WO2024109354A1 - 一种地面无人机供电网络测试***及测试方法 - Google Patents

一种地面无人机供电网络测试***及测试方法 Download PDF

Info

Publication number
WO2024109354A1
WO2024109354A1 PCT/CN2023/123381 CN2023123381W WO2024109354A1 WO 2024109354 A1 WO2024109354 A1 WO 2024109354A1 CN 2023123381 W CN2023123381 W CN 2023123381W WO 2024109354 A1 WO2024109354 A1 WO 2024109354A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
engine
power supply
power
current
Prior art date
Application number
PCT/CN2023/123381
Other languages
English (en)
French (fr)
Inventor
郭云曾
牛振中
孙小苗
黄晓东
Original Assignee
西安爱生技术集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安爱生技术集团有限公司 filed Critical 西安爱生技术集团有限公司
Publication of WO2024109354A1 publication Critical patent/WO2024109354A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/008Testing of electric installations on transport means on air- or spacecraft, railway rolling stock or sea-going vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Definitions

  • the present invention belongs to the technical field of power supply and distribution for unmanned aerial vehicles, and relates to a ground unmanned aerial vehicle power supply network testing system and testing method, specifically a method and device for testing the load characteristics of an unmanned aerial vehicle generator and a power supply network.
  • Drones have the advantages of low cost, long flight time and high efficiency. They have been widely used in battlefield reconnaissance, target monitoring, fire strikes and emergency rescue, becoming an increasingly important aerial mission platform. In order to perform different flight missions, drones need to be equipped with various types of mission payloads and electrical equipment required for their own flight support. These devices are usually powered by a generator driven by the engine.
  • the engine speed will change, which will directly cause the generator speed to change.
  • the drone When the drone carries high-power pulse radio equipment, it will draw a large current in a short period of time.
  • the above scenarios will cause impacts on the power grid.
  • the line loss, voltage drop and temperature rise of the power supply cable also pose potential risks to the system.
  • the UAV platform needs to mount different mission payloads according to the mission purpose to meet the mission needs.
  • Common mission payloads include optoelectronic reconnaissance, radar reconnaissance, electronic countermeasures, communications, etc.
  • the actual working indicators of radar, electronic countermeasures, and microwave communication mission payloads are related to their power amplifiers.
  • high-power equipment is often carried to perform flight missions.
  • the device will cause certain fluctuations in the power grid due to its intermittent working characteristics and large working current. Moreover, since the generator is driven by the engine during flight, this fluctuation will be reflected as engine speed fluctuations, which will pose a potential risk to flight safety.
  • the present invention proposes a ground UAV power supply network testing system and testing method, which has good adaptability and can be used to simulate the power load characteristics of various UAVs under ground whole machine conditions, and monitor and evaluate the power supply quality of the whole machine power grid under various working conditions of the UAV platform.
  • a ground UAV power supply network test system characterized by comprising a temperature acquisition module, a current and voltage acquisition module, a fan speed sensor, an electronic load simulator and a host computer; the engine's measurement and control channel is connected to the host computer
  • the generator output terminal is connected in parallel with multiple equipment power input terminals and multiple electronic load simulator power input terminals;
  • the fan speed sensor, temperature acquisition module and current and voltage acquisition module are connected to the host computer to transmit sensor signals to the host computer;
  • the temperature acquisition module includes multiple temperature sensors, which are arranged in the power transmission line from the generator to the electrical equipment and the electronic load simulator;
  • the current and voltage acquisition module includes multiple current and voltage sensors, which are arranged at the power input terminal of each electrical equipment and the electronic load simulator.
  • the electronic load simulator uses a DC high-power electronic load, which is set according to the power consumption characteristics of the mission load so that it can simulate the actual power consumption characteristics of the equipment on the ground; the power consumption characteristics of the mission load include supply voltage, steady-state power consumption, maximum power consumption, operating time, operating frequency, and operating duty cycle.
  • Step 1 Set the parameters of the electronic load simulator according to the electronic load of the actual mission payload; the parameters include but are not limited to: power, current, voltage, start time, working cycle, frequency, duty cycle;
  • Step 2 Stable engine working state: Control the engine and fan to work, simulating the working state of the engine during actual flight:
  • the input voltage of each device in the entire power supply network during steady-state operation obtained in step 2 is used to evaluate whether the voltage drop of each power supply point in the entire power supply network meets the input voltage range of each device;
  • Step 3 Dynamic working state of the engine:
  • Step 4 Turn off the engine and record the voltage and current changes of each device at the moment when the power is cut off.
  • An application of the data obtained by the test of the described method characterized in that: the electronic load is turned on in step 2 to test the engine speed reduction parameters when the power supply network turns on the high-power load, so as to evaluate the safety of the flight process and provide a reference for the optimization of subsequent flight strategies.
  • test of the steady-state temperature of the cable in step 2 can effectively evaluate the heat source and guide and optimize the cable routing and heat dissipation design.
  • step 3 An application of the data obtained by the test of the method described is characterized in that: through step 3, the power supply condition parameters of each device when the generator limit changes can be obtained, which can effectively evaluate whether each device works within its input voltage range and whether the voltage and current fluctuations meet the requirements of relevant standards.
  • the present invention proposes a ground unmanned aerial vehicle power supply network test system and test method, wherein the engine's measurement and control channel is connected to a host computer to transmit measurement and control data to the host computer; the output end of the generator is connected in parallel to multiple device power input ends and multiple electronic load simulator power input ends; the fan speed sensor, temperature acquisition module and current and voltage acquisition module are connected to the host computer to transmit sensor signals to the host computer; the temperature acquisition module includes multiple temperature sensors, which are arranged in the power transmission line from the generator to the power-consuming equipment and the electronic load simulator; the current and voltage acquisition module includes multiple current and voltage sensors, which are arranged at the power input end of each power-consuming equipment and the electronic load simulator.
  • the engine speed drop parameter is tested to evaluate the safety of the flight process and provide a reference for the optimization of subsequent flight strategies. Effectively evaluate the heat source, guide and optimize the cable routing and heat dissipation design. Effectively evaluate whether each device works within its input voltage range and whether the voltage and current fluctuations meet the requirements of relevant standards.
  • the present invention has the following beneficial effects:
  • Electronic loads can effectively simulate various types of loads, including but not limited to various high-power microwave equipment that is not powered on on the ground and equipment that has poor heat dissipation after being powered on for a long time on the ground: such as high-power amplifiers, pulse radars, etc. This can effectively reduce verification costs, shorten verification cycles, and ensure the personal safety of testers.
  • This device can be used to simulate various power usage conditions during flight on the ground, and measure the voltage drop, line loss, temperature rise, voltage fluctuation, etc. of the power supply network under various conditions, which can effectively reduce the test cost.
  • the test can effectively improve flight safety and reduce the risk of mission execution.
  • FIG. 1 Schematic diagram of the test system
  • the ground unmanned aerial vehicle power supply network test system is characterized in that it includes a temperature acquisition module, a current and voltage acquisition module, a fan speed sensor, an electronic load simulator and a host computer; the engine's measurement and control channel is connected to the host computer to transmit the measurement and control data to the host computer; the output end of the generator is connected in parallel to multiple device power input ends and multiple electronic load simulator power input ends; the fan speed sensor, the temperature acquisition module and the current and voltage acquisition module are connected to the host computer to transmit the sensor signal to the host computer; the temperature acquisition module includes multiple temperature sensors, which are arranged in the power transmission line from the generator to the electrical equipment and the electronic load simulator; the current and voltage acquisition module includes multiple current and voltage sensors, which are arranged at the power input end of each electrical equipment and the electronic load simulator.
  • the test system is connected to the power supply network of the UAV to be tested; it includes a towing system; the towing system includes an aircraft engine, a gearbox, and a coupling; the aircraft generator is connected to the output shaft of the speed increaser; the UAV engine drives the generator to supply power to various devices on the UAV platform through the whole machine cable.
  • the measurement and control system is connected to the drag system and the power supply network, including a host computer, a data acquisition card, Current, voltage, speed and temperature sensors; test the fan speed, engine speed, temperature, pressure, etc. Voltage and current at each device end, and wire temperature of high-power electrical equipment.
  • Cooling system mainly includes centrifugal fans and air guide devices
  • Load system The load system mainly includes electronic load and some physical equipment.
  • the electronic load can adjust the power consumption according to the program.
  • the electronic load is used to simulate the load conditions of some equipment on the ground that do not have the test conditions, such as high-power pulse radar, etc.; it is used to simulate the power consumption of radar, communication, and electronic countermeasure loads that cannot be turned on on the ground.
  • the engine operation is controlled through the engine measurement and control channel, and flight scenarios are simulated on the ground, including high-power maneuvers and steady-state flight.
  • the engine cooling environment can be simulated.
  • An electronic jammer type UAV is equipped with a high-power electronic jammer, and the power consumption xKW is 28V power supply and steady-state current data. Due to radiation reasons, the jammer cannot be turned on on the ground for load testing. According to the working characteristics of the high-power electronic jammer, an electronic load is used to simulate the power consumption characteristics of the jammer when it is working to test the UAV power supply network.
  • Step 1 Set the electronic load to constant power mode, with the power consistent with the interference source power.
  • Step 2 Start the engine and control the engine to operate at the rated speed to simulate the working state of the engine and generator during actual cruise flight.
  • Step 3 Start the fan, set the fan speed according to the actual flight speed of the aircraft, and simulate the incoming air to cool the engine.
  • Step 4 Turn on the electronic load and record the grid fluctuation (voltage, current), engine speed change and the temperature of the electronic load power supply cable when the load is loaded.
  • Step 5 Increase the engine throttle to compensate for the drop in engine speed. When the speed returns to the rated speed, Stop increasing the throttle.
  • Step 6 Observe the temperature changes of the power supply cable. When the temperature reaches a steady state, record the temperature at that time.
  • Step 7 Turn off the electronic load and record the grid fluctuations (voltage, current) and engine speed changes when the load is loaded.
  • Step 7 Turn on the electronic load, and after the power grid stabilizes, push the engine to its limit power, and record the voltage and current changes of each device during the process.
  • Step 8 Reduce the engine speed to the rated speed and record the voltage and current changes of each device during the process.
  • Step 9 Turn off the engine and record the voltage and current changes of each device during the process.
  • the entire power supply network can be evaluated when the engine is maneuvering in a large range, stopping suddenly, and working in a steady state.
  • the impact of adding and unloading high-power electrical equipment on the power supply performance of the engine and the UAV power supply network can be evaluated, and the flight control strategy can be adjusted in advance according to the situation. It can also effectively evaluate the heat source, avoid cable fires in advance, and keep the heat source away from flammable and explosive items such as fuel tanks and pyrotechnics in advance. It can effectively reduce testing costs and safety hazards. Improve flight safety.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

本发明涉及一种地面无人机供电网络测试***及测试方法,发动机的测控通道与上位机连接,传输测控数据至上位机;发电机的输出端并联多个设备电源输入端和多个电子负载模拟器电源输入端;风机转速传感器,温度采集模块和电流、电压采集模块与上位机连接,传输传感信号至上位机。测试供电网络在开启大功率负载时,发动机转速下降参数,以评估飞行过程的安全性并对后续飞行策略的优化提供参考。有效评估热源,对线缆走线、散热设计进行指导优化。有效评估各设备是否工作于其的输入电压范围、电压电流波动是否满足相关标准的规定。

Description

一种地面无人机供电网络测试***及测试方法 技术领域
本发明属于无人机供配电技术领域,涉及一种地面无人机供电网络测试***及测试方法,具体为一种无人机发电机带载特性及供电网络测试方法及装置。
背景技术
无人机具有造价低、航时长、效率高等优点,已经广泛应用于战场侦察、目标监视、火力打击以及应急救灾中,成为一种日益重要的空中任务平台。为执行不同的飞行任务,无人机需要加装各种类型任务载荷及自身飞行保障所需的用电设备。这些设备通常由发动机带动的发电机进行统一供电。
无人机平台在不同工况条件下,例如无人机机动情况下,发动机转速会变化直接导致发电机转速变化,无人机携带大功率脉冲式无线电设备工作时会在短时间内汲取大电流,以上场景均会对电网造成冲击。低压大电流场景下,供电线缆的线损、压降及温升问题也对***存在潜在风险。
由于无人机平台在实际作业时,需根据任务目的挂载不同的任务载荷以满足任务需要。常见的任务载荷有光电侦察、雷达侦察、电子对抗、通信类等。由于雷达、电子对抗、微波通信类的任务载荷实际工作指标与其功放有关。为提高任务能力,常搭载大功率设备进行飞行任务。为保障无人机平台在无人机平台在不同工况条件下对各设备有效供电,保障飞行任务执行,有效提高飞行安全及降低任务执行风险。对无人机在模拟不同用电场景模拟及供电网络充分测试显得尤为重要。
需要解决的问题:
1、无人机机动情况下,发动机转速会变化直接导致发电机转速变化,从而带来电网整体波动。
2、某些特殊任务设备由于在地面无法开启大功率模式工作(1、雷达类的大功率 回波会烧毁TR组件,2、地面开启大功率会对人员有一定辐射,3、电子对抗类在市区环境会对民用通信或民用定位设备有一定干扰)。或找寻无人区开启大功率地面验证试验,但成本过高。
3、如果带载为大功率脉冲式雷达,该设备由于间歇工作特点加之工作电流较大,会对电网造成一定的波动,且由于飞行时发电机由发动机带动,此波动会反映为发动机转速波动,会对飞行安全产生潜在的风险。
4、低压供电时,大功率任务载荷本身电流过大,以6KW载荷28V供电为例,稳态电流214A,根据热量计算公式Q=I2Rt,电流过大时,容易累积热量,导致线缆过热,会有起火等潜在安全隐患,另外大电流线缆在走线时也应避开油箱等位置。
5、低压供电时,由于导线内阻的存在,会导致一定的压降。根据电压定律U=IR,发电机端电压输出,由于线缆压降的存在,在电压波动时,可能会存在设备供电超过设备输入电压范围的风险。
为保障无人机平台在作业过程中对各设备有效供电,保障飞行任务执行,有效提高飞行安全及降低任务执行风险。对无人机在模拟不同用电场景模拟及供电网络充分测试显得尤为重要。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种地面无人机供电网络测试***及测试方法,具有良好适应性,可用于在地面整机条件下,对于多种无人机用电负载特性的模拟、无人机平台各种工况条件下整机电网供电品质监测及评估。
技术方案
一种地面无人机供电网络测试***,其特征在于包括温度采集模块、电流、电压采集模块、风机转速传感器、电子负载模拟器和上位机;发动机的测控通道与上位机 连接,传输测控数据至上位机;发电机的输出端并联多个设备电源输入端和多个电子负载模拟器电源输入端;风机转速传感器,温度采集模块和电流、电压采集模块与上位机连接,传输传感信号至上位机;所述温度采集模块包括多个温度传感器,布设于发电机至用电设备和电子负载模拟器的输电线路中;所述电流、电压采集模块包括多个电流、电压传感器,布设于每一个用电设备和电子负载模拟器的电源输入端。
所述电子负载模拟器采用直流大功率电子负载,其自身根据任务载荷用电特点进行设置,使其能在地面模拟设备实际用电特性;所述任务载荷用电特点包括供电电压、稳态功耗、最大功耗、工作时长、工作频率、工作占空比。
一种利用所述地面无人机供电网络测试***测试无人机供电网络的方法,其特征在于步骤如下:
步骤1:根据实际搭载的任务载荷的电子负载设置电子负载模拟器的参数;所述参数包括但不限于:功率、电流、电压、开启时长、工作周期、频率、占空比;
步骤2、发动机稳定工作状态:控制发动机工作,风机工作,模拟实际飞行时发动机的工作状态:
1、开启传感器,记录各设备电压、电流,导线温度,发动机参数;
2、开启电子负载。记录负载加载时电网波动情况及发动机转速变化;
3、电子负载稳定工作时,记录各设备电压、电流及线缆稳态温度;
根据步骤2得到的稳态工作时,整个供电网络各设备的输入电压情况,用于评估整个供电网络各供电点压降情况,是否符合各设备输入电压范围;
步骤3、发动机动态工作状态:
1、开启传感器,记录各设备电压、电流,导线温度,发动机参数;
2、将发动机设置为大功率模式,模拟飞机加速、爬升或大机动状态下发动机及发电机的工作状态,记录此时各设备的电压、电流波动情况及发动机转速变化情况;
3、将发动机设置为额定功率模式,模拟飞机加速完毕、或完成爬升或大机动开启巡航状态情况下发动机及发电机的工作状态。记录此时各设备的电压、电流波动情况,及发动机转速变化情况;
步骤4:关闭发动机,记录此时各设备断电时刻电压、电流变化情况。
一种所述的方法测试得到的数据的应用,其特征在于:所述通过步骤2开启电子负载,测试供电网络在开启大功率负载时,发动机转速下降参数,以评估飞行过程的安全性并对后续飞行策略的优化提供参考。
一种所述的方法测试得到的数据的应用,其特征在于:所述通过步骤2测试线缆稳态温度可有效评估热源,对线缆走线、散热设计进行指导优化。
一种所述的方法测试得到的数据的应用,其特征在于:通过步骤3可得到发电机极限变化时各设备的供电情况参数,可有效评估各设备是否工作于其的输入电压范围、电压电流波动是否满足相关标准的规定。
有益效果
本发明提出的一种地面无人机供电网络测试***及测试方法,发动机的测控通道与上位机连接,传输测控数据至上位机;发电机的输出端并联多个设备电源输入端和多个电子负载模拟器电源输入端;风机转速传感器,温度采集模块和电流、电压采集模块与上位机连接,传输传感信号至上位机;所述温度采集模块包括多个温度传感器,布设于发电机至用电设备和电子负载模拟器的输电线路中;所述电流、电压采集模块包括多个电流、电压传感器,布设于每一个用电设备和电子负载模拟器的电源输入端。测试供电网络在开启大功率负载时,发动机转速下降参数,以评估飞行过程的安全性并对后续飞行策略的优化提供参考。有效评估热源,对线缆走线、散热设计进行指导优化。有效评估各设备是否工作于其的输入电压范围、电压电流波动是否满足相关标准的规定。
与现有技术相比,本发明具有以下有益效果:
可在地面环境下有效测试发动机和发电机在带载情况下的动态响应特性;
通过电子负载可以有效模拟各种类型负载,包括但不限于地面不具备开机条件的各种大功率微波类设备及地面长时间开机散热不良设备:例如大功率功放、脉冲式雷达等。可有效减低验证成本、缩短验证周期,保障测试人员人身安全。
通过此装置可在地面模拟飞行时的各种用电工况,并测量各工况下供电网络的压降、线损、温升、电压波动等情况,能有效降低测试成本,通过测试能有效提高飞行安全并降低任务执行风险
附图说明
图1:测试***示意图
具体实施方式
现结合实施例、附图对本发明作进一步描述:
地面无人机供电网络测试***,其特征在于包括温度采集模块、电流、电压采集模块、风机转速传感器、电子负载模拟器和上位机;发动机的测控通道与上位机连接,传输测控数据至上位机;发电机的输出端并联多个设备电源输入端和多个电子负载模拟器电源输入端;风机转速传感器,温度采集模块和电流、电压采集模块与上位机连接,传输传感信号至上位机;所述温度采集模块包括多个温度传感器,布设于发电机至用电设备和电子负载模拟器的输电线路中;所述电流、电压采集模块包括多个电流、电压传感器,布设于每一个用电设备和电子负载模拟器的电源输入端。
测试***与待测无人机供电网络相连;包括拖动***;所述拖动***包括航空发动机、变速箱、联轴器;航空发电机与所述增速箱的输出轴相连;由无人机发动机带动发电机,通过整机线缆向无人机平台各设备供电。
所述测量与控制***与所述拖动***及供电网络相连,包括上位机、数据采集卡、 电流、电压、转速及温度传感器;测试风机的转速,发动机的转速、温度、压力等。各设备端的电压电流、大功率用电设备的导线温度。
冷却***:冷却***主要包括离心式风机及导风装置;
负载***:所述负载***主要包括电子负载及部分实物设备。
电子负载可根据程序调整用电功率、电子负载用于模拟部分地面不具备测试条件的设备的负载状况,例如:大功率脉冲式雷达等;用于模拟地面无法开机的雷达、通信、电子对抗类载荷的用电情况。
通过发动机测控通道控制发动机工作、在地面模拟空中飞行的场景,包括大功率机动、稳态飞行等。
通过控制风机来模拟飞行时的来流速度,实现对发动机散热环境的模拟。
应用实例1:
背景:某电子干扰型无人机搭载大功率电子干扰源,功耗xKW采用28V供电以及稳态电流数据。且由于辐射原因,地面无法开启干扰源进行负载测试。根据大功率电子干扰源工作特点,用电子负载模拟干扰源工作时的用电特性对无人机供电网络进行测试。
步骤1:将电子负载设置为恒功率模式,功率与干扰源功率一致。
步骤2:启动发动机,控制发动机工作在额定转速,模拟实际巡航飞行时发动机及发电机的工作状态。
步骤3:起动风机,根据飞机实际飞行速度设置风机转速,模拟来流对发动机进行冷却。
步骤4:开启电子负载,记录负载加载时电网波动情况(电压、电流)、发动机转速变化情况及电子负载供电线缆温度。
步骤5:增加发动机油门,用于补偿发动机转速下降,当转速回升至额定转速时, 停止增加油门。
步骤6:观察供电线缆温度变化情况,当温度达到稳态时,记录此时温度。
步骤7:关闭电子负载,记录负载加载时电网波动情况(电压、电流)、发动机转速变化情况。
步骤7:开启电子负载,待电网稳定后,将发动机推至极限功率,记录过程中各设备电压、电流变化情况。
步骤8:将发动机降至额定转速,记录过程中各设备电压、电流变化情况。
步骤9:关闭发动机,记录过程中各设备电压、电流变化情况。
总结:根据以上操作,可评估发动机大范围机动、突发停车、稳态工作时整个供电网络的情况。可评估供电网络加、卸载大功率用电设备时对于发动机及无人机供电网络供电性能的影响,并根据情况提前调整飞行控制策略。也可有效评估发热源,提前规避掉线缆起火,将发热源提前远离油箱、火工品等易燃易爆物品。可有效的降低测试成本、降低安全隐患。提高飞行安全性。
通过以上方法,可实现在地面模拟空中电网实际工况,通过测量各设备电流、电压可评价各工况下设备的输入电压是否在设备许可的输入电压范围内,电压、电流纹波是否满足国标相关要求。线缆温升是否存在起火等安全隐患。开启及关闭大功率负载时电网波动及发动机响应是否能够保证飞行安全。
通过上述方案,可在地面实现对飞行时电网工况的有效模拟,能够有效的降低测试成本,充分的测试及评价电网工作情况,能够在飞行前有效的降低无人机飞行安全风险。

Claims (6)

  1. 一种地面无人机供电网络测试***,其特征在于包括温度采集模块、电流、电压采集模块、风机转速传感器、电子负载模拟器和上位机;发动机的测控通道与上位机连接,传输测控数据至上位机;发电机的输出端并联多个设备电源输入端和多个电子负载模拟器电源输入端;风机转速传感器,温度采集模块和电流、电压采集模块与上位机连接,传输传感信号至上位机;所述温度采集模块包括多个温度传感器,布设于发电机至用电设备和电子负载模拟器的输电线路中;所述电流、电压采集模块包括多个电流、电压传感器,布设于每一个用电设备和电子负载模拟器的电源输入端。
  2. 根据权利要求1所述地面无人机供电网络测试***,其特征在于:所述电子负载模拟器采用直流大功率电子负载,其自身根据任务载荷用电特点进行设置,使其能在地面模拟设备实际用电特性;所述任务载荷用电特点包括供电电压、稳态功耗、最大功耗、工作时长、工作频率、工作占空比。
  3. 一种利用权利要求1或2所述地面无人机供电网络测试***测试无人机供电网络的方法,其特征在于步骤如下:
    步骤一、根据实际搭载的任务载荷的电子负载设置电子负载模拟器的参数;所述参数包括但不限于:功率、电流、电压、开启时长、工作周期、频率、占空比;
    步骤二、发动机稳定工作状态:控制发动机工作,风机工作,模拟实际飞行时发动机的工作状态:
    a、开启传感器,记录各设备电压、电流,导线温度,发动机参数;
    b、开启电子负载,记录负载加载时电网波动情况及发动机转速变化;
    c、电子负载稳定工作时,记录各设备电压、电流及线缆稳态温度;
    根据步骤二得到的稳态工作时,整个供电网络各设备的输入电压情况,用于评估整个供电网络各供电点压降情况,是否符合各设备输入电压范围;
    步骤三、发动机动态工作状态:
    a、开启传感器,记录各设备电压、电流,导线温度,发动机参数;
    b、将发动机设置为大功率模式,模拟飞机加速、爬升或大机动状态下发动机及发电机的工作状态,记录此时各设备的电压、电流波动情况及发动机转速变化情况;
    c、将发动机设置为额定功率模式,模拟飞机加速完毕、或完成爬升或大机动开启巡航状态情况下发动机及发电机的工作状态。记录此时各设备的电压、电流波动情况,及发动机转速变化情况;
    步骤四:关闭发动机,记录此时各设备断电时刻电压、电流变化情况。
  4. 一种权利要求3所述的方法测试得到的数据的应用,其特征在于:所述通过步骤二开启电子负载,测试供电网络在开启大功率负载时,发动机转速下降参数,以评估飞行过程的安全性并对后续飞行策略的优化提供参考。
  5. 一种权利要求3所述的方法测试得到的数据的应用,其特征在于:所述通过步骤二测试线缆稳态温度可有效评估热源,对线缆走线、散热设计进行指导优化。
  6. 一种权利要求3所述的方法测试得到的数据的应用,其特征在于:通过步骤三可得到发电机极限变化时各设备的供电情况参数,可有效评估各设备是否工作于其的输入电压范围、电压电流波动是否满足相关标准的规定。
PCT/CN2023/123381 2022-11-24 2023-10-08 一种地面无人机供电网络测试***及测试方法 WO2024109354A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211483238.5A CN116047193A (zh) 2022-11-24 2022-11-24 一种地面无人机供电网络测试***及测试方法
CN202211483238.5 2022-11-24

Publications (1)

Publication Number Publication Date
WO2024109354A1 true WO2024109354A1 (zh) 2024-05-30

Family

ID=86128460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123381 WO2024109354A1 (zh) 2022-11-24 2023-10-08 一种地面无人机供电网络测试***及测试方法

Country Status (2)

Country Link
CN (1) CN116047193A (zh)
WO (1) WO2024109354A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116047193A (zh) * 2022-11-24 2023-05-02 西安爱生技术集团有限公司 一种地面无人机供电网络测试***及测试方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1128348A (zh) * 1995-07-03 1996-08-07 北京朝阳兰天航空综合设备厂 航空发电机电源综合试验台
CN103308868A (zh) * 2013-07-09 2013-09-18 南昌航空大学 飞机电源***控制和保护实验装置
CN107748339A (zh) * 2017-11-29 2018-03-02 成都飞亚航空设备应用研究所有限公司 一种交直流电源综合试验台
CN107783060A (zh) * 2016-08-25 2018-03-09 中国飞行试验研究院 飞机供电***试飞方法
CN108438250A (zh) * 2018-04-16 2018-08-24 中电科芜湖通用航空产业技术研究院有限公司 串联式混合动力飞机动力***测试台架
CN110082680A (zh) * 2019-05-30 2019-08-02 南京农业大学 一种串联式柴电混合动力拖拉机试验台
CN213879279U (zh) * 2020-09-18 2021-08-03 陕西飞机工业(集团)有限公司 一种交流地面电网架构
CN116047193A (zh) * 2022-11-24 2023-05-02 西安爱生技术集团有限公司 一种地面无人机供电网络测试***及测试方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860307A (zh) * 2010-03-23 2010-10-13 杭州双华科技有限公司 用于控制有刷直流管状电机速度的放电回路及其控制电路
CN102141779B (zh) * 2010-12-30 2012-07-25 中国科学院长春光学精密机械与物理研究所 航天光学遥感器运动件控制电路变载仿真测试方法
CN110370992A (zh) * 2019-06-28 2019-10-25 西北工业大学 一种新能源无人机燃料电池混合电源能量管理控制***
CN112623264A (zh) * 2019-10-08 2021-04-09 灵翼飞航(天津)科技有限公司 一种无人机机载动态测试***
CN112698219B (zh) * 2020-12-03 2024-08-06 株洲国创轨道科技有限公司 一种燃料电池混动***性能测试***及测试方法
CN213987889U (zh) * 2021-01-21 2021-08-17 中国人民解放军海军航空大学航空作战勤务学院 一种无人机电气***实验台
CN219266429U (zh) * 2022-11-24 2023-06-27 西安爱生技术集团有限公司 一种地面无人机供电网络测试装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1128348A (zh) * 1995-07-03 1996-08-07 北京朝阳兰天航空综合设备厂 航空发电机电源综合试验台
CN103308868A (zh) * 2013-07-09 2013-09-18 南昌航空大学 飞机电源***控制和保护实验装置
CN107783060A (zh) * 2016-08-25 2018-03-09 中国飞行试验研究院 飞机供电***试飞方法
CN107748339A (zh) * 2017-11-29 2018-03-02 成都飞亚航空设备应用研究所有限公司 一种交直流电源综合试验台
CN108438250A (zh) * 2018-04-16 2018-08-24 中电科芜湖通用航空产业技术研究院有限公司 串联式混合动力飞机动力***测试台架
CN110082680A (zh) * 2019-05-30 2019-08-02 南京农业大学 一种串联式柴电混合动力拖拉机试验台
CN213879279U (zh) * 2020-09-18 2021-08-03 陕西飞机工业(集团)有限公司 一种交流地面电网架构
CN116047193A (zh) * 2022-11-24 2023-05-02 西安爱生技术集团有限公司 一种地面无人机供电网络测试***及测试方法

Also Published As

Publication number Publication date
CN116047193A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2024109354A1 (zh) 一种地面无人机供电网络测试***及测试方法
WO2020180372A2 (en) Degraded mode operation of hybrid electric propulsion systems
CN219266429U (zh) 一种地面无人机供电网络测试装置
CA2902005A1 (en) Model based distributed health monitoring for aircraft engines
CN106020166B (zh) 航空发动机控制***检测装置
CN205334112U (zh) 一种基于北斗***的多旋翼无人机集成式安全控制器
CN104330262B (zh) 航空发动机燃滑油***试验装置
CN104897297A (zh) 一种嵌入式航空活塞发动机无线温度测试装置及控制方法
CN103134687B (zh) 发动机台架试验中的空调***模拟加载装置
CN112198866A (zh) 一种模拟停机时间的方法
CN106932211B (zh) 插电式混合动力汽车动力总成台架***
CN205352708U (zh) 插电式混合动力车的动力总成测试台架
CN211855066U (zh) 一种直升机实兵交战***武器吊舱
CN213414261U (zh) 一种锂电池混合动力测试***实验研究***
CN115060114A (zh) 一种单线制制导火箭弹连续发射控制装置及信号处理方法
CN110705141B (zh) 用于外置飞机附件机匣固定装置的疲劳载荷谱确定方法
CN108333523A (zh) 一种电动汽车动力电池测试装置及测试方法
CN113075879B (zh) 一种倾转旋翼无人机发动机控制***
Benbrook et al. Hybrid powertrain improvements for increased flight duration in multirotor unmanned aerial systems
CN112956102A (zh) 电池控制方法、设备及存储介质
CN205121292U (zh) 一种无人机的安全控制***
Baoan et al. Automatic test system for large unmanned aerial vehicle
CN206095640U (zh) 一种航空发动机地面数据采集***
CN116296408A (zh) 一种涡轴发动机电起动试验***及试验方法
CN116699534B (zh) 基于起飞指令响应的空中干扰环境构建方法、***及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893446

Country of ref document: EP

Kind code of ref document: A1