WO2024109662A1 - 用于车辆的电驱***壳体和车辆 - Google Patents

用于车辆的电驱***壳体和车辆 Download PDF

Info

Publication number
WO2024109662A1
WO2024109662A1 PCT/CN2023/132413 CN2023132413W WO2024109662A1 WO 2024109662 A1 WO2024109662 A1 WO 2024109662A1 CN 2023132413 W CN2023132413 W CN 2023132413W WO 2024109662 A1 WO2024109662 A1 WO 2024109662A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
housing
chamber
drive system
electric drive
Prior art date
Application number
PCT/CN2023/132413
Other languages
English (en)
French (fr)
Inventor
张卫周
张策
任传委
Original Assignee
蔚来动力科技(合肥)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来动力科技(合肥)有限公司 filed Critical 蔚来动力科技(合肥)有限公司
Publication of WO2024109662A1 publication Critical patent/WO2024109662A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to the field of automobiles, and in particular provides an electric drive system housing for a vehicle and a vehicle.
  • the new energy electric drive system is the core component of new energy vehicles. Its function is equivalent to the engine and gearbox of fuel vehicles. It mainly includes three parts: motor, controller and transmission assembly. According to the instructions of the vehicle controller, the controller converts the high-voltage DC power transmitted by the battery pack into three-phase AC power to drive the motor to rotate, and then decelerates through the reducer to increase the output torque to drive the wheels to rotate.
  • the electric drive system conforms to the development trend of integration, mainly to achieve system transformation and upgrading of multi-component integration, and gradually advances from hardware integration to electrical integration and chip integration to form a more functional all-in-one powertrain system.
  • Chinese utility model patent CN208754130U discloses a three-in-one shell structure of a controller, a reducer, and a motor.
  • the three-in-one shell structure includes an integrally cast controller shell, a reducer shell, and a motor shell, wherein the controller shell, the reducer half shell, the motor end cover, and the motor shell are integrally cast; the water channel, the high and low pressure interfaces are integrally cast; the motor water channel is designed as a radial M-shaped water channel, and the cooling water first cools the common water channel of the shell after it comes out of the controller, to prevent the high temperature of the motor from having an adverse effect on the controller.
  • the three-in-one shell structure adopts an integrated design, and the shell is shared, which reduces the amount of materials used and the fixing, sealing design, and components used. However, the structure of the controller shell results in a low degree of integration of the components therein.
  • the present invention provides an electric drive system housing for a vehicle.
  • the housing of the electric drive system of the present invention comprises: an upper housing, which comprises an upper housing of a controller and an end cover for covering the upper housing of the controller, the end cover forms a detachable fixed connection with the upper housing of the controller, and a partition is provided in the upper housing of the controller; and a lower housing, which is located below the upper housing, the lower housing comprises at least an integrally formed lower housing of the controller, a motor housing and a reducer housing, the lower housing of the controller forms a detachable fixed connection with the upper housing of the controller to form a controller housing, and the partition divides the controller housing into at least two chambers, and the chambers are used to install various power electronic modules of the vehicle.
  • the controller housing of the present invention is divided into an upper housing and a lower housing, and a partition is provided in the upper housing. After the upper housing and the lower housing are combined, the partition divides the controller housing into at least two chambers, so that the space in the controller housing can be fully utilized and the integration of the power electronic module installed inside can be improved.
  • the end cover is provided to facilitate the installation and maintenance of the power electronic module in the upper chamber of the controller.
  • the lower housing, the motor housing and the reducer housing are integrally cast, eliminating the connectors originally required between the three.
  • the controller housing reduces the difficulty of the processing and assembly processes of the electric drive housing; on the other hand, the three are integrated into one, and the volume is smaller than before, which reduces the occupation of the electric drive system housing on the vehicle's internal space. Furthermore, by integrating the controller housing with the motor housing, the external connection harness of the controller and the motor can be transferred to the inside of the housing, optimizing the space inside the vehicle and improving the aesthetics.
  • At least two chambers include a first chamber and a second chamber, wherein the first chamber is surrounded by an end cover, a side wall of the upper housing of the controller, and a partition; and the second chamber is surrounded by a lower housing of the controller and a partition.
  • the space in the housing of the controller is divided into two layers, and the detachable end cover facilitates the maintenance and replacement of the power electronic module in the first chamber; and the detachable fixed connection between the upper housing of the controller and the lower housing of the controller facilitates the maintenance and replacement of the power electronic module in the second chamber, thereby improving the space utilization rate.
  • the partition A vertical baffle is arranged perpendicular to the partition, and the vertical baffle divides at least one of the first chamber and the second chamber into a plurality of sub-chambers.
  • the vertical baffle By setting the vertical baffle, the utilization rate of the internal space of the first chamber and the second chamber is further improved, and each power electronic module can be more stably fixed in a sub-chamber matching its shape.
  • the vertical baffle can also improve the situation of electromagnetic interference between the power electronic modules.
  • the multiple sub-chambers include a first sub-chamber located in the first chamber, a second sub-chamber located in the second chamber, and a third sub-chamber extending from the first chamber to the second chamber; wherein the first sub-chamber is used to install the inverter, the second sub-chamber is used to install the DC/DC converter, and the third sub-chamber is used to install the high-voltage power distribution module.
  • a controller coolant inlet for introducing coolant into the controller upper housing is formed on the side wall of the controller upper housing; the partition is formed integrally with the side wall, and a cooling channel is formed thereon, and the cooling channel is interconnected with the controller coolant inlet.
  • the cooling channel includes a first channel and a second channel connected in series, the first channel is formed on the lower surface of the partition, and the second channel is formed on the upper surface of the partition.
  • the first flow channel includes a first inlet and a first outlet, and the first inlet is interconnected with the controller coolant inlet;
  • the second flow channel includes a second inlet and a second outlet, and the second inlet is interconnected with the first outlet, so that the coolant flows into the first flow channel from the first inlet and flows out of the first flow channel from the first outlet and enters the second flow channel, and then flows out of the second flow channel through the second outlet. Since the second flow channel is used to cool the inverter Module, while the inverter module usually adopts a pin-fin heat dissipation structure matched with the second flow channel.
  • the coolant avoids directly impacting the easily damaged heat dissipation structure of the inverter module, and flows from the first flow channel located on the lower surface of the partition into the second flow channel located on the upper surface.
  • the flow resistance is small, which can improve the cooling effect.
  • a controller coolant outlet for introducing coolant into the motor housing is formed at the bottom of the lower housing of the controller, and the controller coolant outlet is interconnected with the second outlet and with the motor coolant inlet formed on the motor housing.
  • the second outlet extends to the lower surface of the partition through the tubular member.
  • the present invention further provides a vehicle, which uses any of the above-mentioned electric drive system housings for vehicles.
  • a vehicle which uses any of the above-mentioned electric drive system housings for vehicles.
  • FIG1 is a schematic diagram of an assembly of an electric drive system housing for a vehicle according to an embodiment of the present invention
  • FIG2 is an exploded view of an embodiment of an electric drive system housing for a vehicle according to the present invention.
  • FIG. 3 is a schematic diagram of an upper housing of a controller of an embodiment of an electric drive system housing for a vehicle of the present invention
  • FIG4 is a schematic diagram of a first chamber of an embodiment of an electric drive system housing for a vehicle according to the present invention.
  • FIG. 5 is a schematic diagram of a second chamber of an embodiment of an electric drive system housing for a vehicle of the present invention
  • FIG. 6 is a first flow diagram of an embodiment of an electric drive system housing for a vehicle according to the present invention. Schematic diagram of the road;
  • FIG. 7 is a schematic diagram of a lower housing of a controller of an embodiment of an electric drive system housing for a vehicle of the present invention.
  • FIG. 8 is a cross-sectional view of an embodiment of an electric drive system housing for a vehicle according to the present invention.
  • FIG. 9 is a partial enlarged view of the electric drive system housing for a vehicle according to an embodiment of the present invention at A in FIG. 8 .
  • the terms "disposed” and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, an indirect connection through an intermediate medium, or the internal communication of two elements.
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • the electric drive system housing of the present invention comprises: an upper housing 10, which comprises an upper housing 11a of a controller and an end cover 12 for covering the upper housing of the controller, the end cover 12 forms a detachable fixed connection with the upper housing 11a of the controller, and a partition 13 is provided in the upper housing 11a of the controller; and a lower housing 20, which is located below the upper housing 10, the lower housing 20 comprises at least an integrally formed lower housing 11b of the controller, a motor housing 21 and a reducer housing 22, the lower housing 11b of the controller forms a detachable fixed connection with the upper housing 11a of the controller to form a controller housing 11, and the partition 13 divides the controller housing 11 into at least two chambers, and the chambers are used to install various power electronic modules of the vehicle.
  • FIG. 1 is an assembly schematic diagram of an embodiment of an electric drive system housing for a vehicle of the present invention
  • FIG. 2 is an exploded view of an embodiment of an electric drive system housing for a vehicle of the present invention
  • the electric drive system housing 1 for a vehicle of the present invention includes an upper housing 10 and a lower housing 20 located below the upper housing 10.
  • both the upper housing 10 and the lower housing 20 are made of aluminum alloy material, which has the characteristics of being lightweight while ensuring the strength of the electric drive system housing 1.
  • at least one of the upper housing 10 and the lower housing 20 can be made of steel material to improve the rigidity of the housing.
  • the upper housing 10 includes a controller upper housing 11a and an end cover 12.
  • the lower housing 20 includes a controller lower housing 11b, a motor housing 21 and a reducer housing 22 formed by integral casting.
  • the motor housing 21 and the reducer housing 22 are arranged in parallel, and the controller lower housing 11b is located above the motor housing 21 and the reducer housing 22.
  • the controller upper shell 11a and the controller lower shell 11b can form the controller shell 11 through the detachable fixed connection between the upper shell 10 and the lower shell 20.
  • a sealing strip is arranged on the contact surface between the controller upper shell 11a and the controller lower shell 11b, and cooperates with fasteners to play the role of waterproof, dustproof and shock absorption.
  • FIG3 is a schematic diagram of a controller upper housing of an embodiment of an electric drive system housing for a vehicle of the present invention
  • FIG4 is a schematic diagram of a first chamber of an embodiment of an electric drive system housing for a vehicle of the present invention
  • FIG5 is a schematic diagram of a second chamber of an embodiment of an electric drive system housing for a vehicle of the present invention.
  • the upper housing 10 includes a controller upper housing 11a, an end cover 12, and a partition 13.
  • the controller upper housing 11a is configured as a roughly rectangular frame composed of four first vertical walls 111, and a plurality of mounting holes 112 are provided on the first vertical wall 111.
  • the mounting holes 112 are used to install wiring terminals (not shown in the figure) that match the external connection harness.
  • the external connection harness is used to connect the power electronic module in the controller housing 11 to other external components.
  • other external components include but are not limited to battery packs, low-voltage batteries, PTC heaters, air conditioning compressors, air pumps, oil pumps, and CAN communication networks.
  • other external components may also be one or more of the aforementioned multiple components.
  • a controller coolant inlet 113 is also formed on the first vertical wall 111.
  • the end cover 12 is located at the upper opening of the controller upper housing 11a and forms a detachable fixed connection with the controller upper housing 11a.
  • the fixed connection method includes but is not limited to screw connection, snap connection, etc.
  • a sealing strip is arranged on the contact surface between the end cover 12 and the controller upper housing 11a, which cooperates with the fasteners to play the role of waterproofing, dustproofing and shock absorption.
  • the partition 13 is disposed in the controller upper housing 11a, is integrally cast with the controller upper housing 11a, and is configured to be substantially parallel to the end cover 12.
  • the space above the partition 13 forms a first chamber 14, and the space below the partition 13 forms a second chamber 15 (see FIG. 5).
  • the space utilization rate in the controller housing 11 is improved by the provision of two chambers.
  • the partition 13 can also be configured to be substantially perpendicular to the end cover 12 to form chambers on the left and right sides of the partition 13.
  • Fixed columns 131 are provided on both upper and lower surfaces of the partition 13.
  • the power electronic module can be fixedly connected to the fixed column 131 by screwing, clamping, etc.
  • the fixed column 131 is provided only on the upper surface of the partition 13 to install the power electronic module provided in the first chamber 14.
  • the electronic module provided in the second chamber 15 can be installed by a fixed column or other fixed structure in the controller lower housing 11b.
  • a first vertical baffle 132 is provided on the upper surface of the partition 13. Based on the orientation shown in Figure 4, a first sub-chamber is formed on the right side of the first vertical baffle 132. 141 is used to install the inverter. In the area of the first sub-chamber 141, a copper busbar through hole 133 is also provided on the partition 13, so that the copper busbar extending from the inverter that can conduct three-phase alternating current passes through it and is connected to the motor installed in the lower shell 20.
  • a second vertical baffle 134 is also provided on the lower surface of the partition 13.
  • the second vertical baffle 134 has the same shape as the first vertical baffle 132, and is symmetrical with each other with the plane where the partition 13 is located as the center plane. Based on the orientation shown in Figure 5, a second sub-chamber 151 is formed on the right side of the second vertical baffle 134 for installing a DC/DC converter.
  • a plurality of first wiring holes 135 are further provided on the partition 13.
  • the first wiring holes 135 connect the first chamber 14 and the second chamber 15, so that the symmetrically arranged first vertical baffles 132 and the second vertical baffles 134 and the controller upper housing 11a together enclose a third sub-chamber 142 extending from the first chamber 14 to the second chamber 15.
  • a portion of the high-voltage distribution module is respectively installed on the upper and lower surfaces of the partition 13 (i.e., the high-voltage distribution module is installed in the third sub-chamber 142), and the connection line of the high-voltage distribution module passes through the first wiring holes 135.
  • the above configuration not only makes full use of the space in the controller housing 11, but also ensures the firm installation of the high-voltage distribution module.
  • a larger through hole can be provided on the partition 13 or the partition 13 is not provided in the third sub-chamber to accommodate the installation of the high-voltage distribution module.
  • a third vertical baffle 136 and a second wiring hole 137 are further provided on the upper surface of the partition 13.
  • the third vertical baffle 136 divides a portion of the space of the first sub-chamber 132 to form a fourth sub-chamber 143.
  • the wires on the inverter, DC/DC converter and high-voltage power distribution module that need to be connected to the external connection harness through the side wall 111 in the area where the fourth sub-chamber 143 is located can extend from the second wiring hole 137 to the fourth sub-chamber 143 and then be connected to the predetermined wiring terminal.
  • This configuration not only improves the space utilization rate in the controller housing 11, but also facilitates subsequent inspection and maintenance.
  • the fourth sub-chamber 143 can also be arranged in other suitable positions or the fourth sub-chamber 143 can be cancelled to accommodate the connection lines of the power electronic module.
  • partition 13 and the vertical baffles on the partition can also be set to other suitable shapes, positions and quantities to divide the controller housing 11 into more sub-chambers to accommodate more power electronic modules, thereby improving the integration of the electric drive system housing 1 of the present invention.
  • Other power electronic modules include but are not limited to on-board chargers, DC/AC converters, etc.
  • the partition plate 13 is also provided with a cooling fluid inlet 113 for connecting to the controller.
  • the cooling channel is formed so that the coolant flows through the controller coolant inlet 113 along the cooling channel in the controller housing 11 to cool the power electronic module therein.
  • the cooling channel includes a first channel 138 and a second channel 1391 connected in series. The first channel 138 is formed on the lower surface of the partition 13, and the second channel 1391 is formed on the upper surface of the partition 13.
  • a boss 139 formed integrally with the partition 13 is provided on the upper surface of the partition 13 in the area where the first sub-chamber 141 is located.
  • An open water tank is provided in the middle of the boss 139, and the water tank is the second flow channel 1391.
  • FIG6 is a schematic diagram of the first flow channel of an embodiment of the electric drive system housing for a vehicle of the present invention.
  • the first flow channel 138 is integrally formed with the partition 13 to cool the DC/DC converter and is fluidly connected to the controller coolant inlet 113.
  • the first flow channel 138 includes a water flow groove 1381 integrally formed with the partition 13 and a cover plate 1382 formed in a sealed connection with the water flow groove 1381, so that the coolant flows in the first flow channel 138 without leaking into the controller housing 11.
  • connection method of the cover plate 1382 to the water flow groove 1381 includes but is not limited to screw connection and welding.
  • the cover plate 1382 can be made of copper material to improve heat dissipation efficiency, or can be made of aluminum material to reduce manufacturing costs.
  • the second flow channel 1391 has a second inlet 13911 and a second outlet 13912 relative to each other.
  • the first flow channel 138 is divided into a first flow segment 138a and a second flow segment 138b by a dividing rib 1383.
  • the first flow segment 138a is configured as a "U"-shaped flow channel
  • the second flow segment 138b is configured as a "J"-shaped flow channel to reduce flow resistance.
  • the first flow segment 138a and the second flow segment 138b may also be configured into other suitable shapes.
  • the first flow segment 138a has a first inlet 1384, a first outlet 1385 and a guide rib 1386.
  • a guide opening 13861 is provided on the guide rib 1386 to reduce the flow resistance of the coolant at the first outlet 1385.
  • the first outlet 1385 of the first flow segment 138a is connected to the second inlet 13911 of the second flow channel 1391, and the second flow segment 138b is connected to the second outlet of the second flow channel 1391 13912. Therefore, along the flow direction of the coolant, the second flow channel 1391 is located between the first flow segment 138a and the second flow segment 138b, and they are connected in series.
  • the coolant flows into the controller housing 11 from the controller coolant inlet 113, flows into the first flow segment 138a of the first flow channel 138 through the first inlet 1384, and then flows out of the first flow segment 138a from the first outlet 1385.
  • the coolant leaving the first flow segment 138a enters the second flow channel 1391 through the second inlet 13911, flows out of the second flow channel 1391 from the second outlet 13912, and then flows into the second flow segment 138b.
  • the coolant flows out of the controller housing 11 via the second flow segment 138b.
  • the first flow channel 138 can also be configured to have only the first flow segment, and the coolant does not flow back to the first flow channel after flowing through the second flow channel.
  • the coolant first enters the first flow channel 138 located on the lower surface of the partition 13, then flows into the second flow channel 1391 located on the upper surface of the partition 13, and finally flows back to the first flow channel 138.
  • the advantage of this configuration is to prevent the coolant from directly entering the second flow channel 1391 and impacting the easily damaged IGBT heat dissipation structure.
  • the area of the first flow channel 138 used to cool the DC/DC converter is usually larger than the area of the second flow channel 1391 used to cool the inverter. If the coolant adopts a flow path "from top to bottom" (that is, the coolant first enters from the second flow channel and then flows into the first flow channel), the coolant is prone to collision and turbulence when entering the first flow channel 138 from the second flow channel 1391, increasing the flow resistance and thus affecting the heat exchange efficiency.
  • the coolant can also adopt "from top to bottom", but it is necessary to avoid the coolant directly impacting the IGBT cooling structure, for example, the fluid flow direction of the coolant inlet is configured to face the partition 13, and guide ribs are set in the first flow channel 138 by integral molding or welding to weaken the collision and turbulence of the coolant.
  • FIG7 is a schematic diagram of a lower housing of a controller of an embodiment of an electric drive system housing for a vehicle of the present invention
  • FIG8 is a cross-sectional view of an embodiment of an electric drive system housing for a vehicle of the present invention
  • FIG9 is a partial enlarged view of an embodiment of an electric drive system housing for a vehicle of the present invention at A in FIG8.
  • the cover plate 1382 has a water outlet 13821, which can be integrally formed with the cover plate 1382 or welded to the cover plate 1382.
  • the water outlet 13821 is arranged on the second flow segment 138b of the first flow channel 138 so that the coolant enters the next flow channel from the second flow segment 138b.
  • a controller coolant outlet 114 is provided on the controller lower housing 11 b.
  • the controller coolant outlet 114 is connected to the water outlet 13821 so that the coolant can flow out of the controller housing 11.
  • the water outlet 13821 and the controller coolant outlet 114 are both configured as tubular components, and the water outlet 13821 The pipe diameter is small and suitable for being inserted into the controller coolant outlet 114.
  • An annular groove 13822 is provided on the outer wall of the water outlet 13821 to place a sealing ring.
  • other sealing methods may also be used between the water outlet 13821 and the controller outlet 114, such as a packing seal, a mechanical seal, etc.
  • the controller lower housing 11b also includes a bottom surface 115 and a second vertical wall 116 having the same cross-sectional shape as the first vertical wall 111.
  • the bottom surface 115 is an irregular shape to reduce the difficulty of manufacturing.
  • a plurality of support platforms 117 are arranged on the bottom surface 115. The support platforms 117 are suitable for installing gaskets and abutting against the power electronic modules installed in the second chamber to play a supporting and buffering role.
  • a through hole 118 is also arranged on the bottom surface 115. The through hole 118 is located above the motor housing 21.
  • the three-phase copper busbar extending from the inverter passes through the copper busbar through hole 133, and then passes through the through hole 118 and is finally connected to the motor in the motor housing 21.
  • the motor housing 21 is used to install the drive motor and is configured to be roughly cylindrical.
  • the motor housing 21 has an outer water jacket 211, an inner water jacket 212, and a motor cooling channel 213 formed between the outer water jacket 211 and the inner water jacket 212.
  • the motor housing 21 may also adopt other suitable cooling structures.
  • the motor cooling channel 213 has a motor coolant inlet 2131 and a motor coolant outlet 2132.
  • the motor coolant inlet 2131 extends to the controller coolant outlet 114 and forms a fluid connection therewith, so as to connect the cooling flow path of the controller in series with the cooling flow path of the motor, reduce the setting of the pipeline and the sealing surface, and improve the integration of the housing.
  • the motor cooling flow path and the controller cooling flow path may not be integrated together, but two different cooling flow paths may be used, which makes the coolant cooling components less and the cooling effect better.
  • the motor coolant outlet 2132 is formed on the outer wall of the motor housing 21. Therefore, when the electric drive system housing 1 for a vehicle of the present invention is assembled (as shown in FIG. 1 ), the coolant can flow into the electric drive system housing 1 from the controller coolant inlet 114 and flow out from the motor coolant outlet 2132, cooling the entire electric drive system housing 1 through one flow path, greatly improving the integration of the housing.
  • the reducer housing 22 is arranged at one end of the motor rotor main shaft in the axial direction and is formed together with the motor housing 22 for mounting the reducer and the corresponding
  • the lower housing 20 may also integrate more transmission mechanisms, such as a half-axle assembly.
  • the motor housing 21 is provided with a motor end cover 23, and the reducer housing 22 is provided with a reducer end cover 24.
  • the vehicle of the present invention uses the above-mentioned electric drive system housing 1 for a vehicle.
  • the vehicle can be any suitable electric vehicle, hybrid electric vehicle, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明提供一种用于车辆的电驱***壳体和车辆。电驱***壳体包括:上部壳体,其包括控制器上壳体和用于覆盖控制器上壳体的端盖,端盖与控制器上壳体形成可拆卸的固定连接,在控制器上壳体内设有隔板;和下部壳体,其位于上部壳体的下方,下部壳体至少包括一体成形的控制器下壳体、电机壳体和减速器壳体,控制器下壳体与控制器上壳体形成可拆卸的固定连接以组成控制器壳体,隔板将控制器壳体分为至少两个腔室,腔室用于安装车辆的多种电力电子模块。解决了现有技术中存在的电驱***多合一壳体集成化程度不高的问题。

Description

用于车辆的电驱***壳体和车辆
优先权要求
本申请要求以下中国发明专利申请的优先权:2022年11月22日提交的、申请号为“202211466923.7”的中国发明专利申请。该专利的内容通过引用全部结合到本文中。
技术领域
本发明涉及汽车领域,具体提供一种用于车辆的电驱***壳体和车辆。
背景技术
新能源电驱***是新能源汽车的核心部件,其作用相当于燃油车的发动机和变速箱,主要包含电机、控制器和传动总成三部分。控制器根据整车控制器的指令将电池包传输的高压直流电逆变为三相交流电以驱动电机转动,再通过减速器进行减速、提高输出转矩,以带动车轮转动。电驱***顺应集成化的发展趋势,主要向实现多部件融合的***改造升级,并逐步从硬件融合,向电气融合、芯片融合推进,形成功能更全的多合一动力总成***。
中国实用新型专利CN208754130U公开了一种控制器、减速器、电机的三合一壳体结构。该三合一壳体结构包括一体铸造成型的控制器壳体、减速器壳体和电机壳体,其中,控制器壳体、减速器半壳、电机端盖、电机壳体一体铸造成型;水道、高低压接口一体铸造成型;电机水道设计成径向M型水道,冷却水自控制器里出来后,最先冷却壳体公用部分水道,防止电机高温对控制器产生不利影响。该三合一壳体结构采用一体化设计,壳体共用,减少了材料使用量和相互之间的固定、密封设计和使用的零部件。然而该控制器壳体的结构导致其中的部件集成化程度不高。
因此,本领域需要一种新的技术方案来解决上述问题。
发明内容
为了解决现有技术中存在的电驱***多合一壳体集成化程度不高的问题,本发明提供一种用于车辆的电驱***壳体。本发明电驱***壳体包括:上部壳体,其包括控制器上壳体和用于覆盖控制器上壳体的端盖,端盖与控制器上壳体形成可拆卸的固定连接,在控制器上壳体内设有隔板;和下部壳体,其位于上部壳体的下方,下部壳体至少包括一体成形的控制器下壳体、电机壳体和减速器壳体,控制器下壳体与控制器上壳体形成可拆卸的固定连接以组成控制器壳体,隔板将控制器壳体分为至少两个腔室,腔室用于安装车辆的多种电力电子模块。
本发明的控制器壳体分为控制器上壳体和控制器下壳体,并且在控制器上壳体内设有隔板。控制器上壳体和控制器下壳体合在一起后,隔板将控制器壳体分为至少两个腔室,因此能够充分利用控制器壳体内的空间,提高其内部安装的电力电子模块的集成度。通过端盖的设置,便于对控制器上部腔室内的电力电子模块的安装和检修。控制器下壳体、电机壳体和减速器壳体一体铸造成型,省去了原本三者之间所需的连接件,一方面降低了电驱壳体的加工工艺和装配工艺的难度;另一方面三者集成到一体,体积较原来缩小,减少了电驱***壳体对车辆内部空间的挤占。进一步地,将控制器壳体与电机壳体集成到一起,能够把控制器与电机的外部连接线束转移到壳体内部,优化了车辆内部的空间,并提升美观程度。
在上述用于车辆的电驱***壳体的优选技术方案中,至少两个腔室包括第一腔室和第二腔室,第一腔室由端盖、控制器上壳体的侧壁和隔板围成;第二腔室由控制器下壳体和隔板围成。通过两个腔室的设置,将控制器壳体内的空间分为上下两层,并且通过可拆卸的端盖,便于对第一腔室内的电力电子模块进行维修和更换;通过控制器上壳体和控制器下壳体之间可拆卸的固定连接,便于对第二腔室内的电力电子模块进行维修和更换,提高了空间利用率。
在上述用于车辆的电驱***壳体的优选技术方案中,在隔板 上设置有垂直于隔板的竖向挡板,竖向挡板将第一腔室和第二腔室中的至少一个分成多个子腔室。通过竖向挡板的设置,进一步提高第一腔室和第二腔室内部空间的利用率,每个电力电子模块能够更稳定地固定在与其形状相配的子腔室中。此外,竖向挡板还能够改善电力电子模块之间存在电磁干扰的情况。
在上述用于车辆的电驱***壳体的优选技术方案中,多个子腔室包括位于第一腔室内的第一子腔室、位于第二腔室内的第二子腔室和从第一腔室延伸到第二腔室的第三子腔室;其中,第一子腔室用于安装逆变器,第二子腔室用于安装DC/DC转换器,第三子腔室用于安装高压配电模块。通过逆变器、DC/DC转换器和高压配电模块的集成安装,减少了电驱壳体的外部连接线束,提高了电驱***壳体的集成度,进一步减少对车辆内部空间的挤占。
在上述用于车辆的电驱***壳体的优选技术方案中,在控制器上壳体的侧壁上形成有用于向控制器上壳体内通入冷却液的控制器冷却液进口;隔板与侧壁一体地形成,并且在其上形成有冷却流道,冷却流道与控制器冷却液进口相互连通。通过上述的配置,隔板上的冷却流道能够对控制器壳体内的电力电子模块进行冷却,并且通过一体成形的隔板和冷却流道,既提升了冷却液流路的密封性能,也降低了冷却流道的制造难度。
在上述用于车辆的电驱***壳体的优选技术方案中,冷却流道包括相互串联的第一流道和第二流道,第一流道形成在隔板的下表面上,第二流道形成在隔板的上表面上。通过上述的配置,第一流道和第二流道构成一条冷却液流路,从而用一条冷却液流路能够同时冷却第一子腔室和第二子腔室中的电力电子模块,因此提升了控制器壳体的热管理能力。
在上述用于车辆的电驱***壳体的优选技术方案中,第一流道包括第一进口和第一出口,第一进口与控制器冷却液进口相互连通;第二流道包括第二进口和第二出口,第二进口与第一出口相互连通,使得冷却液从第一进口流入第一流道并从第一出口流出第一流道并进入第二流道,然后经第二出口流出第二流道。由于第二流道用于冷却逆变器 模块,而逆变器模块通常采用针翅状散热结构与第二流道相配,通过上述的配置,冷却液避免直接冲击易损坏的逆变器模块散热结构,并且从位于隔板下表面的第一流道流入位于上表面的第二流道的流动路线,其流阻较小,能够提升冷却效果。
在上述用于车辆的电驱***壳体的优选技术方案中,在控制器下壳体的底部形成有用于向电机壳体通入冷却液的控制器冷却液出口,控制器冷却液出口与第二出口相互连通,并与形成在电机壳体上的电机冷却液进口相互连通。通过上述的配置,实现了控制器和电机的冷却液流路的串联,减少了冷却管路,进一步提升电驱***壳体的集成度。
在上述用于车辆的电驱***壳体的优选技术方案中,第二出口通过管状构件延伸到隔板的下表面上。通过管状构件的配置,当上部壳体和下部壳体固定装配时,便于第二出口和控制器冷却液出口能够密封地对接到一起。
为了解决现有技术中存在的电驱***多合一壳体集成化程度不高的问题,本发明还提供一种车辆,该车辆使用上述任一项所述的用于车辆的电驱***壳体。通过采用上面任一项所述的电驱***壳体,提高了本发明车辆的空间利用率和整车NVH性能。
附图说明
下面结合附图来描述本发明的优选实施方式,附图中:
图1是本发明用于车辆的电驱***壳体的实施例的装配示意图;
图2是本发明用于车辆的电驱***壳体的实施例的***图;
图3是本发明用于车辆的电驱***壳体的实施例的控制器上壳体的示意图;
图4是本发明用于车辆的电驱***壳体的实施例的第一腔室的示意图;
图5是本发明用于车辆的电驱***壳体的实施例的第二腔室的示意图;
图6是本发明用于车辆的电驱***壳体的实施例的第一流 道的示意图;
图7是本发明用于车辆的电驱***壳体的实施例的控制器下壳体的示意图;
图8是本发明用于车辆的电驱***壳体的实施例的剖视图;
图9是本发明用于车辆的电驱***壳体的实施例的在图8中的A处的局部放大图。
附图标记列表:
1、电驱***壳体;10、上部壳体;11、控制器壳体;11a、
控制器上壳体;11b、控制器下壳体;111、第一竖向壁;112、安装孔;113、控制器冷却液进口;114、控制器冷却液出口;115、底面;116、第二竖向壁;117、支撑台;118、通孔;12、端盖;13、隔板;131、固定柱;132、第一竖向挡板;133、铜排通过孔;134、第二竖向挡板;135、第一接线孔;136、第三竖向挡板;137、第二接线孔;138、第一流道;138a、第一流段;138b、第二流段;1381、流水槽;1382、盖板;13821、出水嘴;13822、环形凹槽;1383、分隔筋;1384、第一进口;1385、第一出口;1386、导流筋;13861、引流开口;139、凸台;1391、第二流道;13911、第二进口;13912、第二出口;1392、边缘;14、第一腔室;141、第一子腔室;142、第三子腔室;143、第四子腔室;15、第二腔室;151、第二子腔室;20、下部壳体;21、电机壳体;211、外水套;212、内水套;213、电机冷却流道;2131、电机冷却液进口;2132、电机冷却液出口;22、减速器壳体;23、电机端盖;24减速器端盖。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作, 因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
为了解决现有技术中存在的电驱***多合一壳体集成化程度不高的问题,本发明提供一种用于车辆的电驱***壳体1。本发明电驱***壳体包括:上部壳体10,其包括控制器上壳体11a和用于覆盖控制器上壳体的端盖12,端盖12与控制器上壳体11a形成可拆卸的固定连接,在控制器上壳体11a内设有隔板13;和下部壳体20,其位于上部壳体10的下方,下部壳体20至少包括一体成形的控制器下壳体11b、电机壳体21和减速器壳体22,控制器下壳体11b与控制器上壳体11a形成可拆卸的固定连接以组成控制器壳体11,隔板13将控制器壳体11分为至少两个腔室,腔室用于安装车辆的多种电力电子模块。
图1是本发明用于车辆的电驱***壳体的实施例的装配示意图;图2是本发明用于车辆的电驱***壳体的实施例的***图。如图1和图2所示,本发明用于车辆的电驱***壳体1包括上部壳体10和位于上部壳体10下方的下部壳体20。在一种或多种实施例中,上部壳体10和下部壳体20都采用铝合金材料制成,在保证电驱***壳体1强度的同时,兼具轻量化的特点。替代地,上部壳体10和下部壳体20中的至少一个可采用钢材料制成,以提升壳体刚度。上部壳体10包括控制器上壳体11a和端盖12。下部壳体20包括一体铸造成形的控制器下壳体11b、电机壳体21和减速器壳体22。电机壳体21和减速器壳体22并列布置,并且控制器下壳体11b位于电机壳体21和减速器壳体22的上方。通过上部壳体10和下部壳体20之间可拆卸的固定连接,控制器上壳体11a和控制器下壳体11b可组成控制器壳体11。在控制器上壳体11a与控制器下壳体11b之间的接触面上设置有密封胶条,配合紧固件起到防水、防尘、减震的作用。
图3是本发明用于车辆的电驱***壳体的实施例的控制器上壳体的示意图;图4是本发明用于车辆的电驱***壳体的实施例的第一腔室的示意图;图5是本发明用于车辆的电驱***壳体的实施例的第二腔室的示意图。如图2和图3所示,上部壳体10包括控制器上壳体11a,端盖12和隔板13。
如图2和图3所示,在一种或多种实施例中,控制器上壳体11a配置成由四个第一竖向壁111组成的大致长方形的框架,在第一竖向壁111上设置有多个安装孔112。安装孔112用于安装与外部连接线束相配的接线端子(图中未示出)。外部连接线束用于将控制器壳体11内的电力电子模块与外部的其它组件相连接。在一种或多种实施例中,外部的其它组件包括但不限于电池包、低压蓄电池、PTC加热器、空调压缩机、气泵、油泵以及can通信网络等。在替代的实施例中,外部的其它组件也可为前述多个组件中的一个或多个。另外,在第一竖向壁111上还形成有控制器冷却液进口113。
继续参阅图2和图3,端盖12位于控制器上壳体11a的上部开口处,并与控制器上壳体11a形成可拆卸的固定连接。固定连接方式包括但不限于螺接、卡扣连接等。在端盖12与控制器上壳体11a之间的接触面上布置有密封胶条,配合紧固件起到防水、防尘、减震的作用。
继续参阅图2和图3,在一种或多种实施例中,隔板13设置在控制器上壳体11a内,与控制器上壳体11a一体地铸造成形,并配置成与端盖12大致平行。隔板13上方的空间形成第一腔室14,隔板13下方的空间形成第二腔室15(参见图5)。通过两个腔室的设置提升控制器壳体11内的空间利用率。替代地,隔板13也可配置成与端盖12大致垂直,以在隔板13左右两侧形成腔室。在隔板13的上下两侧表面上都设置有固定柱131。电力电子模块可与固定柱131以螺接、卡接等方式形成固定连接。在替代的实施例中,仅在隔板13的上表面上设置固定柱131,以安装设置在第一腔室14中的电力电子模块。第二腔室15中设置的电子模块可通过控制器下壳体11b内的固定柱或其它固定结构来安装。
如图4和图5所示,在隔板13的上表面上设置有第一竖向挡板132。基于图4所示方位,在第一竖向挡板132右侧形成第一子腔室 141,用于安装逆变器。在第一子腔室141的区域内,隔板13上还设置有铜排通过孔133,以便从逆变器延伸出的可导通三相交流电的铜排从其中穿过并与安装在下部壳体20中的电机相连接。在隔板13的下表面上还设置有第二竖向挡板134。第二竖向挡板134与第一竖向挡板132的形状相同,并以隔板13所在平面为中心面相互对称。基于图5所示方位,在第二竖向挡板134右侧形成第二子腔室151,用于安装DC/DC转换器。
继续参阅图4和图5,在一种或多种实施例中,在隔板13上还设置有多个第一接线孔135。第一接线孔135使第一腔室14和第二腔室15形成连通,因此相对称布置的第一竖向挡板132和第二竖向挡板134与控制器上壳体11a共同围成从第一腔室14延伸到第二腔室15的第三子腔室142。在隔板13的上下两侧表面上分别安装高压配电模块的一部分(即在第三子腔室142中安装高压配电模块),高压配电模块的连接线从第一接线孔135中穿过。由于高压配电模块体积较大,通过上述的配置不仅充分利用了控制器壳体11内的空间,还能够保证高压配电模块的牢固安装。在替代的实施例中,还可以在隔板13上设置更大通过孔或者在第三子腔室内不设置隔板13,以适应高压配电模块的安装。
继续参阅图4和图5,在一种或多种实施例中,在隔板13的上表面上还设置有第三竖向挡板136和第二接线孔137。第三竖向挡板136分割出第一子腔室132的一部分空间,以形成第四子腔室143。逆变器、DC/DC转换器和高压配电模块上需要通过第四子腔室143所在区域的侧壁111与外部连接线束相连的导线,可通从第二接线孔137延伸到第四子腔室143中,再连接到预定的接线端子上。这种配置不仅提高了控制器壳体11内的空间利用率,也便于后期的检修和维护。替代地,第四子腔室143也可以布置在其他合适的位置或者取消第四子腔室143的设置,以适应电力电子模块的连接线路。
需要指出的是,上述隔板13以及隔板上的竖向挡板还可以设置成其它合适的形状、位置和数量,以将控制器壳体11内分成更多的子腔室,容纳更多的电力电子模块,进而提高本发明电驱***壳体1的集成度。其它电力电子模块包括但不限于车载充电机、DC/AC转换器等。
在隔板13上还形成有连通控制器冷却液进口113的冷却流 道,以便冷却液通过控制器冷却液进口113沿着冷却流道在控制器壳体11内流动,以便对其中的电力电子模块进行冷却。在一种或多种实施例中,冷却流道包括相互串联的第一流道138和第二流道1391。第一流道138形成在隔板13的下表面上,而第二流道1391形成在隔板13的上表面上。
继续参阅图3和图4,在一种或多种实施例中,在第一子腔室141所在区域的隔板13的上表面上,设置有与隔板13一体成形的凸台139。在凸台139的中间设置有敞口的水槽,该水槽即为第二流道1391。当逆变器安装到第一子腔室141中时,逆变器中的用于IGBT的针翅状散热结构会插进第二流道1391中,并且散热结构上的密封胶圈能够与凸台139的边缘1392相抵靠,使散热结构与第二流道1391形成密封连接。替代地,第二流道也可设置成与IGBT散热结构相配的其它形状。
图6是本发明用于车辆的电驱***壳体的实施例的第一流道的示意图。如图5和图6所示,在一种或多种实施例中,在第二子腔室151所在区域的隔板13的下表面上,第一流道138与隔板13一体成形,用以冷却DC/DC转换器,并且与控制器冷却液进口113形成流体连通。如图5和图6所示,第一流道138包括与隔板13一体成形的流水槽1381和与流水槽1381形成密封连接的盖板1382,以便冷却液在第一流道138中流动而不会泄漏到控制器壳体11内。盖板1382与流水槽1381的连接方式包括但不限于螺接、焊接。盖板1382可以使用铜材料制成,以提高散热效率,也可使用铝材料制成,以降低制造成本。如图4所示,第二流道1391具有相对的第二进口13911和第二出口13912。
继续参阅图6,在一种或多种实施例中,第一流道138由分隔筋1383分成第一流段138a和第二流段138b。在一种或多种实施例中,第一流段138a配置成“U”型流道,第二流段138b配置成“J”型流道,以降低流阻。替代地,第一流段138a和第二流段138b也可以配置成其它合适的形状。第一流段138a具有第一进口1384,第一出口1385和导流筋1386。在导流筋1386上设置有引流开口13861,以便降低冷却液在第一出口1385处的流阻。第一流段138a的第一出口1385连通第二流道1391的第二进口13911,并且第二流段138b连通第二流道1391的第二出口 13912。因此,沿着冷却液的流向,第二流道1391位于第一流段138a和第二流段138b之间,并且相互形成串联。冷却液从控制器冷却液进口113流入控制器壳体11后经第一进口1384流入第一流道138的第一流段138a,再从第一出口1385流出第一流段138a。离开第一流段138a的冷却液通过第二进口13911进入第二流道1391,并从第二出口13912流出第二流道1391后再流入第二流段138b。冷却液经由第二流段138b流出控制器壳体11。替代地,第一流道138也可以配置成只有第一流段,冷却液从第二流道中流过后不再回流到第一流道中。通过上述的配置,冷却液先是进入位于隔板13下表面的第一流道138,然后流入位于隔板13上表面的第二流道1391,最后再流回第一流道138。这样配置的优势在于避免冷却液直接进入第二流道1391冲击易损坏的IGBT散热结构。用于冷却DC/DC转换器的第一流道138的面积通常大于用于冷却逆变器的第二流道1391的面积,若冷却液采用“从上至下”(即冷却液先从第二流道进入,再流入第一流道中)的流路,则冷却液容易在从第二流道1391进入第一流道138时发生对冲和紊流,增大流阻进而影响换热效率。在替代的实施例中,冷却液也可采用“从上至下”,但需避免冷却液直接冲击IGBT冷却结构,例如将冷却液进口的流体流向配置成朝向隔板13,并采用一体成形或者焊接的方式在第一流道138中设置导流筋,以削弱冷却液的对冲和紊流。
图7是本发明用于车辆的电驱***壳体的实施例的控制器下壳体的示意图;图8是本发明用于车辆的电驱***壳体的实施例的剖视图;图9是本发明用于车辆的电驱***壳体的实施例在图8的A处的局部放大图。如图5和图9所示,盖板1382具有一个出水嘴13821,出水嘴13821可与盖板1382一体成形或者焊接到盖板1382上。出水嘴13821设置在第一流道138的第二流段138b上,以便冷却液从第二流段138b进入下一个流道。
如图7和图8所示,在控制器下壳体11b上设置有控制器冷却液出口114。控制器冷却液出口114与出水嘴13821相互连通以便冷却液从控制器壳体11中流出。如图9所示,在一种或多种实施例中,出水嘴13821和控制器冷却液出口114都配置成管状构件,并且出水嘴13821 的管径较小,适于***到控制器冷却液出口114中。在出水嘴13821的外壁上设置有环形凹槽13822,以便放置密封圈。在替代的实施例中,出水嘴13821和控制器出口114之间也可使用其它密封方式,例如填料密封、机械密封等。
继续参阅图7,控制器下壳体11b还包括底面115和与第一竖向壁111截面形状相同的第二竖向壁116。其中,由于控制器下壳体11b与电机壳体21和减速器壳体22集成到一起,底面115为不规则的形状,以便于降低制造难度。在底面115上设置有多个支撑台117。支撑台117适于安装衬垫并与第二腔室内安装的电力电子模块相抵靠,以起到支撑和缓冲的作用。在底面115上还设置有通孔118。通孔118位于电机壳体21的上方,逆变器延伸出的三相铜排从铜排通过孔133中穿过后,再通过通孔118最后与电机壳体21中的电机相连接。
继续参阅图2和图8,在一种或多种实施例中,电机壳体21用于安装驱动电机,配置成大致圆柱状。电机壳体21具有外水套211、内水套212和形成在外水套211和内水套212之间的电机冷却流道213。替代地,电机壳体21也可以采用其他合适的冷却结构。在一种或多种实施例中,电机冷却流道213具有电机冷却液进口2131和电机冷却液出口2132。由于控制器下壳体11b与电机壳体21集成到一起,电机冷却液进口2131延伸到控制器冷却液出口114上并与其形成流体连通,以便将控制器的冷却流路与电机的冷却流路串联,减少管道和密封面的设置,提升壳体的集成度。替代地,也可不将电机冷却流路与控制器冷却流路集成到一起,而是采用两个不同的冷却流路,这种方式使得冷却液冷却部件较少,冷却效果更好。
继续参阅图1和图2,电机冷却液出口2132形成在电机壳体21的外壁上。因此,在本发明用于车辆的电驱***壳体1装配完成时(如图1所致状态),冷却液能够从控制器冷却液进口114流入电驱***壳体1,并从电机冷却液出口2132流出,通过一条流路冷却整个电驱***壳体1,大大提升了壳体的集成度。
继续参阅图2,减速器壳体22布置在电机转子主轴的轴线方向上的一端,并与电机壳体22形成到一起,用于安装减速器和与之相 配的差速器。在替代的实施例中,下部壳体20还可以集成更多的传动机构,例如半轴组件。除此之外,电机壳体21设有电机端盖23,并且减速器壳体22设有减速器端盖24。
本发明车辆使用上述的用于车辆的电驱***壳体1。该车辆可以是任何合适的电动汽车、油电混合动力汽车等。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种用于车辆的电驱***壳体,其特征在于,所述电驱***壳体包括:
    上部壳体,其包括控制器上壳体和用于覆盖所述控制器上壳体的端盖,所述端盖与所述控制器上壳体形成可拆卸的固定连接,在所述控制器上壳体内设有隔板;和
    下部壳体,其位于所述上部壳体的下方,所述下部壳体至少包括一体成形的控制器下壳体、电机壳体和减速器壳体,所述控制器下壳体与所述控制器上壳体形成可拆卸的固定连接以组成控制器壳体,所述隔板将所述控制器壳体分为至少两个腔室,所述腔室用于安装所述车辆的多种电力电子模块。
  2. 根据权利要求1所述的用于车辆的电驱***壳体,其特征在于,所述至少两个腔室包括第一腔室和第二腔室,所述第一腔室由所述端盖、所述控制器上壳体的侧壁和所述隔板围成;所述第二腔室由所述控制器下壳体和所述隔板围成。
  3. 根据权利要求2所述的用于车辆的电驱***壳体,其特征在于,在所述隔板上设置有垂直于所述隔板的竖向挡板,所述竖向挡板将所述第一腔室和所述第二腔室中的至少一个分成多个子腔室。
  4. 根据权利要求3所述的用于车辆的电驱***壳体,其特征在于,所述多个子腔室包括位于所述第一腔室内的第一子腔室、位于所述第二腔室内的第二子腔室和从所述第一腔室延伸到所述第二腔室的第三子腔室;
    其中,所述第一子腔室用于安装逆变器,所述第二子腔室用于安装DC/DC转换器,所述第三子腔室用于安装高压配电模块。
  5. 根据权利要求1-4任一项所述的用于车辆的电驱***壳体,其特 征在于,
    在所述控制器上壳体的侧壁上形成有用于向控制器上壳体内通入冷却液的控制器冷却液进口;
    所述隔板与所述侧壁一体地形成,并且在其上形成有冷却流道,所述冷却流道与所述控制器冷却液进口相互连通。
  6. 根据权利要求5所述的用于车辆的电驱***壳体,其特征在于,所述冷却流道包括相互串联的第一流道和第二流道,所述第一流道形成在所述隔板的下表面上,所述第二流道形成在所述隔板的上表面上。
  7. 根据权利要求6所述的用于车辆的电驱***壳体,其特征在于,
    所述第一流道包括第一进口和第一出口,所述第一进口与所述控制器冷却液进口相互连通;
    所述第二流道包括第二进口和第二出口,所述二进口与所述第一出口相互连通,使得所述冷却液从所述第一进口流入所述第一流道并从所述第一出口流出所述第一流道并进入所述第二流道,然后经所述第二出口流出所述第二流道。
  8. 根据权利要求7所述的用于车辆的电驱***壳体,其特征在于,
    在所述控制器下壳体的底部形成有用于向所述电机壳体通入所述冷却液的控制器冷却液出口,所述控制器出口与所述第二出口相互连通,并与形成在所述电机壳体上的电机冷却液进口相互连通。
  9. 根据权利要求8所述的用于车辆的电驱***壳体,其特征在于,所述第二出口通过管状构件延伸到所述隔板的下表面上。
  10. 一种车辆,其特征在于,所述车辆包括权利要求1-9任一项所述的用于车辆的电驱***壳体。
PCT/CN2023/132413 2022-11-22 2023-11-17 用于车辆的电驱***壳体和车辆 WO2024109662A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211466923.7 2022-11-22
CN202211466923.7A CN115694045A (zh) 2022-11-22 2022-11-22 用于车辆的电驱***壳体和车辆

Publications (1)

Publication Number Publication Date
WO2024109662A1 true WO2024109662A1 (zh) 2024-05-30

Family

ID=85053754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132413 WO2024109662A1 (zh) 2022-11-22 2023-11-17 用于车辆的电驱***壳体和车辆

Country Status (2)

Country Link
CN (1) CN115694045A (zh)
WO (1) WO2024109662A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115694045A (zh) * 2022-11-22 2023-02-03 蔚来动力科技(合肥)有限公司 用于车辆的电驱***壳体和车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112224033A (zh) * 2019-06-30 2021-01-15 比亚迪股份有限公司 控制器、动力总成及电动汽车
CN112436679A (zh) * 2019-08-26 2021-03-02 上海汽车变速器有限公司 三合一电驱动总成结构
CN113572314A (zh) * 2020-04-29 2021-10-29 比亚迪股份有限公司 多功能控制器和动力总成
CN114144017A (zh) * 2020-09-04 2022-03-04 比亚迪股份有限公司 电机总成的控制器和电动总成
WO2022068828A1 (zh) * 2020-09-30 2022-04-07 比亚迪股份有限公司 一种中央控制器及汽车
CN114872493A (zh) * 2022-04-06 2022-08-09 南京司凯奇汽车科技有限公司 一种多合一集成式商用车电驱桥
CN115694045A (zh) * 2022-11-22 2023-02-03 蔚来动力科技(合肥)有限公司 用于车辆的电驱***壳体和车辆
CN218771560U (zh) * 2022-11-22 2023-03-28 蔚来动力科技(合肥)有限公司 用于车辆的电驱***壳体和车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112224033A (zh) * 2019-06-30 2021-01-15 比亚迪股份有限公司 控制器、动力总成及电动汽车
CN112436679A (zh) * 2019-08-26 2021-03-02 上海汽车变速器有限公司 三合一电驱动总成结构
CN113572314A (zh) * 2020-04-29 2021-10-29 比亚迪股份有限公司 多功能控制器和动力总成
CN114144017A (zh) * 2020-09-04 2022-03-04 比亚迪股份有限公司 电机总成的控制器和电动总成
WO2022068828A1 (zh) * 2020-09-30 2022-04-07 比亚迪股份有限公司 一种中央控制器及汽车
CN114872493A (zh) * 2022-04-06 2022-08-09 南京司凯奇汽车科技有限公司 一种多合一集成式商用车电驱桥
CN115694045A (zh) * 2022-11-22 2023-02-03 蔚来动力科技(合肥)有限公司 用于车辆的电驱***壳体和车辆
CN218771560U (zh) * 2022-11-22 2023-03-28 蔚来动力科技(合肥)有限公司 用于车辆的电驱***壳体和车辆

Also Published As

Publication number Publication date
CN115694045A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2024109662A1 (zh) 用于车辆的电驱***壳体和车辆
JP5120576B2 (ja) 燃料電池車両
US7710723B2 (en) Vehicle inverter assembly with cooling channels
US8861202B2 (en) Integrated thermal and structural management solution for Rechargeable Energy Storage System assembly
CN112805175A (zh) 用于车辆的电池组布置
EP3518413B1 (en) Power conversion device
US11509191B2 (en) Electric assembly and vehicle having the same
JP2006294336A (ja) 電池パック
CN218771560U (zh) 用于车辆的电驱***壳体和车辆
CN116315308A (zh) 电池箱及电池包
US10383262B2 (en) Power conversion device
CN212303793U (zh) 电池包和车辆
WO2024108861A1 (zh) 电驱总成及车辆
CN215771341U (zh) 电池包及车辆
CN115000589A (zh) 液冷板组、动力电池及电动车辆
US11677292B2 (en) Electric motor cooling jacket
CN112117398B (zh) 车辆
CN112787456A (zh) 车辆、电机及壳体结构
CN211702814U (zh) 车辆的控制单元和具有其的车辆
CN218586123U (zh) 集成液冷的电池包壳体和电池包
WO2024087226A1 (zh) 电池、储能装置以及用电设备
CN220156892U (zh) 电机控制器、电驱动力总成以及车辆
CN220066600U (zh) 高压配电盒及新能源汽车高压***
CN217361718U (zh) 一种车载散热结构以及电动车
CN219499830U (zh) 一种多合一控制器的冷却水道及新能源汽车