WO2024109795A1 - 一种扫描处理方法、装置、设备及介质 - Google Patents

一种扫描处理方法、装置、设备及介质 Download PDF

Info

Publication number
WO2024109795A1
WO2024109795A1 PCT/CN2023/133181 CN2023133181W WO2024109795A1 WO 2024109795 A1 WO2024109795 A1 WO 2024109795A1 CN 2023133181 W CN2023133181 W CN 2023133181W WO 2024109795 A1 WO2024109795 A1 WO 2024109795A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
measurement data
tracker
scanning head
head
Prior art date
Application number
PCT/CN2023/133181
Other languages
English (en)
French (fr)
Inventor
李洲强
李仁举
梁保秋
李仲平
Original Assignee
杭州先临天远三维检测技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州先临天远三维检测技术有限公司 filed Critical 杭州先临天远三维检测技术有限公司
Publication of WO2024109795A1 publication Critical patent/WO2024109795A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present disclosure relates to the field of tracking scanning technology, and in particular to a scanning processing method, device, equipment and medium.
  • a tracker is used to track and locate the scanning head in real time to complete the complete measurement of the object's morphology. This method cannot complete the scanning measurement of the back of the object when there is occlusion. If a complete measurement is required, a stack transfer (moving the tracker to the next position) is required, which is cumbersome.
  • the present disclosure provides a scanning processing method, device, equipment and medium.
  • the present disclosure provides a scanning processing method, the method comprising:
  • the state information of the scanning head is detected in real time, and the scanning measurement data of the first tracker is acquired based on the scanning head;
  • the present disclosure also provides a scanning processing device, the device comprising:
  • a real-time detection module is used to detect the status information of the scanning head in real time during the process of tracking and scanning the target object;
  • a first acquisition module configured to acquire first tracker scanning measurement data based on the scanning head
  • a switching module used for switching to a splicing scanning mode when the state information of the scanning head meets a preset mode switching condition
  • a second acquisition module configured to acquire stitching scanning measurement data based on the scanning head in the stitching scanning mode
  • the real-time detection module is further used to continue to detect the status information of the scanning head in real time;
  • a conversion module used for converting the spliced scanning measurement data into second tracker scanning measurement data when the state information of the scanning head meets a preset data conversion condition
  • a processing module is configured to obtain target tracker scanning measurement data of the target object based on the first tracker scanning measurement data and the second tracker scanning measurement data.
  • An embodiment of the present disclosure also provides an electronic device, which includes: a processor; a memory for storing executable instructions of the processor; the processor is used to read the executable instructions from the memory and execute the instructions to implement the scanning processing method provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure further provides a computer-readable storage medium, wherein the storage medium stores a computer program, and the computer program is used to execute the scanning processing method provided by the embodiment of the present disclosure.
  • the technical solution provided by the embodiment of the present disclosure has the following advantages: the scanning processing solution provided by the embodiment of the present disclosure detects the state information of the scanning head in real time during the process of tracking and scanning the target object, obtains the first tracker scanning measurement data based on the scanning head, switches to the splicing scanning mode when the state information of the scanning head meets the preset mode switching condition, obtains the splicing scanning measurement data based on the scanning head in the splicing scanning mode, and continues The state information of the scanning head is detected in real time. When the state information of the scanning head meets the preset data conversion conditions, the spliced scanning measurement data is converted into the second tracker scanning measurement data.
  • the target tracker scanning measurement data of the target object is obtained.
  • FIG1 is a schematic flow chart of a scanning processing method provided by an embodiment of the present disclosure
  • FIG2 is a flow chart of another scanning processing method provided by an embodiment of the present disclosure.
  • FIG3 is a schematic diagram of the structure of a scanning processing device provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present disclosure.
  • the tracking scanning measurement system needs to place the object to be measured within the effective field of view of the tracker during the measurement process.
  • the tracker needs to detect the marker point frame connected to the scanning head in real time, so as to realize the real-time detection of the position and posture of the scanning head, thereby unifying the scanning data of each frame of the scanning head into the reference coordinate system (tracker coordinate system).
  • the reference coordinate system tracker coordinate system
  • To achieve a complete scanning measurement of a large-sized object to be measured it is necessary to paste reflective marker points on the object to be measured, and the tracker pre-photographs the marker point frame information pasted on the object to be measured.
  • a stacking operation is performed to move the coordinate system to the marker point frame coordinates on the object to be measured, thereby achieving complete measurement of large-sized workpieces.
  • the tracker needs to shoot frame points of the marker points on the surface of the object in advance.
  • the process of shooting the frame requires manual movement of the tracker to different positions and postures, and a sufficient number of shots are required to ensure the stability and accuracy of the frame.
  • Some positions may not be able to move the tracker to the corresponding position for continued tracking and scanning due to the small space.
  • the scanning processing method proposed in the embodiment of the present disclosure automatically splices the tracking positioning information with the self-positioning information of the scanning head in the common area, so that the two data can be automatically spliced in real time in a coordinate system, so that when there is occlusion during the tracking scanning process, there is no need to
  • the stack transfer operation can complete the complete measurement of the object being measured, ensuring the scanning measurement accuracy while saving costs and improving scanning processing efficiency.
  • FIG1 is a flow chart of a scanning processing method provided by an embodiment of the present disclosure, which can be executed by a scanning processing device, wherein the device can be implemented by software and/or hardware and can generally be integrated in an electronic device. As shown in FIG1 , the method includes:
  • Step 101 in the process of tracking and scanning a target object, detecting state information of a scanning head in real time, and acquiring scanning measurement data of a first tracker based on the scanning head.
  • the target object can be any object that needs to be scanned, such as a large workpiece.
  • Tracking scanning refers to the real-time tracking and positioning of the scanning head by the tracker to complete the complete measurement of the target object's morphology. Its purpose is to unify the three-dimensional point cloud detected by the scanning head in real time into the reference coordinate system (tracker coordinate system) to obtain the complete point cloud of the target object.
  • the status information of the scanning head refers to whether the tracker can detect the scanning head, that is, whether the scanning head is blocked.
  • tracking and scanning of the target object begins.
  • real-time detection of the status information of the scanning head can be understood as real-time detection of whether the tracker can detect the scanning head or whether the scanning head is blocked.
  • the first tracker scanning measurement data in the process of tracking and scanning the target object, there are many ways to obtain the first tracker scanning measurement data based on the scanning head.
  • the current first scanning measurement data of the current position is obtained based on the scanning head, and the first rotation matrix and the first translation vector of the scanning head coordinate system converted to the tracker coordinate system are obtained.
  • the first tracker scanning measurement data is obtained by calculation based on the current first scanning measurement data, the first rotation matrix and the first translation vector.
  • real-time scanning measurement data is obtained in real time based on the scanning head, and the real-time scanning measurement data is processed based on the data processing algorithm to obtain the first tracker scanning measurement data.
  • the above two methods are merely examples of obtaining the first tracker scanning measurement data based on the scanning head.
  • the embodiments of the present disclosure do not limit the specific implementation methods of obtaining the first tracker scanning measurement data based on the scanning head.
  • Step 102 When the status information of the scanning head meets the preset mode switching condition, switch to the splicing scanning mode, and in the splicing scanning mode, obtain the splicing scanning measurement based on the scanning head. Quantity data.
  • the mode switching conditions are pre-set, and the mode switching conditions include that the tracker does not detect the scanning head or the scanning head is blocked.
  • the splicing scanning mode refers to the scanning head pasting reflective markers on the target object to unify the real-time scanned three-dimensional data into the reference coordinate system (tracker coordinate system) through frame-by-frame splicing to complete the complete measurement of the target object's morphology.
  • switching to the stitching scanning mode includes: determining that the tracker has not detected the scanning head based on the status information of the scanning head, determining that the status information of the scanning head meets the preset mode switching condition, and switching to the stitching scanning mode.
  • stitching scanning measurement data is acquired based on the scanning head.
  • the current second scanning measurement data of the current position is acquired based on the scanning head, and the second rotation matrix and second translation vector of the scanning head in the current position coordinate system converted to the scanning head initial position coordinate system are acquired.
  • the stitching scanning measurement data is obtained based on the current second scanning measurement data, the second rotation matrix and the second translation vector.
  • real-time scanning measurement data is acquired in real time based on the scanning head, and the real-time scanning measurement data is processed based on a preset data conversion formula to obtain stitching scanning measurement data.
  • the above two methods are merely examples of obtaining stitched scanning measurement data based on a scanning head.
  • the embodiments of the present disclosure do not limit the specific implementation method of obtaining stitched scanning measurement data based on a scanning head.
  • Step 103 Continue to detect the status information of the scanning head in real time, and when the status information of the scanning head meets the preset data conversion condition, convert the spliced scanning measurement data into the second tracker scanning measurement data.
  • the data conversion condition is preset, and the data conversion condition includes that the tracker detects the scanning head or the scanning head is not blocked.
  • the tracker after switching to the stitching scanning mode, it is determined that the tracker detects the scanning head based on continuing to detect the status information of the scanning head in real time, and that the status information of the scanning head satisfies a preset data conversion condition.
  • the stitched scan measurement data is converted into the second tracker scan measurement data.
  • the scan head is obtained from the initial position coordinate system converted to the tracker coordinate system.
  • the third rotation matrix and the third translation vector of the system are calculated based on the spliced scanning measurement data, the third rotation matrix and the third translation vector to obtain the second tracker scanning measurement data; in other embodiments, the spliced scanning measurement data are processed based on a preset data conversion formula to obtain the second tracker scanning measurement data.
  • the above two methods are merely examples of converting the stitched scan measurement data into the second tracker scan measurement data.
  • the embodiments of the present disclosure do not limit the specific implementation method of converting the stitched scan measurement data into the second tracker scan measurement data.
  • Step 104 Obtain target tracker scanning measurement data of the target object based on the first tracker scanning measurement data and the second tracker scanning measurement data.
  • tracking scanning or stitching scanning is adopted according to whether the tracker can detect the scanning head.
  • the first tracker scanning measurement data acquired in the tracking scanning mode and the stitching scanning measurement data acquired in the stitching scanning mode are unified into the tracker coordinate system to obtain the second tracker scanning measurement data, which are merged and stored as the target tracker scanning measurement data of the target object.
  • the scanning processing solution detects the status information of the scanning head in real time during the process of tracking and scanning the target object, and obtains the first tracker scanning measurement data based on the scanning head, switches to the splicing scanning mode when the status information of the scanning head meets the preset mode switching condition, obtains the splicing scanning measurement data based on the scanning head in the splicing scanning mode, continues to detect the status information of the scanning head in real time, and converts the splicing scanning measurement data into the second tracker scanning measurement data when the status information of the scanning head meets the preset data conversion condition, and obtains the target tracker scanning measurement data of the target object based on the first tracker scanning measurement data and the second tracker scanning measurement data.
  • FIG2 is a flow chart of another scanning processing method provided by an embodiment of the present disclosure. Based on the above embodiment, this embodiment further optimizes the above scanning processing method. As shown in FIG2, the method includes:
  • Step 201 Use a binocular camera tracker to capture multiple sets of first images by taking multiple positions and multiple postures of a calibrator containing marker points or coding points, and select a corresponding binocular camera calibration method and multiple sets of first images to calculate the intrinsic parameters and External parameters.
  • the binocular camera tracker calibration mainly calibrates the internal and external parameters of the binocular camera tracker.
  • multiple groups of first images are obtained by shooting the calibrator (a standard instrument containing marker points or coding points) at multiple positions and multiple postures, and the corresponding binocular camera tracker calibration method is selected to calculate the internal and external parameters of the binocular camera tracker.
  • Step 202 Use a scanning head camera to photograph a calibrator containing marker points or coding points at multiple positions to obtain multiple sets of second images, and select a corresponding camera calibration method and the multiple sets of second images to calculate the intrinsic parameters and extrinsic parameters of the scanning head camera.
  • Step 203 Calculate mathematical expressions of multiple laser line emission surfaces in the scanning head coordinate system and calculate the rigid body transformation relationship between the scanning head external frame coordinate system and the scanning head coordinate system.
  • the scanning head system calibration mainly includes the calibration of the internal and external parameters of the scanning head camera and the calibration of the scanning head laser line.
  • the calibration of the internal and external parameters of the scanning head camera can be achieved by photographing multiple positions of the calibrator to obtain multiple groups of second images, and selecting the corresponding camera calibration method and the multiple groups of second images to calculate the internal and external parameters of the scanning head camera.
  • the laser line calibration of the scanning head is to calculate the mathematical expression of multiple laser line emission surfaces in the scanning head coordinate system, that is, the mathematical expression of the laser surface can be expressed by plane equations and quadratic surface equations according to the characteristics of the laser surface.
  • the plane equation is shown in formula (1)
  • Ax2 + By2 + Cz2 +Dxy+Exz+Fyz+Gx+Hy+Iz+J 0
  • a, b, c, and d are the plane equation parameters
  • (x, y, z) are the three-dimensional point coordinates
  • A, B, C, D, E, F, G, H, I, and J are the quadratic surface equation parameters.
  • the rigid body transformation relationship between the external frame coordinate system of the scanning head and the scanning head coordinate system is calculated, that is, the hand-eye calibration, that is, the transformation relationship between the scanning head coordinate system P scan and the external connection frame coordinate system P Frame , as shown in formula (3):
  • P Scan R*P Frame + t (3)
  • P scan is the coordinate of the point cloud in the scanning head coordinate system
  • P frame is the coordinate of the point cloud in the frame.
  • the coordinates in the coordinate system, R and t are the rotation matrix and translation vector converted from the frame coordinate system to the scanning head coordinate system.
  • step 201 to step 203 can be selected and set according to the application scenario.
  • Step 204 obtain the current first scanning measurement data of the current position based on the scanning head, obtain the first rotation matrix and the first translation vector of the scanning head coordinate system converted to the tracker coordinate system, and calculate based on the current first scanning measurement data, the first rotation matrix and the first translation vector to obtain the first tracker scanning measurement data.
  • the binocular camera tracker detects the position of the scanning head.
  • the marker points detected by the two cameras in the binocular camera tracker are valid marker points.
  • the number of valid marker points is at least 3.
  • P Tracker is the coordinate of the scanned measurement data (point cloud) in the tracker coordinate system
  • R FS and t FS are the first rotation matrix and the first translation vector for converting the scan head coordinate system to the tracker coordinate system.
  • the scanning measurement data at the current position is calculated, and the acquired scanning head posture is converted to the tracker coordinate system by formula (4) to obtain the first tracker scanning measurement data.
  • Step 205 determine based on the status information of the scanning head that the tracker has not detected the scanning head, determine that the status information of the scanning head meets a preset mode switching condition, and switch to the stitching scanning mode.
  • Step 206 Obtain the current second scanning measurement data of the current position based on the scanning head, obtain the second rotation matrix and the second translation vector of the scanning head converted from the current position coordinate system to the scanning head initial position coordinate system, and calculate based on the current second scanning measurement data, the second rotation matrix and the second translation vector to obtain the stitched scanning measurement data.
  • the tracker when it does not detect the scanning head, it switches to the stitching scanning mode.
  • the position detection of the current scanning head relative to the initial position is determined based on the marker points.
  • at least three pairs of matching points are required to realize the calculation. It can be understood that at least three pairs of matching points are required as known data to solve the unknown data in the rigid body transformation formula.
  • P Init is the coordinate system of the initial position of the scanning head
  • P Scan_i is the coordinate system of the scanning head at position i
  • R Scan_i and t Scan_i are the second rotation matrix and the second translation vector for converting the coordinate system of the scanning head at position i to the coordinate system of the initial position of the scanning head.
  • the scanning measurement data at the current position is calculated and converted to the initial coordinate system of the splicing scanning mode through formula (5).
  • Step 207 Determine that the tracker detects the scanning head based on continuing to detect the status information of the scanning head in real time, and determine that the status information of the scanning head meets a preset data conversion condition.
  • Step 208 Obtain a third rotation matrix and a third translation vector of the scan head converted from the initial position coordinate system to the tracker coordinate system, and perform calculation based on the spliced scan measurement data, the third rotation matrix and the third translation vector to obtain second tracker scan measurement data.
  • the point cloud data measured by the scanning head in the stitching scanning mode is transferred to the tracker coordinate system, that is, the measurement data based on the marker point stitching is converted to the tracker coordinate system, as shown in formula (6):
  • P Tracker R i *P Init_i + t Init_i (6)
  • P Init_i is the coordinate system of the initial position of the scanning head in the i-th scanning stitching mode
  • P Scan_i is the coordinate system of the scanning head at position i
  • R i and t Init_i are the third rotation matrix and third translation vector of the coordinate system of the initial position of the scanning head in the i-th scanning stitching mode converted to the tracker coordinate system.
  • Step 209 obtaining target tracker scanning measurement data of the target object based on the first tracker scanning measurement data and the second tracker scanning measurement data.
  • tracking scanning or stitching scanning is adopted according to whether the tracker can detect the scanning head.
  • the first tracker scanning measurement data acquired in the tracking scanning mode and the stitching scanning measurement data acquired in the stitching scanning mode are unified into the tracker coordinate system to obtain the second tracker scanning measurement data, which are merged and stored as the target tracker scanning measurement data of the target object.
  • the target tracker scanning measurement data may be processed by point cloud optimization and gridding.
  • the tracking positioning information and the scanner's self-positioning information can be combined through a common
  • the area can be automatically stitched together, so that the two data can be automatically stitched together in real time in one coordinate system, effectively solving the occlusion problem in the tracking and scanning process, reducing the number of stacking or eliminating the need for stacking, and controlling the stitching scanning area, thereby ensuring the accuracy of the scanning measurement and saving manpower and material resources.
  • the scanning processing scheme obtains multiple groups of first images by shooting a calibrator containing marker points or coding points at multiple positions and multiple postures through a binocular camera tracker, and selects the corresponding binocular camera calibration method and the multiple groups of first images to calculate the internal parameters and external parameters of the binocular camera tracker; obtains multiple groups of second images by shooting a calibrator containing marker points or coding points at multiple positions through a scanning head camera, and selects the corresponding camera calibration method and the multiple groups of second images to calculate the internal parameters and external parameters of the scanning head camera; calculates the mathematical expressions of multiple laser line emission surfaces in the scanning head coordinate system and the rigid body transformation relationship between the scanning head external frame coordinate system and the scanning head coordinate system; obtains the current first scanning measurement data of the current position based on the scanning head; obtains the first rotation matrix and the first translation vector converted from the scanning head coordinate system to the tracker coordinate system; calculates based on the current first scanning measurement data, the first rotation matrix and the first translation vector to obtain the first
  • the current second scanning measurement data of the current position is obtained, and the second rotation matrix and the second translation vector of the scanning head converted from the current position coordinate system to the initial position coordinate system of the scanning head are obtained.
  • the second rotation matrix and the second translation vector calculation is performed to obtain the stitching scanning measurement data.
  • the stitching scanning measurement data Based on the continued real-time detection of the status information of the scanning head, it is determined that the tracker has detected the scanning head, and it is determined that the status information of the scanning head meets the preset data conversion condition.
  • the third rotation matrix and the third translation vector of the scanning head converted from the initial position coordinate system to the tracker coordinate system are obtained.
  • the tracking positioning information and the self-positioning information of the scanning head are automatically spliced in the common area, so that the scanning measurement data of the two trackers can be automatically spliced in real time in one coordinate system, so that the complete measurement of the object to be measured can be completed without the need for stacking operation when there is occlusion during the tracking and scanning process. While ensuring scanning measurement accuracy, it also saves costs and improves scanning processing efficiency.
  • FIG3 is a schematic diagram of the structure of a scanning processing device provided by an embodiment of the present disclosure.
  • the device can be implemented by software and/or hardware and can generally be integrated into an electronic device. As shown in FIG3 , the device includes:
  • a real-time detection module 301 is used to detect the status information of the scanning head in real time during the process of tracking and scanning the target object;
  • a first acquisition module 302 configured to acquire first tracker scanning measurement data based on the scanning head
  • a switching module 303 configured to switch to a splicing scanning mode when the state information of the scanning head meets a preset mode switching condition
  • a second acquisition module 304 is used to acquire stitching scanning measurement data based on the scanning head in the stitching scanning mode
  • the real-time detection module 301 is further used to continue to detect the status information of the scanning head in real time;
  • a conversion module 305 configured to convert the spliced scanning measurement data into second tracker scanning measurement data when the state information of the scanning head meets a preset data conversion condition
  • the processing module 306 is configured to obtain target tracker scanning measurement data of the target object based on the first tracker scanning measurement data and the second tracker scanning measurement data.
  • the first acquisition module 302 is specifically used for:
  • the first tracker scanning measurement data is obtained by performing calculation based on the current first scanning measurement data, the first rotation matrix and the first translation vector.
  • the second acquisition module 304 is specifically configured to:
  • the stitched scanning measurement data is obtained by performing calculation based on the current second scanning measurement data, the second rotation matrix and the second translation vector.
  • the conversion module 305 is specifically used for:
  • the second tracker scanning measurement data is obtained by performing calculation based on the spliced scanning measurement data, the third rotation matrix and the third translation vector.
  • the switching module 303 is specifically configured to:
  • the tracker Based on the status information of the scanning head, it is determined that the tracker has not detected the scanning head, and it is determined that the status information of the scanning head meets a preset mode switching condition, and the mode is switched to the stitching scanning mode.
  • the conversion module 305 is specifically used to:
  • the tracker is determined to have detected the scanning head based on continued real-time detection of the status information of the scanning head, and it is determined that the status information of the scanning head meets a preset data conversion condition.
  • the device further comprises: a calibration module, configured to:
  • a binocular camera tracker is used to capture a calibrator having a marker point or a coding point at multiple positions and multiple postures to obtain multiple groups of first images, and a corresponding binocular camera calibration method and the multiple groups of first images are selected to calculate the intrinsic parameters and extrinsic parameters of the binocular camera tracker;
  • a plurality of groups of second images are acquired by photographing a calibrator containing marker points or coding points at multiple positions by a scanning head camera, and corresponding camera calibration methods and the plurality of groups of second images are selected to calculate the intrinsic parameters and extrinsic parameters of the scanning head camera;
  • the scanning processing device provided in the embodiments of the present disclosure can execute the scanning processing method provided in any embodiment of the present disclosure, and has the corresponding functional modules and beneficial effects of the execution method.
  • the embodiments of the present disclosure also provide a computer program product, including a computer program/instruction, which implements the scanning processing method provided by any embodiment of the present disclosure when executed by a processor.
  • FIG4 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present disclosure. Referring to FIG4 in detail below, it shows a schematic diagram of the structure of an electronic device 400 suitable for implementing the embodiment of the present disclosure.
  • the electronic device 400 in the embodiment of the present disclosure may include but is not limited to Such as mobile phones, notebook computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablet computers), PMPs (portable multimedia players), vehicle-mounted terminals (such as vehicle-mounted navigation terminals), etc. and fixed terminals such as digital TVs, desktop computers, etc.
  • PDAs personal digital assistants
  • PADs tablet computers
  • PMPs portable multimedia players
  • vehicle-mounted terminals such as vehicle-mounted navigation terminals
  • fixed terminals such as digital TVs, desktop computers, etc.
  • the electronic device shown in FIG4 is only an example and should not bring any limitation to the functions and scope of use of the embodiments of the present disclosure.
  • the electronic device 400 may include a processing device (e.g., a central processing unit, a graphics processing unit, etc.) 401, which can perform various appropriate actions and processes according to a program stored in a read-only memory (ROM) 402 or a program loaded from a storage device 408 to a random access memory (RAM) 403.
  • a processing device e.g., a central processing unit, a graphics processing unit, etc.
  • RAM random access memory
  • various programs and data required for the operation of the electronic device 400 are also stored.
  • the processing device 401, the ROM 402, and the RAM 403 are connected to each other via a bus 404.
  • An input/output (I/O) interface 405 is also connected to the bus 404.
  • the following devices may be connected to the I/O interface 405: input devices 406 including, for example, a touch screen, a touchpad, a keyboard, a mouse, a camera, a microphone, an accelerometer, a gyroscope, etc.; output devices 407 including, for example, a liquid crystal display (LCD), a speaker, a vibrator, etc.; storage devices 408 including, for example, a magnetic tape, a hard disk, etc.; and communication devices 409.
  • the communication devices 409 may allow the electronic device 400 to communicate wirelessly or wired with other devices to exchange data.
  • FIG. 4 shows an electronic device 400 with various devices, it should be understood that it is not required to implement or have all the devices shown. More or fewer devices may be implemented or have alternatively.
  • an embodiment of the present disclosure includes a computer program product, which includes a computer program carried on a non-transitory computer-readable medium, and the computer program contains program code for executing the method shown in the flowchart.
  • the computer program can be downloaded and installed from a network through a communication device 409, or installed from a storage device 408, or installed from a ROM 402.
  • the processing device 401 When the computer program is executed by the processing device 401, the above-mentioned functions defined in the scanning processing method of the embodiment of the present disclosure are executed.
  • the computer-readable medium mentioned above in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two.
  • the machine-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof.
  • Computer-readable storage media may include, but are not limited to, an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination thereof.
  • a computer-readable storage medium may be any tangible medium containing or storing a program that may be used by or in conjunction with an instruction execution system, device, or device.
  • a computer-readable signal medium may include a data signal propagated in a baseband or as part of a carrier wave, in which a computer-readable program code is carried. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination thereof.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which may send, propagate, or transmit a program used by or in conjunction with an instruction execution system, device, or device.
  • the program code embodied on the computer readable medium may be transmitted using any appropriate medium, including but not limited to: wire, optical cable, RF (radio frequency), etc., or any suitable combination of the foregoing.
  • the client and server may communicate using any currently known or future developed network protocol such as HTTP (Hyper Text Transfer Protocol), and may be interconnected with any form or medium of digital data communication (e.g., a communication network).
  • HTTP Hyper Text Transfer Protocol
  • Examples of communication networks include a local area network ("LAN”), a wide area network ("WAN”), an internet (e.g., the Internet), and a peer-to-peer network (e.g., an ad hoc peer-to-peer network), as well as any currently known or future developed network.
  • the computer-readable medium may be included in the electronic device, or may exist independently without being incorporated into the electronic device.
  • the computer-readable medium carries one or more programs.
  • the electronic device detects the state information of the scanning head in real time during the process of tracking and scanning the target object, obtains the first tracker scanning measurement data based on the scanning head, switches to the splicing scanning mode when the state information of the scanning head meets the preset mode switching condition, and obtains the splicing scanning based on the scanning head in the splicing scanning mode.
  • the scanning head status information is continued to be detected in real time, and when the scanning head status information meets the preset data conversion condition, the spliced scanning measurement data is converted into the second tracker scanning measurement data, and the target tracker scanning measurement data of the target object is obtained based on the first tracker scanning measurement data and the second tracker scanning measurement data.
  • Computer program code for performing the operations of the present disclosure may be written in one or more programming languages or a combination thereof, including, but not limited to, object-oriented programming languages, such as Java, Smalltalk, C++, and conventional procedural programming languages, such as "C" or similar programming languages.
  • the program code may be executed entirely on the user's computer, partially on the user's computer, as a separate software package, partially on the user's computer and partially on a remote computer, or entirely on a remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., through the Internet using an Internet service provider).
  • LAN local area network
  • WAN wide area network
  • Internet service provider e.g., AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function.
  • the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved.
  • each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs a specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
  • the units involved in the embodiments described in the present disclosure may be implemented by software or hardware, wherein the name of a unit does not, in some cases, constitute a limitation on the unit itself.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • ASSP Application Specific Standard Product
  • SOC System on Chip
  • CPLD Complex Programmable Logic Device
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, device, or equipment.
  • a machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • a machine-readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or equipment, or any suitable combination of the foregoing.
  • a more specific example of a machine-readable storage medium may include an electrical connection based on one or more lines, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory erasable programmable read-only memory
  • CD-ROM portable compact disk read-only memory
  • CD-ROM compact disk read-only memory
  • magnetic storage device or any suitable combination of the foregoing.
  • the present disclosure provides an electronic device, including:
  • a memory for storing instructions executable by the processor
  • the processor is used to read the executable instructions from the memory and execute the instructions to implement any scanning processing method provided in the present disclosure.
  • the present disclosure provides a computer-readable storage medium, wherein the storage medium stores a computer program, and the computer program is used to execute any of the scanning processing methods provided by the present disclosure.
  • the scanning processing method provided by the present invention can complete the complete measurement of the object to be measured without stacking when there is occlusion during the tracking scanning process, thereby ensuring the scanning measurement accuracy while saving costs and improving the scanning processing efficiency, and has strong industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本公开实施例涉及一种扫描处理方法、装置、设备及介质,其中该方法包括:在对目标物体进行跟踪扫描的过程中实时检测扫描头的状态信息,基于扫描头获取第一跟踪仪扫描测量数据,在扫描头的状态信息满足预设的模式切换条件切换至拼接扫描模式,在拼接扫描模式下基于扫描头获取拼接扫描测量数据,继续实时检测扫描头的状态信息满足预设的数据转换条件下,将拼接扫描测量数据转换成第二跟踪仪扫描测量数据,基于第一跟踪仪扫描测量数据和第二跟踪仪扫描测量数据,得到目标物体的目标跟踪仪扫描测量数据。采用上述技术方案,在跟踪扫描过程中存在遮挡时不需要进行转栈就可以完成被测物的完整测量,保障扫描测量精度的同时节约成本、提高扫描处理效率。

Description

一种扫描处理方法、装置、设备及介质
本公开要求于2022年11月25日提交中国专利局、申请号为202211490005.8、发明名称为“一种扫描处理方法、装置、设备及介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及跟踪扫描技术领域,尤其涉及一种扫描处理方法、装置、设备及介质。
背景技术
通常,通过跟踪仪对扫描头进行实时跟踪定位从而完成被测物形貌的完整测量,该方式在出现遮挡情况时不能够完成被测物背面的扫描测量,若要完整测量需要进行转栈(移动跟踪仪到下一个位置),操作繁琐。
因此,跟踪扫描设备在跟踪扫描过程中出现扫描头被遮挡情况时,如果不进行转栈,则无法完整测量,若进行转栈,需要耗费更多成本和时间,且不能保证扫描测量精度。
发明内容
为了解决上述技术问题或者至少部分地解决上述技术问题,本公开提供了一种扫描处理方法、装置、设备及介质。
本公开实施例提供了一种扫描处理方法,所述方法包括:
在对目标物体进行跟踪扫描的过程中,实时检测扫描头的状态信息,并基于所述扫描头获取第一跟踪仪扫描测量数据;
在所述扫描头的状态信息满足预设的模式切换条件下,切换至拼接扫描模式,并在所述拼接扫描模式下,基于所述扫描头获取拼接扫描测量数据;
继续实时检测所述扫描头的状态信息,在所述扫描头的状态信息 满足预设的数据转换条件下,将所述拼接扫描测量数据转换成第二跟踪仪扫描测量数据;
基于所述第一跟踪仪扫描测量数据和所述第二跟踪仪扫描测量数据,得到所述目标物体的目标跟踪仪扫描测量数据。
本公开实施例还提供了一种扫描处理装置,所述装置包括:
实时检测模块,用于在对目标物体进行跟踪扫描的过程中,实时检测扫描头的状态信息;
第一获取模块,用于基于所述扫描头获取第一跟踪仪扫描测量数据;
切换模块,用于在所述扫描头的状态信息满足预设的模式切换条件下,切换至拼接扫描模式;
第二获取模块,用于在所述拼接扫描模式下,基于所述扫描头获取拼接扫描测量数据;
所述实时检测模块,还用于继续实时检测所述扫描头的状态信息;
转换模块,用于在所述扫描头的状态信息满足预设的数据转换条件下,将所述拼接扫描测量数据转换成第二跟踪仪扫描测量数据;
处理模块,用于基于所述第一跟踪仪扫描测量数据和所述第二跟踪仪扫描测量数据,得到所述目标物体的目标跟踪仪扫描测量数据。
本公开实施例还提供了一种电子设备,所述电子设备包括:处理器;用于存储所述处理器可执行指令的存储器;所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现如本公开实施例提供的扫描处理方法。
本公开实施例还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行如本公开实施例提供的扫描处理方法。
本公开实施例提供的技术方案与现有技术相比具有如下优点:本公开实施例提供的扫描处理方案,在对目标物体进行跟踪扫描的过程中实时检测扫描头的状态信息,并基于扫描头获取第一跟踪仪扫描测量数据,在扫描头的状态信息满足预设的模式切换条件切换至拼接扫描模式,在拼接扫描模式下基于扫描头获取拼接扫描测量数据,继续 实时检测扫描头的状态信息,在扫描头的状态信息满足预设的数据转换条件下,将拼接扫描测量数据转换成第二跟踪仪扫描测量数据,基于第一跟踪仪扫描测量数据和第二跟踪仪扫描测量数据,得到目标物体的目标跟踪仪扫描测量数据。采用上述技术方案,在跟踪扫描过程中存在遮挡时不需要进行转栈就可以完成被测物的完整测量,保障扫描测量精度的同时节约成本、提高扫描处理效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种扫描处理方法的流程示意图;
图2为本公开实施例提供的另一种扫描处理方法的流程示意图;
图3为本公开实施例提供的一种扫描处理装置的结构示意图;
图4为本公开实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
应当理解,本公开的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本公开的范围在此方面不受限制。
本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”。其他术语的相关定义将在下文描述中给出。
需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。
需要注意,本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。
本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。
具体地,跟踪式扫描测量***在测量过程中需要将被测物体放置于跟踪仪的有效视场内,在实时扫描测量的过程中,跟踪仪需要实时的检测到扫描头连接的标志点框架,从而实现实时检测扫描头的位姿,从而将每一帧扫描头的扫描数据统一到参考坐标系(跟踪仪坐标系)下,若要实现对大尺寸被测物体的完整扫描测量,需要在被测物体上粘贴反光标志点,跟踪仪预先拍摄粘贴在被测物体上的标志点框架信息,当需要移动跟踪仪时进行转栈操作,将坐标***一到被测物体上的标志点框架坐标上,从而实现大尺寸工件的完整测量。
然而,当需要完整测量大尺寸工件时,需要跟踪仪提前对被测物体表面上的标志点进行框架点拍摄,拍摄框架的过程需要人工移动跟踪仪至不同的位置和姿态,并且需要拍摄足够的数量以保障框架的稳定性和精度,有些位置可能因空间比较狭小不能将跟踪仪移动到对应的位置继续跟踪扫描。
本公开实施例提出的扫描处理方法,通过将跟踪的定位信息与扫描头的自定位信息在公共区域进行自动拼接,让两个数据可以实时的自动拼接在一个坐标系下,实现在跟踪扫描过程中存在遮挡时不需要 进行转栈操作就可以完成被测物的完整测量,保障扫描测量精度的同时节约成本、提高扫描处理效率。
图1为本公开实施例提供的一种扫描处理方法的流程示意图,该方法可以由扫描处理装置执行,其中该装置可以采用软件和/或硬件实现,一般可集成在电子设备中。如图1所示,该方法包括:
步骤101、在对目标物体进行跟踪扫描的过程中实时检测扫描头的状态信息,基于扫描头获取第一跟踪仪扫描测量数据。
其中,目标物体可以为任意一个需要进行扫描的物体,例如可以是某大尺寸工件。跟踪扫描指的是通过跟踪仪对扫描头进行实时跟踪定位从而完成目标物体形貌的完整测量,其目的是由扫描头实时检测的三维点云统一到参考坐标系(跟踪仪坐标系)下得到目标物体的完整点云。其中,扫描头的状态信息指的是跟踪仪是否能够检测到扫描头,即扫描头是否被遮挡。
本公开实施例中,在对跟踪仪扫描***进行标定后,开始对目标物体进行跟踪扫描,在对目标物体进行跟踪扫描的过程中实时检测扫描头的状态信息可以理解为实时检测跟踪仪是否能够检测到扫描头或者是扫描头是否被遮挡。
在本公开实施例中,在对目标物体进行跟踪扫描的过程中,基于扫描头获取第一跟踪仪扫描测量数据的方式有很多种,在一些实施方式中,基于扫描头获取当前位置的当前第一扫描测量数据,获取扫描头坐标系转换到跟踪仪坐标系的第一旋转矩阵和第一平移向量,基于当前第一扫描测量数据、第一旋转矩阵和第一平移向量进行计算,得到第一跟踪仪扫描测量数据;在另一些实施方式中,基于扫描头实时获取实时扫描测量数据,并基于数据处理算法对实时扫描测量数据进行处理,得到第一跟踪仪扫描测量数据。
以上两种方式仅为基于扫描头获取第一跟踪仪扫描测量数据的示例,本公开实施例不对基于扫描头获取第一跟踪仪扫描测量数据的具体实现方式进行限制。
步骤102、在扫描头的状态信息满足预设的模式切换条件下,切换至拼接扫描模式,并在拼接扫描模式下,基于扫描头获取拼接扫描测 量数据。
其中,预先设置模式切换条件,模式切换条件包括跟踪仪未检测到扫描头或扫描头被遮挡。其中,拼接扫描模式指的是在目标物体上粘贴反光标志点扫描头通过逐帧拼接的方式将实时扫描的三维数据统一到参考坐标系(跟踪仪坐标系)下完成目标物体形貌的完整测量。
在本公开实施例中,在扫描头的状态信息满足预设的模式切换条件下,切换至拼接扫描模式,包括:基于扫描头的状态信息确定跟踪仪未检测到扫描头,确定扫描头的状态信息满足预设的模式切换条件,切换至拼接扫描模式。
在本公开实施例中,在切换到拼接扫描模式下,基于扫描头获取拼接扫描测量数据,在一个实施方式中,基于扫描头获取当前位置的当前第二扫描测量数据,获取扫描头在当前位置坐标系转换到扫描头初始位置坐标系的第二旋转矩阵和第二平移向量,基于当前第二扫描测量数据、第二旋转矩阵和第二平移向量进行计算,得到拼接扫描测量数据;在另一些实施方式中,基于扫描头实时获取实时扫描测量数据,并基于预设的数据转换公式对实时扫描测量数据进行处理,得到拼接扫描测量数据。
以上两种方式仅为基于扫描头获取拼接扫描测量数据的示例,本公开实施例不对基于扫描头获取拼接扫描测量数据的具体实现方式进行限制。
步骤103、继续实时检测扫描头的状态信息,在扫描头的状态信息满足预设的数据转换条件下,将拼接扫描测量数据转换成第二跟踪仪扫描测量数据。
其中,预先设置数据转换条件,数据转换条件包括跟踪仪检测到扫描头或扫描头未被遮挡。
在本公开实施例中,在切换至拼接扫描模式后,基于继续实时检测扫描头的状态信息确定跟踪仪检测到所述扫描头,确定扫描头的状态信息满足预设的数据转换条件。
进一步地,将拼接扫描测量数据转换成第二跟踪仪扫描测量数据,在一些实施方式中,获取扫描头在初始位置坐标系转换到跟踪仪坐标 系的第三旋转矩阵和第三平移向量,基于拼接扫描测量数据、第三旋转矩阵和第三平移向量进行计算,得到第二跟踪仪扫描测量数据;在另一些实施方式中,基于预设的数据转换公式对拼接扫描测量数据进行处理,得到第二跟踪仪扫描测量数据。
以上两种方式仅为将拼接扫描测量数据转换成第二跟踪仪扫描测量数据的示例,本公开实施例不对将拼接扫描测量数据转换成第二跟踪仪扫描测量数据的具体实现方式进行限制。
步骤104、基于第一跟踪仪扫描测量数据和第二跟踪仪扫描测量数据,得到目标物体的目标跟踪仪扫描测量数据。
具体地,在扫描测量的过程中根据跟踪仪是否能够检测到扫描头的情况采用跟踪扫描或者是拼接扫描的方式,将在跟踪扫描模式下获取的第一跟踪仪扫描测量数据,以及拼接扫描模式下,将拼接扫描测量数据统一到跟踪仪坐标系下得到第二跟踪仪扫描测量数据进行合并存储,作为目标物体的目标跟踪仪扫描测量数据。
本公开实施例提供的扫描处理方案,在对目标物体进行跟踪扫描的过程中实时检测扫描头的状态信息,并基于扫描头获取第一跟踪仪扫描测量数据,在扫描头的状态信息满足预设的模式切换条件切换至拼接扫描模式,在拼接扫描模式下基于扫描头获取拼接扫描测量数据,继续实时检测扫描头的状态信息,在扫描头的状态信息满足预设的数据转换条件下,将拼接扫描测量数据转换成第二跟踪仪扫描测量数据,基于第一跟踪仪扫描测量数据和第二跟踪仪扫描测量数据,得到目标物体的目标跟踪仪扫描测量数据。采用上述技术方案,在跟踪扫描过程中存在遮挡时不需要进行转栈就可以完成被测物的完整测量,保障扫描测量精度的同时节约成本、提高扫描处理效率。
图2为本公开实施例提供的另一种扫描处理方法的流程示意图,本实施例在上述实施例的基础上,进一步优化了上述扫描处理方法。如图2所示,该方法包括:
步骤201、通过双目相机跟踪仪对含有标志点或编码点的标定器进行多个位置和多个姿态拍摄来获取多组第一图像,并选取相应的双目相机标定方法和多组第一图像进行计算出双目相机跟踪仪的内参数和 外参数。
具体地,双目相机跟踪仪标定,双目相机跟踪仪标定主要是对双目相机跟踪仪内外参数进行标定,标定参数主要包含对双目相机跟踪仪内参数Ki,(i=0,1,2),相机的外参数Riti,(i=0,1,2)。具体地,通过对标定器(含有标志点或编码点的标准器具)多个位置和多个姿态进行拍摄来获取多组第一图像,并选取相应的双目相机跟踪仪标定方法计算出双目相机跟踪仪的内参数和外参数。
步骤202、通过扫描头相机对含有标志点或编码点的标定器进行多个位置拍摄来获取多组第二图像,并选取相应的相机标定方法和多组第二图像进行计算出扫描头相机的内参数和外参数。
步骤203、计算多个激光线发射面在扫描头坐标系下的数学表达式和计算扫描头外部框架坐标系与扫描头坐标系之间的刚体转换关系。
具体地,扫描头***标定主要包含扫描头相机内外参数标定和扫描头激光线标定,扫描头相机内外参数标定可通过对标定器拍摄多个位置计算获取多组第二图像,并选取相应的相机标定方法和所述多组第二图像进行计算出扫描头相机的内参数和外参数。
具体地,扫描头激光线标定是计算多个激光线发射面在扫描头坐标系下的数学表达式,即激光面的数学表达式根据激光面的特性可选择使用平面方程和二次曲面方程表述,平面方程如公式(1)所示,二次曲面方程如公式(2)所示:
ax+by+cz+d=0  (1)
Ax2+By2+Cz2+Dxy+Exz+Fyz+Gx+Hy+Iz+J=0  (2)
其中,a、b、c和d为平面方程参数,(x、y、z)为三维点坐标;A、B、C、D、E、F、G、H、I和J为二次曲面方程参数。
具体地,计算扫描头外部框架坐标系与扫描头坐标系之间的刚体转换关系,即手眼标定,即扫描头坐标系Pscan与外部连接框架坐标系PFrame之间转换关系,如公式(3)所示:
PScan=R*PFrame+t  (3)
其中,Pscan为点云在扫描头坐标系下的坐标,PFrame为点云在框架 坐标系下的坐标,R和t为框架坐标系转换到扫描头坐标系下的旋转矩阵和平移向量。
可以理解的是,步骤201-步骤203的执行顺序可以根据应用场景需要选择设置。
步骤204、基于扫描头获取当前位置的当前第一扫描测量数据,获取扫描头坐标系转换到跟踪仪坐标系的第一旋转矩阵和第一平移向量,基于当前第一扫描测量数据、第一旋转矩阵和第一平移向量进行计算,得到第一跟踪仪扫描测量数据。
具体地,跟踪扫描模式下,双目相机跟踪仪对扫描头位姿检测,双目相机跟踪仪中两个相机检测到的标志点为有效标志点,有效标志点的数量至少为3,通过标志点可计算出扫描头坐标系与跟踪仪坐标系的位置关系,如公式(4)所示:
PTracker=RFS*PScan+tFS  (4)
其中,PTracker为扫描测量数据(点云)在跟踪仪坐标系下的坐标,RFS、tFS为扫描头坐标系转换到跟踪仪坐标系的第一旋转矩阵和第一平移向量。
具体地,扫描头结构光测量,扫描头完成标定后,计算当前位置下的扫描测量数据,通过公式(4)将获取的扫描头位姿转换到跟踪仪坐标系下,得到第一跟踪仪扫描测量数据。
步骤205、基于扫描头的状态信息确定跟踪仪未检测到扫描头,确定扫描头的状态信息满足预设的模式切换条件,切换至拼接扫描模式。
步骤206、基于扫描头获取当前位置的当前第二扫描测量数据,获取扫描头在当前位置坐标系转换到扫描头初始位置坐标系的第二旋转矩阵和第二平移向量,基于当前第二扫描测量数据、第二旋转矩阵和第二平移向量进行计算,得到拼接扫描测量数据。
具体地,在跟踪仪未检测到扫描头时切换至拼接扫描模式,在拼接扫描模式下,基于标志点确定当前扫描头相对于初始位置的位姿检测。通常至少需要3对匹配点便可实现计算,可以理解的是,至少需3对匹配点作为已知数据才能对刚体转换公式中的未知数据进行求解,刚体转换公式如公式(5)所示:
PInit=RScan_i*PScan_i+tScan_i  (5)
其中,PInit为扫描头初始位置的坐标系,PScan_i为扫描头在位置i下的坐标系,RScan_i、tScan_i为扫描头坐标系在位置i下的坐标系转换到扫描头初始位置坐标系的第二旋转矩阵和第二平移向量。
具体地,扫描头结构光测量,扫描头完成标定后,计算当前位置下的扫描测量数据,通过公式(5)转换到拼接扫描模式的初始坐标系下。
步骤207、基于继续实时检测扫描头的状态信息确定跟踪仪检测到扫描头,确定扫描头的状态信息满足预设的数据转换条件。
步骤208、获取扫描头在初始位置坐标系转换到跟踪仪坐标系的第三旋转矩阵和第三平移向量,基于拼接扫描测量数据、第三旋转矩阵和第三平移向量进行计算,得到第二跟踪仪扫描测量数据。
具体地,将扫描头在拼接扫描模式下所测点云数据转栈至跟踪仪坐标系下,即将基于标志点拼接的测量数据转换到跟踪仪坐标系下,如公式(6)所示:
PTracker=Ri*PInit_i+tInit_i  (6)
其中,PInit_i为扫描头第i次扫描拼接模式下初始位置的坐标系,PScan_i为扫描头在位置i下的坐标系,Ri、tInit_i为扫描头第i次扫描拼接模式下初始位置的坐标系转换到跟踪仪坐标系的第三旋转矩阵和第三平移向量。
步骤209,基于第一跟踪仪扫描测量数据和第二跟踪仪扫描测量数据,得到目标物体的目标跟踪仪扫描测量数据。
具体地,在扫描测量的过程中根据跟踪仪是否能够检测到扫描头的情况采用跟踪扫描或者是拼接扫描的方式,将在跟踪扫描模式下获取的第一跟踪仪扫描测量数据,以及拼接扫描模式下,将拼接扫描测量数据统一到跟踪仪坐标系下得到第二跟踪仪扫描测量数据进行合并存储,作为目标物体的目标跟踪仪扫描测量数据。
需要说明的是,为了进一步提高目标跟踪仪扫描测量数据,可以对目标跟踪仪扫描测量数据进行点云优化和网格化等处理。
由此,能够将跟踪的定位信息与扫描仪的自定位信息通过公共的 区域进行自动的拼接,让两个数据可以实时的自动拼接在一个坐标系下,有效解决跟踪扫描过程中存在的遮挡问题,减少转栈次数或者不需要转栈同时控制了拼接扫描的区域,从而保障了扫描测量的精度,并节省人力和物力。
本公开实施例提供的扫描处理方案,通过双目相机跟踪仪对含有标志点或编码点的标定器进行多个位置和多个姿态拍摄来获取多组第一图像,并选取相应的双目相机标定方法和多组第一图像进行计算出双目相机跟踪仪的内参数和外参数,通过扫描头相机对含有标志点或编码点的标定器进行多个位置拍摄来获取多组第二图像,并选取相应的相机标定方法和多组第二图像进行计算出扫描头相机的内参数和外参数,计算多个激光线发射面在扫描头坐标系下的数学表达式和计算扫描头外部框架坐标系与扫描头坐标系之间的刚体转换关系,基于扫描头获取当前位置的当前第一扫描测量数据,获取扫描头坐标系转换到跟踪仪坐标系的第一旋转矩阵和第一平移向量,基于当前第一扫描测量数据、第一旋转矩阵和第一平移向量进行计算,得到第一跟踪仪扫描测量数据,基于扫描头的状态信息确定跟踪仪未检测到扫描头,确定扫描头的状态信息满足预设的模式切换条件,切换至拼接扫描模式,基于扫描头获取当前位置的当前第二扫描测量数据,获取扫描头在当前位置坐标系转换到扫描头初始位置坐标系的第二旋转矩阵和第二平移向量,基于当前第二扫描测量数据、第二旋转矩阵和第二平移向量进行计算,得到拼接扫描测量数据,基于继续实时检测扫描头的状态信息确定跟踪仪检测到扫描头,确定扫描头的状态信息满足预设的数据转换条件,获取扫描头在初始位置坐标系转换到跟踪仪坐标系的第三旋转矩阵和第三平移向量,基于拼接扫描测量数据、第三旋转矩阵和第三平移向量进行计算,得到第二跟踪仪扫描测量数据,基于第一跟踪仪扫描测量数据和第二跟踪仪扫描测量数据,得到目标物体的目标跟踪仪扫描测量数据。采用上述技术方案,通过将跟踪的定位信息与扫描头的自定位信息在公共区域进行自动拼接,让两个跟踪仪扫描测量数据可以实时的自动拼接在一个坐标系下,实现在跟踪扫描过程中存在遮挡时不需要进行转栈操作就可以完成被测物的完整测量, 保障扫描测量精度的同时节约成本、提高扫描处理效率。
图3为本公开实施例提供的一种扫描处理装置的结构示意图,该装置可由软件和/或硬件实现,一般可集成在电子设备中。如图3所示,该装置包括:
实时检测模块301,用于在对目标物体进行跟踪扫描的过程中,实时检测扫描头的状态信息;
第一获取模块302,用于基于所述扫描头获取第一跟踪仪扫描测量数据;
切换模块303,用于在所述扫描头的状态信息满足预设的模式切换条件下,切换至拼接扫描模式;
第二获取模块304,用于在所述拼接扫描模式下,基于所述扫描头获取拼接扫描测量数据;
所述实时检测模块301,还用于继续实时检测所述扫描头的状态信息;
转换模块305,用于在所述扫描头的状态信息满足预设的数据转换条件下,将所述拼接扫描测量数据转换成第二跟踪仪扫描测量数据;
处理模块306,用于基于所述第一跟踪仪扫描测量数据和所述第二跟踪仪扫描测量数据,得到所述目标物体的目标跟踪仪扫描测量数据。
可选的,所述第一获取模块302具体用于:
基于所述扫描头获取当前位置的当前第一扫描测量数据;
获取扫描头坐标系转换到跟踪仪坐标系的第一旋转矩阵和第一平移向量;
基于所述当前第一扫描测量数据、所述第一旋转矩阵和所述第一平移向量进行计算,得到所述第一跟踪仪扫描测量数据。
可选的,所述第二获取模块304,具体用于:
基于所述扫描头获取当前位置的当前第二扫描测量数据;
获取所述扫描头在当前位置坐标系转换到扫描头初始位置坐标系的第二旋转矩阵和第二平移向量;
基于所述当前第二扫描测量数据、所述第二旋转矩阵和所述第二平移向量进行计算,得到所述拼接扫描测量数据。
可选的,所述转换模块305具体用于:
获取所述扫描头在初始位置坐标系转换到跟踪仪坐标系的第三旋转矩阵和第三平移向量;
基于所述拼接扫描测量数据、所述第三旋转矩阵和所述第三平移向量进行计算,得到所述第二跟踪仪扫描测量数据。
可选的,所述切换模块303,具体用于:
基于所述扫描头的状态信息确定跟踪仪未检测到所述扫描头,确定所述扫描头的状态信息满足预设的模式切换条件,切换至所述拼接扫描模式。
可选的,所述转换模块305,具体用于:
基于继续实时检测所述扫描头的状态信息确定跟踪仪检测到所述扫描头,确定所述扫描头的状态信息满足预设的数据转换条件。
可选的,所述装置还包括:标定模块,用于:
通过双目相机跟踪仪对含有标志点或编码点的标定器进行多个位置和多个姿态拍摄来获取多组第一图像,并选取相应的双目相机标定方法和所述多组第一图像进行计算出所述双目相机跟踪仪的内参数和外参数;
通过扫描头相机对含有标志点或编码点的标定器进行多个位置拍摄来获取多组第二图像,并选取相应的相机标定方法和所述多组第二图像进行计算出所述扫描头相机的内参数和外参数;
计算多个激光线发射面在扫描头坐标系下的数学表达式;
计算扫描头外部框架坐标系与扫描头坐标系之间的刚体转换关系。
本公开实施例所提供的扫描处理装置可执行本公开任意实施例所提供的扫描处理方法,具备执行方法相应的功能模块和有益效果。
本公开实施例还提供了一种计算机程序产品,包括计算机程序/指令,该计算机程序/指令被处理器执行时实现本公开任意实施例所提供的扫描处理方法。
图4为本公开实施例提供的一种电子设备的结构示意图。下面具体参考图4,其示出了适于用来实现本公开实施例中的电子设备400的结构示意图。本公开实施例中的电子设备400可以包括但不限于诸 如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图4示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图4所示,电子设备400可以包括处理装置(例如中央处理器、图形处理器等)401,其可以根据存储在只读存储器(ROM)402中的程序或者从存储装置408加载到随机访问存储器(RAM)403中的程序而执行各种适当的动作和处理。在RAM 403中,还存储有电子设备400操作所需的各种程序和数据。处理装置401、ROM 402以及RAM 403通过总线404彼此相连。输入/输出(I/O)接口405也连接至总线404。
通常,以下装置可以连接至I/O接口405:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置406;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置407;包括例如磁带、硬盘等的存储装置408;以及通信装置409。通信装置409可以允许电子设备400与其他设备进行无线或有线通信以交换数据。虽然图4示出了具有各种装置的电子设备400,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在非暂态计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置409从网络上被下载和安装,或者从存储装置408被安装,或者从ROM 402被安装。在该计算机程序被处理装置401执行时,执行本公开实施例的扫描处理方法中限定的上述功能。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算 机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行***、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
在一些实施方式中,客户端、服务器可以利用诸如HTTP(Hyper Text Transfer Protocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:在对目标物体进行跟踪扫描的过程中实时检测扫描头的状态信息,并基于扫描头获取第一跟踪仪扫描测量数据,在扫描头的状态信息满足预设的模式切换条件切换至拼接扫描模式,在拼接扫描模式下基于扫描头获取拼接扫描 测量数据,继续实时检测扫描头的状态信息,在扫描头的状态信息满足预设的数据转换条件下,将拼接扫描测量数据转换成第二跟踪仪扫描测量数据,基于第一跟踪仪扫描测量数据和第二跟踪仪扫描测量数据,得到目标物体的目标跟踪仪扫描测量数据。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的***、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的***来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件 包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上***(SOC)、复杂可编程逻辑设备(CPLD)等等。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行***、装置或设备使用或与指令执行***、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体***、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
根据本公开的一个或多个实施例,本公开提供了一种电子设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现如本公开提供的任一所述的扫描处理方法。
根据本公开的一个或多个实施例,本公开提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行如本公开提供的任一所述的扫描处理方法。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环 境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
工业实用性
本公开提供的扫描处理方法,在跟踪扫描过程中存在遮挡时不需要进行转栈就可以完成被测物的完整测量,保障扫描测量精度的同时节约成本、提高扫描处理效率,具有很强的工业实用性。

Claims (10)

  1. 一种扫描处理方法,其特征在于,包括:
    在对目标物体进行跟踪扫描的过程中,实时检测扫描头的状态信息,并基于所述扫描头获取第一跟踪仪扫描测量数据;
    在所述扫描头的状态信息满足预设的模式切换条件下,切换至拼接扫描模式,并在所述拼接扫描模式下,基于所述扫描头获取拼接扫描测量数据;
    继续实时检测所述扫描头的状态信息,在所述扫描头的状态信息满足预设的数据转换条件下,将所述拼接扫描测量数据转换成第二跟踪仪扫描测量数据;
    基于所述第一跟踪仪扫描测量数据和所述第二跟踪仪扫描测量数据,得到所述目标物体的目标跟踪仪扫描测量数据。
  2. 根据权利要求1所述的扫描处理方法,其特征在于,所述基于所述扫描头获取第一跟踪仪扫描测量数据,包括:
    基于所述扫描头获取当前位置的当前第一扫描测量数据;
    获取扫描头坐标系转换到跟踪仪坐标系的第一旋转矩阵和第一平移向量;
    基于所述当前第一扫描测量数据、所述第一旋转矩阵和所述第一平移向量进行计算,得到所述第一跟踪仪扫描测量数据。
  3. 根据权利要求1或2所述的扫描处理方法,其特征在于,所述基于所述扫描头获取拼接扫描测量数据,包括:
    基于所述扫描头获取当前位置的当前第二扫描测量数据;
    获取所述扫描头在当前位置坐标系转换到扫描头初始位置坐标系的第二旋转矩阵和第二平移向量;
    基于所述当前第二扫描测量数据、所述第二旋转矩阵和所述第二平移向量进行计算,得到所述拼接扫描测量数据。
  4. 根据权利要求1-3任一项所述的扫描处理方法,其特征在于,所述将所述拼接扫描测量数据转换成第二跟踪仪扫描测量数据,包括:
    获取所述扫描头在初始位置坐标系转换到跟踪仪坐标系的第三旋 转矩阵和第三平移向量;
    基于所述拼接扫描测量数据、所述第三旋转矩阵和所述第三平移向量进行计算,得到所述第二跟踪仪扫描测量数据。
  5. 根据权利要求1-4任一项所述的扫描处理方法,其特征在于,所述在所述扫描头的状态信息满足预设的模式切换条件下,切换至拼接扫描模式,包括:
    基于所述扫描头的状态信息确定跟踪仪未检测到所述扫描头,确定所述扫描头的状态信息满足预设的模式切换条件,切换至所述拼接扫描模式。
  6. 根据权利要求1-5任一项所述的扫描处理方法,其特征在于,所述继续实时检测所述扫描头的状态信息,确定所述扫描头的状态信息满足预设的数据转换条件,包括:
    基于继续实时检测所述扫描头的状态信息确定跟踪仪检测到所述扫描头,确定所述扫描头的状态信息满足预设的数据转换条件。
  7. 根据权利要求1-6任一项所述的扫描处理方法,其特征在于,在所述对目标物体进行跟踪扫描之前,还包括:
    通过双目相机跟踪仪对含有标志点或编码点的标定器进行多个位置和多个姿态拍摄来获取多组第一图像,并选取相应的双目相机标定方法和所述多组第一图像进行计算出所述双目相机跟踪仪的内参数和外参数;
    通过扫描头相机对含有标志点或编码点的标定器进行多个位置拍摄来获取多组第二图像,并选取相应的相机标定方法和所述多组第二图像进行计算出所述扫描头相机的内参数和外参数;
    计算多个激光线发射面在扫描头坐标系下的数学表达式;
    计算扫描头外部框架坐标系与扫描头坐标系之间的刚体转换关系。
  8. 一种扫描处理装置,其特征在于,包括:
    实时检测模块,用于在对目标物体进行跟踪扫描的过程中,实时检测扫描头的状态信息;
    第一获取模块,用于基于所述扫描头获取第一跟踪仪扫描测量数据;
    切换模块,用于在所述扫描头的状态信息满足预设的模式切换条件下,切换至拼接扫描模式;
    第二获取模块,用于在所述拼接扫描模式下,基于所述扫描头获取拼接扫描测量数据;
    所述实时检测模块,还用于继续实时检测所述扫描头的状态信息;
    转换模块,用于在所述扫描头的状态信息满足预设的数据转换条件下,将所述拼接扫描测量数据转换成第二跟踪仪扫描测量数据;
    处理模块,用于基于所述第一跟踪仪扫描测量数据和所述第二跟踪仪扫描测量数据,得到所述目标物体的目标跟踪仪扫描测量数据。
  9. 一种电子设备,其特征在于,所述电子设备包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现上述权利要求1-7中任一所述的扫描处理方法。
  10. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-7中任一所述的扫描处理方法。
PCT/CN2023/133181 2022-11-25 2023-11-22 一种扫描处理方法、装置、设备及介质 WO2024109795A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211490005.8 2022-11-25
CN202211490005.8A CN115979164A (zh) 2022-11-25 2022-11-25 一种扫描处理方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2024109795A1 true WO2024109795A1 (zh) 2024-05-30

Family

ID=85965502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/133181 WO2024109795A1 (zh) 2022-11-25 2023-11-22 一种扫描处理方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN115979164A (zh)
WO (1) WO2024109795A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115979164A (zh) * 2022-11-25 2023-04-18 杭州天远三维检测技术有限公司 一种扫描处理方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220076A (zh) * 2020-01-11 2020-06-02 武汉中观自动化科技有限公司 一种跟踪定位和标志点定位混合的定位方法和装置
CN112964196A (zh) * 2021-02-05 2021-06-15 杭州思锐迪科技有限公司 三维扫描方法、***、电子装置和计算机设备
CN113890955A (zh) * 2021-12-08 2022-01-04 天远三维(天津)科技有限公司 一种多套拍照式扫描仪的扫描方法、装置和***
CN115979164A (zh) * 2022-11-25 2023-04-18 杭州天远三维检测技术有限公司 一种扫描处理方法、装置、设备及介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220076A (zh) * 2020-01-11 2020-06-02 武汉中观自动化科技有限公司 一种跟踪定位和标志点定位混合的定位方法和装置
CN112964196A (zh) * 2021-02-05 2021-06-15 杭州思锐迪科技有限公司 三维扫描方法、***、电子装置和计算机设备
CN113890955A (zh) * 2021-12-08 2022-01-04 天远三维(天津)科技有限公司 一种多套拍照式扫描仪的扫描方法、装置和***
CN115979164A (zh) * 2022-11-25 2023-04-18 杭州天远三维检测技术有限公司 一种扫描处理方法、装置、设备及介质

Also Published As

Publication number Publication date
CN115979164A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2024109796A1 (zh) 一种扫描头位姿检测方法、装置、设备及介质
WO2024109795A1 (zh) 一种扫描处理方法、装置、设备及介质
CN111127563A (zh) 联合标定方法、装置、电子设备及存储介质
EP3872764A1 (en) Method and apparatus for constructing map
WO2023213253A1 (zh) 一种扫描数据处理方法、装置、电子设备及介质
WO2021088498A1 (zh) 虚拟物体显示方法以及电子设备
CN116182878B (zh) 道路曲面信息生成方法、装置、设备和计算机可读介质
WO2023213252A1 (zh) 扫描数据处理方法、装置、设备及介质
CN112561990B (zh) 定位信息生成方法、装置、设备和计算机可读介质
CN116079697B (zh) 一种基于图像的单目视觉伺服方法、装置、设备及介质
WO2024104239A1 (zh) 视频标注方法、装置、设备、介质及产品
CN117953063B (zh) 数据处理方法、扫描方法、装置、设备、存储介质及***
CN114092655A (zh) 构建地图的方法、装置、设备及存储介质
EP4318398A1 (en) Calibration and verification method and apparatus for intrinsic camera parameter, device, and medium
WO2024149078A1 (zh) 一种支持多相机动态输入的感知方法、***及车辆
CN112270242B (zh) 轨迹的显示方法、装置、可读介质和电子设备
WO2024109268A1 (zh) 一种数字模型比对方法、装置、设备及介质
CN112401752B (zh) 一种检测未知障碍物的方法、装置、介质和电子设备
WO2024001961A1 (zh) 一种扫描图像渲染方法、装置、电子设备及存储介质
CN113129366B (zh) 单目slam初始化方法、装置及电子设备
US20240193804A1 (en) Image processing method and apparatus, electronic device, and storage medium
WO2022194145A1 (zh) 一种拍摄位置确定方法、装置、设备及介质
CN116077182A (zh) 一种医用手术机器人控制方法、装置、设备及介质
CN112835021A (zh) 定位方法、装置、***及计算机可读存储介质
CN111698545A (zh) 遥控器和识别操作动作的方法、装置、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893883

Country of ref document: EP

Kind code of ref document: A1