WO2024112086A1 - Light water reactor for oil sand mining having mid-loop applied thereto - Google Patents

Light water reactor for oil sand mining having mid-loop applied thereto Download PDF

Info

Publication number
WO2024112086A1
WO2024112086A1 PCT/KR2023/018833 KR2023018833W WO2024112086A1 WO 2024112086 A1 WO2024112086 A1 WO 2024112086A1 KR 2023018833 W KR2023018833 W KR 2023018833W WO 2024112086 A1 WO2024112086 A1 WO 2024112086A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
mid
steam generator
oil sand
loop
Prior art date
Application number
PCT/KR2023/018833
Other languages
French (fr)
Korean (ko)
Inventor
김석
한훈식
문주형
이태호
김긍구
김종욱
송재승
임성원
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230155431A external-priority patent/KR20240078328A/en
Priority claimed from KR1020230155450A external-priority patent/KR20240078329A/en
Priority claimed from KR1020230157115A external-priority patent/KR20240078333A/en
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Publication of WO2024112086A1 publication Critical patent/WO2024112086A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/08Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being steam
    • F22B1/14Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being steam coming in direct contact with water in bulk or in sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/08Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling water reactor, integral super-heat reactor, pressurised water reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the present invention relates to a light water reactor for oil sand mining applied to a midloop.
  • This study was conducted at the Korea Atomic Energy Research Institute with the support of the National Research Foundation of Korea with funding from the Ministry of Science and ICT (government) in 2023 to develop innovative SMART system element technology of the SMART Innovation Technology Development (R&D) project (Project identification number: 1711154717) , task number: 2020M2D7A1079178).
  • oil sand refers to a mixture of sand, bitumen (a general term for natural hydrocarbon compounds), clay, and water.
  • bitumen a general term for natural hydrocarbon compounds
  • clay a general term for natural hydrocarbon compounds
  • water a general term for natural hydrocarbon compounds
  • oil sands contain crude oil
  • technology for extracting crude oil from oil sands has recently been developed.
  • oil sand fields are being developed in places such as Canada, where many of these oil sands are found.
  • the CSS (cyclic steam stimulation) method and SAGD (steam assisted gravity drainage) method which are some of the existing methods of mining oil sands, inject high temperature and high pressure steam of 250 to 300 degrees into the ground to create high viscosity oil. This is a method of melting the oil sand to lower its viscosity enough to allow pipe transportation and then extracting it out of the surface.
  • the CSS method is to inject steam through one hole for a long time, wait for the oil sand to melt, and then suck the oil sand back into the same hole to mine it.
  • the SAGD method is to continuously inject steam through one of the two holes and extract the oil sand from the other hole. This is a method of continuously mining oil sands through a single hole.
  • thermal boilers were used to produce this steam.
  • thermal power boilers are causing various environmental problems due to their high carbon dioxide emissions, and the recent increase in “carbon tax” is showing the problem of weakening economic feasibility.
  • One embodiment of the present invention was invented with the above background in mind, and aims to provide a light water reactor with a structure that can minimize carbon dioxide emissions while producing high temperature and high pressure steam necessary for oil sand mining. .
  • the heat generated from the nuclear module is used simultaneously for the power generation turbine unit and the oil sand mining system, while adjusting the energy ratio of the two systems to provide heat according to the situation (demand for steam use for oil sands or power demand).
  • a light water reactor for oil sand mining includes a reactor module that heats a working fluid using heat generated through a nuclear reaction in the reactor core;
  • a midloop steam generator that receives heated working fluid from the reactor module, uses the working fluid to heat the oil sand side fluid flowing therein, and boils it into oil sand side steam in a vapor state; and a pressurizer that pressurizes the working fluid so that the working fluid heated in the reactor module is provided in a liquid state to the midloop steam generator, wherein the oil sand side steam mixes with oil in the ground. If possible, discharge the oil sand side vapor to the ground.
  • a plurality of midloop steam generators may be provided, and the plurality of midloop steam generators may be connected to each other so that the oil sand side fluid flows in series.
  • the mid-loop steam generator is provided in plural pieces, and the plurality of mid-loop steam generators include a first mid-loop steam generator connected to the reactor module, and a second mid-loop steam generator connected to the first mid-loop steam generator. It includes a generator, a third mid-loop steam generator connected to the second mid-loop steam generator, and a fourth mid-loop steam generator connected to the third mid-loop steam generator, and the first mid-loop steam generator is connected to the second mid-loop steam generator.
  • a portion of the oil sands side fluid delivered to the midloop steam generator is recovered to the first midloop steam generator, and a portion of the oil sands side fluid delivered from the third midloop steam generator to the second midloop steam generator is recovered.
  • a portion is recovered to the second midloop steam generator, and a portion of the oil sands side fluid delivered from the fourth midloop steam generator to the third midloop steam generator is recovered to the third midloop steam generator,
  • the oil sands side fluid may be configured to circulate between the plurality of mid-loop steam generators.
  • it includes an oil sand side phase separator that separates the intermediate fluid discharged from any one of the plurality of mid-loop steam generators into liquid and gas, and the oil sand side fluid in the liquid state separated by the oil sand side phase separator. It may further include a second recovery pump that pressurizes the oil sand side fluid in a liquid state to flow into another mid-loop steam generator disposed further upstream than any one of the plurality of mid-loop steam generators. there is.
  • it further includes a turbine unit that generates electricity using the working fluid heated in the reactor module, and the reactor module allows the working fluid flowing to the turbine unit and the working fluid flowing to the midloop steam generator to flow independently. It can be configured.
  • it further includes a turbine unit that generates electricity using the working fluid heated in the nuclear reactor module, and the turbine unit may be connected to one or more midloop steam generators among the plurality of midloop steam generators.
  • mid-loop steam generator may be configured so that the oil sand side fluid and the working fluid flow independently.
  • the midloop steam generator includes a first midloop body through which the working fluid heated in the reactor module flows; And it may include a second mid-roof body that provides a space where the oil sand side fluid flows and is heated by the working fluid.
  • oil sand side vapor may further include a processing unit for recovering an oil mixture mixed with oil in the ground and separating the recovered oil mixture into oil and oil sand side fluid.
  • the treatment unit includes an oil treatment unit that provides a treatment solution by mixing a diluent with the oil mixture; and a post-treatment unit that separates the treatment liquid into an oil sand side fluid to be recovered by the mid-loop steam generator and a waste liquid not recovered by the mid-loop steam generator.
  • the oil treatment unit includes an oil dilution unit that separates sand and bitumen from the oil mixture and mixes the diluent to provide a first treatment liquid; and an oil extraction unit that separates oil from the first treatment liquid and provides a second treatment liquid.
  • the post-processing unit may separate the waste liquid from the second treatment liquid and provide an oil sand side fluid to be recovered by the mid-loop steam generator.
  • a light water reactor for oil sand mining includes a reactor module that heats a working fluid using heat generated through a nuclear reaction in the reactor core; a midloop steam generator that receives heated working fluid from the reactor module, uses the working fluid to heat the oil sand side fluid flowing therein, and evaporates it into oil sand side steam in a vapor state; and a valve unit whose opening is selectively adjustable to control the pressure at which the working fluid heated in the reactor module is supplied to the midloop steam generator, wherein the oil sand side steam is supplied to the midloop steam generator.
  • the oil sand side vapor is discharged to the ground so that it mixes with the oil in the ground.
  • the valve unit operates by heating the reactor module when the valve unit is closed, greater than the difference between the pressure of the working fluid heated in the reactor module when the valve unit is opened and the pressure of the working fluid passing through the valve unit. It may be configured so that the difference between the pressure of the fluid and the pressure of the working fluid passing through the valve unit is larger.
  • the mid-loop steam generator may be configured so that the oil sand side fluid and the working fluid flow independently.
  • the midloop steam generator includes a first midloop body through which the working fluid heated in the reactor module flows; And it may include a second mid-roof body that provides a space where the oil sand side fluid flows and is heated by the working fluid.
  • the oil sand side vapor may further include a processing unit for recovering an oil mixture mixed with oil in the ground and separating the recovered oil mixture into oil and oil sand side fluid.
  • the processing unit includes an oil processing unit that provides a treatment solution by mixing a diluent with the oil mixture; and a post-treatment unit that separates the treatment liquid into an oil sand side fluid to be recovered by the mid-loop steam generator and a waste liquid not recovered by the mid-loop steam generator.
  • the oil treatment unit includes an oil dilution unit that separates sand and bitumen from the oil mixture and mixes the dilution liquid to provide a first treatment liquid; and an oil extraction unit that separates oil from the first treatment liquid and provides a second treatment liquid.
  • the post-processing unit may separate the waste liquid from the second treatment liquid and provide an oil sand side fluid to be recovered by the mid-loop steam generator.
  • a light water reactor for oil sand mining includes a reactor module that heats a working fluid using heat generated through a nuclear reaction in the reactor core; A connection part providing a passage through which the working fluid flows; And a mid-loop steam generator that receives the heated working fluid from the reactor module through the connection, heats the oil sand side fluid flowing inside using the working fluid, and boils it into oil sand side steam in a vapor state. , the mid-loop steam generator discharges the oil sand side steam to the ground so that the oil sand side steam is mixed with oil in the ground.
  • the mid-loop steam generator may be configured so that the oil sand side fluid and the working fluid flow independently.
  • the midloop steam generator includes a first midloop body through which the working fluid heated in the reactor module flows; And it may include a second mid-roof body that provides a space where the oil sand side fluid flows and is heated by the working fluid.
  • the oil sand side vapor may further include a processing unit for recovering an oil mixture mixed with oil in the ground and separating the recovered oil mixture into oil and oil sand side fluid.
  • the processing unit includes an oil processing unit that provides a treatment solution by mixing a diluent with the oil mixture; and a post-treatment unit that separates the treatment liquid into an oil sand side fluid to be recovered by the mid-loop steam generator and a waste liquid not recovered by the mid-loop steam generator.
  • It may further include a midloop pump that flows the working fluid recovered from the midloop steam generator to the reactor module.
  • It may further include a recovery pump that flows the recovered oil sand side fluid to the mid-loop steam generator.
  • the oil treatment unit includes an oil dilution unit that separates sand and bitumen from the oil mixture and mixes the dilution liquid to provide a first treatment liquid; and an oil extraction unit that separates oil from the first treatment liquid and provides a second treatment liquid.
  • the post-processing unit may separate the waste liquid from the second treatment liquid and provide an oil sand side fluid to be recovered by the mid-loop steam generator.
  • a light water reactor can be applied to produce high temperature and high pressure steam of 250 degrees to 300 degrees necessary for oil sand mining.
  • carbon dioxide emissions can be minimized by applying a light water reactor to produce high temperature and high pressure steam.
  • the water quality of the working fluid of the nuclear reactor module and the oil sand side fluid flowing through the ground can be managed separately. Therefore, the water quality management methods used in the existing nuclear power plant industry and the oil sand mining industry can be maintained, so there is no need to develop a separate water quality management method, which has the effect of eliminating additional costs.
  • the midloop by placing the midloop between the reactor module and the ground, the midloop can serve as an additional barrier capable of blocking radioactive materials, which has an advantageous effect from a radiation safety perspective.
  • the power generation turbine unit and the oil sand mining system can be operated simultaneously, and the energy ratio of the two systems can be adjusted as needed, depending on the situation (demand for steam use for oil sands or power demand). There is an effect that can respond accordingly.
  • Figure 1 is a conceptual diagram showing a light water reactor for oil sand mining according to a first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing a turbine connected to the reactor module of the light water reactor for oil sand mining of FIG. 1.
  • FIG. 3 is a diagram showing one more midloop steam generator added to the reactor module of the light water reactor for oil sand mining of FIG. 2.
  • FIG. 4 is a diagram showing that a plurality of midloop steam generators are added to the reactor module of the light water reactor for oil sand mining of FIG. 2.
  • FIG. 5 is a diagram showing a change in the connection method of the turbine unit in the reactor module of the light water reactor for oil sand mining of FIG. 4.
  • Figure 6 is a conceptual diagram showing a light water reactor for oil sand mining with a mid-loop applied according to the second embodiment of the present invention.
  • FIG. 7 is a conceptual diagram showing a turbine connected to the reactor module of the light water reactor for oil sand mining to which the midloop of FIG. 6 is applied.
  • Figure 8 is a conceptual diagram showing a light water reactor for oil sand mining with a mid-loop application according to the third embodiment of the present invention.
  • FIG. 9 is a conceptual diagram showing a turbine connected to the reactor module of the light water reactor for oil sand mining to which the midloop of FIG. 8 is applied.
  • a component is 'delivered', 'connected', or 'provided' to another component, it is understood that it may be directly delivered, connected, or provided to that other component, but that other components may exist in between. It should be.
  • the light water reactor 1 for oil sand mining is connected to the reactor module with a midloop steam generator capable of separately generating steam using heat generated from the reactor module.
  • oil sands can be mined.
  • This light water reactor (1) for oil sand mining includes a reactor module (10), a turbine unit (20), a mid-loop steam generator (30), a processing unit (40), a connection unit (50), a pump unit (60), and a separator ( 70), a pressurizer 80, and a heater unit 90.
  • the nuclear reactor module 10 can heat the working fluid using heat generated through a nuclear reaction in the reactor core.
  • This nuclear reactor module 10 can supply at least a portion of the generated heat to the outside.
  • the nuclear reactor module 10 may discharge high temperature working fluid of 250 degrees to 310 degrees to the outside.
  • This nuclear reactor module 10 can heat the working fluid using heat generated by nuclear fission.
  • the reactor core 11, which will be described later can be passively cooled by natural circulation of coolant such as coolant.
  • the working fluid discharged from the nuclear reactor module 10 may be water or oil.
  • One side of the nuclear reactor module 10 may be connected to the turbine unit 20 so that a portion of the working fluid communicates with the turbine unit 20.
  • the other side of the reactor module 10 may be connected to the midloop steam generator 30.
  • the working fluid flowing into the turbine unit 20 may be referred to as turbine fluid, and this turbine fluid flows between the nuclear reactor module 10 and the mid-loop steam generator 30. It can flow independently of the fluid.
  • the nuclear reactor module 10 may be configured so that the turbine fluid and the working fluid flow without mixing with each other.
  • the nuclear reactor module 10 may be a nuclear steam supply system (NSSS).
  • This nuclear reactor module 10 may include a reactor core 11, a heat exchanger 12, and a reactor vessel 13.
  • Nuclear fission may occur in the reactor core 11.
  • Nuclear fuel (not shown) containing radioactive materials such as uranium is placed in the core 11, so nuclear fission may occur.
  • the reactor core 11 may be placed inside the reactor vessel 13.
  • the heat exchanger 12 is converted into a vapor state by the heat of the reactor core 11 and can condense the coolant discharged from the reactor vessel 13. This heat exchanger 12 may be placed outside the reactor vessel 13.
  • the reactor vessel 13 can prevent nuclear fission products generated by nuclear fission occurring in the reactor core 11 from leaking to the outside.
  • This reactor vessel 13 can accommodate the reactor core 11. Additionally, the interior of the reactor vessel 13 is filled with coolant to cool the reactor core 11 where nuclear fission occurs.
  • the turbine unit 20 can generate electricity using turbine fluid heated in the nuclear reactor module 10. For example, heat generated in the core of the nuclear reactor module 10 generates steam or high-temperature liquid, and the heat may be transferred to the turbine unit 20 in the form of a fluid.
  • This turbine unit 20 may be connected to the nuclear reactor module 10.
  • the present invention is not limited to this, and the turbine unit 20 may be connected to the midloop steam generator 30.
  • the turbine unit 20 may be connected to any one mid-loop steam generator 30 disposed most downstream among the plurality of mid-loop steam generators 30 in the nuclear reactor module 10.
  • the midloop steam generator 30 can receive the heated working fluid from the reactor module 10, heat the oil sand side fluid flowing inside using the working fluid, and boil it into oil sand side steam.
  • This mid-loop steam generator 30 may be configured so that the oil sand side fluid and the working fluid flow independently. Additionally, the mid-loop steam generator 30 may discharge oil sand side steam to the ground (G) so that the oil sand side steam is mixed with oil in the ground (G).
  • the midloop steam generator 30 can deliver oil sand side steam to the ground (G).
  • This mid-loop steam generator (30) returns at least a portion of the oil sand-side fluid from the oil mixture of the oil separated from the ground (G) into which the oil sand-side steam flows and the oil sand-side fluid to the mid-loop steam generator (30). ) can be recovered inside. Additionally, a plurality of midloop steam generators 30 may be provided. A plurality of mid-loop steam generators 30 may be connected to each other so that the oil sand side fluid flows in series or parallel. These plurality of mid-loop steam generators 30 may be arranged adjacent to each other along the direction in which the fluid flows.
  • the plurality of mid-loop steam generators 30 include a first mid-loop steam generator connected to the nuclear power module 10, a second mid-loop steam generator connected to the first mid-loop steam generator, and a second mid-loop steam generator. It may include a third mid-loop steam generator connected to the generator and a fourth mid-loop steam generator connected to the third mid-loop steam generator. Any part of the oil sands side fluid delivered from the second midloop steam generator to the first midloop steam generator may be recovered to the first midloop steam generator, and from the third midloop steam generator to the second midloop steam generator.
  • any part of the oil sands side fluid delivered may be recovered to the second midloop steam generator, and any part of the oil sands side fluid delivered from the fourth midloop steam generator to the third midloop steam generator may be recovered to the third midloop steam generator. It can be recovered with a steam generator.
  • the oil sand side fluid may be configured to circulate between a plurality of mid-loop steam generators (30).
  • the number of mid-loop steam generators 30 is not limited to this, and other numbers of mid-loop steam generators 30 may be added or omitted.
  • the mid loop steam generator 30 may include a first mid loop body 31 and a second mid loop body 32.
  • the working fluid heated in the nuclear reactor module 10 may flow through the first midloop body 31 .
  • This first mid-roof body 31 may be connected to a first supply unit 511, which will be described later.
  • This first mid-roof body 31 can accommodate the second mid-roof body 32 therein. Additionally, the working fluid delivered from the nuclear reactor module 10 may flow inside the first mid-roof body 31.
  • the second mid-roof body 32 may provide a space where the oil sand side fluid flows and is heated by the working fluid.
  • the oil sand side fluid flowing inside the second mid-roof body 32 may change state depending on temperature and pressure changes. Additionally, the second mid-roof body 32 may be disposed inside the first mid-roof body 31.
  • the second mid-roof body (32) prevents the oil sand side fluid flowing through the second mid-roof body (32) from mixing with the working fluid received from the reactor module (10) outside the second mid-roof body (32). It can be configured.
  • the processing unit 40 can recover the oil mixture in which oil sand side vapor is mixed with oil in the ground (G), and separate the recovered oil mixture into oil and oil sand side fluid.
  • This processing unit 40 may be connected between the ground (G) and the mid-loop steam generator (30). Additionally, the processing unit 40 may include an oil processing unit 41 and a post-processing unit 42.
  • the oil treatment unit 41 may provide a treatment liquid by mixing a diluent with the oil mixture.
  • This oil processing unit 41 can separate oil from the oil mixture extracted from the ground (G).
  • This oil processing unit 41 may include an oil dilution unit 411 and an oil extraction unit 412.
  • the oil dilution unit 411 may separate sand and bitumen from the oil mixture and mix the diluent to provide a first treatment solution.
  • This first treatment solution may be a treatment solution obtained by removing sand and bitumen from the oil mixture.
  • one side of the oil dilution unit 411 may be connected to the ground (G), and the other side may be connected to the oil extraction unit 412.
  • the oil extraction unit 412 may separate oil from the first treatment liquid and provide a second treatment liquid.
  • the treatment liquid produced by separating the oil from the first treatment liquid may be called the second treatment liquid.
  • the oil separated from the oil extraction unit 412 can be transferred back to the oil dilution unit 411, and sand, bitumen, and oil can be separated multiple times. Additionally, the oil extraction unit 412 may be connected to the post-processing unit 42.
  • the second treatment liquid which is the oil mixture liquid from which the oil is finally separated in the oil extraction unit 412, may be provided to the post-processing unit 42.
  • the post-treatment unit 42 can separate the treated liquid into an oil sand side fluid to be recovered by the mid-loop steam generator 30 and a waste liquid not recovered by the mid-loop steam generator 30. This post-treatment unit 42 can separate the waste liquid from the second treatment liquid and provide the oil sand side fluid to be recovered to the mid-loop steam generator 30. Additionally, the post-treatment unit 42 may receive the second treatment liquid from which the oil has been separated from the oil treatment unit 41 . This post-treatment unit 42 can separate the second treatment liquid into an oil sand side fluid that can be recovered by the mid-loop steam generator 30 and a waste liquid that cannot be recovered by the mid-loop steam generator 30.
  • the post-processing unit 42 can deliver the oil sand side fluid that has been treated to be recoverable to the mid-loop steam generator 30. Additionally, the post-processing unit 42 can deliver the oil sand side fluid to the mid-loop steam generator 30.
  • connection portion 50 may provide a passage through which the working fluid, turbine fluid, and oil sand side fluid flow.
  • This connection part 50 includes a nuclear reactor module 10, a turbine part 20, a mid-loop steam generator 30, a processing part 40, a pump part 60, a separator 70, a pressurizer 80, and a heater part ( 90) and the ground (G). Additionally, the connection portion 50 may be formed of a material that can withstand high temperature and pressure.
  • the connection part 50 may include a supply part and a recovery part.
  • the supply unit may provide a space through which fluid can flow so that high-temperature and high-pressure fluid is transmitted in one direction.
  • the fluid flowing inside this supply unit may flow in one direction.
  • the supply unit may include a first supply unit 511, a second supply unit 512, a third supply unit 513, a fourth supply unit 514, and a fifth supply unit 515.
  • the first supply unit 511 may connect between the nuclear reactor module 10 and the midloop steam generator 30. This first supply unit 511 may provide a flow space so that the working fluid supplied from the nuclear reactor module 10 moves toward the midloop steam generator 30.
  • the second supply unit 512 may connect the reactor module 10 and the turbine unit 20. This second supply unit 512 may provide a flow space so that the turbine fluid supplied from the nuclear reactor module 10 moves toward the turbine unit 20.
  • the third supply unit 513 may connect the mid-loop steam generator 30 and the ground (G). This third supply unit 513 may provide a flow space so that the oil sand side fluid supplied from the mid-loop steam generator 30 moves to the ground (G).
  • the fourth supply unit 514 may connect between the supply unit 72 and the post-processing unit 42, which will be described later. This fourth supply unit 514 can provide a flow space so that the oil sand side fluid supplied from the supply unit 72 moves to the post-processing unit 42.
  • the fifth supply unit 515 may connect a plurality of mid-loop steam generators 30. This fifth supply unit 515 may provide a flow space in which the intermediate fluid flowing between the plurality of mid-loop steam generators 30 moves.
  • the recovery unit fluid such as oil mixture flows so that the oil mixture extracted from the ground (G) reaches the treatment unit (40), mid-loop steam generator (30), pump unit (60), separator (70), heater unit (90), etc.
  • the recovery unit includes the oil mixture extracted from the ground (G), the first treatment liquid processed in the oil dilution unit 411, the second treatment liquid processed in the oil extraction unit 412, and the post-treatment unit 42. Oil sand side fluid, etc. treated in may flow.
  • a plurality of recovery units may be provided, and a recovery unit pump 62 may be disposed between the plurality of recovery units.
  • the recovery unit includes a first recovery unit 521, a second recovery unit 522, a third recovery unit 523, a fourth recovery unit 524, a fifth recovery unit 525, and a sixth recovery unit 526. It can be included.
  • the first recovery unit 521 may connect between the ground (G) and the oil processing unit 41. This first recovery unit 521 can provide a flow space so that the oil mixture extracted from the ground (G) moves toward the oil processing unit 41.
  • the second recovery unit 522 may connect the oil processing unit 41 and the post-processing unit 42. This second recovery unit 522 may be connected between the oil dilution unit 411 and the oil extraction unit 412. In addition, the second recovery unit 522 may provide a flow space so that the first treatment liquid processed in the oil dilution unit 411 moves to the oil extraction unit 412, and the processed liquid in the oil extraction unit 412 may be provided. A flow space may be provided so that the second treatment liquid moves to the post-processing unit 42.
  • the third recovery unit 523 may connect the post-processing unit 42 and the mid-loop steam generator 30. This third recovery unit 523 can provide a flow space so that the oil sand side fluid treated in the post-processing unit 42 moves to the mid-loop steam generator 30.
  • the fourth recovery unit 524 may connect the mid-loop steam generator 30 and the nuclear reactor module 10. This fourth recovery part 524 may provide a flow space so that the working fluid flowing in the first mid-roof body 31 moves to the nuclear reactor module 10.
  • the fifth recovery unit 525 may connect the reactor module 10 and the turbine unit 20. This fifth recovery unit 525 may provide a flow space for the turbine fluid flowing in the turbine unit 20 to move to the nuclear reactor module 10.
  • the sixth recovery unit 526 can connect between the oil sand side phase separator 73 and the midloop steam generator 30, which will be described later.
  • This sixth recovery unit 526 may provide a flow space for the intermediate fluid flowing between the plurality of mid-loop steam generators 30 to move. For example, in the sixth recovery unit 526, saturated water among the saturated water and saturated steam discharged from the N+1th midloop steam generator 30 may flow and be moved to the Nth midloop steam generator 30. .
  • the pump unit 60 may provide pressure to the fluid so that the pressure of the fluid flowing in the recovery unit changes.
  • a plurality of such pump units 60 may be provided.
  • the pump unit 60 may include a mid loop pump 61 and a recovery pump 62.
  • the midloop pump 61 may provide pressure to the fluid recovered to the nuclear reactor module 10, allowing the fluid to move to the nuclear reactor module 10. This midloop pump 61 can increase the movement speed of the fluid recovered to the nuclear reactor module 10.
  • the recovery pump 62 can provide pressure to the oil sand side fluid and the intermediate fluid.
  • This recovery pump 62 may include a first recovery pump 621 and a second recovery pump 622.
  • the first recovery pump 621 may be disposed between the post-processing unit 42 and the mid-loop steam generator 30. When a plurality of mid-loop steam generators 30 are disposed, one side of the first recovery pump 621 is located further downstream than any one mid-loop steam generator 30 among the plurality of mid-loop steam generators 30. It can be connected to the arranged mid-loop steam generator (30). Additionally, the other side of the first recovery pump 621 may be connected to a post-processing unit 71 connected to the post-processing unit 42.
  • the second recovery pump 622 applies pressure to the oil sand side fluid in a liquid state separated by the oil sand side phase separator 73, so that any one of the plurality of mid loop steam generators 30
  • the liquid oil sand side fluid can be pressurized so that it flows into another mid-loop steam generator (30) disposed further upstream than (30).
  • the liquid pressurized through the second recovery pump 622 may flow into the N-th mid-loop steam generator 30, which is disposed further forward than the N+1-th mid-loop steam generator 30.
  • the saturation pressure of the steam of the N-th mid-loop steam generator (30) is higher than the saturation pressure of the steam of the N+1-th mid-loop steam generator (30).
  • a plurality of second recovery pumps 622 may be provided.
  • the liquid separated from the oil sand side fluid flows through a plurality of mid-loop steam generators 30 by a plurality of second recovery pumps 622 and can be pressurized multiple times.
  • This second recovery pump 622 may be provided at different rotation speeds.
  • the second recovery pump 622 which has different rotation speeds, can provide different pressures.
  • this second recovery pump 622 may be disposed between the plurality of mid-loop steam generators 30. Additionally, the second recovery unit pump 622 may be disposed in the sixth recovery unit 526. One side of the second recovery pump 622 may be connected to a mid-loop steam generator 30 disposed further upstream than any one of the plurality of mid-loop steam generators 30. The other side of this second recovery pump 622 may be connected to the oil sand side phase separator 73 disposed further downstream than any one mid-loop steam generator 30 among the plurality of mid-loop steam generators 30. .
  • the separator 70 can separate the oil sand side fluid depending on its condition. This separator 70 may be connected to the midloop steam generator 30 or the processing unit 40. Additionally, a plurality of separators 70 may be provided. The separator 70 may be provided as one of a pressure type, a vacuum type, and a chemical type separator. This separator 70 may include a post-treatment separator 71, a feed separator 72, and an oil sand side phase separator 73.
  • the post-processing unit 71 can separate the oil sand side fluid treated in the post-processing unit 42 depending on its condition.
  • the oil sand side fluid treated in this post-treatment unit 71 can pass through the recovery pump 62.
  • the supply subunit 72 can separate the oil sand side fluid supplied from the mid-loop steam generator 30 depending on its condition.
  • the oil sand side fluid flowing through this supply unit 72 can flow to the ground (G) and the post-processing unit 42.
  • the oil sand side phase separator 73 can separate the intermediate fluid discharged from one of the plurality of mid-loop steam generators 30 into liquid and gas. This oil sand side phase separator 73 can separate the intermediate fluid into saturated steam and saturated water. For example, the oil sand side phase separator 73 can separate the intermediate fluid discharged from the N+1th mid-loop steam generator 30 into saturated steam and saturated water, and the oil sand side phase separator 73 Can provide saturated water to the Nth mid-loop steam generator (30).
  • one side of the oil sand side phase separator (73) is the N+1th mid-loop steam generator (30) disposed further downstream than any one mid-loop steam generator (30) among the plurality of mid-loop steam generators (30).
  • the other side of the oil sand side phase separator (73) is connected to the Nth mid-loop steam generator (30) disposed further upstream than any one mid-loop steam generator (30) among the plurality of mid-loop steam generators (30). You can.
  • the pressurizer 80 may pressurize the working fluid heated in the nuclear reactor module 10 so that the working fluid is provided to the midloop steam generator 30 in a liquid state.
  • the temperature of this working fluid may be around 310 degrees Celsius.
  • the pressurizer 80 may be disposed in the first supply unit 511 connecting the nuclear reactor module 10 and the midloop steam generator 30. In other words, the pressurizer 80 may be placed adjacent to any one of the plurality of midloop steam generators 30 disposed upstream. Additionally, the pressurizer 80 may be driven at a pressure of 10 to 15 Mpa.
  • the heater unit 90 can increase the temperature of the oil sand side fluid flowing through the plurality of mid-loop steam generators 30 and the turbine fluid flowing through the turbine unit 20.
  • one side of the heater unit 90 may be connected to the mid-loop steam generator 30 disposed most downstream among the plurality of mid-loop steam generators 30. Additionally, the other side of the heater unit 90 may be connected to the post-processing unit 42.
  • the light water reactor (1) for oil sand mining can provide steam with a different pressure required depending on the progress stage of oil sand mining. For example, in the early stages of oil sand mining, high-pressure steam of approximately 10 Mpa or more is required, in the mid-stage, relatively medium-pressure steam of approximately 6 to 8 Mpa is required, and in the final stage, low-pressure steam of approximately 4 Mpa or less is required. is needed.
  • steam provided from the midloop steam generator 30, which can provide high-pressure steam can be supplied to the ground (G) in the initial stage of oil sand mining.
  • steam provided from the midloop steam generator 30, which can provide relatively low-pressure steam among the plurality of midloop steam generators 30, can be supplied to the ground (G) in the middle or end stage of oil sand mining. . Since the pressures of the steam provided from the plurality of midloop steam generators 30 are different from each other, steam of different pressures can be provided to several grounds (G) at the same time.
  • At least a portion of the oil sand side fluid delivered from the Nth midloop steam generator 30 to the N+1th midloop steam generator 30 is oil. It can be separated by state by the sand-side phase separator 73. At least a portion of the oil sand side fluid discharged from the N+1th midloop steam generator 30 and separated into liquid may be recovered to the Nth midloop steam generator 30. When the separated oil sands side fluid is recovered to the Nth mid-loop steam generator 30, at least a portion of the oil sands side fluid separated into liquid may be pressurized by the second recovery pump 622.
  • the oil sand side fluid After being recovered in the N-th mid-loop steam generator (30), the oil sand side fluid can change its state to saturated steam in the N-th mid-loop steam generator (30). Therefore, the saturation pressure of the steam of the N-th mid-loop steam generator 30 may be higher than the saturation pressure of the steam of the N+1-th mid-loop steam generator 30.
  • the second recovery pump 622 provides different rotational speeds to apply different pressures to the oil sand side fluid, so that the steam pressure provided by the plurality of midloop steam generators 30 is provided differently. .
  • steam having a plurality of saturation pressures can be discharged from a plurality of mid-loop steam generators 30. Steam having these different plurality of saturation pressures can be provided to different ground (G) according to the oil sand mining stage.
  • the working fluid circulating in the nuclear reactor module 10 which is a nuclear steam supply system, and the oil sand side fluid circulating between the mid-loop steam generator 30 and the ground (G) can be isolated from each other, radioactive materials are introduced. It can provide a barrier that prevents damage.
  • water quality management of the working fluid circulating in the nuclear reactor module 10 and the oil sand side fluid circulating between the mid-loop steam generator 30 and the ground (G) can be separately managed, so that existing nuclear power plants and oil sand methods can be used separately.
  • the water quality management measures used in can be used as is without any design changes. There is no change in the design of the light water reactor to manage the water quality of the working fluid, so there is no additional cost.
  • the high-temperature and high-pressure working fluid generated in the reactor module 10 is configured to be simultaneously provided to the turbine unit, so that the ratio of power generation and oil separation can be adjusted according to the user's needs.
  • the light water reactor 2 for oil sand mining is connected to the reactor module with a midloop steam generator that can separately generate steam using heat generated from the reactor module.
  • oil sands can be mined.
  • This light water reactor (2) for oil sand mining includes a reactor module (2010), a turbine unit (2020), a mid-loop steam generator (2030), a processing unit (2040), a connection unit (2050), a pump unit (2060), a separator ( 2070) and a valve unit 2100.
  • the nuclear reactor module 2010 can heat the working fluid using the heat generated through the nuclear reaction of the reactor core.
  • This nuclear reactor module 2010 can supply at least a portion of the generated heat to the outside.
  • the nuclear reactor module 2010 may discharge high temperature working fluid of 250 degrees to 300 degrees to the outside.
  • This nuclear reactor module 2010 can generate steam by heating the working fluid using heat generated by nuclear fission.
  • the reactor core 2011, which will be described later can be passively cooled by natural circulation of coolant such as coolant.
  • the working fluid discharged from the nuclear reactor module 2010 may be water.
  • One side of the nuclear reactor module 2010 may be connected to the turbine unit 2020 so that a portion of the working fluid communicates with the turbine unit 2020.
  • the other side of the reactor module 2010 may be connected to the midloop steam generator 2030 so that another part of the working fluid communicates with the midloop steam generator 2030.
  • the working fluid that flows to the turbine unit (2020) may be named turbine fluid, and this turbine fluid flows between the nuclear reactor module (2010) and the mid-loop steam generator (2030). It can flow independently of the fluid.
  • the nuclear reactor module 2010 may be configured so that the turbine fluid and the working fluid flow without mixing with each other.
  • the nuclear reactor module (2010) may be a nuclear steam supply system (NSSS).
  • This nuclear reactor module 2010 may include a reactor core 2011, a heat exchanger 2012, and a reactor vessel 2013.
  • heat exchanger 2012, and reactor vessel 2013 Since the configuration of the core 2011, heat exchanger 2012, and reactor vessel 2013 is the same as that of the core 11, heat exchanger 12, and reactor vessel 13 in the first embodiment, their description is omitted.
  • the turbine unit 2020 can generate electricity using turbine fluid heated in the nuclear reactor module 2010. For example, heat generated in the core of the nuclear reactor module 2010 generates steam or high-temperature liquid, and the heat may be transferred to the turbine unit 2020 in the form of a fluid. This turbine unit 2020 may be connected to the nuclear reactor module 2010.
  • the midloop steam generator 2030 receives heated working fluid from the nuclear reactor module 2010, and can use the working fluid to heat the oil sand side fluid flowing inside and boil it into oil sand side steam.
  • This mid-loop steam generator 2030 may be configured so that the oil sand side fluid and the working fluid flow independently. Additionally, the midloop steam generator 2030 may discharge oil sand side steam to the ground (G) so that the oil sand side steam is mixed with oil in the ground (G).
  • the midloop steam generator (2030) can deliver oil sand side steam to the ground (G).
  • This mid-loop steam generator (2030) returns at least a portion of the oil sand-side fluid from the oil mixture containing the oil separated from the ground (G) into which the oil sand-side steam flows and the oil sand-side fluid to the mid-loop steam generator (2030). ) can be recovered inside. Additionally, the mid loop steam generator 2030 may include a first mid loop body 2031 and a second mid loop body 2032.
  • the working fluid heated in the nuclear reactor module 2010 may flow through the first midloop body 2031.
  • This first mid-loop body 2031 may be connected to a first supply unit 2511, which will be described later.
  • This first mid-roof body 2031 can accommodate the second mid-roof body 2032 therein.
  • high-temperature vapor received from the nuclear reactor module 2010 may flow into the first mid-loop body 2031, and the high-temperature vapor may be condensed inside the first mid-loop body 2031 and change into a liquid. It can be. Liquid condensed inside the first mid-loop body (2031) can be recovered to the reactor module (2010).
  • the second mid-loop body 2032 may provide a space where the oil sand side fluid flows and is heated by the working fluid.
  • the oil sand side fluid flowing inside the second mid-loop body 2032 may change state depending on temperature and pressure changes. Additionally, the second mid-roof body 2032 may be disposed inside the first mid-roof body 2031.
  • the second mid-loop body (2032) prevents the oil sand side fluid flowing through the second mid-loop body (2032) from mixing with the working fluid received from the reactor module (2010) outside the second mid-loop body (2032). It can be configured.
  • the processing unit 2040 can recover the oil mixture in which oil sand side vapor is mixed with oil in the ground (G), and separate the recovered oil mixture into oil and oil sand side fluid.
  • This processing unit 2040 may be connected between the ground (G) and the mid-loop steam generator (2030). Additionally, the processing unit 2040 may include an oil processing unit 2041 and a post-processing unit 2042.
  • the oil treatment unit 2041 may provide a treatment solution by mixing a diluent with the oil mixture.
  • This oil processing unit 2041 can separate oil from the oil mixture extracted from the ground (G).
  • This oil processing unit 2041 may include an oil dilution unit 2411 and an oil extraction unit 2412.
  • the oil dilution unit 2411 may separate sand and bitumen from the oil mixture and mix the diluents to provide a first treatment solution.
  • This first treatment solution may be a treatment solution obtained by removing sand and bitumen from the oil mixture.
  • one side of the oil dilution unit 2411 may be connected to the ground (G), and the other side may be connected to the oil extraction unit 2412.
  • the oil extraction unit 2412 may separate oil from the first treatment liquid and provide the second treatment liquid.
  • the treatment liquid produced by separating the oil from the first treatment liquid may be called the second treatment liquid.
  • the oil separated from the oil extraction unit 2412 can be transferred back to the oil dilution unit 2411, and sand, bitumen, and oil can be separated multiple times. Additionally, the oil extraction unit 2412 may be connected to the post-processing unit 2042.
  • the second treatment liquid which is the oil mixture liquid from which the oil is finally separated in the oil extraction unit 2412, may be provided to the post-processing unit 2042.
  • the post-processing unit 2042 can separate the treated liquid into an oil sand side fluid to be recovered by the mid-loop steam generator 2030 and a waste liquid not recovered by the mid-loop steam generator 2030. This post-processing unit 2042 can separate the waste liquid from the second treatment liquid and provide the oil sand side fluid to be returned to the mid-loop steam generator 2030. Additionally, the post-processing unit 2042 may receive the second treatment liquid from which the oil has been separated from the oil processing unit 2041. This post-processing unit 2042 can separate the second treatment liquid into an oil sand side fluid that can be recovered by the mid-loop steam generator (2030) and a waste liquid that cannot be recovered by the mid-loop steam generator (2030).
  • the post-processing unit 2042 can deliver the oil sand side fluid that has been treated to be recoverable to the mid-loop steam generator 2030. Additionally, the post-processing unit 2042 can deliver the oil sand side fluid to the mid-loop steam generator 2030.
  • connection portion 2050 may provide a passage through which the working fluid, turbine fluid, and oil sand side fluid flow.
  • This connection unit 2050 is between any two of the reactor module 2010, turbine unit 2020, midloop steam generator 2030, processing unit 2040, pump unit 2060, separator 2070, and ground (G). can be placed in Additionally, the connection portion 2050 may be formed of a material that can withstand high temperature and pressure.
  • the connection part 2050 may include a supply part and a recovery part.
  • the supply unit may provide a space through which fluid can flow so that high-temperature and high-pressure fluid is transmitted in one direction.
  • the fluid flowing inside this supply unit may flow in one direction.
  • the supply unit may include a first supply unit 2511, a second supply unit 2512, a third supply unit 2513, and a fourth supply unit 2514.
  • the first supply unit 2511 may connect between the nuclear reactor module 2010 and the midloop steam generator 2030. This first supply unit 2511 may provide a flow space so that the working fluid supplied from the nuclear reactor module 2010 moves toward the midloop steam generator 2030.
  • the second supply unit 2512 may connect between the nuclear reactor module 2010 and the turbine unit 2020. This second supply unit 2512 may provide a flow space so that the turbine fluid supplied from the nuclear reactor module 2010 moves toward the turbine unit 2020.
  • the third supply unit 2513 may connect the mid-loop steam generator 2030 and the ground (G). This third supply unit 2513 can provide a flow space so that the oil sand side fluid supplied from the mid-loop steam generator 2030 moves to the ground (G).
  • the fourth supply unit 2514 may connect between the supply unit 2072 and the post-processing unit 2042, which will be described later. This fourth supply unit 2514 can provide a flow space so that the oil sand side fluid supplied from the supply unit 2072 moves to the post-processing unit 2042.
  • the recovery unit can provide a space in which fluid such as oil mixture flows so that the oil mixture extracted from the ground (G) reaches the treatment unit (2040), mid-loop steam generator (2030), pump unit (2060), separator (2070), etc. there is. Fluid, such as an oil mixture flowing inside the recovery unit, may flow in one direction.
  • the recovery unit includes the oil mixture extracted from the ground (G), the first treatment liquid processed in the oil dilution unit 2411, the second treatment liquid processed in the oil extraction unit 2412, and the post-treatment unit 2042. Oil sand side fluid, etc. treated in may flow.
  • a plurality of recovery units may be provided, and a recovery unit pump 2062 may be disposed between the plurality of recovery units.
  • the recovery unit may include a first recovery unit 2521, a second recovery unit 2522, a third recovery unit 2523, a fourth recovery unit 2524, and a fifth recovery unit 2525.
  • the first recovery unit 2521 may connect between the ground (G) and the oil processing unit 2041. This first recovery unit 2521 can provide a flow space so that the oil mixture extracted from the ground (G) moves toward the oil processing unit 2041.
  • the second recovery unit 2522 may connect the oil processing unit 2041 and the post-processing unit 2042. This second recovery unit 2522 can be connected between the oil dilution unit 2411 and the oil extraction unit 2412. In addition, the second recovery unit 2522 may provide a flow space so that the first treatment liquid processed in the oil dilution unit 2411 moves to the oil extraction unit 2412, and the processed liquid in the oil extraction unit 2412 may be provided. A flow space may be provided so that the second treatment liquid moves to the post-processing unit 2042.
  • the third recovery unit 2523 may connect the post-processing unit 2042 and the mid-loop steam generator 2030. This third recovery unit 2523 can provide a flow space so that the oil sand side fluid treated in the post-processing unit 2042 moves to the mid-loop steam generator 2030.
  • the fourth recovery unit 2524 may connect the midloop steam generator 2030 and the nuclear reactor module 2010. This fourth recovery part 2524 may provide a flow space so that the working fluid flowing in the first mid-roof body 2031 moves to the nuclear reactor module 2010.
  • the fifth recovery unit 2525 may connect the reactor module 2010 and the turbine unit 2020. This fifth recovery unit 2525 can provide a flow space so that the turbine fluid flowing in the turbine unit 2020 can be moved to the nuclear reactor module 2010.
  • the pump unit 2060 may flow the fluid recovered to the nuclear reactor module 2010 to the nuclear reactor module 2010. This pump unit 2060 may provide pressure to the fluid so that the pressure of the fluid flowing in the recovery unit changes. This pump unit 2060 can change the flow speed of fluid. Additionally, a plurality of pump units 2060 may be provided. The pump unit 2060 may include a mid loop pump 2061 and a recovery pump 2062.
  • the midloop pump 2061 may provide pressure to the fluid recovered to the nuclear reactor module 2010, allowing the fluid to move to the nuclear reactor module 2010. This midloop pump 2061 can increase the movement speed of fluid recovered to the reactor module 2010.
  • the recovery pump 2062 can flow the returned oil sand side fluid to the mid-loop steam generator 2030.
  • This recovery pump 2062 is disposed between the post-treatment unit 2042 and the mid-loop steam generator 2030 to increase the movement speed of the oil sand side fluid recovered to the mid-loop steam generator 2030.
  • the separator 2070 can separate the oil sand side fluid depending on its condition. This separator 2070 may be connected to the midloop steam generator 2030 or the processing unit 2040. Additionally, a plurality of separators 2070 may be provided. The separator 2070 may be provided as one of a pressure type, a vacuum type, and a chemical type separator. This separator 2070 may include a post-treatment separator 2071 and a feed separator 2072.
  • the post-processing unit 2071 can separate the oil sand side fluid treated in the post-processing unit 2042 depending on its condition.
  • the oil sand side fluid treated in this post-treatment unit 2071 may pass through the recovery pump 2062.
  • the supply subunit 2072 can separate the oil sand side fluid supplied from the mid-loop steam generator 2030 depending on its condition.
  • the oil sand side fluid flowing through this supply unit 2072 may flow to the ground (G) and the post-processing unit 2042.
  • the valve unit 2100 may be configured to have a selectively adjustable opening in order to adjust the pressure at which the working fluid heated in the nuclear reactor module 2010 is supplied to the midloop steam generator 2030.
  • This valve unit 2100 is larger than the difference between the pressure of the working fluid heated in the nuclear reactor module 2010 and the pressure of the working fluid passing through the valve unit 2100 when the valve unit 2100 is opened.
  • the difference between the pressure of the working fluid heated in the reactor module 2010 and the pressure of the working fluid passing through the valve unit 2100 may be configured to be larger.
  • the opening degree of the valve part 2100 is 0 when the valve part 2100 is closed, the opening degree when the valve parts are all open can be referred to as 100, and the opening degree of the valve part 2100 is 0 or more than 100. It can be adjusted in the following range.
  • the valve unit 2100 is adjusted to be partially closed, the pressure of the steam supplied from the reactor module 2010 may decrease, and when the valve unit 2100 is adjusted to be fully open, the steam supplied from the reactor module 2010 may be lowered. The pressure of the steam can be maintained. Additionally, the degree to which the pressure drops may vary depending on the type and opening degree of the valve unit 2100.
  • the light water reactor (2) for oil sand mining isolates the working fluid that circulates in the nuclear steam supply system, the nuclear reactor module (2010), and the oil sand side fluid that circulates between the midloop steam generator (2030) and the ground (G). Because it can do so, it can provide a barrier that prevents radioactive materials from entering.
  • the difference between the pressure of the steam supplied from the nuclear reactor module 2010 and the pressure of the steam supplied from the midloop steam generator 2030 can be changed as desired by the user. You can.
  • water quality management of the working fluid circulating in the nuclear reactor module (2010) and the oil sand side fluid circulating between the mid-loop steam generator (2030) and the ground (G) can be separately managed, so that existing nuclear power plants and oil sand methods can be used separately.
  • the water quality management measures used in can be used as is without any design changes. There is no change in the design of the light water reactor to manage the water quality of the working fluid, so there is no additional cost.
  • the ratio of power generation and oil extraction can be adjusted according to the user's needs.
  • the light water reactor 3 for oil sand mining is connected to the reactor module with a midloop steam generator that can separately generate steam using heat generated from the reactor module.
  • oil sands can be mined.
  • This light water reactor (3) for oil sand mining includes a reactor module (3010), a turbine unit (3020), a mid-loop steam generator (3030), a processing unit (3040), a connection unit (3050), a pump unit (3060), and a separator ( 3070).
  • the nuclear reactor module 3010 can heat the working fluid using heat generated through the nuclear reaction of the reactor core.
  • This nuclear reactor module 3010 can supply at least a portion of the generated heat to the outside.
  • the nuclear reactor module 3010 may discharge high temperature working fluid of 250 degrees to 310 degrees to the outside.
  • This nuclear reactor module 3010 can generate steam by heating the working fluid using heat generated by nuclear fission.
  • the reactor core 3011 which will be described later, can be passively cooled by natural circulation of coolant such as coolant.
  • the working fluid discharged from the nuclear reactor module 3010 may be water or oil.
  • One side of the nuclear reactor module 3010 may be connected to the turbine unit 3020 so that a portion of the working fluid communicates with the turbine unit 3020. Additionally, the other side of the reactor module 3010 may be connected to the midloop steam generator 3030 so that another part of the working fluid communicates with the midloop steam generator 3030.
  • the working fluids of the nuclear reactor module 3010 the working fluid flowing into the turbine unit 3020 may be called turbine fluid, and this turbine fluid flows between the nuclear reactor module 3010 and the mid-loop steam generator 3030. It can flow independently of the fluid.
  • the nuclear reactor module 3010 may be configured so that the turbine fluid and the working fluid flow without mixing with each other.
  • the nuclear reactor module 3010 may be a nuclear steam supply system (NSSS).
  • This nuclear reactor module 3010 may include a reactor core 3011, a heat exchanger 3012, and a reactor vessel 3013. Since the configuration of the core 3011, heat exchanger 3012, and reactor vessel 3013 is the same as that of the core 11, heat exchanger 12, and reactor vessel 13 in the first embodiment, their description is omitted. .
  • the turbine unit 3020 can generate electricity using turbine fluid heated in the nuclear reactor module 3010. For example, heat generated in the core of the nuclear reactor module 3010 generates steam or high-temperature liquid, and the heat may be transferred to the turbine unit 3020 in the form of a fluid. This turbine unit 3020 may be connected to the nuclear reactor module 3010.
  • the midloop steam generator 3030 receives heated working fluid from the nuclear reactor module 3010, and can use the working fluid to heat the oil sand side fluid flowing inside and boil it into oil sand side steam.
  • this oil sands side fluid may be water.
  • This mid-loop steam generator 3030 may be configured so that the oil sand side fluid and the working fluid flow independently. Additionally, the midloop steam generator 3030 may discharge oil sand side steam to the ground (G) so that the oil sand side steam is mixed with oil in the ground (G).
  • the midloop steam generator 3030 can deliver oil sand side steam to the ground (G).
  • This mid-loop steam generator (3030) returns at least a portion of the oil sand-side fluid from the oil mixture containing the oil separated from the ground (G) into which the oil sand-side steam flows and the oil sand-side fluid to the mid-loop steam generator (3030). ) can be recovered inside. Additionally, the mid-loop steam generator 3030 may include a first mid-loop body 3031 and a second mid-loop body 3032.
  • the working fluid heated in the nuclear reactor module 3010 may flow through the first midloop body 3031.
  • This first mid-loop body 3031 may be connected to a first supply unit 3511, which will be described later.
  • This first mid-roof body 3031 can accommodate the second mid-roof body 3032 therein.
  • high-temperature vapor received from the nuclear reactor module 3010 may flow into the first mid-loop body 3031, and the high-temperature vapor may be condensed inside the first mid-loop body 3031 and change into a liquid. It can be.
  • the liquid condensed inside the first midloop body 3031 can be recovered to the reactor module 3010.
  • the second mid-loop body 3032 may provide a space where the oil sand side fluid flows and is heated by the working fluid.
  • the oil sand side fluid flowing inside the second mid-loop body 3032 may change state depending on temperature and pressure changes. Additionally, the second mid-roof body 3032 may be disposed inside the first mid-roof body 3031.
  • the second mid-loop body (3032) prevents the oil sand side fluid flowing through the second mid-loop body (3032) from mixing with the working fluid received from the reactor module (3010) outside the second mid-loop body (3032). It can be configured.
  • the processing unit 3040 can recover the oil mixture in which oil sand side vapor is mixed with oil in the ground (G), and separate the recovered oil mixture into oil and oil sand side fluid.
  • This processing unit 3040 may be connected between the ground (G) and the mid-loop steam generator (3030). Additionally, the processing unit 3040 may include an oil processing unit 3041 and a post-processing unit 3042.
  • the oil treatment unit 3041 may provide a treatment liquid by mixing a diluent with the oil mixture.
  • This oil processing unit 3041 can separate oil from the oil mixture extracted from the ground (G).
  • This oil processing unit 3041 may include an oil dilution unit 3411 and an oil extraction unit 3412.
  • the oil dilution unit 3411 may separate sand and bitumen from the oil mixture and mix the diluents to provide a first treatment solution.
  • This first treatment solution may be a treatment solution obtained by removing sand and bitumen from the oil mixture.
  • one side of the oil dilution unit 3411 may be connected to the ground (G), and the other side may be connected to the oil extraction unit 3412.
  • the oil extraction unit 3412 may separate oil from the first treatment liquid and provide the second treatment liquid.
  • the treatment liquid produced by separating the oil from the first treatment liquid may be called the second treatment liquid.
  • the oil separated from the oil extraction unit 3412 can be transferred back to the oil dilution unit 3411, and sand, bitumen, and oil can be separated multiple times. Additionally, the oil extraction unit 3412 may be connected to the post-processing unit 3042.
  • the second treatment liquid which is the oil mixture liquid from which the oil is finally separated in the oil extraction unit 3412, may be provided to the post-processing unit 3042.
  • the post-processing unit 3042 can separate the treated liquid into an oil sand side fluid to be recovered by the mid-loop steam generator 3030 and a waste liquid not recovered by the mid-loop steam generator 3030.
  • This post-treatment unit 3042 can separate the waste liquid from the second treatment liquid and provide the oil sand side fluid to be recovered to the mid-loop steam generator 3030.
  • the post-processing unit 3042 may receive the second treatment liquid from which the oil has been separated from the oil processing unit 3041.
  • This post-processing unit 3042 can separate the second treatment liquid into an oil sand side fluid that can be recovered by the mid-loop steam generator 3030 and a waste liquid that cannot be recovered by the mid-loop steam generator 3030.
  • the post-processing unit 3042 can deliver the oil sand side fluid that has been treated to be recoverable to the mid-loop steam generator 3030. Additionally, the post-processing unit 3042 can deliver the oil sand side fluid to the mid-loop steam generator 3030.
  • connection portion 3050 may provide a passage through which the working fluid, turbine fluid, and oil sand side fluid flow.
  • This connection unit 3050 is between any two of the reactor module 3010, turbine unit 3020, midloop steam generator 3030, processing unit 3040, pump unit 3060, separator 3070, and ground (G). can be placed in Additionally, the connection portion 3050 may be formed of a material that can withstand high temperature and pressure.
  • the connection part 3050 may include a supply part and a recovery part.
  • the supply unit may provide a space through which fluid can flow so that high-temperature and high-pressure fluid is transmitted in one direction.
  • the fluid flowing inside this supply unit may flow in one direction.
  • the supply unit may include a first supply unit 3511, a second supply unit 3512, a third supply unit 3513, and a fourth supply unit 3514.
  • the first supply unit 3511 may connect between the nuclear reactor module 3010 and the midloop steam generator 3030. This first supply unit 3511 may provide a flow space so that the working fluid supplied from the nuclear reactor module 3010 moves toward the midloop steam generator 3030.
  • the second supply unit 3512 may connect the reactor module 3010 and the turbine unit 3020. This second supply unit 3512 may provide a flow space so that the turbine fluid supplied from the nuclear reactor module 3010 moves toward the turbine unit 3020.
  • the third supply unit 3513 may connect the mid-loop steam generator 3030 and the ground (G). This third supply unit 3513 can provide a flow space so that the oil sand side fluid supplied from the mid-loop steam generator 3030 moves to the ground (G).
  • the fourth supply unit 3514 may connect between the supply unit 3072 and the post-processing unit 3042, which will be described later. This fourth supply unit 3514 may provide a flow space so that the working fluid supplied from the supply unit 3072 moves to the post-processing unit 3042.
  • the recovery unit can provide a space in which fluid such as oil mixture fluid flows so that the oil mixture extracted from the ground (G) reaches the treatment unit (3040), the mid-loop steam generator (3030), the pump unit (3060), and the separator (3070). there is. Fluid, such as an oil mixture flowing inside the recovery unit, may flow in one direction.
  • the recovery unit includes the oil mixture extracted from the ground (G), the first treatment liquid processed in the oil dilution unit 3411, the second treatment liquid processed in the oil extraction unit 3412, and the post-treatment unit 3042. Oil sand side fluid, etc. treated in may flow.
  • a plurality of recovery units may be provided, and a recovery unit pump 3062 may be disposed between the plurality of recovery units 3052.
  • the recovery unit may include a first recovery unit 3521, a second recovery unit 3522, a third recovery unit 3523, a fourth recovery unit 3524, and a fifth recovery unit 3525.
  • the first recovery unit 3521 may connect between the ground (G) and the oil processing unit 3041. This first recovery unit 3521 can provide a flow space so that the oil mixture extracted from the ground (G) moves toward the oil processing unit 3041.
  • the second recovery unit 3522 may connect the oil processing unit 3041 and the post-processing unit 3042. This second recovery unit 3522 may be connected between the oil dilution unit 3411 and the oil extraction unit 3412. In addition, the second recovery unit 3522 may provide a flow space so that the first treatment liquid processed in the oil dilution unit 3411 moves to the oil extraction unit 3412, and the first treatment liquid processed in the oil dilution unit 3411 may be moved to the oil extraction unit 3412. A flow space may be provided so that the second treatment liquid moves to the post-processing unit 3042.
  • the third recovery unit 3523 may connect the post-processing unit 3042 and the mid-loop steam generator 3030. This third recovery unit 3523 can provide a flow space so that the oil sand side fluid treated in the post-processing unit 3042 moves to the mid-loop steam generator 3030.
  • the fourth recovery unit 3524 may connect the midloop steam generator 3030 and the nuclear reactor module 3010. This fourth recovery part 3524 may provide a flow space so that the working fluid flowing in the first mid-roof body 3031 moves to the nuclear reactor module 3010.
  • the fifth recovery unit 3525 can connect the reactor module 3010 and the turbine unit 3020. This fifth recovery unit 3525 can provide a flow space so that the turbine fluid flowing in the turbine unit 3020 can be moved to the nuclear reactor module 3010.
  • the pump unit 3060 may flow the fluid recovered to the nuclear reactor module 3010 to the nuclear reactor module 3010. This pump unit 3060 may provide pressure to the fluid so that the pressure of the fluid flowing in the recovery unit changes. This pump unit 3060 can change the flow speed of fluid. Additionally, a plurality of pump units 3060 may be provided. The pump unit 3060 may include a mid loop pump 3061 and a recovery pump 3062.
  • the midloop pump 3061 may provide pressure to the fluid recovered from the midloop steam generator 3030 to move the fluid to the reactor module 3010. This midloop pump 3061 can increase the movement speed of fluid recovered to the reactor module 3010.
  • the recovery pump 3062 can flow the recovered oil sand side fluid to the mid-loop steam generator 3030.
  • This recovery pump 3062 is disposed between the post-processing unit 3042 and the mid-loop steam generator 3030 to increase the movement speed of the oil sand side fluid recovered to the mid-loop steam generator 3030.
  • the separator 3070 can separate the oil sand side fluid depending on its condition. This separator 3070 may be connected to the midloop steam generator 3030 or the processing unit 3040. Additionally, a plurality of separators 3070 may be provided. The separator 3070 may be provided as one of a pressure type, a vacuum type, and a chemical type separator. This separator 3070 may include a post-treatment separator 3071 and a feed separator 3072.
  • the post-processing unit 3071 can separate the oil sand side fluid treated in the post-processing unit 3042 depending on its condition.
  • the oil sand side fluid treated in this post-treatment unit 3071 may pass through the recovery pump 3062.
  • the supply subunit 3072 can separate the oil sand side fluid supplied from the mid-loop steam generator 3030 depending on its condition.
  • the oil sand side fluid flowing through this supply unit 3072 can flow to the ground (G) and the post-processing unit 3042.
  • the light water reactor (3) for oil sand mining isolates the working fluid that circulates in the nuclear steam supply system, the nuclear reactor module (3010), and the oil sand side fluid that circulates between the midloop steam generator (3030) and the ground (G). Because it can do so, it can provide a barrier that prevents radioactive materials from entering.
  • water quality management of the working fluid circulating in the nuclear reactor module 3010 and the oil sand side fluid circulating between the mid-loop steam generator 3030 and the ground (G) can be separately managed, so that existing nuclear power plants and oil sand methods can be used separately.
  • the water quality management measures used in can be used as is without any design changes. There is no need to change the design of the light water reactor to manage the water quality of the working fluid, so there is no additional cost.
  • the high-temperature and high-pressure working fluid generated in the nuclear reactor module 3010 is configured to be simultaneously provided to the turbine unit, so that the ratio of power generation and oil separation can be adjusted according to the user's needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

This light water reactor for oil sand mining comprises: a nuclear reactor module for heating a working fluid by using heat generated through nuclear reaction of a nuclear reactor core; a mid-loop steam generator for receiving the heated working fluid from the nuclear reactor module and heating an oil sand side fluid flowing therein by using the working fluid, thereby boiling the oil sand side fluid into oil sand side steam in a vapor state; and a pressurizer for pressurizing the working fluid so that the working fluid heated in the nuclear reactor module is provided in a liquid state to the mid-loop steam generator, wherein the mid-loop steam generator discharges the oil sand side steam to the ground so that the oil sand side steam mixes in the ground with oil.

Description

미드룹 적용된 오일샌드 채굴용 경수형 원자로Light water reactor for oil sand mining with mid-loop application
본 발명은 미드룹 적용된 오일샌드 채굴용 경수형 원자로에 대한 발명이다. 본 연구는 2023년도 과학기술정보통신부(정부)의 재원으로 한국연구재단의 지원을 받아 한국원자력연구원에서 수행된 SMART혁신기술개발사업(R&D)사업의 혁신 SMART 계통 요소기술 개발 (과제고유번호: 1711154717, 과제번호: 2020M2D7A1079178)과 관련된다.The present invention relates to a light water reactor for oil sand mining applied to a midloop. This study was conducted at the Korea Atomic Energy Research Institute with the support of the National Research Foundation of Korea with funding from the Ministry of Science and ICT (government) in 2023 to develop innovative SMART system element technology of the SMART Innovation Technology Development (R&D) project (Project identification number: 1711154717) , task number: 2020M2D7A1079178).
일반적으로, 오일샌드(oilsand)는 모래(sand)와 역청(bitumen, 천연탄화수소 화합물의 총칭), 점토(clay), 물(water) 등의 혼합물을 일컫는다. 오일샌드 내에 원유가 포함되어 있다는 사실이 밝혀지면서, 최근 오일샌드에서 원유를 추출하는 기술이 발전되고 있다. 이러한 오일샌드가 많이 발견되는 캐나다 등지에서 여러 오일샌드 광구들이 개발되고 있다.Generally, oil sand refers to a mixture of sand, bitumen (a general term for natural hydrocarbon compounds), clay, and water. As it has been revealed that oil sands contain crude oil, technology for extracting crude oil from oil sands has recently been developed. Several oil sand fields are being developed in places such as Canada, where many of these oil sands are found.
오일샌드를 채굴하는 기존의 여러 방법 중 일부인 CSS(cyclic steam stimulation) 방법 및 SAGD(steam assisted gravity drainage)방법은 250도 이상 300도 이하의 고온 및 고압의 증기를 땅속으로 주입하여 점도가 높은 상태의 오일샌드를 녹여 배관 수송이 가능할 정도로 점도를 낮춘 뒤 지표 밖으로 뽑아내는 방법이다. CSS 방법은 하나의 구멍을 통해 증기를 오랫동안 주입하며 오일샌드가 녹기를 기다렸다가 같은 구멍으로 다시 오일샌드를 빨아들여 채굴하는 방식이고, SAGD 방법은 2개의 구멍 중 하나의 구멍으로 증기를 계속 주입하고 다른 하나의 구멍으로 오일샌드를 연속적으로 채굴하는 방식이다.The CSS (cyclic steam stimulation) method and SAGD (steam assisted gravity drainage) method, which are some of the existing methods of mining oil sands, inject high temperature and high pressure steam of 250 to 300 degrees into the ground to create high viscosity oil. This is a method of melting the oil sand to lower its viscosity enough to allow pipe transportation and then extracting it out of the surface. The CSS method is to inject steam through one hole for a long time, wait for the oil sand to melt, and then suck the oil sand back into the same hole to mine it. The SAGD method is to continuously inject steam through one of the two holes and extract the oil sand from the other hole. This is a method of continuously mining oil sands through a single hole.
이와 같은 CSS 방법이나 SAGD 방법을 통해 오일샌드를 채굴하기 위해서는, 250도 이상 300도 이하의 고온 및 고압의 증기가 필요하다. 기존에는 이 증기를 생산하기 위해 화력보일러를 이용해 왔다. 그러나 화력보일러는 이산화탄소 배출이 많아 여러 환경문제를 일으키고 있고, 최근 “탄소세(carbon tax)”가 증가하는 추세여서 경제성이 약화되는 문제점을 보이고 있다. In order to mine oil sands using the CSS method or SAGD method, high temperature and high pressure steam of 250 degrees to 300 degrees is required. Previously, thermal boilers were used to produce this steam. However, thermal power boilers are causing various environmental problems due to their high carbon dioxide emissions, and the recent increase in “carbon tax” is showing the problem of weakening economic feasibility.
따라서, 이산화탄소 배출이 적은 에너지를 사용하면서도, 효과적으로 증기를 생산하여 오일샌드를 채굴하기 위하여 오일샌드 채굴 시스템에 경수형 원자로를 적용하는 기술이 개발되었다.Therefore, in order to mine oil sands by effectively producing steam while using energy with low carbon dioxide emissions, a technology for applying a light water reactor to an oil sands mining system has been developed.
이러한 경수형 원자로는 원자로를 포함하는 핵증기공급계통(NSSS, nuclear steam supply system)에서 증기를 생성한 뒤, 이 증기를 동력변환계통으로 이송하여 발전한다. 경수형 원자로가 오일샌드 채굴 시스템에 적용됨으로써 경수형 원자로에서 생성된 증기를 지반에 주입할 수 있게 되었으나, 지반에서 회수되는 물의 수질관리가 어려운 문제점이 발생하고, 경수형 원자로와 지반 사이에 방사능을 막아줄 방벽이 존재하지 않아 방사능 안전관점에서 위험하다는 문제점이 발생한다.These light water reactors generate steam in a nuclear steam supply system (NSSS) including the nuclear reactor and then transfer this steam to the power conversion system to generate power. As light water reactors were applied to the oil sand mining system, it became possible to inject steam generated from light water reactors into the ground. However, problems arose in managing the quality of water recovered from the ground, and radioactivity was created between the light water reactors and the ground. Since there is no barrier to block it, there is a problem that it is dangerous from a radiation safety perspective.
따라서, 오일샌드 채굴 시스템에 제공되는 고온 및 고압의 증기를 제공하면서도 수질 관리가 용이하고, 방사능 안전관점에서도 유리한 경수형 원자로에 대한 필요성이 증대되고 있다.Accordingly, there is an increasing need for a light water reactor that provides high temperature and high pressure steam for the oil sand mining system, but is also easy to manage water quality and is advantageous from a radiation safety perspective.
본 발명의 일 실시예들은 상기와 같은 배경에 착안하여 발명된 것으로서, 오일샌드 채굴을 위하여 필요한 고온 및 고압의 증기를 생산하면서도, 이산화탄소 배출을 최소화할 수 있는 구조를 가진 경수형 원자로를 제공하고자 한다.One embodiment of the present invention was invented with the above background in mind, and aims to provide a light water reactor with a structure that can minimize carbon dioxide emissions while producing high temperature and high pressure steam necessary for oil sand mining. .
또한, 오일샌드 채굴 시 초기단계에서는 고압의 증기가 필요하고 말기단계로 갈수록 저압의 증기가 필요한 바, 오일샌드 채굴 시 진행 단계에 따라 필요한 증기의 압력이 다르게 요구된다. 따라서, 오일샌드 채굴의 진행 단계에 따라 다르게 요구되는 압력을 갖는 증기를 생산할 수 있는 경수형 원자로를 제공하고자 한다.In addition, high-pressure steam is required in the early stages of oil sand mining, and low-pressure steam is needed as it progresses to the final stage, so the steam pressure required varies depending on the progress stage during oil sand mining. Therefore, it is intended to provide a light water reactor that can produce steam with a pressure that varies depending on the progress of oil sands mining.
또한, 원자로모듈에서 공급된 증기의 압력과 미드룹 증기발생기에서 응축되는 증기의 압력의 차이를 사용자가 원하는 만큼 변화시킬 수 있는 경수형 원자로를 제공하고자 한다.In addition, it is intended to provide a light water reactor that can change the difference between the pressure of steam supplied from the nuclear reactor module and the pressure of steam condensed in the mid-loop steam generator as desired by the user.
또한, 원자로모듈을 유동하는 작동 유체와 지반을 유동하는 작동 유체가 물리적으로 분리되어 유동하도록 함으로써, 수질 관리가 용이한 경수형 원자로를 제공하고자 한다.In addition, it is intended to provide a light water reactor in which water quality is easy to manage by allowing the working fluid flowing through the reactor module and the working fluid flowing through the ground to flow in a physical separation manner.
또한, 지반에 직접적으로 원자로모듈에서 방출되는 방사성 물질이 도달하지 않도록 방벽을 구성함으로써, 방사능 안전관점에서 유리한 경수형 원자로를 제공하고자 한다.In addition, it is intended to provide a light water reactor that is advantageous from a radiation safety perspective by constructing a barrier to prevent radioactive materials emitted from the reactor module from reaching the ground directly.
또한, 원자력모듈에서 발생되는 열을 전력 발전 터빈부와 오일샌드 채굴 시스템에 동시에 사용되도록 하면서도, 두 시스템의 에너지 비율을 조절함으로써, 상황(오일샌드용 증기 사용 수요 또는 전력 수요)에 맞게 열을 제공할 수 있는 경수형 원자로를 제공하고자 한다.In addition, the heat generated from the nuclear module is used simultaneously for the power generation turbine unit and the oil sand mining system, while adjusting the energy ratio of the two systems to provide heat according to the situation (demand for steam use for oil sands or power demand). We would like to provide a light water reactor that can
본 발명의 제1 실시예에 따른 오일샌드 채굴용 경수형 원자로는, 노심의 핵반응을 통해 발생된 열을 이용하여 작동 유체를 가열하는 원자로모듈; 상기 원자로모듈에서 가열된 작동 유체를 제공받고, 상기 작동 유체를 이용해 내부에 유동하는 오일샌드측유체를 가열하여 증기상태의 오일샌드측증기로 비등시키는 미드룹 증기발생기; 및 상기 원자로모듈에서 가열된 작동 유체가 액체 상태로 상기 미드룹 증기발생기에 제공되도록 상기 작동 유체를 가압하는 가압기를 포함하고, 상기 미드룹 증기발생기는, 상기 오일샌드측증기가 지반에서 오일과 혼합되도록 상기 오일샌드측증기를 지반으로 배출한다.A light water reactor for oil sand mining according to a first embodiment of the present invention includes a reactor module that heats a working fluid using heat generated through a nuclear reaction in the reactor core; A midloop steam generator that receives heated working fluid from the reactor module, uses the working fluid to heat the oil sand side fluid flowing therein, and boils it into oil sand side steam in a vapor state; and a pressurizer that pressurizes the working fluid so that the working fluid heated in the reactor module is provided in a liquid state to the midloop steam generator, wherein the oil sand side steam mixes with oil in the ground. If possible, discharge the oil sand side vapor to the ground.
또한, 상기 미드룹 증기발생기는 복수 개로 제공되고, 복수 개의 상기 미드룹 증기발생기는 오일샌드측유체가 직렬로 유동하도록 서로 연결될 수 있다.Additionally, a plurality of midloop steam generators may be provided, and the plurality of midloop steam generators may be connected to each other so that the oil sand side fluid flows in series.
또한, 상기 미드룹 증기발생기는 복수 개로 제공되고, 복수 개의 상기 미드룹 증기발생기는, 상기 원자로모듈과 연결되는 제1 미드룹 증기발생기, 상기 제1 미드룹 증기발생기와 연결되는 제2 미드룹 증기발생기, 상기 제2 미드룹 증기발생기와 연결되는 제3 미드룹 증기발생기 및 상기 제3 미드룹 증기발생기와 연결되는 제4 미드룹 증기발생기를 포함하고, 상기 제2 미드룹 증기발생기에서 상기 제1 미드룹 증기발생기로 전달되는 오일샌드측유체의 어느 일부는 상기 제1 미드룹 증기발생기로 회수되고, 상기 제3 미드룹 증기발생기에서 상기 제2 미드룹 증기발생기로 전달되는 오일샌드측유체의 어느 일부는 상기 제2 미드룹 증기발생기로 회수되며, 상기 제4 미드룹 증기발생기에서 상기 제3 미드룹 증기발생기로 전달되는 오일샌드측유체의 어느 일부는 상기 제3 미드룹 증기발생기로 회수되어, 오일샌드측유체가 복수 개의 상기 미드룹 증기발생기 사이를 순환하도록 구성될 수 있다.In addition, the mid-loop steam generator is provided in plural pieces, and the plurality of mid-loop steam generators include a first mid-loop steam generator connected to the reactor module, and a second mid-loop steam generator connected to the first mid-loop steam generator. It includes a generator, a third mid-loop steam generator connected to the second mid-loop steam generator, and a fourth mid-loop steam generator connected to the third mid-loop steam generator, and the first mid-loop steam generator is connected to the second mid-loop steam generator. A portion of the oil sands side fluid delivered to the midloop steam generator is recovered to the first midloop steam generator, and a portion of the oil sands side fluid delivered from the third midloop steam generator to the second midloop steam generator is recovered. A portion is recovered to the second midloop steam generator, and a portion of the oil sands side fluid delivered from the fourth midloop steam generator to the third midloop steam generator is recovered to the third midloop steam generator, The oil sands side fluid may be configured to circulate between the plurality of mid-loop steam generators.
또한, 복수 개의 상기 미드룹 증기발생기 중 어느 하나에서 배출된 매개유체를 액체와 기체로 분리하는 오일샌드측 상분리기를 포함하고, 상기 오일샌드측 상분리기에 의해 분리된 상기 액체 상태의 오일샌드측유체에 압력을 가하여, 복수 개의 상기 미드룹 증기발생기 중 상기 어느 하나보다 더 상류에 배치된 다른 미드룹 증기발생기에 유입되도록 액체 상태의 오일샌드측유체를 가압하는 제2 회수부펌프를 더 포함할 수 있다.In addition, it includes an oil sand side phase separator that separates the intermediate fluid discharged from any one of the plurality of mid-loop steam generators into liquid and gas, and the oil sand side fluid in the liquid state separated by the oil sand side phase separator. It may further include a second recovery pump that pressurizes the oil sand side fluid in a liquid state to flow into another mid-loop steam generator disposed further upstream than any one of the plurality of mid-loop steam generators. there is.
또한, 상기 원자로모듈에서 가열된 상기 작동 유체를 이용해 전기를 생성하는 터빈부를 더 포함하고, 상기 원자로 모듈은 상기 터빈부로 유동하는 작동 유체와 상기 미드룹 증기발생기로 유동하는 작동 유체가 독립적으로 유동되도록 구성될 수 있다.In addition, it further includes a turbine unit that generates electricity using the working fluid heated in the reactor module, and the reactor module allows the working fluid flowing to the turbine unit and the working fluid flowing to the midloop steam generator to flow independently. It can be configured.
또한, 상기 원자로모듈에서 가열된 상기 작동 유체를 이용해 전기를 생성하는 터빈부를 더 포함하고, 상기 터빈부는, 복수 개의 상기 미드룹 증기발생기 중 하나 이상의 미드룹 증기발생기에 연결될 수 있다.In addition, it further includes a turbine unit that generates electricity using the working fluid heated in the nuclear reactor module, and the turbine unit may be connected to one or more midloop steam generators among the plurality of midloop steam generators.
또한, 상기 미드룹 증기발생기는, 상기 오일샌드측유체와 상기 작동 유체가 독립적으로 유동하도록 구성될 수 있다.Additionally, the mid-loop steam generator may be configured so that the oil sand side fluid and the working fluid flow independently.
또한, 상기 미드룹 증기발생기는, 상기 원자로모듈에서 가열된 상기 작동 유체가 유동하는 제1 미드룹바디; 및 오일샌드측유체가 유동하면서 상기 작동 유체에 의해 가열되는 공간을 제공하는 제2 미드룹바디를 포함할 수 있다.In addition, the midloop steam generator includes a first midloop body through which the working fluid heated in the reactor module flows; And it may include a second mid-roof body that provides a space where the oil sand side fluid flows and is heated by the working fluid.
또한, 상기 오일샌드측증기가 지반에서 오일과 혼합된 오일혼합액을 회수하고, 회수된 오일혼합액을 오일과 오일샌드측유체로 분리하는 처리부를 더 포함할 수 있다.In addition, the oil sand side vapor may further include a processing unit for recovering an oil mixture mixed with oil in the ground and separating the recovered oil mixture into oil and oil sand side fluid.
또한, 상기 처리부는, 상기 오일혼합액에 희석액을 혼합하여 처리액을 제공하는 오일처리부; 및 상기 처리액을 상기 미드룹 증기발생기로 회수할 오일샌드측유체와 상기 미드룹 증기발생기로 회수하지 않는 폐기액으로 분리하는 후처리부를 포함할 수 있다.In addition, the treatment unit includes an oil treatment unit that provides a treatment solution by mixing a diluent with the oil mixture; and a post-treatment unit that separates the treatment liquid into an oil sand side fluid to be recovered by the mid-loop steam generator and a waste liquid not recovered by the mid-loop steam generator.
또한, 상기 오일처리부는, 상기 오일혼합액에서 모래 및 역청을 분리하고, 희석액을 혼합하여 제1 처리액을 제공하는 오일희석부; 및 상기 제1 처리액에서 오일을 분리하여 제2 처리액을 제공하는 오일추출부를 포함할 수 있다.In addition, the oil treatment unit includes an oil dilution unit that separates sand and bitumen from the oil mixture and mixes the diluent to provide a first treatment liquid; and an oil extraction unit that separates oil from the first treatment liquid and provides a second treatment liquid.
또한, 상기 후처리부는, 상기 제2 처리액에서 폐기액을 분리하여 상기 미드룹 증기발생기로 회수할 오일샌드측유체를 제공할 수 있다.Additionally, the post-processing unit may separate the waste liquid from the second treatment liquid and provide an oil sand side fluid to be recovered by the mid-loop steam generator.
본 발명의 제2 실시예에 따른 오일샌드 채굴용 경수형 원자로는, 노심의 핵반응을 통해 발생된 열을 이용하여 작동 유체를 가열하는 원자로모듈; 상기 원자로모듈에서 가열된 작동 유체를 제공받고, 상기 작동 유체를 이용해 내부에 유동하는 오일샌드측유체를 가열하여 증기상태의 오일샌드측증기로 증발시키는 미드룹 증기발생기; 및 상기 원자로모듈에서 가열된 작동 유체가 상기 미드룹 증기발생기에 공급되는 압력을 조절하기 위해 선택적으로 개도가 조절가능하게 구성되는 밸브부를 포함하고, 상기 미드룹 증기발생기는,상기 오일샌드측증기가 지반에서 오일과 혼합되도록 상기 오일샌드측증기를 지반으로 배출한다.A light water reactor for oil sand mining according to a second embodiment of the present invention includes a reactor module that heats a working fluid using heat generated through a nuclear reaction in the reactor core; a midloop steam generator that receives heated working fluid from the reactor module, uses the working fluid to heat the oil sand side fluid flowing therein, and evaporates it into oil sand side steam in a vapor state; and a valve unit whose opening is selectively adjustable to control the pressure at which the working fluid heated in the reactor module is supplied to the midloop steam generator, wherein the oil sand side steam is supplied to the midloop steam generator. The oil sand side vapor is discharged to the ground so that it mixes with the oil in the ground.
상기 밸브부는, 상기 밸브부가 개방되었을 때 상기 원자로모듈에서 가열된 상기 작동 유체의 압력과 상기 밸브부를 통과한 상기 작동 유체의 압력의 차이보다, 상기 밸브부가 폐쇄되었을 때 상기 원자로모듈에서 가열된 상기 작동 유체의 압력과 상기 밸브부를 통과한 상기 작동 유체의 압력의 차이가 더 크도록 구성될 수 있다.The valve unit operates by heating the reactor module when the valve unit is closed, greater than the difference between the pressure of the working fluid heated in the reactor module when the valve unit is opened and the pressure of the working fluid passing through the valve unit. It may be configured so that the difference between the pressure of the fluid and the pressure of the working fluid passing through the valve unit is larger.
상기 미드룹 증기발생기는, 상기 오일샌드측유체와 상기 작동 유체가 독립적으로 유동하도록 구성될 수 있다. The mid-loop steam generator may be configured so that the oil sand side fluid and the working fluid flow independently.
상기 미드룹 증기발생기는, 상기 원자로모듈에서 가열된 상기 작동 유체가 유동하는 제1 미드룹바디; 및 상기 오일샌드측유체가 유동하면서 상기 작동 유체에 의해 가열되는 공간을 제공하는 제2 미드룹바디를 포함할 수 있다.The midloop steam generator includes a first midloop body through which the working fluid heated in the reactor module flows; And it may include a second mid-roof body that provides a space where the oil sand side fluid flows and is heated by the working fluid.
상기 오일샌드측증기가 지반에서 오일과 혼합된 오일혼합액을 회수하고, 회수된 오일혼합액을 오일과 오일샌드측유체로 분리하는 처리부를 더 포함할 수 있다. The oil sand side vapor may further include a processing unit for recovering an oil mixture mixed with oil in the ground and separating the recovered oil mixture into oil and oil sand side fluid.
상기 처리부는, 상기 오일혼합액에 희석액을 혼합하여 처리액을 제공하는 오일처리부; 및 상기 처리액을 상기 미드룹 증기발생기로 회수할 오일샌드측유체와 상기 미드룹 증기발생기로 회수하지 않는 폐기액으로 분리하는 후처리부를 포함할 수 있다.The processing unit includes an oil processing unit that provides a treatment solution by mixing a diluent with the oil mixture; and a post-treatment unit that separates the treatment liquid into an oil sand side fluid to be recovered by the mid-loop steam generator and a waste liquid not recovered by the mid-loop steam generator.
상기 오일처리부는, 상기 오일혼합액에서 모래 및 역청을 분리하고, 희석액을 혼합하여 제1 처리액을 제공하는 오일희석부; 및 상기 제1 처리액에서 오일을 분리하여 제2 처리액을 제공하는 오일추출부를 포함할 수 있다.The oil treatment unit includes an oil dilution unit that separates sand and bitumen from the oil mixture and mixes the dilution liquid to provide a first treatment liquid; and an oil extraction unit that separates oil from the first treatment liquid and provides a second treatment liquid.
상기 후처리부는, 상기 제2 처리액에서 폐기액을 분리하여 상기 미드룹 증기발생기로 회수할 오일샌드측유체를 제공할 수 있다.The post-processing unit may separate the waste liquid from the second treatment liquid and provide an oil sand side fluid to be recovered by the mid-loop steam generator.
상기 원자로모듈에서 가열된 상기 작동 유체를 이용해 전기를 생성하는 터빈부를 더 포함하고, 상기 원자로 모듈은 상기 터빈부로 유동하는 작동 유체와 상기 미드룹 증기발생기로 유동하는 작동 유체가 독립적으로 유동되도록 구성될 수 있다. It further includes a turbine unit that generates electricity using the working fluid heated in the reactor module, and the reactor module is configured to allow the working fluid flowing to the turbine unit and the working fluid flowing to the midloop steam generator to flow independently. You can.
본 발명의 제3 실시예에 따른 오일샌드 채굴용 경수형 원자로는, 노심의 핵반응을 통해 발생된 열을 이용하여 작동 유체를 가열하는 원자로모듈; 상기 작동 유체가 유동하는 통로를 제공하는 연결부; 및 상기 연결부를 통하여 상기 원자로모듈에서 가열된 작동 유체를 제공받고, 상기 작동 유체를 이용해 내부에 유동하는 오일샌드측유체를 가열하여 증기상태의 오일샌드측증기로 비등시키는 미드룹 증기발생기를 포함하고, 상기 미드룹 증기발생기는, 상기 오일샌드측증기가 지반에서 오일과 혼합되도록 상기 오일샌드측증기를 지반으로 배출한다.A light water reactor for oil sand mining according to a third embodiment of the present invention includes a reactor module that heats a working fluid using heat generated through a nuclear reaction in the reactor core; A connection part providing a passage through which the working fluid flows; And a mid-loop steam generator that receives the heated working fluid from the reactor module through the connection, heats the oil sand side fluid flowing inside using the working fluid, and boils it into oil sand side steam in a vapor state. , the mid-loop steam generator discharges the oil sand side steam to the ground so that the oil sand side steam is mixed with oil in the ground.
상기 미드룹 증기발생기는, 상기 오일샌드측유체와 상기 작동 유체가 독립적으로 유동하도록 구성될 수 있다. The mid-loop steam generator may be configured so that the oil sand side fluid and the working fluid flow independently.
상기 미드룹 증기발생기는, 상기 원자로모듈에서 가열된 상기 작동 유체가 유동하는 제1 미드룹바디; 및 오일샌드측유체가 유동하면서 상기 작동 유체에 의해 가열되는 공간을 제공하는 제2 미드룹바디를 포함할 수 있다.The midloop steam generator includes a first midloop body through which the working fluid heated in the reactor module flows; And it may include a second mid-roof body that provides a space where the oil sand side fluid flows and is heated by the working fluid.
상기 오일샌드측증기가 지반에서 오일과 혼합된 오일혼합액을 회수하고, 회수된 오일혼합액을 오일과 오일샌드측유체로 분리하는 처리부를 더 포함할 수 있다. The oil sand side vapor may further include a processing unit for recovering an oil mixture mixed with oil in the ground and separating the recovered oil mixture into oil and oil sand side fluid.
상기 처리부는, 상기 오일혼합액에 희석액을 혼합하여 처리액을 제공하는 오일처리부; 및 상기 처리액을 상기 미드룹 증기발생기로 회수할 오일샌드측유체와 상기 미드룹 증기발생기로 회수하지 않는 폐기액으로 분리하는 후처리부를 포함할 수 있다. The processing unit includes an oil processing unit that provides a treatment solution by mixing a diluent with the oil mixture; and a post-treatment unit that separates the treatment liquid into an oil sand side fluid to be recovered by the mid-loop steam generator and a waste liquid not recovered by the mid-loop steam generator.
상기 미드룹 증기발생기로부터 회수되는 작동 유체를 상기 원자로모듈로 유동시키는 미드룹펌프를 더 포함할 수 있다. It may further include a midloop pump that flows the working fluid recovered from the midloop steam generator to the reactor module.
회수된 오일샌드측유체를 상기 미드룹 증기발생기로 유동시키는 회수부펌프를 더 포함할 수 있다. It may further include a recovery pump that flows the recovered oil sand side fluid to the mid-loop steam generator.
상기 오일처리부는, 상기 오일혼합액에서 모래 및 역청을 분리하고, 희석액을 혼합하여 제1 처리액을 제공하는 오일희석부; 및 상기 제1 처리액에서 오일을 분리하여 제2 처리액을 제공하는 오일추출부를 포함할 수 있다. The oil treatment unit includes an oil dilution unit that separates sand and bitumen from the oil mixture and mixes the dilution liquid to provide a first treatment liquid; and an oil extraction unit that separates oil from the first treatment liquid and provides a second treatment liquid.
상기 후처리부는, 상기 제2 처리액에서 폐기액을 분리하여 상기 미드룹 증기발생기로 회수할 오일샌드측유체를 제공할 수 있다. The post-processing unit may separate the waste liquid from the second treatment liquid and provide an oil sand side fluid to be recovered by the mid-loop steam generator.
상기 원자로모듈에서 가열된 상기 작동 유체를 이용해 전기를 생성하는 터빈부를 더 포함하고, 상기 원자로 모듈은 상기 터빈부로 유동하는 작동 유체와 상기 미드룹 증기발생기로 유동하는 작동 유체가 독립적으로 유동되도록 구성될 수 있다.It further includes a turbine unit that generates electricity using the working fluid heated in the reactor module, and the reactor module is configured to allow the working fluid flowing to the turbine unit and the working fluid flowing to the midloop steam generator to flow independently. You can.
본 발명의 실시예에 따르면, 오일샌드 채굴을 위하여 필요한 250도 이상 300도 이하의 고온 및 고압의 증기를 생산하기 위하여 경수형 원자로를 적용할 수 있다.According to an embodiment of the present invention, a light water reactor can be applied to produce high temperature and high pressure steam of 250 degrees to 300 degrees necessary for oil sand mining.
또한, 본 발명의 실시예에 따르면, 오일샌드 채굴의 진행 단계에 따라 다르게 요구되는 압력을 갖는 증기를 생산할 수 있는 효과가 있다.In addition, according to an embodiment of the present invention, there is an effect of producing steam having a different pressure required depending on the progress stage of oil sand mining.
또한, 본 발명의 실시예에 따르면, 고온 및 고압의 증기를 생산하는데 경수형 원자로를 적용함으로써 이산화탄소 배출을 최소화할 수 있는 효과가 있다.In addition, according to an embodiment of the present invention, carbon dioxide emissions can be minimized by applying a light water reactor to produce high temperature and high pressure steam.
또한, 본 발명의 실시예에 따르면, 원자로모듈에서 공급된 증기의 압력과 미드룹 증기발생기에서 응축되는 증기의 압력의 차이를 사용자가 원하는 만큼 변화시킬 수 있는 효과가 있다. In addition, according to an embodiment of the present invention, there is an effect in that the difference between the pressure of steam supplied from the nuclear reactor module and the pressure of steam condensed in the mid-loop steam generator can be changed as desired by the user.
또한, 본 발명의 실시예에 따르면, 원자로모듈의 작동 유체 및 지반을 유동하는 오일샌드측유체의 수질을 별도로 관리할 수 있다. 따라서, 기존의 원전 산업분야와 오일샌드 채굴 산업분야에서 사용해온 수질 관리 방식을 각각 그대로 유지할 수 있으므로, 별도의 수질 관리방식 개발이 불필요하여 추가적인 비용이 발생하지 않는 효과가 있다.In addition, according to an embodiment of the present invention, the water quality of the working fluid of the nuclear reactor module and the oil sand side fluid flowing through the ground can be managed separately. Therefore, the water quality management methods used in the existing nuclear power plant industry and the oil sand mining industry can be maintained, so there is no need to develop a separate water quality management method, which has the effect of eliminating additional costs.
또한, 본 발명의 실시예에 따르면, 원자로모듈과 지반 사이에 미드룹이 배치됨으로써, 미드룹이 방사성 물질을 차단할 수 있는 추가 방벽 역할을 할 수 있어 방사능 안전관점에서 유리한 효과가 있다.In addition, according to an embodiment of the present invention, by placing the midloop between the reactor module and the ground, the midloop can serve as an additional barrier capable of blocking radioactive materials, which has an advantageous effect from a radiation safety perspective.
또한, 본 발명의 실시예에 따르면, 전력발전 터빈부와 오일샌드 채굴 시스템이 동시에 운전되도록 할 수 있고 필요에 따라 두 시스템의 에너지 비율을 조절함으로써, 상황(오일샌드용 증기 사용 수요 또는 전력 수요)에 맞게 대응할 수 있는 효과가 있다.In addition, according to an embodiment of the present invention, the power generation turbine unit and the oil sand mining system can be operated simultaneously, and the energy ratio of the two systems can be adjusted as needed, depending on the situation (demand for steam use for oil sands or power demand). There is an effect that can respond accordingly.
도 1은 본 발명의 제1 실시예에 따른 오일샌드 채굴용 경수형 원자로를 도시한 개념도이다.Figure 1 is a conceptual diagram showing a light water reactor for oil sand mining according to a first embodiment of the present invention.
도 2는 도 1의 오일샌드 채굴용 경수형 원자로의 원자로모듈에 터빈이 연결된 모습을 도시한 개념도이다.FIG. 2 is a conceptual diagram showing a turbine connected to the reactor module of the light water reactor for oil sand mining of FIG. 1.
도 3은 도 2의 오일샌드 채굴용 경수형 원자로의 원자로모듈에서 미드룹 증기발생기가 하나 더 추가된 것을 나타낸 도면이다.FIG. 3 is a diagram showing one more midloop steam generator added to the reactor module of the light water reactor for oil sand mining of FIG. 2.
도 4는 도 2의 오일샌드 채굴용 경수형 원자로의 원자로모듈에서 미드룹 증기발생기가 복수 개 더 추가된 것을 나타낸 도면이다.FIG. 4 is a diagram showing that a plurality of midloop steam generators are added to the reactor module of the light water reactor for oil sand mining of FIG. 2.
도 5는 도 4의 오일샌드 채굴용 경수형 원자로의 원자로모듈에서 터빈부의 연결방식이 변경된 것을 나타낸 도면이다.FIG. 5 is a diagram showing a change in the connection method of the turbine unit in the reactor module of the light water reactor for oil sand mining of FIG. 4.
도 6은 본 발명의 제2 실시예에 따른 미드룹 적용된 오일샌드 채굴용 경수형 원자로를 도시한 개념도이다.Figure 6 is a conceptual diagram showing a light water reactor for oil sand mining with a mid-loop applied according to the second embodiment of the present invention.
도 7은 도 6의 미드룹 적용된 오일샌드 채굴용 경수형 원자로의 원자로모듈에 터빈이 연결된 모습을 도시한 개념도이다.FIG. 7 is a conceptual diagram showing a turbine connected to the reactor module of the light water reactor for oil sand mining to which the midloop of FIG. 6 is applied.
도 8은 본 발명의 제3 실시예에 따른 미드룹 적용된 오일샌드 채굴용 경수형 원자로를 도시한 개념도이다.Figure 8 is a conceptual diagram showing a light water reactor for oil sand mining with a mid-loop application according to the third embodiment of the present invention.
도 9는 도 8의 미드룹 적용된 오일샌드 채굴용 경수형 원자로의 원자로모듈에 터빈이 연결된 모습을 도시한 개념도이다.FIG. 9 is a conceptual diagram showing a turbine connected to the reactor module of the light water reactor for oil sand mining to which the midloop of FIG. 8 is applied.
이하에서는 본 발명의 기술적 사상을 구현하기 위한 구체적인 실시예에 대하여 도면을 참조하여 상세히 설명하도록 한다. Hereinafter, specific embodiments for implementing the technical idea of the present invention will be described in detail with reference to the drawings.
아울러 본 발명을 설명함에 있어서 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. In addition, when describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description will be omitted.
또한, 어떤 구성요소가 다른 구성요소에 '전달', '연결', '제공'된다고 언급된 때에는 그 다른 구성요소에 직접적으로 전달, 연결, 제공될 수도 있지만 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.Additionally, when it is mentioned that a component is 'delivered', 'connected', or 'provided' to another component, it is understood that it may be directly delivered, connected, or provided to that other component, but that other components may exist in between. It should be.
본 명세서에서 사용된 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로 본 발명을 한정하려는 의도로 사용된 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다.The terms used in this specification are merely used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
또한, 본 명세서에서 상측, 하측, 측면 등의 표현은 도면에 도시를 기준으로 설명한 것이며 해당 대상의 방향이 변경되면 다르게 표현될 수 있음을 미리 밝혀둔다. 마찬가지의 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시되었으며, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다.In addition, it should be noted in advance that expressions such as upper, lower, and side in this specification are explained based on the drawings, and may be expressed differently if the direction of the object in question changes. For the same reason, in the accompanying drawings, some components are exaggerated, omitted, or schematically shown, and the size of each component does not entirely reflect the actual size.
또한, 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 해당 구성요소들은 이와 같은 용어들에 의해 한정되지는 않는다. 이 용어들은 하나의 구성요소들을 다른 구성요소에서 구별하는 목적으로만 사용된다.Additionally, terms including ordinal numbers, such as first, second, etc., may be used to describe various components, but the components are not limited by these terms. These terms are used only to distinguish one component from another.
명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.As used in the specification, the meaning of "comprising" is to specify a specific characteristic, area, integer, step, operation, element, and/or component, and to specify another specific property, area, integer, step, operation, element, component, and/or group. It does not exclude the existence or addition of .
(제1 실시예)(First Example)
이하, 도면을 참조하여 본 발명의 제1 실시예에 따른 미드룹 적용된 오일샌드 채굴용 경수형 원자로(1)의 구체적인 구성에 대하여 설명한다. Hereinafter, with reference to the drawings, the specific configuration of the light water reactor 1 for oil sand mining applied to the midloop according to the first embodiment of the present invention will be described.
도 1 및 도 2를 참조하면, 제1 실시예에서 오일샌드 채굴용 경수형 원자로(1)는 원자로모듈에서 발생한 열을 이용하여 별도로 증기를 생성할 수 있는 미드룹 증기발생기를 원자로모듈에 연결함으로써, 오일샌드를 채굴할 수 있다. 이러한 오일샌드 채굴용 경수형 원자로(1)는 원자로모듈(10), 터빈부(20), 미드룹 증기발생기(30), 처리부(40), 연결부(50), 펌프부(60), 분리기(70), 가압기(80) 및 히터부(90)를 포함할 수 있다.Referring to FIGS. 1 and 2, in the first embodiment, the light water reactor 1 for oil sand mining is connected to the reactor module with a midloop steam generator capable of separately generating steam using heat generated from the reactor module. , oil sands can be mined. This light water reactor (1) for oil sand mining includes a reactor module (10), a turbine unit (20), a mid-loop steam generator (30), a processing unit (40), a connection unit (50), a pump unit (60), and a separator ( 70), a pressurizer 80, and a heater unit 90.
원자로모듈(10)은 노심의 핵반응을 통해 발생된 열을 이용하여 작동 유체를 가열할 수 있다. 이러한 원자로모듈(10)은 발생된 열의 적어도 일부를 외부로 공급할 수 있다. 예를 들어, 원자로모듈(10)은 250도 이상 310도 이하의 고온의 작동 유체를 외부로 배출할 수 있다. 이러한 원자로모듈(10)은 핵분열에 의해서 발생되는 열을 이용하여 작동 유체를 가열시킬 수 있다. 또한, 원자로모듈(10)은 사고시, 냉각수 등의 냉각재가 자연순환됨으로써, 후술할 노심(11)이 피동적으로 냉각될 수 있다. 이러한 원자로모듈(10)에서 배출되는 작동 유체는 물 또는 오일류일 수 있다. 원자로모듈(10)의 일측은 작동 유체 어느 일부가 터빈부(20)에 연통되도록 터빈부(20)에 연결될 수 있다. 또한, 원자로모듈(10)의 타측은 미드룹 증기발생기(30)에 연결될 수 있다. 원자로모듈(10)의 작동 유체 중 터빈부(20)으로 유동하는 작동 유체는 터빈 유체로 명명될 수 있으며, 이러한 터빈 유체는 원자로모듈(10)과 미드룹 증기발생기(30) 사이에서 유동하는 작동 유체와 독립적으로 유동될 수 있다. 다시 말해, 원자로모듈(10)은 터빈유체와 작동 유체가 서로 혼합되지 않게 유동하도록 구성될 수 있다. 원자로모듈(10)은 핵증기공급계통(NSSS, nuclear steam supply system)일 수 있다. 이러한 원자로모듈(10)은 노심(11), 열교환기(12) 및 원자로용기(13)를 포함할 수 있다.The nuclear reactor module 10 can heat the working fluid using heat generated through a nuclear reaction in the reactor core. This nuclear reactor module 10 can supply at least a portion of the generated heat to the outside. For example, the nuclear reactor module 10 may discharge high temperature working fluid of 250 degrees to 310 degrees to the outside. This nuclear reactor module 10 can heat the working fluid using heat generated by nuclear fission. In addition, in the event of an accident in the nuclear reactor module 10, the reactor core 11, which will be described later, can be passively cooled by natural circulation of coolant such as coolant. The working fluid discharged from the nuclear reactor module 10 may be water or oil. One side of the nuclear reactor module 10 may be connected to the turbine unit 20 so that a portion of the working fluid communicates with the turbine unit 20. Additionally, the other side of the reactor module 10 may be connected to the midloop steam generator 30. Among the working fluids of the nuclear reactor module 10, the working fluid flowing into the turbine unit 20 may be referred to as turbine fluid, and this turbine fluid flows between the nuclear reactor module 10 and the mid-loop steam generator 30. It can flow independently of the fluid. In other words, the nuclear reactor module 10 may be configured so that the turbine fluid and the working fluid flow without mixing with each other. The nuclear reactor module 10 may be a nuclear steam supply system (NSSS). This nuclear reactor module 10 may include a reactor core 11, a heat exchanger 12, and a reactor vessel 13.
노심(11)에서는 핵분열이 발생될 수 있다. 이러한 노심(11)에는 우라늄 등 방사성 물질을 포함하는 핵연료(미도시)가 배치되어 핵분열이 발생될 수 있다. 또한, 노심(11)은 원자로용기(13)의 내부에 배치될 수 있다.Nuclear fission may occur in the reactor core 11. Nuclear fuel (not shown) containing radioactive materials such as uranium is placed in the core 11, so nuclear fission may occur. Additionally, the reactor core 11 may be placed inside the reactor vessel 13.
열교환기(12)는 노심(11)의 열에 의해 증기상태로 변화되어 원자로용기(13)로부터 배출된 냉각재를 응축시킬 수 있다. 이러한 열교환기(12)는 원자로용기(13)의 외측에 배치될 수 있다.The heat exchanger 12 is converted into a vapor state by the heat of the reactor core 11 and can condense the coolant discharged from the reactor vessel 13. This heat exchanger 12 may be placed outside the reactor vessel 13.
원자로용기(13)는 노심(11)에서 발생되는 핵분열에 의하여 생성되는 핵분열 생성물이 외부로 누출되지 않도록 할 수 있다. 이러한 원자로용기(13)는 노심(11)을 수용할 수 있다. 또한, 원자로용기(13)의 내부에는 냉각재가 채워져서 핵분열이 발생되는 노심(11)을 냉각할 수 있다.The reactor vessel 13 can prevent nuclear fission products generated by nuclear fission occurring in the reactor core 11 from leaking to the outside. This reactor vessel 13 can accommodate the reactor core 11. Additionally, the interior of the reactor vessel 13 is filled with coolant to cool the reactor core 11 where nuclear fission occurs.
터빈부(20)는 원자로모듈(10)에서 가열된 터빈 유체를 이용해 전기를 생성할 수 있다. 예를 들어, 원자로모듈(10)의 노심에서 생성된 열은 증기 또는 고온의 액체를 발생시키고, 터빈부(20)에는 열이 유체의 형태로 전달될 수 있다. 이러한 터빈부(20)는 원자로모듈(10)과 연결될 수 있다. 다만, 본 발명은 이에 한정되는 것은 아니고, 터빈부(20)는 미드룹 증기발생기(30)에 연결될 수 있다. 예를 들어, 터빈부(20)는 원자로모듈(10)에서 복수 개의 미드룹 증기발생기(30) 중 가장 하류에 배치된 어느 하나의 미드룹 증기발생기(30)와 연결될 수 있다.The turbine unit 20 can generate electricity using turbine fluid heated in the nuclear reactor module 10. For example, heat generated in the core of the nuclear reactor module 10 generates steam or high-temperature liquid, and the heat may be transferred to the turbine unit 20 in the form of a fluid. This turbine unit 20 may be connected to the nuclear reactor module 10. However, the present invention is not limited to this, and the turbine unit 20 may be connected to the midloop steam generator 30. For example, the turbine unit 20 may be connected to any one mid-loop steam generator 30 disposed most downstream among the plurality of mid-loop steam generators 30 in the nuclear reactor module 10.
미드룹 증기발생기(30)는 원자로모듈(10)에서 가열된 작동 유체를 제공받아, 작동 유체를 이용해 내부에 유동하는 오일샌드측유체를 가열하여 오일샌드측증기로 비등시킬 수 있다. 이러한 미드룹 증기발생기(30)는 오일샌드측유체와 작동 유체가 독립적으로 유동하도록 구성될 수 있다. 또한, 미드룹 증기발생기(30)는 오일샌드측증기가 지반(G)에서 오일과 혼합되도록 오일샌드측증기를 지반(G)으로 배출할 수 있다. 미드룹 증기발생기(30)는 오일샌드측증기를 지반(G)으로 전달할 수 있다. 이러한 미드룹 증기발생기(30)는 오일샌드측증기가 유입된 지반(G)에서 분리된 오일과 오일샌드측유체가 혼합된 오일혼합액 중 오일샌드측유체의 적어도 일부를 다시 미드룹 증기발생기(30)의 내부로 회수할 수 있다. 또한, 미드룹 증기발생기(30)는 복수 개로 제공될 수 있다. 복수 개의 미드룹 증기발생기(30)는 오일샌드측유체가 직렬 또는 병렬로 유동되도록 서로 연결될 수 있다. 이러한 복수 개의 미드룹 증기발생기(30)는 유체가 유동하는 방향을 따라 이웃하게 배치될 수 있다. 예를 들어, 복수 개의 미드룹 증기발생기(30)는 원자력모듈(10)과 연결되는 제1 미드룹 증기발생기, 제1 미드룹 증기발생기와 연결되는 제2 미드룹 증기발생기, 제2 미드룹 증기발생기와 연결되는 제3 미드룹 증기발생기 및 제3 미드룹 증기발생기와 연결되는 제4 미드룹 증기발생기를 포함할 수 있다. 제2 미드룹 증기발생기에서 제1 미드룹 증기발생기로 전달되는 오일샌드측유체의 어느 일부는 제1 미드룹 증기발생기로 회수될 수 있고, 제3 미드룹 증기발생기에서 제2 미드룹 증기발생기로 전달되는 오일샌드측유체의 어느 일부는 제2 미드룹 증기발생기로 회수될 수 있으며, 제4 미드룹 증기발생기에서 제3 미드룹 증기발생기로 전달되는 오일샌드측유체의 어느 일부는 제3 미드룹 증기발생기로 회수될 수 있다. 다시 말해, 오일샌드측유체가 복수 개의 미드룹 증기발생기(30) 사이를 순환하도록 구성될 수 있다. 다만, 본 발명에서 미드룹 증기발생기(30)의 개수는 이에 한정되는 것은 아니고, 다른 개수의 미드룹 증기발생기(30)가 추가되거나 빠질 수 있다. 미드룹 증기발생기(30)는 제1 미드룹바디(31) 및 제2 미드룹바디(32)를 포함할 수 있다.The midloop steam generator 30 can receive the heated working fluid from the reactor module 10, heat the oil sand side fluid flowing inside using the working fluid, and boil it into oil sand side steam. This mid-loop steam generator 30 may be configured so that the oil sand side fluid and the working fluid flow independently. Additionally, the mid-loop steam generator 30 may discharge oil sand side steam to the ground (G) so that the oil sand side steam is mixed with oil in the ground (G). The midloop steam generator 30 can deliver oil sand side steam to the ground (G). This mid-loop steam generator (30) returns at least a portion of the oil sand-side fluid from the oil mixture of the oil separated from the ground (G) into which the oil sand-side steam flows and the oil sand-side fluid to the mid-loop steam generator (30). ) can be recovered inside. Additionally, a plurality of midloop steam generators 30 may be provided. A plurality of mid-loop steam generators 30 may be connected to each other so that the oil sand side fluid flows in series or parallel. These plurality of mid-loop steam generators 30 may be arranged adjacent to each other along the direction in which the fluid flows. For example, the plurality of mid-loop steam generators 30 include a first mid-loop steam generator connected to the nuclear power module 10, a second mid-loop steam generator connected to the first mid-loop steam generator, and a second mid-loop steam generator. It may include a third mid-loop steam generator connected to the generator and a fourth mid-loop steam generator connected to the third mid-loop steam generator. Any part of the oil sands side fluid delivered from the second midloop steam generator to the first midloop steam generator may be recovered to the first midloop steam generator, and from the third midloop steam generator to the second midloop steam generator. Any part of the oil sands side fluid delivered may be recovered to the second midloop steam generator, and any part of the oil sands side fluid delivered from the fourth midloop steam generator to the third midloop steam generator may be recovered to the third midloop steam generator. It can be recovered with a steam generator. In other words, the oil sand side fluid may be configured to circulate between a plurality of mid-loop steam generators (30). However, in the present invention, the number of mid-loop steam generators 30 is not limited to this, and other numbers of mid-loop steam generators 30 may be added or omitted. The mid loop steam generator 30 may include a first mid loop body 31 and a second mid loop body 32.
제1 미드룹바디(31)는 원자로모듈(10)에서 가열된 작동 유체가 유동될 수 있다. 이러한 제1 미드룹바디(31)는 후술할 제1 공급부(511)와 연결될 수 있다. 이러한 제1 미드룹바디(31)는 내부에 제2 미드룹바디(32)를 수용할 수 있다. 또한, 제1 미드룹바디(31)의 내부에 원자로모듈(10)에서 전달받은 작동 유체가 유동될 수 있다.The working fluid heated in the nuclear reactor module 10 may flow through the first midloop body 31 . This first mid-roof body 31 may be connected to a first supply unit 511, which will be described later. This first mid-roof body 31 can accommodate the second mid-roof body 32 therein. Additionally, the working fluid delivered from the nuclear reactor module 10 may flow inside the first mid-roof body 31.
제2 미드룹바디(32)는 오일샌드측유체가 유동하면서 작동 유체에 의해 가열되는 공간을 제공할 수 있다. 이러한 제2 미드룹바디(32)의 내부에서 유동하는 오일샌드측유체가 온도 및 압력 변화에 따라 상태변화 될 수 있다. 또한, 제2 미드룹바디(32)는 제1 미드룹바디(31)의 내부에 배치될 수 있다. 제2 미드룹바디(32)는 제2 미드룹바디(32)를 유동하는 오일샌드측유체와 제2 미드룹바디(32)의 외부의 원자로모듈(10)에서 전달받은 작동 유체가 서로 섞이지 않도록 구성될 수 있다.The second mid-roof body 32 may provide a space where the oil sand side fluid flows and is heated by the working fluid. The oil sand side fluid flowing inside the second mid-roof body 32 may change state depending on temperature and pressure changes. Additionally, the second mid-roof body 32 may be disposed inside the first mid-roof body 31. The second mid-roof body (32) prevents the oil sand side fluid flowing through the second mid-roof body (32) from mixing with the working fluid received from the reactor module (10) outside the second mid-roof body (32). It can be configured.
처리부(40)는 오일샌드측증기가 지반(G)에서 오일과 혼합된 오일혼합액을 회수하고, 회수된 오일혼합액을 오일과 오일샌드측유체로 분리할 수 있다. 이러한 처리부(40)는 지반(G)과 미드룹 증기발생기(30)사이에 연결될 수 있다. 또한, 처리부(40)는 오일처리부(41) 및 후처리부(42)를 포함할 수 있다.The processing unit 40 can recover the oil mixture in which oil sand side vapor is mixed with oil in the ground (G), and separate the recovered oil mixture into oil and oil sand side fluid. This processing unit 40 may be connected between the ground (G) and the mid-loop steam generator (30). Additionally, the processing unit 40 may include an oil processing unit 41 and a post-processing unit 42.
오일처리부(41)는 오일혼합액에 희석액을 혼합하여 처리액을 제공할 수 있다. 이러한 오일처리부(41)는 지반(G)에서 추출된 오일혼합액에서 오일을 분리할 수 있다. 이러한 오일처리부(41)는 오일희석부(411) 및 오일추출부(412)를 포함할 수 있다.The oil treatment unit 41 may provide a treatment liquid by mixing a diluent with the oil mixture. This oil processing unit 41 can separate oil from the oil mixture extracted from the ground (G). This oil processing unit 41 may include an oil dilution unit 411 and an oil extraction unit 412.
오일희석부(411)는 오일혼합액에서 모래 및 역청을 분리하고, 희석액을 혼합하여 제1 처리액을 제공할 수 있다. 이러한 제1 처리액은 오일혼합액에서 모래 및 역청을 제거한 처리액일 수 있다. 또한, 오일희석부(411)의 일측은 지반(G)에 연결될 수 있고, 타측은 오일추출부(412)와 연결될 수 있다.The oil dilution unit 411 may separate sand and bitumen from the oil mixture and mix the diluent to provide a first treatment solution. This first treatment solution may be a treatment solution obtained by removing sand and bitumen from the oil mixture. Additionally, one side of the oil dilution unit 411 may be connected to the ground (G), and the other side may be connected to the oil extraction unit 412.
오일추출부(412)는 제1 처리액에서 오일을 분리하여 제2 처리액을 제공할 수 있다. 이러한 제1 처리액에서 오일이 분리되어 생성된 처리액은 제2 처리액이라 명명될 수 있다. 이러한 오일추출부(412)에서 분리된 오일은 다시 오일희석부(411)로 전달될 수 있고, 복수 회에 거쳐 모래, 역청 및 오일을 분리해낼 수 있다. 또한, 오일추출부(412)는 후처리부(42)와 연결될 수 있다. 오일추출부(412)에서 최종적으로 오일이 분리된 오일혼합액인 제2 처리액은 후처리부(42)에 제공될 수 있다.The oil extraction unit 412 may separate oil from the first treatment liquid and provide a second treatment liquid. The treatment liquid produced by separating the oil from the first treatment liquid may be called the second treatment liquid. The oil separated from the oil extraction unit 412 can be transferred back to the oil dilution unit 411, and sand, bitumen, and oil can be separated multiple times. Additionally, the oil extraction unit 412 may be connected to the post-processing unit 42. The second treatment liquid, which is the oil mixture liquid from which the oil is finally separated in the oil extraction unit 412, may be provided to the post-processing unit 42.
후처리부(42)는 처리액을 미드룹 증기발생기(30)로 회수할 오일샌드측유체와 미드룹 증기발생기(30)로 회수하지 않는 폐기액으로 분리할 수 있다. 이러한 후처리부(42)는 제2 처리액에서 폐기액을 분리하여 미드룹 증기발생기(30)로 회수할 오일샌드측유체를 제공할 수 있다. 또한, 후처리부(42)는 오일처리부(41)에서 오일이 분리된 제2 처리액을 오일처리부(41)에서 전달받을 수 있다. 이러한 후처리부(42)는 제2 처리액을 미드룹 증기발생기(30)에 회수 가능한 오일샌드측유체와 미드룹 증기발생기(30)에 회수 불가능한 폐기액으로 분리할 수 있다. 또한, 후처리부(42)는 미드룹 증기발생기(30)에 회수 가능하도록 처리된 오일샌드측유체를 전달할 수 있다. 또한, 후처리부(42)는 오일샌드측유체를 미드룹 증기발생기(30)에 전달할 수 있다.The post-treatment unit 42 can separate the treated liquid into an oil sand side fluid to be recovered by the mid-loop steam generator 30 and a waste liquid not recovered by the mid-loop steam generator 30. This post-treatment unit 42 can separate the waste liquid from the second treatment liquid and provide the oil sand side fluid to be recovered to the mid-loop steam generator 30. Additionally, the post-treatment unit 42 may receive the second treatment liquid from which the oil has been separated from the oil treatment unit 41 . This post-treatment unit 42 can separate the second treatment liquid into an oil sand side fluid that can be recovered by the mid-loop steam generator 30 and a waste liquid that cannot be recovered by the mid-loop steam generator 30. In addition, the post-processing unit 42 can deliver the oil sand side fluid that has been treated to be recoverable to the mid-loop steam generator 30. Additionally, the post-processing unit 42 can deliver the oil sand side fluid to the mid-loop steam generator 30.
연결부(50)는 작동 유체, 터빈 유체 및 오일샌드측유체가 유동되는 통로를 제공할 수 있다. 이러한 연결부(50)는 원자로모듈(10), 터빈부(20), 미드룹 증기발생기(30), 처리부(40), 펌프부(60), 분리기(70), 가압기(80), 히터부(90) 및 지반(G) 중 어느 둘 사이에 배치될 수 있다. 또한, 연결부(50)는 고온 및 고압을 견딜 수 있는 재질로 형성될 수 있다. 연결부(50)는 공급부 및 회수부를 포함할 수 있다.The connection portion 50 may provide a passage through which the working fluid, turbine fluid, and oil sand side fluid flow. This connection part 50 includes a nuclear reactor module 10, a turbine part 20, a mid-loop steam generator 30, a processing part 40, a pump part 60, a separator 70, a pressurizer 80, and a heater part ( 90) and the ground (G). Additionally, the connection portion 50 may be formed of a material that can withstand high temperature and pressure. The connection part 50 may include a supply part and a recovery part.
공급부는 고온 및 고압의 유체가 일방향으로 전달되도록 유체가 유동될 수 있는 공간을 제공할 수 있다. 이러한 공급부의 내부를 유동하는 유체는 일방향으로 유동될 수 있다. 또한, 공급부는 제1 공급부(511), 제2 공급부(512), 제3 공급부(513), 제4 공급부(514) 및 제5 공급부(515)를 포함할 수 있다.The supply unit may provide a space through which fluid can flow so that high-temperature and high-pressure fluid is transmitted in one direction. The fluid flowing inside this supply unit may flow in one direction. Additionally, the supply unit may include a first supply unit 511, a second supply unit 512, a third supply unit 513, a fourth supply unit 514, and a fifth supply unit 515.
제1 공급부(511)는 원자로모듈(10)과 미드룹 증기발생기(30) 사이를 연결할 수 있다. 이러한 제1 공급부(511)는 원자로모듈(10)에서 공급되는 작동 유체가 미드룹 증기발생기(30) 측으로 이동되도록 유동 공간을 제공할 수 있다.The first supply unit 511 may connect between the nuclear reactor module 10 and the midloop steam generator 30. This first supply unit 511 may provide a flow space so that the working fluid supplied from the nuclear reactor module 10 moves toward the midloop steam generator 30.
제2 공급부(512)는 원자로모듈(10)과 터빈부(20) 사이를 연결할 수 있다. 이러한 제2 공급부(512)는 원자로모듈(10)에서 공급되는 터빈 유체가 터빈부(20)측으로 이동되도록 유동 공간을 제공할 수 있다.The second supply unit 512 may connect the reactor module 10 and the turbine unit 20. This second supply unit 512 may provide a flow space so that the turbine fluid supplied from the nuclear reactor module 10 moves toward the turbine unit 20.
제3 공급부(513)는 미드룹 증기발생기(30)와 지반(G) 사이를 연결할 수 있다. 이러한 제3 공급부(513)는 미드룹 증기발생기(30)에서 공급되는 오일샌드측유체가 지반(G)으로 이동되도록 유동 공간을 제공할 수 있다.The third supply unit 513 may connect the mid-loop steam generator 30 and the ground (G). This third supply unit 513 may provide a flow space so that the oil sand side fluid supplied from the mid-loop steam generator 30 moves to the ground (G).
제4 공급부(514)는 후술할 공급부분리기(72)와 후처리부(42) 사이를 연결할 수 있다. 이러한 제4 공급부(514)는 공급부분리기(72)에서 공급되는 오일샌드측 유체가 후처리부(42)로 이동되도록 유동 공간을 제공할 수 있다.The fourth supply unit 514 may connect between the supply unit 72 and the post-processing unit 42, which will be described later. This fourth supply unit 514 can provide a flow space so that the oil sand side fluid supplied from the supply unit 72 moves to the post-processing unit 42.
제5 공급부(515)는 복수 개의 미드룹 증기발생기(30) 사이를 연결할 수 있다. 이러한 제5 공급부(515)는 복수 개의 미드룹 증기발생기(30) 사이에서 유동되는 매개유체가 이동되는 유동 공간을 제공할 수 있다.The fifth supply unit 515 may connect a plurality of mid-loop steam generators 30. This fifth supply unit 515 may provide a flow space in which the intermediate fluid flowing between the plurality of mid-loop steam generators 30 moves.
회수부는 지반(G)에서 추출된 오일혼합액이 처리부(40), 미드룹 증기발생기(30), 펌프부(60), 분리기(70), 히터부(90) 등에 도달하도록 오일혼합액 등 유체가 유동되는 공간을 제공할 수 있다. 이러한 회수부의 내부를 유동하는 유체는 일방향으로 유동될 수 있다. 예를 들어, 회수부에는 지반(G)에서 추출된 오일혼합액, 오일희석부(411)에서 처리된 제1 처리액, 오일추출부(412)에서 처리된 제2 처리액 및 후처리부(42)에서 처리된 오일샌드측유체 등이 유동될 수 있다. 또한, 회수부는 복수 개로 제공될 수 있으며, 복수 개의 회수부 사이에는 회수부펌프(62)가 배치될 수 있다. 회수부는 제1 회수부(521), 제2 회수부(522), 제3 회수부(523), 제4 회수부(524), 제5 회수부(525) 및 제6 회수부(526)를 포함할 수 있다.In the recovery unit, fluid such as oil mixture flows so that the oil mixture extracted from the ground (G) reaches the treatment unit (40), mid-loop steam generator (30), pump unit (60), separator (70), heater unit (90), etc. We can provide a space where The fluid flowing inside this recovery unit may flow in one direction. For example, the recovery unit includes the oil mixture extracted from the ground (G), the first treatment liquid processed in the oil dilution unit 411, the second treatment liquid processed in the oil extraction unit 412, and the post-treatment unit 42. Oil sand side fluid, etc. treated in may flow. Additionally, a plurality of recovery units may be provided, and a recovery unit pump 62 may be disposed between the plurality of recovery units. The recovery unit includes a first recovery unit 521, a second recovery unit 522, a third recovery unit 523, a fourth recovery unit 524, a fifth recovery unit 525, and a sixth recovery unit 526. It can be included.
제1 회수부(521)는 지반(G)과 오일처리부(41) 사이를 연결할 수 있다. 이러한 제1 회수부(521)는 지반(G)에서 추출된 오일혼합액이 오일처리부(41)측으로 이동되도록 유동 공간을 제공할 수 있다.The first recovery unit 521 may connect between the ground (G) and the oil processing unit 41. This first recovery unit 521 can provide a flow space so that the oil mixture extracted from the ground (G) moves toward the oil processing unit 41.
제2 회수부(522)는 오일처리부(41)와 후처리부(42) 사이를 연결할 수 있다. 이러한 제2 회수부(522)는 오일희석부(411) 및 오일추출부(412) 사이를 연결할 수 있다. 또한, 제2 회수부(522)는 오일희석부(411)에서 처리된 제1 처리액이 오일추출부(412)로 이동되도록 유동 공간을 제공할 수 있고, 오일추출부(412)에서 처리된 제2 처리액이 후처리부(42)로 이동되도록 유동 공간을 제공할 수 있다.The second recovery unit 522 may connect the oil processing unit 41 and the post-processing unit 42. This second recovery unit 522 may be connected between the oil dilution unit 411 and the oil extraction unit 412. In addition, the second recovery unit 522 may provide a flow space so that the first treatment liquid processed in the oil dilution unit 411 moves to the oil extraction unit 412, and the processed liquid in the oil extraction unit 412 may be provided. A flow space may be provided so that the second treatment liquid moves to the post-processing unit 42.
제3 회수부(523)는 후처리부(42)와 미드룹 증기발생기(30) 사이를 연결할 수 있다. 이러한 제3 회수부(523)는 후처리부(42)에서 처리된 오일샌드측유체가 미드룹 증기발생기(30)로 이동되도록 유동 공간을 제공할 수 있다.The third recovery unit 523 may connect the post-processing unit 42 and the mid-loop steam generator 30. This third recovery unit 523 can provide a flow space so that the oil sand side fluid treated in the post-processing unit 42 moves to the mid-loop steam generator 30.
제4 회수부(524)는 미드룹 증기발생기(30)와 원자로모듈(10) 사이를 연결할 수 있다. 이러한 제4 회수부(524)는 제1 미드룹바디(31) 내에서 유동하는 작동 유체가 원자로모듈(10)로 이동되도록 유동 공간을 제공할 수 있다.The fourth recovery unit 524 may connect the mid-loop steam generator 30 and the nuclear reactor module 10. This fourth recovery part 524 may provide a flow space so that the working fluid flowing in the first mid-roof body 31 moves to the nuclear reactor module 10.
제5 회수부(525)는 원자로모듈(10)과 터빈부(20)사이를 연결할 수 있다. 이러한 제5 회수부(525)는 터빈부(20)에서 유동하던 터빈 유체가 원자로모듈(10)로 이동되도록 유동 공간을 제공할 수 있다.The fifth recovery unit 525 may connect the reactor module 10 and the turbine unit 20. This fifth recovery unit 525 may provide a flow space for the turbine fluid flowing in the turbine unit 20 to move to the nuclear reactor module 10.
제6 회수부(526)는 후술할 오일샌드측 상분리기(73)와 미드룹 증기발생기(30) 사이를 연결할 수 있다. 이러한 제6 회수부(526)는 복수 개의 미드룹 증기발생기(30) 사이에서 유동하는 매개유체가 이동되도록 유동 공간을 제공할 수 있다. 예를 들어, 제6 회수부(526)에는 N+1번째 미드룹 증기발생기(30)에서 배출된 포화수 및 포화증기 중 포화수가 유동하여 N번째 미드룹 증기발생기(30)로 이동될 수 있다.The sixth recovery unit 526 can connect between the oil sand side phase separator 73 and the midloop steam generator 30, which will be described later. This sixth recovery unit 526 may provide a flow space for the intermediate fluid flowing between the plurality of mid-loop steam generators 30 to move. For example, in the sixth recovery unit 526, saturated water among the saturated water and saturated steam discharged from the N+1th midloop steam generator 30 may flow and be moved to the Nth midloop steam generator 30. .
펌프부(60)는 회수부에서 유동하는 유체의 압력이 변동되도록 유체에 압력을 제공할 수 있다. 이러한 펌프부(60)는 복수 개로 제공될 수 있다. 또한, 펌프부(60)는 미드룹펌프(61) 및 회수부펌프(62)를 포함할 수 있다.The pump unit 60 may provide pressure to the fluid so that the pressure of the fluid flowing in the recovery unit changes. A plurality of such pump units 60 may be provided. Additionally, the pump unit 60 may include a mid loop pump 61 and a recovery pump 62.
미드룹펌프(61)는 원자로모듈(10)로 회수되는 유체에 압력을 제공하여 유체가 원자력모듈(10)로 이동되도록 할 수 있다. 이러한 미드룹펌프(61)는 원자로모듈(10)로 회수되는 유체의 이동 속도를 증가시킬 수 있다.The midloop pump 61 may provide pressure to the fluid recovered to the nuclear reactor module 10, allowing the fluid to move to the nuclear reactor module 10. This midloop pump 61 can increase the movement speed of the fluid recovered to the nuclear reactor module 10.
회수부펌프(62)는 오일샌드측유체 및 매개유체에 압력을 제공 할 수 있다. 이러한 회수부펌프(62)는 제1 회수부펌프(621) 및 제2 회수부펌프(622)를 포함할 수 있다.The recovery pump 62 can provide pressure to the oil sand side fluid and the intermediate fluid. This recovery pump 62 may include a first recovery pump 621 and a second recovery pump 622.
제1 회수부펌프(621)는 후처리부(42)와 미드룹 증기발생기(30) 사이에 배치될 수 있다. 복수 개의 미드룹 증기발생기(30)가 배치된 경우, 이러한 제1 회수부펌프(621)의 일측은 복수 개의 미드룹 증기발생기(30) 중 어느 하나의 미드룹 증기발생기(30)보다 더 하류에 배치된 미드룹 증기발생기(30)에 연결될 수 있다. 또한, 제1 회수부펌프(621)의 타측은 후처리부(42)에 연결된 후처리부분리기(71)와 연결될 수 있다.The first recovery pump 621 may be disposed between the post-processing unit 42 and the mid-loop steam generator 30. When a plurality of mid-loop steam generators 30 are disposed, one side of the first recovery pump 621 is located further downstream than any one mid-loop steam generator 30 among the plurality of mid-loop steam generators 30. It can be connected to the arranged mid-loop steam generator (30). Additionally, the other side of the first recovery pump 621 may be connected to a post-processing unit 71 connected to the post-processing unit 42.
제2 회수부펌프(622)는 오일샌드측 상분리기(73)에 의해 분리된 액체상태의 오일샌드측유체에 압력을 가하여, 복수 개의 미드룹 증기발생기(30) 중 어느 하나의 미드룹 증기발생기(30)보다 더 상류에 배치된 다른 미드룹 증기발생기(30)에 유입되도록 액체 상태의 오일샌드측유체를 가압할 수 있다. 다시 말해, 제2 회수부펌프(622)를 통해 승압된 액체는 N+1번째 미드룹 증기발생기(30)보다 더 전단에 배치되는 N번째 미드룹 증기발생기(30)에 유입될 수 있다. 이러한 N번째 미드룹 증기발생기(30) 증기의 포화압력은 N+1번째 미드룹 증기발생기(30) 증기의 포화압력보다 더 높다. 또한, 제2 회수부펌프(622)는 복수 개로 제공될 수 있다. 오일샌드측유체에서 분리된 액체는 복수 개의 제2 회수부펌프(622)에 의해 복수 개의 미드룹 증기발생기(30)를 유동하며 복수 회 승압될 수 있다. 이러한 제2 회수부펌프(622)는 회전수가 다르게 제공될 수 있다. 회전 수가 다르게 제공되는 제2 회수부펌프(622)는 압력을 다르게 제공할 수 있다.The second recovery pump 622 applies pressure to the oil sand side fluid in a liquid state separated by the oil sand side phase separator 73, so that any one of the plurality of mid loop steam generators 30 The liquid oil sand side fluid can be pressurized so that it flows into another mid-loop steam generator (30) disposed further upstream than (30). In other words, the liquid pressurized through the second recovery pump 622 may flow into the N-th mid-loop steam generator 30, which is disposed further forward than the N+1-th mid-loop steam generator 30. The saturation pressure of the steam of the N-th mid-loop steam generator (30) is higher than the saturation pressure of the steam of the N+1-th mid-loop steam generator (30). Additionally, a plurality of second recovery pumps 622 may be provided. The liquid separated from the oil sand side fluid flows through a plurality of mid-loop steam generators 30 by a plurality of second recovery pumps 622 and can be pressurized multiple times. This second recovery pump 622 may be provided at different rotation speeds. The second recovery pump 622, which has different rotation speeds, can provide different pressures.
이러한 제2 회수부펌프(622)는 복수 개의 미드룹 증기발생기(30)가 배치된 경우, 복수 개의 미드룹 증기발생기(30) 사이에 배치될 수 있다. 또한, 제2 회수부펌프(622)는 제6 회수부(526)에 배치될 수 있다. 제2 회수부펌프(622)의 일측은 복수 개의 미드룹 증기발생기(30) 중 어느 하나의 미드룹 증기발생기(30)보다 더 상류에 배치된 미드룹 증기발생기(30)에 연결될 수 있다. 이러한 제2 회수부펌프(622)의 타측은 복수 개의 미드룹 증기발생기(30) 중 어느 하나의 미드룹 증기발생기(30)보다 더 하류에 배치된 오일샌드측 상분리기(73)에 연결될 수 있다.When a plurality of mid-loop steam generators 30 are disposed, this second recovery pump 622 may be disposed between the plurality of mid-loop steam generators 30. Additionally, the second recovery unit pump 622 may be disposed in the sixth recovery unit 526. One side of the second recovery pump 622 may be connected to a mid-loop steam generator 30 disposed further upstream than any one of the plurality of mid-loop steam generators 30. The other side of this second recovery pump 622 may be connected to the oil sand side phase separator 73 disposed further downstream than any one mid-loop steam generator 30 among the plurality of mid-loop steam generators 30. .
분리기(70)는 오일샌드측유체를 상태에 따라 분리할 수 있다. 이러한 분리기(70)는 미드룹 증기발생기(30) 또는 처리부(40)에 연결될 수 있다. 또한, 분리기(70)는 복수 개로 제공될 수 있다. 분리기(70)는 가압식, 진공방식, 화학식 분리기 중 어느 하나로 제공될 수 있다. 이러한 분리기(70)는 후처리부분리기(71), 공급부분리기(72) 및 오일샌드측 상분리기(73)를 포함할 수 있다.The separator 70 can separate the oil sand side fluid depending on its condition. This separator 70 may be connected to the midloop steam generator 30 or the processing unit 40. Additionally, a plurality of separators 70 may be provided. The separator 70 may be provided as one of a pressure type, a vacuum type, and a chemical type separator. This separator 70 may include a post-treatment separator 71, a feed separator 72, and an oil sand side phase separator 73.
후처리부분리기(71)는 후처리부(42)에서 처리된 오일샌드측유체를 상태에 따라 분리할 수 있다. 이러한 후처리부분리기(71)에서 처리된 오일샌드측유체는 회수부펌프(62)를 통과할 수 있다.The post-processing unit 71 can separate the oil sand side fluid treated in the post-processing unit 42 depending on its condition. The oil sand side fluid treated in this post-treatment unit 71 can pass through the recovery pump 62.
공급부분리기(72)는 미드룹 증기발생기(30)에서 공급된 오일샌드측유체를 상태에 따라 분리할 수 있다. 이러한 공급부분리기(72)를 유동한 오일샌드측유체는 지반(G)및 후처리부(42)로 유동될 수 있다.The supply subunit 72 can separate the oil sand side fluid supplied from the mid-loop steam generator 30 depending on its condition. The oil sand side fluid flowing through this supply unit 72 can flow to the ground (G) and the post-processing unit 42.
오일샌드측 상분리기(73)는 복수 개의 미드룹 증기발생기(30) 중 어느 하나에서 배출된 매개유체를 액체와 기체로 분리할 수 있다. 이러한 오일샌드측 상분리기(73)는 매개유체를 포화 증기 및 포화수로 분리할 수 있다. 예를 들어, 오일샌드측 상분리기(73)는 N+1번째 미드룹 증기발생기(30)에서 배출된 매개유체를 포화 증기와 포화수로 분리할 수 있고, 이러한 오일샌드측 상분리기(73)는 포화수를 N번째 미드룹 증기발생기(30)에 제공할 수 있다. 또한, 오일샌드측 상분리기(73)의 일측은 복수 개의 미드룹 증기발생기(30) 중 어느 하나의 미드룹 증기발생기(30)보다 더 하류에 배치된 N+1번째 미드룹 증기발생기(30)에 연결될 수 있다. 또한, 오일샌드측 상분리기(73)의 타측은 복수 개의 미드룹 증기발생기(30) 중 어느 하나의 미드룹 증기발생기(30)보다 더 상류에 배치된 N번째 미드룹 증기발생기(30)에 연결될 수 있다.The oil sand side phase separator 73 can separate the intermediate fluid discharged from one of the plurality of mid-loop steam generators 30 into liquid and gas. This oil sand side phase separator 73 can separate the intermediate fluid into saturated steam and saturated water. For example, the oil sand side phase separator 73 can separate the intermediate fluid discharged from the N+1th mid-loop steam generator 30 into saturated steam and saturated water, and the oil sand side phase separator 73 Can provide saturated water to the Nth mid-loop steam generator (30). In addition, one side of the oil sand side phase separator (73) is the N+1th mid-loop steam generator (30) disposed further downstream than any one mid-loop steam generator (30) among the plurality of mid-loop steam generators (30). can be connected to In addition, the other side of the oil sand side phase separator (73) is connected to the Nth mid-loop steam generator (30) disposed further upstream than any one mid-loop steam generator (30) among the plurality of mid-loop steam generators (30). You can.
가압기(80)는 원자로모듈(10)에서 가열된 작동 유체가 액체 상태로 미드룹 증기발생기(30)에 제공되도록 작동 유체를 가압할 수 있다. 이러한 작동 유체의 온도는 약 310도씨 내외일 수 있다. 또한, 가압기(80)는 원자로모듈(10)과 미드룹 증기발생기(30)를 연결하는 제1 공급부(511)에 배치될 수 있다. 다시 말해, 가압기(80)는 복수 개의 미드룹 증기발생기(30) 중 가장 상류에 배치된 어느 하나의 미드룹 증기발생기(30)와 인접하게 배치될 수 있다. 또한, 가압기(80)는 10 내지 15Mpa의 압력으로 구동될 수 있다.The pressurizer 80 may pressurize the working fluid heated in the nuclear reactor module 10 so that the working fluid is provided to the midloop steam generator 30 in a liquid state. The temperature of this working fluid may be around 310 degrees Celsius. Additionally, the pressurizer 80 may be disposed in the first supply unit 511 connecting the nuclear reactor module 10 and the midloop steam generator 30. In other words, the pressurizer 80 may be placed adjacent to any one of the plurality of midloop steam generators 30 disposed upstream. Additionally, the pressurizer 80 may be driven at a pressure of 10 to 15 Mpa.
히터부(90)는 복수 개의 미드룹 증기발생기(30)를 유동한 오일샌드측유체 및 터빈부(20)를 유동한 터빈유체의 온도를 높일 수 있다. 이러한 히터부(90)의 일측은 복수 개의 미드룹 증기발생기(30)가 배치된 경우, 복수 개의 미드룹 증기발생기(30) 중 가장 하류에 배치된 미드룹 증기발생기(30)에 연결될 수 있다. 또한, 히터부(90)의 타측은 후처리부(42)에 연결될 수 있다.The heater unit 90 can increase the temperature of the oil sand side fluid flowing through the plurality of mid-loop steam generators 30 and the turbine fluid flowing through the turbine unit 20. When a plurality of mid-loop steam generators 30 are disposed, one side of the heater unit 90 may be connected to the mid-loop steam generator 30 disposed most downstream among the plurality of mid-loop steam generators 30. Additionally, the other side of the heater unit 90 may be connected to the post-processing unit 42.
이하에서는 상술한 바와 같은 구성을 가지는 오일샌드 채굴용 경수형 원자로(1)의 작용 및 효과에 대하여 설명한다.Hereinafter, the operation and effects of the light water reactor 1 for oil sand mining having the above-described configuration will be described.
오일샌드 채굴용 경수형 원자로(1)는 오일샌드 채굴의 진행 단계에 따라 다르게 요구되는 압력을 갖는 증기를 제공할 수 있다. 예를 들어, 오일샌드 채굴 의 초기단계에서는 약 10Mpa 이상의 고압의 증기가 필요하고, 중기단계에서는 상대적으로 약 6 내지 8 Mpa의 중압의 증기가 필요하며, 말기단계에서는 약 4 Mpa 이하의 저압의 증기가 필요하다. 복수 개의 미드룹 증기발생기(30) 중 고압의 증기를 제공할 수 있는 미드룹 증기발생기(30)에서 제공된 증기는 오일샌드 채굴 초기단계의 지반(G)에 공급될 수 있다. 또한, 복수 개의 미드룹 증기발생기(30) 중 상대적으로 저압의 증기를 제공할 수 있는 미드룹 증기발생기(30)에서 제공된 증기는 오일샌드 채굴 중기 또는 말기단계의 지반(G)에 공급될 수 있다. 이러한 복수 개의 미드룹 증기발생기(30)에서 제공되는 증기의 압력이 서로 다르므로, 동시에 여러 개의 지반(G)에 다른 압력의 증기가 제공될 수 있다.The light water reactor (1) for oil sand mining can provide steam with a different pressure required depending on the progress stage of oil sand mining. For example, in the early stages of oil sand mining, high-pressure steam of approximately 10 Mpa or more is required, in the mid-stage, relatively medium-pressure steam of approximately 6 to 8 Mpa is required, and in the final stage, low-pressure steam of approximately 4 Mpa or less is required. is needed. Among the plurality of midloop steam generators 30, steam provided from the midloop steam generator 30, which can provide high-pressure steam, can be supplied to the ground (G) in the initial stage of oil sand mining. In addition, steam provided from the midloop steam generator 30, which can provide relatively low-pressure steam among the plurality of midloop steam generators 30, can be supplied to the ground (G) in the middle or end stage of oil sand mining. . Since the pressures of the steam provided from the plurality of midloop steam generators 30 are different from each other, steam of different pressures can be provided to several grounds (G) at the same time.
또한, 복수 개의 미드룹 증기발생기(30)가 배치됨으로써, N번째의 미드룹 증기발생기(30)에서 N+1번째의 미드룹 증기발생기(30)로 전달된 오일샌드측유체의 적어도 일부는 오일샌드측 상분리기(73)에 의해 상태별로 분리될 수 있다. N+1번째 미드룹 증기발생기(30)에서 배출되어 액체로 분리된 오일샌드측유체의 적어도 일부는 N번째 미드룹 증기발생기(30)로 회수될 수 있다. 분리된 오일샌드측유체가 N번째 미드룹 증기발생기(30)로 회수될 때, 액체로 분리된 오일샌드측유체의 적어도 일부는 제2 회수부펌프(622)에 의해 가압될 수 있다. N번째 미드룹 증기발생기(30)에 회수된 후 N번째 미드룹 증기발생기(30)에서 오일샌드측유체는 포화증기로 상태변화 할 수 있다. 따라서, N번째 미드룹 증기발생기(30) 증기의 포화압력은 N+1번째 미드룹 증기발생기(30) 증기의 포화압력보다 더 높을 수 있다. 또한, 제2 회수부펌프(622)는 회전수를 다르게 제공하여 오일샌드측유체에 다른 압력을 가함으로써, 복수 개의 미드룹 증기발생기(30)에서 제공되는 증기압력이 서로 다르게 제공되도록 할 수 있다.In addition, by arranging a plurality of midloop steam generators 30, at least a portion of the oil sand side fluid delivered from the Nth midloop steam generator 30 to the N+1th midloop steam generator 30 is oil. It can be separated by state by the sand-side phase separator 73. At least a portion of the oil sand side fluid discharged from the N+1th midloop steam generator 30 and separated into liquid may be recovered to the Nth midloop steam generator 30. When the separated oil sands side fluid is recovered to the Nth mid-loop steam generator 30, at least a portion of the oil sands side fluid separated into liquid may be pressurized by the second recovery pump 622. After being recovered in the N-th mid-loop steam generator (30), the oil sand side fluid can change its state to saturated steam in the N-th mid-loop steam generator (30). Therefore, the saturation pressure of the steam of the N-th mid-loop steam generator 30 may be higher than the saturation pressure of the steam of the N+1-th mid-loop steam generator 30. In addition, the second recovery pump 622 provides different rotational speeds to apply different pressures to the oil sand side fluid, so that the steam pressure provided by the plurality of midloop steam generators 30 is provided differently. .
다시 말해, 복수 개의 포화압력을 갖는 증기가 복수 개의 미드룹 증기발생기(30)에서 배출되도록 할 수 있다. 이러한 다른 복수 개의 포화압력을 갖는 증기를 오일샌드 채굴 단계에 맞게 다른 지반(G)에 제공할 수 있다.In other words, steam having a plurality of saturation pressures can be discharged from a plurality of mid-loop steam generators 30. Steam having these different plurality of saturation pressures can be provided to different ground (G) according to the oil sand mining stage.
또한, 핵증기공급계통인 원자로모듈(10)을 순환하는 작동 유체와 미드룹 증기발생기(30)와 지반(G) 사이를 순환하는 오일샌드측유체를 서로 격리할 수 있기 때문에, 방사성 물질이 유입되지 않는 방벽을 제공할 수 있다.In addition, since the working fluid circulating in the nuclear reactor module 10, which is a nuclear steam supply system, and the oil sand side fluid circulating between the mid-loop steam generator 30 and the ground (G) can be isolated from each other, radioactive materials are introduced. It can provide a barrier that prevents damage.
또한, 원자로모듈(10)을 순환하는 작동 유체와 미드룹 증기발생기(30)와 지반(G)사이를 순환하는 오일샌드측유체의 수질 관리를 별도로 수행할 수 있으므로, 기존의 원전과 오일샌드 공법에서 사용하던 수질 관리 수단을 설계 변경 없이 그대로 이용할 수 있다. 작동 유체의 수질관리를 위한 경수형 원자로의 설계 변경이 없으므로 추가적인 비용이 소요되지 않는 효과가 있다.In addition, water quality management of the working fluid circulating in the nuclear reactor module 10 and the oil sand side fluid circulating between the mid-loop steam generator 30 and the ground (G) can be separately managed, so that existing nuclear power plants and oil sand methods can be used separately. The water quality management measures used in can be used as is without any design changes. There is no change in the design of the light water reactor to manage the water quality of the working fluid, so there is no additional cost.
또한, 원자로모듈(10)에서 발생하는 고온 및 고압의 작동 유체가 터빈부에도 동시에 제공될 수 있도록 구성됨으로써, 사용자의 필요에 따라 전력 발전과 오일 분리의 비율을 조절하여 사용할 수 있는 효과가 있다.In addition, the high-temperature and high-pressure working fluid generated in the reactor module 10 is configured to be simultaneously provided to the turbine unit, so that the ratio of power generation and oil separation can be adjusted according to the user's needs.
(제2 실시예)(Second Embodiment)
이하, 도면을 참조하여 본 발명의 제2 실시예에 따른 미드룹 적용된 오일샌드 채굴용 경수형 원자로(2)의 구체적인 구성에 대하여 설명한다. Hereinafter, the specific configuration of the light water reactor 2 for oil sand mining applied to the midloop according to the second embodiment of the present invention will be described with reference to the drawings.
도 6 및 도 7를 참조하면, 제2 실시예에서 오일샌드 채굴용 경수형 원자로(2)는 원자로모듈에서 발생한 열을 이용하여 별도로 증기를 생성할 수 있는 미드룹 증기발생기를 원자로모듈에 연결함으로써, 오일샌드를 채굴할 수 있다. 이러한 오일샌드 채굴용 경수형 원자로(2)는 원자로모듈(2010), 터빈부(2020), 미드룹 증기발생기(2030), 처리부(2040), 연결부(2050), 펌프부(2060), 분리기(2070) 및 밸브부(2100)를 포함할 수 있다.Referring to FIGS. 6 and 7, in the second embodiment, the light water reactor 2 for oil sand mining is connected to the reactor module with a midloop steam generator that can separately generate steam using heat generated from the reactor module. , oil sands can be mined. This light water reactor (2) for oil sand mining includes a reactor module (2010), a turbine unit (2020), a mid-loop steam generator (2030), a processing unit (2040), a connection unit (2050), a pump unit (2060), a separator ( 2070) and a valve unit 2100.
원자로모듈(2010)은 노심의 핵반응을 통해 발생된 열을 이용하여 작동 유체를 가열할 수 있다. 이러한 원자로모듈(2010)은 발생된 열의 적어도 일부를 외부로 공급할 수 있다. 예를 들어, 원자로모듈(2010)은 250도 이상 300도 이하의 고온의 작동 유체를 외부로 배출할 수 있다. 이러한 원자로모듈(2010)은 핵분열에 의해서 발생되는 열을 이용하여 작동 유체를 가열시켜 증기를 생성할 수 있다. 또한, 원자로모듈(2010)은 사고시, 냉각수 등의 냉각재가 자연순환됨으로써, 후술할 노심(2011)이 피동적으로 냉각될 수 있다. 이러한 원자로모듈(2010)에서 배출되는 작동 유체는 물일 수 있다. 원자로모듈(2010)의 일측은 작동 유체 어느 일부가 터빈부(2020)에 연통되도록 터빈부(2020)에 연결될 수 있다. 또한, 원자로모듈(2010)의 타측은 작동 유체의 다른 일부가 미드룹 증기발생기(2030)과 연통되도록 미드룹 증기발생기 (2030)에 연결될 수 있다. 원자로모듈(2010)의 작동 유체 중 터빈부(2020)으로 유동하는 작동 유체는 터빈 유체로 명명될 수 있으며, 이러한 터빈 유체는 원자로모듈(2010)과 미드룹 증기발생기 (2030) 사이에서 유동하는 작동 유체와 독립적으로 유동될 수 있다. 다시 말해, 원자로모듈(2010)은 터빈유체와 작동 유체가 서로 혼합되지 않게 유동하도록 구성될 수 있다. 원자로모듈(2010)은 핵증기공급계통(NSSS, nuclear steam supply system)일 수 있다. 이러한 원자로모듈(2010)은 노심(2011), 열교환기(2012) 및 원자로용기(2013)를 포함할 수 있다.The nuclear reactor module 2010 can heat the working fluid using the heat generated through the nuclear reaction of the reactor core. This nuclear reactor module 2010 can supply at least a portion of the generated heat to the outside. For example, the nuclear reactor module 2010 may discharge high temperature working fluid of 250 degrees to 300 degrees to the outside. This nuclear reactor module 2010 can generate steam by heating the working fluid using heat generated by nuclear fission. In addition, in the event of an accident in the nuclear reactor module 2010, the reactor core 2011, which will be described later, can be passively cooled by natural circulation of coolant such as coolant. The working fluid discharged from the nuclear reactor module 2010 may be water. One side of the nuclear reactor module 2010 may be connected to the turbine unit 2020 so that a portion of the working fluid communicates with the turbine unit 2020. Additionally, the other side of the reactor module 2010 may be connected to the midloop steam generator 2030 so that another part of the working fluid communicates with the midloop steam generator 2030. Among the working fluids of the nuclear reactor module (2010), the working fluid that flows to the turbine unit (2020) may be named turbine fluid, and this turbine fluid flows between the nuclear reactor module (2010) and the mid-loop steam generator (2030). It can flow independently of the fluid. In other words, the nuclear reactor module 2010 may be configured so that the turbine fluid and the working fluid flow without mixing with each other. The nuclear reactor module (2010) may be a nuclear steam supply system (NSSS). This nuclear reactor module 2010 may include a reactor core 2011, a heat exchanger 2012, and a reactor vessel 2013.
노심(2011), 열교환기(2012) 및 원자로용기(2013)의 구성은 제1 실시예의 노심(11), 열교환기(12) 및 원자로용기(13)의 구성과 동일하므로 그 설명은 생략한다. Since the configuration of the core 2011, heat exchanger 2012, and reactor vessel 2013 is the same as that of the core 11, heat exchanger 12, and reactor vessel 13 in the first embodiment, their description is omitted.
터빈부(2020)는 원자로모듈(2010)에서 가열된 터빈 유체를 이용해 전기를 생성할 수 있다. 예를 들어, 원자로모듈(2010)의 노심에서 생성된 열은 증기 또는 고온의 액체를 발생시키고, 터빈부(2020)에는 열이 유체의 형태로 전달될 수 있다. 이러한 터빈부(2020)는 원자로모듈(2010)과 연결될 수 있다. The turbine unit 2020 can generate electricity using turbine fluid heated in the nuclear reactor module 2010. For example, heat generated in the core of the nuclear reactor module 2010 generates steam or high-temperature liquid, and the heat may be transferred to the turbine unit 2020 in the form of a fluid. This turbine unit 2020 may be connected to the nuclear reactor module 2010.
미드룹 증기발생기(2030)는 원자로모듈(2010)에서 가열된 작동 유체를 제공받아, 작동 유체를 이용해 내부에 유동하는 오일샌드측유체를 가열하여 오일샌드측증기로 비등시킬 수 있다. 이러한 미드룹 증기발생기(2030)는 오일샌드측유체와 작동 유체가 독립적으로 유동하도록 구성될 수 있다. 또한, 미드룹 증기발생기(2030)는 오일샌드측증기가 지반(G)에서 오일과 혼합되도록 오일샌드측증기를 지반(G)으로 배출할 수 있다. 미드룹 증기발생기(2030)는 오일샌드측증기를 지반(G)으로 전달할 수 있다. 이러한 미드룹 증기발생기(2030)는 오일샌드측증기가 유입된 지반(G)에서 분리된 오일과 오일샌드측유체가 혼합된 오일혼합액 중 오일샌드측유체의 적어도 일부를 다시 미드룹 증기발생기(2030)의 내부로 회수할 수 있다. 또한, 미드룹 증기발생기(2030)는 제1 미드룹바디(2031) 및 제2 미드룹바디(2032)를 포함할 수 있다.The midloop steam generator 2030 receives heated working fluid from the nuclear reactor module 2010, and can use the working fluid to heat the oil sand side fluid flowing inside and boil it into oil sand side steam. This mid-loop steam generator 2030 may be configured so that the oil sand side fluid and the working fluid flow independently. Additionally, the midloop steam generator 2030 may discharge oil sand side steam to the ground (G) so that the oil sand side steam is mixed with oil in the ground (G). The midloop steam generator (2030) can deliver oil sand side steam to the ground (G). This mid-loop steam generator (2030) returns at least a portion of the oil sand-side fluid from the oil mixture containing the oil separated from the ground (G) into which the oil sand-side steam flows and the oil sand-side fluid to the mid-loop steam generator (2030). ) can be recovered inside. Additionally, the mid loop steam generator 2030 may include a first mid loop body 2031 and a second mid loop body 2032.
제1 미드룹바디(2031)는 원자로모듈(2010)에서 가열된 작동 유체가 유동될 수 있다. 이러한 제1 미드룹바디(2031)는 후술할 제1 공급부(2511)와 연결될 수 있다. 이러한 제1 미드룹바디(2031)는 내부에 제2 미드룹바디(2032)를 수용할 수 있다. 또한, 제1 미드룹바디(2031)의 내부로 원자로모듈(2010)에서 전달받은 고온의 증기가 유입될 수 있고, 고온의 증기는 제1 미드룹바디(2031) 내부에서 응축되어 액체로 상변화될 수 있다. 제1 미드룹바디(2031) 내부에서 응축된 액체는 원자로모듈(2010)로 회수될 수 있다.The working fluid heated in the nuclear reactor module 2010 may flow through the first midloop body 2031. This first mid-loop body 2031 may be connected to a first supply unit 2511, which will be described later. This first mid-roof body 2031 can accommodate the second mid-roof body 2032 therein. In addition, high-temperature vapor received from the nuclear reactor module 2010 may flow into the first mid-loop body 2031, and the high-temperature vapor may be condensed inside the first mid-loop body 2031 and change into a liquid. It can be. Liquid condensed inside the first mid-loop body (2031) can be recovered to the reactor module (2010).
제2 미드룹바디(2032)는 오일샌드측유체가 유동하면서 작동 유체에 의해 가열되는 공간을 제공할 수 있다. 이러한 제2 미드룹바디(2032)의 내부에서 유동하는 오일샌드측유체가 온도 및 압력 변화에 따라 상태변화 될 수 있다. 또한, 제2 미드룹바디(2032)는 제1 미드룹바디(2031)의 내부에 배치될 수 있다. 제2 미드룹바디(2032)는 제2 미드룹바디(2032)를 유동하는 오일샌드측유체와 제2 미드룹바디(2032)의 외부의 원자로모듈(2010)에서 전달받은 작동 유체가 서로 섞이지 않도록 구성될 수 있다.The second mid-loop body 2032 may provide a space where the oil sand side fluid flows and is heated by the working fluid. The oil sand side fluid flowing inside the second mid-loop body 2032 may change state depending on temperature and pressure changes. Additionally, the second mid-roof body 2032 may be disposed inside the first mid-roof body 2031. The second mid-loop body (2032) prevents the oil sand side fluid flowing through the second mid-loop body (2032) from mixing with the working fluid received from the reactor module (2010) outside the second mid-loop body (2032). It can be configured.
처리부(2040)는 오일샌드측증기가 지반(G)에서 오일과 혼합된 오일혼합액을 회수하고, 회수된 오일혼합액을 오일과 오일샌드측유체로 분리할 수 있다. 이러한 처리부(2040)는 지반(G)과 미드룹 증기발생기(2030)사이에 연결될 수 있다. 또한, 처리부(2040)는 오일처리부(2041) 및 후처리부(2042)를 포함할 수 있다.The processing unit 2040 can recover the oil mixture in which oil sand side vapor is mixed with oil in the ground (G), and separate the recovered oil mixture into oil and oil sand side fluid. This processing unit 2040 may be connected between the ground (G) and the mid-loop steam generator (2030). Additionally, the processing unit 2040 may include an oil processing unit 2041 and a post-processing unit 2042.
오일처리부(2041)는 오일혼합액에 희석액을 혼합하여 처리액을 제공할 수 있다. 이러한 오일처리부(2041)는 지반(G)에서 추출된 오일혼합액에서 오일을 분리할 수 있다. 이러한 오일처리부(2041)는 오일희석부(2411) 및 오일추출부(2412)를 포함할 수 있다.The oil treatment unit 2041 may provide a treatment solution by mixing a diluent with the oil mixture. This oil processing unit 2041 can separate oil from the oil mixture extracted from the ground (G). This oil processing unit 2041 may include an oil dilution unit 2411 and an oil extraction unit 2412.
오일희석부(2411)는 오일혼합액에서 모래 및 역청을 분리하고, 희석액을 혼합하여 제1 처리액을 제공할 수 있다. 이러한 제1 처리액은 오일혼합액에서 모래 및 역청을 제거한 처리액일 수 있다. 또한, 오일희석부(2411)의 일측은 지반(G)에 연결될 수 있고, 타측은 오일추출부(2412)와 연결될 수 있다.The oil dilution unit 2411 may separate sand and bitumen from the oil mixture and mix the diluents to provide a first treatment solution. This first treatment solution may be a treatment solution obtained by removing sand and bitumen from the oil mixture. Additionally, one side of the oil dilution unit 2411 may be connected to the ground (G), and the other side may be connected to the oil extraction unit 2412.
오일추출부(2412)는 제1 처리액에서 오일을 분리하여 제2 처리액을 제공할 수 있다. 이러한 제1 처리액에서 오일이 분리되어 생성된 처리액은 제2 처리액이라 명명될 수 있다. 이러한 오일추출부(2412)에서 분리된 오일은 다시 오일희석부(2411)로 전달될 수 있고, 복수 회에 거쳐 모래, 역청 및 오일을 분리해낼 수 있다. 또한, 오일추출부(2412)는 후처리부(2042)와 연결될 수 있다. 오일추출부(2412)에서 최종적으로 오일이 분리된 오일혼합액인 제2 처리액은 후처리부(2042)에 제공될 수 있다.The oil extraction unit 2412 may separate oil from the first treatment liquid and provide the second treatment liquid. The treatment liquid produced by separating the oil from the first treatment liquid may be called the second treatment liquid. The oil separated from the oil extraction unit 2412 can be transferred back to the oil dilution unit 2411, and sand, bitumen, and oil can be separated multiple times. Additionally, the oil extraction unit 2412 may be connected to the post-processing unit 2042. The second treatment liquid, which is the oil mixture liquid from which the oil is finally separated in the oil extraction unit 2412, may be provided to the post-processing unit 2042.
후처리부(2042)는 처리액을 미드룹 증기발생기(2030)로 회수할 오일샌드측유체와 미드룹 증기발생기(2030)로 회수하지 않는 폐기액으로 분리할 수 있다. 이러한 후처리부(2042)는 제2 처리액에서 폐기액을 분리하여 미드룹 증기발생기(2030)로 리턴할 오일샌드측유체를 제공할 수 있다. 또한, 후처리부(2042)는 오일처리부(2041)에서 오일이 분리된 제2 처리액을 오일처리부(2041)에서 전달받을 수 있다. 이러한 후처리부(2042)는 제2 처리액을 미드룹 증기발생기(2030)에 회수 가능한 오일샌드측유체와 미드룹 증기발생기(2030)에 회수 불가능한 폐기액으로 분리할 수 있다. 또한, 후처리부(2042)는 미드룹 증기발생기(2030)에 회수 가능하도록 처리된 오일샌드측유체를 전달할 수 있다. 또한, 후처리부(2042)는 오일샌드측유체를 미드룹 증기발생기(2030)에 전달할 수 있다.The post-processing unit 2042 can separate the treated liquid into an oil sand side fluid to be recovered by the mid-loop steam generator 2030 and a waste liquid not recovered by the mid-loop steam generator 2030. This post-processing unit 2042 can separate the waste liquid from the second treatment liquid and provide the oil sand side fluid to be returned to the mid-loop steam generator 2030. Additionally, the post-processing unit 2042 may receive the second treatment liquid from which the oil has been separated from the oil processing unit 2041. This post-processing unit 2042 can separate the second treatment liquid into an oil sand side fluid that can be recovered by the mid-loop steam generator (2030) and a waste liquid that cannot be recovered by the mid-loop steam generator (2030). In addition, the post-processing unit 2042 can deliver the oil sand side fluid that has been treated to be recoverable to the mid-loop steam generator 2030. Additionally, the post-processing unit 2042 can deliver the oil sand side fluid to the mid-loop steam generator 2030.
연결부(2050)는 작동 유체, 터빈 유체 및 오일샌드측유체가 유동되는 통로를 제공할 수 있다. 이러한 연결부(2050)는 원자로모듈(2010), 터빈부(2020), 미드룹 증기발생기(2030), 처리부(2040), 펌프부(2060), 분리기(2070)및 지반(G) 중 어느 둘 사이에 배치될 수 있다. 또한, 연결부(2050)는 고온 및 고압을 견딜 수 있는 재질로 형성될 수 있다. 연결부(2050)는 공급부 및 회수부를 포함할 수 있다.The connection portion 2050 may provide a passage through which the working fluid, turbine fluid, and oil sand side fluid flow. This connection unit 2050 is between any two of the reactor module 2010, turbine unit 2020, midloop steam generator 2030, processing unit 2040, pump unit 2060, separator 2070, and ground (G). can be placed in Additionally, the connection portion 2050 may be formed of a material that can withstand high temperature and pressure. The connection part 2050 may include a supply part and a recovery part.
공급부는 고온 및 고압의 유체가 일방향으로 전달되도록 유체가 유동될 수 있는 공간을 제공할 수 있다. 이러한 공급부의 내부를 유동하는 유체는 일방향으로 유동될 수 있다. 또한, 공급부는 제1 공급부(2511), 제2 공급부(2512), 제3 공급부(2513) 및 제4 공급부(2514)를 포함할 수 있다.The supply unit may provide a space through which fluid can flow so that high-temperature and high-pressure fluid is transmitted in one direction. The fluid flowing inside this supply unit may flow in one direction. Additionally, the supply unit may include a first supply unit 2511, a second supply unit 2512, a third supply unit 2513, and a fourth supply unit 2514.
제1 공급부(2511)는 원자로모듈(2010)과 미드룹 증기발생기(2030) 사이를 연결할 수 있다. 이러한 제1 공급부(2511)는 원자로모듈(2010)에서 공급되는 작동 유체가 미드룹 증기발생기(2030)측으로 이동되도록 유동 공간을 제공할 수 있다.The first supply unit 2511 may connect between the nuclear reactor module 2010 and the midloop steam generator 2030. This first supply unit 2511 may provide a flow space so that the working fluid supplied from the nuclear reactor module 2010 moves toward the midloop steam generator 2030.
제2 공급부(2512)는 원자로모듈(2010)과 터빈부(2020) 사이를 연결할 수 있다. 이러한 제2 공급부(2512)는 원자로모듈(2010)에서 공급되는 터빈 유체가 터빈부(2020)측으로 이동되도록 유동 공간을 제공할 수 있다.The second supply unit 2512 may connect between the nuclear reactor module 2010 and the turbine unit 2020. This second supply unit 2512 may provide a flow space so that the turbine fluid supplied from the nuclear reactor module 2010 moves toward the turbine unit 2020.
제3 공급부(2513)는 미드룹 증기발생기(2030)와 지반(G) 사이를 연결할 수 있다. 이러한 제3 공급부(2513)는 미드룹 증기발생기(2030)에서 공급되는 오일샌드측유체가 지반(G)으로 이동되도록 유동 공간을 제공할 수 있다.The third supply unit 2513 may connect the mid-loop steam generator 2030 and the ground (G). This third supply unit 2513 can provide a flow space so that the oil sand side fluid supplied from the mid-loop steam generator 2030 moves to the ground (G).
제4 공급부(2514)는 후술할 공급부분리기(2072)와 후처리부(2042) 사이를 연결할 수 있다. 이러한 제4 공급부(2514)는 공급부분리기(2072)에서 공급되는 오일샌드측 유체가 후처리부(2042)로 이동되도록 유동 공간을 제공할 수 있다.The fourth supply unit 2514 may connect between the supply unit 2072 and the post-processing unit 2042, which will be described later. This fourth supply unit 2514 can provide a flow space so that the oil sand side fluid supplied from the supply unit 2072 moves to the post-processing unit 2042.
회수부는 지반(G)에서 추출된 오일혼합액이 처리부(2040), 미드룹 증기발생기(2030), 펌프부(2060), 분리기(2070) 등에 도달하도록 오일혼합액 등 유체가 유동되는 공간을 제공할 수 있다. 이러한 회수부의 내부를 유동하는 오일혼합액 등 유체는 일방향으로 유동될 수 있다. 예를 들어, 회수부에는 지반(G)에서 추출된 오일혼합액, 오일희석부(2411)에서 처리된 제1 처리액, 오일추출부(2412)에서 처리된 제2 처리액 및 후처리부(2042)에서 처리된 오일샌드측유체 등이 유동될 수 있다. 또한, 회수부는 복수 개로 제공될 수 있으며, 복수 개의 회수부 사이에는 회수부펌프(2062)가 배치될 수 있다. 회수부는 제1 회수부(2521), 제2 회수부(2522), 제3 회수부(2523), 제4 회수부(2524) 및 제5 회수부(2525)를 포함할 수 있다.The recovery unit can provide a space in which fluid such as oil mixture flows so that the oil mixture extracted from the ground (G) reaches the treatment unit (2040), mid-loop steam generator (2030), pump unit (2060), separator (2070), etc. there is. Fluid, such as an oil mixture flowing inside the recovery unit, may flow in one direction. For example, the recovery unit includes the oil mixture extracted from the ground (G), the first treatment liquid processed in the oil dilution unit 2411, the second treatment liquid processed in the oil extraction unit 2412, and the post-treatment unit 2042. Oil sand side fluid, etc. treated in may flow. Additionally, a plurality of recovery units may be provided, and a recovery unit pump 2062 may be disposed between the plurality of recovery units. The recovery unit may include a first recovery unit 2521, a second recovery unit 2522, a third recovery unit 2523, a fourth recovery unit 2524, and a fifth recovery unit 2525.
제1 회수부(2521)는 지반(G)과 오일처리부(2041) 사이를 연결할 수 있다. 이러한 제1 회수부(2521)는 지반(G)에서 추출된 오일혼합액이 오일처리부(2041)측으로 이동되도록 유동 공간을 제공할 수 있다.The first recovery unit 2521 may connect between the ground (G) and the oil processing unit 2041. This first recovery unit 2521 can provide a flow space so that the oil mixture extracted from the ground (G) moves toward the oil processing unit 2041.
제2 회수부(2522)는 오일처리부(2041)와 후처리부(2042) 사이를 연결할 수 있다. 이러한 제2 회수부(2522)는 오일희석부(2411) 및 오일추출부(2412) 사이를 연결할 수 있다. 또한, 제2 회수부(2522)는 오일희석부(2411)에서 처리된 제1 처리액이 오일추출부(2412)로 이동되도록 유동 공간을 제공할 수 있고, 오일추출부(2412)에서 처리된 제2 처리액이 후처리부(2042)로 이동되도록 유동 공간을 제공할 수 있다.The second recovery unit 2522 may connect the oil processing unit 2041 and the post-processing unit 2042. This second recovery unit 2522 can be connected between the oil dilution unit 2411 and the oil extraction unit 2412. In addition, the second recovery unit 2522 may provide a flow space so that the first treatment liquid processed in the oil dilution unit 2411 moves to the oil extraction unit 2412, and the processed liquid in the oil extraction unit 2412 may be provided. A flow space may be provided so that the second treatment liquid moves to the post-processing unit 2042.
제3 회수부(2523)는 후처리부(2042)와 미드룹 증기발생기(2030)사이를 연결할 수 있다. 이러한 제3 회수부(2523)는 후처리부(2042)에서 처리된 오일샌드측유체가 미드룹 증기발생기(2030)로 이동되도록 유동 공간을 제공할 수 있다.The third recovery unit 2523 may connect the post-processing unit 2042 and the mid-loop steam generator 2030. This third recovery unit 2523 can provide a flow space so that the oil sand side fluid treated in the post-processing unit 2042 moves to the mid-loop steam generator 2030.
제4 회수부(2524)는 미드룹 증기발생기(2030)와 원자로모듈(2010) 사이를 연결할 수 있다. 이러한 제4 회수부(2524)는 제1 미드룹바디(2031) 내에서 유동하는 작동 유체가 원자로모듈(2010)로 이동되도록 유동 공간을 제공할 수 있다.The fourth recovery unit 2524 may connect the midloop steam generator 2030 and the nuclear reactor module 2010. This fourth recovery part 2524 may provide a flow space so that the working fluid flowing in the first mid-roof body 2031 moves to the nuclear reactor module 2010.
제5 회수부(2525)는 원자로모듈(2010)과 터빈부(2020)사이를 연결할 수 있다. 이러한 제5 회수부(2525)는 터빈부(2020)에서 유동하던 터빈 유체가 원자로모듈(2010)로 이동되도록 유동 공간을 제공할 수 있다.The fifth recovery unit 2525 may connect the reactor module 2010 and the turbine unit 2020. This fifth recovery unit 2525 can provide a flow space so that the turbine fluid flowing in the turbine unit 2020 can be moved to the nuclear reactor module 2010.
펌프부(2060)는 원자로모듈(2010)로 회수되는 유체를 원자력모듈(2010)로 유동시킬 수 있다. 이러한 펌프부(2060)는 회수부에서 유동하는 유체의 압력이 변동되도록 유체에 압력을 제공할 수 있다. 이러한 펌프부(2060)는 유체의 유동 속도를 변경시킬 수 있다. 또한, 펌프부(2060)는 복수 개로 제공될 수 있다. 펌프부(2060)는 미드룹펌프(2061) 및 회수부펌프(2062)를 포함할 수 있다.The pump unit 2060 may flow the fluid recovered to the nuclear reactor module 2010 to the nuclear reactor module 2010. This pump unit 2060 may provide pressure to the fluid so that the pressure of the fluid flowing in the recovery unit changes. This pump unit 2060 can change the flow speed of fluid. Additionally, a plurality of pump units 2060 may be provided. The pump unit 2060 may include a mid loop pump 2061 and a recovery pump 2062.
미드룹펌프(2061)는 원자로모듈(2010)로 회수되는 유체에 압력을 제공하여 유체가 원자로모듈(2010)로 이동되도록 할 수 있다. 이러한 미드룹펌프(2061)는 원자로모듈(2010)로 회수되는 유체의 이동 속도를 증가시킬 수 있다.The midloop pump 2061 may provide pressure to the fluid recovered to the nuclear reactor module 2010, allowing the fluid to move to the nuclear reactor module 2010. This midloop pump 2061 can increase the movement speed of fluid recovered to the reactor module 2010.
회수부펌프(2062)는 리턴된 오일샌드측유체를 미드룹 증기발생기(2030)로 유동시킬 수 있다. 이러한 회수부펌프(2062)는 후처리부(2042)와 미드룹 증기발생기(2030) 사이에 배치되어 미드룹 증기발생기(2030)로 회수되는 오일샌드측유체의 이동 속도를 증가시킬 수 있다.The recovery pump 2062 can flow the returned oil sand side fluid to the mid-loop steam generator 2030. This recovery pump 2062 is disposed between the post-treatment unit 2042 and the mid-loop steam generator 2030 to increase the movement speed of the oil sand side fluid recovered to the mid-loop steam generator 2030.
분리기(2070)는 오일샌드측유체를 상태에 따라 분리할 수 있다. 이러한 분리기(2070)는 미드룹 증기발생기(2030) 또는 처리부(2040)에 연결될 수 있다. 또한, 분리기(2070)는 복수 개로 제공될 수 있다. 분리기(2070)는 가압식, 진공방식, 화학식 분리기 중 어느 하나로 제공될 수 있다. 이러한 분리기(2070)는 후처리부분리기(2071) 및 공급부분리기(2072)를 포함할 수 있다.The separator 2070 can separate the oil sand side fluid depending on its condition. This separator 2070 may be connected to the midloop steam generator 2030 or the processing unit 2040. Additionally, a plurality of separators 2070 may be provided. The separator 2070 may be provided as one of a pressure type, a vacuum type, and a chemical type separator. This separator 2070 may include a post-treatment separator 2071 and a feed separator 2072.
후처리부분리기(2071)는 후처리부(2042)에서 처리된 오일샌드측유체를 상태에 따라 분리할 수 있다. 이러한 후처리부분리기(2071)에서 처리된 오일샌드측유체는 회수부펌프(2062)를 통과할 수 있다.The post-processing unit 2071 can separate the oil sand side fluid treated in the post-processing unit 2042 depending on its condition. The oil sand side fluid treated in this post-treatment unit 2071 may pass through the recovery pump 2062.
공급부분리기(2072)는 미드룹 증기발생기(2030)에서 공급된 오일샌드측유체를 상태에 따라 분리할 수 있다. 이러한 공급부분리기(2072)를 유동한 오일샌드측유체는 지반(G)및 후처리부(2042)로 유동될 수 있다.The supply subunit 2072 can separate the oil sand side fluid supplied from the mid-loop steam generator 2030 depending on its condition. The oil sand side fluid flowing through this supply unit 2072 may flow to the ground (G) and the post-processing unit 2042.
밸브부(2100)는 원자로모듈(2010)에서 가열된 작동 유체가 미드룹 증기발생기(2030)에 공급되는 압력을 조절하기 위해 선택적으로 개도(opening)가 조절가능하게 구성될 수 있다. 이러한 밸브부(2100)는 밸브부(2100)가 개방되었을 때 원자로모듈(2010)에서 가열된 작동 유체의 압력과 밸브부(2100)를 통과한 작동 유체의 압력의 차이보다, 밸브부(2100)가 폐쇄되었을 때 원자로모듈(2010)에서 가열된 작동 유체의 압력과 밸브부(2100)를 통과한 작동 유체의 압력의 차이가 더 크도록 구성될 수 있다. 또한, 밸브부(2100)가 폐쇄되었을 때 밸브부(2100)의 개도가 0이라면, 밸브부가 모두 개방되었을 때의 개도는 100으로 지칭할 수 있고, 이러한 밸브부(2100)의 개도는 0 이상 100 이하 의 범위에서 조절될 수 있다. 밸브부(2100)가 일부 폐쇄되도록 조절되었을 때, 원자로모듈(2010)에서 공급되는 증기의 압력이 강하될 수 있고, 밸브부(2100)가 모두 개방되도록 조절되었을 때, 원자로모듈(2010)에서 공급되는 증기의 압력이 유지될 수 있다. 또한, 밸브부(2100)의 종류 및 개도에 따라 압력이 강하되는 정도가 달라질 수 있다.The valve unit 2100 may be configured to have a selectively adjustable opening in order to adjust the pressure at which the working fluid heated in the nuclear reactor module 2010 is supplied to the midloop steam generator 2030. This valve unit 2100 is larger than the difference between the pressure of the working fluid heated in the nuclear reactor module 2010 and the pressure of the working fluid passing through the valve unit 2100 when the valve unit 2100 is opened. When closed, the difference between the pressure of the working fluid heated in the reactor module 2010 and the pressure of the working fluid passing through the valve unit 2100 may be configured to be larger. In addition, if the opening degree of the valve part 2100 is 0 when the valve part 2100 is closed, the opening degree when the valve parts are all open can be referred to as 100, and the opening degree of the valve part 2100 is 0 or more than 100. It can be adjusted in the following range. When the valve unit 2100 is adjusted to be partially closed, the pressure of the steam supplied from the reactor module 2010 may decrease, and when the valve unit 2100 is adjusted to be fully open, the steam supplied from the reactor module 2010 may be lowered. The pressure of the steam can be maintained. Additionally, the degree to which the pressure drops may vary depending on the type and opening degree of the valve unit 2100.
이하에서는 상술한 바와 같은 구성을 가지는 오일샌드 채굴용 경수형 원자로(2)의 작용 및 효과에 대하여 설명한다.Hereinafter, the operation and effects of the light water reactor 2 for oil sand mining having the above-described configuration will be described.
오일샌드 채굴용 경수형 원자로(2)는 핵증기공급계통인 원자로모듈(2010)을 순환하는 작동 유체와 미드룹 증기발생기(2030)와 지반(G)사이를 순환하는 오일샌드측유체를 서로 격리할 수 있기 때문에, 방사성 물질이 유입되지 않는 방벽을 제공할 수 있다.The light water reactor (2) for oil sand mining isolates the working fluid that circulates in the nuclear steam supply system, the nuclear reactor module (2010), and the oil sand side fluid that circulates between the midloop steam generator (2030) and the ground (G). Because it can do so, it can provide a barrier that prevents radioactive materials from entering.
또한, 원자로모듈(2010)에서 공급된 증기의 압력을 강하시킴으로써, 원자로모듈(2010)에서 공급된 증기의 압력과 미드룹 증기발생기(2030)에서 공급된 증기의 압력 차이를 사용자가 원하는 만큼 변화시킬 수 있다.In addition, by lowering the pressure of the steam supplied from the nuclear reactor module 2010, the difference between the pressure of the steam supplied from the nuclear reactor module 2010 and the pressure of the steam supplied from the midloop steam generator 2030 can be changed as desired by the user. You can.
또한, 원자로모듈(2010)을 순환하는 작동 유체와 미드룹 증기발생기(2030)와 지반(G)사이를 순환하는 오일샌드측유체의 수질 관리를 별도로 수행할 수 있으므로, 기존의 원전과 오일샌드 공법에서 사용하던 수질 관리 수단을 설계 변경 없이 그대로 이용할 수 있다. 작동 유체의 수질관리를 위한 경수형 원자로의 설계 변경이 없으므로 추가적인 비용이 소요되지 않는 효과가 있다.In addition, water quality management of the working fluid circulating in the nuclear reactor module (2010) and the oil sand side fluid circulating between the mid-loop steam generator (2030) and the ground (G) can be separately managed, so that existing nuclear power plants and oil sand methods can be used separately. The water quality management measures used in can be used as is without any design changes. There is no change in the design of the light water reactor to manage the water quality of the working fluid, so there is no additional cost.
또한, 원자로모듈(2010)에서 발생하는 증기가 터빈부에도 동시에 제공될 수 있도록 구성됨으로써, 사용자의 필요에 따라 전력 발전과 오일 추출의 비율을 조절하여 사용할 수 있는 효과가 있다.In addition, by being configured so that steam generated from the nuclear reactor module 2010 can be simultaneously provided to the turbine unit, the ratio of power generation and oil extraction can be adjusted according to the user's needs.
(제3 실시예)(Third Embodiment)
이하, 도면을 참조하여 본 발명의 제3 실시예에 따른 오일샌드 채굴용 경수형 원자로(3)의 구체적인 구성에 대하여 설명한다. Hereinafter, the specific configuration of the light water reactor 3 for oil sand mining according to the third embodiment of the present invention will be described with reference to the drawings.
도 8 및 도 9를 참조하면, 제3 실시예에서 오일샌드 채굴용 경수형 원자로(3)는 원자로모듈에서 발생한 열을 이용하여 별도로 증기를 생성할 수 있는 미드룹 증기발생기를 원자로모듈에 연결함으로써, 오일샌드를 채굴할 수 있다. 이러한 오일샌드 채굴용 경수형 원자로(3)는 원자로모듈(3010), 터빈부(3020), 미드룹 증기발생기(3030), 처리부(3040), 연결부(3050), 펌프부(3060) 및 분리기(3070)를 포함할 수 있다.Referring to FIGS. 8 and 9, in the third embodiment, the light water reactor 3 for oil sand mining is connected to the reactor module with a midloop steam generator that can separately generate steam using heat generated from the reactor module. , oil sands can be mined. This light water reactor (3) for oil sand mining includes a reactor module (3010), a turbine unit (3020), a mid-loop steam generator (3030), a processing unit (3040), a connection unit (3050), a pump unit (3060), and a separator ( 3070).
원자로모듈(3010)은 노심의 핵반응을 통해 발생된 열을 이용하여 작동 유체를 가열할 수 있다. 이러한 원자로모듈(3010)은 발생된 열의 적어도 일부를 외부로 공급할 수 있다. 예를 들어, 원자로모듈(3010)은 250도 이상 310도 이하의 고온의 작동 유체를 외부로 배출할 수 있다. 이러한 원자로모듈(3010)은 핵분열에 의해서 발생되는 열을 이용하여 작동 유체를 가열시켜 증기를 생성할 수 있다. 또한, 원자로모듈(3010)은 사고시, 냉각수 등의 냉각재가 자연순환됨으로써, 후술할 노심(3011)이 피동적으로 냉각될 수 있다. 이러한 원자로모듈(3010)에서 배출되는 작동 유체는 물 또는 오일류일 수 있다. 원자로모듈(3010)의 일측은 작동 유체 어느 일부가 터빈부(3020)에 연통되도록 터빈부(3020)에 연결될 수 있다. 또한, 원자로모듈(3010)의 타측은 작동 유체의 다른 일부가 미드룹 증기발생기(3030)와 연통되도록 미드룹 증기발생기(3030)에 연결될 수 있다. 원자로모듈(3010)의 작동 유체 중 터빈부(3020)으로 유동하는 작동 유체는 터빈 유체로 명명될 수 있으며, 이러한 터빈 유체는 원자로모듈(3010)과 미드룹 증기발생기(3030) 사이에서 유동하는 작동 유체와 독립적으로 유동될 수 있다. 다시 말해, 원자로모듈(3010)은 터빈유체와 작동 유체가 서로 혼합되지 않게 유동하도록 구성될 수 있다. 원자로모듈(3010)은 핵증기공급계통(NSSS, nuclear steam supply system)일 수 있다. 이러한 원자로모듈(3010)은 노심(3011), 열교환기(3012) 및 원자로용기(3013)를 포함할 수 있다. 노심(3011), 열교환기(3012) 및 원자로용기(3013)의 구성은 제1 실시예의 노심(11), 열교환기(12) 및 원자로용기(13)의 구성과 동일하므로, 그 설명은 생략한다.The nuclear reactor module 3010 can heat the working fluid using heat generated through the nuclear reaction of the reactor core. This nuclear reactor module 3010 can supply at least a portion of the generated heat to the outside. For example, the nuclear reactor module 3010 may discharge high temperature working fluid of 250 degrees to 310 degrees to the outside. This nuclear reactor module 3010 can generate steam by heating the working fluid using heat generated by nuclear fission. In addition, in the event of an accident in the nuclear reactor module 3010, the reactor core 3011, which will be described later, can be passively cooled by natural circulation of coolant such as coolant. The working fluid discharged from the nuclear reactor module 3010 may be water or oil. One side of the nuclear reactor module 3010 may be connected to the turbine unit 3020 so that a portion of the working fluid communicates with the turbine unit 3020. Additionally, the other side of the reactor module 3010 may be connected to the midloop steam generator 3030 so that another part of the working fluid communicates with the midloop steam generator 3030. Among the working fluids of the nuclear reactor module 3010, the working fluid flowing into the turbine unit 3020 may be called turbine fluid, and this turbine fluid flows between the nuclear reactor module 3010 and the mid-loop steam generator 3030. It can flow independently of the fluid. In other words, the nuclear reactor module 3010 may be configured so that the turbine fluid and the working fluid flow without mixing with each other. The nuclear reactor module 3010 may be a nuclear steam supply system (NSSS). This nuclear reactor module 3010 may include a reactor core 3011, a heat exchanger 3012, and a reactor vessel 3013. Since the configuration of the core 3011, heat exchanger 3012, and reactor vessel 3013 is the same as that of the core 11, heat exchanger 12, and reactor vessel 13 in the first embodiment, their description is omitted. .
터빈부(3020)는 원자로모듈(3010)에서 가열된 터빈 유체를 이용해 전기를 생성할 수 있다. 예를 들어, 원자로모듈(3010)의 노심에서 생성된 열은 증기 또는 고온의 액체를 발생시키고, 터빈부(3020)에는 열이 유체의 형태로 전달될 수 있다. 이러한 터빈부(3020)는 원자로모듈(3010)과 연결될 수 있다. The turbine unit 3020 can generate electricity using turbine fluid heated in the nuclear reactor module 3010. For example, heat generated in the core of the nuclear reactor module 3010 generates steam or high-temperature liquid, and the heat may be transferred to the turbine unit 3020 in the form of a fluid. This turbine unit 3020 may be connected to the nuclear reactor module 3010.
미드룹 증기발생기(3030)는 원자로모듈(3010)에서 가열된 작동 유체를 제공받아, 작동 유체를 이용해 내부에 유동하는 오일샌드측유체를 가열하여 오일샌드측증기로 비등시킬 수 있다. 예를 들어, 이러한 오일샌드측유체는 물일 수 있다. 이러한 미드룹 증기발생기(3030)는 오일샌드측유체와 작동 유체가 독립적으로 유동하도록 구성될 수 있다. 또한, 미드룹 증기발생기(3030)는 오일샌드측증기가 지반(G)에서 오일과 혼합되도록 오일샌드측증기를 지반(G)으로 배출할 수 있다. 미드룹 증기발생기(3030)는 오일샌드측증기를 지반(G)으로 전달할 수 있다. 이러한 미드룹 증기발생기(3030)는 오일샌드측증기가 유입된 지반(G)에서 분리된 오일과 오일샌드측유체가 혼합된 오일혼합액 중 오일샌드측유체의 적어도 일부를 다시 미드룹 증기발생기(3030)의 내부로 회수할 수 있다. 또한, 미드룹 증기발생기(3030)는 제1 미드룹바디(3031) 및 제2 미드룹바디(3032)를 포함할 수 있다.The midloop steam generator 3030 receives heated working fluid from the nuclear reactor module 3010, and can use the working fluid to heat the oil sand side fluid flowing inside and boil it into oil sand side steam. For example, this oil sands side fluid may be water. This mid-loop steam generator 3030 may be configured so that the oil sand side fluid and the working fluid flow independently. Additionally, the midloop steam generator 3030 may discharge oil sand side steam to the ground (G) so that the oil sand side steam is mixed with oil in the ground (G). The midloop steam generator 3030 can deliver oil sand side steam to the ground (G). This mid-loop steam generator (3030) returns at least a portion of the oil sand-side fluid from the oil mixture containing the oil separated from the ground (G) into which the oil sand-side steam flows and the oil sand-side fluid to the mid-loop steam generator (3030). ) can be recovered inside. Additionally, the mid-loop steam generator 3030 may include a first mid-loop body 3031 and a second mid-loop body 3032.
제1 미드룹바디(3031)는 원자로모듈(3010)에서 가열된 작동 유체가 유동될 수 있다. 이러한 제1 미드룹바디(3031)는 후술할 제1 공급부(3511)와 연결될 수 있다. 이러한 제1 미드룹바디(3031)는 내부에 제2 미드룹바디(3032)를 수용할 수 있다. 또한, 제1 미드룹바디(3031)의 내부로 원자로모듈(3010)에서 전달받은 고온의 증기가 유입될 수 있고, 고온의 증기는 제1 미드룹바디(3031) 내부에서 응축되어 액체로 상변화될 수 있다. 제1 미드룹바디(3031) 내부에서 응축된 액체는 원자로모듈(3010)로 회수될 수 있다.The working fluid heated in the nuclear reactor module 3010 may flow through the first midloop body 3031. This first mid-loop body 3031 may be connected to a first supply unit 3511, which will be described later. This first mid-roof body 3031 can accommodate the second mid-roof body 3032 therein. In addition, high-temperature vapor received from the nuclear reactor module 3010 may flow into the first mid-loop body 3031, and the high-temperature vapor may be condensed inside the first mid-loop body 3031 and change into a liquid. It can be. The liquid condensed inside the first midloop body 3031 can be recovered to the reactor module 3010.
제2 미드룹바디(3032)는 오일샌드측유체가 유동하면서 작동 유체에 의해 가열되는 공간을 제공할 수 있다. 이러한 제2 미드룹바디(3032)의 내부에서 유동하는 오일샌드측유체가 온도 및 압력 변화에 따라 상태변화 될 수 있다. 또한, 제2 미드룹바디(3032)는 제1 미드룹바디(3031)의 내부에 배치될 수 있다. 제2 미드룹바디(3032)는 제2 미드룹바디(3032)를 유동하는 오일샌드측유체와 제2 미드룹바디(3032)의 외부의 원자로모듈(3010)에서 전달받은 작동 유체가 서로 섞이지 않도록 구성될 수 있다.The second mid-loop body 3032 may provide a space where the oil sand side fluid flows and is heated by the working fluid. The oil sand side fluid flowing inside the second mid-loop body 3032 may change state depending on temperature and pressure changes. Additionally, the second mid-roof body 3032 may be disposed inside the first mid-roof body 3031. The second mid-loop body (3032) prevents the oil sand side fluid flowing through the second mid-loop body (3032) from mixing with the working fluid received from the reactor module (3010) outside the second mid-loop body (3032). It can be configured.
처리부(3040)는 오일샌드측증기가 지반(G)에서 오일과 혼합된 오일혼합액을 회수하고, 회수된 오일혼합액을 오일과 오일샌드측유체로 분리할 수 있다. 이러한 처리부(3040)는 지반(G)과 미드룹 증기발생기(3030)사이에 연결될 수 있다. 또한, 처리부(3040)는 오일처리부(3041) 및 후처리부(3042)를 포함할 수 있다.The processing unit 3040 can recover the oil mixture in which oil sand side vapor is mixed with oil in the ground (G), and separate the recovered oil mixture into oil and oil sand side fluid. This processing unit 3040 may be connected between the ground (G) and the mid-loop steam generator (3030). Additionally, the processing unit 3040 may include an oil processing unit 3041 and a post-processing unit 3042.
오일처리부(3041)는 오일혼합액에 희석액을 혼합하여 처리액을 제공할 수 있다. 이러한 오일처리부(3041)는 지반(G)에서 추출된 오일혼합액에서 오일을 분리할 수 있다. 이러한 오일처리부(3041)는 오일희석부(3411) 및 오일추출부(3412)를 포함할 수 있다.The oil treatment unit 3041 may provide a treatment liquid by mixing a diluent with the oil mixture. This oil processing unit 3041 can separate oil from the oil mixture extracted from the ground (G). This oil processing unit 3041 may include an oil dilution unit 3411 and an oil extraction unit 3412.
오일희석부(3411)는 오일혼합액에서 모래 및 역청을 분리하고, 희석액을 혼합하여 제1 처리액을 제공할 수 있다. 이러한 제1 처리액은 오일혼합액에서 모래 및 역청을 제거한 처리액일 수 있다. 또한, 오일희석부(3411)의 일측은 지반(G)에 연결될 수 있고, 타측은 오일추출부(3412)와 연결될 수 있다.The oil dilution unit 3411 may separate sand and bitumen from the oil mixture and mix the diluents to provide a first treatment solution. This first treatment solution may be a treatment solution obtained by removing sand and bitumen from the oil mixture. Additionally, one side of the oil dilution unit 3411 may be connected to the ground (G), and the other side may be connected to the oil extraction unit 3412.
오일추출부(3412)는 제1 처리액에서 오일을 분리하여 제2 처리액을 제공할 수 있다. 이러한 제1 처리액에서 오일이 분리되어 생성된 처리액은 제2 처리액이라 명명될 수 있다. 이러한 오일추출부(3412)에서 분리된 오일은 다시 오일희석부(3411)로 전달될 수 있고, 복수 회에 거쳐 모래, 역청 및 오일을 분리해낼 수 있다. 또한, 오일추출부(3412)는 후처리부(3042)와 연결될 수 있다. 오일추출부(3412)에서 최종적으로 오일이 분리된 오일혼합액인 제2 처리액은 후처리부(3042)에 제공될 수 있다.The oil extraction unit 3412 may separate oil from the first treatment liquid and provide the second treatment liquid. The treatment liquid produced by separating the oil from the first treatment liquid may be called the second treatment liquid. The oil separated from the oil extraction unit 3412 can be transferred back to the oil dilution unit 3411, and sand, bitumen, and oil can be separated multiple times. Additionally, the oil extraction unit 3412 may be connected to the post-processing unit 3042. The second treatment liquid, which is the oil mixture liquid from which the oil is finally separated in the oil extraction unit 3412, may be provided to the post-processing unit 3042.
후처리부(3042)는 처리액을 미드룹 증기발생기(3030)로 회수할 오일샌드측유체와 미드룹 증기발생기(3030)로 회수하지 않는 폐기액으로 분리할 수 있다. 이러한 후처리부(3042)는 제2 처리액에서 폐기액을 분리하여 미드룹 증기발생기(3030)로 회수할 오일샌드측유체를 제공할 수 있다. 또한, 후처리부(3042)는 오일처리부(3041)에서 오일이 분리된 제2 처리액을 오일처리부(3041)에서 전달받을 수 있다. 이러한 후처리부(3042)는 제2 처리액을 미드룹 증기발생기(3030)에 회수 가능한 오일샌드측유체와 미드룹 증기발생기(3030)에 회수 불가능한 폐기액으로 분리할 수 있다. 또한, 후처리부(3042)는 미드룹 증기발생기(3030)에 회수 가능하도록 처리된 오일샌드측유체를 전달할 수 있다. 또한, 후처리부(3042)는 오일샌드측유체를 미드룹 증기발생기(3030)에 전달할 수 있다.The post-processing unit 3042 can separate the treated liquid into an oil sand side fluid to be recovered by the mid-loop steam generator 3030 and a waste liquid not recovered by the mid-loop steam generator 3030. This post-treatment unit 3042 can separate the waste liquid from the second treatment liquid and provide the oil sand side fluid to be recovered to the mid-loop steam generator 3030. Additionally, the post-processing unit 3042 may receive the second treatment liquid from which the oil has been separated from the oil processing unit 3041. This post-processing unit 3042 can separate the second treatment liquid into an oil sand side fluid that can be recovered by the mid-loop steam generator 3030 and a waste liquid that cannot be recovered by the mid-loop steam generator 3030. In addition, the post-processing unit 3042 can deliver the oil sand side fluid that has been treated to be recoverable to the mid-loop steam generator 3030. Additionally, the post-processing unit 3042 can deliver the oil sand side fluid to the mid-loop steam generator 3030.
연결부(3050)는 작동 유체, 터빈 유체 및 오일샌드측유체가 유동되는 통로를 제공할 수 있다. 이러한 연결부(3050)는 원자로모듈(3010), 터빈부(3020), 미드룹 증기발생기(3030), 처리부(3040), 펌프부(3060), 분리기(3070)및 지반(G) 중 어느 둘 사이에 배치될 수 있다. 또한, 연결부(3050)는 고온 및 고압을 견딜 수 있는 재질로 형성될 수 있다. 연결부(3050)는 공급부 및 회수부를 포함할 수 있다.The connection portion 3050 may provide a passage through which the working fluid, turbine fluid, and oil sand side fluid flow. This connection unit 3050 is between any two of the reactor module 3010, turbine unit 3020, midloop steam generator 3030, processing unit 3040, pump unit 3060, separator 3070, and ground (G). can be placed in Additionally, the connection portion 3050 may be formed of a material that can withstand high temperature and pressure. The connection part 3050 may include a supply part and a recovery part.
공급부는 고온 및 고압의 유체가 일방향으로 전달되도록 유체가 유동될 수 있는 공간을 제공할 수 있다. 이러한 공급부의 내부를 유동하는 유체는 일방향으로 유동될 수 있다. 또한, 공급부는 제1 공급부(3511), 제2 공급부(3512), 제3 공급부(3513) 및 제4 공급부(3514)를 포함할 수 있다.The supply unit may provide a space through which fluid can flow so that high-temperature and high-pressure fluid is transmitted in one direction. The fluid flowing inside this supply unit may flow in one direction. Additionally, the supply unit may include a first supply unit 3511, a second supply unit 3512, a third supply unit 3513, and a fourth supply unit 3514.
제1 공급부(3511)는 원자로모듈(3010)과 미드룹 증기발생기(3030) 사이를 연결할 수 있다. 이러한 제1 공급부(3511)는 원자로모듈(3010)에서 공급되는 작동 유체가 미드룹 증기발생기(3030)측으로 이동되도록 유동 공간을 제공할 수 있다.The first supply unit 3511 may connect between the nuclear reactor module 3010 and the midloop steam generator 3030. This first supply unit 3511 may provide a flow space so that the working fluid supplied from the nuclear reactor module 3010 moves toward the midloop steam generator 3030.
제2 공급부(3512)는 원자로모듈(3010)과 터빈부(3020) 사이를 연결할 수 있다. 이러한 제2 공급부(3512)는 원자로모듈(3010)에서 공급되는 터빈 유체가 터빈부(3020)측으로 이동되도록 유동 공간을 제공할 수 있다.The second supply unit 3512 may connect the reactor module 3010 and the turbine unit 3020. This second supply unit 3512 may provide a flow space so that the turbine fluid supplied from the nuclear reactor module 3010 moves toward the turbine unit 3020.
제3 공급부(3513)는 미드룹 증기발생기(3030)와 지반(G) 사이를 연결할 수 있다. 이러한 제3 공급부(3513)는 미드룹 증기발생기(3030)에서 공급되는 오일샌드측유체가 지반(G)으로 이동되도록 유동 공간을 제공할 수 있다.The third supply unit 3513 may connect the mid-loop steam generator 3030 and the ground (G). This third supply unit 3513 can provide a flow space so that the oil sand side fluid supplied from the mid-loop steam generator 3030 moves to the ground (G).
제4 공급부(3514)는 후술할 공급부분리기(3072)와 후처리부(3042) 사이를 연결할 수 있다. 이러한 제4 공급부(3514)는 공급부분리기(3072)에서 공급되는 작동 유체가 후처리부(3042)로 이동되도록 유동 공간을 제공할 수 있다.The fourth supply unit 3514 may connect between the supply unit 3072 and the post-processing unit 3042, which will be described later. This fourth supply unit 3514 may provide a flow space so that the working fluid supplied from the supply unit 3072 moves to the post-processing unit 3042.
회수부는 지반(G)에서 추출된 오일혼합수가 처리부(3040), 미드룹 증기발생기(3030), 펌프부(3060), 분리기(3070) 등에 도달하도록 오일혼합액 등 유체가 유동되는 공간을 제공할 수 있다. 이러한 회수부의 내부를 유동하는 오일혼합액 등 유체는 일방향으로 유동될 수 있다. 예를 들어, 회수부에는 지반(G)에서 추출된 오일혼합액, 오일희석부(3411)에서 처리된 제1 처리액, 오일추출부(3412)에서 처리된 제2 처리액 및 후처리부(3042)에서 처리된 오일샌드측유체 등이 유동될 수 있다. 또한, 회수부는 복수 개로 제공될 수 있으며, 복수 개의 회수부(3052) 사이에는 회수부펌프(3062)가 배치될 수 있다. 회수부는 제1 회수부(3521), 제2 회수부(3522), 제3 회수부(3523), 제4 회수부(3524) 및 제5 회수부(3525)를 포함할 수 있다.The recovery unit can provide a space in which fluid such as oil mixture fluid flows so that the oil mixture extracted from the ground (G) reaches the treatment unit (3040), the mid-loop steam generator (3030), the pump unit (3060), and the separator (3070). there is. Fluid, such as an oil mixture flowing inside the recovery unit, may flow in one direction. For example, the recovery unit includes the oil mixture extracted from the ground (G), the first treatment liquid processed in the oil dilution unit 3411, the second treatment liquid processed in the oil extraction unit 3412, and the post-treatment unit 3042. Oil sand side fluid, etc. treated in may flow. Additionally, a plurality of recovery units may be provided, and a recovery unit pump 3062 may be disposed between the plurality of recovery units 3052. The recovery unit may include a first recovery unit 3521, a second recovery unit 3522, a third recovery unit 3523, a fourth recovery unit 3524, and a fifth recovery unit 3525.
제1 회수부(3521)는 지반(G)과 오일처리부(3041) 사이를 연결할 수 있다. 이러한 제1 회수부(3521)는 지반(G)에서 추출된 오일혼합액이 오일처리부(3041)측으로 이동되도록 유동 공간을 제공할 수 있다.The first recovery unit 3521 may connect between the ground (G) and the oil processing unit 3041. This first recovery unit 3521 can provide a flow space so that the oil mixture extracted from the ground (G) moves toward the oil processing unit 3041.
제2 회수부(3522)는 오일처리부(3041)와 후처리부(3042) 사이를 연결할 수 있다. 이러한 제2 회수부(3522)는 오일희석부(3411) 및 오일추출부(3412) 사이를 연결할 수 있다. 또한, 제2 회수부(3522)는 오일희석부(3411)에서 처리된 제1 처리액이 오일추출부(3412)로 이동되도록 유동 공간을 제공할 수 있고, 오일추출부(3412)에서 처리된 제2 처리액이 후처리부(3042)로 이동되도록 유동 공간을 제공할 수 있다.The second recovery unit 3522 may connect the oil processing unit 3041 and the post-processing unit 3042. This second recovery unit 3522 may be connected between the oil dilution unit 3411 and the oil extraction unit 3412. In addition, the second recovery unit 3522 may provide a flow space so that the first treatment liquid processed in the oil dilution unit 3411 moves to the oil extraction unit 3412, and the first treatment liquid processed in the oil dilution unit 3411 may be moved to the oil extraction unit 3412. A flow space may be provided so that the second treatment liquid moves to the post-processing unit 3042.
제3 회수부(3523)는 후처리부(3042)와 미드룹 증기발생기(3030)사이를 연결할 수 있다. 이러한 제3 회수부(3523)는 후처리부(3042)에서 처리된 오일샌드측유체가 미드룹 증기발생기(3030)로 이동되도록 유동 공간을 제공할 수 있다.The third recovery unit 3523 may connect the post-processing unit 3042 and the mid-loop steam generator 3030. This third recovery unit 3523 can provide a flow space so that the oil sand side fluid treated in the post-processing unit 3042 moves to the mid-loop steam generator 3030.
제4 회수부(3524)는 미드룹 증기발생기(3030)와 원자로모듈(3010) 사이를 연결할 수 있다. 이러한 제4 회수부(3524)는 제1 미드룹바디(3031) 내에서 유동하는 작동 유체가 원자로모듈(3010)로 이동되도록 유동 공간을 제공할 수 있다.The fourth recovery unit 3524 may connect the midloop steam generator 3030 and the nuclear reactor module 3010. This fourth recovery part 3524 may provide a flow space so that the working fluid flowing in the first mid-roof body 3031 moves to the nuclear reactor module 3010.
제5 회수부(3525)는 원자로모듈(3010)과 터빈부(3020)사이를 연결할 수 있다. 이러한 제5 회수부(3525)는 터빈부(3020)에서 유동하던 터빈 유체가 원자로모듈(3010)로 이동되도록 유동 공간을 제공할 수 있다.The fifth recovery unit 3525 can connect the reactor module 3010 and the turbine unit 3020. This fifth recovery unit 3525 can provide a flow space so that the turbine fluid flowing in the turbine unit 3020 can be moved to the nuclear reactor module 3010.
펌프부(3060)는 원자로모듈(3010)로 회수되는 유체를 원자로모듈(3010)로 유동시킬 수 있다. 이러한 펌프부(3060)는 회수부에서 유동하는 유체의 압력이 변동되도록 유체에 압력을 제공할 수 있다. 이러한 펌프부(3060)는 유체의 유동 속도를 변경시킬 수 있다. 또한, 펌프부(3060)는 복수 개로 제공될 수 있다. 펌프부(3060)는 미드룹펌프(3061) 및 회수부펌프(3062)를 포함할 수 있다.The pump unit 3060 may flow the fluid recovered to the nuclear reactor module 3010 to the nuclear reactor module 3010. This pump unit 3060 may provide pressure to the fluid so that the pressure of the fluid flowing in the recovery unit changes. This pump unit 3060 can change the flow speed of fluid. Additionally, a plurality of pump units 3060 may be provided. The pump unit 3060 may include a mid loop pump 3061 and a recovery pump 3062.
미드룹펌프(3061)는 미드룹 증기발생기(3030)로부터 회수되는 유체에 압력을 제공하여 유체가 원자로모듈(3010)로 이동되도록 할 수 있다. 이러한 미드룹펌프(3061)는 원자로모듈(3010)로 회수되는 유체의 이동 속도를 증가시킬 수 있다.The midloop pump 3061 may provide pressure to the fluid recovered from the midloop steam generator 3030 to move the fluid to the reactor module 3010. This midloop pump 3061 can increase the movement speed of fluid recovered to the reactor module 3010.
회수부펌프(3062)는 회수된 오일샌드측유체를 미드룹 증기발생기(3030)로 유동시킬 수 있다. 이러한 회수부펌프(3062)는 후처리부(3042)와 미드룹 증기발생기(3030) 사이에 배치되어 미드룹 증기발생기(3030)로 회수되는 오일샌드측유체의 이동 속도를 증가시킬 수 있다.The recovery pump 3062 can flow the recovered oil sand side fluid to the mid-loop steam generator 3030. This recovery pump 3062 is disposed between the post-processing unit 3042 and the mid-loop steam generator 3030 to increase the movement speed of the oil sand side fluid recovered to the mid-loop steam generator 3030.
분리기(3070)는 오일샌드측유체를 상태에 따라 분리할 수 있다. 이러한 분리기(3070)는 미드룹 증기발생기(3030) 또는 처리부(3040)에 연결될 수 있다. 또한, 분리기(3070)는 복수 개로 제공될 수 있다. 분리기(3070)는 가압식, 진공방식, 화학식 분리기 중 어느 하나로 제공될 수 있다. 이러한 분리기(3070)는 후처리부분리기(3071) 및 공급부분리기(3072)를 포함할 수 있다.The separator 3070 can separate the oil sand side fluid depending on its condition. This separator 3070 may be connected to the midloop steam generator 3030 or the processing unit 3040. Additionally, a plurality of separators 3070 may be provided. The separator 3070 may be provided as one of a pressure type, a vacuum type, and a chemical type separator. This separator 3070 may include a post-treatment separator 3071 and a feed separator 3072.
후처리부분리기(3071)는 후처리부(3042)에서 처리된 오일샌드측유체를 상태에 따라 분리할 수 있다. 이러한 후처리부분리기(3071)에서 처리된 오일샌드측유체는 회수부펌프(3062)를 통과할 수 있다.The post-processing unit 3071 can separate the oil sand side fluid treated in the post-processing unit 3042 depending on its condition. The oil sand side fluid treated in this post-treatment unit 3071 may pass through the recovery pump 3062.
공급부분리기(3072)는 미드룹 증기발생기(3030)에서 공급된 오일샌드측유체를 상태에 따라 분리할 수 있다. 이러한 공급부분리기(3072)를 유동한 오일샌드측유체는 지반(G)및 후처리부(3042)로 유동될 수 있다.The supply subunit 3072 can separate the oil sand side fluid supplied from the mid-loop steam generator 3030 depending on its condition. The oil sand side fluid flowing through this supply unit 3072 can flow to the ground (G) and the post-processing unit 3042.
이하에서는 상술한 바와 같은 구성을 가지는 오일샌드 채굴용 경수형 원자로(3)의 작용 및 효과에 대하여 설명한다.Hereinafter, the operation and effects of the light water reactor 3 for oil sand mining having the above-described configuration will be described.
오일샌드 채굴용 경수형 원자로(3)는 핵증기공급계통인 원자로모듈(3010)을 순환하는 작동 유체와 미드룹 증기발생기(3030)와 지반(G)사이를 순환하는 오일샌드측유체를 서로 격리할 수 있기 때문에, 방사성 물질이 유입되지 않는 방벽을 제공할 수 있다.The light water reactor (3) for oil sand mining isolates the working fluid that circulates in the nuclear steam supply system, the nuclear reactor module (3010), and the oil sand side fluid that circulates between the midloop steam generator (3030) and the ground (G). Because it can do so, it can provide a barrier that prevents radioactive materials from entering.
또한, 원자로모듈(3010)을 순환하는 작동 유체와 미드룹 증기발생기(3030)와 지반(G)사이를 순환하는 오일샌드측유체의 수질 관리를 별도로 수행할 수 있으므로, 기존의 원전과 오일샌드 공법에서 사용하던 수질 관리 수단을 설계 변경 없이 그대로 이용할 수 있다. 작동 유체의 수질 관리를 위한 경수형 원자로의 설계 변경이 없으므로 추가적인 비용이 소요되지 않는 효과가 있다.In addition, water quality management of the working fluid circulating in the nuclear reactor module 3010 and the oil sand side fluid circulating between the mid-loop steam generator 3030 and the ground (G) can be separately managed, so that existing nuclear power plants and oil sand methods can be used separately. The water quality management measures used in can be used as is without any design changes. There is no need to change the design of the light water reactor to manage the water quality of the working fluid, so there is no additional cost.
또한, 원자로모듈(3010)에서 발생하는 고온 및 고압의 작동 유체가 터빈부에도 동시에 제공될 수 있도록 구성됨으로써, 사용자의 필요에 따라 전력 발전과 오일 분리의 비율을 조절하여 사용할 수 있는 효과가 있다.In addition, the high-temperature and high-pressure working fluid generated in the nuclear reactor module 3010 is configured to be simultaneously provided to the turbine unit, so that the ratio of power generation and oil separation can be adjusted according to the user's needs.
이상 본 발명의 실시예들을 구체적인 실시 형태로서 설명하였으나, 이는 예시에 불과한 것으로서, 본 발명은 이에 한정되지 않는 것이며, 본 명세서에 개시된 기술적 사상에 따르는 최광의 범위를 갖는 것으로 해석되어야 한다. 당업자는 개시된 실시형태들을 조합/치환하여 적시되지 않은 형상의 패턴을 실시할 수 있으나, 이 역시 본 발명의 범위를 벗어나지 않는 것이다. 이외에도 당업자는 본 명세서에 기초하여 개시된 실시형태를 용이하게 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 권리범위에 속함은 명백하다.Although embodiments of the present invention have been described above as specific embodiments, this is merely an example, and the present invention is not limited thereto, and should be construed as having the widest scope following the technical idea disclosed in this specification. A person skilled in the art may implement a pattern of a shape not specified by combining/substituting the disclosed embodiments, but this also does not depart from the scope of the present invention. In addition, a person skilled in the art can easily change or modify the embodiments disclosed based on the present specification, and it is clear that such changes or modifications also fall within the scope of the present invention.

Claims (31)

  1. 노심의 핵반응을 통해 발생된 열을 이용하여 작동 유체를 가열하는 원자로모듈;A nuclear reactor module that heats the working fluid using heat generated through the nuclear reaction of the reactor core;
    상기 원자로모듈에서 가열된 작동 유체를 제공받고, 상기 작동 유체를 이용해 내부에 유동하는 오일샌드측유체를 가열하여 증기상태의 오일샌드측증기로 비등시키는 미드룹 증기발생기; 및 A midloop steam generator that receives heated working fluid from the reactor module, uses the working fluid to heat the oil sand side fluid flowing therein, and boils it into oil sand side steam in a vapor state; and
    상기 원자로모듈에서 가열된 작동 유체가 액체 상태로 상기 미드룹 증기발생기에 제공되도록 상기 작동 유체를 가압하는 가압기를 포함하고,A pressurizer that pressurizes the working fluid heated in the reactor module so that the working fluid is provided in a liquid state to the midloop steam generator,
    상기 미드룹 증기발생기는,The mid-loop steam generator,
    상기 오일샌드측증기가 지반에서 오일과 혼합되도록 상기 오일샌드측증기를 지반으로 배출하는, Discharging the oil sands side steam to the ground so that the oil sands side steam mixes with oil in the ground,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  2. 제 1 항에 있어서,According to claim 1,
    상기 미드룹 증기발생기는 복수 개로 제공되고,The mid-loop steam generator is provided in plural pieces,
    복수 개의 상기 미드룹 증기발생기는 오일샌드측유체가 직렬로 유동하도록 서로 연결되는, A plurality of the mid-loop steam generators are connected to each other so that the oil sand side fluid flows in series,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  3. 제 1 항에 있어서,According to claim 1,
    상기 미드룹 증기발생기는 복수 개로 제공되고,The mid-loop steam generator is provided in plural pieces,
    복수 개의 상기 미드룹 증기발생기는,A plurality of the mid-loop steam generators,
    상기 원자로모듈과 연결되는 제1 미드룹 증기발생기, 상기 제1 미드룹 증기발생기와 연결되는 제2 미드룹 증기발생기, 상기 제2 미드룹 증기발생기와 연결되는 제3 미드룹 증기발생기 및 상기 제3 미드룹 증기발생기와 연결되는 제4 미드룹 증기발생기를 포함하고,A first midloop steam generator connected to the reactor module, a second midloop steam generator connected to the first midloop steam generator, a third midloop steam generator connected to the second midloop steam generator, and the third midloop steam generator connected to the second midloop steam generator. It includes a fourth mid-loop steam generator connected to the mid-loop steam generator,
    상기 제2 미드룹 증기발생기에서 상기 제1 미드룹 증기발생기로 전달되는 오일샌드측유체의 어느 일부는 상기 제1 미드룹 증기발생기로 회수되고, 상기 제3 미드룹 증기발생기에서 상기 제2 미드룹 증기발생기로 전달되는 오일샌드측유체의 어느 일부는 상기 제2 미드룹 증기발생기로 회수되며, 상기 제4 미드룹 증기발생기에서 상기 제3 미드룹 증기발생기로 전달되는 오일샌드측유체의 어느 일부는 상기 제3 미드룹 증기발생기로 회수되어, 오일샌드측유체가 복수 개의 상기 미드룹 증기발생기 사이를 순환하도록 구성된,A portion of the oil sand side fluid delivered from the second mid-loop steam generator to the first mid-loop steam generator is recovered to the first mid-loop steam generator, and is returned to the second mid-loop from the third mid-loop steam generator. A portion of the oil sands side fluid delivered to the steam generator is recovered to the second midloop steam generator, and a portion of the oil sands side fluid delivered from the fourth midloop steam generator to the third midloop steam generator is recovered. Returned to the third mid-loop steam generator, the oil sand side fluid is configured to circulate between the plurality of mid-loop steam generators,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  4. 제 2 항에 있어서,According to claim 2,
    복수 개의 상기 미드룹 증기발생기 중 어느 하나에서 배출된 매개유체를 액체와 기체로 분리하는 오일샌드측 상분리기를 포함하고,It includes an oil sand side phase separator that separates the intermediate fluid discharged from any one of the plurality of mid-loop steam generators into liquid and gas,
    상기 오일샌드측 상분리기에 의해 분리된 상기 액체 상태의 오일샌드측유체에 압력을 가하여, 복수 개의 상기 미드룹 증기발생기 중 상기 어느 하나보다 더 상류에 배치된 다른 미드룹 증기발생기에 유입되도록 액체 상태의 오일샌드측유체를 가압하는 제2 회수부펌프를 더 포함하는,Pressure is applied to the oil sand side fluid in the liquid state separated by the oil sand side phase separator, so that the liquid state flows into another mid loop steam generator disposed further upstream than any one of the plurality of mid loop steam generators. Further comprising a second recovery pump that pressurizes the oil sands side fluid,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  5. 제 1 항에 있어서,According to claim 1,
    상기 원자로모듈에서 가열된 상기 작동 유체를 이용해 전기를 생성하는 터빈부를 더 포함하고,Further comprising a turbine unit that generates electricity using the working fluid heated in the nuclear reactor module,
    상기 원자로 모듈은 상기 터빈부로 유동하는 작동 유체와 상기 미드룹 증기발생기로 유동하는 작동 유체가 독립적으로 유동되도록 구성되는,The nuclear reactor module is configured so that the working fluid flowing to the turbine unit and the working fluid flowing to the mid-loop steam generator flow independently,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  6. 제 3 항에 있어서,According to claim 3,
    상기 원자로모듈에서 가열된 상기 작동 유체를 이용해 전기를 생성하는 터빈부를 더 포함하고,Further comprising a turbine unit that generates electricity using the working fluid heated in the nuclear reactor module,
    상기 터빈부는,The turbine unit,
    복수 개의 상기 미드룹 증기발생기 중 하나 이상의 미드룹 증기발생기에 연결되는,Connected to one or more midloop steam generators among the plurality of midloop steam generators,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  7. 제 1 항에 있어서,According to claim 1,
    상기 미드룹 증기발생기는, 상기 오일샌드측유체와 상기 작동 유체가 독립적으로 유동하도록 구성된,The mid-loop steam generator is configured so that the oil sand side fluid and the working fluid flow independently,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  8. 제 6 항에 있어서,According to claim 6,
    상기 미드룹 증기발생기는,The mid-loop steam generator,
    상기 원자로모듈에서 가열된 상기 작동 유체가 유동하는 제1 미드룹바디; 및a first mid-loop body through which the working fluid heated in the reactor module flows; and
    오일샌드측유체가 유동하면서 상기 작동 유체에 의해 가열되는 공간을 제공하는 제2 미드룹바디를 포함하는,Comprising a second mid-loop body that provides a space heated by the working fluid while the oil sand side fluid flows,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  9. 제 1 항에 있어서,According to claim 1,
    상기 오일샌드측증기가 지반에서 오일과 혼합된 오일혼합액을 회수하고, 회수된 오일혼합액을 오일과 오일샌드측유체로 분리하는 처리부를 더 포함하는,The oil sand side vapor further comprises a processing unit for recovering an oil mixture mixed with oil in the ground and separating the recovered oil mixture into oil and oil sand side fluid,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  10. 제 9 항에 있어서,According to clause 9,
    상기 처리부는,The processing unit,
    상기 오일혼합액에 희석액을 혼합하여 처리액을 제공하는 오일처리부; 및 An oil treatment unit that provides a treatment solution by mixing a diluent with the oil mixture; and
    상기 처리액을 상기 미드룹 증기발생기로 회수할 오일샌드측유체와 상기 미드룹 증기발생기로 회수하지 않는 폐기액으로 분리하는 후처리부를 포함하는,A post-processing unit that separates the treated liquid into an oil sand side fluid to be recovered by the mid-loop steam generator and a waste liquid not recovered by the mid-loop steam generator,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  11. 제 10 항에 있어서, According to claim 10,
    상기 오일처리부는,The oil processing unit,
    상기 오일혼합액에서 모래 및 역청을 분리하고, 희석액을 혼합하여 제1 처리액을 제공하는 오일희석부; 및An oil dilution unit that separates sand and bitumen from the oil mixture and mixes the diluent to provide a first treatment solution; and
    상기 제1 처리액에서 오일을 분리하여 제2 처리액을 제공하는 오일추출부를 포함하는,Comprising an oil extraction unit that separates oil from the first treatment liquid and provides a second treatment liquid,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  12. 제 11 항에 있어서, According to claim 11,
    상기 후처리부는,The post-processing unit,
    상기 제2 처리액에서 폐기액을 분리하여 상기 미드룹 증기발생기로 회수할 오일샌드측유체를 제공하는,Providing an oil sand side fluid to be recovered by the mid-loop steam generator by separating the waste liquid from the second treatment liquid,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  13. 노심의 핵반응을 통해 발생된 열을 이용하여 작동 유체를 가열하는 원자로모듈;A nuclear reactor module that heats the working fluid using heat generated through the nuclear reaction of the reactor core;
    상기 원자로모듈에서 가열된 작동 유체를 제공받고, 상기 작동 유체를 이용해 내부에 유동하는 오일샌드측유체를 가열하여 증기상태의 오일샌드측증기로 증발시키는 미드룹 증기발생기; 및 a midloop steam generator that receives heated working fluid from the reactor module, uses the working fluid to heat the oil sand side fluid flowing therein, and evaporates it into oil sand side steam in a vapor state; and
    상기 원자로모듈에서 가열된 작동 유체가 상기 미드룹 증기발생기에 공급되는 압력을 조절하기 위해 선택적으로 개도가 조절가능하게 구성되는 밸브부를 포함하고,A valve unit configured to selectively adjust the opening degree to control the pressure at which the working fluid heated in the reactor module is supplied to the mid-loop steam generator,
    상기 미드룹 증기발생기는,The mid-loop steam generator,
    상기 오일샌드측증기가 지반에서 오일과 혼합되도록 상기 오일샌드측증기를 지반으로 배출하는,Discharging the oil sands side steam to the ground so that the oil sands side steam mixes with oil in the ground,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  14. 제 13 항에 있어서,According to claim 13,
    상기 밸브부는, The valve part,
    상기 밸브부가 개방되었을 때 상기 원자로모듈에서 가열된 상기 작동 유체의 압력과 상기 밸브부를 통과한 상기 작동 유체의 압력의 차이보다, 상기 밸브부가 폐쇄되었을 때 상기 원자로모듈에서 가열된 상기 작동 유체의 압력과 상기 밸브부를 통과한 상기 작동 유체의 압력의 차이가 더 크도록 구성되는,The pressure of the working fluid heated in the reactor module when the valve part is closed is greater than the difference between the pressure of the working fluid heated in the reactor module when the valve part is opened and the pressure of the working fluid passing through the valve part. Configured so that the difference in pressure of the working fluid passing through the valve unit is larger,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  15. 제 13 항에 있어서,According to claim 13,
    상기 미드룹 증기발생기는, 상기 오일샌드측유체와 상기 작동 유체가 독립적으로 유동하도록 구성된,The mid-loop steam generator is configured so that the oil sand side fluid and the working fluid flow independently,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  16. 제 15 항에 있어서,According to claim 15,
    상기 미드룹 증기발생기는,The mid-loop steam generator,
    상기 원자로모듈에서 가열된 상기 작동 유체가 유동하는 제1 미드룹바디; 및a first mid-loop body through which the working fluid heated in the reactor module flows; and
    상기 오일샌드측유체가 유동하면서 상기 작동 유체에 의해 가열되는 공간을 제공하는 제2 미드룹바디를 포함하는,Comprising a second mid-loop body that provides a space in which the oil sand side fluid flows and is heated by the working fluid,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  17. 제 13 항에 있어서,According to claim 13,
    상기 오일샌드측증기가 지반에서 오일과 혼합된 오일혼합액을 회수하고, 회수된 오일혼합액을 오일과 오일샌드측유체로 분리하는 처리부를 더 포함하는,The oil sand side vapor further comprises a processing unit for recovering an oil mixture mixed with oil in the ground and separating the recovered oil mixture into oil and oil sand side fluid,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  18. 제 17 항에 있어서,According to claim 17,
    상기 처리부는,The processing unit,
    상기 오일혼합액에 희석액을 혼합하여 처리액을 제공하는 오일처리부; 및 An oil treatment unit that provides a treatment solution by mixing a diluent with the oil mixture; and
    상기 처리액을 상기 미드룹 증기발생기로 회수할 오일샌드측유체와 상기 미드룹 증기발생기로 회수하지 않는 폐기액으로 분리하는 후처리부를 포함하는,A post-processing unit that separates the treated liquid into an oil sand side fluid to be recovered by the mid-loop steam generator and a waste liquid not recovered by the mid-loop steam generator,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  19. 제 18 항에 있어서, According to claim 18,
    상기 오일처리부는,The oil processing unit,
    상기 오일혼합액에서 모래 및 역청을 분리하고, 희석액을 혼합하여 제1 처리액을 제공하는 오일희석부; 및An oil dilution unit that separates sand and bitumen from the oil mixture and mixes the diluent to provide a first treatment solution; and
    상기 제1 처리액에서 오일을 분리하여 제2 처리액을 제공하는 오일추출부를 포함하는,Comprising an oil extraction unit that separates oil from the first treatment liquid and provides a second treatment liquid,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  20. 제 19 항에 있어서,According to claim 19,
    상기 후처리부는,The post-processing unit,
    상기 제2 처리액에서 폐기액을 분리하여 상기 미드룹 증기발생기로 회수할 오일샌드측유체를 제공하는,Providing an oil sand side fluid to be recovered by the mid-loop steam generator by separating the waste liquid from the second treatment liquid,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  21. 제 13 항에 있어서,According to claim 13,
    상기 원자로모듈에서 가열된 상기 작동 유체를 이용해 전기를 생성하는 터빈부를 더 포함하고,Further comprising a turbine unit that generates electricity using the working fluid heated in the nuclear reactor module,
    상기 원자로 모듈은 상기 터빈부로 유동하는 작동 유체와 상기 미드룹 증기발생기로 유동하는 작동 유체가 독립적으로 유동되도록 구성되는, The nuclear reactor module is configured so that the working fluid flowing to the turbine unit and the working fluid flowing to the mid-loop steam generator flow independently,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  22. 노심의 핵반응을 통해 발생된 열을 이용하여 작동 유체를 가열하는 원자로모듈;A nuclear reactor module that heats the working fluid using heat generated through the nuclear reaction of the reactor core;
    상기 작동 유체가 유동하는 통로를 제공하는 연결부; 및A connection part providing a passage through which the working fluid flows; and
    상기 연결부를 통하여 상기 원자로모듈에서 가열된 작동 유체를 제공받고, 상기 작동 유체를 이용해 내부에 유동하는 오일샌드측유체를 가열하여 증기상태의 오일샌드측증기로 비등시키는 미드룹 증기발생기를 포함하고,A mid-loop steam generator that receives the heated working fluid from the reactor module through the connection, heats the oil sand side fluid flowing inside using the working fluid and boils it into oil sand side steam in a vapor state,
    상기 미드룹 증기발생기는,The mid-loop steam generator,
    상기 오일샌드측증기가 지반에서 오일과 혼합되도록 상기 오일샌드측증기를 지반으로 배출하는, Discharging the oil sands side steam to the ground so that the oil sands side steam mixes with oil in the ground,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  23. 제 22 항에 있어서,According to claim 22,
    상기 미드룹 증기발생기는, 상기 오일샌드측유체와 상기 작동 유체가 독립적으로 유동하도록 구성된,The mid-loop steam generator is configured so that the oil sand side fluid and the working fluid flow independently,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  24. 제 23 항에 있어서,According to claim 23,
    상기 미드룹 증기발생기는,The mid-loop steam generator,
    상기 원자로모듈에서 가열된 상기 작동 유체가 유동하는 제1 미드룹바디; 및a first mid-loop body through which the working fluid heated in the reactor module flows; and
    오일샌드측유체가 유동하면서 상기 작동 유체에 의해 가열되는 공간을 제공하는 제2 미드룹바디를 포함하는,Comprising a second mid-loop body that provides a space heated by the working fluid while the oil sand side fluid flows,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  25. 제 23 항에 있어서,According to claim 23,
    상기 오일샌드측증기가 지반에서 오일과 혼합된 오일혼합액을 회수하고, 회수된 오일혼합액을 오일과 오일샌드측유체로 분리하는 처리부를 더 포함하는,The oil sand side vapor further comprises a processing unit for recovering an oil mixture mixed with oil in the ground and separating the recovered oil mixture into oil and oil sand side fluid,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  26. 제 25 항에 있어서,According to claim 25,
    상기 처리부는,The processing unit,
    상기 오일혼합액에 희석액을 혼합하여 처리액을 제공하는 오일처리부; 및 An oil treatment unit that provides a treatment solution by mixing a diluent with the oil mixture; and
    상기 처리액을 상기 미드룹 증기발생기로 회수할 오일샌드측유체와 상기 미드룹 증기발생기로 회수하지 않는 폐기액으로 분리하는 후처리부를 포함하는,A post-processing unit that separates the treated liquid into an oil sand side fluid to be recovered by the mid-loop steam generator and a waste liquid not recovered by the mid-loop steam generator,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  27. 제 22 항에 있어서,According to claim 22,
    상기 미드룹 증기발생기로부터 회수되는 작동 유체를 상기 원자로모듈로 유동시키는 미드룹펌프를 더 포함하는 Further comprising a midloop pump that flows the working fluid recovered from the midloop steam generator to the reactor module.
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  28. 제 27 항에 있어서,According to clause 27,
    회수된 오일샌드측유체를 상기 미드룹 증기발생기로 유동시키는 회수부펌프를 더 포함하는,Further comprising a recovery pump that flows the recovered oil sands side fluid to the mid-loop steam generator,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  29. 제 26 항에 있어서, According to claim 26,
    상기 오일처리부는,The oil processing unit,
    상기 오일혼합액에서 모래 및 역청을 분리하고, 희석액을 혼합하여 제1 처리액을 제공하는 오일희석부; 및 An oil dilution unit that separates sand and bitumen from the oil mixture and mixes the diluent to provide a first treatment solution; and
    상기 제1 처리액에서 오일을 분리하여 제2 처리액을 제공하는 오일추출부를 포함하는, Comprising an oil extraction unit that separates oil from the first treatment liquid and provides a second treatment liquid,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  30. 제 29 항에 있어서, According to clause 29,
    상기 후처리부는, 상기 제2 처리액에서 폐기액을 분리하여 상기 미드룹 증기발생기로 회수할 오일샌드측유체를 제공하는, The post-processing unit separates the waste liquid from the second treatment liquid and provides an oil sand side fluid to be recovered by the mid-loop steam generator.
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
  31. 제 22 항에 있어서,According to claim 22,
    상기 원자로모듈에서 가열된 상기 작동 유체를 이용해 전기를 생성하는 터빈부를 더 포함하고, Further comprising a turbine unit that generates electricity using the working fluid heated in the nuclear reactor module,
    상기 원자로 모듈은 상기 터빈부로 유동하는 작동 유체와 상기 미드룹 증기발생기로 유동하는 작동 유체가 독립적으로 유동되도록 구성되는, The nuclear reactor module is configured so that the working fluid flowing to the turbine unit and the working fluid flowing to the mid-loop steam generator flow independently,
    오일샌드 채굴용 경수형 원자로.Light water reactor for oil sand mining.
PCT/KR2023/018833 2022-11-22 2023-11-21 Light water reactor for oil sand mining having mid-loop applied thereto WO2024112086A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR20220157814 2022-11-22
KR10-2022-0157782 2022-11-22
KR20220157782 2022-11-22
KR10-2022-0157808 2022-11-22
KR20220157808 2022-11-22
KR10-2022-0157814 2022-11-22
KR10-2023-0155431 2023-11-10
KR10-2023-0155450 2023-11-10
KR1020230155431A KR20240078328A (en) 2022-11-22 2023-11-10 Lightwater type power reactor for mining oil sand with mid-loop
KR1020230155450A KR20240078329A (en) 2022-11-22 2023-11-10 Lightwater type power reactor for mining oil sand with mid-loop
KR10-2023-0157115 2023-11-14
KR1020230157115A KR20240078333A (en) 2022-11-22 2023-11-14 Lightwater type power reactor for mining oil sand with mid-loop

Publications (1)

Publication Number Publication Date
WO2024112086A1 true WO2024112086A1 (en) 2024-05-30

Family

ID=91196269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018833 WO2024112086A1 (en) 2022-11-22 2023-11-21 Light water reactor for oil sand mining having mid-loop applied thereto

Country Status (1)

Country Link
WO (1) WO2024112086A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818200A (en) * 1981-07-07 1983-02-02 コンバツシヨン・エンヂニアリング・インコ−ポレ−テツド Passive type emergency shutdown device for pwr type reactor
JP2002156492A (en) * 2000-11-20 2002-05-31 Hitachi Ltd Nuclear power generation system
US20060243448A1 (en) * 2005-04-28 2006-11-02 Steve Kresnyak Flue gas injection for heavy oil recovery
US20090236092A1 (en) * 2006-02-24 2009-09-24 O'brien Thomas B Method and system for extraction of hydrocarbons from oil sands
WO2010045115A2 (en) * 2008-10-13 2010-04-22 Shell Oil Company Treating subsurface hydrocarbon containing formations and the systems, methods, and processes utilized

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818200A (en) * 1981-07-07 1983-02-02 コンバツシヨン・エンヂニアリング・インコ−ポレ−テツド Passive type emergency shutdown device for pwr type reactor
JP2002156492A (en) * 2000-11-20 2002-05-31 Hitachi Ltd Nuclear power generation system
US20060243448A1 (en) * 2005-04-28 2006-11-02 Steve Kresnyak Flue gas injection for heavy oil recovery
US20090236092A1 (en) * 2006-02-24 2009-09-24 O'brien Thomas B Method and system for extraction of hydrocarbons from oil sands
WO2010045115A2 (en) * 2008-10-13 2010-04-22 Shell Oil Company Treating subsurface hydrocarbon containing formations and the systems, methods, and processes utilized

Similar Documents

Publication Publication Date Title
WO2015050410A1 (en) Passive safety equipment and nuclear power plant including same
WO2016013874A1 (en) Passive heat removal system and nuclear power plant including same
WO2018217001A1 (en) Cooling facility in a reactor vessel and electric power generation system
WO2024112086A1 (en) Light water reactor for oil sand mining having mid-loop applied thereto
WO2018212522A1 (en) External reactor vessel cooling and electric power generation system
WO2018066845A1 (en) Hybrid-type generation system
DE69409019T2 (en) Electricity power plant
WO2020180082A1 (en) Reversible water electrolysis system and operation method thereof
WO2016064109A1 (en) Stopped cooling system and nuclear facility having same
WO2018230897A1 (en) Cooling facility in a reactor and electric power generation system
CZ296884B6 (en) Process for cooling a feed injector of a gasification reactor and apparatus for cooling the feed injector of the gasification reactor
WO2020197120A1 (en) Reversible water electrolysis system and method for operating same
WO2023068454A1 (en) Biomass gasification system
WO2019203576A1 (en) Method for dismantling biological shielding concrete in pressurized water reactor type nuclear power plant
WO2022050822A1 (en) Ammonification device and method using plasma discharging in water
WO2016006785A1 (en) Combustor-independent fluidized bed indirect gasification system
KR20240078328A (en) Lightwater type power reactor for mining oil sand with mid-loop
WO2018021823A1 (en) Apparatus and method for cooling exhaust gas
WO2020050519A1 (en) Nuclear reactor long-term cooling system and nuclear plant having the same
WO2021251580A1 (en) Electro-osmotic sludge treatment system using machine learning, and control method therefor
WO2024039123A1 (en) Device and system for pyrolysis of waste
WO2019203577A1 (en) System and method for dismantling and decontaminating bio-protective concrete of pressurized water reactor type nuclear power plant
CN114790880A (en) System and method for steam heat injection in-situ pyrolysis of oil-rich coal
EP2644848A1 (en) Method for operating a combined cycle power plant and combined cycle power plant for conducting said method
KR20240078329A (en) Lightwater type power reactor for mining oil sand with mid-loop

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23895013

Country of ref document: EP

Kind code of ref document: A1