WO2024109895A1 - 面部护理器 - Google Patents

面部护理器 Download PDF

Info

Publication number
WO2024109895A1
WO2024109895A1 PCT/CN2023/133754 CN2023133754W WO2024109895A1 WO 2024109895 A1 WO2024109895 A1 WO 2024109895A1 CN 2023133754 W CN2023133754 W CN 2023133754W WO 2024109895 A1 WO2024109895 A1 WO 2024109895A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
white light
phosphor
facial
fluorescent
Prior art date
Application number
PCT/CN2023/133754
Other languages
English (en)
French (fr)
Inventor
杨小琴
曾胜
曾骄阳
陈华
李刚
陈道蓉
曾小东
Original Assignee
四川世纪和光科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川世纪和光科技发展有限公司 filed Critical 四川世纪和光科技发展有限公司
Publication of WO2024109895A1 publication Critical patent/WO2024109895A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light

Definitions

  • the present application belongs to the technical field of physiotherapy products, and in particular, relates to a facial care device.
  • Phototherapy is a physical therapy that uses the radiation energy of light to treat diseases. It mainly includes ultraviolet therapy, visible light therapy, infrared therapy and laser therapy. Light in different wavelength ranges has clinical application value. Among them, red light therapy is a type of physical therapy and generally has no side effects.
  • red light therapy facial care devices on the market currently use single-wavelength red light sources, such as 532nm, 630nm, 655nm, 660nm, 678nm, 683nm, etc.
  • the half-wave width of this single-wavelength narrow spectrum light source is very narrow, and the energy intensity is not as good as the continuous spectrum.
  • the purpose of the present application is to provide a facial care device, aiming to solve the technical problem of weak light source energy of red light therapy facial care devices in the prior art.
  • a facial care device includes a mask body and a light source module arranged on the mask body, the light source module is used to emit light toward the face when the mask body is worn, the light source module includes a plurality of white light sources, each of the white light sources can emit near-natural light of 400-700nm; the mask body includes a plurality of functional areas, different functional areas correspond to different parts of the face; at least one white light source is arranged in each functional area, and the spectral power of the 600-700nm band in the mixed light formed by the light emitted by all the white light sources in the same functional area is greater than 0.7.
  • the density of the white light sources in any two of the functional areas satisfies the following relationship:
  • the density of the white light source in the functional area corresponding to the thicker part of the facial biological tissue is greater than the density of the white light source in the functional area corresponding to the thinner part of the facial biological tissue;
  • the density of the white light sources is the number of the white light sources per unit area.
  • the facial body includes a first functional area and a second functional area, the thickness of facial biological tissue corresponding to the first functional area is greater than the thickness of facial biological tissue corresponding to the second functional area; the density of the white light source in the first functional area is 4 to 16 particles/ cm2 , and the distance between two adjacent white light sources is 2 to 5 mm; the density of the white light source in the second functional area is 2 to 6 particles/ cm2 , and the distance between two adjacent white light sources is 3 to 5 mm.
  • the facial care device also includes a pulse control device electrically connected to the light source module.
  • the facial care device further comprises a temperature sensor disposed on the mask body.
  • the temperature sensor is electrically connected to the pulse control device and is used to detect the temperature of the surface of the mask body in contact with the face or a preset area in the space enclosed by the mask body; the pulse control device is used to receive the detection data of the temperature sensor and control the on/off of the light source module and the current size according to the detection data of the temperature sensor.
  • the pulse control device is used to output a control signal corresponding to each of the functional areas, so as to control the white light sources in each of the functional areas to flash at a preset frequency through the control signal, so that the white light sources in any two of the functional areas satisfy the following relationship:
  • the lighting time length of the white light source in the functional area corresponding to the thicker part of the facial biological tissue is longer than the lighting time length of the white light source in the functional area corresponding to the thinner part of the facial biological tissue.
  • the white light sources in any two of the functional areas satisfy the following relationship:
  • the pulse width corresponding to the white light source in the functional area corresponding to the thicker part of the facial biological tissue is smaller than the pulse width corresponding to the white light source in the functional area corresponding to the thinner part of the facial biological tissue;
  • the pulse interval corresponding to the white light source in the functional area corresponding to the thicker part of the facial biological tissue is smaller than the pulse interval corresponding to the white light source in the functional area corresponding to the thinner part of the facial biological tissue.
  • the pulse control device is connected in series with a light source assembly formed by all the white light sources in any functional area through a resistor, so that the white light sources in any two functional areas satisfy the following relationship:
  • the current of the white light source in the functional area corresponding to the thicker part of the facial biological tissue is greater than the current of the white light source in the functional area corresponding to the thinner part of the facial biological tissue.
  • the white light source includes a blue light chip and a wavelength conversion element formed on a light-emitting side of the blue light chip, and the peak wavelength of the blue light chip is 440-475 nm.
  • the wavelength conversion element includes a phosphor.
  • the phosphor includes a first phosphor portion and a second phosphor portion which are sequentially arranged along a light emitting direction, the first phosphor portion includes a first phosphor, and the second phosphor portion includes a second phosphor.
  • the first phosphor includes phosphor A1, phosphor A2 and phosphor A3, and the emission wavelength of the phosphor A1 is 488-492 nm, the emission wavelength of the phosphor A2 is 523-542 nm, the emission wavelength of the phosphor A3 is 628-681 nm, and the mass ratio of the phosphor A1, the phosphor A2 and the phosphor A3 is (20-70): (30-70): (3-15).
  • the second phosphor includes phosphor B1 and phosphor B2, the emission wavelength of phosphor B1 is 718-722 nm, the emission wavelength of phosphor B2 is 738-742 nm, and the mass ratio of phosphor B1 to phosphor B2 is (50-90):(15-50).
  • the first fluorescent powder accounts for 40% to 80% of the total mass of the colloid and the first fluorescent powder;
  • the second fluorescent powder accounts for 40% to 85% of the total mass of the colloid and the second fluorescent powder.
  • the phosphor is prepared by a film pressing method, and the thickness of the first phosphor portion and the second phosphor portion are both 0.06 to 0.15 mm;
  • the phosphor is prepared by a film spraying method, and the thickness of the first phosphor portion and the second phosphor portion are both 0.001-0.01 mm.
  • the refractive index of the second phosphor portion is greater than the refractive index of the first phosphor portion.
  • the mask body includes a mask body, a circuit layer and a protective layer which are stacked in sequence from the outside to the inside; the light source module is arranged on the circuit layer; the protective layer is an insulating and light-transmitting layer, which is used to cover the circuit layer and the light source module, and allow the light emitted by the light source module to pass through.
  • the mask body includes an outer membrane and a support layer stacked sequentially from outside to inside.
  • the mask body, the circuit layer and the protective layer are all flexible layers.
  • the absolute spectral power in the 600-700 nm band of the mixed light formed by the light emitted by all the white light sources located in the same functional area is greater than 0.7.
  • the light source module in the facial care device can obtain a flat, continuous wide spectrum with uniform light energy distribution. Its spectrum color is extremely close to the solar spectrum, and the adaptability of biological tissue to the natural spectrum is irreplaceable. The closer the photon energy is to the natural spectrum, the more effective it can be in producing biological effects on human biological tissues. Therefore, the continuous spectrum has a better effect on the growth or regeneration of biological tissues than a single-wavelength spectrum. That is, the facial care device provided in the embodiment of the present application has a better therapeutic effect than traditional narrow-spectrum facial care devices.
  • each white light source in this facial care device can form a wide spectrum, and the spectral power in the 600-700nm band of the mixed light formed by the light emitted by all light sources in each functional area is greater than 0.7.
  • the facial parts corresponding to each functional area can obtain strong red light irradiation, ensuring that every part of the face can obtain good phototherapy effects.
  • FIG1 is a schematic structural diagram of a facial care device provided by an embodiment of the present application.
  • FIG2 is a schematic diagram of a spectrum obtained by using the facial care device provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of a facial care device provided by another embodiment of the present application, in which the mask body is an exploded schematic diagram;
  • FIG4 is a schematic diagram of a control structure frame line used in an embodiment of the present application.
  • FIG5 is a schematic cross-sectional view of a single white light source used in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of a wavelength conversion element used in an embodiment of the present application.
  • FIG7 is a schematic diagram of a spectrum obtained by the facial care device corresponding to Example 1;
  • FIG8 is a schematic diagram of a spectrum obtained by the facial care device corresponding to Example 2.
  • FIG9 is a schematic diagram of a spectrum obtained by the facial care device corresponding to Example 3.
  • FIG10 is a schematic diagram of a spectrum obtained by the facial care device corresponding to Example 4.
  • FIG11 is a schematic diagram of the spectrum obtained by the facial care device corresponding to Example 5.
  • references numerals 100, mask body; 110, mask body; 111, outer film; 112, support layer; 120, circuit layer; 130, protective layer; 200, light source module; 210, blue light chip; 220, wavelength conversion element; 221, first fluorescent part; 222, second fluorescent part; 300, pulse control device; 400, temperature sensor; d, thickness of phosphor.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features. In the description of this application, the meaning of “plurality” is two or more, unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • the spectrum emitted by a light source is often not a single wavelength, but a mixture of radiation of many different wavelengths.
  • the spectral radiation of a light source in order of wavelengths and the distribution of the intensity of each wavelength is called the spectral power distribution of the light source.
  • the parameters used to characterize the size of spectral power are divided into absolute spectral power and relative spectral power. Then the absolute spectral power distribution curve refers to the curve drawn by the absolute value of the energy of various wavelengths of spectral radiation;
  • Relative spectral power distribution curve refers to the energy of various wavelengths of the light source radiation spectrum compared with each other.
  • the spectral power distribution curve is normalized so that the radiation power varies only within the specified range.
  • the relative spectral power of the maximum radiation power is 1, and the relative spectral power of other wavelengths is less than 1.
  • the facial care device can emit 400-700nm near-natural light, and the spectral power of the 600-700nm band in the near-natural light is greater than 0.7.
  • the facial care device in this application can be a mask or other facial care device with a mask structure.
  • the facial care device includes a mask body 100 and a light source module (not shown) disposed on the mask body 100, and the light source module is used to emit light toward the face when the mask body 100 is worn.
  • the mask body 100 has an inner side facing the face when worn and an outer side exposed to the outside, wherein the light source module can be disposed on the inner side wall of the mask body 100, or can be disposed inside the mask body 100.
  • the component located inside the light source module needs to be made of a light-transmitting material so that the light emitted by the light source module can be emitted through the component.
  • the light source module includes multiple white light sources. Each white light source can emit near-natural light of 400 to 700 nm.
  • the mask body includes multiple functional areas. Different functional areas correspond to different parts of the face. At least one white light source is arranged in each functional area.
  • the spectral power of the 600-700 nm band in the mixed light formed by the light emitted by all white light sources in the same functional area is greater than 0.7.
  • the spectral power mentioned here can be either relative spectral power or absolute spectral power.
  • the spectral power is absolute spectral power
  • the spectrum formed by the mixed light emitted by all white light sources in the same functional area is closer to the solar spectrum, so the spectral power is preferably absolute spectral power.
  • the functional areas in this embodiment can be divided according to any of the muscle thickness, biological tissue characteristics, etc. of different parts of the face, such as an eye functional area corresponding to the eye area, a forehead functional area corresponding to the forehead area, a nose bridge functional area corresponding to the nose bridge area, and a cheek functional area corresponding to the cheek area; it can also be divided into a first functional area corresponding to the T-shaped area of the face (including the forehead, eyes and nose bridge), and a second functional area corresponding to other areas except the above-mentioned areas.
  • each white light source can form a wide spectrum of 400-700nm, and the spectral power of the 600-700nm band in the mixed light formed by the light emitted by all light sources in each functional area is greater than 0.7, and the 600-700nm band corresponds to red light, which can penetrate 5-10mm below the biological tissue, and can promote blood circulation and cell regeneration in the biological tissue of the human face.
  • the facial parts corresponding to each functional area can obtain strong red light irradiation, so as to ensure that each part of the face can obtain a good phototherapy effect.
  • the facial care device provided in the embodiment of the present application can emit near-natural light with a wavelength of 400 to 700 nm, and its spectrum is shown in FIG2 , wherein light of different wavelength bands has different therapeutic effects:
  • the 480nm spectrum can improve chloasma; the 510nm spectrum can match the light absorption peak of endotoxin, a metabolite of Propionibacterium acnes, and can cause the death of acne bacteria; the 515nm spectrum can lighten the skin pigmentation, whiten and rejuvenate the skin; the 532nm spectrum can inhibit freckles and age spots; the 540nm spectrum can improve facial flushing, red acne marks, rosacea and other skin conditions; the 560nm spectrum can enhance skin elasticity, shrink pores, and remove wrinkles; the 590nm spectrum can inhibit red acne marks, rejuvenate the skin, and remove yellow spots; the 592nm spectrum can match the light absorption peak of blood vessels, promote collagen synthesis, and improve blood circulation; the 615nm spectrum can improve the color of spots.
  • the 633nm spectrum can effectively enhance the activity of skin collagen cells (make the skin supple, elastic and wrinkle-resistant); the 640nm spectrum can inhibit enlarged pores, pigmentation, remove fine lines and rejuvenate the skin; the 650nm spectrum can match the light absorption peak of cell mitochondria, enhance cell energy supply and promote metabolism; the 660nm spectrum can enhance the migration ability of bone marrow mesenchymal stem cells; the 670nm spectrum can promote the metabolism of the cortex (deep cell repair); the 683nm spectrum can match the light absorption peak of hair follicle cells to promote hair regeneration; the 690nm spectrum can improve cell activity, promote metabolism and enhance skin elasticity.
  • the light source module in the facial care device can obtain a flat, continuous wide spectrum with uniform light energy distribution. Its spectrum color is extremely close to the solar spectrum, and the adaptability of biological tissue to the natural spectrum is irreplaceable. The closer the photon energy is to the natural spectrum, the more effective it can be in producing biological effects on human biological tissues. Therefore, the continuous spectrum has a better effect on the growth or regeneration of biological tissues than a single-wavelength spectrum. That is, the facial care device provided in the embodiment of the present application has a better therapeutic effect than traditional narrow-spectrum facial care devices.
  • each white light source in this embodiment can form a wide spectrum, and the spectral power in the 600-700nm band in the mixed light formed by the light emitted by all light sources in each functional area is greater than 0.7.
  • the facial parts corresponding to each functional area can obtain strong red light irradiation, thereby ensuring that every part of the face can obtain a good phototherapy effect.
  • the density of the white light source in any two functional areas satisfies the following relationship:
  • the density of the white light sources in the functional area corresponding to the thicker part of the facial biological tissue is greater than the density of the white light sources in the functional area corresponding to the thinner part of the facial biological tissue.
  • the density of the white light sources is the number of white light sources per unit area.
  • the principle of red light therapy is to produce photochemical effects on organisms, which can produce important biological effects and therapeutic effects.
  • Mitochondria in cells absorb red light the most. After being irradiated with red light, the catalase activity of mitochondria increases, which can increase cell metabolism, increase glycogen content, increase protein synthesis and increase adenosine triphosphate decomposition, thereby strengthening cell regeneration, promoting the healing of wounds and ulcers, and also increasing the phagocytic effect of white blood cells and improving the body's immune function.
  • the thicker the biological tissue the more cells there are in general, and the more light is needed.
  • the functional area corresponding to the thicker biological tissue area such as the cheek (the biological tissue thickness is 7 to 23 mm)
  • 4 to 16 white light sources can be arranged per square centimeter, and the spacing between two adjacent white light sources is 2 to 5 mm
  • the functional area corresponding to the thinner biological tissue area such as the forehead (the biological tissue thickness is 2 to 6 mm)
  • 2 to 6 white light sources can be arranged per square centimeter, and the spacing between two adjacent white light sources is 3 to 5 mm.
  • the light source module can be directly connected to the power cord. When in use, it can be powered directly through the power cord. It can also be connected to the power supply through the control device.
  • the facial care device also includes a pulse control device 300 electrically connected to the light source module 200.
  • the pulse control device 300 in this embodiment can be installed with the mask body 100, or it can be located outside the mask body 100, and PWM pulse modulation can be used to control the operation of the light source module 200.
  • the facial care device adopts the structure provided by this embodiment, and can realize intelligent control of the light source module 200 through the pulse control device 300, such as timing opening or closing, and adjusting the brightness of the light source module 200, so that the facial care device can adapt to the different usage needs of more people, so as to enhance customer experience and expand the scope of application of the product.
  • the pulse control device 300 may include a power supply assembly, a drive controller and a switch, wherein the power supply assembly may be a rechargeable power supply module, a storage battery and/or a connection line connected to an external power supply, etc.
  • the switch may be connected in series with the drive controller and the power supply assembly, and the switch controls the connection or interruption of the power supply assembly and the drive controller during use, and the drive controller may be composed of one or more programmable control chips (such as a CPU).
  • the pulse control device 300 is connected to the light source module 200 via a wire.
  • the principle of the pulse control device 300 controlling the luminous brightness of the light source module 200 through PWM is as follows: different brightness changes are achieved by adjusting the duty cycle.
  • the duty cycle represents the average voltage. After the duty cycle changes, the average voltage across the light source module 200 and the current limiting resistor will change, and the current flowing through the light source module 200 will change. Therefore, when the duty cycle of PWM is adjusted to the minimum, the brightness emitted by the light source module 200 is controlled to be maximum.
  • the duty cycle of PWM is increased within a preset time interval, the brightness emitted by the light source module 200 becomes dimmer, and the duty cycle change cycle is set to achieve cyclic switching of multiple brightnesses, simulating the dynamic flickering effect of light and dark brightness when the sun shines.
  • the principle of the pulse control device 300 adjusting the color temperature of the light source module 200 through PWM is: by changing the driving current of different light sources in the light source module 200, the luminous flux of each light source is changed, and specifically different light sources are controlled in segments through PWM.
  • PWMA is used to control one or some of the light sources
  • PWMB is used to control other light sources.
  • the duty cycles of PWMA and PWMB are set respectively, so that the color temperature of the near-natural light generated by the mixture of all light sources can be adjusted.
  • the facial care device further includes a temperature sensor 400 disposed on the mask body 100.
  • the temperature sensor 400 is electrically connected to the pulse control device 300, and is used to detect the temperature of the side of the mask body 100 in contact with the face or a preset area in the space enclosed by the mask body 100.
  • the preset area mentioned here can be a preset distance from the side of the mask body 100 in contact with the face, such as an area at 1mm or 2mm, or a certain area on the face, which can be manually set according to the needs of use.
  • the pulse control device 300 is used to receive the detection data of the temperature sensor 400, and control the on and off of the light source module 200 and the current size according to the detection data of the temperature sensor 400.
  • the setting of the temperature sensor 400 in this embodiment can make the facial care device have the function of controlling the thermal effect of the photobiological tissue.
  • the function of the pulse control device 300 can be set by programming, so that the pulse control device 300 receives the data collected by the temperature sensor 400 in real time.
  • the temperature sensor 400 detects that the temperature in the preset area of the face care device in contact with the face or the space enclosed by the mask body 100 reaches the first preset temperature (which can be 39 degrees or other temperatures), the pulse current delivered to the light source module 200 is automatically lowered; when it is found that the temperature sensor 400 detects that the temperature in the preset area of the face care device in contact with the face or the space enclosed by the mask body 100 reaches the second preset temperature (which can be 41 degrees or other temperatures), the power supply is automatically turned off and the light source module 200 is stopped from being supplied with power. In this way, the risk of the biological tissue causing the internal temperature rise due to the action of light and causing adverse effects on the activity of biological enzymes can be effectively reduced.
  • the first preset temperature which can be 39 degrees or other temperatures
  • the pulse current delivered to the light source module 200 is automatically lowered
  • the second preset temperature which can be 41 degrees or other temperatures
  • the pulse control device is used to output a control signal corresponding to the functional area one by one, so as to control the white light source in each functional area to flash according to a preset frequency through the control signal, so that the white light sources in any two functional areas satisfy the following relationship:
  • the lighting time length of the white light source in the functional area corresponding to the thicker part of the facial biological tissue is longer than the lighting time length of the white light source in the functional area corresponding to the thinner part of the facial biological tissue.
  • control signal can be adjusted zone by zone according to the thickness of different parts of the biological tissue to achieve a better cosmetic effect.
  • the first method is to control the white light sources in each functional area to flash at a preset frequency through a control signal, so that the white light sources in any two functional areas satisfy the following relationship:
  • the pulse width corresponding to the white light source in the functional area corresponding to the thicker part of the facial biological tissue is smaller than the pulse width corresponding to the white light source in the functional area corresponding to the thinner part of the facial biological tissue.
  • the second method is to control the white light sources in each functional area to flash at a preset frequency through a control signal, so that the white light sources in any two functional areas satisfy the following relationship:
  • the pulse interval corresponding to the white light source in the functional area corresponding to the thicker part of the facial biological tissue is smaller than the pulse interval corresponding to the white light source in the functional area corresponding to the thinner part of the facial biological tissue.
  • the third method is to control the white light sources in each functional area to flash at a preset frequency through a control signal, so that the white light sources in any two functional areas satisfy the following relationship:
  • the pulse width corresponding to the white light source in the functional area corresponding to the thicker part of the facial biological tissue is smaller than the pulse width corresponding to the white light source in the functional area corresponding to the thinner part of the facial biological tissue;
  • the pulse interval corresponding to the white light source in the functional area corresponding to the thicker part of the facial biological tissue is smaller than the pulse interval corresponding to the white light source in the functional area corresponding to the thinner part of the facial biological tissue.
  • the lighting time of the white light source in the functional area corresponding to the thicker part of the facial biological tissue is longer than the lighting time of the white light source in the functional area corresponding to the thinner part of the facial biological tissue.
  • the specific setting method can be flexibly selected according to the use needs.
  • the lighting time of the white light source in the functional area corresponding to the thicker part of the facial biological tissue is the largest compared with the lighting time of the white light source in the functional area corresponding to the thinner part of the facial biological tissue.
  • the pulse control device 300 is connected in series with the light source assembly formed by all white light sources in any functional area through a resistor, so that the white light sources in any two functional areas satisfy the following relationship:
  • the current of the white light source in the functional area corresponding to the thicker part of the facial biological tissue is greater than the current of the white light source in the functional area corresponding to the thinner part of the facial biological tissue.
  • the luminous flux of the light sources in different functional areas can be different. It adapts to the biological tissue characteristics of different parts of the face, so that different parts can achieve good phototherapy effects.
  • the current of the white light source in the functional area corresponding to the thicker biological tissue area such as the cheek can be 5 to 30 mA
  • the pulse width is 5 mS to 90 mS
  • the pulse interval is 5 mS to 60 Ms
  • the current of the white light source in the functional area corresponding to the thinner biological tissue area such as the forehead is 3 to 30 mA, preferably 5 mA to 15 mA
  • the pulse width is 10 mS to 90 mS
  • the pulse interval is 10 mS to 60 Ms.
  • the white light source includes a blue light chip 210 and a wavelength conversion element 220 formed on the light-emitting side of the blue light chip 210, and the peak wavelength of the blue light chip 210 is 440 to 475 nm.
  • the blue light chip 210 is used to emit blue light
  • the wavelength conversion element 220 is used to convert the wavelength of the monochromatic light emitted by the blue light chip 210 to produce other colored light (which can be white light or light of other colors), and the multiple colored lights are mixed to form near-natural light.
  • each white light source can emit light with a full-color bionic spectrum, and can also emit light with a partial spectrum, as long as the light emitted by all white light sources in the same light-emitting component can be mixed to form near-natural light with a wavelength of 400 to 700 nm, and the spectral power of the 600 to 700 nm band in the near-natural light is greater than 0.7. Since each white light source can emit near-natural light, when the present light source includes multiple white light sources, near-natural light can also be emitted.
  • each blue light chip 210 in this embodiment has a wavelength conversion element 220, according to the existing process, compared with multiple blue light chips 210 sharing one wavelength conversion element 220, it is easier to keep the spectrum of each white light source stable and will not change due to changes in the driving current.
  • the wavelength conversion element 220 can have various forms, including fluorescent color wheels, nonlinear optical crystals or fluorescent bodies.
  • the wavelength conversion element 220 includes a fluorescent body
  • the structure is simple, which is helpful for controlling the size of the light source.
  • the fluorescent body can be a fluorescent film, fluorescent ceramics, fluorescent glass, etc.
  • fluorescent films, fluorescent coatings, fluorescent colloids, etc. are preferred.
  • These fluorescent structures are generally made by mixing fluorescent powders in adhesives such as silica gel or epoxy resin.
  • the fluorescent body can be a block structure formed after filling the entire reflective cup, or it can be a fluorescent layer capped on the top of the reflective cup.
  • the fluorescent body can be a fluorescent film, a fluorescent coating, and other structures. More specifically, when the blue light chip is prepared by flip-chip method, all the blue light chips 210 can be arranged in sequence and spaced apart, and then a fluorescent layer is uniformly prepared on all the blue light chips 210 by spraying, printing, etc., and then each light-emitting unit is prepared by cutting, and finally each light-emitting unit is assembled on the substrate and electrically connected to the electrical connector formed on the substrate.
  • the phosphor includes a first fluorescent portion 221 and a second fluorescent portion 222 sequentially arranged along the light emitting direction, the first fluorescent portion 221 includes a first fluorescent powder, and the second fluorescent portion 222 includes a second fluorescent powder.
  • each fluorescent part in this embodiment can be determined according to specific circumstances.
  • the first fluorescent part 221 can be a block structure that fills the middle and lower part of the reflective cup by dispensing glue
  • the second fluorescent part 222 can be a block structure that fills the middle and upper part of the reflective cup by dispensing glue on the upper surface of the first fluorescent part 321;
  • the fluorescent body is a thin film or layer structure
  • the first fluorescent part 221 and the second fluorescent part 222 It can be a fluorescent film or a fluorescent coating arranged in layers.
  • each layer may contain one type of phosphor or multiple types of phosphors. When there are multiple types of phosphors, no chemical reaction occurs between different phosphors, and the properties of each phosphor remain unchanged. Only the types of light emitted through the layer increase with the increase of the types of phosphors. If the first fluorescent part 221 contains one type of phosphor, when the light emitted by the blue light chip 210 passes through the layer, only this type of phosphor is excited to emit light of the corresponding wavelength. If the first fluorescent part 221 contains multiple types of phosphors, when the light emitted by the blue light chip 210 passes through the layer, each phosphor is excited to emit light of the corresponding wavelength.
  • the layer emits multiple lights of different wavelengths, and the principle of other fluorescent parts is the same.
  • the types of phosphors in each fluorescent part are more, the types of light emitted are more, and finally all the light is mixed to form near-natural light.
  • the ratio and concentration of the first fluorescent powder and the second fluorescent powder can be flexibly adjusted during molding, so that the generated white light spectrum is closer to natural light.
  • the use of the fluorescent body provided in this embodiment can make the overall light loss of the white light source relatively small and the light efficiency higher.
  • the first fluorescent part 221 and the second fluorescent part 222 both include a colloid and corresponding fluorescent powders dispersed in the colloid.
  • the concentration of the first fluorescent powder in the first fluorescent part 221 can be controlled to be 40% to 80%, and further to be 50% to 70%, wherein the concentration of the first fluorescent powder is the proportion of the first fluorescent powder in the total mass of the first fluorescent powder and the colloid.
  • the concentration of the second phosphor in the second fluorescent part 222 can be controlled to be 40% to 85%, or further to be 50% to 75%, wherein the concentration of the second phosphor is the proportion of the second phosphor in the total mass of the second phosphor and the colloid.
  • the concentration of the first phosphor and the second phosphor determines the color temperature of the generated near-natural light. The higher the concentration, the lower the color temperature, and the lower the concentration, the higher the color temperature, under the conditions of a certain phosphor ratio and a certain thickness of the phosphor part.
  • the first phosphor includes phosphor A1, phosphor A2 and phosphor A3, and the emission wavelength of phosphor A1 is 488-492nm, the emission wavelength of phosphor A2 is 523-542nm, the emission wavelength of phosphor A3 is 628-681nm, and the mass ratio of phosphor A1, phosphor A2 and phosphor A3 is (20-70): (30-70): (3-15).
  • the first phosphor adopts the arrangement of this embodiment, so that the light emitted by the blue light chip 210 can emit near-natural light of 400-700nm after passing through the phosphor.
  • the second phosphor includes phosphor B1 and phosphor B2, the emission wavelength of phosphor B1 is 718-722nm, the emission wavelength of phosphor B2 is 738-742nm, and the mass ratio of phosphor B1 to phosphor B2 is (50-90): (15-50).
  • the second phosphor adopts the arrangement of this embodiment, so that the light emitted by the blue light chip 210 can emit near-natural light of 400-700nm after passing through the first phosphor and the second phosphor.
  • phosphor A1, phosphor A2, phosphor A3, phosphor B1 and phosphor B2 may include any compound of nitride, Y 3 Al 12 :C and fluoride.
  • phosphor A1 may be gallium-doped yttrium aluminum garnet, specifically yttrium trialuminum gallium pentaoxide [Y 3 (Al, Ga) 5 O 12 ]
  • phosphor A2 may be BaSi 2 O 2 N 2 (barium strontium dioxide dinitrogen dioxide, 1222)
  • phosphor A3, phosphor B1 and phosphor B2 may be (Ca, Sr)AlSiN 3 (calcium strontium aluminum silicon nitrogen trioxide, 1113) or fluoride, specifically K 2 SiF 6 :Mn 4+ (potassium fluorosilicate).
  • phosphor A1, phosphor A2, phosphor A3, phosphor B1 and phosphor B2 may be nitride, Y 3 Al 12 :C and fluoride.
  • the phosphors of phosphor B1 and phosphor B2 with different emission wavelengths can be directly purchased from the market according to the emission wavelengths.
  • phosphors A1, A2, A3, B1 and B2 are not limited, and may include only a single pure compound or a mixture of multiple compounds.
  • phosphor A2 may also include phosphors A21 and A22
  • phosphor A3 may also include phosphors A31, A32 and A33.
  • phosphors A1, B1 and B2 may also include a single pure compound or a mixture of multiple compounds.
  • the phosphor includes a first phosphor part and a second phosphor part which are stacked in sequence.
  • the first phosphor part includes a first phosphor and a colloid
  • the second phosphor part includes a second phosphor and a colloid.
  • the colloid is silica gel.
  • the mass ratio of the first phosphor and the second phosphor is shown in Table 1 below.
  • the phosphor is in the form of a fluorescent film.
  • the first phosphor includes phosphor A1, phosphor A2 and phosphor A3, phosphor A1 is Y 3 (Al, Ga) 5 O 12 with a light emission wavelength of 490 nm, phosphor A2 is BaSi 2 O 2 N 2 with a light emission wavelength of 535 nm, and phosphor A3 is (Ca, Sr) AlSiN 3 with a light emission wavelength of 660 nm.
  • the mass ratios of phosphor A1, phosphor A2 and phosphor A3 are shown in Table 1.
  • the second phosphor includes phosphor B1 and phosphor B2.
  • Phosphor B1 is (Ca, Sr)AlSiN 3 with a light emission wavelength of 720 nm
  • phosphor B2 is (Ca, Sr)AlSiN 3 with a light emission wavelength of 740 nm.
  • the mass ratio of phosphor B1 and phosphor B2 is shown in Table 1.
  • the phosphor includes a first phosphor portion and a second phosphor portion stacked in sequence.
  • the first phosphor portion includes a first phosphor and a colloid
  • the second phosphor portion includes a second phosphor and a colloid.
  • the colloid is silica gel.
  • the mass ratio of the first phosphor and the second phosphor is shown in Table 3 below.
  • the phosphor is in the form of a fluorescent film.
  • the first phosphor includes phosphor A1, phosphor A2 and phosphor A3, phosphor A1 is Y 3 (Al, Ga) 5 O 12 with a light emission wavelength of 488 nm, phosphor A2 is BaSi 2 O 2 N 2 with a light emission wavelength of 523 nm, and phosphor A3 is (Ca, Sr) AlSiN 3 with a light emission wavelength of 628 nm.
  • the mass ratios of phosphor A1, phosphor A2 and phosphor A3 are shown in Table 3.
  • the second phosphor includes phosphor B1 and phosphor B2.
  • Phosphor B1 is (Ca, Sr)AlSiN 3 with a light emission wavelength of 718 nm
  • phosphor B2 is (Ca, Sr)AlSiN 3 with a light emission wavelength of 738 nm.
  • the mass ratio of phosphor B1 and phosphor B2 is shown in Table 3.
  • the phosphor includes a first phosphor portion and a second phosphor portion stacked in sequence.
  • the first phosphor portion includes a first phosphor and a colloid
  • the second phosphor portion includes a second phosphor and a colloid.
  • the colloid is silica gel.
  • the mass ratio of the first phosphor and the second phosphor is shown in Table 3 below.
  • the phosphor is in the form of a fluorescent film.
  • the first phosphor includes phosphor A1, phosphor A2 and phosphor A3, phosphor A1 is Y 3 (Al, Ga) 5 O 12 with a light emission wavelength of 492 nm, phosphor A2 is BaSi 2 O 2 N 2 with a light emission wavelength of 542 nm, and phosphor A3 is (Ca, Sr) AlSiN 3 with a light emission wavelength of 681 nm.
  • the mass ratios of phosphor A1, phosphor A2 and phosphor A3 are shown in Table 3.
  • the second phosphor includes phosphor B1 and phosphor B2.
  • Phosphor B1 is (Ca, Sr)AlSiN 3 with a light emission wavelength of 722 nm
  • phosphor B2 is (Ca, Sr)AlSiN 3 with a light emission wavelength of 742 nm.
  • the mass ratio of phosphor B1 and phosphor B2 is shown in Table 3.
  • the spectrum of the near-natural light generated by the facial care device provided in Examples 1 to 7 of the present application is highly similar to that of natural light, wherein the spectrum diagrams corresponding to Examples 1 to 5 are shown in Figures 7 to 11.
  • the near-natural light includes all visible light in the 400-700nm band, and the spectral power of the 600-700nm band is greater than 0.7, and the average optical power of visible light in different bands is close to that of natural light, so that the near-natural light highly simulates natural light, has a high color rendering index, has little harm to the human body, and makes the human body feel comfortable.
  • the phosphor is prepared by a film pressing method, and the thickness of the first fluorescent portion 221 and the second fluorescent portion 222 are both 0.06 to 0.15 mm. In another optional embodiment, the phosphor is prepared by a film spraying method, and the thickness of the first fluorescent portion 221 and the second fluorescent portion 222 are both 0.001 to 0.01 mm. Regardless of which of the above preparation methods is used, the thickness d of the phosphor is less than or equal to 0.3 mm.
  • the existing phosphors are generally thicker, which is not conducive to the heat dissipation of the light source and makes the light source thicker.
  • the phosphor adopts the thickness defined in this embodiment, which can make the light source thinner and is conducive to the heat dissipation of the blue light chip.
  • the refractive index of each fluorescent portion arranged along the light emitting direction increases successively, that is, the refractive index of the first fluorescent portion and the second fluorescent portion increases successively, so that the divergence angle of the light emitted by the blue light chip gradually increases, and then the emission angle of the light emitted by each light-emitting unit is large enough to meet the use requirements.
  • the mask body 100 can be an integrally formed structure or a plurality of flexible layers stacked.
  • the mask body 100 includes a mask body 110, a circuit layer 120 and a protective layer 130 stacked sequentially from the outside to the inside.
  • the light source module is arranged on the circuit layer 120.
  • the protective layer 130 is an insulating light-transmitting layer, which is used to cover the circuit layer 120 and the light source module, and allows the light emitted by the light source module to pass through.
  • the mask body 110 in the present embodiment can be an integrally formed structure, or a combination structure of multiple components, such as a stacked structure composed of multiple stacked layered structures, a combination structure composed of multiple blocks, etc.
  • the circuit layer 120 includes multiple conductors, conductive strips and other conductive bodies, which can be determined according to the electrical connection relationship between the light source module and the external control device or the facial care device's built-in control device.
  • the light source module only needs two conductive bodies to be connected in series with the external control device or the facial care device's built-in control device, then only two conductive bodies can be set in the circuit layer 120; if the light source module only needs two conductive bodies to be connected in series with the external control device or the facial care device's built-in control device, then only two conductive bodies can be set in the circuit layer 120;
  • the module needs 10 conductors to achieve connection with an external or built-in control device of the facial care device, so at least 10 conductors need to be provided in the circuit layer 120.
  • the protective layer 130 in this embodiment can be a light-transmitting film, a light-transmitting adhesive layer, etc., as long as the above functions can be achieved.
  • the mask body 100 adopts the structure provided in this embodiment, which has a simple structure and avoids the light source module 200 and the circuit layer 120 from being exposed, so that the mask body 100 has a beautiful appearance and high safety.
  • the mask body 110 includes an outer film 111 and a support layer 112 stacked in sequence from the outside to the inside.
  • the support layer 112 is the main structure of the mask body 110
  • the outer film 111 is a protective layer of the support layer 112.
  • the mask body 110 adopts the structure provided by this embodiment, which is simple in structure, not easy to be damaged, and has a long service life.
  • the mask body 110, the circuit layer 120 and the protective layer 130 are all flexible layers.
  • the flexible layer mentioned here is a layered structure that can bend and deform under a certain force.
  • the mask body 110 and the protective layer 130 can be made of flexible materials such as silicone and rubber.
  • the circuit layer 120 can be made of a flexible circuit board and copper foil.
  • the mask body 100 adopts the structure provided in this embodiment, and can be deformed according to the shape of the face when worn, thereby improving the comfort when worn. At the same time, it can also make the light emitted by the light source module 200 closer to the face, thereby improving the phototherapy effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种面部护理器,包括面罩主体和设置在面罩主体上的光源模组,光源模组用于在面罩主体被佩戴时朝向面部发光,光源模组包括多个白光光源,每个白光光源均能够发出400~700nm波段的近自然光;面罩主体包括多个功能区域,不同功能区域对应面部的不同部位;每个功能区域内均设置有至少一个白光光源,位于同一功能区域内的所有白光光源发出的光形成的混合光中600~700nm波段的光谱功率大于0.7。本申请提供的面部护理器,可以提供更宽的光谱,理疗效果更佳。

Description

面部护理器
本申请要求于2022年11月24日在中国专利局提交的、申请号为202211480892.0、发明名称为“面部护理器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于理疗产品技术领域,尤其涉及一种面部护理器。
背景技术
光疗法即利用光线的辐射能治疗疾病的理疗法,主要有紫外线疗法、可见光疗法、红外线疗法和激光疗法。不同波段范围的光都有临床应用的价值。其中,红光治疗是理疗的一种,一般没有副作用。
但目前市面上的红光理疗面部护理器,多采用单波长的红光光源,如532nm、630nm、655nm、660nm、678nm、683nm等,这种单波长窄光谱的光源半波宽度很窄,能量强度不及连续光谱。
技术问题
本申请的目的在于提供一种面部护理器,旨在解决现有技术中红光理疗面部护理器的光源能量较弱的技术问题。
技术解决方案
本申请是这样实现的,一种面部护理器,包括面罩主体和设置在所述面罩主体上的光源模组,所述光源模组用于在所述面罩主体被佩戴时朝向面部发光,所述光源模组包括多个白光光源,每个所述白光光源均能够发出400~700nm的近自然光;所述面罩主体包括多个功能区域,不同所述功能区域对应面部的不同部位;每个所述功能区域内均设置有至少一个所述白光光源,位于同一功能区域内的所有所述白光光源发出的光形成的混合光中600~700nm波段的光谱功率大于0.7。
在其中一个实施例中,任意两个所述功能区域内所述白光光源的密度满足以下关系:
与面部生物组织较厚部位对应的所述功能区域内的所述白光光源的密度大于与面部生物组织较薄部位对应的所述功能区域内的所述白光光源的密度;
其中,所述白光光源的密度为单位面积内所述白光光源的个数。
在其中一个实施例中,所述面部主体包括第一功能区域和第二功能区域,所述第一功能区域对应的面部生物组织的厚度大于所述第二功能区域对应的面部生物组织的厚度;所述第一功能区域内所述白光光源的密度为4~16颗/cm2,相邻两个所述白光光源之间的间距为2~5mm;所述第二功能区域内所述白光光源的密度为2~6颗/cm2,相邻两个所述白光光源之间的间距为3~5mm。
在其中一个实施例中,所述面部护理器还包括与光源模组电连接的脉冲控制装置。
在其中一个实施例中,所述面部护理器还包括设置在所述面罩主体上的温 度传感器;所述温度传感器与所述脉冲控制装置电连接、用于检测所述面罩主体与面部接触一面或者所述面罩主体所围设空间内预设区域的温度;所述脉冲控制装置用于接收所述温度传感器的检测数据,并根据所述温度传感器的检测数据控制所述光源模组的通断以及电流大小。
在其中一个实施例中,所述脉冲控制装置用于输出与所述功能区域一一对应的控制信号,以通过所述控制信号控制各所述功能区域内所述白光光源按照预设频率闪烁,使得任意两个所述功能区域内所述白光光源满足以下关系:
与面部生物组织较厚部位对应的所述功能区域内的所述白光光源的点亮时长大于与面部生物组织较薄部位对应的所述功能区域内的所述白光光源的点亮时长。
在其中一个实施例中,任意两个所述功能区域内所述白光光源满足以下关系:
与面部生物组织较厚部位对应的功能区域内的所述白光光源对应的脉冲宽度小于与面部生物组织较薄部位对应的功能区域内的所述白光光源对应的脉冲宽度;
和/或,与面部生物组织较厚部位对应的功能区域内的所述白光光源对应的脉冲间隔小于与面部生物组织较薄部位对应的功能区域内的所述白光光源对应的脉冲间隔。
在其中一个实施例中,所述脉冲控制装置通过电阻与任一所述功能区域内所有所述白光光源形成的光源组件串联,以使得任意两个功能区域内所述白光光源满足以下关系:
与面部生物组织较厚部位对应的功能区域内的所述白光光源的电流大于与面部生物组织较薄部位对应的功能区域内的所述白光光源的电流。
在其中一个实施例中,所述白光光源包括蓝光芯片和形成于所述蓝光芯片的出光侧的波长转换元件,所述蓝光芯片的峰值波长为440~475nm。
在其中一个实施例中,所述波长转换元件包括荧光体。
在其中一个实施例中,所述荧光体包括沿光线出射方向依次设置的第一荧光部和第二荧光部,所述第一荧光部包括第一荧光粉,所述第二荧光部包括第二荧光粉。
在其中一个实施例中,所述第一荧光粉包括荧光粉A1、荧光粉A2和荧光粉A3,且所述荧光粉A1的发光波长488~492nm,所述荧光粉A2的发光波长为523~542nm,所述荧光粉A3的发光波长为628~681nm,所述荧光粉A1、所述荧光粉A2和所述荧光粉A3的质量比为(20~70):(30~70):(3~15)。
在其中一个实施例中,所述第二荧光粉包括荧光粉B1和荧光粉B2,所述荧光粉B1的发光波长为718~722nm,所述荧光粉B2的发光波长为738~742nm,所述荧光粉B1和所述荧光粉B2的质量比为(50~90):(15~50)。
在其中一个实施例中,所述第一荧光部中,所述第一荧光粉占胶体与所述第一荧光粉总质量的40%~80%;
和/或,所述第二荧光部中,所述第二荧光粉占胶体与所述第二荧光粉总质量的40%~85%。
在其中一个实施例中,所述荧光体采用压膜法制备,所述第一荧光部和所述第二荧光部的厚度均为0.06~0.15mm;
或者,所述荧光体采用喷膜法制备,所述第一荧光部和所述第二荧光部的厚度均为0.001~0.01mm。在其中一个实施例中,所述第二荧光部的折射率大于所述第一荧光部的折射率。
在其中一个实施例中,所述面罩主体包括由外至内依次层叠设置的面罩本体、电路层和防护层;所述光源模组设置于所述电路层上;所述防护层为绝缘透光层,用于覆盖所述电路层和所述光源模组,并允许所述光源模组发出的光线穿过。
在其中一个实施例中,所述面罩本体包括由外至内依次层叠的外膜和支撑层。
在其中一个实施例中,所述面罩本体、所述电路层和所述防护层均为柔性层。
在其中一个实施例中,位于同一功能区域内的所有所述白光光源发出的光形成的混合光中600~700nm波段的绝对光谱功率大于0.7。
本申请相对于现有技术的技术效果是:本申请实施例提供的面部护理器至少具有如下效果:
第一,本面部护理器中的光源模组能够获得平坦的、连续宽光谱,光能量分布均匀,其谱色与太阳谱色极其相近,而生物组织对自然光谱的适应性是无可替代的,越接近自然光谱的光子能量,更能有效的使人体生物组织产生生物效应,因此连续光谱对生物组织的生长或再生作用,优于单波长的光谱,即本申请实施例提供的面部护理器相比于传统的窄光谱面部护理器,理疗效果更佳。
第二,本面部护理器中每个白光光源均可以形成宽光谱,且每个功能区域内的所有光源发出的光形成的混合光中600~700nm波段的光谱功率大于0.7,如此可使得每个功能区域对应的面部部位均可以获得较强的红光照射,以确保面部的每个部位均可获得良好的光疗效果。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的面部护理器的结构示意图;
图2是采用本申请实施例提供的面部护理器所获得的光谱示意图;
图3是本申请另一实施例提供的面部护理器的结构示意图,图中面罩主体为***示意图;
图4是本申请实施例所采用的控制结构框线示意图;
图5是本申请实施例所采用的单个白光光源的剖视结构示意图;
图6是本申请实施例所采用的波长转换元件的结构示意图;
图7是实施例1对应的面部护理器所获得的光谱示意图;
图8是实施例2对应的面部护理器所获得的光谱示意图;
图9是实施例3对应的面部护理器所获得的光谱示意图;
图10是实施例4对应的面部护理器所获得的光谱示意图;
图11是实施例5对应的面部护理器所获得的光谱示意图。
附图标记说明:
100、面罩主体;110、面罩本体;111、外膜;112、支撑层;120、电路
层;130、防护层;200、光源模组;210、蓝光芯片;220、波长转换元件;221、第一荧光部;222、第二荧光部;300、脉冲控制装置;400、温度传感器;d、荧光体的厚度。
本发明的实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。
技术术语的解释说明:
1.光谱功率:
一种光源所发射的光谱往往不是单一的波长,而是由许多不同波长的混合辐射所组成。光源的光谱辐射按波长顺序和各波长强度分布称为光源的光谱功率分布。
用于表征光谱功率大小的参数分为绝对光谱功率和相对光谱功率。进而绝对光谱功率分布曲线:指以光谱辐射的各种波长光能量绝对值所作的曲线;
相对光谱功率分布曲线:指将光源辐射光谱的各种波长的能量进行相互比 较,作归一化处理后使辐射功率仅在规定的范围内变化的光谱功率分布曲线。辐射功率最大的相对光谱功率为1,其他波长的相对光谱功率均小于1。
市场上红光理疗产品众多,本申请针对面部护理器进行改进,提出一种新的面部护理器。该面部护理器能够发出400~700nm的近自然光,且近自然光中600~700nm波段的光谱功率大于0.7。本申请中的面部护理器可以为面罩、或具有面罩结构的其他面部护理装置。
请参照图1所示,该面部护理器包括面罩主体100和设置在面罩主体100上的光源模组(图中未示出),光源模组用于在面罩主体100被佩戴时朝向面部发光。具体的,面罩主体100具有在佩戴时朝向面部的内侧和裸露在外的外侧,其中光源模组可以设置在面罩主体100的内侧壁上,也可以设置在面罩主体100内。当光源模组设置在面罩主体100内时,位于光源模组内侧的部件需为透光材质,以使得光源模组发出的光线可以经该部件射出。
光源模组包括多个白光光源。每个白光光源均能够发出400~700nm的近自然光。面罩主体包括多个功能区域。不同功能区域对应面部的不同部位。每个功能区域内均设置有至少一个白光光源。位于同一功能区域内的所有白光光源发出的光形成的混合光中600~700nm波段的光谱功率大于0.7。这里所说的光谱功率可以为相对光谱功率也可以为绝对光谱功率。相较光谱功率为相对光谱功率,当光谱功率为绝对光谱功率时,位于同一功能区域内的所有白光光源发出的光形成的混合光所形成的光谱更接近太阳谱色,因此光谱功率优选绝对光谱功率。
具体的,本实施例中的功能区域可以根据面部不同部位的肌肉厚度、生物组织特性等中任一特性进行划分,如可以分为与眼睛区域相对应的眼部功能区域、与额头区域相对应的额头功能区域、与鼻梁区域相对应的鼻梁功能区域、与脸颊区域相对应的脸颊功能区域;还可以分为与面部T型区域(包括额头、眼部和鼻梁)相对应的第一功能区域,以及除上述区域外的其他区域相对应的第二功能区域。
本实施例中每个白光光源均可以形成400~700nm的宽光谱,且每个功能区域内的所有光源发出的光形成的混合光中600~700nm波段的光谱功率大于0.7,而600~700nm波段对应红色光,可深入生物组织组织以下5~10mm,可促进人体面部生物组织血液循环,细胞再生。如此可使得每个功能区域对应的面部部位均可以获得较强的红光照射,以确保面部的每个部位均可获得良好的光疗效果。
本申请实施例提供的面部护理器可发出波长为400~700nm的近自然光,其光谱如图2所示,其中不同波段的光具有不同的理疗效果:
480nm光谱能够改善黄褐斑;510nm光谱能够与痤疮丙酸杆菌代谢物内普林的光吸收峰值匹配,可致痤疮细菌死亡;515nm光谱能够淡化肤色表皮色素、美白嫩肤;532nm光谱能够抑制雀斑、老年斑;540nm光谱能够改善面部潮红、红色痘印、玫瑰痤疮等肤质;560nm光谱能够增强皮肤弹性、缩小毛孔、祛皱;590nm光谱能够抑制红痘印、嫩肤、祛黄色斑;592nm光谱能够与血管的光吸收峰值匹配,促进胶原蛋白合成,改善血液循环;615nm光谱能够改善色斑色 沉、祛细纹、嫩肤;633nm光谱可有效增强肌肤胶原细胞的活性(让皮肤水嫩,有弹性、抗皱);640nm光谱能够抑制毛孔粗大、色沉、祛细纹、嫩肤;650nm光谱能够与细胞线粒体的光吸收峰值匹配,增强细胞供能,促进新陈代谢;660nm光谱能够增强骨髓间充质干细胞迁移能力;670nm光谱能够促进皮质层的新陈代谢(细胞深度修复);683nm光谱能够与毛囊细胞的光吸收峰值匹配,促进毛发再生;690nm光谱能够改善细胞活性,促进新陈代谢增强肌肤弹性。
本申请实施例提供的面部护理器至少具有如下效果:
第一,本面部护理器中的光源模组能够获得平坦的、连续宽光谱,光能量分布均匀,其谱色与太阳谱色极其相近,而生物组织对自然光谱的适应性是无可替代的,越接近自然光谱的光子能量,更能有效的使人体生物组织产生生物效应,因此连续光谱对生物组织的生长或再生作用,优于单波长的光谱,即本申请实施例提供的面部护理器相比于传统的窄光谱面部护理器,理疗效果更佳。
第二,本实施例中每个白光光源均可以形成宽光谱,且每个功能区域内的所有光源发出的光形成的混合光中600~700nm波段的光谱功率大于0.7,如此可使得每个功能区域对应的面部部位均可以获得较强的红光照射,以确保面部的每个部位均可获得良好的光疗效果。
由于面部生物(肌肉)组织厚度不均,比如脸颊部分生物组织较厚,额头、鼻梁等部分生物组织较薄,此时若不同区域对应的白光光源数量一致,则明显设置不合理。为实现光源模组的合理布局,在一个可选的实施例中,任意两个功能区域内白光光源的密度满足以下关系:
与面部生物组织较厚部位对应的功能区域内的白光光源的密度大于与面部生物组织较薄部位对应的功能区域内的白光光源的密度。其中,白光光源的密度为单位面积内白光光源的个数。
由于红光的理疗原理是对生物体产生光化学作用,使之产生重要的生物效应及治疗效果。而细胞中线粒体对红光的吸收最大,在红光照射后,线粒体的过氧化氢酶活性增加,这样可以增加细胞的新陈代谢,使糖元含量增加,蛋白合成增加和三磷酸腺苷分解增加,从而加强细胞的新生,促进伤口和溃疡的愈合,同时也增加白血球的吞噬作用,提高机体的免疫功能。而生物组织越厚的区域一般细胞个数越多,所需的光线越多,采用本实施例的设置方式,可使得生物组织厚度不同的部位可以根据需求获得相应的光线,同时可以减小白光光源设置不合理所导致的成本增加等问题。
示例性的,与脸颊(生物组织厚度为7~23mm)等生物组织较厚区域对应的功能区域内可以每平方厘米内设置4~16颗白光光源,相邻两个白光光源之间的间距为2~5mm;与额头(生物组织厚度为2~6mm)等生物组织较薄区域对应的功能区域内可以每平方厘米内设置2~6颗白光光源,相邻两个白光光源之间的间距为3~5mm。
上述光源模组可以直接连接电源线,使用时,通过电源线直接通电使用,也可以通过控制装置与电源连接,为提高面部护理器的智能化程度,如图3及图4所示,在一个可选的实施例中,面部护理器还包括与光源模组200电连接的脉冲控制装置300。本实施例中的脉冲控制装置300可以安装与面罩主体 100上,也可以位于面罩主体100外,可采用PWM脉冲调制方式控制光源模组200工作。面部护理器采用本实施例提供的结构,可通过脉冲控制装置300实现光源模组200的智能化控制,如定时开启或者关闭,以及调节光源模组200的亮度等,使得面部护理器适应更多人不同的使用需求,以提升客户体验,扩大产品的适用范围。
示例性的,上述脉冲控制装置300可以包括电源组件、驱动控制器和开关,其中电源组件可以为可充电的电源模块、蓄电池和/或与外接电源连接的连接线等,开关可以与驱动控制器和电源组件串联,使用时通过开关控制电源组件与驱动控制器的连通或者中断,驱动控制器可以由一个或者多个可以编程的控制芯片(如CPU)组成。脉冲控制装置300通过导线与光源模组200连接。
脉冲控制装置300通过PWM控制光源模组200的发光亮度的原理为:通过调节占空比实现不同亮度的变化,占空比代表的是平均电压,占空比发生变化后光源模组200和限流电阻两端的平均电压会发生变化,流过光源模组200两端的电流发生变化,因此,将PWM的占空比调节为最小时,控制光源模组200发出的亮度为最大,在预设时间间隔内增大PWM的占空比,光源模组200发出亮度变暗,并设定占空比的变化周期,以此实现多个亮度的循环切换,模拟太阳发光时明暗亮度的动态闪烁效果。
脉冲控制装置300通过PWM调节光源模组200的色温的原理为:通过改变光源模组200中不同光源的驱动电流,改变各光源的光通量,具体通过PWM分段控制不同光源,比如采用PWMA控制其中一个或者一些光源,采用PWMB控制另一些光源,分别设定PWMA和PWMB的占空比,使得所有光源混合产生的近自然光的色温可调。
为进一步提高面部护理器的智能化程度,如图4所示,在一个可选的实施例中,面部护理器还包括设置在面罩主体100上的温度传感器400。温度传感器400与脉冲控制装置300电连接,用于检测面罩主体100与面部接触一面或者面罩主体100所围设空间内预设区域的温度。这里所说的预设区域可以为距离面罩主体100与面部接触一面预设距离,如1mm、2mm处的某一区域,也可以为面部的某一区域,具体可以根据使用需要人为设置。脉冲控制装置300用于接收温度传感器400的检测数据,并根据温度传感器400的检测数据控制光源模组200的通断以及电流大小。
本实施例中的温度传感器400的设置可使得面部护理器具有控制光生物组织的热效应的作用。具体表现为,使用时,可通过编程设置脉冲控制装置300的功能,使得脉冲控制装置300对温度传感器400所采集的数据进行实时接收,当发现温度传感器400检测到面部护理器与面部接触一面或者面罩主体100所围设空间内预设区域内温度达到第一预设温度(可以为39度,或者其他温度)时,自动调低输送至光源模组200的脉冲电流;当发现温度传感器400检测到面部护理器与面部接触一面或者面罩主体100所围设空间内预设区域内温度达到第二预设温度(可以为41度或者其他温度)时,自动关闭电源,停止对光源模组200进行供电。如此,可有效降低生物组织因光的作用引起其内部温升,对生物酶的活性造成不良影响的风险。
为使得生物组织厚度不同的部位可以根据需求获得相应的光线,除将不同功能区域内白光光源的密度设置为不同时,还可以采用其他方式。在另一个可选的实施例中,脉冲控制装置用于输出与功能区域一一对应的控制信号,以通过控制信号控制各功能区域内白光光源按照预设频率闪烁,使得任意两个功能区域内白光光源满足以下关系:
与面部生物组织较厚部位对应的功能区域内的白光光源的点亮时长大于与面部生物组织较薄部位对应的功能区域内的白光光源的点亮时长。
需要说明的是,本实施例提供的方案可以与上一实施例一同应用,也可以单独应用,具体可以根据使用需要灵活选择。
采用本实施例提供的方案,可根据生物组织不同部位的厚度,逐一分区调整控制信号,来实现更优的美容效果。
为实现上述效果,可采用以下三种方式:
第一种,通过控制信号控制各功能区域内白光光源按照预设频率闪烁,使得任意两个功能区域内白光光源满足以下关系:
与面部生物组织较厚部位对应的功能区域内的白光光源对应的脉冲宽度小于与面部生物组织较薄部位对应的功能区域内的白光光源对应的脉冲宽度。
第二种,通过控制信号控制各功能区域内白光光源按照预设频率闪烁,使得任意两个功能区域内白光光源满足以下关系:
与面部生物组织较厚部位对应的功能区域内的白光光源对应的脉冲间隔小于与面部生物组织较薄部位对应的功能区域内的白光光源对应的脉冲间隔。
第三种,通过控制信号控制各功能区域内白光光源按照预设频率闪烁,使得任意两个功能区域内白光光源满足以下关系:
与面部生物组织较厚部位对应的功能区域内的白光光源对应的脉冲宽度小于与面部生物组织较薄部位对应的功能区域内的白光光源对应的脉冲宽度;
与面部生物组织较厚部位对应的功能区域内的白光光源对应的脉冲间隔小于与面部生物组织较薄部位对应的功能区域内的白光光源对应的脉冲间隔。
采用上述任一种方式均可使得任意两个功能区域内白光光源满足以下关系:
与面部生物组织较厚部位对应的功能区域内的白光光源的点亮时长大于与面部生物组织较薄部位对应的功能区域内的白光光源的点亮时长。使用时,可根据使用需要灵活选择具体设置方式。其中采用第三种方式时,与面部生物组织较厚部位对应的功能区域内的白光光源的点亮时长相较与面部生物组织较薄部位对应的功能区域内的白光光源的点亮时长相差最大。
为使得生物组织厚度不同的部位可以根据需求获得相应的光线,除上述各方式外,还可以采用以下方案:脉冲控制装置300通过电阻与任一功能区域内所有白光光源形成的光源组件串联,以使得任意两个功能区域内白光光源满足以下关系:
与面部生物组织较厚部位对应的功能区域内的白光光源的电流大于与面部生物组织较薄部位对应的功能区域内的白光光源的电流。
采用本实施例提供的方案,可使得不同功能区域内的光源的光通量不同, 与面部中不同部位的生物组织特性相适配,进而使得不同部位均可以实现良好的光疗效果。
示例性的,与脸颊(生物组织厚度为7~23mm)等生物组织较厚区域对应的功能区域内的白光光源的电流可以为5~30mA,脉冲宽度为5mS~90mS,脉冲间隔为5mS~60Ms;与额头(生物组织厚度为2~6mm)等生物组织较薄区域对应的功能区域内的白光光源的电流为3~30mA,优选为5mA~15mA,脉冲宽度为10mS~90mS,脉冲间隔为10mS~60Ms。
在一个可选的实施例中,如图5所示,白光光源包括蓝光芯片210和形成于蓝光芯片210的出光侧的波长转换元件220,蓝光芯片210的峰值波长为440~475nm。其中,蓝光芯片210用于发出蓝光,波长转换元件220用于将蓝光芯片210发出的单色光进行波长转换,产生其他色光(可以为白光或者其他颜色的光),多种色光混合后形成近自然光。具体的,本实施例中每个白光光源均可发出具有全色仿生光谱的光,也可以发出具有部分光谱的光,只要位于同一发光组件中的所有白光光源发出的光混合后可以形成波长为400~700nm的近自然光,且近自然光中600~700nm波段的光谱功率大于0.7即可。又由于每个白光光源都可以发出近自然光,因此在本光源包含了多个白光光源的情况下,同样能够发出近自然光。
又由于本实施例中每个蓝光芯片210均具有波长转换元件220,根据现有工艺,相较多个蓝光芯片210共用一个波长转换元件220,更易使得每个白光光源的光谱保持稳定,不会因驱动电流的改变而变化。
波长转换元件220作为一种光学换能元件,可以有多种形式,可包括荧光粉色轮、非线性光学晶体或者荧光体等。其中波长转换元件220包括荧光体时,结构简单,有助于光源尺寸控制。具体的,荧光体可以为荧光薄膜、荧光陶瓷、荧光玻璃等。为便于加工,优选荧光薄膜、荧光涂层、荧光胶体等,这些荧光结构一般通过把荧光粉混合在硅胶或者环氧树脂等粘合剂中制成。具体的,当蓝光芯片采用正装方式安装于基底时,荧光体可以为点满整个反射杯后形成的块体结构,也可以为封盖于反射杯顶部的荧光层,还可以采用其他形式具体可以根据实际使用需要而定;当蓝光芯片采用倒装方式安装于基底时,荧光体可以采用荧光薄膜、荧光涂层等结构。更为具体的,蓝光芯片采用倒装方式制备时,可将所有蓝光芯片210依次间隔排布,再统一在所有蓝光芯片210上通过喷涂、印刷等方式制备荧光层,之后再通过切割的方式制备出各个发光单元,最后将各个发光单元组装至基底上,与形成于基底上的电连接件电连接。
在一个可选的实施例中,如图6所示,荧光体包括沿光线出射方向依次设置的第一荧光部221和第二荧光部222,第一荧光部221包括第一荧光粉,第二荧光部222包括第二荧光粉。
本实施例中各荧光部的结构可以根据具体情况而定。举例说明,当蓝光芯片采用正装方式安装于基底,且荧光体为点满整个反射杯的块体结构时,第一荧光部221可以为通过点胶方式铺满反射杯中下部的块体结构,第二荧光部222可以为在第一荧光部321的上表面通过点胶方式充满反射杯中上部的块体结构;当荧光体为薄膜或者层体结构时,第一荧光部221和第二荧光部222 可以为层叠设置的荧光薄膜或者荧光涂层等。
需要说明的是,本实施例中各层内可能含有一种荧光粉,也可以含有多个荧光粉,当有多种荧光粉时,不同荧光粉之间也不发生化学反应,各荧光粉的性质不变,仅是经过该层出射的光线种类随荧光粉种类的增加而增加。如若第一荧光部221内含有一种荧光粉则蓝光芯片210发出的光线经过该层时仅该种荧光粉受激发发出相应波长的光线,若第一荧光部221内含有多种荧光粉则蓝光芯片210发出的光线经过该层时各荧光粉分别受激发发出相应波长的光线,此时该层发出多条不同波长的光线,其他荧光部原理相同。当各荧光部内荧光粉种类越多发出光线的种类越多,最终所有光线混合形成近自然光。
通过使第一荧光部221和第二荧光部222分别包括第一荧光粉和第二荧光粉,可以在成型时灵活的进行第一荧光粉和第二荧光粉的比例以及浓度的调整,以使得所产生的白光光谱更接近自然光。同时,相比两种荧光粉配方混合为一层,采用本实施例提供的荧光体,可使得白光光源整体光损比较小,光效更高。
上述各实施例中,第一荧光部221和第二荧光部222均包括胶体以及分散于胶体中的相应荧光粉。在一些实施例中,在第一荧光部221中,可以控制第一荧光部221中第一荧光粉的浓度为40%~80%,进一步为50%~70%,其中,第一荧光粉的浓度为第一荧光粉在第一荧光粉和胶体总质量中的占比。
第二荧光部222中,可以控制第二荧光部222中第二荧光粉的浓度为40%~85%,进一步为50%~75%,其中,第二荧光粉的浓度为第二荧光粉在第二荧光粉和胶体总质量中的占比。
第一荧光粉和第二荧光粉的浓度大小决定所产生的近自然光的色温,浓度越大,在荧光粉配比和荧光部厚度一定的条件下,浓度越高,色温就越低,浓度越低,色温越高。
在一个可选的实施例中,第一荧光粉包括荧光粉A1、荧光粉A2和荧光粉A3,且荧光粉A1的发光波长488~492nm,荧光粉A2的发光波长为523~542nm,荧光粉A3的发光波长为628~681nm,荧光粉A1、荧光粉A2和荧光粉A3的质量比为(20~70):(30~70):(3~15)。第一荧光粉采用本实施例的设置方式,可使得蓝光芯片210发出的光经过该荧光体后发出400~700nm的近自然光。
第二荧光粉包括荧光粉B1和荧光粉B2,荧光粉B1的发光波长为718~722nm,荧光粉B2的发光波长为738~742nm,荧光粉B1和荧光粉B2的质量比为(50~90):(15~50)。第二荧光粉采用本实施例的设置方式,可使得蓝光芯片210发出的光经过第一荧光体和第二荧光体后发出400~700nm的近自然光。
在一些实施例中,荧光粉A1、荧光粉A2、荧光粉A3、荧光粉B1和荧光粉B2可以包括氮化物、Y3AL12:C和氟化物任一化合物。例如,荧光粉A1可以为镓掺杂钇铝石榴石,具体的如钇三铝镓五氧十二[Y3(Al,Ga)5O12],荧光粉A2可以为BaSi2O2N2(钡锶二氧二氮二,1222),荧光粉A3、荧光粉B1和荧光粉B2分别可以为(Ca,Sr)AlSiN3(钙锶铝硅氮三,1113)或氟化物,具体的如K2SiF6:Mn4+(氟硅酸钾)。另外荧光粉A1、荧光粉A2、荧光粉A3、 荧光粉B1和荧光粉B2各发光波长的荧光粉可以根据发光波长直接市购获得。
需要说明的是,荧光粉A1、荧光粉A2、荧光粉A3、荧光粉B1和荧光粉B2中的任一荧光粉具体包括几种化合物并不限定,可以是仅包括一种单一化合物纯净物,也可以是包括多种化合物混合物。例如荧光粉A2还可以包括荧光粉A21、荧光粉A22,荧光粉A3还可以包括荧光粉A31、荧光粉A32和荧光粉A33。当然了,荧光粉A1、荧光粉B1和荧光粉B2也可以是包括一种单一化合物纯净物,也还可以是包括多种化合物混合物。
为使本申请上述实施例细节和操作能清楚地被本领域技术人员理解,上述实施例中面部护理器的进步性能显著的体现,通过以下多个实施例来举例说明上述技术方案。
实施例1至实施例5
荧光体包括依次叠设置的第一荧光部和第二荧光部。其中,第一荧光部包括第一荧光粉和胶体、第二荧光部包括第二荧光粉和胶体。胶体采用硅胶。第一荧光粉和第二荧光粉的质量比详见下文表1。荧光体采用荧光薄膜形式。
其中,第一荧光粉包括荧光粉A1、荧光粉A2和荧光粉A3,荧光粉A1是发光波长为490nm的Y3(Al,Ga)5O12,荧光粉A2是发光波长为535nm的BaSi2O2N2,荧光粉A3是发光波长为660nm的(Ca,Sr)AlSiN3。荧光粉A1、荧光粉A2和荧光粉A3的质量比详见表1。
第二荧光粉包括荧光粉B1和荧光粉B2,荧光粉B1是发光波长为720nm的(Ca,Sr)AlSiN3,荧光粉B2是发光波长为740nm的(Ca,Sr)AlSiN3,荧光粉B1和荧光粉B2的质量比详见表1。
表1
实施例1至实施例5中各荧光部的成膜方法,第一荧光部的膜厚和第一荧光粉浓度,第二荧光部的膜厚和第二荧光粉浓度详见表2。
表2
实施例6
荧光体包括依次叠设置的第一荧光部和第二荧光部。其中,第一荧光部包括第一荧光粉和胶体、第二荧光部包括第二荧光粉和胶体。胶体采用硅胶。第一荧光粉和第二荧光粉的质量比详见下文表3。荧光体采用荧光薄膜形式。
其中,第一荧光粉包括荧光粉A1、荧光粉A2和荧光粉A3,荧光粉A1是发光波长为488nm的Y3(Al,Ga)5O12,荧光粉A2是发光波长为523nm的BaSi2O2N2,荧光粉A3是发光波长为628nm的(Ca,Sr)AlSiN3。荧光粉A1、荧光粉A2和荧光粉A3的质量比详见表3。
第二荧光粉包括荧光粉B1和荧光粉B2,荧光粉B1是发光波长为718nm的(Ca,Sr)AlSiN3,荧光粉B2是发光波长为738nm的(Ca,Sr)AlSiN3,荧光粉B1和荧光粉B2的质量比详见表3。
实施例7
荧光体包括依次叠设置的第一荧光部和第二荧光部。其中,第一荧光部包括第一荧光粉和胶体、第二荧光部包括第二荧光粉和胶体。胶体采用硅胶。第一荧光粉和第二荧光粉的质量比详见下文表3。荧光体采用荧光薄膜形式。
其中,第一荧光粉包括荧光粉A1、荧光粉A2和荧光粉A3,荧光粉A1是发光波长为492nm的Y3(Al,Ga)5O12,荧光粉A2是发光波长为542nm的BaSi2O2N2,荧光粉A3是发光波长为681nm的(Ca,Sr)AlSiN3。荧光粉A1、荧光粉A2和荧光粉A3的质量比详见表3。
第二荧光粉包括荧光粉B1和荧光粉B2,荧光粉B1是发光波长为722nm的(Ca,Sr)AlSiN3,荧光粉B2是发光波长为742nm的(Ca,Sr)AlSiN3,荧光粉B1和荧光粉B2的质量比详见表3。
表3
实施例6及实施例7中各荧光部的成膜方法,第一荧光部的膜厚和第一荧光粉浓度,第二荧光部的膜厚和第二荧光粉浓度详见表4。
表4
本申请实施例1至实施例7提供的面部护理器产生的近自然光的光谱与自然光高度相似,其中实施例1至实施例5对应的光谱图如图7至图11所示。该近自然光包括在400~700nm波段下的全部可见光,且600~700nm波段的光谱功率大于0.7,不同波段的可见光均的光功率与自然光接近,使得该近自然光高度模拟自然光,显色指数高,对人体危害小,令人体感受舒适。
在一个可选的实施例中,如图6所示,荧光体采用压膜法制备,第一荧光部221和第二荧光部222的厚度均为0.06~0.15mm。在另一个可选的实施例中,荧光体采用喷膜法制备,第一荧光部221和第二荧光部222的厚度均为0.001~0.01mm。无论采用上述哪种制备方式,荧光体的厚度d均小于等于0.3mm。现有的荧光体一般厚度较大,这样不利于光源散热,且使得光源厚度较大,而荧光体采用本实施例所限定的厚度,可使得光源厚度较小,且有利于蓝光芯片的散热。
在一个可选的实施例中,沿光线出射方向设置的各荧光部的折射率依次增大,即第一荧光部和第二荧光部的折射率依次增大,以使得经蓝光芯片发出的光线的发散角逐渐增大,进而使得各发光单元发出光线的发射角足够大,可以满足使用要求。
上述各实施例中的面罩主体100存在多种设置方式,如面罩主体100可以为一体成型结构,也可以为多个层叠设置的柔性层,为保证面罩主体100的美观性和安全性,在一个可选的实施例中,如图1所示,面罩主体100包括由外至内依次层叠设置的面罩本体110、电路层120和防护层130。光源模组设置于电路层120上。防护层130为绝缘透光层,用于覆盖电路层120和光源模组,并允许光源模组发出的光线穿过。
具体的,本实施例中的面罩本体110可以为一体成型结构,也可以为多个部件的组合结构,如多个层叠设置的层状结构组合而成的层叠结构、多个块体拼接而成的组合结构等。电路层120中包含多条导线、导电条等导电体,具体可以根据光源模组与外接控制装置或者面部护理器自带控制装置电连接关系而定。如根据设计需求,若光源模组仅需要两条导电体与外接或者面部护理器自带控制装置实现串联即可,则电路层120中可以仅设置两条导电体;若光源 模组需要10条导电体才能实现与外接或者面部护理器自带控制装置的连接,则电路层120中需要设置至少10条导电体。除此之外,若面部护理器还具有其他功能,其功能件也可以设置在电路层120上,此时电路层120上的导电体数量也会随之增加。本实施例中的防护层130可以为透光薄膜、透光胶层等,只要能实现上述功能即可。
面罩主体100采用本实施例提供的结构,结构简单,且避免了光源模组200和电路层120外露,使得面罩主体100外形美观且安全性高。
如图1所示,在一个具体的实施例中,面罩本体110包括由外至内依次层叠的外膜111和支撑层112。其中,支撑层112为面罩本体110的主体结构,外膜111为支撑层112的保护层。面罩本体110采用本实施例提供的结构,结构简单,不易损坏,使用寿命长。
为提高面部护理器佩戴的舒适性,在一个可选的实施例中,面罩本体110、电路层120和防护层130均为柔性层。这里所说的柔性层为能够在一定作用力下发生弯曲变形的层状结构。具体的,面罩本体110、防护层130均可以由硅胶、橡胶等柔性材质制成。电路层120可以采用柔性电路板和铜箔等制成。面罩主体100采用本实施例提供的结构,在佩戴时可以根据面部形状变形,提高佩戴时的舒适性,同时还可以使得光源模组200发出的光距离面部距离较近,进而提高光疗效果。
以上所述仅为本申请的较佳实施例而已,仅具体描述了本申请的技术原理,这些描述只是为了解释本申请的原理,不能以任何方式解释为对本申请保护范围的限制。基于此处解释,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进,及本领域的技术人员不需要付出创造性的劳动即可联想到本申请的其他具体实施方式,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种面部护理器,其特征在于,包括面罩主体和设置在所述面罩主体上的光源模组,所述光源模组用于在所述面罩主体被佩戴时朝向面部发光,所述光源模组包括多个白光光源,每个所述白光光源均能够发出400~700nm的近自然光;所述面罩主体包括多个功能区域,不同所述功能区域对应面部的不同部位;每个所述功能区域内均设置有至少一个所述白光光源,位于同一功能区域内的所有所述白光光源发出的光形成的混合光中600~700nm波段的光谱功率大于0.7。
  2. 如权利要求1所述的面部护理器,其特征在于,任意两个所述功能区域内所述白光光源的密度满足以下关系:
    与面部生物组织较厚部位对应的所述功能区域内的所述白光光源的密度大于与面部生物组织较薄部位对应的所述功能区域内的所述白光光源的密度;
    其中,所述白光光源的密度为单位面积内所述白光光源的个数。
  3. 如权利要求1所述的面部护理器,其特征在于,所述面部主体包括第一功能区域和第二功能区域,所述第一功能区域对应的面部生物组织的厚度大于所述第二功能区域对应的面部生物组织的厚度;所述第一功能区域内所述白光光源的密度为4~16颗/cm2,相邻两个所述白光光源之间的间距为2~5mm;所述第二功能区域内所述白光光源的密度为2~6颗/cm2,相邻两个所述白光光源之间的间距为3~5mm。
  4. 如权利要求1所述的面部护理器,其特征在于,所述面部护理器还包括与所述光源模组电连接的脉冲控制装置。
  5. 如权利要求4所述的面部护理器,其特征在于,所述面部护理器还包括设置在所述面罩主体上的温度传感器;所述温度传感器与所述脉冲控制装置电连接、用于检测所述面罩主体与面部接触一面或者所述面罩主体所围设空间内预设区域的温度;所述脉冲控制装置用于接收所述温度传感器的检测数据,并根据所述温度传感器的检测数据控制所述光源模组的通断以及电流大小。
  6. 如权利要求4所述的面部护理器,其特征在于,所述脉冲控制装置用于输出与所述功能区域一一对应的控制信号,以通过所述控制信号控制各所述功能区域内所述白光光源按照预设频率闪烁,使得任意两个所述功能区域内所述白光光源满足以下关系:
    与面部生物组织较厚部位对应的所述功能区域内的所述白光光源的点亮时长大于与面部生物组织较薄部位对应的所述功能区域内的所述白光光源的点亮时长。
  7. 如权利要求6所述的面部护理器,其特征在于,任意两个所述功能区域内所述白光光源满足以下关系:
    与面部生物组织较厚部位对应的功能区域内的所述白光光源对应的脉冲宽度小于与面部生物组织较薄部位对应的功能区域内的所述白光光源对应的脉冲宽度;
    和/或,与面部生物组织较厚部位对应的功能区域内的所述白光光源对应 的脉冲间隔小于与面部生物组织较薄部位对应的功能区域内的所述白光光源对应的脉冲间隔。
  8. 如权利要求4所述的面部护理器,其特征在于,所述脉冲控制装置通过电阻与任一所述功能区域内所有所述白光光源形成的光源组件串联,以使得任意两个功能区域内所述白光光源满足以下关系:
    与面部生物组织较厚部位对应的功能区域内的所述白光光源的电流大于与面部生物组织较薄部位对应的功能区域内的所述白光光源的电流。
  9. 如权利要求1所述的面部护理器,其特征在于,所述白光光源包括蓝光芯片和形成于所述蓝光芯片的出光侧的波长转换元件,所述蓝光芯片的峰值波长为440~475nm。
  10. 如权利要求9所述的面部护理器,其特征在于,所述波长转换元件包括荧光体。
  11. 如权利要求10所述的面部护理器,其特征在于,所述荧光体包括沿光线出射方向依次设置的第一荧光部和第二荧光部,所述第一荧光部包括第一荧光粉,所述第二荧光部包括第二荧光粉。
  12. 如权利要求11所述的面部护理器,其特征在于,所述第一荧光粉包括荧光粉A1、荧光粉A2和荧光粉A3,且所述荧光粉A1的发光波长488~492nm,所述荧光粉A2的发光波长为523~542nm,所述荧光粉A3的发光波长为628~681nm,所述荧光粉A1、所述荧光粉A2和所述荧光粉A3的质量比为(20~70):(30~70):(3~15)。
  13. 如权利要求11所述的面部护理器,其特征在于,所述第二荧光粉包括荧光粉B1和荧光粉B2,所述荧光粉B1的发光波长为718~722nm,所述荧光粉B2的发光波长为738~742nm,所述荧光粉B1和所述荧光粉B2的质量比为(50~90):(15~50)。
  14. 如权利要求11所述的面部护理器,其特征在于,所述第一荧光部中,所述第一荧光粉占胶体与所述第一荧光粉总质量的40%~80%;
    和/或,所述第二荧光部中,所述第二荧光粉占胶体与所述第二荧光粉总质量的40%~85%。
  15. 如权利要求11所述的面部护理器,其特征在于,所述荧光体采用压膜法制备,所述第一荧光部和所述第二荧光部的厚度均为0.06~0.15mm;
    或者,所述荧光体采用喷膜法制备,所述第一荧光部和所述第二荧光部的厚度均为0.001~0.01mm。
  16. 如权利要求11所述的面部护理器,其特征在于,所述第二荧光部的折射率大于所述第一荧光部的折射率。
  17. 如权利要求1~16任一项所述的面部护理器,其特征在于,所述面罩主体包括由外至内依次层叠设置的面罩本体、电路层和防护层;所述光源模组设置于所述电路层上;所述防护层为绝缘透光层,用于覆盖所述电路层和所述光源模组,并允许所述光源模组发出的光线穿过。
  18. 如权利要求17所述的面部护理器,其特征在于,所述面罩本体包括由外至内依次层叠的外膜和支撑层。
  19. 如权利要求17所述的面部护理器,其特征在于,所述面罩本体、所述电路层和所述防护层均为柔性层。
  20. 如权利要求1~16任一项所述的面部护理器,其特征在于,位于同一功能区域内的所有所述白光光源发出的光形成的混合光中600~700nm波段的绝对光谱功率大于0.7。
PCT/CN2023/133754 2022-11-24 2023-11-23 面部护理器 WO2024109895A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211480892.0A CN115804912A (zh) 2022-11-24 2022-11-24 面部护理器
CN202211480892.0 2022-11-24

Publications (1)

Publication Number Publication Date
WO2024109895A1 true WO2024109895A1 (zh) 2024-05-30

Family

ID=85484116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/133754 WO2024109895A1 (zh) 2022-11-24 2023-11-23 面部护理器

Country Status (2)

Country Link
CN (1) CN115804912A (zh)
WO (1) WO2024109895A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115804912A (zh) * 2022-11-24 2023-03-17 四川世纪和光科技发展有限公司 面部护理器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106334268A (zh) * 2015-07-13 2017-01-18 深圳斯坦普光生物科技有限公司 一种基于互联网云端大数据的智能面部美容仪
WO2020040435A1 (ko) * 2018-08-24 2020-02-27 송인실 광치료장치
KR20210021215A (ko) * 2019-08-16 2021-02-25 희성전자 주식회사 마스크 장치
CN217119148U (zh) * 2022-01-05 2022-08-05 深圳市思坦科技有限公司 一种面罩
CN115430064A (zh) * 2022-09-26 2022-12-06 北京翌光科技有限公司 一种面罩式光疗美容装置、使用方法及应用
CN115804912A (zh) * 2022-11-24 2023-03-17 四川世纪和光科技发展有限公司 面部护理器
CN116899114A (zh) * 2023-01-31 2023-10-20 深圳市予一电子科技有限公司 美容面罩

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106334268A (zh) * 2015-07-13 2017-01-18 深圳斯坦普光生物科技有限公司 一种基于互联网云端大数据的智能面部美容仪
WO2020040435A1 (ko) * 2018-08-24 2020-02-27 송인실 광치료장치
KR20210021215A (ko) * 2019-08-16 2021-02-25 희성전자 주식회사 마스크 장치
CN217119148U (zh) * 2022-01-05 2022-08-05 深圳市思坦科技有限公司 一种面罩
CN115430064A (zh) * 2022-09-26 2022-12-06 北京翌光科技有限公司 一种面罩式光疗美容装置、使用方法及应用
CN115804912A (zh) * 2022-11-24 2023-03-17 四川世纪和光科技发展有限公司 面部护理器
CN116899114A (zh) * 2023-01-31 2023-10-20 深圳市予一电子科技有限公司 美容面罩

Also Published As

Publication number Publication date
CN115804912A (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
WO2024109895A1 (zh) 面部护理器
WO2024109894A1 (zh) 头部保健装置
US9295855B2 (en) Ambient spectrum light conversion device
KR20210121260A (ko) Led 조명 장치 및 그것을 갖는 조명 시스템
CN101922642A (zh) 多功能大功率led灯
CN113348730A (zh) 一般照明中的光生物调节(pbm)
CN203816098U (zh) 手持式光疗仪
KR101075411B1 (ko) 광치료용 백색 엘이디 광원장치
US11642546B2 (en) LED facial mask
TWM630768U (zh) 具有光療效果的照明裝置
CN207055742U (zh) 一种用于皮肤美容的led光源及led美容设备
EP3824952A1 (en) General lighting with photobiomodulation
CN217661132U (zh) 一种柔性光疗面罩
CN208911300U (zh) 一种光疗眼膜
CN220125361U (zh) 一种面部护理装置
TW201331520A (zh) 混合光刺激方法及混合光刺激裝置
CN108421167A (zh) 一种光疗眼膜
CN220125362U (zh) 一种头部保健设备
CN106377846A (zh) 立式led光疗皮肤护理仪
CN115253086A (zh) 一种柔性led面膜
KR20130102438A (ko) 광 요법 기능성 조명장치의 구성 방법.
CN207796578U (zh) 一种美甲用led光源
CN218165805U (zh) 一种光能理疗保健器具
CN201772389U (zh) 多功能大功率led灯
CN109360821A (zh) 一种仿太阳光谱led光源