WO2024111021A1 - Indoor unit and air-conditioning device - Google Patents

Indoor unit and air-conditioning device Download PDF

Info

Publication number
WO2024111021A1
WO2024111021A1 PCT/JP2022/043003 JP2022043003W WO2024111021A1 WO 2024111021 A1 WO2024111021 A1 WO 2024111021A1 JP 2022043003 W JP2022043003 W JP 2022043003W WO 2024111021 A1 WO2024111021 A1 WO 2024111021A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
blower fan
indoor unit
air
heat exchanger
Prior art date
Application number
PCT/JP2022/043003
Other languages
French (fr)
Japanese (ja)
Inventor
弘恭 林
拓矢 寺本
奨太 細見
優人 浦辺
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/043003 priority Critical patent/WO2024111021A1/en
Publication of WO2024111021A1 publication Critical patent/WO2024111021A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans

Definitions

  • This disclosure relates to ceiling-embedded indoor units and air conditioners.
  • the heat exchanger and the fan located upstream of it are placed close to each other in order to reduce size.
  • the air blown out from the fan passes through the heat exchanger without being sufficiently diffused, causing unevenness in the air passing through the heat exchanger and reducing the heat exchange efficiency. Therefore, in order to suppress unevenness in the air passing through the heat exchanger, it has been proposed to expand the outlet of the scroll casing of the fan in the width direction of the heat exchanger (see, for example, Patent Document 1).
  • Patent Document 1 the outlet of the scroll casing of the fan is expanded in the width direction of the heat exchanger, so there is a problem in that the width direction of the housing must be expanded in accordance with the expansion of the outlet of the scroll casing in order to accommodate the fan.
  • This disclosure has been made to solve the problems described above, and aims to provide a ceiling-embedded indoor unit and air conditioner that suppresses uneven air circulation while minimizing expansion of the housing in the width direction.
  • the indoor unit is a ceiling-embedded type that includes a housing having a housing inlet and a housing outlet and embedded in a ceiling, a blower fan composed of a plurality of blades that draws air into the inside of the housing from the housing inlet and blows it out of the housing from the housing outlet, and a scroll casing that houses the blower fan, a fan motor that drives the blower fan, and a heat exchanger that exchanges heat between the air drawn into the inside of the housing from the housing inlet by the blower fan and a refrigerant, and the scroll casing
  • the casing has a scroll section that forms an air passage that converts the dynamic pressure of the airflow generated by the blower fan into static pressure, and a blowing section that forms an outlet through which the air blown out from the blower fan and passing through the scroll section is blown out.
  • the multiple multi-blade centrifugal blowers and the fan motor are arranged on the upstream side of the heat exchanger in the width direction, and the outer ends of the scroll sections of the scroll casing of the multi-blade centrifugal blowers on both ends of the multiple multi-blade centrifugal blowers are arranged within a range of ⁇ 5% of the width of the heat exchanger in the width direction from the end of the heat exchanger.
  • the air conditioning device according to the present disclosure is equipped with the indoor unit described above.
  • the outer ends of the scroll parts of the scroll casings of the multi-blade centrifugal blowers at both ends are positioned within a range of ⁇ 5% of the width of the heat exchanger in the width direction from the end of the heat exchanger. Therefore, the air blown out from each multi-blade centrifugal blower can pass all the way to the end of the heat exchanger, suppressing unevenness in the air.
  • the outlet of the scroll casing of the multi-blade centrifugal blower is not expanded in the width direction of the heat exchanger, it is possible to suppress expansion in the width direction of the housing that houses the multi-blade centrifugal blower.
  • FIG. 2 is a schematic perspective view of the indoor unit according to the first embodiment.
  • FIG. 2 is a schematic side view illustrating the internal configuration of the indoor unit according to the first embodiment.
  • FIG. 2 is a schematic plan view illustrating the internal configuration of the indoor unit according to the first embodiment.
  • 1 is an external view showing a schematic configuration of a multi-blade centrifugal blower of an indoor unit according to Embodiment 1, viewed in the axial direction of a rotation shaft.
  • FIG. FIG. 2 is a perspective view of a multi-blade centrifugal blower of the indoor unit according to the first embodiment.
  • FIG. 13 is a front view schematic diagram showing the wind speed distribution of a multi-blade centrifugal blower of a conventional indoor unit.
  • FIG. 1 is an external view showing a schematic configuration of a multi-blade centrifugal blower of an indoor unit according to Embodiment 1, viewed in the axial direction of a rotation shaft.
  • FIG. FIG. 2 is a perspective
  • FIG. 4 is a front view schematic diagram showing the wind speed distribution of the multi-blade centrifugal blower of the indoor unit according to the first embodiment.
  • FIG. 11 is a schematic plan view illustrating the internal configuration of an indoor unit according to a second embodiment.
  • FIG. 11 is a plan view of a blower fan of a multi-blade centrifugal blower of an indoor unit according to embodiment 3.
  • FIG. 13 is a schematic side view showing a multi-blade centrifugal blower of a conventional indoor unit.
  • FIG. 11 is a schematic side view showing a multi-blade centrifugal blower of an indoor unit according to embodiment 3.
  • FIG. 11 is a schematic perspective view showing a ceiling on which an indoor unit according to embodiment 4 is installed.
  • FIG. 13 is a diagram showing the configuration of an air conditioning device according to a fifth embodiment.
  • Fig. 1 is a perspective schematic diagram of an indoor unit 100 according to embodiment 1.
  • Fig. 2 is a side view schematic diagram illustrating the internal configuration of the indoor unit 100 according to embodiment 1.
  • Fig. 3 is a plan view schematic diagram illustrating the internal configuration of the indoor unit 100 according to embodiment 1.
  • the white arrows IR in Figs. 1 and 2 indicate air drawn into the housing inlet 3, and the white arrows OR indicate air blown out from the housing outlet 5.
  • the dashed arrows in Fig. 3 indicate the width direction WD and the depth direction DD of the housing 1.
  • the indoor unit 100 is a ceiling-embedded device that is installed in the attic or the like to heat, cool, and dehumidify/dehumidify a target space, for example, as an air conditioner, humidifier, dehumidifier, or refrigeration device.
  • a target space for example, as an air conditioner, humidifier, dehumidifier, or refrigeration device.
  • it will be described as an indoor unit of an air conditioner. Therefore, the gas will be described as air.
  • the indoor unit 100 includes a housing 1.
  • the housing 1 may have any shape. As an example, the housing 1 is assumed to be rectangular.
  • the housing 1 includes an upper surface 1a, a lower surface 1b, a front surface 1c, a rear surface 1d, a left side surface 1e, and a right side surface 1f.
  • a housing suction port 3 is provided on the rear surface 1d side of the bottom surface 1b of the housing 1.
  • a filter 4 is arranged in the housing suction port 3 to remove dust from the air to prevent the intrusion of dirt and other foreign matter.
  • the filter 4 is fixed and attached to the decorative panel that constitutes the bottom surface 1b so as to cover the housing suction port 3.
  • a housing air outlet 5 is provided on the front surface 1c side of the bottom surface 1b of the housing 1.
  • An outlet wall portion 5a is provided on the periphery of the housing air outlet 5.
  • the front surface front
  • the direction that is up and down when viewed from the front surface side is referred to as the height direction or up and down direction.
  • the left and right direction is referred to as the width direction or rotation axis direction
  • the front and rear direction is referred to as the front and rear direction or depth direction.
  • the housing suction inlet 3 and the housing outlet 5 are rectangular in shape as shown in FIG. 1. Note that the shapes of the housing suction inlet 3 and the housing outlet 5 are not limited to rectangular, and may be, for example, circular, oval, or other shapes.
  • the internal space of the housing 1 is divided by a partition plate 2 into an air blowing chamber 6, which is the space on the suction side of the scroll casing 40, and a heat exchange chamber 7, which is the space on the blowing side of the scroll casing 40.
  • the partition plate 2 divides the internal space of the housing 1 into the air blowing chamber 6, in which the multi-blade centrifugal blower 10 is disposed, and the heat exchange chamber 7, in which the heat exchanger 8 is disposed.
  • the housing 1 houses two multi-blade centrifugal blowers 10, a fan motor 20, a heat exchanger 8, and a power supply box 30.
  • the number of multi-blade centrifugal blowers 10 housed in the housing 1 is not limited to two, and may be three or more.
  • the heat exchanger 8 is disposed at a position that is an air flow path from the air outlet side of the multi-blade centrifugal blower 10 to the housing outlet 5.
  • the heat exchanger 8 adjusts at least one of the temperature and humidity of the air sent from the multi-blade centrifugal blower 10.
  • the heat exchanger 8 is assumed to be rectangular in shape to match the shape of the housing outlet 5.
  • the heat exchanger 8 in the first embodiment is not special, and a well-known one is used.
  • a heat transfer tube (not shown).
  • the fan motor 20 is supported by a motor support (not shown) fixed to the housing 1. As shown in FIG. 3, the fan motor 20 has a motor shaft 21 connected to the blower fan 11.
  • the motor shaft 21 is arranged to extend in the width direction WD of the housing 1, that is, to extend parallel to the upper surface 1a and the lower surface 1b of the housing 1.
  • the two blower fans 11 of each multi-blade centrifugal blower 10 are attached to the motor shaft 21 in parallel. Therefore, the two multi-blade centrifugal blowers 10 are lined up in the width direction WD.
  • the power supply box 30 is a box-shaped member having an approximately rectangular parallelepiped shape as a whole.
  • the power supply box 30 houses a board for driving the fan motor 20 and the like.
  • the power supply box 30 is disposed next to the two multi-blade centrifugal blowers 10, and as shown in Fig. 2, the power supply box 30 is disposed above the bottom of the scroll casing 40 when the housing 1 is viewed from the side.
  • the two-dot chain line Y1 in Fig. 2 indicates the position of the bottom of the scroll casing 40 of the multi-blade centrifugal blower 10
  • the two-dot chain line Y2 indicates the position of the bottom of the power supply box 30.
  • FIG. 4 is an external view showing a schematic configuration of the multi-blade centrifugal blower 10 of the indoor unit 100 according to the first embodiment, viewed in the axial direction of the rotation axis RA.
  • FIG. 5 is a perspective view of the multi-blade centrifugal blower 10 of the indoor unit 100 according to the first embodiment. Note that the solid arrow in FIG. 4 indicates the rotation direction R of the blower fan 11, and the dashed arrow indicates the circumferential direction CD of the blower fan 11. Also, FIG. 5 explains the external appearance of the multi-blade centrifugal blower 10, and the internal configuration of the multi-blade centrifugal blower 10 is shown in a simplified manner. The basic structure of the multi-blade centrifugal blower 10 will be explained using FIG. 4 and FIG. 5.
  • the multi-blade centrifugal blower 10 is a device that blows air by centrifugal force caused by the rotation of the blower fan 11.
  • the multi-blade centrifugal blower 10 is a double-suction type centrifugal blower in which air is sucked in from both sides of the scroll casing 40 in the axial direction of the imaginary rotation axis RA of the blower fan 11.
  • the multi-blade centrifugal blower 10 is not limited to a double-suction type centrifugal blower, and may be a single-suction type centrifugal blower in which air is sucked in from one side of the scroll casing 40 in the axial direction of the rotation axis RA.
  • the multi-blade centrifugal blower 10 has the blower fan 11 that generates an airflow, and the scroll casing 40 that houses the blower fan 11 inside.
  • the blower fan 11 is, for example, a sirocco fan, and is driven to rotate about a rotation axis RA by driving the fan motor 20.
  • gas outside the multi-blade centrifugal blower 10 passes through the suction port 45 formed in the scroll casing 40 and the fan suction port 11e of the blower fan 11, and is sucked into a space surrounded by the main plate 11a and the plurality of blades 11d.
  • the blower fan 11 rotates, the air sucked into the space surrounded by the main plate 11a and the plurality of blades 11d passes through the space between the blade 11d and the adjacent blade 11d, and is sent out radially outward from the blower fan 11.
  • the scroll casing 40 rectifies the air blown out from the blower fan 11, and includes a first side wall 40a1 and a second side wall 40a2 as the side walls 40a, as shown in Figures 4 and 5. That is, the scroll casing 40 has at least one side wall 40a equipped with a bellmouth 48 that forms an intake port 45 that communicates with a space formed by the main plate 11a and the multiple blades 11d.
  • the suction port 45 provided in the side wall 40a is formed by a bell mouth 48.
  • the bell mouth 48 forms the suction port 45 that connects the space outside the scroll casing 40 with the space formed by the main plate 11a and the multiple blades 11d.
  • the bell mouth 48 straightens the gas sucked into the blower fan 11 and allows it to flow into the fan suction port 11e of the blower fan 11.
  • the bell mouth 48 is formed so that the opening diameter gradually decreases from the outside to the inside of the scroll casing 40.
  • the bell mouth 48 is formed to extend in the axial direction of the rotation axis RA.
  • the inner peripheral end forming the inner edge of the bell mouth 48 is located inside the scroll casing 40. Air near the suction port 45 flows smoothly along the bell mouth 48 and efficiently flows from the suction port 45 into the blower fan 11.
  • the scroll casing 40 also has a scroll section 41 and a blowing section 42.
  • the scroll portion 41 forms an air passage that converts the dynamic pressure of the airflow generated by the blower fan 11 into static pressure.
  • the scroll portion 41 has an internal air passage that is expanded from the upstream side to the downstream side in the direction of the airflow in the rotation direction of the blower fan 11.
  • the scroll portion 41 has a side wall 41a in which an inlet 45 that covers the blower fan 11 and takes in air is formed from the axial direction of the rotation axis RA of the boss portion 11b constituting the blower fan 11, and a peripheral wall 41c that surrounds the blower fan 11 from the radial direction of the rotation axis RA of the boss portion 11b.
  • the boss portion 11b is formed with a shaft hole 11b1 into which the motor shaft 21 is inserted.
  • the boss portion 11b is formed, for example, in a cylindrical shape, but the shape of the boss portion 11b is not limited to a cylindrical shape.
  • the boss portion 11b may be formed in a columnar shape, for example, in a polygonal column shape.
  • the main plate 11a is rotated by a fan motor 20 via the boss portion 11b.
  • the scroll section 41 also has a tongue portion 43 that is positioned between the scroll section 41 and the blowing section 42 to form a curved surface and guides the airflow generated by the blower fan 11 to the blowing port 42a via the scroll section 41.
  • the radial direction of the rotation axis RA is the direction perpendicular to the axial direction of the rotation axis RA.
  • the internal space of the scroll section 41 which is formed by the peripheral wall 41c and the side wall 41a, is a space in which the air blown out from the blower fan 11 flows along the peripheral wall 41c.
  • the blowing section 42 forms an outlet 42a through which the air blown out from the blower fan 11 and passing through the scroll section 41 is blown out.
  • the blowing section 42 is formed of a hollow tube having a rectangular cross section perpendicular to the flow direction of the air flowing along the peripheral wall 41c.
  • the cross-sectional shape of the blowing section 42 is not limited to a rectangular shape.
  • the blowing section 42 forms a flow path that guides the air sent out from the blower fan 11 and flowing through the gap between the peripheral wall 41c and the blower fan 11 so as to be discharged to the outside of the scroll casing 40.
  • the scroll casing 40 has a tongue portion 43 that forms a curved surface at the start of the winding of the peripheral wall 41c close to the rotation axis RA of the blower fan 11 and guides the airflow generated by the blower fan 11 to the air outlet 42a.
  • the peripheral wall 41c includes the tongue portion 43 at the end on the blowing section 42 side.
  • the tongue portion 43 is formed at the start of the winding of the peripheral wall 41c that is formed in a spiral shape. In other words, the tongue portion 43 is provided at the start of the winding of the spiral shape and divides the flow of air blown out from the blower fan 11.
  • the tongue portion 43 is provided at the boundary with the diffuser plate 42c of the blowing section 42.
  • the diffuser plate 42c is formed integrally with the tongue portion 43, smoothly continues to the downstream end portion 41b of the peripheral wall 41c, and faces the extension plate 42b formed integrally with the peripheral wall 41c.
  • the diffuser plate 42c is formed at a predetermined angle with respect to the extension plate 42b so that the cross-sectional area of the flow path gradually expands along the direction in which the air flows in the blowing section 42, but this configuration is not limited to this.
  • the tongue portion 43 is formed to have a curved surface, and is formed in an arc shape when viewed from the axial direction of the rotation axis RA.
  • the tongue portion 43 is formed with a predetermined radius of curvature, and the peripheral wall 41c is smoothly connected to the diffuser plate 42c via the tongue portion 43.
  • the tongue portion 43 has approximately the same shape in the axial direction of the rotation axis RA when viewed from the blowing port 42a, and has a shape along the axial direction of the rotation axis RA.
  • the tongue portion 43 prevents air from flowing from the end of the spiral flow passage to the beginning of the spiral flow passage inside the scroll casing 40.
  • the tongue portion 43 is provided in the upstream part of the ventilation passage, and serves to separate the air flow in the rotation direction of the blower fan 11 from the air flow in the blowing direction from the downstream part of the ventilation passage toward the outlet 42a.
  • the static pressure of the air flowing into the outlet 42 increases as it passes through the scroll casing 40, and the air becomes high pressure. Therefore, the tongue portion 43 has the function of partitioning such pressure differences.
  • the tongue portion 43 has the function of guiding the air flowing into the outlet 42 to each flow passage through its curved surface.
  • the air flow when the blower fan 11 of the multi-blade centrifugal blower 10 is rotated will be described.
  • the fan motor 20 is driven and the blower fan 11 rotates.
  • the blower fan 11 rotates, for example, air from a room to be air-conditioned flows into the housing 1 from the housing inlet 3.
  • the air sucked into the housing 1 passes through the inlet 45 formed in the scroll casing 40, is guided by the bell mouth 48, and flows into the blower fan 11.
  • the air that flows into the blower fan 11 is blown out in the radial direction and outward direction of the blower fan 11.
  • the air blown out from the blower fan 11 passes through the inside of the scroll casing 40, and is then blown out from the outlet 42a formed in the scroll casing 40.
  • the blown out air passes through the heat exchanger 8.
  • heat exchanger 8 heat is exchanged and humidity is adjusted.
  • the air is then blown out of the housing 1 through the housing air outlet 5.
  • the two multi-blade centrifugal blowers 10 and the fan motor 20 are disposed upstream of the heat exchanger 8 in the width direction WD.
  • the outer ends of the scroll section 41 of the scroll casing 40 of the multi-blade centrifugal blowers 10 at both ends of the two multi-blade centrifugal blowers 10 are disposed within a range of ⁇ 5% of the width of the heat exchanger 8 in the width direction WD from the end of the heat exchanger 8.
  • the two-dot chain line X1L indicates the position of the outer end of the scroll section 41 of the scroll casing 40 of the left multi-blade centrifugal blower 10
  • the two-dot chain line X1R indicates the position of the outer end of the scroll section 41 of the scroll casing 40 of the right multi-blade centrifugal blower 10.
  • the range in which X1L should be located in the width direction is within a range of ⁇ 5% of the width of the heat exchanger 8, with the left end of the heat exchanger 8 as the reference (0%), the left side as +, and the center side of the heat exchanger 8 as -.
  • the range in which X1R should be positioned in the width direction is within ⁇ 5% of the width of the heat exchanger 8, with the right end of the heat exchanger 8 as the reference (0%), the right side as +, and the center of the heat exchanger 8 as -.
  • FIG. 6 is a front view schematic diagram showing the air velocity distribution of the multi-blade centrifugal blower 10 of a conventional indoor unit.
  • FIG. 7 is a front view schematic diagram showing the air velocity distribution of the multi-blade centrifugal blower 10 of the indoor unit 100 according to embodiment 1.
  • the two-dot chain line X1L indicates the position of the outer end of the scroll section 41 of the scroll casing 40 of the left multi-blade centrifugal blower 10
  • the two-dot chain line X1R indicates the position of the outer end of the scroll section 41 of the scroll casing 40 of the right multi-blade centrifugal blower 10.
  • the two-dot chain line X2L indicates the position of the left end of the heat exchanger 8
  • the two-dot chain line X2R indicates the position of the right end of the heat exchanger 8.
  • the outer ends of the scroll section 41 of the scroll casing 40 of the multi-blade centrifugal blowers 10 on both sides are arranged outside the range of ⁇ 5% of the width of the heat exchanger 8 in the width direction WD from the end of the heat exchanger 8.
  • the outer end (X1L) of the scroll section 41 of the scroll casing 40 of the left multi-blade centrifugal blower 10 is arranged to the right of the left end (X2L) of the heat exchanger 8 by 5% or more of the width of the heat exchanger 8.
  • the outer ends (X1L, X1R) of the scroll section 41 of the scroll casing 40 of the multi-blade centrifugal blowers 10 on both sides are arranged within the range of ⁇ 5% of the width of the heat exchanger 8 in the width direction WD from the end (X2L, X2R) of the heat exchanger 8.
  • the range of ⁇ 5% of the width of the heat exchanger 8 is within the range of manufacturing error of the indoor unit 100.
  • the outer ends of the scroll sections 41 of the scroll casings 40 of the multi-blade centrifugal blowers 10 on both sides are located on the negative side of the ends of the heat exchangers 8.
  • an air non-passage area is formed between the left end (X2L) of the heat exchanger 8 and the outer end (X1L) of the scroll section 41 of the scroll casing 40, and air does not pass through the left end side of the heat exchanger 8.
  • FIG. 7 in the indoor unit 100 according to the first embodiment, the space between the left end (X2L) of the heat exchanger 8 and the outer end (X1L) of the scroll section 41 of the scroll casing 40 is very narrow, and almost no air non-passage area is formed, so air passes through the left end side of the heat exchanger 8, and air passes uniformly throughout the heat exchanger 8. Therefore, as shown in FIG.
  • the outer ends of the scroll sections 41 of the scroll casing 40 of the multi-blade centrifugal blowers 10 on both sides are positioned within ⁇ 5% of the width of the heat exchanger 8 in the width direction WD from the end of the heat exchanger 8, that is, within the range of the manufacturing error of the indoor unit 100.
  • This allows the air blown out from each multi-blade centrifugal blower 10 to pass all the way to the end of the heat exchanger 8. This makes it possible to suppress air unevenness and exchange heat more efficiently than before, thereby reducing the required air volume.
  • the heat exchanger 8 is arranged so that its longitudinal direction is perpendicular to the bottom surface 1b of the housing 1 when viewed from the side.
  • the scroll casing 40 has a tongue portion 43, and the position of the tongue portion 43 is lower than the position of the rotation axis RA (or the motor shaft 21) of the blower fan 11.
  • the outlet 42a of the scroll casing 40 can be widened, so that the amount of air blown out from the multi-blade centrifugal blower 10 can be increased, and the heat exchange efficiency can be improved.
  • the power supply box 30 is disposed next to the two multi-blade centrifugal blowers 10. Furthermore, as shown in FIG. 2, the power supply box 30 is disposed above the bottom of the scroll casing 40 of the multi-blade centrifugal blower 10 when the housing 1 is viewed from the side. In this way, by disposing the power supply box 30 next to the two multi-blade centrifugal blowers 10, the multi-blade centrifugal blower 10 can be expanded in the depth direction DD, and the amount of air blown out from the multi-blade centrifugal blower 10 can be increased.
  • the scroll casing 40 is disposed at a position away from the housing suction port 3, so that a decrease in the amount of air drawn into the multi-blade centrifugal blower 10 can be suppressed.
  • the indoor unit 100 is a ceiling-embedded type that includes a housing 1 having a housing inlet 3 and a housing outlet 5 and embedded in the ceiling, a blower fan 11 composed of a plurality of blades 11d and blowing air drawn into the inside of the housing 1 from the housing inlet 3 to the outside of the housing 1 from the housing outlet 5, and a scroll casing 40 that houses the blower fan 11, a fan motor 20 that drives the blower fan 11, and a heat exchanger 8 that exchanges heat between the air drawn into the inside of the housing 1 from the housing inlet 3 by the blower fan 11 and the refrigerant.
  • the scroll casing 40 also has a scroll section 41 that forms an air passage that converts the dynamic pressure of the airflow generated by the blower fan 11 into static pressure, and an outlet section 42 that forms an outlet 42a through which air blown out from the blower fan 11 and passed through the scroll section 41 is blown out.
  • the multiple multi-blade centrifugal blowers 10 and fan motors 20 are arranged upstream of the heat exchanger 8 in the width direction WD, and the outer ends of the scroll sections 41 of the scroll casings 40 of the multi-blade centrifugal blowers 10 at both ends of the multiple multi-blade centrifugal blowers 10 are arranged within a range of ⁇ 5% of the width of the heat exchanger 8 in the width direction WD from the end of the heat exchanger 8.
  • the outer ends of the scroll sections 41 of the scroll casing 40 of the multi-blade centrifugal blowers 10 at both ends of the multiple multi-blade centrifugal blowers 10 are arranged within a range of ⁇ 5% of the width of the heat exchanger 8 in the width direction WD from the end of the heat exchanger 8. Therefore, the air blown out from each multi-blade centrifugal blower 10 can pass all the way to the end of the heat exchanger 8, and unevenness in the air can be suppressed.
  • the heat exchanger 8 is positioned so as to be perpendicular to the bottom surface 1b of the housing 1.
  • the heat exchanger 8 is arranged perpendicular to the bottom surface 1b of the housing 1, thereby minimizing the area in which drain water is stored, and therefore the width of the housing 1 in the depth direction DD can be reduced.
  • the scroll casing 40 is provided at the beginning of the spiral shape and has a tongue portion 43 that diverts the flow of air blown out from the blower fan 11.
  • the position of the tongue portion 43 is lower than the position of the rotation axis RA of the blower fan 11.
  • the position of the tongue portion 43 is set lower than the position of the rotation axis RA of the blower fan 11, so that the outlet 42a of the scroll casing 40 can be widened.
  • the amount of air blown out from the multi-blade centrifugal blower 10 can be increased, and the heat exchange efficiency can be improved.
  • the indoor unit 100 is also provided with a power supply box 30 that houses a circuit board that drives the fan motor 20.
  • the power supply box 30 is disposed next to the multiple multi-blade centrifugal fans 10, and is disposed above the bottom of the scroll casings 40 of the multiple multi-blade centrifugal fans 10 when the housing 1 is viewed from the side.
  • the multi-blade centrifugal blower 10 can be expanded in the depth direction DD, and the amount of air blown out from the multi-blade centrifugal blower 10 can be increased.
  • the power supply box 30 is arranged above the bottom of the scroll casing 40 in a side view. By doing so, even if the power supply box 30 is in an area that interferes with the housing suction port 3 in a plan view, the scroll casing 40 is arranged at a position away from the housing suction port 3, so that a reduction in the amount of air drawn into the multi-blade centrifugal blower 10 can be suppressed.
  • Embodiment 2 Hereinafter, the second embodiment will be described, but explanations of parts that overlap with the first embodiment will be omitted, and parts that are the same as or equivalent to the first embodiment will be given the same reference numerals.
  • FIG. 8 is a schematic plan view illustrating the internal configuration of the indoor unit 100 according to the second embodiment.
  • the dashed arrows in FIG. 8 indicate the width direction WD and the depth direction DD of the housing 1.
  • the power supply box 30 and the fan motor 20 are arranged in the width direction WD with the multiple multi-blade centrifugal fans 10, and are arranged on the same side (left side 1e in FIG. 8) as the multiple multi-blade centrifugal fans 10 when the housing 1 is viewed in plan.
  • the power supply box 30 and the fan motor 20 may be arranged on the left side 1e side or on the right side 1f side of the multiple multi-blade centrifugal fans 10 when the housing 1 is viewed in plan.
  • the fan motor 20 and the power supply box 30 are arranged side by side with the multiple multi-blade centrifugal fans 10 in the width direction WD, and are arranged on the same side as the multiple multi-blade centrifugal fans 10 when the housing 1 is viewed from above.
  • the indoor unit 100 can secure space in the width direction WD within the housing 1.
  • the multi-blade centrifugal fan 10 can be expanded in the width direction WD by the amount of the secured space, and the amount of air blown out from the multi-blade centrifugal fan 10 can be increased.
  • Embodiment 3 Hereinafter, the third embodiment will be described, but explanations of parts that overlap with the first and second embodiments will be omitted, and the same parts as or corresponding parts to the first and second embodiments will be given the same reference numerals.
  • the blower fan 11A of the multi-blade centrifugal blower 10 according to embodiment 3 is a turbo-in-scirocco fan.
  • FIG. 9 is a plan view of the blower fan 11A of the multi-blade centrifugal blower 10 of the indoor unit 100 according to embodiment 3.
  • FIG. 10 is a side view schematic diagram showing the multi-blade centrifugal blower 10 of a conventional indoor unit.
  • FIG. 11 is a side view schematic diagram showing the multi-blade centrifugal blower 10 of the indoor unit 100 according to embodiment 3.
  • the blades 11d are shown through the side plate 11c to show the shape of the blades 11d.
  • the solid arrow in FIG. 9 indicates the rotation direction R of the blower fan 11A, and the dashed arrow indicates the circumferential direction CD of the blower fan 11A.
  • the solid arrows in FIG. 10 and FIG. 11 indicate the wind blown out from the air outlet 42a of the scroll casing 40, and the length of the solid arrow indicates the wind speed.
  • the blade 11d of the blower fan 11A is inclined so that the leading edge 24a moves away from the rotation axis RA as it moves from the main plate 11a side to the side plate 11c side.
  • the leading edge 24a of the blade 11d is inclined so that the inner diameter of the blade increases as it moves from the main plate 11a side to the side plate 11c side.
  • the blade 11d has a turbo blade section 26 including an inner peripheral end 24 and configured as a backward blade, and a sirocco blade section 27 including an outer peripheral end 25 and configured as a forward blade.
  • the turbo blade section 26 is a portion that constitutes a backward blade on the inner peripheral side of each of the blades 11d in the radial direction of the blower fan 11A.
  • the sirocco blade section 27 is a portion that constitutes a forward blade on the outer peripheral side of each of the blades 11d in the radial direction of the blower fan 11A.
  • the blade 11d is formed integrally with the turbo blade section 26 and the sirocco blade section 27.
  • the blade 11d is formed integrally with the turbo blade section 26 and the sirocco blade section 27 in the radial direction of the blower fan 11A from the rotation axis RA toward the outer periphery.
  • the blade 11d has a turbo-in-sirocco blade shape with a turbo blade on the inner periphery side in the radial direction and a sirocco blade on the outer periphery side.
  • the blower fan 11A which is a turbo-in sirocco fan shown in FIG. 11, is more resistant to high pressure loss than the conventional sirocco fan 11B shown in FIG. 10, so even if the air path becomes highly pressurized due to the miniaturization of the housing 1, it is possible to suppress a decrease in performance.
  • the blower fan 11A which is a turbo-in sirocco fan shown in FIG. 11, has a smaller air speed blown out from the outlet 42a of the scroll casing 40, which reduces interference noise with the heat exchanger 8, which is positioned perpendicular to the bottom surface 1b of the housing 1.
  • the blower fan 11A is a turbo in-sirocco fan.
  • the turbo-in sirocco fan is more resistant to high pressure loss than the sirocco fan, so even if the air duct becomes high pressure loss due to the miniaturization of the housing 1, it is possible to suppress performance degradation.
  • the turbo-in sirocco fan has a lower air speed at the air outlet compared to the sirocco fan, so it is possible to reduce interference noise with the heat exchanger 8 that is arranged perpendicular to the bottom surface 1b of the housing 1.
  • Embodiment 4 Hereinafter, the fourth embodiment will be described, but explanations of parts that overlap with the first to third embodiments will be omitted, and the same parts as or corresponding parts to the first to third embodiments will be given the same reference numerals.
  • FIG. 12 is a schematic perspective view showing a ceiling 80 on which an indoor unit 100 according to embodiment 4 is installed.
  • the ceiling 80 of an office or the like is a grid ceiling in which multiple square panels 70 are laid out for ease of construction. Therefore, in the indoor unit 100 according to embodiment 4, the housing 1 is configured to fit within the size of one panel 70 of the grid ceiling, width W: 640 mm ⁇ depth D: 640 mm. In this way, by making the size of the housing 1 fit within the size of one panel 70 of the grid ceiling, construction can be improved. Also, by making the housing 1 square in plan view, loading efficiency during transportation of the indoor unit 100 can be improved.
  • the housing 1 is sized to fit within a width of 640 mm and a depth of 640 mm.
  • the size of the housing 1 is made to fit within the size of one panel 70 of the grid ceiling, thereby improving workability.
  • the housing 1 square in plan view, the loading efficiency during transportation of the indoor unit 100 can be improved.
  • Embodiment 5 Hereinafter, the fifth embodiment will be described, but explanations of parts that overlap with the first to fourth embodiments will be omitted, and the same parts as or corresponding parts to the first to fourth embodiments will be given the same reference numerals.
  • FIG 13 is a diagram showing the configuration of an air conditioner according to embodiment 5.
  • the air conditioner according to embodiment 4 comprises an indoor unit 100 and an outdoor unit 200, which are connected by refrigerant piping to form a refrigerant circuit and circulate the refrigerant.
  • the piping through which gaseous refrigerant (gas refrigerant) flows is referred to as gas piping 300
  • the piping through which liquid refrigerant (liquid refrigerant; it may be a gas-liquid two-phase refrigerant) flows is referred to as liquid piping 400.
  • the indoor unit 100 has a heat exchanger 8 and a multi-blade centrifugal blower 10.
  • the heat exchanger 8 exchanges heat between the refrigerant and the air.
  • the heat exchanger 8 functions as a condenser, exchanging heat between the refrigerant flowing in from the gas piping 300 and the air, condensing and liquefying the refrigerant (or converting it into a gas-liquid two-phase state), and discharging it to the liquid piping 400 side.
  • the heat exchanger 8 functions as an evaporator, exchanging heat between the refrigerant that has been brought to a low pressure state by the throttling device 205, for example, and the air, causing the refrigerant to remove heat from the air and evaporate it, and discharging it to the gas piping 300 side.
  • the multi-blade centrifugal blower 10 rotates at a speed determined, for example, by the user's air volume setting.
  • the outdoor unit 200 has a compressor 201, a flow path switching device 202, an outdoor heat exchanger 203, an outdoor blower 204, and a throttling device 205.
  • Compressor 201 compresses the sucked refrigerant and discharges it.
  • compressor 201 is equipped with an inverter device or the like, and is capable of finely varying the capacity of compressor 201 (the amount of refrigerant pumped out per unit time) by arbitrarily changing the operating frequency.
  • Flow path switching device 202 is, for example, a four-way valve, and switches the flow of refrigerant between cooling operation and heating operation based on instructions from a control device (not shown).
  • the outdoor heat exchanger 203 also exchanges heat between the refrigerant and air (outdoor air). For example, during heating operation, it functions as an evaporator, exchanging heat between the low-pressure refrigerant flowing in from the liquid piping 400 and the air, evaporating and vaporizing the refrigerant. During cooling operation, it functions as a condenser, exchanging heat between the refrigerant compressed in the compressor 201 flowing in from the flow path switching device 202 side and the air, condensing and liquefying the refrigerant.
  • the outdoor heat exchanger 203 is provided with an outdoor blower 204.
  • the multi-blade centrifugal blower 10 according to the first to fourth embodiments may be used for the outdoor blower 204.
  • the throttle device 205 is, for example, an expansion valve, and adjusts the pressure of the refrigerant by changing the opening degree.
  • the air conditioning apparatus of embodiment 5 has the indoor unit 100 described in embodiments 1 to 4, and therefore can achieve the same effects as embodiments 1 to 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

This indoor unit is a ceiling embedded type and is provided with: a housing that has a housing suction port and a housing blowout port and is embedded in a ceiling; a plurality of multi-blade centrifugal blowers having a blower fan that consists of a plurality of blades and blows air sucked in the housing through the housing suction port to the outside of the housing through the housing blowout port, and a scroll casing that houses the blower fan; a fan motor that drives the blower fan; and a heat exchanger that performs heat exchanging between a refrigerant and air sucked in the housing by the blower fan through the housing suction port, wherein the scroll casing has a scroll part that forms an airflow passage for converting the dynamic pressure of airflow generated by the blower fan into static pressure and a blowout part that forms a blowout port through which air that has been blown out from the blower fan and passed through the scroll part is blown out, the plurality of multi-blade centrifugal blowers and the fan motor are arranged along the width direction and on the upstream side of the heat exchanger, and in the multi-blade centrifugal blowers on both end sides among the plurality of multi-blade centrifugal blowers, the outer end of the scroll part of the scroll casing is positioned within ±5% of the width of the heat exchanger in the width direction from the end of the heat exchanger.

Description

室内機および空気調和装置Indoor unit and air conditioner
 本開示は、天井埋込型の室内機および空気調和装置に関するものである。 This disclosure relates to ceiling-embedded indoor units and air conditioners.
 従来の天井埋込型の室内機において、小型化するために、熱交換器とその上流側に位置するファンとを接近させて配置したものがある。しかしながら、このような室内機では、ファンから吹き出された空気が十分に拡散されずに熱交換器を通過するため、熱交換器を通過する空気のムラが生じ、熱交換効率が低下してしまう。そこで、熱交換器を通過する空気のムラを抑制するため、ファンのスクロールケーシングの吹出口を熱交換器の幅方向に拡大させたものが提案されている(例えば、特許文献1参照)。 In some conventional ceiling-embedded indoor units, the heat exchanger and the fan located upstream of it are placed close to each other in order to reduce size. However, in such indoor units, the air blown out from the fan passes through the heat exchanger without being sufficiently diffused, causing unevenness in the air passing through the heat exchanger and reducing the heat exchange efficiency. Therefore, in order to suppress unevenness in the air passing through the heat exchanger, it has been proposed to expand the outlet of the scroll casing of the fan in the width direction of the heat exchanger (see, for example, Patent Document 1).
特開平5-99444号公報Japanese Patent Application Laid-Open No. 5-99444
 特許文献1は、ファンのスクロールケーシングの吹出口を熱交換器の幅方向に拡大させているため、ファンを収めるためにスクロールケーシングの吹出口の拡大に応じて筐体の幅方向を拡大しなくてはならないという課題があった。 In Patent Document 1, the outlet of the scroll casing of the fan is expanded in the width direction of the heat exchanger, so there is a problem in that the width direction of the housing must be expanded in accordance with the expansion of the outlet of the scroll casing in order to accommodate the fan.
 本開示は、以上のような課題を解決するためになされたもので、空気のムラを抑制しつつ、筐体の幅方向の拡大を抑制した天井埋込型の室内機および空気調和装置を提供することを目的としている。 This disclosure has been made to solve the problems described above, and aims to provide a ceiling-embedded indoor unit and air conditioner that suppresses uneven air circulation while minimizing expansion of the housing in the width direction.
 本開示に係る室内機は、筐体吸込口および筐体吹出口を有し、天井に埋め込まれる筐体と、複数枚の翼で構成され、前記筐体吸込口から前記筐体の内部に吸い込んだ空気を前記筐体吹出口から前記筐体の外部に吹き出す送風機用ファン、および、前記送風機用ファンを収納するスクロールケーシングと、を有する複数の多翼遠心送風機と、前記送風機用ファンを駆動するファンモータと、前記送風機用ファンによって前記筐体吸込口から前記筐体の内部に吸い込まれた空気と冷媒との間で熱交換を行う熱交換器と、を備えた天井埋込型であって、前記スクロールケーシングは、前記送風機用ファンが発生させた気流の動圧を静圧に変換する風路を形成するスクロール部と、前記送風機用ファンから吹き出され、前記スクロール部を通過した空気が吹き出される吹出口を形成する吹出部と、を有し、前記複数の多翼遠心送風機および前記ファンモータは、前記熱交換器の上流側かつ幅方向に配置されており、前記複数の多翼遠心送風機の内、両端側の多翼遠心送風機の前記スクロールケーシングの前記スクロール部の外側の端部は、前記熱交換器の端部から幅方向において、前記熱交換器の幅の±5%の範囲内に配置されているものである。 The indoor unit according to the present disclosure is a ceiling-embedded type that includes a housing having a housing inlet and a housing outlet and embedded in a ceiling, a blower fan composed of a plurality of blades that draws air into the inside of the housing from the housing inlet and blows it out of the housing from the housing outlet, and a scroll casing that houses the blower fan, a fan motor that drives the blower fan, and a heat exchanger that exchanges heat between the air drawn into the inside of the housing from the housing inlet by the blower fan and a refrigerant, and the scroll casing The casing has a scroll section that forms an air passage that converts the dynamic pressure of the airflow generated by the blower fan into static pressure, and a blowing section that forms an outlet through which the air blown out from the blower fan and passing through the scroll section is blown out. The multiple multi-blade centrifugal blowers and the fan motor are arranged on the upstream side of the heat exchanger in the width direction, and the outer ends of the scroll sections of the scroll casing of the multi-blade centrifugal blowers on both ends of the multiple multi-blade centrifugal blowers are arranged within a range of ±5% of the width of the heat exchanger in the width direction from the end of the heat exchanger.
 また、本開示に係る空気調和装置は、上記の室内機を備えたものである。 The air conditioning device according to the present disclosure is equipped with the indoor unit described above.
 本開示に係る室内機および空気調和装置によれば、複数の多翼遠心送風機の内、両端側の多翼遠心送風機のスクロールケーシングのスクロール部の外側の端部は、熱交換器の端部から幅方向において、熱交換器の幅の±5%の範囲内に配置されている。そのため、各多翼遠心送風機から吹出された空気を熱交換器の端部まで全体的に通過させることができ、空気のムラを抑制することができる。また、多翼遠心送風機のスクロールケーシングの吹出口を熱交換器の幅方向に拡大させていないため、多翼遠心送風機を収める筐体の幅方向の拡大を抑制することができる。 According to the indoor unit and air conditioner disclosed herein, of the multiple multi-blade centrifugal blowers, the outer ends of the scroll parts of the scroll casings of the multi-blade centrifugal blowers at both ends are positioned within a range of ±5% of the width of the heat exchanger in the width direction from the end of the heat exchanger. Therefore, the air blown out from each multi-blade centrifugal blower can pass all the way to the end of the heat exchanger, suppressing unevenness in the air. In addition, because the outlet of the scroll casing of the multi-blade centrifugal blower is not expanded in the width direction of the heat exchanger, it is possible to suppress expansion in the width direction of the housing that houses the multi-blade centrifugal blower.
実施の形態1に係る室内機の斜視模式図である。FIG. 2 is a schematic perspective view of the indoor unit according to the first embodiment. 実施の形態1に係る室内機における内部構成を説明する側面視模式図である。FIG. 2 is a schematic side view illustrating the internal configuration of the indoor unit according to the first embodiment. 実施の形態1に係る室内機における内部構成を説明する平面視模式図である。FIG. 2 is a schematic plan view illustrating the internal configuration of the indoor unit according to the first embodiment. 実施の形態1に係る室内機の多翼遠心送風機を回転軸の軸方向に見た構成を模式的に示す外観図である。1 is an external view showing a schematic configuration of a multi-blade centrifugal blower of an indoor unit according to Embodiment 1, viewed in the axial direction of a rotation shaft. FIG. 実施の形態1に係る室内機の多翼遠心送風機の斜視図である。FIG. 2 is a perspective view of a multi-blade centrifugal blower of the indoor unit according to the first embodiment. 従来の室内機の多翼遠心送風機の風速分布を示す正面視模式図である。FIG. 13 is a front view schematic diagram showing the wind speed distribution of a multi-blade centrifugal blower of a conventional indoor unit. 実施の形態1に係る室内機の多翼遠心送風機の風速分布を示す正面視模式図である。FIG. 4 is a front view schematic diagram showing the wind speed distribution of the multi-blade centrifugal blower of the indoor unit according to the first embodiment. 実施の形態2に係る室内機における内部構成を説明する平面視模式図である。FIG. 11 is a schematic plan view illustrating the internal configuration of an indoor unit according to a second embodiment. 実施の形態3に係る室内機の多翼遠心送風機の送風機用ファンの平面図である。FIG. 11 is a plan view of a blower fan of a multi-blade centrifugal blower of an indoor unit according to embodiment 3. 従来の室内機の多翼遠心送風機を示す側面視模式図である。FIG. 13 is a schematic side view showing a multi-blade centrifugal blower of a conventional indoor unit. 実施の形態3に係る室内機の多翼遠心送風機を示す側面視模式図である。FIG. 11 is a schematic side view showing a multi-blade centrifugal blower of an indoor unit according to embodiment 3. 実施の形態4に係る室内機が設置される天井を示す斜視模式図である。FIG. 11 is a schematic perspective view showing a ceiling on which an indoor unit according to embodiment 4 is installed. 実施の形態5に係る空気調和装置の構成を示す図である。FIG. 13 is a diagram showing the configuration of an air conditioning device according to a fifth embodiment.
 以下、実施の形態に係る室内機を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、これは説明のためのものであって、これらの用語は本開示を限定するものではない。これらの方向を示す用語は、特に明示しない限り、室内機を正面視した場合の方向を意味している。また、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。 Below, an indoor unit according to an embodiment will be described with reference to the drawings. Note that the present disclosure is not limited to the embodiments described below. Furthermore, the size relationships of the components in the drawings may differ from those in reality. Furthermore, in the following description, terms indicating directions (e.g., "up," "down," "right," "left," "front," "rear," etc.) are used as appropriate to facilitate understanding, but these terms are for the purpose of explanation and do not limit the present disclosure. Unless otherwise specified, these directional terms refer to the directions when the indoor unit is viewed from the front. Furthermore, in each drawing, items with the same reference numerals are the same or equivalent, and this is common throughout the entire specification.
 実施の形態1.
 図1は、実施の形態1に係る室内機100の斜視模式図である。また、図2は、実施の形態1に係る室内機100における内部構成を説明する側面視模式図である。図3は、実施の形態1に係る室内機100における内部構成を説明する平面視模式図である。なお、図1および図2の白抜き矢印IRは、筐体吸込口3に吸入される空気を示しており、白抜き矢印ORは、筐体吹出口5から吹き出される空気を示している。また、図3の破線矢印は、筐体1の幅方向WDおよび奥行き方向DDを示している。
Embodiment 1.
Fig. 1 is a perspective schematic diagram of an indoor unit 100 according to embodiment 1. Fig. 2 is a side view schematic diagram illustrating the internal configuration of the indoor unit 100 according to embodiment 1. Fig. 3 is a plan view schematic diagram illustrating the internal configuration of the indoor unit 100 according to embodiment 1. Note that the white arrows IR in Figs. 1 and 2 indicate air drawn into the housing inlet 3, and the white arrows OR indicate air blown out from the housing outlet 5. Also, the dashed arrows in Fig. 3 indicate the width direction WD and the depth direction DD of the housing 1.
 実施の形態1に係る室内機100は、例えば、空気調和装置、加湿装置、除湿装置、あるいは冷凍装置などとして、対象の空間を暖房、冷房、および加除湿などをするために、天井裏などに設置される天井埋込型の装置である。ここでは、空気調和装置の室内機であるものとして説明する。したがって、気体は空気であるものとして説明する。 The indoor unit 100 according to the first embodiment is a ceiling-embedded device that is installed in the attic or the like to heat, cool, and dehumidify/dehumidify a target space, for example, as an air conditioner, humidifier, dehumidifier, or refrigeration device. Here, it will be described as an indoor unit of an air conditioner. Therefore, the gas will be described as air.
 図1に示すように、実施の形態1に係る室内機100は、筐体1を備えている。筐体1の形状は、任意の形状を採用することができる。一例として、ここでは、筐体1が、直方体状であるものとする。筐体1は、上面1a、下面1b、前面1c、背面1d、左側面1e、および右側面1fを含む。 As shown in FIG. 1, the indoor unit 100 according to the first embodiment includes a housing 1. The housing 1 may have any shape. As an example, the housing 1 is assumed to be rectangular. The housing 1 includes an upper surface 1a, a lower surface 1b, a front surface 1c, a rear surface 1d, a left side surface 1e, and a right side surface 1f.
 筐体1の下面1bの背面1d側には、筐体吸込口3が設けられている。筐体吸込口3には、ゴミなどの侵入防止用に空気中の塵埃を取り除くフィルター4が配置されている。フィルター4は、筐体吸込口3を覆うように、下面1bを構成する化粧パネルに固定されて取り付けられている。筐体1の下面1bの前面1c側には、筐体吹出口5が設けられている。筐体吹出口5の周縁部には、出口壁部5aが設けられている。ここで、室内機100において、筐体1の前面1cが設けられた面を正面(前面)とする。そして、正面側から見て上下となる方向を、高さ方向または上下方向とする。また、左右となる方向を、幅方向または回転軸方向とし、前後となる方向を、前後方向または奥行き方向とする。 A housing suction port 3 is provided on the rear surface 1d side of the bottom surface 1b of the housing 1. A filter 4 is arranged in the housing suction port 3 to remove dust from the air to prevent the intrusion of dirt and other foreign matter. The filter 4 is fixed and attached to the decorative panel that constitutes the bottom surface 1b so as to cover the housing suction port 3. A housing air outlet 5 is provided on the front surface 1c side of the bottom surface 1b of the housing 1. An outlet wall portion 5a is provided on the periphery of the housing air outlet 5. Here, in the indoor unit 100, the surface on which the front surface 1c of the housing 1 is provided is referred to as the front surface (front). The direction that is up and down when viewed from the front surface side is referred to as the height direction or up and down direction. The left and right direction is referred to as the width direction or rotation axis direction, and the front and rear direction is referred to as the front and rear direction or depth direction.
 筐体吸込口3および筐体吹出口5の形状は、図1に示すように矩形状に形成されている。なお、筐体吸込口3および筐体吹出口5の形状は、矩形状に限定されるものではなく、例えば、円形状、オーバル形状などでもよく、他の形状であってもよい。 The housing suction inlet 3 and the housing outlet 5 are rectangular in shape as shown in FIG. 1. Note that the shapes of the housing suction inlet 3 and the housing outlet 5 are not limited to rectangular, and may be, for example, circular, oval, or other shapes.
 筐体1の内部空間は、図2に示すように、スクロールケーシング40の吸い込み側の空間である送風室6と、スクロールケーシング40の吹き出し側の空間である熱交換室7とが、仕切板2によって隔てられている。仕切板2は、筐体1の内部空間を多翼遠心送風機10が配置される送風室6と、熱交換器8が配置される熱交換室7とに隔てている。 As shown in FIG. 2, the internal space of the housing 1 is divided by a partition plate 2 into an air blowing chamber 6, which is the space on the suction side of the scroll casing 40, and a heat exchange chamber 7, which is the space on the blowing side of the scroll casing 40. The partition plate 2 divides the internal space of the housing 1 into the air blowing chamber 6, in which the multi-blade centrifugal blower 10 is disposed, and the heat exchange chamber 7, in which the heat exchanger 8 is disposed.
 筐体1内には、図3に示すように、二つの多翼遠心送風機10、ファンモータ20、熱交換器8、および電源ボックス30が収容されている。なお、筐体1内に収容される多翼遠心送風機10は、二つに限定されるものではなく、三つ以上の複数でもよい。熱交換器8は、図2に示すように、多翼遠心送風機10の空気流出側から筐体吹出口5までの空気の流路となる位置に配置される。熱交換器8は、多翼遠心送風機10から送られる空気の温度および湿度の少なくとも一方を調整する。ここで、熱交換器8は、筐体吹出口5の形状に合わせて矩形状であるものとする。実施の形態1における熱交換器8は、特別なものではなく、周知のものが用いられている。例えば、フィンアンドチューブ型の熱交換器の場合、熱交換器8を通過する空気と伝熱管(図示せず)を通過する冷媒とを熱交換させて、空気の温度、湿度の少なくとも一方を調整する。 As shown in FIG. 3, the housing 1 houses two multi-blade centrifugal blowers 10, a fan motor 20, a heat exchanger 8, and a power supply box 30. The number of multi-blade centrifugal blowers 10 housed in the housing 1 is not limited to two, and may be three or more. As shown in FIG. 2, the heat exchanger 8 is disposed at a position that is an air flow path from the air outlet side of the multi-blade centrifugal blower 10 to the housing outlet 5. The heat exchanger 8 adjusts at least one of the temperature and humidity of the air sent from the multi-blade centrifugal blower 10. Here, the heat exchanger 8 is assumed to be rectangular in shape to match the shape of the housing outlet 5. The heat exchanger 8 in the first embodiment is not special, and a well-known one is used. For example, in the case of a fin-and-tube type heat exchanger, at least one of the temperature and humidity of the air is adjusted by heat exchange between the air passing through the heat exchanger 8 and the refrigerant passing through a heat transfer tube (not shown).
(ファンモータ20)
 ファンモータ20は、筐体1に固定されたモータサポート(図示せず)によって支持されている。ファンモータ20は、図3に示すように、送風機用ファン11と接続されるモータシャフト21を有する。モータシャフト21は、筐体1の幅方向WDに延びるように、つまり筐体1の上面1aおよび下面1bに対して平行に延びるように配置されている。各多翼遠心送風機10が有する二つの送風機用ファン11が、並列に、モータシャフト21に取り付けられている。したがって、二つの多翼遠心送風機10は、幅方向WDに並んでいる。
(Fan motor 20)
The fan motor 20 is supported by a motor support (not shown) fixed to the housing 1. As shown in FIG. 3, the fan motor 20 has a motor shaft 21 connected to the blower fan 11. The motor shaft 21 is arranged to extend in the width direction WD of the housing 1, that is, to extend parallel to the upper surface 1a and the lower surface 1b of the housing 1. The two blower fans 11 of each multi-blade centrifugal blower 10 are attached to the motor shaft 21 in parallel. Therefore, the two multi-blade centrifugal blowers 10 are lined up in the width direction WD.
(電源ボックス30)
 電源ボックス30は、全体として略直方体の形状を有する箱形の部材である。電源ボックス30には、ファンモータ20を駆動させる基板などが収容されている。電源ボックス30は、図3に示すように、二つの多翼遠心送風機10の隣に配置されており、かつ、図2に示すように、筐体1を側面視してスクロールケーシング40の底部よりも上側に配置されている。ここで、図2の二点鎖線Y1は、多翼遠心送風機10のスクロールケーシング40の底部の位置を示しており、二点鎖線Y2は、電源ボックス30の底部の位置を示している。
(Power supply box 30)
The power supply box 30 is a box-shaped member having an approximately rectangular parallelepiped shape as a whole. The power supply box 30 houses a board for driving the fan motor 20 and the like. As shown in Fig. 3, the power supply box 30 is disposed next to the two multi-blade centrifugal blowers 10, and as shown in Fig. 2, the power supply box 30 is disposed above the bottom of the scroll casing 40 when the housing 1 is viewed from the side. Here, the two-dot chain line Y1 in Fig. 2 indicates the position of the bottom of the scroll casing 40 of the multi-blade centrifugal blower 10, and the two-dot chain line Y2 indicates the position of the bottom of the power supply box 30.
 図4は、実施の形態1に係る室内機100の多翼遠心送風機10を回転軸RAの軸方向に見た構成を模式的に示す外観図である。図5は、実施の形態1に係る室内機100の多翼遠心送風機10の斜視図である。なお、図4の実線矢印は、送風機用ファン11の回転方向Rを示し、破線矢印は、送風機用ファン11の周方向CDを示している。また、図5は、多翼遠心送風機10の外観を説明するものであり、多翼遠心送風機10の内部の構成は簡略化して示している。図4および図5を用いて、多翼遠心送風機10の基本的な構造について説明する。 FIG. 4 is an external view showing a schematic configuration of the multi-blade centrifugal blower 10 of the indoor unit 100 according to the first embodiment, viewed in the axial direction of the rotation axis RA. FIG. 5 is a perspective view of the multi-blade centrifugal blower 10 of the indoor unit 100 according to the first embodiment. Note that the solid arrow in FIG. 4 indicates the rotation direction R of the blower fan 11, and the dashed arrow indicates the circumferential direction CD of the blower fan 11. Also, FIG. 5 explains the external appearance of the multi-blade centrifugal blower 10, and the internal configuration of the multi-blade centrifugal blower 10 is shown in a simplified manner. The basic structure of the multi-blade centrifugal blower 10 will be explained using FIG. 4 and FIG. 5.
 多翼遠心送風機10は、送風機用ファン11の回転による遠心力で風を送る機器である。多翼遠心送風機10は、送風機用ファン11の仮想の回転軸RAの軸方向においてスクロールケーシング40の両側から空気が吸い込まれる両吸込型の遠心送風機である。なお、多翼遠心送風機10は、両吸込型の遠心送風機に限定されるものではなく、回転軸RAの軸方向においてスクロールケーシング40の片側から空気が吸い込まれる片吸込型の遠心送風機でもよい。多翼遠心送風機10は、図4および図5に示すように、気流を発生させる送風機用ファン11と、送風機用ファン11を内部に収納するスクロールケーシング40とを有する。 The multi-blade centrifugal blower 10 is a device that blows air by centrifugal force caused by the rotation of the blower fan 11. The multi-blade centrifugal blower 10 is a double-suction type centrifugal blower in which air is sucked in from both sides of the scroll casing 40 in the axial direction of the imaginary rotation axis RA of the blower fan 11. Note that the multi-blade centrifugal blower 10 is not limited to a double-suction type centrifugal blower, and may be a single-suction type centrifugal blower in which air is sucked in from one side of the scroll casing 40 in the axial direction of the rotation axis RA. As shown in Figures 4 and 5, the multi-blade centrifugal blower 10 has the blower fan 11 that generates an airflow, and the scroll casing 40 that houses the blower fan 11 inside.
(送風機用ファン11)
 送風機用ファン11は、例えばシロッコファンであり、ファンモータ20が駆動することにより、回転軸RAを中心に回転駆動される。送風機用ファン11が回転することで、多翼遠心送風機10の外部の気体が、スクロールケーシング40に形成された吸込口45と、送風機用ファン11のファン吸込口11eとを通り、主板11aと複数枚の翼11dとで囲まれる空間に吸い込まれる。そして、送風機用ファン11が回転することで、主板11aと複数枚の翼11dとで囲まれる空間に吸込まれた空気が、翼11dと隣接する翼11dとの間の空間を通り、送風機用ファン11の径方向外方に送り出される。
(Blower fan 11)
The blower fan 11 is, for example, a sirocco fan, and is driven to rotate about a rotation axis RA by driving the fan motor 20. When the blower fan 11 rotates, gas outside the multi-blade centrifugal blower 10 passes through the suction port 45 formed in the scroll casing 40 and the fan suction port 11e of the blower fan 11, and is sucked into a space surrounded by the main plate 11a and the plurality of blades 11d. When the blower fan 11 rotates, the air sucked into the space surrounded by the main plate 11a and the plurality of blades 11d passes through the space between the blade 11d and the adjacent blade 11d, and is sent out radially outward from the blower fan 11.
(スクロールケーシング40)
 スクロールケーシング40は、送風機用ファン11から吹き出された空気を整流するものであり、図4および図5に示すように、側壁40aとして、第1側壁40a1と、第2側壁40a2とを含んでいる。すなわち、スクロールケーシング40は、主板11aと複数枚の翼11dとによって形成される空間に連通する吸込口45を形成するベルマウス48を備えた少なくとも1つの側壁40aを有する。
(Scroll casing 40)
The scroll casing 40 rectifies the air blown out from the blower fan 11, and includes a first side wall 40a1 and a second side wall 40a2 as the side walls 40a, as shown in Figures 4 and 5. That is, the scroll casing 40 has at least one side wall 40a equipped with a bellmouth 48 that forms an intake port 45 that communicates with a space formed by the main plate 11a and the multiple blades 11d.
 側壁40aに設けられた吸込口45は、ベルマウス48によって形成されている。すなわち、ベルマウス48は、スクロールケーシング40の外部の空間と、主板11aと複数枚の翼11dとによって形成される空間とを連通させる吸込口45を形成している。ベルマウス48は、送風機用ファン11に吸入される気体を整流して送風機用ファン11のファン吸込口11eに流入させる。 The suction port 45 provided in the side wall 40a is formed by a bell mouth 48. In other words, the bell mouth 48 forms the suction port 45 that connects the space outside the scroll casing 40 with the space formed by the main plate 11a and the multiple blades 11d. The bell mouth 48 straightens the gas sucked into the blower fan 11 and allows it to flow into the fan suction port 11e of the blower fan 11.
 ベルマウス48は、スクロールケーシング40の外部から内部に向けて開口径が次第に小さくなるように形成されている。ベルマウス48は、回転軸RAの軸方向に延びるように形成されている。ベルマウス48の内縁を形成する内周端部は、スクロールケーシング40の内部に位置している。吸込口45近傍の空気は、ベルマウス48に沿って滑らかに流動し、吸込口45から送風機用ファン11に効率よく流入する。また、スクロールケーシング40は、スクロール部41と、吹出部42と、を有する。 The bell mouth 48 is formed so that the opening diameter gradually decreases from the outside to the inside of the scroll casing 40. The bell mouth 48 is formed to extend in the axial direction of the rotation axis RA. The inner peripheral end forming the inner edge of the bell mouth 48 is located inside the scroll casing 40. Air near the suction port 45 flows smoothly along the bell mouth 48 and efficiently flows from the suction port 45 into the blower fan 11. The scroll casing 40 also has a scroll section 41 and a blowing section 42.
(スクロール部41)
 スクロール部41は、送風機用ファン11が発生させた気流の動圧を静圧に変換する風路を形成する。スクロール部41は、送風機用ファン11の回転方向において、気流の流れる方向の上流側から下流側に向かって内部の風路が拡大されている。スクロール部41は、送風機用ファン11を構成するボス部11bの回転軸RAの軸方向から送風機用ファン11を覆い空気を取り込む吸込口45が形成された側壁41aと、送風機用ファン11をボス部11bの回転軸RAの径方向から送風機用ファン11を囲む周壁41cと、を有する。ボス部11bには、モータシャフト21が挿入される軸穴11b1が形成されている。ボス部11bは、例えば、円柱形状に形成されているが、ボス部11bの形状は円柱形状に限定されるものではない。ボス部11bは、柱状に形成されていればよく、例えば多角柱状に形成されてもよい。主板11aは、ボス部11bを介してファンモータ20によって回転駆動される。
(Scrolling unit 41)
The scroll portion 41 forms an air passage that converts the dynamic pressure of the airflow generated by the blower fan 11 into static pressure. The scroll portion 41 has an internal air passage that is expanded from the upstream side to the downstream side in the direction of the airflow in the rotation direction of the blower fan 11. The scroll portion 41 has a side wall 41a in which an inlet 45 that covers the blower fan 11 and takes in air is formed from the axial direction of the rotation axis RA of the boss portion 11b constituting the blower fan 11, and a peripheral wall 41c that surrounds the blower fan 11 from the radial direction of the rotation axis RA of the boss portion 11b. The boss portion 11b is formed with a shaft hole 11b1 into which the motor shaft 21 is inserted. The boss portion 11b is formed, for example, in a cylindrical shape, but the shape of the boss portion 11b is not limited to a cylindrical shape. The boss portion 11b may be formed in a columnar shape, for example, in a polygonal column shape. The main plate 11a is rotated by a fan motor 20 via the boss portion 11b.
 また、スクロール部41は、吹出部42との間に位置して曲面を構成し、送風機用ファン11が発生させた気流を、スクロール部41を介して吹出口42aに導く舌部43を有する。なお、回転軸RAの径方向とは、回転軸RAの軸方向に対して垂直な方向である。周壁41cおよび側壁41aにより構成されるスクロール部41の内部空間は、送風機用ファン11から吹き出された空気が周壁41cに沿って流れる空間となっている。 The scroll section 41 also has a tongue portion 43 that is positioned between the scroll section 41 and the blowing section 42 to form a curved surface and guides the airflow generated by the blower fan 11 to the blowing port 42a via the scroll section 41. The radial direction of the rotation axis RA is the direction perpendicular to the axial direction of the rotation axis RA. The internal space of the scroll section 41, which is formed by the peripheral wall 41c and the side wall 41a, is a space in which the air blown out from the blower fan 11 flows along the peripheral wall 41c.
(吹出部42)
 吹出部42は、送風機用ファン11から吹き出され、スクロール部41を通過した空気が吹き出される吹出口42aを形成する。吹出部42は、周壁41cに沿って流動する空気の流れる方向に直交する断面が、矩形状となる中空の管で構成されている。なお、吹出部42の断面形状は、矩形に限定されるものではない。吹出部42は、送風機用ファン11から送り出されて周壁41cと送風機用ファン11との間隙を流動する空気を、スクロールケーシング40の外部へ排出するように案内する流路を形成する。
(Blowout section 42)
The blowing section 42 forms an outlet 42a through which the air blown out from the blower fan 11 and passing through the scroll section 41 is blown out. The blowing section 42 is formed of a hollow tube having a rectangular cross section perpendicular to the flow direction of the air flowing along the peripheral wall 41c. The cross-sectional shape of the blowing section 42 is not limited to a rectangular shape. The blowing section 42 forms a flow path that guides the air sent out from the blower fan 11 and flowing through the gap between the peripheral wall 41c and the blower fan 11 so as to be discharged to the outside of the scroll casing 40.
(舌部43)
 スクロールケーシング40は、周壁41cの送風機用ファン11の回転軸RAに近い巻始め部分において曲面を構成し、送風機用ファン11が発生させた気流を吹出口42aに導く舌部43を有する。周壁41cは、吹出部42側の端部に舌部43を含んでいる。舌部43は、渦巻形状に形成された周壁41cの巻始め部分に形成されている。つまり、舌部43は、渦巻形状の巻き始めの位置に設けられ、送風機用ファン11から吹き出された空気の流れを分流させる。
(Tongue portion 43)
The scroll casing 40 has a tongue portion 43 that forms a curved surface at the start of the winding of the peripheral wall 41c close to the rotation axis RA of the blower fan 11 and guides the airflow generated by the blower fan 11 to the air outlet 42a. The peripheral wall 41c includes the tongue portion 43 at the end on the blowing section 42 side. The tongue portion 43 is formed at the start of the winding of the peripheral wall 41c that is formed in a spiral shape. In other words, the tongue portion 43 is provided at the start of the winding of the spiral shape and divides the flow of air blown out from the blower fan 11.
 舌部43は、吹出部42のディフューザ板42cとの境界部分に設けられている。ここで、ディフューザ板42cは、舌部43と一体に形成されており、周壁41cの下流側の巻終部41bに滑らかに連続して、周壁41cと一体に形成されている延設板42bと対向するものである。このディフューザ板42cは、例えば、吹出部42内の空気の流れる方向に沿って流路の断面積が次第に拡大するように、延設板42bに対して所定の角度を有して形成されているが当該構成に限定されるものではない。舌部43は、曲面を有するように形成されており、回転軸RAの軸方向から見た場合に弧状に形成されている。舌部43は、予め定められた曲率半径で形成されており、周壁41cは、舌部43を介してディフューザ板42cと滑らかに接続されている。舌部43は、吹出口42aから見た場合に回転軸RAの軸方向において略同じ形状であり、回転軸RAの軸方向に沿った形状である。 The tongue portion 43 is provided at the boundary with the diffuser plate 42c of the blowing section 42. Here, the diffuser plate 42c is formed integrally with the tongue portion 43, smoothly continues to the downstream end portion 41b of the peripheral wall 41c, and faces the extension plate 42b formed integrally with the peripheral wall 41c. For example, the diffuser plate 42c is formed at a predetermined angle with respect to the extension plate 42b so that the cross-sectional area of the flow path gradually expands along the direction in which the air flows in the blowing section 42, but this configuration is not limited to this. The tongue portion 43 is formed to have a curved surface, and is formed in an arc shape when viewed from the axial direction of the rotation axis RA. The tongue portion 43 is formed with a predetermined radius of curvature, and the peripheral wall 41c is smoothly connected to the diffuser plate 42c via the tongue portion 43. The tongue portion 43 has approximately the same shape in the axial direction of the rotation axis RA when viewed from the blowing port 42a, and has a shape along the axial direction of the rotation axis RA.
 舌部43は、スクロールケーシング40の内部において、渦巻状流路の巻き終わりから巻き始めへの空気の流入を抑制する。舌部43は、通風路の上流部に設けられ、送風機用ファン11の回転方向に向かう空気の流れと、通風路の下流部から吹出口42aに向かう吹出方向の空気の流れと、を分流させる役割を有する。また、吹出部42に流入する空気流れは、スクロールケーシング40を通過する間に静圧が上昇して高圧となる。そのため、舌部43は、このような圧力差を仕切る機能を有する。舌部43は、圧力差を仕切る機能を有すると共に、曲面により、吹出部42に流入する空気を各流路へ導く機能を備えている。 The tongue portion 43 prevents air from flowing from the end of the spiral flow passage to the beginning of the spiral flow passage inside the scroll casing 40. The tongue portion 43 is provided in the upstream part of the ventilation passage, and serves to separate the air flow in the rotation direction of the blower fan 11 from the air flow in the blowing direction from the downstream part of the ventilation passage toward the outlet 42a. The static pressure of the air flowing into the outlet 42 increases as it passes through the scroll casing 40, and the air becomes high pressure. Therefore, the tongue portion 43 has the function of partitioning such pressure differences. In addition to partitioning the pressure differences, the tongue portion 43 has the function of guiding the air flowing into the outlet 42 to each flow passage through its curved surface.
 次に、多翼遠心送風機10の送風機用ファン11を回転させたときの空気の流れについて説明する。電源ボックス30から電力供給されると、ファンモータ20が駆動し、送風機用ファン11が回転する。送風機用ファン11が回転すると、例えば、空調対象となる部屋の空気が、筐体吸込口3から筐体1内に流入する。筐体1内に吸込まれた空気は、スクロールケーシング40に形成された吸込口45を通過し、ベルマウス48によって案内されて、送風機用ファン11に流入する。さらに、送風機用ファン11に流入した空気は、送風機用ファン11の径方向および外向きに吹出される。送風機用ファン11から吹出された空気は、スクロールケーシング40の内部を通過後、スクロールケーシング40に形成された吹出口42aから吹出される。吹出された空気は熱交換器8を通過する。熱交換器8に供給された空気は、熱交換器8を通過する際に、熱交換され、および湿度調整される。その後、空気は、筐体吹出口5から筐体1外に吹出される。 Next, the air flow when the blower fan 11 of the multi-blade centrifugal blower 10 is rotated will be described. When power is supplied from the power supply box 30, the fan motor 20 is driven and the blower fan 11 rotates. When the blower fan 11 rotates, for example, air from a room to be air-conditioned flows into the housing 1 from the housing inlet 3. The air sucked into the housing 1 passes through the inlet 45 formed in the scroll casing 40, is guided by the bell mouth 48, and flows into the blower fan 11. Furthermore, the air that flows into the blower fan 11 is blown out in the radial direction and outward direction of the blower fan 11. The air blown out from the blower fan 11 passes through the inside of the scroll casing 40, and is then blown out from the outlet 42a formed in the scroll casing 40. The blown out air passes through the heat exchanger 8. When the air supplied to the heat exchanger 8 passes through the heat exchanger 8, heat is exchanged and humidity is adjusted. The air is then blown out of the housing 1 through the housing air outlet 5.
 図3に示すように、二つの多翼遠心送風機10およびファンモータ20は、熱交換器8の上流側かつ幅方向WDに配置されている。そして、二つの多翼遠心送風機10の内、両端側の多翼遠心送風機10のスクロールケーシング40のスクロール部41の外側の端部は、熱交換器8の端部から幅方向WDにおいて、熱交換器8の幅の±5%の範囲内に配置されている。ここで、図3において、二点鎖線X1Lは、左側の多翼遠心送風機10のスクロールケーシング40のスクロール部41の外側の端部の位置を示しており、二点鎖線X1Rは、右側の多翼遠心送風機10のスクロールケーシング40のスクロール部41の外側の端部の位置を示している。すなわち、幅方向においてX1Lが位置すべき範囲は、熱交換器8の左端部を基準(0%)として左側を+、熱交換器8の中央側を-とした場合に、熱交換器8の幅の±5%の範囲である。また、幅方向においてX1Rが位置すべき範囲は、熱交換器8の右端部を基準(0%)として右側を+、熱交換器8の中央側を-とした場合に、熱交換器8の幅の±5%の範囲である。 As shown in FIG. 3, the two multi-blade centrifugal blowers 10 and the fan motor 20 are disposed upstream of the heat exchanger 8 in the width direction WD. The outer ends of the scroll section 41 of the scroll casing 40 of the multi-blade centrifugal blowers 10 at both ends of the two multi-blade centrifugal blowers 10 are disposed within a range of ±5% of the width of the heat exchanger 8 in the width direction WD from the end of the heat exchanger 8. Here, in FIG. 3, the two-dot chain line X1L indicates the position of the outer end of the scroll section 41 of the scroll casing 40 of the left multi-blade centrifugal blower 10, and the two-dot chain line X1R indicates the position of the outer end of the scroll section 41 of the scroll casing 40 of the right multi-blade centrifugal blower 10. In other words, the range in which X1L should be located in the width direction is within a range of ±5% of the width of the heat exchanger 8, with the left end of the heat exchanger 8 as the reference (0%), the left side as +, and the center side of the heat exchanger 8 as -. Additionally, the range in which X1R should be positioned in the width direction is within ±5% of the width of the heat exchanger 8, with the right end of the heat exchanger 8 as the reference (0%), the right side as +, and the center of the heat exchanger 8 as -.
 図6は、従来の室内機の多翼遠心送風機10の風速分布を示す正面視模式図である。図7は、実施の形態1に係る室内機100の多翼遠心送風機10の風速分布を示す正面視模式図である。ここで、図6および図7において、二点鎖線X1Lは、左側の多翼遠心送風機10のスクロールケーシング40のスクロール部41の外側の端部の位置を示しており、二点鎖線X1Rは、右側の多翼遠心送風機10のスクロールケーシング40のスクロール部41の外側の端部の位置を示している。さらに、二点鎖線X2Lは、熱交換器8の左端部の位置を示しており、二点鎖線X2Rは、熱交換器8の右端部の位置を示している。 FIG. 6 is a front view schematic diagram showing the air velocity distribution of the multi-blade centrifugal blower 10 of a conventional indoor unit. FIG. 7 is a front view schematic diagram showing the air velocity distribution of the multi-blade centrifugal blower 10 of the indoor unit 100 according to embodiment 1. Here, in FIG. 6 and FIG. 7, the two-dot chain line X1L indicates the position of the outer end of the scroll section 41 of the scroll casing 40 of the left multi-blade centrifugal blower 10, and the two-dot chain line X1R indicates the position of the outer end of the scroll section 41 of the scroll casing 40 of the right multi-blade centrifugal blower 10. Furthermore, the two-dot chain line X2L indicates the position of the left end of the heat exchanger 8, and the two-dot chain line X2R indicates the position of the right end of the heat exchanger 8.
 図6では、両側の多翼遠心送風機10のスクロールケーシング40のスクロール部41の外側の端部は、熱交換器8の端部から幅方向WDにおいて、熱交換器8の幅の±5%の範囲外に配置されている。具体的には、左側の多翼遠心送風機10のスクロールケーシング40のスクロール部41の外側の端部(X1L)が、熱交換器8の左端部(X2L)よりも、熱交換器8の幅の5%以上右側に配置されている。一方、図7では、両側の多翼遠心送風機10のスクロールケーシング40のスクロール部41の外側の端部(X1L、X1R)は、熱交換器8の端部(X2L、X2R)から幅方向WDにおいて、熱交換器8の幅の±5%の範囲内に配置されている。ここで、熱交換器8の幅の±5%の範囲内とは、室内機100の製造誤差の範囲内である。なお、図7では、両側の多翼遠心送風機10のスクロールケーシング40のスクロール部41の外側の端部が、熱交換器8の端部よりも-側に位置している。 In FIG. 6, the outer ends of the scroll section 41 of the scroll casing 40 of the multi-blade centrifugal blowers 10 on both sides are arranged outside the range of ±5% of the width of the heat exchanger 8 in the width direction WD from the end of the heat exchanger 8. Specifically, the outer end (X1L) of the scroll section 41 of the scroll casing 40 of the left multi-blade centrifugal blower 10 is arranged to the right of the left end (X2L) of the heat exchanger 8 by 5% or more of the width of the heat exchanger 8. On the other hand, in FIG. 7, the outer ends (X1L, X1R) of the scroll section 41 of the scroll casing 40 of the multi-blade centrifugal blowers 10 on both sides are arranged within the range of ±5% of the width of the heat exchanger 8 in the width direction WD from the end (X2L, X2R) of the heat exchanger 8. Here, the range of ±5% of the width of the heat exchanger 8 is within the range of manufacturing error of the indoor unit 100. In addition, in FIG. 7, the outer ends of the scroll sections 41 of the scroll casings 40 of the multi-blade centrifugal blowers 10 on both sides are located on the negative side of the ends of the heat exchangers 8.
 図6に示すように、従来の室内機では、熱交換器8の左端部(X2L)とスクロールケーシング40のスクロール部41の外側の端部(X1L)との間に空気非通過領域が形成されており、熱交換器8の左端部側で空気が通過していない。一方、図7に示すように、実施の形態1に係る室内機100では、熱交換器8の左端部(X2L)とスクロールケーシング40のスクロール部41の外側の端部(X1L)との間は非常に狭く、ほとんど空気非通過領域が形成されていないため、熱交換器8の左端部側で空気が通過し、熱交換器8の全体で均一に空気が通過している。そのため、図7に示すように、両側の多翼遠心送風機10のスクロールケーシング40のスクロール部41の外側の端部を、熱交換器8の端部から幅方向WDにおいて、熱交換器8の幅の±5%の範囲内に配置する、つまり、室内機100の製造誤差の範囲内に配置する。そうすることで、各多翼遠心送風機10から吹出された空気を熱交換器8の端部まで全体的に通過させることができる。そのため、従来よりも空気のムラが抑制されて効率よく熱交換することが可能となり、必要風量を低減させることができる。 6, in the conventional indoor unit, an air non-passage area is formed between the left end (X2L) of the heat exchanger 8 and the outer end (X1L) of the scroll section 41 of the scroll casing 40, and air does not pass through the left end side of the heat exchanger 8. On the other hand, as shown in FIG. 7, in the indoor unit 100 according to the first embodiment, the space between the left end (X2L) of the heat exchanger 8 and the outer end (X1L) of the scroll section 41 of the scroll casing 40 is very narrow, and almost no air non-passage area is formed, so air passes through the left end side of the heat exchanger 8, and air passes uniformly throughout the heat exchanger 8. Therefore, as shown in FIG. 7, the outer ends of the scroll sections 41 of the scroll casing 40 of the multi-blade centrifugal blowers 10 on both sides are positioned within ±5% of the width of the heat exchanger 8 in the width direction WD from the end of the heat exchanger 8, that is, within the range of the manufacturing error of the indoor unit 100. This allows the air blown out from each multi-blade centrifugal blower 10 to pass all the way to the end of the heat exchanger 8. This makes it possible to suppress air unevenness and exchange heat more efficiently than before, thereby reducing the required air volume.
 また、図2に示すように、また、熱交換器8は、側面視して長手方向が筐体1の下面1bに対して垂直となるように配置されている。このように、熱交換器8を筐体1の下面1bと垂直になるように配置することで、ドレン水を溜める領域を最小化できるため、筐体1の奥行き方向DDの幅を縮小することができる。 As shown in FIG. 2, the heat exchanger 8 is arranged so that its longitudinal direction is perpendicular to the bottom surface 1b of the housing 1 when viewed from the side. By arranging the heat exchanger 8 so that it is perpendicular to the bottom surface 1b of the housing 1 in this way, the area in which drain water is stored can be minimized, and the width of the housing 1 in the depth direction DD can be reduced.
 また、図2に示すように、スクロールケーシング40は、舌部43を有しており、舌部43の位置は、送風機用ファン11の回転軸RA(あるいはモータシャフト21)の位置よりも低くなっている。このようにすることで、スクロールケーシング40の吹出口42aを広げることができるため、多翼遠心送風機10から吹出される風量を増加させることができ、熱交換効率を向上させることができる。 Also, as shown in FIG. 2, the scroll casing 40 has a tongue portion 43, and the position of the tongue portion 43 is lower than the position of the rotation axis RA (or the motor shaft 21) of the blower fan 11. By doing so, the outlet 42a of the scroll casing 40 can be widened, so that the amount of air blown out from the multi-blade centrifugal blower 10 can be increased, and the heat exchange efficiency can be improved.
 また、図3に示すように、電源ボックス30は、二つの多翼遠心送風機10の隣に配置されている。さらに、図2に示すように、電源ボックス30は、筐体1を側面視して多翼遠心送風機10のスクロールケーシング40の底部よりも上側に配置されている。このように、電源ボックス30を二つの多翼遠心送風機10の隣に配置することで、多翼遠心送風機10を奥行き方向DDに拡大でき、多翼遠心送風機10から吹き出される風量を増加させることができる。また、電源ボックス30を側面視してスクロールケーシング40の底部よりも上側に配置することで、平面視して電源ボックス30が筐体吸込口3と干渉する領域にあっても、スクロールケーシング40が筐体吸込口3から離れた位置に配置されていることになるため、多翼遠心送風機10に吸い込まれる風量の減少を抑制することができる。 Also, as shown in FIG. 3, the power supply box 30 is disposed next to the two multi-blade centrifugal blowers 10. Furthermore, as shown in FIG. 2, the power supply box 30 is disposed above the bottom of the scroll casing 40 of the multi-blade centrifugal blower 10 when the housing 1 is viewed from the side. In this way, by disposing the power supply box 30 next to the two multi-blade centrifugal blowers 10, the multi-blade centrifugal blower 10 can be expanded in the depth direction DD, and the amount of air blown out from the multi-blade centrifugal blower 10 can be increased. Also, by disposing the power supply box 30 above the bottom of the scroll casing 40 when viewed from the side, even if the power supply box 30 is in an area that interferes with the housing suction port 3 when viewed from above, the scroll casing 40 is disposed at a position away from the housing suction port 3, so that a decrease in the amount of air drawn into the multi-blade centrifugal blower 10 can be suppressed.
 以上、実施の形態1に係る室内機100は、筐体吸込口3および筐体吹出口5を有し、天井に埋め込まれる筐体1と、複数枚の翼11dで構成され、筐体吸込口3から筐体1の内部に吸い込んだ空気を筐体吹出口5から筐体1の外部に吹き出す送風機用ファン11、および、送風機用ファン11を収納するスクロールケーシング40と、を有する複数の多翼遠心送風機10と、送風機用ファン11を駆動するファンモータ20と、送風機用ファン11によって筐体吸込口3から筐体1の内部に吸い込まれた空気と冷媒との間で熱交換を行う熱交換器8と、を備えた天井埋込型である。また、スクロールケーシング40は、送風機用ファン11が発生させた気流の動圧を静圧に変換する風路を形成するスクロール部41と、送風機用ファン11から吹き出され、スクロール部41を通過した空気が吹き出される吹出口42aを形成する吹出部42と、を有している。そして、複数の多翼遠心送風機10およびファンモータは20、熱交換器8の上流側かつ幅方向WDに配置されており、複数の多翼遠心送風機10の内、両端側の多翼遠心送風機10のスクロールケーシング40のスクロール部41の外側の端部は、熱交換器8の端部から幅方向WDにおいて、熱交換器8の幅の±5%の範囲内に配置されている。 As described above, the indoor unit 100 according to the first embodiment is a ceiling-embedded type that includes a housing 1 having a housing inlet 3 and a housing outlet 5 and embedded in the ceiling, a blower fan 11 composed of a plurality of blades 11d and blowing air drawn into the inside of the housing 1 from the housing inlet 3 to the outside of the housing 1 from the housing outlet 5, and a scroll casing 40 that houses the blower fan 11, a fan motor 20 that drives the blower fan 11, and a heat exchanger 8 that exchanges heat between the air drawn into the inside of the housing 1 from the housing inlet 3 by the blower fan 11 and the refrigerant. The scroll casing 40 also has a scroll section 41 that forms an air passage that converts the dynamic pressure of the airflow generated by the blower fan 11 into static pressure, and an outlet section 42 that forms an outlet 42a through which air blown out from the blower fan 11 and passed through the scroll section 41 is blown out. The multiple multi-blade centrifugal blowers 10 and fan motors 20 are arranged upstream of the heat exchanger 8 in the width direction WD, and the outer ends of the scroll sections 41 of the scroll casings 40 of the multi-blade centrifugal blowers 10 at both ends of the multiple multi-blade centrifugal blowers 10 are arranged within a range of ±5% of the width of the heat exchanger 8 in the width direction WD from the end of the heat exchanger 8.
 実施の形態1に係る室内機100によれば、複数の多翼遠心送風機10の内、両端側の多翼遠心送風機10のスクロールケーシング40のスクロール部41の外側の端部は、熱交換器8の端部から幅方向WDにおいて、熱交換器8の幅の±5%の範囲内に配置されている。そのため、各多翼遠心送風機10から吹き出された空気を熱交換器8の端部まで全体的に通過させることができ、空気のムラを抑制することができる。また、多翼遠心送風機10のスクロールケーシング40の吹出口42aを熱交換器8の幅方向に拡大させていないため、多翼遠心送風機10を収める筐体1の幅方向の拡大を抑制することができる。 According to the indoor unit 100 according to the first embodiment, the outer ends of the scroll sections 41 of the scroll casing 40 of the multi-blade centrifugal blowers 10 at both ends of the multiple multi-blade centrifugal blowers 10 are arranged within a range of ±5% of the width of the heat exchanger 8 in the width direction WD from the end of the heat exchanger 8. Therefore, the air blown out from each multi-blade centrifugal blower 10 can pass all the way to the end of the heat exchanger 8, and unevenness in the air can be suppressed. In addition, since the air outlet 42a of the scroll casing 40 of the multi-blade centrifugal blower 10 is not expanded in the width direction of the heat exchanger 8, the expansion in the width direction of the housing 1 that houses the multi-blade centrifugal blower 10 can be suppressed.
 また、実施の形態1に係る室内機100において、熱交換器8は、筐体1の下面1bに対して垂直となるように配置されている。 In addition, in the indoor unit 100 according to embodiment 1, the heat exchanger 8 is positioned so as to be perpendicular to the bottom surface 1b of the housing 1.
 実施の形態1に係る室内機100によれば、熱交換器8を筐体1の下面1bと垂直になるように配置することで、ドレン水を溜める領域を最小化できるため、筐体1の奥行き方向DDの幅を縮小することができる。 In the indoor unit 100 according to the first embodiment, the heat exchanger 8 is arranged perpendicular to the bottom surface 1b of the housing 1, thereby minimizing the area in which drain water is stored, and therefore the width of the housing 1 in the depth direction DD can be reduced.
 また、実施の形態1に係る室内機100において、スクロールケーシング40は、渦巻形状の巻き始めの位置に設けられ、送風機用ファン11から吹き出された空気の流れを分流させる舌部43を有している。そして、舌部43の位置は、送風機用ファン11の回転軸RAの位置よりも低い。 In addition, in the indoor unit 100 according to the first embodiment, the scroll casing 40 is provided at the beginning of the spiral shape and has a tongue portion 43 that diverts the flow of air blown out from the blower fan 11. The position of the tongue portion 43 is lower than the position of the rotation axis RA of the blower fan 11.
 実施の形態1に係る室内機100によれば、舌部43の位置を、送風機用ファン11の回転軸RAの位置よりも低くすることで、スクロールケーシング40の吹出口42aを広げることができる。その結果、多翼遠心送風機10から吹き出される風量を増加させることができ、熱交換効率を向上させることができる。 According to the indoor unit 100 of the first embodiment, the position of the tongue portion 43 is set lower than the position of the rotation axis RA of the blower fan 11, so that the outlet 42a of the scroll casing 40 can be widened. As a result, the amount of air blown out from the multi-blade centrifugal blower 10 can be increased, and the heat exchange efficiency can be improved.
 また、実施の形態1に係る室内機100において、ファンモータ20を駆動させる基板が収納された電源ボックス30を備えている。そして、電源ボックス30は、複数の多翼遠心送風機10の隣に配置されており、かつ、筐体1を側面視して複数の多翼遠心送風機10のスクロールケーシング40の底部よりも上側に配置されている。 The indoor unit 100 according to the first embodiment is also provided with a power supply box 30 that houses a circuit board that drives the fan motor 20. The power supply box 30 is disposed next to the multiple multi-blade centrifugal fans 10, and is disposed above the bottom of the scroll casings 40 of the multiple multi-blade centrifugal fans 10 when the housing 1 is viewed from the side.
 実施の形態1に係る室内機100によれば、電源ボックス30を複数の多翼遠心送風機10の隣に配置することで、多翼遠心送風機10を奥行き方向DDに拡大でき、多翼遠心送風機10から吹き出される風量を増加させることができる。また、電源ボックス30を側面視してスクロールケーシング40の底部よりも上側に配置する。そうすることで、平面視して電源ボックス30が筐体吸込口3と干渉する領域にあっても、スクロールケーシング40が筐体吸込口3から離れた位置に配置されていることになるため、多翼遠心送風機10に吸い込まれる風量の減少を抑制することができる。 According to the indoor unit 100 of the first embodiment, by arranging the power supply box 30 next to a plurality of multi-blade centrifugal blowers 10, the multi-blade centrifugal blower 10 can be expanded in the depth direction DD, and the amount of air blown out from the multi-blade centrifugal blower 10 can be increased. Also, the power supply box 30 is arranged above the bottom of the scroll casing 40 in a side view. By doing so, even if the power supply box 30 is in an area that interferes with the housing suction port 3 in a plan view, the scroll casing 40 is arranged at a position away from the housing suction port 3, so that a reduction in the amount of air drawn into the multi-blade centrifugal blower 10 can be suppressed.
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Hereinafter, the second embodiment will be described, but explanations of parts that overlap with the first embodiment will be omitted, and parts that are the same as or equivalent to the first embodiment will be given the same reference numerals.
 図8は、実施の形態2に係る室内機100における内部構成を説明する平面視模式図である。なお、図8の破線矢印は、筐体1の幅方向WDおよび奥行き方向DDを示している。図8に示すように、実施の形態2では、電源ボックス30およびファンモータ20が、複数の多翼遠心送風機10と幅方向WDに配置されており、かつ、筐体1を平面視して、複数の多翼遠心送風機10よりも同一の側面(図8では左側面1e)側に配置されている。なお、電源ボックス30およびファンモータ20は、筐体1を平面視して、複数の多翼遠心送風機10よりも左側面1e側に配置されていてもよいし、右側面1f側に配置されていてもよい。電源ボックス30およびファンモータ20をこのように配置することで、筐体1内の幅方向WDのスペースを確保することができる。その結果、上記の確保したスペースの分だけ多翼遠心送風機10を幅方向WDに拡大することが可能となり、多翼遠心送風機10から吹き出される風量を増大させることができる。 8 is a schematic plan view illustrating the internal configuration of the indoor unit 100 according to the second embodiment. The dashed arrows in FIG. 8 indicate the width direction WD and the depth direction DD of the housing 1. As shown in FIG. 8, in the second embodiment, the power supply box 30 and the fan motor 20 are arranged in the width direction WD with the multiple multi-blade centrifugal fans 10, and are arranged on the same side (left side 1e in FIG. 8) as the multiple multi-blade centrifugal fans 10 when the housing 1 is viewed in plan. The power supply box 30 and the fan motor 20 may be arranged on the left side 1e side or on the right side 1f side of the multiple multi-blade centrifugal fans 10 when the housing 1 is viewed in plan. By arranging the power supply box 30 and the fan motor 20 in this way, it is possible to secure space in the width direction WD within the housing 1. As a result, it is possible to expand the multi-blade centrifugal fans 10 in the width direction WD by the amount of the secured space, and the amount of air blown out from the multi-blade centrifugal fans 10 can be increased.
 以上、実施の形態2に係る室内機100において、ファンモータ20と電源ボックス30とは、複数の多翼遠心送風機10と幅方向WDに並んで配置されており、かつ、筐体1を平面視して複数の多翼遠心送風機10に対し同一の側面側に配置されているものである。 As described above, in the indoor unit 100 according to the second embodiment, the fan motor 20 and the power supply box 30 are arranged side by side with the multiple multi-blade centrifugal fans 10 in the width direction WD, and are arranged on the same side as the multiple multi-blade centrifugal fans 10 when the housing 1 is viewed from above.
 実施の形態2に係る室内機100によれば、筐体1内の幅方向WDのスペースを確保することができる。その結果、上記の確保したスペースの分だけ多翼遠心送風機10を幅方向WDに拡大することが可能となり、多翼遠心送風機10から吹き出される風量を増大させることができる。 The indoor unit 100 according to the second embodiment can secure space in the width direction WD within the housing 1. As a result, the multi-blade centrifugal fan 10 can be expanded in the width direction WD by the amount of the secured space, and the amount of air blown out from the multi-blade centrifugal fan 10 can be increased.
 実施の形態3.
 以下、実施の形態3について説明するが、実施の形態1および2と重複するものについては説明を省略し、実施の形態1および2と同じ部分または相当する部分には同じ符号を付す。
Embodiment 3.
Hereinafter, the third embodiment will be described, but explanations of parts that overlap with the first and second embodiments will be omitted, and the same parts as or corresponding parts to the first and second embodiments will be given the same reference numerals.
 実施の形態3に係る多翼遠心送風機10の送風機用ファン11Aは、ターボインシロッコファンである。 The blower fan 11A of the multi-blade centrifugal blower 10 according to embodiment 3 is a turbo-in-scirocco fan.
 図9は、実施の形態3に係る室内機100の多翼遠心送風機10の送風機用ファン11Aの平面図である。図10は、従来の室内機の多翼遠心送風機10を示す側面視模式図である。図11は、実施の形態3に係る室内機100の多翼遠心送風機10を示す側面視模式図である。なお、図9では、翼11dの形状を示すために側板11cを透過させて翼11dを示している。また、図9の実線矢印は、送風機用ファン11Aの回転方向Rを示し、破線矢印は、送風機用ファン11Aの周方向CDを示している。また、図10および図11の実線矢印は、スクロールケーシング40の吹出口42aから吹き出される風を示しており、実線矢印の長さは風速を示している。 FIG. 9 is a plan view of the blower fan 11A of the multi-blade centrifugal blower 10 of the indoor unit 100 according to embodiment 3. FIG. 10 is a side view schematic diagram showing the multi-blade centrifugal blower 10 of a conventional indoor unit. FIG. 11 is a side view schematic diagram showing the multi-blade centrifugal blower 10 of the indoor unit 100 according to embodiment 3. In FIG. 9, the blades 11d are shown through the side plate 11c to show the shape of the blades 11d. The solid arrow in FIG. 9 indicates the rotation direction R of the blower fan 11A, and the dashed arrow indicates the circumferential direction CD of the blower fan 11A. The solid arrows in FIG. 10 and FIG. 11 indicate the wind blown out from the air outlet 42a of the scroll casing 40, and the length of the solid arrow indicates the wind speed.
 図9に示すように、送風機用ファン11Aの翼11dは、主板11a側の部分から側板11c側の部分に向かうにつれて、前縁24aが回転軸RAから離れるように傾斜している。翼11dの前縁24aは、主板11a側の部分から側板11c側の部分に向かうにつれて、羽根内径が大きくなるように傾斜している。 As shown in FIG. 9, the blade 11d of the blower fan 11A is inclined so that the leading edge 24a moves away from the rotation axis RA as it moves from the main plate 11a side to the side plate 11c side. The leading edge 24a of the blade 11d is inclined so that the inner diameter of the blade increases as it moves from the main plate 11a side to the side plate 11c side.
 翼11dは、内周端24を含み後向羽根として構成されたターボ翼部26と、外周端25を含み前向羽根として構成されたシロッコ翼部27とを有する。ターボ翼部26は、送風機用ファン11Aの径方向における、複数枚の翼11dのそれぞれの内周側の部分において後向羽根を構成する部分である。シロッコ翼部27は、送風機用ファン11Aの径方向における、複数枚の翼11dのそれぞれの外周側の部分において前向羽根を構成する部分である。 The blade 11d has a turbo blade section 26 including an inner peripheral end 24 and configured as a backward blade, and a sirocco blade section 27 including an outer peripheral end 25 and configured as a forward blade. The turbo blade section 26 is a portion that constitutes a backward blade on the inner peripheral side of each of the blades 11d in the radial direction of the blower fan 11A. The sirocco blade section 27 is a portion that constitutes a forward blade on the outer peripheral side of each of the blades 11d in the radial direction of the blower fan 11A.
 翼11dは、ターボ翼部26とシロッコ翼部27とが一体に形成されている。翼11dは、送風機用ファン11Aの径方向において、回転軸RAから外周側に向かって、ターボ翼部26、シロッコ翼部27の順に連続して一体に形成されている。翼11dは、径方向の内周側ターボ翼であり外周側がシロッコ翼であるターボインシロッコの翼形状を有している。 The blade 11d is formed integrally with the turbo blade section 26 and the sirocco blade section 27. The blade 11d is formed integrally with the turbo blade section 26 and the sirocco blade section 27 in the radial direction of the blower fan 11A from the rotation axis RA toward the outer periphery. The blade 11d has a turbo-in-sirocco blade shape with a turbo blade on the inner periphery side in the radial direction and a sirocco blade on the outer periphery side.
 図11に示すターボインシロッコファンである送風機用ファン11Aは、図10に示す従来のシロッコファン11Bよりも高圧力損失に強いため、筐体1の小型化により風路が高圧力損失化しても、性能低下を抑制することができる。 The blower fan 11A, which is a turbo-in sirocco fan shown in FIG. 11, is more resistant to high pressure loss than the conventional sirocco fan 11B shown in FIG. 10, so even if the air path becomes highly pressurized due to the miniaturization of the housing 1, it is possible to suppress a decrease in performance.
 また、図10に示す従来のシロッコファン11Bと比べ、図11に示すターボインシロッコファンである送風機用ファン11Aでは、スクロールケーシング40の吹出口42aから吹き出される風速が小さいため、筐体1の下面1bに対して垂直となるように配置された熱交換器8との干渉音を低減させることができる。 Also, compared to the conventional sirocco fan 11B shown in FIG. 10, the blower fan 11A, which is a turbo-in sirocco fan shown in FIG. 11, has a smaller air speed blown out from the outlet 42a of the scroll casing 40, which reduces interference noise with the heat exchanger 8, which is positioned perpendicular to the bottom surface 1b of the housing 1.
 以上、実施の形態3に係る室内機100において、送風機用ファン11Aは、ターボインシロッコファンである。 As described above, in the indoor unit 100 according to embodiment 3, the blower fan 11A is a turbo in-sirocco fan.
 実施の形態3に係る室内機100によれば、ターボインシロッコファンは、シロッコファンよりも高圧力損失に強いため、筐体1の小型化により風路が高圧力損失化しても、性能低下を抑制することができる。また、ターボインシロッコファンは、シロッコファンと比べて吹出口の風速が小さいため、筐体1の下面1bに対して垂直となるように配置された熱交換器8との干渉音を低減させることができる。 According to the indoor unit 100 according to the third embodiment, the turbo-in sirocco fan is more resistant to high pressure loss than the sirocco fan, so even if the air duct becomes high pressure loss due to the miniaturization of the housing 1, it is possible to suppress performance degradation. In addition, the turbo-in sirocco fan has a lower air speed at the air outlet compared to the sirocco fan, so it is possible to reduce interference noise with the heat exchanger 8 that is arranged perpendicular to the bottom surface 1b of the housing 1.
 実施の形態4.
 以下、実施の形態4について説明するが、実施の形態1~3と重複するものについては説明を省略し、実施の形態1~3と同じ部分または相当する部分には同じ符号を付す。
Embodiment 4.
Hereinafter, the fourth embodiment will be described, but explanations of parts that overlap with the first to third embodiments will be omitted, and the same parts as or corresponding parts to the first to third embodiments will be given the same reference numerals.
 図12は、実施の形態4に係る室内機100が設置される天井80を示す斜視模式図である。図12に示すように、オフィスなどの天井80は、施工性のよさから正方形のパネル70が複数敷き詰められたグリッド天井となっている。そこで、実施の形態4に係る室内機100では、グリッド天井の1つのパネル70のサイズ、幅W:640mm×奥行きD:640mmに収まるように筐体1が構成されている。このように、筐体1のサイズをグリッド天井の1つのパネル70のサイズに収まるようにすることで、施工性を向上させることができる。また、筐体1を平面視して正方形とすることで、室内機100の運搬時の積載効率を向上させることができる。 FIG. 12 is a schematic perspective view showing a ceiling 80 on which an indoor unit 100 according to embodiment 4 is installed. As shown in FIG. 12, the ceiling 80 of an office or the like is a grid ceiling in which multiple square panels 70 are laid out for ease of construction. Therefore, in the indoor unit 100 according to embodiment 4, the housing 1 is configured to fit within the size of one panel 70 of the grid ceiling, width W: 640 mm × depth D: 640 mm. In this way, by making the size of the housing 1 fit within the size of one panel 70 of the grid ceiling, construction can be improved. Also, by making the housing 1 square in plan view, loading efficiency during transportation of the indoor unit 100 can be improved.
 以上、実施の形態4に係る室内機100において、筐体1は、幅640mm×奥行き640mmに収まるサイズである。 As described above, in the indoor unit 100 according to embodiment 4, the housing 1 is sized to fit within a width of 640 mm and a depth of 640 mm.
 実施の形態4に係る室内機100によれば、筐体1のサイズをグリッド天井の1つのパネル70のサイズに収まるようにすることで、施工性を向上させることができる。また、筐体1を平面視して正方形とすることで、室内機100の運搬時の積載効率を向上させることができる。 According to the indoor unit 100 of the fourth embodiment, the size of the housing 1 is made to fit within the size of one panel 70 of the grid ceiling, thereby improving workability. In addition, by making the housing 1 square in plan view, the loading efficiency during transportation of the indoor unit 100 can be improved.
 実施の形態5.
 以下、実施の形態5について説明するが、実施の形態1~4と重複するものについては説明を省略し、実施の形態1~4と同じ部分または相当する部分には同じ符号を付す。
Embodiment 5.
Hereinafter, the fifth embodiment will be described, but explanations of parts that overlap with the first to fourth embodiments will be omitted, and the same parts as or corresponding parts to the first to fourth embodiments will be given the same reference numerals.
 図13は、実施の形態5に係る空気調和装置の構成を示す図である。実施の形態5では、上述した実施の形態1~4に記載した室内機100を有する空気調和装置について説明する。図13に示すように、実施の形態4に係る空気調和装置は、室内機100と室外機200とを備え、これらが冷媒配管で連結され、冷媒回路を構成して冷媒を循環させている。冷媒配管のうち、気体の冷媒(ガス冷媒)が流れる配管をガス配管300とし、液体の冷媒(液冷媒。気液二相冷媒の場合もある)が流れる配管を液配管400とする。 Figure 13 is a diagram showing the configuration of an air conditioner according to embodiment 5. In embodiment 5, an air conditioner having an indoor unit 100 as described in embodiments 1 to 4 above will be described. As shown in Figure 13, the air conditioner according to embodiment 4 comprises an indoor unit 100 and an outdoor unit 200, which are connected by refrigerant piping to form a refrigerant circuit and circulate the refrigerant. Of the refrigerant piping, the piping through which gaseous refrigerant (gas refrigerant) flows is referred to as gas piping 300, and the piping through which liquid refrigerant (liquid refrigerant; it may be a gas-liquid two-phase refrigerant) flows is referred to as liquid piping 400.
 室内機100は、熱交換器8および多翼遠心送風機10を有している。熱交換器8は、冷媒と空気との熱交換を行うものである。熱交換器8は、例えば、暖房運転時においては凝縮器として機能し、ガス配管300から流入した冷媒と空気との熱交換を行い、冷媒を凝縮させて液化(または気液二相化)させ、液配管400側に流出させる。一方、熱交換器8は、冷房運転時においては蒸発器として機能し、例えば絞り装置205により低圧状態にされた冷媒と空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、ガス配管300側に流出させる。多翼遠心送風機10は、例えば利用者の風量設定により決定された速度で回転駆動する。 The indoor unit 100 has a heat exchanger 8 and a multi-blade centrifugal blower 10. The heat exchanger 8 exchanges heat between the refrigerant and the air. For example, during heating operation, the heat exchanger 8 functions as a condenser, exchanging heat between the refrigerant flowing in from the gas piping 300 and the air, condensing and liquefying the refrigerant (or converting it into a gas-liquid two-phase state), and discharging it to the liquid piping 400 side. On the other hand, during cooling operation, the heat exchanger 8 functions as an evaporator, exchanging heat between the refrigerant that has been brought to a low pressure state by the throttling device 205, for example, and the air, causing the refrigerant to remove heat from the air and evaporate it, and discharging it to the gas piping 300 side. The multi-blade centrifugal blower 10 rotates at a speed determined, for example, by the user's air volume setting.
 一方、室外機200は、圧縮機201、流路切替装置202、室外側熱交換器203、室外側送風機204および絞り装置205を有している。 On the other hand, the outdoor unit 200 has a compressor 201, a flow path switching device 202, an outdoor heat exchanger 203, an outdoor blower 204, and a throttling device 205.
 圧縮機201は、吸入した冷媒を圧縮して吐出する。ここで、圧縮機201は、インバータ装置などを備え、運転周波数を任意に変化させることにより、圧縮機201の容量(単位時間あたりの冷媒を送り出す量)を細かく変化させることができるものとする。流路切替装置202は、例えば四方弁であり、制御装置(図示せず)からの指示に基づいて冷房運転時と暖房運転時とによって冷媒の流れを切り換える。 Compressor 201 compresses the sucked refrigerant and discharges it. Here, compressor 201 is equipped with an inverter device or the like, and is capable of finely varying the capacity of compressor 201 (the amount of refrigerant pumped out per unit time) by arbitrarily changing the operating frequency. Flow path switching device 202 is, for example, a four-way valve, and switches the flow of refrigerant between cooling operation and heating operation based on instructions from a control device (not shown).
 また、室外側熱交換器203は、冷媒と空気(室外の空気)との熱交換を行う。たとえば、暖房運転時においては蒸発器として機能し、液配管400から流入した低圧の冷媒と空気との熱交換を行い、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、流路切替装置202側から流入した圧縮機201において圧縮された冷媒と空気との熱交換を行い、冷媒を凝縮して液化させる。室外側熱交換器203には、室外側送風機204が設けられている。なお、実施の形態1~4に係る多翼遠心送風機10を、室外側送風機204に用いてもよい。絞り装置205は、例えば膨張弁であり、開度を変化させることで、冷媒の圧力などを調整する。 The outdoor heat exchanger 203 also exchanges heat between the refrigerant and air (outdoor air). For example, during heating operation, it functions as an evaporator, exchanging heat between the low-pressure refrigerant flowing in from the liquid piping 400 and the air, evaporating and vaporizing the refrigerant. During cooling operation, it functions as a condenser, exchanging heat between the refrigerant compressed in the compressor 201 flowing in from the flow path switching device 202 side and the air, condensing and liquefying the refrigerant. The outdoor heat exchanger 203 is provided with an outdoor blower 204. The multi-blade centrifugal blower 10 according to the first to fourth embodiments may be used for the outdoor blower 204. The throttle device 205 is, for example, an expansion valve, and adjusts the pressure of the refrigerant by changing the opening degree.
 以上のように、実施の形態5の空気調和装置が、実施の形態1~4において説明した室内機100を有するようにしたので、実施の形態1~4と同様の効果を得ることができる。 As described above, the air conditioning apparatus of embodiment 5 has the indoor unit 100 described in embodiments 1 to 4, and therefore can achieve the same effects as embodiments 1 to 4.
 1 筐体、1a 上面、1b 下面、1c 前面、1d 背面、1e 左側面、1f 右側面、2 仕切板、3 筐体吸込口、4 フィルター、5 筐体吹出口、5a 出口壁部、6 送風室、7 熱交換室、8 熱交換器、10 多翼遠心送風機、11 送風機用ファン、11A 送風機用ファン、11B シロッコファン、11a 主板、11b ボス部、11b1 軸穴、11c 側板、11d 翼、11e ファン吸込口、20 ファンモータ、21 モータシャフト、24 内周端、24a 前縁、25 外周端、26 ターボ翼部、27 シロッコ翼部、30 電源ボックス、40 スクロールケーシング、40a 側壁、40a1 第1側壁、40a2 第2側壁、41 スクロール部、41a 側壁、41b 巻終部、41c 周壁、42 吹出部、42a 吹出口、42b 延設板、42c ディフューザ板、43 舌部、45 吸込口、48 ベルマウス、70 パネル、80 天井、100 室内機、200 室外機、201 圧縮機、202 流路切替装置、203 室外側熱交換器、204 室外側送風機、205 絞り装置、300 ガス配管、400 液配管。 1 housing, 1a top, 1b bottom, 1c front, 1d rear, 1e left side, 1f right side, 2 partition plate, 3 housing intake port, 4 filter, 5 housing outlet, 5a outlet wall, 6 blower chamber, 7 heat exchange chamber, 8 heat exchanger, 10 multi-blade centrifugal blower, 11 blower fan, 11A blower fan, 11B centrifugal fan, 11a main plate, 11b boss, 11b1 shaft hole, 11c side plate, 11d blade, 11e fan intake port, 20 fan motor, 21 motor shaft, 24 inner circumferential edge, 24a leading edge, 25 outer circumferential edge, 26 turbo blade portion, 27 Sirocco blade section, 30 Power supply box, 40 Scroll casing, 40a Side wall, 40a1 First side wall, 40a2 Second side wall, 41 Scroll section, 41a Side wall, 41b End of scroll, 41c Peripheral wall, 42 Outlet section, 42a Outlet, 42b Extension plate, 42c Diffuser plate, 43 Tongue section, 45 Inlet, 48 Bell mouth, 70 Panel, 80 Ceiling, 100 Indoor unit, 200 Outdoor unit, 201 Compressor, 202 Flow switching device, 203 Outdoor heat exchanger, 204 Outdoor blower, 205 Throttle device, 300 Gas piping, 400 Liquid piping.

Claims (8)

  1.  筐体吸込口および筐体吹出口を有し、天井に埋め込まれる筐体と、
     複数枚の翼で構成され、前記筐体吸込口から前記筐体の内部に吸い込んだ空気を前記筐体吹出口から前記筐体の外部に吹き出す送風機用ファン、および、前記送風機用ファンを収納するスクロールケーシングと、を有する複数の多翼遠心送風機と、
     前記送風機用ファンを駆動するファンモータと、
     前記送風機用ファンによって前記筐体吸込口から前記筐体の内部に吸い込まれた空気と冷媒との間で熱交換を行う熱交換器と、を備えた天井埋込型であって、
     前記スクロールケーシングは、
     前記送風機用ファンが発生させた気流の動圧を静圧に変換する風路を形成するスクロール部と、
     前記送風機用ファンから吹き出され、前記スクロール部を通過した空気が吹き出される吹出口を形成する吹出部と、を有し、
     前記複数の多翼遠心送風機および前記ファンモータは、前記熱交換器の上流側かつ幅方向に配置されており、
     前記複数の多翼遠心送風機の内、両端側の多翼遠心送風機の前記スクロールケーシングの前記スクロール部の外側の端部は、前記熱交換器の端部から幅方向において、前記熱交換器の幅の±5%の範囲内に配置されている
     室内機。
    a housing having a housing inlet and a housing outlet and being embedded in a ceiling;
    a blower fan that is formed of a plurality of blades and that draws air into the housing through the housing suction port and blows it out of the housing through the housing outlet port, and a scroll casing that houses the blower fan;
    a fan motor that drives the blower fan;
    a heat exchanger that exchanges heat between the air drawn into the housing from the housing inlet by the blower fan and a refrigerant,
    The scroll casing comprises:
    a scroll portion that forms an air passage that converts the dynamic pressure of the airflow generated by the blower fan into static pressure;
    a blowing section that forms an outlet through which air is blown from the blower fan and passes through the scroll section,
    the plurality of multi-blade centrifugal fans and the fan motor are disposed upstream of the heat exchanger in a width direction,
    an outer end portion of the scroll portion of the scroll casing of each of the multi-blade centrifugal fans at both ends of the plurality of multi-blade centrifugal fans is disposed within a range of ±5% of the width of the heat exchanger in the width direction from the end of the heat exchanger.
  2.  前記熱交換器は、
     前記筐体の下面に対して垂直となるように配置されている
     請求項1に記載の室内機。
    The heat exchanger includes:
    The indoor unit according to claim 1 , arranged so as to be perpendicular to the bottom surface of the housing.
  3.  前記スクロールケーシングは、
     渦巻形状の巻き始めの位置に設けられ、前記送風機用ファンから吹き出された空気の流れを分流させる舌部を有し、
     前記舌部の位置は、前記送風機用ファンの回転軸の位置よりも低い
     請求項1または2に記載の室内機。
    The scroll casing comprises:
    a tongue portion provided at a position where the spiral shape starts to spiral and divertes the flow of air blown out from the blower fan,
    The indoor unit according to claim 1 or 2, wherein a position of the tongue portion is lower than a position of a rotation shaft of the blower fan.
  4.  前記ファンモータを駆動させる基板が収納された電源ボックスを備え、
     前記電源ボックスは、
     前記複数の多翼遠心送風機の隣に配置されており、かつ、前記筐体を側面視して前記複数の多翼遠心送風機の前記スクロールケーシングの底部よりも上側に配置されている
     請求項1~3のいずれか一項に記載の室内機。
    a power supply box housing a board for driving the fan motor;
    The power supply box includes:
    The indoor unit according to any one of claims 1 to 3, wherein the indoor unit is disposed adjacent to the plurality of multi-blade centrifugal fans and is disposed above bottoms of the scroll casings of the plurality of multi-blade centrifugal fans when the housing is viewed from the side.
  5.  前記ファンモータと前記電源ボックスとは、
     前記複数の多翼遠心送風機と幅方向に配置されており、かつ、前記筐体を平面視して前記複数の多翼遠心送風機よりも同一の側面側に配置されている
     請求項4に記載の室内機。
    The fan motor and the power supply box are
    The indoor unit according to claim 4 , wherein the indoor unit is disposed in a width direction with the plurality of multi-blade centrifugal fans and is disposed on the same side as the plurality of multi-blade centrifugal fans when the housing is viewed from above.
  6.  前記送風機用ファンは、ターボインシロッコファンである
     請求項1~5のいずれか一項に記載の室内機。
    The indoor unit according to any one of claims 1 to 5, wherein the blower fan is a turbo in-sirocco fan.
  7.  前記筐体は、幅640mm×奥行き640mmに収まるサイズである
     請求項1~6のいずれか一項に記載の室内機。
    The indoor unit according to any one of claims 1 to 6, wherein the housing has a size that fits within a width of 640 mm and a depth of 640 mm.
  8.  請求項1~7のいずれか一項に記載の室内機を備えた
     空気調和装置。
    An air conditioner comprising an indoor unit according to any one of claims 1 to 7.
PCT/JP2022/043003 2022-11-21 2022-11-21 Indoor unit and air-conditioning device WO2024111021A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043003 WO2024111021A1 (en) 2022-11-21 2022-11-21 Indoor unit and air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043003 WO2024111021A1 (en) 2022-11-21 2022-11-21 Indoor unit and air-conditioning device

Publications (1)

Publication Number Publication Date
WO2024111021A1 true WO2024111021A1 (en) 2024-05-30

Family

ID=91195847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043003 WO2024111021A1 (en) 2022-11-21 2022-11-21 Indoor unit and air-conditioning device

Country Status (1)

Country Link
WO (1) WO2024111021A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035586A1 (en) * 2004-09-28 2006-04-06 Daikin Industries, Ltd. Air conditioner
JP2007100980A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Air conditioner
JP2013200092A (en) * 2012-03-26 2013-10-03 Daikin Industries Ltd Indoor unit of air conditioner
JP2015155764A (en) * 2014-02-20 2015-08-27 日立アプライアンス株式会社 Air conditioner indoor unit
WO2020090005A1 (en) * 2018-10-30 2020-05-07 三菱電機株式会社 Turbo fan, blower device, air conditioning device, and refrigeration cycle device
CN111981576A (en) * 2019-05-21 2020-11-24 青岛海尔空调电子有限公司 Air pipe type air pipe machine
WO2022113279A1 (en) * 2020-11-27 2022-06-02 三菱電機株式会社 Air-conditioning device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035586A1 (en) * 2004-09-28 2006-04-06 Daikin Industries, Ltd. Air conditioner
JP2007100980A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Air conditioner
JP2013200092A (en) * 2012-03-26 2013-10-03 Daikin Industries Ltd Indoor unit of air conditioner
JP2015155764A (en) * 2014-02-20 2015-08-27 日立アプライアンス株式会社 Air conditioner indoor unit
WO2020090005A1 (en) * 2018-10-30 2020-05-07 三菱電機株式会社 Turbo fan, blower device, air conditioning device, and refrigeration cycle device
CN111981576A (en) * 2019-05-21 2020-11-24 青岛海尔空调电子有限公司 Air pipe type air pipe machine
WO2022113279A1 (en) * 2020-11-27 2022-06-02 三菱電機株式会社 Air-conditioning device

Similar Documents

Publication Publication Date Title
US11262098B2 (en) Indoor unit and air-conditioning apparatus
TWI676741B (en) Centrifugal blower, air supply device, air conditioner, and refrigeration cycle device
JP6984043B2 (en) Centrifugal blower, blower, air conditioner and refrigeration cycle device
JP7031061B2 (en) Centrifugal blower, blower, air conditioner and refrigeration cycle device
CN109247023B (en) Centrifugal blower, air conditioner, and refrigeration cycle device
WO2020044540A1 (en) Centrifugal blower, blower device, air conditioning device, and refrigeration cycle device
JP6625305B1 (en) Blower, air conditioner indoor unit and air conditioner
CN111247345A (en) Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
TWI832906B (en) Centrifugal blowers, air conditioning units and refrigeration cycle units
WO2018003103A1 (en) Air conditioner, air conditioning device, and refrigeration cycle device
WO2024111021A1 (en) Indoor unit and air-conditioning device
CN113195903B (en) Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
TW202421971A (en) Indoor unit and air-conditioning device
TWI754505B (en) Scroll casing of a telecentric blower, a telecentric blower equipped with the scroll casing, an air conditioner, and a refrigeration cycle device
WO2024038573A1 (en) Blower fan, multi-blade centrifugal blower, and air-conditioning indoor unit
WO2024147172A1 (en) Outdoor unit
JP2003240261A (en) Integrated type air conditioner