会带来更多的功率消耗。
因此,如何减少频繁获取SRS配置所带来的功率消耗,成为了亟需解决的问题。
发明内容
为克服相关技术中存在的问题,本公开提供一种通信定位方法、装置、设备及存储介质。
根据本公开实施例的第一方面,提供一种通信定位方法,方法应用于终端,包括:确定探测参考信号SRS配置参数,SRS配置参数适用于多个小区;基于SRS配置参数发送SRS,SRS用于定位测量。
根据本公开实施例的第二方面,提供一种通信定位方法,方法应用于网络设备,包括:接收终端基于探测参考信号SRS配置参数发送的SRS,SRS配置参数适用于多个小区;基于SRS进行定位测量。
根据本公开实施例的第三方面,提供一种通信定位装置,装置配置于终端,装置包括:处理模块,用于确定探测参考信号SRS配置参数,SRS配置参数适用于多个小区;发送模块,用于基于SRS配置参数发送SRS,SRS用于定位测量。
根据本公开实施例的第四方面,提供一种通信定位装置,装置包括:接收模块,用于接收终端基于探测参考信号SRS配置参数发送的SRS,SRS配置参数适用于多个小区;处理模块,用于基于SRS进行定位测量。
根据本公开实施例的第五方面,提供一种通信定位设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,处理器被配置为:执行第一方面所涉及的方法。
根据本公开实施例的第六方面,提供一种通信定位设备,包括:处理器;用于存储处 理器可执行指令的存储器;其中,处理器被配置为:执行第二方面所涉及的方法。
根据本公开实施例的第七方面,提供一种非临时性计算机可读存储介质,当存储介质中的指令由终端的处理器执行时,使得终端能够执行第一方面所涉及的方法。
根据本公开实施例的第八方面,提供一种非临时性计算机可读存储介质,当存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行第二方面所涉及的方法。
本公开的实施例提供的技术方案可以包括以下有益效果:通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信***示意图。
图2是根据一示例性实施例示出的一种通信定位方法流程图。
图3是根据一示例性实施例示出的另一种通信定位方法流程图。
图4是根据一示例性实施例示出的又一种通信定位方法流程图。
图5是根据一示例性实施例示出的再一种通信定位方法流程图。
图6是根据一示例性实施例示出的另一种通信定位方法流程图。
图7是根据一示例性实施例示出的又一种通信定位方法流程图。
图8是根据一示例性实施例示出的再一种通信定位方法流程图。
图9是根据一示例性实施例示出的另一种通信定位方法流程图。
图10是根据一示例性实施例示出的又一种通信定位方法流程图。
图11是根据一示例性实施例示出的再一种通信定位方法流程图。
图12是根据一示例性实施例示出的另一种通信定位方法流程图。
图13是根据一示例性实施例示出的一种通信定位装置示意图。
图14是根据一示例性实施例示出的另一种通信定位装置示意图。
图15是根据一示例性实施例示出的一种通信定位设备示意图。
图16是根据一示例性实施例示出的另一种通信定位设备示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。
本公开所涉及的通信方法可以应用于图1所示的无线通信***100中。该网络***可以包括网络设备110和终端120。可以理解的是,图1所示的无线通信***仅是进行示意性说明,无线通信***中还可包括其它网络设备,例如还可以包括核心网络设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信***中包括的网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例的无线通信***,是一种提供无线通信功能的网络。无线通信***可以采用不同的通信技术,例如码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)、单载波频分多址(Single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:Generation)网络、3G网络、4G网络或者未来演进网络,如第五代无线通信***(The 5th Generation Wireless Communication System,5G)网络,5G网络也可称为是NR。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备110也可以称为无线接入网络设备。该无线接入网络设备可以是:基站、演进型基站(evolved Node B,eNB)、家庭基站、无线保真(Wireless Fidelity,WIFI)***中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(Transmission Point,TP)或者发送接收点(transmission and receiving point,TRP)等,还可以为NR***中的gNB,或者,还可以是构成基站的组件或一部分设备等。当为车联网(V2X)通信***时,网络设备还可以是车载设备。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。
本公开中涉及的网络设备110还可以是核心网设备,核心网设备可以包括一种位置管理功能网元。可选地,位置管理功能网元包括位置服务器(location server),位置服务器可以实现为以下任意一项:位置管理功能(Location Management Function,LMF)增强服务的流动定位中心、(Enhanced Serving Mobile Location Centre,E-SMLC)、安全用户平面定位(Secure User Plane Location,SUPL)、安全用户平面定位平台(SUPL Location Platform,SUPL LP)。
进一步的,本公开中涉及的终端120,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信***时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
本公开实施例中,网络设备110与终端120可以采用任意可行的无线通信技术以实现相互传输数据。其中,网络设备110向终端120发送数据所对应的传输通道称为下行信道(downlink,DL),终端120向网络设备110发送数据所对应的传输通道称为上行信道(uplink,UL)。可以理解的是,本公开实施例中所涉及的网络设备可以是基站。当然网络设备还可以是其它任意可能的网络设备,终端可以是任意可能的终端,本公开不作限定。
目前,在版本(release,Rel)18中讨论了一些低功耗高精确性的定位方法,其主要是针对处于RRC_INACTIVE状态或RRC_IDLE状态的终端的定位方法。由于在传统方法中,用于上行定位的参考信号,如SRS是针对per cell进行配置的。那么终端从一个cell移动到另外一个cell时,就需要重新获得SRS的配置。显然,这样会带来更多的功率消耗。
因此,如何减少频繁获取SRS配置所带来的功率消耗,成为了亟需解决的问题。
本公开提供了一种通信定位方法、装置、设备及存储介质。通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
图2是根据一示例性实施例示出的一种通信定位方法流程图,如图2所示,方法应用于终端,可以包括以下步骤:
在步骤S11中,确定探测参考信号SRS配置参数。
在一些实施例中,终端可以确定SRS配置参数。其中,该SRS配置参数适用于多个小区。
可以理解,SRS配置参数可以是与发送SRS相关一些配置参数,例如与SRS相关的波束信息、路径损耗参考信号等。其中,波束信息可以包括空间关系信息(spatialrelationinfo)或上行传输配置指示状态(uplink transmission configuration indication state,UL TCI state)。
在步骤S12中,基于SRS配置参数发送SRS。
在一些实施例中,终端可以基于S11确定的SRS配置参数,向网络设备发送SRS。以便网络设备可以基于终端发送的SRS进行定位测量。可以理解的是,基于SRS进行定位 测量的网络设备包括TRP。
本公开通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,步骤S11中的确定SRS配置参数可以包括:接收网络设备发送的SRS配置参数的配置参数信息;和/或,基于默认规则确定SRS配置参数。
图3是根据一示例性实施例示出的另一种通信定位方法流程图。如图3所示,步骤S11中的确定SRS配置参数,可以包括以下步骤:
在步骤S21中,接收网络设备发送的SRS配置参数的配置参数信息。
在一些实施例中,终端可以接收网络设备发送的参数配置信息,该参数配置信息为与SRS配置参数相关的配置参数信息。可以理解,终端可以基于参数配置信息确定相应的SRS配置参数。
图4是根据一示例性实施例示出的又一种通信定位方法流程图。如图4所示,步骤S11中的确定SRS配置参数,可以包括以下步骤:
在步骤S31中,基于默认规则确定SRS配置参数。
在一些实施例中,终端可以基于默认规则确定SRS配置参数。例如,默认规则可以是预先设定好的,也可以是协议中预先规定的,本公开不作限定。
本公开提供了多种确定SRS配置参数的方式,以配置可以适用于多个小区的SRS配置参数,从而减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,响应于SRS配置参数与参考信号相关联,配置参数信息包括参考信号标识。
在一些实施例中,SRS配置参数可以与参考信号相关联,在这种情况下,配置参数信息可以包括参考信号标识。SRS配置参数与参考信号相关联,可以理解为SRS配置参数中的波束信息为该参考信号对应的波束,SRS配置参数中的路径损耗参考信号即为该参考信号。也就是说,SRS发送时的空间关系信息或准共址(quasico-location,QCL)类型(Type)D信息与该参考信号对应的空间关系信息或QCL Type D信息相同;SRS发送时确定发送功率以该参考信号接收时接收到的信号强度来确定。
例如,标识可以是身份标识(identity,ID),也可以是索引(index)。
例如,终端可以接收网络设备发送的配置参数信息,该配置参数信息包括参考信号标识。终端则可以基于参考信号标识,根据SRS配置参数与参考信号的关联关系,确定出参考信号标识对应的SRS配置参数。以便终端基于SRS配置参数向网络设备发送SRS。
又例如,终端可以基于预先设定的默认规则确定配置参数信息,该配置参数信息包括 参考信号标识。终端则可以基于参考信号标识,根据SRS配置参数与参考信号的关联关系,确定出参考信号标识对应的SRS配置参数。以便终端基于SRS配置参数向网络设备发送SRS。SRS配置参数与参考信号相关联,可以理解为SRS配置参数中的波束信息为该参考信号对应的波束,SRS配置参数中的路径损耗参考信号即为该参考信号。也就是说,SRS发送时的空间关系信息或QCL Type D信息与该参考信号对应的空间关系信息或QCL Type D信息相同;SRS发送时确定发送功率以该参考信号接收时接收到的信号强度来确定。
本公开通过SRS配置参数与参考信号进行关联,使得可以通过参考信号标识确定相应的可以适用于多个小区的SRS配置参数。可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,响应于基于默认规则确定SRS配置参数,默认规则包括:基于接收到参考信号的信号强度确定参考信号;根据参考信号确定与参考信号关联的SRS配置参数。
在一些实施例中,响应于终端基于默认规则确定SRS配置参数。该默认规则可以包括:终端基于接收到的参考信号的信号强度,确定SRS配置参数。
例如,终端接收某个参考信号后,确定该参考信号的信号强度。若该参考信号的信号强度大于或等于预先设定的参考信号阈值,则终端可以确定与该参考信号相关联的SRS配置参数,并基于该SRS配置参数进行SRS发送。由于终端已经提前知晓与参考信号关联的SRS配置参数,因此终端可以根据该参考信号确定与该参考信号相关联的SRS配置参数。即可以理解的是,终端预先已经知道与不同参考信号分别关联的SRS配置参数,而终端可以根据各个参考信号的信号强度,确定可以基于指定参考信号关联的SRS配置参数来发送SRS,而指定参考信号的信号强度需要大于或等于预先设定的参考信号阈值。
如,终端接收到同步信号块(synchronization signal block,SSB)后,可以确定SSB的参考信号接收功率(reference signal receiving power,RSRP)。若SSB的RSRP大于或等于预先设定的SSB阈值,则可以确定该SSB为指定SSB,并确定可以基于与该指定SSB相关联的SRS配置参数进行SRS发送。
本公开可以根据参考信号的信号强度确定可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,方法还可以包括:基于参考信号信息确定参考信号对应的SRS资源,其中,参考信号信息包括参考信号时域位置和/或参考信号标识;和/或,基于第一信息确定参考信号对应的SRS资源,其中,第一信息包括终端的寻呼(paging)无线网络临时标识(radio network temporary identity,RNTI)和/或paging时域位置。
图5是根据一示例性实施例示出的再一种通信定位方法流程图。如图5所示,方法还可以包括以下步骤:
在步骤S41中,基于参考信号信息确定参考信号对应的SRS资源。
在一些实施例中,终端可以基于参考信号信息确定参考信号对应的SRS资源。其中,参考信号信息可以包括参考信号时域位置和/或参考信号标识。也可以理解为,参考信号信息与SRS资源具有一定相关性。
例如,终端在确定配置参数信息中的参考信号标识,和/或基于接收到的参考信号确定该参考信号的时域位置之后,可以基于参考信号时域位置和/或参考信号标识,确定参考信号对应的SRS资源。因此,也可以认为,不同的参考信号时域位置和/或参考信号标识,其对应的SRS资源与参考信号信息相关。可以理解,该SRS资源为发送SRS所使用的资源。当然,由于SRS配置参数是与发送SRS相关一些配置参数,因此,SRS资源也可以认为是SRS配置参数对应的资源。其中,参考信号信息与SRS资源的对应关系,可以是基于网络设备发送的配置信息确定的,也可以是基于默认规则确定的。
以参考信号为SSB为例,SRS资源例如SRS时域资源可以在SSB的时域位置之后的K1个符号。以参考信号为跟踪参考信号(tracking reference signal,TRS)为例,SRS资源例如SRS时域资源可以在TRS的时域位置之后的K2个符号。
当然,参考信号信息还可以包括其它任意可能的与该参考信号相关的信息,本公开不作限定。
图6是根据一示例性实施例示出的另一种通信定位方法流程图。如图6所示,方法还可以包括以下步骤:
在步骤S51中,基于第一信息确定参考信号对应的SRS资源。
在一些实施例中,终端可以基于第一信息确定参考信号对应的SRS资源。其中,第一信息包括终端的paging RNTI和/或paging时域位置。也可以理解为,第一信息与SRS资源具有一定相关性。该第一信息可以认为是与终端相关的终端信息。
例如,终端可以基于终端的paging RNTI和/或paging时域位置,确定参考信号对应的SRS资源。因此,也可以认为,终端的paging RNTI和/或paging时域位置与SRS资源相关。
当然,第一信息还可以包括其它任意可能的与该终端相关的信息,本公开不作限定。
本公开提供确定SRS资源的多种方式,使得可以基于该SRS资源发送适用于多个小区的SRS配置参数的SRS,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,不同小区中相同的参考信号信息对应的SRS资源具 有相同的配置。
在一些实施例中,对于不同的cell中,相同的参考信号信息对应的SRS资源的配置是相同。
例如,终端在不同的cell中,可以通过相同的参考信号信息,确定出相同配置的SRS资源。以使得终端可以在不同的cell中,利用相同的SRS资源发送SRS。
本公开通过相同的参考信号信息对应相同的SRS资源,以使得终端可以在不同小区利用相同的SRS资源发送适用于多个小区的SRS配置参数的SRS。进而可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,不同参考信号信息对应的SRS配置参数不同。
在一些实施例中,不同的参考信号信息所对应的SRS配置参数是不同的。也可以认为,相同的参考信号信息所对应的SRS配置参数相同。
例如,终端可以通过不同的参考信号信息,确定出不同的适用于多个小区的SRS配置参数。
又例如,终端在不同的cell中,可以通过相同的参考信号信息,确定出相同的SRS配置参数。
本公开通过相同的参考信号信息对应相同的SRS配置参数,以使得终端可以在不同小区利用相同的SRS配置参数发送SRS,进而可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,参考信号包括以下至少一项:同步信号块SSB;信道状态信息参考信号(channel state information reference signal,CSI-RS);跟踪参考信号TRS。
在一些实施例中,参考信号可以是SSB。在这种情况下,参考信号标识可以是SSB ID。
在一些实施例中,参考信号可以是CSI-RS。在这种情况下,参考信号标识可以是CSI-RS ID。
在一些实施例中,参考信号可以是TRS。在这种情况下,参考信号标识可以是TRS ID。
在一些实施例中,参考信号可以是SSB和CSI-RS。在这种情况下,参考信号标识可以是SSB ID和CSI-RS ID。
在一些实施例中,参考信号可以是SSB和TRS。在这种情况下,参考信号标识可以是SSB ID和TRS ID。
在一些实施例中,参考信号可以是CSI-RS和TRS。在这种情况下,参考信号标识可以是CSI-RS ID和TRS ID。
在一些实施例中,参考信号可以是SSB、CSI-RS和TRS。在这种情况下,参考信号标识可以是SSB ID、CSI-RS ID和TRS。
本公开适用于多种不同参考信号的情况,通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,响应于SRS配置参数与控制资源集(control resource set,CORESET)的TCI state相关联,配置参数信息包括SRS配置参数对应的CORESET标识。
在一些实施例中,SRS配置参数可以与CORESET的TCI状态相关联,在这种情况下,配置参数信息可以包括SRS配置参数对应的CORESET标识。
例如,终端可以接收网络设备发送的配置参数信息,该配置参数信息包括CORESET标识。终端则可以基于CORESET标识,根据SRS配置参数与CORESET的关联关系,确定出CORESET标识对应的SRS配置参数。可以理解,CORESET标识可以指示指定CORESET,进而可以确定该指定CORESET的TCI状态。TCI状态会指示QCL Type D对应的参考信号标识,和/或路径损耗参考信号标识。因此,也可以认为SRS配置参数可以基于CORESET的TCI状态确定,终端可以基于CORESET的TCI状态确定的SRS配置参数向网络设备发送SRS。
又例如,终端可以基于预先设定的默认规则确定配置参数信息,该配置参数信息包括CORESET标识。终端则可以基于CORESET标识,根据SRS配置参数与CORESET的关联关系,确定出CORESET标识对应的SRS配置参数。即SRS配置参数可以基于CORESET的TCI状态确定,因为TCI状态会指示QCL Type D对应的参考信号标识,和/或路径损耗参考信号标识,以便终端基于SRS配置参数向网络设备发送SRS。
本公开通过SRS配置参数与CORESET进行关联,使得可以通过CORESET标识指示指定CORESET所对应的TCI状态,确定相应的可以适用于多个小区的SRS配置参数。可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,响应于基于默认规则确定SRS配置参数,默认规则包括:基于寻呼paging信息对应的CORESET的TCI状态,确定SRS配置参数。
在一些实施例中,响应于终端基于默认规则确定SRS配置参数。该默认规则可以包括:终端基于paging信息对应的CORESET的TCI状态,确定SRS配置参数。
例如,SRS配置参数预先与CORESET的TCI状态相关联,因此终端可以根据paging信息对应的CORESET的TCI状态,确定与该CORESET的TCI状态相关联的SRS配置参数。即SRS配置参数可以基于CORESET的TCI状态确定,因为TCI状态会指示QCL Type  D对应的参考信号标识,和/或路径损耗参考信号标识,因此终端可以基于CORESET的TCI状态确定SRS配置参数。
本公开可以根据paging信息对应的CORESET的TCI状态确定可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,图7是根据一示例性实施例示出的又一种通信定位方法流程图。如图7所示,方法还可以包括以下步骤:
在步骤S61中,基于第二信息确定CORESET对应的SRS资源。
在一些实施例中,终端可以基于第二信息确定CORESET对应的SRS资源。其中,第二信息包括paging时域位置、paging标识和paging RNTI中的至少一项。也可以认为,终端基于第二信息确定CORESET的TCI状态对应的SRS资源。
其中,第二信息可以包括paging时域位置、paging标识和/或paging RNTI。也可以理解为,第二信息与SRS资源具有一定相关性。该第二信息可以认为是与paging相关的paging信息。
例如,终端可以基于paging时域位置、paging标识和/或paging RNTI,确定CORESET对应的SRS资源。因此,也可以认为paging时域位置、paging标识和/或paging RNTI,与SRS资源相关。
例如,SRS资源例如SRS时域资源可以在paging时域位置之后的K3个符号。
又例如,SRS资源与paging RNTI相关,即可以把对应不同的paging RNTI的终端的SRS资源区分开,防止碰撞。
当然,第二信息还可以包括其它任意可能的与该paging相关的信息,本公开不作限定。
本公开提供确定SRS资源的方式,使得可以基于该SRS资源发送适用于多个小区的SRS配置参数的SRS,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,不同小区中相同的第二信息对应的SRS资源配置相同。
在一些实施例中,对于不同的cell中,相同的第二信息对应的SRS资源配置相同。
例如,终端在不同的cell中,可以通过相同的第二信息,确定出相同配置的SRS资源。以使得终端可以在不同的cell中,利用相同的SRS资源发送SRS。
本公开通过相同的第二信息对应相同的SRS资源,以使得终端可以在不同小区利用相同的SRS资源发送适用于多个小区的SRS配置参数的SRS。进而可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,不同TCI状态对应的SRS配置参数不同。
在一些实施例中,不同的TCI状态所对应的SRS配置参数是不同的。也可以认为,相同的TCI状态所对应的SRS配置参数相同。
例如,终端可以通过不同的TCI状态,确定出不同的适用于多个小区的SRS配置参数。不同的TCI状态是指TCI状态所指示的QCL Type D对应的参考信号标识和/或路径损耗参考信号标识中的至少一项不同。
又例如,终端在不同的cell中,可以通过相同的TCI状态,确定出相同的SRS配置参数。
可以理解,终端可以基于paging信息确定相应的发送paging的CORESET,并基于CORESET的TCI状态来确定SRS配置参数。因此,也可以认为来自不同CORESET的paging信息所对应的SRS配置参数是不同的。
本公开通过相同的TCI状态对应相同的SRS配置参数,以使得终端可以在不同小区利用相同的SRS配置参数发送SRS,进而可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,不同的SRS配置参数所对应的SRS资源不同,SRS资源包括以下至少一项:时域资源;频域资源;SRS的参考信号序列。
在一些实施例中,SRS资源可以包括时域资源。
在一些实施例中,SRS资源可以包括频域资源。
在一些实施例中,SRS资源可以包括SRS的参考信号序列。
在一些实施例中,SRS资源可以包括时域资源和频域资源。
在一些实施例中,SRS资源可以包括时域资源和SRS的参考信号序列。
在一些实施例中,SRS资源可以包括频域资源和SRS的参考信号序列。
在一些实施例中,SRS资源可以包括时域资源、频域资源和SRS的参考信号序列。
本公开提供了SRS资源的多种实现方式,以使得终端可以在不同小区利用SRS资源发送适用于多个小区的SRS配置参数的SRS。进而可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,SRS配置参数包括以下至少一项:空间关系信息;上行UL TCI状态信息;路径损耗(pathloss)参考信号(reference signal,RS)。
在一些实施例中,SRS配置参数可以包括spatialrelationinfo)
在一些实施例中,SRS配置参数可以包括UL TCI state信息。
在一些实施例中,SRS配置参数可以包括pathloss RS。
在一些实施例中,SRS配置参数可以包括spatialrelationinfo和UL TCI state信息。
在一些实施例中,SRS配置参数可以包括spatialrelationinfo和pathloss RS。
在一些实施例中,SRS配置参数可以包括UL TCI state信息和pathloss RS。
在一些实施例中,SRS配置参数可以包括spatialrelationinfo、UL TCI state信息和pathloss RS。
其中,spatialrelationinfo和UL TCI state信息可以认为是与SRS的波束相关的配置参数。
本公开提供了SRS配置参数的多种实现方式,通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,图8是根据一示例性实施例示出的再一种通信定位方法流程图。如8所示,该方法还可以包括以下步骤:
在步骤S71中,接收下行控制信息DCI。
在一些实施例中,终端还可以接收下行控制信息(downlink control information,DCI)。其中,该DCI可以包括指定的paging信息或寻呼早期指示(paging early indication,PEI)。而该指定的paging信息或PEI目的是为了指示终端发送SRS。指定的paging信息或PEI可以包括一种为了指示终端发送SRS的RNTI对应的paging信息,或DCI里包含指示终端发送SRS的信息域。
在步骤S72中,响应于DCI包括指定的paging信息或PEI,基于SRS配置参数发送SRS。
在一些实施例中,终端可以响应于S51中接收到的DCI中包括指定的paging信息或PEI的情况下,终端基于SRS配置参数向网络设备发送SRS。
本公开通过DCI指示终端发送SRS的情况下,基于可以适用于多个小区的SRS配置参数发送SRS,可以减少利用SRS进行定位测量时所带来的功率消耗。
基于相同构思,本公开还提供了适用于网络设备执行的通信定位方法。
图9是根据一示例性实施例示出的另一种通信定位方法流程图,如图9所示,方法应用于网络设备,可以包括以下步骤:
在步骤S81中,接收终端基于探测参考信号SRS配置参数发送的SRS。
在一些实施例中,网络设备可以接收终端发送的SRS,该SRS是终端基于SRS配置参数发送的。其中,该SRS配置参数适用于多个小区。
可以理解,SRS配置参数可以是与发送SRS相关一些配置参数,例如与SRS相关的波束信息、路径损耗参考信号等。其中,波束信息可以包括spatialrelationinfo或UL TCI state。
在步骤S82中,基于SRS进行定位测量。
在一些实施例中,网络设备可以基于S61接收的SRS,对终端进行定位测量。可以理解的是,基于SRS进行定位测量的网络设备包括TRP。
本公开通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,方法还可以包括:发送SRS配置参数的配置参数信息;和/或,SRS配置参数基于默认规则确定。
图10是根据一示例性实施例示出的又一种通信定位方法流程图。如图10所示,方法还可以包括以下步骤:
在步骤S91中,发送SRS配置参数的配置参数信息。
在一些实施例中,网络设备可以向终端发送参数配置信息,该参数配置信息为与SRS配置参数相关的配置参数信息。以便终端可以基于参数配置信息确定相应的SRS配置参数。
图11是根据一示例性实施例示出的再一种通信定位方法流程图。如图11所示,,方法还可以包括以下步骤:
在步骤S101中,SRS配置参数基于默认规则确定。
在一些实施例中,网络设备可以基于默认规则确定SRS配置参数。例如,默认规则可以是预先设定好的,也可以是协议中预先规定的,本公开不作限定。
本公开提供了多种确定SRS配置参数的方式,以配置可以适用于多个小区的SRS配置参数,从而减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,响应于SRS配置参数与参考信号相关联,配置参数信息包括参考信号标识。
在一些实施例中,SRS配置参数可以与参考信号相关联,在这种情况下,配置参数信息可以包括参考信号标识。SRS配置参数与参考信号相关联,可以理解为SRS配置参数中的波束信息为该参考信号对应的波束,SRS配置参数中的路径损耗参考信号即为该参考信号。也就是说,SRS发送时的空间关系信息或QCL Type D信息与该参考信号对应的空间关系信息或QCL Type D信息相同;SRS发送时确定发送功率以该参考信号接收时接收到的信号强度来确定。
例如,标识可以是ID,也可以是index。
例如,网络设备可以向终端发送配置参数信息,该配置参数信息包括参考信号标识。
本公开通过SRS配置参数与参考信号进行关联,使得可以通过参考信号标识确定相应的可以适用于多个小区的SRS配置参数。可以减少利用SRS进行定位测量时所带来的功 率消耗。
本公开实施例提供的通信方法中,响应于基于默认规则确定SRS配置参数,默认规则包括:发送参考信号,参考信号用于终端确定与参考信号关联的SRS配置参数。
在一些实施例中,响应于基于默认规则确定SRS配置参数。该默认规则可以包括:向终端发送参考信号。该参考信号可以用于终端确定与参考信号关联的SRS配置参数。SRS配置参数与参考信号相关联,可以理解为SRS配置参数中的波束信息为该参考信号对应的波束,SRS配置参数中的路径损耗参考信号即为该参考信号。也就是说,SRS发送时的空间关系信息或QCL Type D信息与该参考信号对应的空间关系信息或QCL Type D信息相同;SRS发送时确定发送功率以该参考信号接收时接收到的信号强度来确定。
例如,网络设备向终端发送某个参考信号,终端确定该参考信号的信号强度。若该参考信号的信号强度大于或等于预先设定的参考信号阈值,则终端可以确定S与该参考信号相关联的SRS配置参数,并基于该SRS配置参数进行SRS发送。由于终端已经提前知晓与参考信号关联的SRS配置参数,因此终端可以根据该参考信号确定与该参考信号相关联的SRS配置参数。即可以理解的是,终端预先已经知道与不同参考信号分别关联的SRS配置参数,而终端可以根据各个参考信号的信号强度,确定可以基于指定参考信号关联的SRS配置参数来发送SRS,而指定参考信号的信号强度需要大于或等于预先设定的参考信号阈值。
本公开可以根据参考信号的信号强度确定可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,参考信号对应的SRS资源基于参考信号信息确定,其中,参考信号信息包括参考信号时域位置和/或参考信号标识;和/或,参考信号对应的SRS资源基于第一信息确定,其中,第一信息包括终端的寻呼无线网络临时标识paging RNTI和/或paging时域位置。
在一些实施例中,参考信号对应的SRS资源可以基于参考信号信息确定。其中,参考信号信息可以包括参考信号时域位置和/或参考信号标识。也可以理解为,参考信号信息与SRS资源具有一定相关性。
例如,可以基于参考信号时域位置和/或参考信号标识,确定参考信号对应的SRS资源。因此,也可以认为,不同的参考信号时域位置和/或参考信号标识,其对应的SRS资源与参考信号信息相关。可以理解,该SRS资源为发送SRS所使用的资源。当然,由于SRS配置参数是与发送SRS相关一些配置参数,因此,SRS资源也可以认为是SRS配置参数对应的资源。其中,参考信号信息与SRS资源的对应关系,可以是基于网络设备发送 的配置信息确定的,也可以是基于默认规则确定的。
以参考信号为SSB为例,SRS资源例如SRS时域资源可以在SSB的时域位置之后的K1个符号。以参考信号为TRS为例,SRS资源例如SRS时域资源可以在TRS的时域位置之后的K2个符号。
当然,参考信号信息还可以包括其它任意可能的与该参考信号相关的信息,本公开不作限定。
在一些实施例中,可以基于第一信息确定参考信号对应的SRS资源。其中,第一信息包括终端的paging RNTI和/或paging时域位置。也可以理解为,第一信息与SRS资源具有一定相关性。该第一信息可以认为是与终端相关的终端信息。
例如,可以基于终端的paging RNTI和/或paging时域位置,确定参考信号对应的SRS资源。因此,也可以认为,终端的paging RNTI和/或paging时域位置与SRS资源相关。
当然,第一信息还可以包括其它任意可能的与该终端相关的信息,本公开不作限定。
本公开提供确定SRS资源的多种方式,使得可以基于该SRS资源发送适用于多个小区的SRS配置参数的SRS,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,不同小区中相同的参考信号信息对应的SRS资源具有相同的配置。
在一些实施例中,对于不同的cell中,相同的参考信号信息对应的SRS资源的配置是相同的。
本公开通过相同的参考信号信息对应相同的SRS资源,以使得终端可以在不同小区利用相同的SRS资源发送适用于多个小区的SRS配置参数的SRS。进而可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,不同参考信号信息对应的SRS配置参数不同。
在一些实施例中,不同的参考信号信息所对应的SRS配置参数是不同的。也可以认为,相同的参考信号信息所对应的SRS配置参数相同。
本公开通过相同的参考信号信息对应相同的SRS配置参数,以使得终端可以在不同小区利用相同的SRS配置参数发送SRS,进而可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,参考信号包括以下至少一项:同步信号块SSB;信道状态信息参考信号CSI-RS;跟踪参考信号TRS。
在一些实施例中,参考信号可以是SSB。在这种情况下,参考信号标识可以是SSB ID。
在一些实施例中,参考信号可以是CSI-RS。在这种情况下,参考信号标识可以是CSI-RS  ID。
在一些实施例中,参考信号可以是TRS。在这种情况下,参考信号标识可以是TRS ID。
在一些实施例中,参考信号可以是SSB和CSI-RS。在这种情况下,参考信号标识可以是SSB ID和CSI-RS ID。
在一些实施例中,参考信号可以是SSB和TRS。在这种情况下,参考信号标识可以是SSB ID和TRS ID。
在一些实施例中,参考信号可以是CSI-RS和TRS。在这种情况下,参考信号标识可以是CSI-RS ID和TRS ID。
在一些实施例中,参考信号可以是SSB、CSI-RS和TRS。在这种情况下,参考信号标识可以是SSB ID、CSI-RS ID和TRS。
本公开适用于多种不同参考信号的情况,通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,响应于SRS配置参数与CORESET的TCI状态相关联,配置参数信息包括SRS配置参数对应的CORESET标识。
在一些实施例中,SRS配置参数可以与CORESET的TCI状态相关联,在这种情况下,配置参数信息可以包括SRS配置参数对应的CORESET标识。
例如,网络设备向终端发送的配置参数信息,可以包括CORESET标识。以使得终端可以基于CORESET标识,根据SRS配置参数与CORESET的关联关系,确定出CORESET标识对应的SRS配置参数。可以理解,CORESET标识可以指示指定CORESET,进而可以确定该指定CORESET的TCI状态。TCI状态会指示QCL Type D对应的参考信号标识,和/或路径损耗参考信号标识。因此,也可以认为SRS配置参数可以基于CORESET的TCI状态确定,终端可以基于CORESET的TCI状态确定的SRS配置参数向网络设备发送SRS。
本公开通过SRS配置参数与CORESET进行关联,使得可以通过CORESET标识指示指定CORESET所对应的TCI状态,确定相应的可以适用于多个小区的SRS配置参数。可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,响应于基于默认规则确定SRS配置参数,默认规则包括:基于寻呼paging信息对应的CORESET的TCI状态,确定SRS配置参数。
在一些实施例中,响应于基于默认规则确定SRS配置参数。该默认规则可以包括:基于paging信息对应的CORESET的TCI状态,确定SRS配置参数。
例如,SRS配置参数预先与CORESET的TCI状态相关联,因此终端可以根据paging信息对应的CORESET的TCI状态,确定与该CORESET的TCI状态相关联的SRS配置参 数。即SRS配置参数可以基于CORESET的TCI状态确定,因为TCI状态会指示QCL Type D对应的参考信号标识,和/或路径损耗参考信号标识,因此终端可以基于CORESET的TCI状态确定SRS配置参数。
本公开可以根据paging信息对应的CORESET的TCI状态确定可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,CORESET对应的SRS资源基于第二信息确定,其中,第二信息包括paging时域位置、paging标识和paging RNTI中的至少一项。
在一些实施例中,CORESET对应的SRS资源可以基于第二信息确定。其中,第二信息包括paging时域位置、paging标识和paging RNTI中的至少一项。也可以认为,终端基于第二信息确定CORESET的TCI状态对应的SRS资源。
其中,第二信息可以包括paging时域位置、paging标识和/或paging RNTI。也可以理解为,第二信息与SRS资源具有一定相关性。该第二信息可以认为是与paging相关的paging信息。
例如,可以基于paging时域位置、paging标识和/或paging RNTI,确定CORESET对应的SRS资源。因此,也可以认为paging时域位置、paging标识和/或paging RNTI,与SRS资源相关。
例如,SRS资源例如SRS时域资源可以在paging时域位置之后的K3个符号。
又例如,SRS资源与paging RNTI相关,即可以把对应不同的paging RNTI的终端的SRS资源区分开,防止碰撞。
当然,第二信息还可以包括其它任意可能的与该paging相关的信息,本公开不作限定。
本公开提供确定SRS资源的方式,使得可以基于该SRS资源发送适用于多个小区的SRS配置参数的SRS,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,不同小区中相同的第二信息对应的SRS资源配置相同。
在一些实施例中,对于不同的cell中,相同的第二信息对应的SRS资源配置相同。
本公开通过相同的第二信息对应相同的SRS资源,以使得终端可以在不同小区利用相同的SRS资源发送适用于多个小区的SRS配置参数的SRS。进而可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,不同TCI状态对应的SRS配置参数不同。
在一些实施例中,不同的TCI状态所对应的SRS配置参数是不同的。也可以认为,相同的TCI状态所对应的SRS配置参数相同。
例如,可以通过不同的TCI状态,确定出不同的适用于多个小区的SRS配置参数。不同的TCI状态是指TCI状态所指示的QCL Type D对应的参考信号标识和/或路径损耗参考信号标识中的至少一项不同。
又例如,在不同的cell中,可以通过相同的TCI状态,确定出相同的SRS配置参数。
可以理解,可以基于paging信息确定相应的发送paging的CORESET,并基于CORESET的TCI状态来确定SRS配置参数。因此,也可以认为来自不同CORESET的paging信息所对应的SRS配置参数是不同的。
本公开通过相同的TCI状态对应相同的SRS配置参数,以使得终端可以在不同小区利用相同的SRS配置参数发送SRS,进而可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,不同的SRS配置参数所对应的SRS资源不同,SRS资源包括以下至少一项:时域资源;频域资源;SRS的参考信号序列。
在一些实施例中,SRS资源可以包括时域资源。
在一些实施例中,SRS资源可以包括频域资源。
在一些实施例中,SRS资源可以包括SRS的参考信号序列。
在一些实施例中,SRS资源可以包括时域资源和频域资源。
在一些实施例中,SRS资源可以包括时域资源和SRS的参考信号序列。
在一些实施例中,SRS资源可以包括频域资源和SRS的参考信号序列。
在一些实施例中,SRS资源可以包括时域资源、频域资源和SRS的参考信号序列。
本公开提供了SRS资源的多种实现方式,以使得终端可以在不同小区利用SRS资源发送适用于多个小区的SRS配置参数的SRS。进而可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,SRS配置参数包括以下至少一项:空间关系信息;上行UL TCI状态信息;路径损耗(pathloss)参考信号(reference signal,RS)。
在一些实施例中,SRS配置参数可以包括空间关系信息(spatialrelationinfo)。
在一些实施例中,SRS配置参数可以包括UL TCI state信息。
在一些实施例中,SRS配置参数可以包括pathloss RS。
在一些实施例中,SRS配置参数可以包括spatialrelationinfo和UL TCI state信息。
在一些实施例中,SRS配置参数可以包括spatialrelationinfo和pathloss RS。
在一些实施例中,SRS配置参数可以包括UL TCI state信息和pathloss RS。
在一些实施例中,SRS配置参数可以包括spatialrelationinfo、UL TCI state信息和 pathloss RS。
其中,spatialrelationinfo和UL TCI state信息可以认为是与SRS的波束相关的配置参数。
本公开提供了SRS配置参数的多种实现方式,通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
本公开实施例提供的通信方法中,图12是根据一示例性实施例示出的另一种通信定位方法流程图。如12所示,该方法还可以包括以下步骤:
在步骤S111中,发送下行控制信息DCI。
在一些实施例中,网络设备还可以向终端发送DCI。其中,该DCI可以包括指定的paging信息或PEI。而该指定的paging信息或PEI目的是为了指示终端发送SRS。指定的paging信息或PEI可以包括一种为了指示终端发送SRS的RNTI对应的paging信息,或DCI里包含指示终端发送SRS的信息域。因此,包括指定的paging信息或PEIDCI可以用于指示终端基于SRS配置参数发送SRS。
本公开通过DCI指示终端发送SRS的情况下,基于可以适用于多个小区的SRS配置参数发送SRS,可以减少利用SRS进行定位测量时所带来的功率消耗。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种通信定位装置、设备。
可以理解的是,本公开实施例提供的通信定位装置、设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图13是根据一示例性实施例示出的一种通信定位装置示意图。参照图13,该装置200包括:处理模块201,用于确定探测参考信号SRS配置参数,SRS配置参数适用于多个小区;发送模块202,用于基于SRS配置参数发送SRS,SRS用于定位测量。
本公开通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位 测量时所带来的功率消耗。
在一种实施方式中,处理模块201还用于:接收网络设备发送的SRS配置参数的配置参数信息;和/或,基于默认规则确定SRS配置参数。
本公开提供了多种确定SRS配置参数的方式,以配置可以适用于多个小区的SRS配置参数,从而减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,响应于SRS配置参数与参考信号相关联,配置参数信息包括参考信号标识。
本公开通过SRS配置参数与参考信号进行关联,使得可以通过参考信号标识确定相应的可以适用于多个小区的SRS配置参数。可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,响应于基于默认规则确定SRS配置参数,默认规则包括:基于接收到参考信号的信号强度确定参考信号;根据参考信号确定与参考信号关联的SRS配置参数。
本公开可以根据参考信号的信号强度确定可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,处理模块201还用于:基于参考信号信息确定参考信号对应的SRS资源,其中,参考信号信息包括参考信号时域位置和/或参考信号标识;和/或,基于第一信息确定参考信号对应的SRS资源,其中,第一信息包括终端的寻呼无线网络临时标识paging RNTI和/或paging时域位置。
本公开提供确定SRS资源的多种方式,使得可以基于该SRS资源发送适用于多个小区的SRS配置参数的SRS,可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,不同小区中相同的参考信号信息对应的SRS资源具有相同的配置。
本公开通过相同的参考信号信息对应相同的SRS资源,以使得终端可以在不同小区利用相同的SRS资源发送适用于多个小区的SRS配置参数的SRS。进而可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,不同参考信号信息对应的SRS配置参数不同。
本公开通过相同的参考信号信息对应相同的SRS配置参数,以使得终端可以在不同小区利用相同的SRS配置参数发送SRS,进而可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,参考信号包括以下至少一项:同步信号块SSB;信道状态信息参 考信号CSI-RS;跟踪参考信号TRS。
本公开适用于多种不同参考信号的情况,通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,响应于SRS配置参数与控制资源集CORESET的传输配置指示TCI状态相关联,配置参数信息包括SRS配置参数对应的CORESET标识。
本公开通过SRS配置参数与CORESET进行关联,使得可以通过CORESET标识指示指定CORESET所对应的TCI状态,确定相应的可以适用于多个小区的SRS配置参数。可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,响应于基于默认规则确定SRS配置参数,处理模块201还用于:基于寻呼paging信息对应的CORESET的TCI状态,确定SRS配置参数。
本公开可以根据paging信息对应的CORESET的TCI状态确定可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,处理模块201还用于:基于第二信息确定CORESET对应的SRS资源,其中,第二信息包括paging时域位置、paging标识和paging RNTI中的至少一项。
本公开提供确定SRS资源的方式,使得可以基于该SRS资源发送适用于多个小区的SRS配置参数的SRS,可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,不同小区中相同的第二信息对应的SRS资源配置相同。
本公开通过相同的第二信息对应相同的SRS资源,以使得终端可以在不同小区利用相同的SRS资源发送适用于多个小区的SRS配置参数的SRS。进而可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,不同TCI状态对应的SRS配置参数不同。
本公开通过相同的TCI状态对应相同的SRS配置参数,以使得终端可以在不同小区利用相同的SRS配置参数发送SRS,进而可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,不同的SRS配置参数所对应的SRS资源不同,SRS资源包括以下至少一项:时域资源;频域资源;SRS的参考信号序列。
本公开提供了SRS资源的多种实现方式,以使得终端可以在不同小区利用SRS资源发送适用于多个小区的SRS配置参数的SRS。进而可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,SRS配置参数包括以下至少一项:空间关系信息;上行UL TCI状态信息;路径损耗pathloss参考信号。
本公开提供了SRS配置参数的多种实现方式,通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,装置200还包括:接收模块203,用于接收下行控制信息DCI,DCI包括指定的paging信息或寻呼早期指示PEI;发送模块202还用于:响应于DCI包括指定的paging信息或PEI,基于SRS配置参数发送SRS。
本公开通过DCI指示终端发送SRS的情况下,基于可以适用于多个小区的SRS配置参数发送SRS,可以减少利用SRS进行定位测量时所带来的功率消耗。
图14是根据一示例性实施例示出的另一种通信定位装置示意图。参照图14,该装置300包括:接收模块301,用于接收终端基于探测参考信号SRS配置参数发送的SRS,SRS配置参数适用于多个小区;处理模块302,用于基于SRS进行定位测量。
本公开通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,装置300还包括:发送模块303,用于发送SRS配置参数的配置参数信息;和/或,SRS配置参数基于默认规则确定。
本公开提供了多种确定SRS配置参数的方式,以配置可以适用于多个小区的SRS配置参数,从而减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,响应于SRS配置参数与参考信号相关联,配置参数信息包括参考信号标识。
本公开通过SRS配置参数与参考信号进行关联,使得可以通过参考信号标识确定相应的可以适用于多个小区的SRS配置参数。可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,响应于SRS配置参数基于默认规则确定,发送模块303还用于:发送参考信号,参考信号用于终端确定与参考信号关联的SRS配置参数。
本公开可以根据参考信号的信号强度确定可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,参考信号对应的SRS资源基于参考信号信息确定,其中,参考信号信息包括参考信号时域位置和/或参考信号标识;和/或,参考信号对应的SRS资源基于第一信息确定,其中,第一信息包括终端的寻呼无线网络临时标识paging RNTI和/或paging时域位置。
本公开提供确定SRS资源的多种方式,使得可以基于该SRS资源发送适用于多个小区的SRS配置参数的SRS,可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,不同小区中相同的参考信号信息对应的SRS资源具有相同的配置。
本公开通过相同的参考信号信息对应相同的SRS资源,以使得终端可以在不同小区利用相同的SRS资源发送适用于多个小区的SRS配置参数的SRS。进而可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,不同参考信号信息对应的SRS配置参数不同。
本公开通过相同的参考信号信息对应相同的SRS配置参数,以使得终端可以在不同小区利用相同的SRS配置参数发送SRS,进而可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,参考信号包括以下至少一项:同步信号块SSB;信道状态信息参考信号CSI-RS;跟踪参考信号TRS。
本公开适用于多种不同参考信号的情况,通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,响应于SRS配置参数与控制资源集CORESET的传输配置指示TCI状态相关联,配置参数信息包括SRS配置参数对应的CORESET标识。
本公开通过SRS配置参数与CORESET进行关联,使得可以通过CORESET标识指示指定CORESET所对应的TCI状态,确定相应的可以适用于多个小区的SRS配置参数。可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,响应于基于默认规则确定SRS配置参数,默认规则包括:基于寻呼paging信息对应的CORESET的TCI状态,确定SRS配置参数。
本公开可以根据paging信息对应的CORESET的TCI状态确定可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,CORESET对应的SRS资源基于第二信息确定,其中,第二信息包括paging时域位置、paging标识和paging RNTI中的至少一项。
本公开提供确定SRS资源的方式,使得可以基于该SRS资源发送适用于多个小区的SRS配置参数的SRS,可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,不同小区中相同的第二信息对应的SRS资源配置相同。
本公开通过相同的第二信息对应相同的SRS资源,以使得终端可以在不同小区利用相同的SRS资源发送适用于多个小区的SRS配置参数的SRS。进而可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,不同TCI状态对应的SRS配置参数不同。
本公开通过相同的TCI状态对应相同的SRS配置参数,以使得终端可以在不同小区利用相同的SRS配置参数发送SRS,进而可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,不同的SRS配置参数所对应的SRS资源不同,SRS资源包括以下至少一项:时域资源;频域资源;SRS的参考信号序列。
本公开提供了SRS资源的多种实现方式,以使得终端可以在不同小区利用SRS资源发送适用于多个小区的SRS配置参数的SRS。进而可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,SRS配置参数包括以下至少一项:空间关系信息;上行UL TCI状态信息;路径损耗pathloss参考信号。
本公开提供了SRS配置参数的多种实现方式,通过配置可以适用于多个小区的SRS配置参数,可以减少利用SRS进行定位测量时所带来的功率消耗。
在一种实施方式中,发送模块303还用于:发送下行控制信息DCI,DCI包括指定的paging信息或寻呼早期指示PEI,其中,包括指定的paging信息或PEI的DCI用于指示终端基于SRS配置参数发送SRS。
本公开通过DCI指示终端发送SRS的情况下,基于可以适用于多个小区的SRS配置参数发送SRS,可以减少利用SRS进行定位测量时所带来的功率消耗。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图15是根据一示例性实施例示出的一种通信定位设备示意图。例如,设备400可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等任意终端。
参照图15,设备400可以包括以下一个或多个组件:处理组件402,存储器404,电力组件406,多媒体组件408,音频组件410,输入/输出(I/O)接口412,传感器组件414,以及通信组件416。
处理组件402通常控制设备400的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件402可以包括一个或多个处理器420来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件402可以包括一个或多个模块,便于处理组件402和其他组件之间的交互。例如,处理组件402可以包括多媒体模块,以方便多媒体组件408和处理组件402之间的交互。
存储器404被配置为存储各种类型的数据以支持在设备400的操作。这些数据的示例 包括用于在设备400上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器404可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件406为设备400的各种组件提供电力。电力组件406可以包括电源管理***,一个或多个电源,及其他与为设备400生成、管理和分配电力相关联的组件。
多媒体组件408包括在所述设备400和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件408包括一个前置摄像头和/或后置摄像头。当设备400处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件410被配置为输出和/或输入音频信号。例如,音频组件410包括一个麦克风(MIC),当设备400处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器404或经由通信组件416发送。在一些实施例中,音频组件410还包括一个扬声器,用于输出音频信号。
I/O接口412为处理组件402和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件414包括一个或多个传感器,用于为设备400提供各个方面的状态评估。例如,传感器组件414可以检测到设备400的打开/关闭状态,组件的相对定位,例如所述组件为设备400的显示器和小键盘,传感器组件414还可以检测设备400或设备400一个组件的位置改变,用户与设备400接触的存在或不存在,设备400方位或加速/减速和设备400的温度变化。传感器组件414可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件414还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件414还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件416被配置为便于设备400和其他设备之间有线或无线方式的通信。设备400 可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件416经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件416还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,设备400可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器404,上述指令可由设备400的处理器420执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图16是根据一示例性实施例示出的另一种通信定位设备示意图。例如,设备500可以被提供为一基站,或者是服务器。参照图16,设备500包括处理组件522,其进一步包括一个或多个处理器,以及由存储器532所代表的存储器资源,用于存储可由处理组件522执行的指令,例如应用程序。存储器532中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件522被配置为执行指令,以执行上述方法。
设备500还可以包括一个电源组件526被配置为执行设备500的电源管理,一个有线或无线网络接口550被配置为将设备500连接到网络,和一个输入输出(I/O)接口558。设备500可以操作基于存储在存储器532的操作***,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本公开可以减少频繁获取SRS配置带来的功率消耗,提出适用于多个cell的SRS配置。可以适用于多个cell的SRS其spatialrelationinfo或UL TCI state(俗称波束),以及用于路损估计的参考信号进行配置。
本公开提出了适用于多个cell的SRS相关配置方法,包括SRS的spatialrelationinfo或UL TCI state(俗称波束),以及用于路损估计的参考信号,使得保证高精度定位的同时还能减少定位功耗。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式, 除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开中涉及到的“响应于”“如果”等词语的含义取决于语境以及实际使用的场景,如在此所使用的词语“响应于”可以被解释成为“在……时”或“当……时”或“如果”或“若”。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利范围来限制。

Claims (38)

  1. 一种通信定位方法,其特征在于,所述方法应用于终端,包括:
    确定探测参考信号SRS配置参数,所述SRS配置参数适用于多个小区;
    基于所述SRS配置参数发送SRS,所述SRS用于定位测量。
  2. 根据权利要求1所述的方法,其特征在于,所述确定SRS配置参数包括:
    接收网络设备发送的所述SRS配置参数的配置参数信息;和/或,
    基于默认规则确定所述SRS配置参数。
  3. 根据权利要求2所述的方法,其特征在于,响应于所述SRS配置参数与参考信号相关联,所述配置参数信息包括参考信号标识。
  4. 根据权利要求2所述的方法,其特征在于,响应于基于默认规则确定所述SRS配置参数,所述默认规则包括:
    基于接收到所述参考信号的信号强度确定参考信号;
    根据所述参考信号确定与所述参考信号关联的所述SRS配置参数。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    基于参考信号信息确定所述参考信号对应的SRS资源,其中,所述参考信号信息包括参考信号时域位置和/或参考信号标识;和/或,
    基于第一信息确定所述参考信号对应的SRS资源,其中,所述第一信息包括终端的寻呼无线网络临时标识paging RNTI和/或paging时域位置。
  6. 根据权利要求5所述的方法,其特征在于,不同所述小区中相同的所述参考信号信息对应的所述SRS资源具有相同的配置。
  7. 根据权利要求5或6所述的方法,其特征在于,不同所述参考信号信息对应的所述SRS配置参数不同。
  8. 根据权利要求3-7中任意一项所述的方法,其特征在于,所述参考信号包括以下至少一项:
    同步信号块SSB;
    信道状态信息参考信号CSI-RS;
    跟踪参考信号TRS。
  9. 根据权利要求2所述的方法,其特征在于,响应于所述SRS配置参数与控制资源集CORESET的传输配置指示TCI状态相关联,所述配置参数信息包括所述SRS配置参数对应的CORESET标识。
  10. 根据权利要求2所述的方法,其特征在于,响应于基于默认规则确定所述SRS配 置参数,所述默认规则包括:
    基于寻呼paging信息对应的CORESET的TCI状态,确定所述SRS配置参数。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    基于第二信息确定所述CORESET对应的SRS资源,其中,所述第二信息包括paging时域位置、paging标识和paging RNTI中的至少一项。
  12. 根据权利要求11所述的方法,其特征在于,不同所述小区中相同的所述第二信息对应的所述SRS资源配置相同。
  13. 根据权利要求10-12中任意一项所述的方法,其特征在于,不同所述TCI状态对应的所述SRS配置参数不同。
  14. 根据权利要求1-13中任意一项所述的方法,其特征在于,不同的所述SRS配置参数所对应的SRS资源不同,所述SRS资源包括以下至少一项:
    时域资源;
    频域资源;
    SRS的参考信号序列。
  15. 根据权利要求1-14中任意一项所述的方法,其特征在于,所述SRS配置参数包括以下至少一项:
    空间关系信息;
    上行UL TCI状态信息;
    路径损耗pathloss参考信号。
  16. 根据权利要求1-15中任意一项所述的方法,其特征在于,所述方法还包括:
    接收下行控制信息DCI,所述DCI包括指定的paging信息或寻呼早期指示PEI;
    所述基于所述SRS配置参数发送SRS,包括:
    响应于所述DCI包括所述指定的paging信息或所述PEI,基于所述SRS配置参数发送所述SRS。
  17. 一种通信定位方法,其特征在于,所述方法应用于网络设备,包括:
    接收终端基于探测参考信号SRS配置参数发送的SRS,所述SRS配置参数适用于多个小区;
    基于所述SRS进行定位测量。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    发送所述SRS配置参数的配置参数信息;和/或,
    所述SRS配置参数基于默认规则确定。
  19. 根据权利要求18所述的方法,其特征在于,响应于所述SRS配置参数与参考信号相关联,所述配置参数信息包括参考信号标识。
  20. 根据权利要求18所述的方法,其特征在于,响应于所述SRS配置参数基于默认规则确定,所述默认规则包括:
    发送所述参考信号,所述参考信号用于所述终端确定与所述参考信号关联的所述SRS配置参数。
  21. 根据权利要求19或20所述的方法,其特征在于,
    所述参考信号对应的SRS资源基于参考信号信息确定,其中,所述参考信号信息包括参考信号时域位置和/或参考信号标识;和/或,
    所述参考信号对应的SRS资源基于第一信息确定,其中,所述第一信息包括终端的寻呼无线网络临时标识paging RNTI和/或paging时域位置。
  22. 根据权利要求21所述的方法,其特征在于,不同所述小区中相同的所述参考信号信息对应的所述SRS资源具有相同的配置。
  23. 根据权利要求21或22所述的方法,其特征在于,不同所述参考信号信息对应的所述SRS配置参数不同。
  24. 根据权利要求19-23中任意一项所述的方法,其特征在于,所述参考信号包括以下至少一项:
    同步信号块SSB;
    信道状态信息参考信号CSI-RS;
    跟踪参考信号TRS。
  25. 根据权利要求18所述的方法,其特征在于,响应于所述SRS配置参数与控制资源集CORESET的传输配置指示TCI状态相关联,所述配置参数信息包括所述SRS配置参数对应的CORESET标识。
  26. 根据权利要求18所述的方法,其特征在于,响应于基于默认规则确定所述SRS配置参数,所述默认规则包括:
    基于寻呼paging信息对应的CORESET的TCI状态,确定所述SRS配置参数。
  27. 根据权利要求26所述的方法,其特征在于,所述CORESET对应的SRS资源基于第二信息确定,其中,所述第二信息包括paging时域位置、paging标识和paging RNTI中的至少一项。
  28. 根据权利要求27所述的方法,其特征在于,不同所述小区中相同的所述第二信息 对应的所述SRS资源配置相同。
  29. 根据权利要求26-28中任意一项所述的方法,其特征在于,不同所述TCI状态对应的所述SRS配置参数不同。
  30. 根据权利要求17-29中任意一项所述的方法,其特征在于,不同的所述SRS配置参数所对应的SRS资源不同,所述SRS资源包括以下至少一项:
    时域资源;
    频域资源;
    SRS的参考信号序列。
  31. 根据权利要求17-30中任意一项所述的方法,其特征在于,所述SRS配置参数包括以下至少一项:
    空间关系信息;
    上行UL TCI状态信息;
    路径损耗pathloss参考信号。
  32. 根据权利要求17-31中任意一项所述的方法,其特征在于,所述方法还包括:
    发送下行控制信息DCI,所述DCI包括指定的paging信息或寻呼早期指示PEI,其中,包括所述指定的paging信息或所述PEI的DCI用于指示所述终端基于所述SRS配置参数发送所述SRS。
  33. 一种通信定位装置,其特征在于,所述装置配置于终端,所述装置包括:
    处理模块,用于确定探测参考信号SRS配置参数,所述SRS配置参数适用于多个小区;
    发送模块,用于基于所述SRS配置参数发送SRS,所述SRS用于定位测量。
  34. 一种通信定位装置,其特征在于,所述装置包括:
    接收模块,用于接收终端基于探测参考信号SRS配置参数发送的SRS,所述SRS配置参数适用于多个小区;
    处理模块,用于基于所述SRS进行定位测量。
  35. 一种通信定位设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至16中任意一项所述的方法。
  36. 一种通信定位设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求17至32中任意一项所述的方法。
  37. 一种非临时性计算机可读存储介质,其特征在于,当所述存储介质中的指令由终端的处理器执行时,使得所述终端能够执行权利要求1至16中任意一项所述的方法。
  38. 一种非临时性计算机可读存储介质,其特征在于,当所述存储介质中的指令由网络设备的处理器执行时,使得所述网络设备能够执行权利要求17至32中任意一项所述的方法。
PCT/CN2022/135684 2022-11-30 2022-11-30 一种通信定位方法、装置、设备及存储介质 WO2024113276A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/135684 WO2024113276A1 (zh) 2022-11-30 2022-11-30 一种通信定位方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/135684 WO2024113276A1 (zh) 2022-11-30 2022-11-30 一种通信定位方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024113276A1 true WO2024113276A1 (zh) 2024-06-06

Family

ID=91322824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135684 WO2024113276A1 (zh) 2022-11-30 2022-11-30 一种通信定位方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024113276A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019061243A1 (en) * 2017-09-29 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) SAMPLE REFERENCE SIGNAL TRANSMISSION IN A COMMUNICATION NETWORK
CN114697993A (zh) * 2020-12-27 2022-07-01 华为技术有限公司 一种通信方法和装置
CN115362691A (zh) * 2020-07-20 2022-11-18 Oppo广东移动通信有限公司 一种发送srs的信息配置方法、终端设备及网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019061243A1 (en) * 2017-09-29 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) SAMPLE REFERENCE SIGNAL TRANSMISSION IN A COMMUNICATION NETWORK
CN115362691A (zh) * 2020-07-20 2022-11-18 Oppo广东移动通信有限公司 一种发送srs的信息配置方法、终端设备及网络设备
CN114697993A (zh) * 2020-12-27 2022-07-01 华为技术有限公司 一种通信方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Views on UL reference signals for NR Positioning", 3GPP DRAFT; R1-1912293, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, NV; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051819986 *

Similar Documents

Publication Publication Date Title
CN109417717B (zh) 测量配置方法、装置、设备、***及存储介质
US20230081293A1 (en) Data transmission method and data transmission apparatus
WO2021114276A1 (zh) 波束测量方法及波束测量装置
WO2022183454A1 (zh) 波束配置方法、波束配置装置及存储介质
EP4274288A1 (en) Beam indication method, beam indication apparatus and storage medium
EP4175338A1 (en) Communication processing method, communication processing apparatus and storage medium
EP4149195A1 (en) Data transmission method, data transmission apparatus, and storage medium
WO2023004692A1 (zh) 基于测量放松机制的通信方法、装置及存储介质
US20240007890A1 (en) Beam measurement method, beam measurement apparatus, and storage medium
CN114128361A (zh) 定位参考信号配置方法及装置、用户设备、存储介质
WO2022067766A1 (zh) 定位参考信号配置方法、配置装置及存储介质
US20240007989A1 (en) Parameter configuration method, parameter configuration apparatus, and storage medium
WO2024113276A1 (zh) 一种通信定位方法、装置、设备及存储介质
EP4369814A1 (en) Message configuration method, message configuration apparatus, and storage medium
WO2022027323A1 (zh) 用于寻呼信息处理的方法、装置及存储介质
CN113796110A (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
WO2024092584A1 (zh) 一种通信方法、装置、设备及存储介质
WO2024082312A1 (zh) 传输配置指示状态的确定方法、装置及存储介质
WO2024130590A1 (zh) 一种传输配置指示状态的确定方法、装置及存储介质
WO2024119381A1 (zh) 一种波束指示方法、装置、设备及存储介质
WO2024092585A1 (zh) 一种通信方法、装置、设备及存储介质
WO2024092786A1 (zh) 一种通信方法、装置、设备及存储介质
WO2024130613A1 (zh) 一种传输配置指示状态的确定方法、装置及存储介质
WO2024082314A1 (zh) 传输配置指示状态的确定方法、装置及存储介质
WO2024087258A1 (zh) 波束失败检测参考信号资源的确定方法、装置及存储介质