WO2024109421A1 - 一种射频功率放大器及电子设备 - Google Patents

一种射频功率放大器及电子设备 Download PDF

Info

Publication number
WO2024109421A1
WO2024109421A1 PCT/CN2023/126137 CN2023126137W WO2024109421A1 WO 2024109421 A1 WO2024109421 A1 WO 2024109421A1 CN 2023126137 W CN2023126137 W CN 2023126137W WO 2024109421 A1 WO2024109421 A1 WO 2024109421A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
capacitor
input
output
differential
Prior art date
Application number
PCT/CN2023/126137
Other languages
English (en)
French (fr)
Inventor
彭艳军
宣凯
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2024109421A1 publication Critical patent/WO2024109421A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/04Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers
    • H03F1/06Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers to raise the efficiency of amplifying modulated radio frequency waves; to raise the efficiency of amplifiers acting also as modulators
    • H03F1/07Doherty-type amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns

Definitions

  • the present invention relates to the technical field of power amplifiers, and in particular to a radio frequency power amplifier and electronic equipment.
  • the radio frequency power amplifier is located at the end of the transmission chain of the wireless communication system. It is used to amplify the transmission signal to a certain power level and drive the antenna to radiate the signal without distortion to a far enough distance so that it can be correctly detected by the receiving device. The greater the output power of the RF power amplifier, the farther the signal propagates.
  • the RF power amplifier designed using the microwave monolithic integrated circuit (MMIC: Microwave Monolithic Integrated Circuit) process is limited by the physical properties of the device, such as the breakdown voltage and power density. The output power of a single device is limited. Therefore, in order to obtain a larger output power, the power synthesis method is often used to synthesize the power of multiple power amplifier tube cores in phase and then output them.
  • FIG1 is a common structure of an RF power amplifier based on a magnetic coupling transformer.
  • the two differential power amplifiers PA11 and PA12 realize power synthesis through a power synthesis network 1 based on a magnetic coupling transformer, and convert the differential signal into a single-ended signal.
  • the efficiency of the power synthesis network 1 is a key factor for the RF power amplifier to output high power and work efficiently.
  • the power synthesis network 1 uses a magnetic coupling transformer to achieve power synthesis.
  • the magnetic coupling transformer can achieve DC isolation, the power loss is large in the high-frequency band, which reduces the maximum output power and efficiency of the power amplifier.
  • the chip area occupied by the magnetic coupling transformer is also large, which is not conducive to chip miniaturization.
  • the embodiments of the present invention provide a radio frequency power amplifier and electronic equipment, which realize power synthesis through a self-coupling transformer, can reduce losses, improve output power and efficiency, and have a small size and low cost.
  • the present invention provides a radio frequency power amplifier, including an input balun network, a dual-path differential power amplifier and a power synthesis network;
  • the input balun network is used to convert the input single-ended RF signal into two first differential signals;
  • the dual-channel differential power amplifier is used to amplify the two first differential signals and convert them into four second differential signals, and output the four second differential signals to the power synthesis network after amplification;
  • the power synthesis network includes an auto-coupling transformer, which includes a primary coil and a first secondary coil, a second secondary coil, and a third secondary coil which are sequentially connected in series to form a series branch.
  • One end of the series branch is a signal output end, and the other end of the series branch is a ground end.
  • the two ends of the primary coil are respectively used to receive two amplified second differential signals, and the two ends of the second secondary coil are respectively used to receive another two amplified second differential signals.
  • the auto-coupling transformer synthesizes the received four second differential signals into one signal, and outputs the synthesized signal from the signal output end.
  • the power synthesis network further includes a first capacitor and a second capacitor, wherein the first capacitor is connected in parallel to both ends of the primary coil, and the second capacitor is connected in parallel to both ends of the second secondary coil.
  • the power synthesis network also includes a third capacitor, and the third capacitor is connected in parallel at both ends of the series branch.
  • the input balun network includes a first transformer, a fourth capacitor and a fifth capacitor; one input end of the first transformer is used to input a single-ended RF signal, and the other input end is grounded; the two output ends of the first transformer are respectively used to output two first differential signals; the fourth capacitor is connected in parallel to the two input ends of the first transformer, and the fifth capacitor is connected in parallel to the two output ends of the first transformer.
  • the dual-path differential power amplifier includes a first amplifying branch and a second amplifying branch;
  • the first amplifying branch includes a first input matching network, a first driving amplifier, a second transformer and two first differential amplifiers, and the second amplifying branch includes a second input matching network, a second driving amplifier, a third transformer and two second differential amplifiers;
  • the input end of the first input matching network and the input end of the second input matching network are respectively connected to the two output ends of the first transformer, the output end of the first input matching network is connected to the input end of the first driving amplifier, the output end of the first driving amplifier is connected to one input end of the second transformer, the other input end of the second transformer is grounded, the two output ends of the second transformer are respectively connected to the input ends of the two first differential amplifiers, and the output ends of the two first differential amplifiers are respectively connected to the two ends of the primary coil;
  • the output end of the second input matching network is connected to the input end of the second driver amplifier, the output end of the second driver amplifier is connected to one input end of the third transformer, the other input end of the third transformer is grounded, and the two output ends of the third transformer are respectively connected to the two second differential The input end of the second differential amplifier and the output ends of the two second differential amplifiers are respectively connected to the two ends of the second secondary coil.
  • the first amplifying branch further includes a sixth capacitor
  • the second amplifying branch further includes a seventh capacitor
  • the sixth capacitor is connected in parallel to two output ends of the second transformer
  • the seventh capacitor is connected in parallel to two output ends of the third transformer.
  • the first driving amplifier, the first differential amplifier, the second driving amplifier and the second differential amplifier are all triodes, the base of the triode is an input terminal, the collector of the triode is an output terminal, and the emitter of the triode is grounded;
  • the first input matching network includes a first inductor and an eighth capacitor
  • the second input matching network includes a second inductor and a ninth capacitor
  • one end of the first inductor is connected to one end of the eighth capacitor and an output end of the first transformer, the other end of the first inductor is grounded, and the other end of the eighth capacitor is connected to the input end of the first driving amplifier
  • one end of the second inductor is connected to one end of the ninth capacitor and the other output end of the first transformer, the other end of the second inductor is grounded, and the other end of the ninth capacitor is connected to the input end of the second driving amplifier.
  • the dual-path differential power amplifier also includes a tenth capacitor and an eleventh capacitor, the secondary coils of the second transformer and the third transformer have a middle tap, one end of the tenth capacitor is connected to the middle tap of the secondary coil of the second transformer, and the other end of the tenth capacitor is grounded, one end of the eleventh capacitor is connected to the middle tap of the secondary coil of the third transformer, and the other end of the eleventh capacitor is grounded.
  • Another aspect of the present invention provides an electronic device, comprising any of the above-mentioned radio frequency power amplifiers.
  • the RF power amplifier of the present invention includes an input balun network, a dual-channel differential power amplifier and a power synthesis network.
  • the input single-ended RF signal is converted into two differential signals through the input balun network, and then the two differential signals are amplified and converted into four differential signals through the dual-channel differential power amplifier. After that, the four differential signals are synthesized into one output by the power synthesis network.
  • the power synthesis network uses a self-coupling transformer to realize signal synthesis. Compared with the traditional magnetic coupling transformer, it can reduce losses, improve output power and efficiency, and has a small size and low cost.
  • FIG1 is a schematic diagram of the structure of a radio frequency power amplifier in the prior art
  • FIG2 is a schematic diagram of the structure of a radio frequency power amplifier provided in an embodiment of the present invention.
  • FIG3 is a schematic diagram of the structure of an autotransformer provided in an embodiment of the present invention.
  • FIG. 4 is a circuit diagram of a radio frequency power amplifier provided in an embodiment of the present invention.
  • an embodiment of the present invention provides a radio frequency power amplifier 100 , which includes an input balun network 11 , a dual-path differential power amplifier 12 , and a power synthesis network 13 .
  • the input balun network 11 is used to convert the input single-ended RF signal RFin into two first differential signals;
  • the dual-channel differential power amplifier 12 is used to amplify the two first differential signals and convert them into four second differential signals, and amplify the four second differential signals and output them to the power synthesis network 13.
  • the power synthesis network 13 includes an autotransformer XFM1, which includes a primary coil L11 and a first secondary coil L21, a second secondary coil L22, and a third secondary coil L23 which are connected in series in sequence to form a series branch.
  • One end of the series branch is a signal output end, that is, one end of the first secondary coil L21 is a signal output end, which is used to output the synthesized signal RFout.
  • the other end of the series branch is a ground end, that is, one end of the third secondary coil L23 is a ground end, which is used to be grounded.
  • the two ends of the primary coil L11 are respectively used to receive the two amplified second differential signals, and the two ends of the second secondary coil L22 are respectively used to receive the other two amplified second differential signals.
  • the autotransformer XFM1 synthesizes the received four second differential signals into one signal RFout, and outputs the synthesized signal RFout from the signal output end.
  • the autotransformer XFM1 has three ports, port 1, i.e., the two ends of the primary coil L11, is used to receive two second differential signals, port 2, i.e., the two ends of the second secondary coil L22, is used to receive another two second differential signals, one end of port 3 is one end of the first secondary coil L21, i.e., the signal output end, and the other end of port 3 is grounded.
  • the primary coil L11 of the autotransformer XFM1 is located in the middle of the bifilar winding, and is connected to the three secondary coils L21, L22, and L23.
  • the second secondary coil L22 is a part of the secondary coil (L21+Ls22+L23) of the auto-coupling transformer XFM1, forming an auto-coupling transformer.
  • the RF power amplifier 100 further includes a load resistor RL, one end of the load resistor RL is connected to one end of the first secondary coil L11 that serves as a signal output end, and the other end of the load resistor RL is grounded.
  • the power synthesis network 13 also includes a first capacitor C1, a second capacitor C2 and a third capacitor C3.
  • the first capacitor C1 is connected in parallel to the two ends of the primary coil L11, so that the first capacitor C1 and the primary coil L11 form a resonance, and the impedance can be adjusted.
  • the second capacitor C2 is connected in parallel to the two ends of the second secondary coil L22, and forms a resonance with the second secondary coil L22, and the load impedance can be adjusted to achieve the transformation of the load impedance to the optimal output impedance of the dual-channel differential power amplifier.
  • the third capacitor C3 is connected in parallel to the two ends of the series branch, that is, one end of the third capacitor C3 is connected to one end of the first secondary coil L21 as the signal output end; the other end of the third capacitor C3 is connected to one end of the third secondary coil L23 as the ground end, and both are grounded.
  • the input balun network 11 includes a first transformer T1, a fourth capacitor C4 and a fifth capacitor C5.
  • One input end of the first transformer is used to input a single-ended radio frequency signal RFin, and the other input end is grounded.
  • the two output ends of the first transformer T1 are respectively used to output two first differential signals.
  • the first transformer T1 includes a primary coil L31 and a secondary coil L32, and the two ends of the primary coil L31 are respectively the two input ends of the first transformer T1, and the two ends of the secondary coil L32 are respectively the two output ends of the first transformer T1.
  • the fourth capacitor C4 is connected in parallel to the two input ends of the first transformer T1, and the fifth capacitor C5 is connected in parallel to the two output ends of the first transformer T1.
  • the fourth capacitor C4 and the fifth capacitor C5 serve as tuning capacitors, which can realize the transformation of the input impedance of the dual-channel differential power amplifier 12 to the input impedance of the signal input end.
  • the dual-channel differential power amplifier 12 includes a first amplifying branch and a second amplifying branch; the first amplifying branch includes a first input matching network 121, a first driving amplifier PA1, a second transformer T2 and two first differential amplifiers PA3 and PA4, and the second amplifying branch includes a second input matching network 122, a second driving amplifier PA2, a third transformer T3 and two second differential amplifiers PA5 and PA6.
  • the input end of the first input matching network 121 and the input end of the second input matching network 122 The input end of the first input matching network 121 is connected to the two output ends of the first transformer T1, the output end of the first input matching network 121 is connected to the input end of the first driver amplifier PA1, the output end of the first driver amplifier PA1 is connected to one input end of the second transformer T2, the other input end of the second transformer T2 is grounded, the two output ends of the second transformer T2 are connected to the input ends of the two first differential amplifiers PA3 and PA4, and the output ends of the two first differential amplifiers PA3 and PA4 are connected to the two ends of the primary coil L11 of the auto-coupling transformer XFM1.
  • the output end of the second input matching network 122 is connected to the input end of the second driving amplifier PA2, the output end of the second driving amplifier PA2 is connected to one input end of the third transformer T3, the other input end of the third transformer T3 is grounded, the two output ends of the third transformer T3 are respectively connected to the input ends of the two second differential amplifiers PA5 and PA6, and the output ends of the two second differential amplifiers PA5 and PA6 are respectively connected to the two ends of the second secondary coil L22 of the autotransformer XFM1.
  • the first amplifying branch further includes a sixth capacitor C6, the second amplifying branch further includes a seventh capacitor C7, the sixth capacitor C6 is connected in parallel to the two output ends of the second transformer T2, and the seventh capacitor C7 is connected in parallel to the two output ends of the third transformer T3.
  • the single-ended RF signal RFin is input to the first transformer T1, and is converted into two first differential signals RF1 and RF2 through the first transformer T1.
  • One first differential signal RF1 is input to the first driver amplifier PA1 through the first input matching network 121, and is amplified by the first driver amplifier PA1 and transmitted to the second transformer T2.
  • the second transformer T2 forms a balun structure and realizes the conversion from the single-ended signal to the differential signal.
  • the two converted second differential signals are respectively input to the first differential amplifiers PA3 and PA4, and are amplified by the two first differential amplifiers PA3 and PA4 and output to the primary coil L11 of the auto-coupling transformer XFM1.
  • the sixth capacitor C6 is connected in parallel to the two output ends of the second transformer T2, and forms an impedance transformation network with the second transformer T2 to realize the transformation of the input impedance of the first differential amplifiers PA3 and PA4 to the optimal output impedance of the first driver amplifier PA1.
  • the output ends of the first differential amplifiers PA3 and PA4 are respectively connected to the two ends of the primary coil L11 of the auto-coupling transformer XFM1.
  • the first capacitor C1 forms a resonance with the primary coil L11 to adjust the impedance and realize the transformation of the load impedance to the optimal output impedance of the first differential amplifiers PA3 and PA4.
  • the other first differential signal RF2 is input to the second driving amplifier PA2 through the second input matching network 122, and is amplified by the second driving amplifier PA2 and then transmitted to the third transformer T3.
  • the third transformer T3 forms a balun structure to realize the single-ended signal
  • the second differential signals are converted into differential signals, and the converted two-way second differential signals are respectively input into the second differential amplifiers PA5 and PA6, and are amplified by the two second differential amplifiers PA5 and PA6 and output to the second secondary coil L22 of the auto-coupling transformer XFM1.
  • the seventh capacitor C7 is connected in parallel to the two output ends of the third transformer T3, and forms a resonance with the secondary coil L52 of the third transformer T3, and adjusts the impedance to realize the transformation of the input impedance of the second differential amplifiers PA5 and PA6 to the optimal output impedance of the second driving amplifier PA2.
  • the output ends of the second differential amplifiers PA5 and PA6 are respectively connected to the two ends of the second secondary coil L22 of the auto-coupling transformer XFM1, and the second capacitor C2 forms a resonance with the second secondary coil L22, and adjusts the load impedance to realize the transformation of the load impedance to the optimal output impedance of the second differential amplifiers PA5 and PA6.
  • the two first differential signals RF1 and RF2 complete in-phase power synthesis in the power synthesis network 13 based on the auto-coupling transformer, and are finally converted into a single-ended output signal RFout.
  • the power synthesis network 13 based on the auto-coupling transformer of the present invention has less loss and high efficiency, which is conducive to improving the output power and efficiency of the RF power amplifier.
  • the first driving amplifier PA1, the two first differential amplifiers PA3 and PA4, the second driving amplifier PA2, and the two second differential amplifiers PA5 and PA6 are all triodes, the base of the triode corresponds to the input end of the amplifier, the collector of the triode corresponds to the output end of the amplifier, and the emitter of the triode is grounded.
  • the first driving amplifier PA1 is a triode Q1
  • the two first differential amplifiers PA3 and PA4 are triodes Q3 and Q4 respectively
  • the second driving amplifier PA2 is a triode Q2
  • the two second differential amplifiers PA5 and PA6 are triodes Q5 and Q6 respectively.
  • the first drive amplifier PA1, the second drive amplifier PA2, the first differential amplifiers PA3 and PA4, and the second differential amplifiers PA5 and PA6 may also be implemented using field effect transistors, for example, N-type field effect transistors, in which case the gate of the N-type field effect transistor corresponds to the input end of the amplifier, the drain of the N-type field effect transistor corresponds to the output end, and the source of the N-type field effect transistor is grounded.
  • field effect transistors for example, N-type field effect transistors, in which case the gate of the N-type field effect transistor corresponds to the input end of the amplifier, the drain of the N-type field effect transistor corresponds to the output end, and the source of the N-type field effect transistor is grounded.
  • the first input matching network 121 includes a first inductor L1 and an eighth capacitor C8, and the second input matching network 122 includes a second inductor L2 and a ninth capacitor C9; one end of the first inductor L1 is connected to one end of the eighth capacitor C8 and one output end of the first transformer T1, the other end of the first inductor L1 is grounded, and the other end of the eighth capacitor C8 is connected to the base of the transistor Q1; one end of the second inductor L2 is connected to one end of the ninth capacitor C9 and the other output end of the first transformer T1, the other end of the second inductor L2 is grounded, and the other end of the ninth capacitor C9 is connected to the base of the transistor Q1; The base of Q2.
  • the first input matching network 121 and the second input matching network 122 may also be implemented using other impedance structures, such as a ⁇ -type matching network or a T-type matching network.
  • the dual-path differential power amplifier 12 also includes a tenth capacitor C10 and an eleventh capacitor C11.
  • the secondary coil L42 of the second transformer T2 and the secondary coil L52 of the third transformer T3 have a middle tap.
  • One end of the tenth capacitor C10 is connected to the middle tap of the secondary coil L42 of the second transformer T2, and the other end of the tenth capacitor C10 is grounded.
  • One end of the eleventh capacitor C11 is connected to the middle tap of the secondary coil L52 of the third transformer T3, and the other end of the eleventh capacitor C11 is grounded.
  • the radio frequency power amplifier 100 of the present invention realizes the synthesis of four-way signals by adopting a self-coupling transformer. Compared with the traditional synthesis method of magnetic coupling transformer, it can reduce the loss, is conducive to improving the output power and efficiency, and has a smaller volume.
  • An embodiment of the present invention further provides an electronic device, comprising the radio frequency power amplifier described in any one of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

本发明实施例公开了一种射频功率放大器及电子设备,所述射频功率放大器中,通过输入巴伦网络将输入的单端射频信号转换为两路第一差分信号;利用双路差分功率放大器将所述两路第一差分信号进行放大并转换为四路第二差分信号,并将所述四路第二差分信号放大后输出至功率合成网络,之后通过功率合成网络将四路第二差分信号合成为一路输出,其中所述功率合成网络采用自耦合变压器实现信号合成,由此可减小损耗,提高输出功率和效率,且具有更小的体积。

Description

一种射频功率放大器及电子设备 技术领域
本发明涉及功率放大器技术领域,尤其涉及一种射频功率放大器及电子设备。
背景技术
射频功率放大器(RF PA)位于无线通信***发射链的末端,用于将发射信号放大到一定功率水平,驱动天线将信号不失真地辐射到足够远的距离,以能够被接收设备正确检测出来。射频功率放大器的输出功率越大,信号传播的距离越远。采用微波单片集成电路(MMIC:Microwave Monolithic Integrated Circuit)工艺设计的射频功率放大器受限于器件的击穿电压、功率密度等物理特性的限制,单个器件的输出功率有限,因此为了获得更大的输出功率,常采用功率合成的方法将多路功率放大管芯进行同相功率合成之后输出。
如图1所示,图1是基于磁耦合变压器的射频功率放大器的常用结构,两路差分结构的功率放大器PA11和PA12通过基于磁耦合变压器的功率合成网络1实现功率合成,同时将差分信号转换成了单端信号。功率合成网络1的效率是射频功率放大器能够输出高功率、进行高效率工作的关键因素。然而,功率合成网络1采用的是磁耦合变压器实现功率合成,尽管磁耦合变压器能够实现直流隔离,但在高频率频段功率损耗大,降低了功率放大器的最大输出功率和效率,且磁耦合变压器占用的芯片面积也较大,不利于芯片小型化。
发明内容
本发明实施例提供一种射频功率放大器及电子设备,通过自耦合变压器实现功率合成,能够减小损耗,提高输出功率和效率,且体积小,成本低。
为了解决上述技术问题,本发明一方面提供一种射频功率放大器,包括输入巴伦网络、双路差分功率放大器以及功率合成网络;
所述输入巴伦网络用于将输入的单端射频信号转换为两路第一差分信号;所述双路差分功率放大器用于将所述两路第一差分信号进行放大并转换为四路第二差分信号,并将所述四路第二差分信号放大后输出至功率合成网络;
所述功率合成网络包括自耦合变压器,所述自耦合变压器包括初级线圈和依次串联连接以形成串联支路的第一次级线圈、第二次级线圈、第三次级线圈,所述串联支路的一端为信号输出端,所述串联支路的另一端为接地端,所述初级线圈的两端分别用于接收放大后的两路第二差分信号,所述第二次级线圈的两端分别用于接收放大后的另外两路第二差分信号,所述自耦合变压器将接收到的四路第二差分信号合成为一路信号,并将合成得到的信号从所述信号输出端输出。
进一步地,所述功率合成网络还包括第一电容和第二电容,所述第一电容并联在所述初级线圈的两端,所述第二电容并联在所述第二次级线圈的两端。
进一步地,所述功率合成网络还包括第三电容,所述第三电容并联在所述串联支路的两端。
进一步地,所述输入巴伦网络包括第一变压器、第四电容和第五电容;所述第一变压器的一输入端用于输入单端射频信号,另一输入端接地,所述第一变压器的两个输出端分别用于输出两路第一差分信号,所述第四电容并联在所述第一变压器的两个输入端,所述第五电容并联在所述第一变压器的两个输出端。
进一步地,所述双路差分功率放大器包括第一放大支路和第二放大支路;所述第一放大支路包括第一输入匹配网络、第一驱动放大器、第二变压器以及两个第一差分放大器,所述第二放大支路包括第二输入匹配网络、第二驱动放大器、第三变压器以及两个第二差分放大器;
所述第一输入匹配网络的输入端和所述第二输入匹配网络的输入端分别连接所述第一变压器的两个输出端,所述第一输入匹配网络的输出端连接所述第一驱动放大器的输入端,所述第一驱动放大器的输出端连接所述第二变压器的一个输入端,所述第二变压器的另一个输入端接地,所述第二变压器的两个输出端分别连接所述两个第一差分放大器的输入端,所述两个第一差分放大器的输出端分别连接所述初级线圈的两端;
所述第二输入匹配网络的输出端连接所述第二驱动放大器的输入端,所述第二驱动放大器的输出端连接所述第三变压器的一个输入端,所述第三变压器的另一个输入端接地,所述第三变压器的两个输出端分别连接所述两个第二差 分放大器的输入端,所述两个第二差分放大器的输出端分别连接所述第二次级线圈的两端。
进一步地,所述第一放大支路还包括第六电容,所述第二放大支路还包括第七电容,所述第六电容并联在所述第二变压器的两个输出端,所述第七电容并联在所述第三变压器的两个输出端。
进一步地,所述第一驱动放大器、所述第一差分放大器、所述第二驱动放大器以及所述第二差分放大器均为三极管,所述三极管的基极为输入端,所述三极管的集电极为输出端,所述三极管的发射极接地;
所述第一输入匹配网络包括第一电感和第八电容,所述第二输入匹配网络包括第二电感和第九电容;所述第一电感的一端与所述第八电容的一端、所述第一变压器的一个输出端连接,所述第一电感的另一端接地,所述第八电容的另一端连接所述第一驱动放大器的输入端;所述第二电感的一端与所述第九电容的一端、所述第一变压器的另一个输出端连接,所述第二电感的另一端接地,所述第九电容的另一端连接所述第二驱动放大器的输入端。
进一步地,所述双路差分功率放大器还包括第十电容和第十一电容,所述第二变压器和所述第三变压器的次级线圈具有中间抽头,所述第十电容的一端与所述第二变压器的次级线圈的中间抽头连接,所述第十电容的另一端接地,所述第十一电容的一端与所述第三变压器的次级线圈的中间抽头连接,所述第十一电容的另一端接地。
本发明的另一方面还提供一种电子设备,包括上述任一项所述的射频功率放大器。
有益效果:本发明的射频功率放大器中,包括输入巴伦网络、双路差分功率放大器以及功率合成网络,通过输入巴伦网络将输入的单端射频信号转换为两路差分信号,然后再通过双路差分功率放大器将两路差分信号进行放大并转换为四路差分信号,之后由功率合成网络将四路差分信号合成为一路输出,其中功率合成网络采用的是自耦合变压器实现信号合成,与传统的磁耦合变压器相比,能够减小损耗,提高输出功率和效率,且体积小,成本低。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技 术方案及其有益效果显而易见。
图1是现有技术一种射频功率放大器的结构示意图;
图2是本发明实施例提供的射频功率放大器的结构示意图;
图3是本发明实施例提供的自耦合变压器的结构示意图;
图4是本发明实施例提供的射频功率放大器的一电路原理图。
具体实施方式
请参照图式,其中相同的组件符号代表相同的组件,本发明的原理是以实施在一适当的运算环境中来举例说明。以下的说明是基于所例示的本发明具体实施例,其不应被视为限制本发明未在此详述的其它具体实施例。
参阅图2,本发明实施例提供的一种射频功率放大器100,包括输入巴伦网络11、双路差分功率放大器12以及功率合成网络13。
其中,所述输入巴伦网络11用于将输入的单端射频信号RFin转换为两路第一差分信号;所述双路差分功率放大器12用于将所述两路第一差分信号进行放大并转换为四路第二差分信号,并将所述四路第二差分信号放大后输出至功率合成网络13。
所述功率合成网络13包括自耦合变压器XFM1,所述自耦合变压器XFM1包括初级线圈L11和依次串联连接以形成串联支路的第一次级线圈L21、第二次级线圈L22、第三次级线圈L23,所述串联支路的一端为信号输出端,也即第一次级线圈L21的一端为信号输出端,用于输出合成后的信号RFout,所述串联支路的另一端为接地端,也即第三次级线圈L23的一端为接地端,用于接地。所述初级线圈L11的两端分别用于接收放大后的两路第二差分信号,所述第二次级线圈L22的两端分别用于接收放大后的另外两路第二差分信号,所述自耦合变压器XFM1将接收到的四路第二差分信号合成为一路信号RFout,并将合成得到的信号RFout从所述信号输出端输出。
结合图3,本发明实施例中,自耦合变压器XFM1共有三个端口,端口1也即初级线圈L11的两端,用于接收两路第二差分信号,端口2也即第二次级线圈L22的两端,用于接收另外两路第二差分信号,端口3的一端为第一次级线圈L21的一端,也即信号输出端,端口3的另一端接地。自耦合变压器XFM1的初级线圈L11位于双线绕组的中间,与三个次级线圈L21、L22、和L23均构 成耦合,而第二次级线圈L22是自耦合变压器XFM1的次级线圈(L21+Ls22+L23)的一部分,构成了自耦变压器。通过采用自耦合变压器XFM1实现四路差分信号的合成,与传统的磁耦合变压器合成的方式相比,能够减少损耗,提高输出功率和效率,且与磁耦合变压器相比体积更小,有利于减小所占用的芯片面积。
其中,射频功率放大器100还包括负载电阻RL,负载电阻RL的一端与第一次级线圈L11的作为信号输出端的一端连接,负载电阻RL的另一端接地。
进一步地,所述功率合成网络13还包括第一电容C1、第二电容C2以及第三电容C3。所述第一电容C1并联在所述初级线圈L11的两端,由此第一电容C1与初级线圈L11形成谐振,可调节阻抗。所述第二电容C2并联在所述第二次级线圈L22的两端,与第二次级线圈L22形成谐振,可调节负载阻抗,实现负载阻抗到双路差分功率放大器最优输出阻抗的变换。所述第三电容C3并联在所述串联支路的两端,即第三电容C3的一端与作为信号输出端的第一次级线圈L21的一端连接;所述第三电容C3的另一端与作为接地端的第三次级线圈L23的一端连接,均接地。
本发明的一些实施例中,所述输入巴伦网络11包括第一变压器T1、第四电容C4和第五电容C5。所述第一变压器的一输入端用于输入单端射频信号RFin,另一输入端接地,所述第一变压器T1的两个输出端分别用于输出两路第一差分信号。其中第一变压器T1包括初级线圈L31和次级线圈L32,初级线圈L31的两端分别为第一变压器T1的两个输入端,次级线圈L32的两端分别为第一变压器T1的两个输出端。所述第四电容C4并联在所述第一变压器T1的两个输入端,所述第五电容C5并联在所述第一变压器T1的两个输出端,第四电容C4和第五电容C5作为调谐电容,可实现双路差分功率放大器12的输入阻抗到信号输入端的输入阻抗的变换。
进一步地,所述双路差分功率放大器12包括第一放大支路和第二放大支路;所述第一放大支路包括第一输入匹配网络121、第一驱动放大器PA1、第二变压器T2以及两个第一差分放大器PA3、PA4,所述第二放大支路包括第二输入匹配网络122、第二驱动放大器PA2、第三变压器T3以及两个第二差分放大器PA5、PA6。
其中,所述第一输入匹配网络121的输入端和所述第二输入匹配网络122 的输入端分别连接所述第一变压器T1的两个输出端,所述第一输入匹配网络121的输出端连接所述第一驱动放大器PA1的输入端,所述第一驱动放大器PA1的输出端连接所述第二变压器T2的一个输入端,所述第二变压器T2的另一个输入端接地,所述第二变压器T2的两个输出端分别连接所述两个第一差分放大器PA3、PA4的输入端,所述两个第一差分放大器PA3、PA4的输出端分别连接所述自耦合变压器XFM1的初级线圈L11的两端。
所述第二输入匹配网络122的输出端连接所述第二驱动放大器PA2的输入端,所述第二驱动放大器PA2的输出端连接所述第三变压器T3的一个输入端,所述第三变压器T3的另一个输入端接地,所述第三变压器T3的两个输出端分别连接所述两个第二差分放大器PA5、PA6的输入端,所述两个第二差分放大器PA5、PA6的输出端分别连接所述自耦合变压器XFM1的第二次级线圈L22的两端。
其中,所述第一放大支路还包括第六电容C6,所述第二放大支路还包括第七电容C7,所述第六电容C6并联在所述第二变压器T2的两个输出端,所述第七电容C7并联在所述第三变压器T3的两个输出端。
如图2所示,通过本发明实施例的射频功率放大器100,单端射频信号RFin输入至第一变压器T1,经第一变压器T1转换为两路第一差分信号RF1和RF2,一路第一差分信号RF1经过第一输入匹配网络121输入至第一驱动放大器PA1,经由第一驱动放大器PA1放大后传输至第二变压器T2,第二变压器T2构成巴伦结构,并实现了单端信号到差分信号的转换,转换后的两路第二差分信号分别输入到第一差分放大器PA3和PA4中,经由两个第一差分放大器PA3和PA4放大后输出给自耦合变压器XFM1的初级线圈L11。第六电容C6并联连接在第二变压器T2的两个输出端,与第二变压器T2构成阻抗变换网络,实现第一差分放大器PA3和PA4的输入阻抗到第一驱动放大器PA1的最优输出阻抗的变换。第一差分放大器PA3和PA4的输出端分别连接自耦合变压器XFM1的初级线圈L11的两端,第一电容C1与该初级线圈L11形成谐振,调节阻抗,实现负载阻抗到第一差分放大器PA3和PA4最优输出阻抗的变换。另一路第一差分信号RF2经过第二输入匹配网络122输入至第二驱动放大器PA2,经由第二驱动放大器PA2放大后传输至第三变压器T3,第三变压器T3构成巴伦结构,实现了单端信 号到差分信号的转换,转换后的两路第二差分信号分别输入到第二差分放大器PA5和PA6中,经由两个第二差分放大器PA5和PA6放大后输出给自耦合变压器XFM1的第二次级线圈L22。第七电容C7并联连接在第三变压器T3的两个输出端,与第三变压器T3的次级线圈L52形成谐振,调节阻抗,实现第二差分放大器PA5和PA6的输入阻抗到第二驱动放大器PA2最优输出阻抗的变换。第二差分放大器PA5和PA6的输出端分别与自耦合变压器XFM1的第二次级线圈L22的两端连接,第二电容C2与该第二次级线圈L22形成谐振,调节负载阻抗,实现负载阻抗到第二差分放大器PA5和PA6最优输出阻抗的变换。
由此,两路第一差分信号RF1和RF2在基于自耦合变压器的功率合成网络13中完成同相功率合成,最终转换为单端输出信号RFout。与传统的磁耦合变压器的信号合成方式相比,本发明基于自耦合变压器的功率合成网络13的损耗较小,效率高,有利于提高射频功率放大器的输出功率和效率。
更进一步地,参阅图4,本发明的一些实施例中,所述第一驱动放大器PA1、两个第一差分放大器PA3和PA4、所述第二驱动放大器PA2以及两个第二差分放大器PA5和PA6均为三极管,所述三极管的基极对应为放大器的输入端,所述三极管的集电极对应为放大器的输出端,所述三极管的发射极接地。如图4所示,第一驱动放大器PA1为三极管Q1,两个第一差分放大器PA3和PA4分别为三极管Q3和Q4,第二驱动放大器PA2为三极管Q2,两个第二差分放大器PA5和PA6分别为三极管Q5和Q6。
当然,在其他实施方式中,第一驱动放大器PA1、第二驱动放大器PA2、第一差分放大器PA3和PA4、第二差分放大器PA5和PA6也可以采用场效应管来实现,例如可以是N型场效应管,此时N型场效应管的栅极对应为放大器的输入端,N型场效应管的漏极对应为输出端,N型场效应管的源极接地。
所述第一输入匹配网络121包括第一电感L1和第八电容C8,所述第二输入匹配网络122包括第二电感L2和第九电容C9;所述第一电感L1的一端与所述第八电容C8的一端、所述第一变压器T1的一个输出端连接,所述第一电感L1的另一端接地,所述第八电容C8的另一端连接三极管Q1的基极;所述第二电感L2的一端与所述第九电容C9的一端、所述第一变压器T1的另一个输出端连接,所述第二电感L2的另一端接地,所述第九电容C9的另一端连接三极管 Q2的基极。
在其他的实施方式中,第一输入匹配网络121和第二输入匹配网络122也可以采用其他的阻抗结构来实现,例如可以是π型匹配网络,或者T型匹配网络等。
所述双路差分功率放大器12还包括第十电容C10和第十一电容C11,所述第二变压器T2的次级线圈L42和所述第三变压器T3的次级线圈L52具有中间抽头,所述第十电容C10的一端与所述第二变压器T2的次级线圈L42的中间抽头连接,所述第十电容C10的另一端接地,所述第十一电容C11的一端与所述第三变压器T3的次级线圈L52的中间抽头连接,所述第十一电容C11的另一端接地。
本发明的射频功率放大器100,通过采用自耦合变压器实现四路信号的合成,与传统的磁耦合变压器合成的方式相比,能够减小损耗,有利于提高输出功率和效率,具有更小的体积。
本发明实施例还提供一种电子设备,包括上述任一实施例所描述的射频功率放大器。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (9)

  1. 一种射频功率放大器,其特征在于,包括输入巴伦网络、双路差分功率放大器以及功率合成网络;
    所述输入巴伦网络用于将输入的单端射频信号转换为两路第一差分信号;所述双路差分功率放大器用于将所述两路第一差分信号进行放大并转换为四路第二差分信号,并将所述四路第二差分信号放大后输出至功率合成网络;
    所述功率合成网络包括自耦合变压器,所述自耦合变压器包括初级线圈和依次串联连接以形成串联支路的第一次级线圈、第二次级线圈、第三次级线圈,所述串联支路的一端为信号输出端,所述串联支路的另一端为接地端,所述初级线圈的两端分别用于接收放大后的两路第二差分信号,所述第二次级线圈的两端分别用于接收放大后的另外两路第二差分信号,所述自耦合变压器将接收到的四路第二差分信号合成为一路信号,并将合成得到的信号从所述信号输出端输出。
  2. 根据权利要求1所述的射频功率放大器,其特征在于,所述功率合成网络还包括第一电容和第二电容,所述第一电容并联在所述初级线圈的两端,所述第二电容并联在所述第二次级线圈的两端。
  3. 根据权利要求1所述的射频功率放大器,其特征在于,所述功率合成网络还包括第三电容,所述第三电容并联在所述串联支路的两端。
  4. 根据权利要求1所述的射频功率放大器,其特征在于,所述输入巴伦网络包括第一变压器、第四电容和第五电容;所述第一变压器的一输入端用于输入单端射频信号,另一输入端接地,所述第一变压器的两个输出端分别用于输出两路第一差分信号,所述第四电容并联在所述第一变压器的两个输入端,所述第五电容并联在所述第一变压器的两个输出端。
  5. 根据权利要求4所述的射频功率放大器,其特征在于,所述双路差分功率放大器包括第一放大支路和第二放大支路;所述第一放大支路包括第一输入匹配网络、第一驱动放大器、第二变压器以及两个第一差分放大器,所述第二放大支路包括第二输入匹配网络、第二驱动放大器、第三变压器以及两个第二差分放大器;
    所述第一输入匹配网络的输入端和所述第二输入匹配网络的输入端分别连 接所述第一变压器的两个输出端,所述第一输入匹配网络的输出端连接所述第一驱动放大器的输入端,所述第一驱动放大器的输出端连接所述第二变压器的一个输入端,所述第二变压器的另一个输入端接地,所述第二变压器的两个输出端分别连接所述两个第一差分放大器的输入端,所述两个第一差分放大器的输出端分别连接所述初级线圈的两端;
    所述第二输入匹配网络的输出端连接所述第二驱动放大器的输入端,所述第二驱动放大器的输出端连接所述第三变压器的一个输入端,所述第三变压器的另一个输入端接地,所述第三变压器的两个输出端分别连接所述两个第二差分放大器的输入端,所述两个第二差分放大器的输出端分别连接所述第二次级线圈的两端。
  6. 根据权利要求5所述的射频功率放大器,其特征在于,所述第一放大支路还包括第六电容,所述第二放大支路还包括第七电容,所述第六电容并联在所述第二变压器的两个输出端,所述第七电容并联在所述第三变压器的两个输出端。
  7. 根据权利要求5所述的射频功率放大器,其特征在于,所述第一驱动放大器、所述第一差分放大器、所述第二驱动放大器以及所述第二差分放大器均为三极管,所述三极管的基极为输入端,所述三极管的集电极为输出端,所述三极管的发射极接地;
    所述第一输入匹配网络包括第一电感和第八电容,所述第二输入匹配网络包括第二电感和第九电容;所述第一电感的一端与所述第八电容的一端、所述第一变压器的一个输出端连接,所述第一电感的另一端接地,所述第八电容的另一端连接所述第一驱动放大器的输入端;所述第二电感的一端与所述第九电容的一端、所述第一变压器的另一个输出端连接,所述第二电感的另一端接地,所述第九电容的另一端连接所述第二驱动放大器的输入端。
  8. 根据权利要求5所述的射频功率放大器,其特征在于,所述双路差分功率放大器还包括第十电容和第十一电容,所述第二变压器和所述第三变压器的次级线圈具有中间抽头,所述第十电容的一端与所述第二变压器的次级线圈的中间抽头连接,所述第十电容的另一端接地,所述第十一电容的一端与所述第三变压器的次级线圈的中间抽头连接,所述第十一电容的另一端接地。
  9. 一种电子设备,其特征在于,包括权利要求1-8任一项所述的射频功率放大器。
PCT/CN2023/126137 2022-11-23 2023-10-24 一种射频功率放大器及电子设备 WO2024109421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211478278.0 2022-11-23
CN202211478278.0A CN115714582A (zh) 2022-11-23 2022-11-23 一种射频功率放大器及电子设备

Publications (1)

Publication Number Publication Date
WO2024109421A1 true WO2024109421A1 (zh) 2024-05-30

Family

ID=85234500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126137 WO2024109421A1 (zh) 2022-11-23 2023-10-24 一种射频功率放大器及电子设备

Country Status (2)

Country Link
CN (1) CN115714582A (zh)
WO (1) WO2024109421A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115714582A (zh) * 2022-11-23 2023-02-24 深圳飞骧科技股份有限公司 一种射频功率放大器及电子设备
CN115932748B (zh) * 2023-03-02 2023-10-24 北京大有半导体有限责任公司 片上射频雷达发射***、片上射频雷达

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158096A (zh) * 2011-05-11 2011-08-17 南京博兰得电子科技有限公司 一种非隔离式谐振变换器
US10056870B1 (en) * 2017-03-22 2018-08-21 Macom Technology Solutions Holdings, Inc. Balanced distributed power amplifier for monolithic microwave integrated circuit
CN114050792A (zh) * 2022-01-10 2022-02-15 深圳飞骧科技股份有限公司 一种新型宽带多赫蒂射频功率放大器
CN215934820U (zh) * 2021-10-11 2022-03-01 深圳飞骧科技股份有限公司 一种多路功率合成的射频功率放大器及射频前端架构
CN216056945U (zh) * 2021-10-22 2022-03-15 深圳飞骧科技股份有限公司 基于变压器匹配的三路功率合成的射频功率放大器
CN216390919U (zh) * 2021-11-05 2022-04-26 深圳飞骧科技股份有限公司 一种高效率射频功率放大器
CN115714582A (zh) * 2022-11-23 2023-02-24 深圳飞骧科技股份有限公司 一种射频功率放大器及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158096A (zh) * 2011-05-11 2011-08-17 南京博兰得电子科技有限公司 一种非隔离式谐振变换器
US10056870B1 (en) * 2017-03-22 2018-08-21 Macom Technology Solutions Holdings, Inc. Balanced distributed power amplifier for monolithic microwave integrated circuit
CN215934820U (zh) * 2021-10-11 2022-03-01 深圳飞骧科技股份有限公司 一种多路功率合成的射频功率放大器及射频前端架构
CN216056945U (zh) * 2021-10-22 2022-03-15 深圳飞骧科技股份有限公司 基于变压器匹配的三路功率合成的射频功率放大器
CN216390919U (zh) * 2021-11-05 2022-04-26 深圳飞骧科技股份有限公司 一种高效率射频功率放大器
CN114050792A (zh) * 2022-01-10 2022-02-15 深圳飞骧科技股份有限公司 一种新型宽带多赫蒂射频功率放大器
CN115714582A (zh) * 2022-11-23 2023-02-24 深圳飞骧科技股份有限公司 一种射频功率放大器及电子设备

Also Published As

Publication number Publication date
CN115714582A (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
WO2024109421A1 (zh) 一种射频功率放大器及电子设备
WO2023130843A1 (zh) 一种新型宽带多赫蒂射频功率放大器
US20070205828A1 (en) Switched mode power amplifier using lumped element impedance inverter for parallel combining
KR20230005441A (ko) 선형의 효율적인 광대역 전력 증폭기들에 관한 시스템들 및 방법들
US10601382B2 (en) Power amplifier circuit
KR102598591B1 (ko) 전력 증폭 회로
CN111934629B (zh) 一种宽带高线性度功率放大器
CN110798158A (zh) 一种针对车联网通信的射频功率放大器
WO2023040201A1 (zh) 一种基于变压器匹配网络的射频功率放大器
US20220416739A1 (en) Push-pull radio frequency power amplifier and method for controlling circuit
WO2023045543A1 (zh) 基于变压器匹配的三级功率放大器及射频前端架构
CN110719078A (zh) 一种用于汽车雷达收发机的毫米波功率放大器
CN110932687A (zh) 一种交流堆叠功率放大器
CN111030621A (zh) 一种用于无线终端的交流堆叠功率放大器
CN210518232U (zh) 一种用于汽车雷达收发机的毫米波功率放大器
CN115913154B (zh) 微波功率放大器和微波芯片
US20230134681A1 (en) Apparatus and methods for radio frequency amplifiers
CN110601668A (zh) 一种面向车联网通信的高效功率放大器
CN116614093A (zh) 一种功率放大器及电子设备
CN116232246A (zh) 射频功率放大器
CN210745090U (zh) 一种针对车联网的高增益高效率大功率放大器
CN111181504A (zh) 一种e类开关型堆叠功率放大器
WO2019153290A1 (en) Broadband harmonic load modulation doherty amplifiers
You et al. A 5W ultra-broadband power amplifier using silicon LDMOSFETs
CN112737531B (zh) 一种j类功率放大器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893513

Country of ref document: EP

Kind code of ref document: A1