WO2024109350A1 - 自然冷却数据中心及其制造方法 - Google Patents

自然冷却数据中心及其制造方法 Download PDF

Info

Publication number
WO2024109350A1
WO2024109350A1 PCT/CN2023/122640 CN2023122640W WO2024109350A1 WO 2024109350 A1 WO2024109350 A1 WO 2024109350A1 CN 2023122640 W CN2023122640 W CN 2023122640W WO 2024109350 A1 WO2024109350 A1 WO 2024109350A1
Authority
WO
WIPO (PCT)
Prior art keywords
data center
natural cooling
heat
natural
cooling data
Prior art date
Application number
PCT/CN2023/122640
Other languages
English (en)
French (fr)
Inventor
张善从
涂云宏
史建芳
冯江涛
封艳广
杨彬
陈壮
颜丙雷
Original Assignee
北京国科环宇科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211456194.7A external-priority patent/CN115933822A/zh
Application filed by 北京国科环宇科技股份有限公司 filed Critical 北京国科环宇科技股份有限公司
Publication of WO2024109350A1 publication Critical patent/WO2024109350A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change

Definitions

  • the present disclosure relates to the fields of electronic information technology and heat dissipation technology, and in particular to a natural cooling data center and a manufacturing method thereof.
  • IDC Internet Data Center
  • the present disclosure provides a natural cooling data center and a manufacturing method thereof.
  • a natural cooling data center includes at least one electronic device, and the natural cooling data center is cooled only by natural cooling.
  • a method for manufacturing a natural cooling data center comprising the following steps:
  • At least one accommodation space is constructed to accommodate at least one electronic device; wherein the natural cooling data center is cooled by natural cooling.
  • FIG1 is a schematic diagram of the structure of an edge free cooling data center disclosed in the present invention.
  • 2A and 2B are respectively a front view and a side view of a layer of free cooling data center disclosed in the present invention
  • 3A and 3B are respectively a front view and a side view of a four-story free cooling data center disclosed in the present invention.
  • FIG4 is a schematic structural diagram of a first embodiment of a natural cooling electronic device disclosed in the present invention.
  • FIG5 is a schematic structural diagram of a second embodiment of the natural cooling electronic device disclosed in the present invention.
  • FIG6 is a schematic structural diagram of a third embodiment of the natural cooling electronic device disclosed in the present invention.
  • FIGS. 7A and 7B are respectively a schematic structural diagram of a fourth embodiment of a naturally cooling electronic device disclosed in the present invention and an exploded diagram of a quick-install structure;
  • FIG8 is a schematic diagram of the installation position of the naturally cooling electronic device and the facade of the present disclosure, wherein (A)-(C) are schematic diagrams of the contact of one surface, two surfaces and three surfaces respectively;
  • FIG9 is a schematic structural diagram of an embodiment of the present disclosure in which a naturally cooled electronic device is suspended on a square frame cabinet;
  • FIG10 is a schematic structural diagram of another embodiment of the present disclosure in which a naturally cooled electronic device is suspended on a square frame cabinet;
  • FIG11 is a perspective view of a chimney effect type cabinet in which the naturally cooled electronic equipment of the present disclosure is suspended;
  • 12A-12C are respectively a top view of the base of the chimney effect type cabinet of the present disclosure, a bottom view of the base of the chimney effect type cabinet on which the natural cooling electronic equipment of the present disclosure is suspended, and a top view of the metal floor;
  • 13A and 13B are respectively a front view and a perspective view of a free cooling data center equipped with solar panels;
  • FIG14 is a schematic diagram of the structure of a naturally cooled data center with a rainwater collection pool on the roof and a cooling water storage pool underground according to the present invention
  • Electronic equipment refers to equipment that is composed of electronic components such as transistors, electron tubes, integrated circuits, etc., and uses electronic technology (including software) to function.
  • Electronic equipment includes various devices that use analog or digital circuits for detection, control, calculation, communication and other functions.
  • IT Information Technology
  • IT equipment refers to equipment that performs information technology processing. It is also limited to any equipment mounted on a rack (called rack-mounted equipment). Such equipment typically includes servers, dedicated storage arrays, network switches and routers, power supply and distribution, and remote management equipment.
  • Data center refers to "an entity consisting of computer sites (computer rooms), other infrastructure, information system hardware and software, information resources (data) and personnel, as well as corresponding rules and regulations".
  • data centers include highly centralized Internet data centers (IDCs), national data centers (NDCs) and enterprise data centers (EDCs), as well as edge data centers located close to the user end.
  • IDCs Internet data centers
  • NDCs national data centers
  • EDCs enterprise data centers
  • the closed housing includes a fully closed housing and a semi-closed housing.
  • the fully closed housing can completely seal at least some electronic components, and the semi-closed housing has certain openings or holes on the basis of the fully closed housing.
  • a cabinet is a device used to fix electronic devices and/or equipment and provide a housing environment and protection for them. Since the cabinet in the present disclosure is an open architecture, "cabinet” and “rack” can be used interchangeably.
  • Natural cooling also known as "natural heat dissipation” refers to a cooling/heat dissipation method that allows electronic equipment to work normally without the help of any external power source, and does not rely on forced cooling and forced convection.
  • the natural cooling is achieved by relying solely on the natural wind of the natural environment or the flow of fluid driven by the endogenous driving force of the device.
  • the endogenous driving force described in the present invention includes evaporation and condensation of the evaporation chamber, siphon effect, spontaneous rise of hot air after heating the air, and spontaneous rise of liquid due to heating.
  • PUE Power Usage Effectiveness
  • PUE Power Usage Effectiveness
  • the total energy consumption of a data center includes the energy consumption of IT equipment and the energy consumption of systems such as cooling and power distribution. Its value is greater than 1. The closer it is to 1, the less energy non-IT equipment consumes, that is, the better the energy efficiency level.
  • the cooling methods of data centers are mainly forced air cooling and liquid cooling.
  • the more mature cooling methods currently include air conditioning refrigeration, indirect liquid cooling with cooling towers, immersion liquid cooling with complex heat exchange equipment, etc. These cooling methods have the disadvantages of high energy consumption and high cost.
  • the existing technology also targets Many improvements have been proposed to address these drawbacks, such as introducing fresh air or using natural water bodies.
  • the space of the data center is closed, and the introduction of external cooling sources still requires the use of power-consuming driving devices such as fans and water pumps.
  • the large size of the heat sink will cause great trouble to the installation and maintenance of the system.
  • the layout of the heat sink, the disassembly and assembly of electronic equipment, and the heavy weight of the equipment that requires additional support all require a lot of research and development energy from technical personnel. Therefore, technical personnel in this field have a strong technical prejudice against the idea of using additional bulky heat sinks for natural cooling.
  • the present invention adopts various advanced natural cooling technologies, considers natural cooling comprehensively within the scope of the entire data center, assists in designing various transverse wind/longitudinal wind cooling channels, and specially designed cabinets and racks, and proposes a new natural cooling idea.
  • This solution reduces the heat flux density per unit area of electronic equipment to below a set threshold by natural cooling at the equipment level, diffuses the heat of each electronic equipment to its main cooling unit and external cooling unit as much as possible for natural cooling, opens the entire data center on all sides to allow natural wind to help cool the equipment, and turns the entire data center building and components into a large radiator to reduce the energy consumption of refrigeration equipment.
  • the present disclosure discloses a natural cooling data center, which includes at least one electronic device, and the natural cooling data center is cooled only by natural cooling, so that all electronic devices can work normally without relying on forced cooling and forced convection.
  • the natural cooling data center may include at least one accommodation space for accommodating the electronic equipment. There may also be multiple accommodation spaces, such as a row of single-story houses, several multi-story houses, Buildings, etc.; the natural cooling data center may include one or more rooms, which may be distributed in one or more floors of the building.
  • the main building structure of the natural cooling data center may be constructed, for example, using steel frames, aluminum alloy frames, wooden structures, concrete structures, polymer membranes, polymer fibers, etc.; preferably, it may be constructed using materials with high thermal conductivity, so that part of the heat generated by the natural cooling electronic equipment contained therein can be transferred to the main building structure and transferred to the natural environment in a natural cooling manner, without the need for forced cooling with external input energy, thereby achieving the purpose of energy saving and environmental protection.
  • the main building structure of the natural cooling data center may be made of steel or aluminum.
  • the naturally cooled data center preferably adopts a modular structure to achieve rapid construction through assembly.
  • the modular structure includes, for example, standardized, factory-prefabricated building components, such as load-bearing columns, frame beams, wall panels, floor mounting frames (I-beams), floors, roofs with natural ventilators, exterior wall panels, exterior wall shutters, standard cabinets, fan walls, etc.
  • the natural cooling data center may adopt an open structure, i.e., a structure with a non-zero permeability, and preferably, the permeability of the natural cooling data center is greater than or equal to 5%, more preferably greater than or equal to 33%, and further preferably greater than or equal to 60%.
  • the natural cooling data center has no external walls on all four sides, allowing natural wind to pass through; or has insulated external walls on all four sides, but has windows on the walls that can control the size of the air inlet, and the windows ensure that natural wind can freely enter and exit during operation.
  • At least one horizontal direction of the natural cooling data center is provided with a shielding structure
  • the shielding structure can be, for example, any one of a rolling door structure, a rolling film structure, a window structure, a folding barrier, and a push-pull barrier.
  • the shielding structure can be closed or opened to form an open structure; preferably, louver-shaped baffles can also be installed in the four directions of the natural cooling data center, and the rotating axis of the louver-shaped baffle is a horizontal axis, and the angle of rotation of the baffle can be adjusted to adjust the amount of air entering the room.
  • the intake of cold air can be reduced to ensure that the equipment in the natural cooling data center operates in a suitable temperature range.
  • screens or filters can also be set in the gaps of the louver-shaped baffles to appropriately reduce dust, etc.
  • each floor of the natural cooling data center has a through-structure floor, so that the airflow under the floor can move upward through the through-structure.
  • the through-structure can be, for example, through holes with small apertures arranged in a specific manner, or a large hollow area.
  • the floor of the natural cooling data center is made of a material with high thermal conductivity
  • the material with high thermal conductivity includes metal and/or non-metal, preferably at least one of aluminum alloy, copper alloy, magnesium alloy, magnesium-lithium alloy, silver, carbon steel, stainless steel, high thermal conductivity ceramics (High Thermal Conductivity Ceramic Materials), silicon carbide, aluminum-based silicon carbide, graphite composites, diamond composites, graphene composites, etc.
  • the natural cooling data center disclosed in the present invention may, for example, use a cabinet as described below, wherein the cabinet adopts an open structure, preferably a four-sided open structure, and further preferably a six-sided fully open structure without panels.
  • the cabinet for example, includes a heat-conducting frame or a heat-conducting plate, and a contact fixing surface for fixing the natural cooling electronic device; the contact fixing surface has an outer contour that matches the contact heat-conducting surface of the natural cooling electronic device, through which the heat transferred by the contact heat-conducting surface is transferred to the heat-conducting frame or the heat-conducting plate for natural cooling; wherein the natural cooling electronic device includes a closed shell for sealing the electronic components of the natural cooling electronic device, the contact heat-conducting surface is arranged on the outer surface of the closed shell, and the heat generated by the natural cooling electronic device is transferred to the contact heat-conducting surface on the closed shell by heat conduction.
  • the cabinet may further include a cabinet cooling unit, and the heat diffused onto the heat-conducting frame or the heat-conducting plate is further conducted to the cabinet cooling unit for natural cooling.
  • heat can be evenly distributed on the surface of the heat-conducting frame, heat-conducting plate and/or cabinet cooling unit by means of a heat pipe, a temperature-averaging plate, a metal or non-metal heat-conducting structure with high thermal conductivity.
  • a contact fixing device is further provided between the contact fixing surface and the contact heat conducting surface, and the contact fixing device adopts a quick-install structure to facilitate quick installation and disassembly.
  • the cabinet is a square-frame cabinet having a frame structure, preferably a rectangular frame structure.
  • the cabinet is a chimney effect type cabinet having a chimney effect type structure
  • the chimney effect type structure is an air flow channel inside the chimney, or is located on the surface of the cabinet.
  • the heat-conducting frame of the cabinet can be deformed in various ways, such as into a flat plate, a column, a spiral, a double spiral, a sphere, etc., as long as the heat dissipation area can be expanded and the natural wind cooling of the equipment is not hindered. More preferably, the deformation of the heat-conducting frame of the cabinet can also form a spontaneous airflow channel to accelerate the flow of gas and improve the cooling efficiency. For example, in the heat-conducting frame of the cabinet, the heat-conducting frame of the cabinet can be deformed to form a spontaneous airflow channel to accelerate the flow of gas and improve the cooling efficiency.
  • a continuous airflow channel connected to the roof chimney is formed inside or on the surface of the heat frame, or different temperature zones are formed indoors to drive the surrounding airflow to the center, and so on.
  • the natural cooling data center can form a longitudinal wind flow path by, for example, setting up natural ventilators on the floor and roof that are connected from top to bottom, and utilizing the chimney effect to enhance the efficiency of natural cooling.
  • the air flow channel inside the chimney effect cabinet goes straight through the roof, and there is a strong "chimney effect”. Due to the floor that is connected from top to bottom, the rising hot air flow on the outer surface of the cabinet can also form a "chimney effect” and also form a longitudinal wind flow path.
  • the electronic equipment in the natural cooling data center is carried by a frame cabinet, since there is no internal air flow channel, there is only the "chimney effect" formed by the rising hot air flow on the outer surface of the cabinet to form a longitudinal wind flow path.
  • the naturally cooling data center preferably sets a mezzanine (bottom floor) under the first floor as an air intake layer, and sets a plurality of air intakes that penetrate the layer plates on the top of the air intake layer and are connected to the bottom of the chimney effect cabinet on the upper floor. Openings can be set on the walls on the sides of the air intake layer to allow air to enter, and fans can be set in the openings to assist in enhancing air flow.
  • the first floor can be directly set on the ground (bottom floor), and in this case, air intakes are set on the bottom of the chimney effect cabinet towards the surroundings.
  • the air inlet openings are arranged in a spiral shape, for example, so that the incoming air forms a spiral enhanced airflow in the chimney effect cabinet to avoid mutual interference and weakening of the airflow.
  • the airflow channel of the chimney effect cabinet may also include a valve or baffle that can adjust the airflow size.
  • the valve or baffle may be a rotating type, a flip type, or an open and close type; it may be set at any position in the airflow channel as long as it is convenient for operation, but at least one set should be set at the bottom air inlet, because it is more conducive to control from the source to avoid adverse effects.
  • the natural cooling data center may also include an exhaust structure located on the roof, which is used to exhaust the hot air flow that passes through the top and bottom from the roof; the exhaust structure is preferably a natural ventilator or an unpowered wind hood.
  • the exhaust structure is preferably a natural ventilator or an unpowered wind hood.
  • a natural ventilator which is located in the middle of the roof to converge the rising airflow of all chimney effect cabinets.
  • an unpowered wind hood may also be used.
  • Each chimney effect cabinet corresponds to a chimney, and an unpowered wind hood is set on the top of the chimney.
  • the natural ventilator and the unpowered wind hood can enhance the chimney effect, improve the cooling efficiency of the chimney effect cabinet, and at the same time prevent rainwater from entering the air flow channel.
  • the natural cooling data center may also be provided with a plurality of fans, which are used to directly blow the natural cooling electronic equipment and/or cabinets for cooling, or, instead of blowing directly, assist in exhausting the hot air inside the natural cooling data center.
  • the fans may form a fan wall or may be arranged separately.
  • the fans may be located, for example, under the floor or on the air inlet side of the vertical wall to blow air to form an airflow, and/or, the fans may also be located on the roof or on the air outlet side of the vertical wall to suck air to form an airflow.
  • the natural cooling data center may also be provided with a plurality of detachable air guide plates for guiding cold air to flow through the natural cooling electronic equipment when the fan is working.
  • the air guide plates may be, for example, independently provided, independently supported, and fixed on the floor or wall; or they may be part of the cabinet, for example, provided in a gradually shrinking shape, and aligned with the equipment body cooling unit on the natural cooling electronic equipment and/or the equipment external cooling unit on the cabinet.
  • the natural cooling data center can also appropriately arrange solar panels to provide part of the energy.
  • the arrangement of solar panels cannot block the path of natural wind. Therefore, when setting up solar panels, it is necessary to consider the angle of sunlight, that is, the projection area of sunlight on the solar panels, and the direction of natural wind all year round.
  • the angle of sunlight that is, the projection area of sunlight on the solar panels, and the direction of natural wind all year round.
  • the first floor of the natural cooling data center can be vacated for office, parking and other purposes.
  • By arranging the main heating equipment on high floors it is more susceptible to natural wind and speeds up the heat dissipation efficiency. It can also increase the height of the floors and enhance the chimney effect.
  • the naturally cooling data center may also utilize the electric energy generated by solar panels to drive fans, guide or assist in controlling the airflow that moves spontaneously due to heat in the naturally cooling data center, so as to form a stable and continuous airflow to accelerate cooling.
  • the natural cooling data center can also appropriately increase liquid cooling
  • the liquid cooling equipment belongs to self-driven or micro-driven natural cooling liquid cooling equipment, for example, by setting up a rainwater collection pool under the roof eaves, or setting up a cooling water storage pool at a certain depth underground, and then using gravity or a micro water pump to give a relatively small driving force to circulate and take away the heat of the entire cabinet or even the entire steel frame building, and the heat is dissipated through the unpowered water cooling tower on the roof, or by heat exchange with the low-temperature soil layer underground.
  • the high-power consumption and forced cooling solution is not within the scope of consideration of this disclosure.
  • the naturally cooling electronic equipment can be located on the floor, cabinet (rack), shelf, column and/or facade (including wall).
  • the naturally cooling electronic equipment conducts heat to the corresponding structure by contacting the heat conducting surface to enhance heat dissipation.
  • the electronic equipment used in the natural cooling data center of the present disclosure may be various natural cooling electronic equipment proposed previously, such as natural cooling electronic equipment disclosed in several patent applications previously filed by the present inventor.
  • the electronic equipment used in the natural cooling data center of the present disclosure may also be a natural cooling electronic equipment 1 as described below, including:
  • a closed housing 3 used to seal at least part of the electronic components 2 of the naturally cooled electronic device, and to conduct heat generated inside the naturally cooled electronic device to the closed housing 3 by heat conduction;
  • the naturally cooled electronic device is cooled only by natural cooling.
  • the closed housing 3 is made of a material with a high thermal conductivity (e.g., greater than or equal to 10 W/m ⁇ K, preferably greater than or equal to 30 W/m ⁇ K), and the material with a high thermal conductivity may include metal and/or non-metal, preferably at least one of stainless steel, carbon steel, aluminum alloy, magnesium alloy, magnesium-lithium alloy, copper alloy, silver, high thermal conductivity ceramics (High Thermal Conductivity Ceramic Materials), aluminum-based silicon carbide, graphite composite materials, diamond composite materials, and graphene composite materials.
  • the high thermal conductivity ceramics may be, for example, beryllium oxide, aluminum nitride, silicon carbide, silicon nitride, aluminum oxide, and polycrystalline diamond (PCD) ceramics.
  • the sealing process includes full sealing and semi-sealing.
  • the semi-sealing process may further include a step of forming air holes on the sealing shell 3, for example.
  • the closed shell 3 preferably includes a plurality of shells 31 and an optional, matching and closed cover 32; the heat-generating components 2 of the naturally cooled electronic device are attached to the shells 31, or the heat-generating electronic components 2 of the naturally cooled electronic device 1 transfer heat to the closed shell 3 through heat pipes, temperature averaging plates, high thermal conductivity metal or non-metallic thermal conductive structures.
  • the shell 31 can be one, and at least one cover 32 is matched with it to form a complete closed space.
  • the shell 31 can also be two, that is, two halves, which are combined together to form a complete closed space, and there can be no cover 32.
  • the shell 31 and the cover 32 can also be other numbers, as long as they can be combined together to form a complete closed space.
  • the housing 31 may be an integrally formed aluminum alloy housing 31, for example, an aluminum alloy housing 31 integrally formed by an aluminum extrusion process, one end of which is sealed by welding, and has a straight quadrangular prism shape.
  • the cover body 32 matched therewith can be similar to the end cover formed by welding, and is connected and fixed to the housing 31 by a quick release device or a detachable bolt.
  • the closed housing 3 can provide ordinary waterproof protection for at least part of the electronic components 2 of the naturally cooled electronic device 1, such as strong splash protection with IEC IP 6 or above; further preferably, the closed housing 3 can provide waterproof and dustproof protection for part of the electronic components 2 of the naturally cooled electronic device 1, such as IP56; even further preferably, the closed housing 3 provides "three-proof" protection for part of the electronic components 2 of the naturally cooled electronic device 1, namely, waterproof, dustproof, mildew-proof and salt spray-proof; most preferably, for example, an air-sealing treatment is performed.
  • heat transfer is achieved between the heat pipe, the temperature equalizing plate, the metal or non-metal thermal conductive structure with high thermal conductivity and the heat-generating electronic component 2 of the naturally cooled electronic device 1, or between the closed housing 3 and the heat-generating electronic component 2 of the naturally cooled electronic device 1, or between the closed housing 3 and the heat pipe, the temperature equalizing plate, the metal or non-metal thermal conductive structure with high thermal conductivity, through a low thermal resistance thermal interface material, and the low thermal resistance thermal interface material is, for example, selected from liquid metal, phase change material, thermal grease, thermal adhesive, thermal pad and/or indium foil.
  • the heat can be evenly distributed on the surface of the closed shell 3 through a heat pipe, a temperature equalizing plate, a metal or non-metallic heat-conducting structure with high thermal conductivity, so that the entire surface of the closed shell 3 can play a role in heat dissipation.
  • the naturally cooling electronic device 1 may further include a device body cooling unit 4, which is located on the outer surface of the closed housing 3 and is used to transfer at least part of the heat of the closed housing 3 to the natural environment.
  • a device body cooling unit 4 which is located on the outer surface of the closed housing 3 and is used to transfer at least part of the heat of the closed housing 3 to the natural environment.
  • the equipment body cooling unit 4 can be integrally formed with the closed housing 3, thereby simplifying the processing technology.
  • a split equipment body cooling unit 4 can also be used, so that it can be added later based on specific needs, and the setting is more flexible and efficient.
  • the equipment body cooling unit 4 is a finned heat sink or an evaporative condenser driven by no external energy source.
  • the surface of the equipment body cooling unit 4 is provided with a thermal control coating with an emissivity greater than or equal to 0.8, which not only facilitates surface radiation heat dissipation, but also reduces dust adhesion and facilitates dust collection by a vacuum cleaner.
  • the equipment body cooling unit 4 includes a plurality of heat dissipation fins, the spacing between any two heat dissipation fins is between 5 and 20 mm, more preferably 10 mm; the thickness of the heat dissipation fins is between 0.5 and 5 mm, preferably 2 mm; the height of the heat dissipation fins is between 10 and 200 mm. More preferably, the heat dissipation fins are arranged vertically, in line with the direction of rising hot air.
  • heat can be evenly distributed on the surface of the equipment body cooling unit 4, for example, by means of a heat pipe, a temperature equalizing plate, a metal or non-metallic heat-conducting structure with high thermal conductivity.
  • the addition of the equipment body cooling unit 4 can make the cooling efficiency of the natural cooling data center higher and can be used in more heat dissipation scenarios, such as low-power data computing centers and other scenarios.
  • the naturally cooling electronic device 1 may further include a contact heat-conducting surface 5, which is disposed on the outer surface of the closed shell 3 and is used to transfer part of the heat on the closed shell 3 to the device external cooling unit 6 in contact with the contact heat-conducting surface 5; the device external cooling unit 6 is located outside the naturally cooling electronic device 1 and does not belong to the naturally cooling electronic device 1, and is used to transfer part of the heat on the closed shell 3 of the naturally cooling electronic device 1 to the natural environment in a natural cooling manner. There are many options for the device external cooling unit 6.
  • it may be a frame cabinet, a chimney effect cabinet, a full steel frame building, etc., which are described below, or a natural flowing water heat exchange device, a natural evaporative cooling device (without forced cooling and heat exchange), etc.
  • the present disclosure is not limited thereto, and any device that can achieve natural cooling may be included.
  • heat is transferred from the heat-generating electronic components 2 of the naturally cooled electronic device 1 to the contact thermal conductive surface 5 through a heat pipe, a temperature equalizing plate, a metal or non-metal thermal conductive structure with high thermal conductivity, and is evenly distributed on the entire surface of the contact thermal conductive surface 5.
  • the area of the contact heat-conducting surface 5 is between 1% and 90% of the total outer surface of the closed shell 3, preferably between 16.7% and 50%;
  • the roughness Ra of the contact heat-conducting surface 5 is better than 3.2 ⁇ m (i.e., below 3.2 ⁇ m), preferably below 0.4 ⁇ m;
  • the flatness of the contact heat-conducting surface 5 is better than 0.3 mm/(100 mm*100 mm) (ie, below 0.3 mm/(100 mm*100 mm)), preferably 0.1 mm/(100 mm*100 mm).
  • the shape of the contact heat-conducting surface 5 is a plane, or a shape that matches the contour of the contact heat-conducting part of the equipment external cooling unit 6; the interior of the contact heat-conducting surface 5 and the The interiors of the matching contact heat-conducting parts are buried with heat pipes, temperature averaging plates, and metal or non-metal heat-conducting structures with high thermal conductivity that are in contact with or adjacent to each other, thereby increasing the heat transfer efficiency between them.
  • heat transfer is achieved between the contact heat-conducting surface 5 and the external cooling unit 6 of the device through a low thermal resistance thermal interface material, and the low thermal resistance thermal interface material is preferably selected from liquid metal, phase change material, thermal grease, thermal adhesive, thermal pad and/or indium foil.
  • the heat dissipated by the contact heat-conducting surface 5 can account for more than one-tenth of the total heat generated inside the naturally cooled electronic device, preferably more than one-third, and more preferably at least more than half.
  • the present disclosure can control the heat flux density per unit area of the closed housing 3 to be below a first threshold; the first threshold is, for example, set to 0.1 W/m 2 , preferably set to 0.04 W/m 2 .
  • the naturally cooling electronic device further includes, for example, a fan disposed adjacent to or close to the device body cooling unit 4 , for assisting heat dissipation by directly blowing or guiding airflow through the device body cooling unit 4 .
  • the naturally cooling electronic equipment includes, for example, IT equipment and other functional equipment; the IT equipment may include at least one of computing equipment, storage equipment and network equipment; the other functional equipment may include at least one of power supply and distribution equipment, interface equipment and safety protection equipment.
  • computing equipment for example, it includes CPU, GPU and other computing components;
  • storage equipment for example, it includes magnetic storage, optical disk storage, magneto-optical storage, etc., wherein magnetic storage further includes hard disk (HD), solid state drive (SDD), EPPRAM, etc.
  • the IT equipment is, for example, a computing device, which may include 1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128, ... CPUs and/or GPUs, and may be located on 1, 2, 3, 4, 5, 6, 7, 8, ... circuit boards.
  • the backs of the CPU and/or GPU heating elements are in close contact with low thermal resistance thermal interface materials and heat pipes, temperature spreaders, and high thermal conductivity metal or non-metallic thermal conductive structures to achieve heat transfer, so as to efficiently transport the heat generated by them to the equipment body cooling unit 4 and/or the contact thermal conductive surface 5.
  • the IT device is, for example, a storage device, which includes, for example, 1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128, ... mechanical hard disks (HD), Solid state drive (SDD) and/or single or multiple optical drive devices (CD, DVD, SVCD, Blu-ray), etc.
  • HD hard disks
  • SDD Solid state drive
  • CD compact discs
  • DVD digital versatile disc
  • SVCD single or multiple optical drive devices
  • Heat pipes, temperature averaging plates, high thermal conductivity metal or non-metallic heat conducting structures, etc. are also arranged near the heat generating position of the storage device to efficiently transfer the heat generated by it to the device body cooling unit 4 and/or the contact heat conducting surface 5.
  • the IT equipment is, for example, power supply and distribution equipment, which includes several high-power transformers and/or large capacitors.
  • the heat-generating position of the power supply and distribution equipment (such as the silicon steel sheet of the transformer) is also close to the heat pipe, the temperature equalizing plate, the metal or non-metallic heat-conducting structure with high thermal conductivity, etc., so as to efficiently transfer the heat generated by it to the equipment body cooling unit 4 and/or the contact heat-conducting surface 5.
  • the IT equipment is encapsulated in a closed housing 3, for example, by a buffering and shockproof structure, so that the internal electronic components 2 will not be damaged if the equipment is accidentally dropped during installation.
  • the naturally cooled electronic device may be provided with a heating unit inside, for example, to enable the naturally cooled electronic device to start and stop normally even at low temperatures; preferably, the heating unit is, for example, a heating film, a PTC heating sheet, a TEC semiconductor cooler, etc.
  • the heating unit is started to make the temperature inside the naturally cooled electronic device higher than 0°C, thereby ensuring that the naturally cooled electronic device can start normally.
  • the heat generated by the heating electronic components of the device can keep the device working in an appropriate temperature zone, at which time the working state of the heating unit can be terminated.
  • the IT equipment is first packaged in a closed shell 3, and the core components are sealed and protected by the closed shell 3, so that moisture and dust can be avoided, and the natural cooling data center is in an open space, so that the outdoor wind can blow freely to the equipment cabinet without hindrance; and the body heat dissipation element 4 and the contact heat conduction surface 5 of the equipment itself greatly expand the volume of the heat dissipation unit, which can reduce the energy consumption of forced cooling, and is suitable for the establishment of large IDCs in places such as the northwest and northeast where the outdoor temperature is low, relatively open, and the rent is cheap. Furthermore, since the configured heat dissipation structures are carefully calculated and designed to meet specific threshold requirements, it can be ensured that when many IT equipment are used, they can meet the design requirements, and will not interfere with each other or increase costs due to excessive design.
  • the present disclosure also proposes a method for manufacturing a natural cooling data center, comprising the following steps:
  • At least one accommodation space is constructed to accommodate at least one electronic device; wherein all the electronic devices are cooled by natural cooling.
  • the natural cooling data center may adopt an open structure, i.e., a structure with a non-zero permeability, and preferably, the permeability of the natural cooling data center is greater than or equal to 5%, more preferably greater than or equal to 33%, and further preferably greater than or equal to 60%. As a preferred embodiment, the natural cooling data center.
  • the main building structure of the natural cooling data center can be manufactured using a steel frame, an aluminum alloy frame, a wooden structure, a concrete structure, a polymer membrane structure or a polymer fiber; preferably, the main building structure of the natural cooling data center is manufactured using a high thermal conductivity material, so that part of the heat generated by the electronic equipment accommodated therein can be transferred to the main building structure and transferred to the natural environment in a natural cooling manner; further preferably, the main building structure of the natural cooling data center is manufactured using steel or aluminum.
  • the natural cooling data center adopts a modular structure design and can be quickly built through assembly.
  • a shielding structure is arranged in at least one horizontal direction of the natural cooling data center, and the shielding structure is any one of a rolling door structure, a rolling membrane structure, a window structure, a folding barrier, and a sliding barrier, and the shielding structure can be closed or opened to form an open structure; preferably, a louver-shaped baffle is installed in at least one horizontal direction of the natural cooling data center, and the rotating shaft of the louver-shaped baffle is a horizontal axis, and the air volume can be adjusted by adjusting the rotation angle of the louver-shaped baffle; screens or filters are arranged at the gaps of the louver-shaped baffles.
  • each floor of the natural cooling data center adopts a floor with a through structure, so that the airflow under the floor can move upward through the through structure;
  • the floor of the natural cooling data center is made of a material with high thermal conductivity, and the material with high thermal conductivity includes metal and/or non-metal;
  • the material with high thermal conductivity is preferably at least one of stainless steel, carbon steel, aluminum alloy, magnesium alloy, magnesium-lithium alloy, copper alloy, silver, high thermal conductivity ceramics (High Thermal Conductivity Ceramic Materials), silicon carbide, aluminum-based silicon carbide, graphite composites, diamond composites, and graphene composites.
  • the bottom layer of the natural cooling data center is provided with a plurality of air inlets; preferably, the air flow channel of the natural cooling data center also includes a valve or baffle capable of adjusting the air flow size, and the valve or baffle is at least provided at the bottom layer air inlet.
  • the naturally cooling data center further comprises an exhaust structure on the roof, which is used to discharge the hot air flow penetrating from the roof; the exhaust structure is preferably a natural ventilator/unpowered hood.
  • a number of fans are also provided in the natural cooling data center, and the fans are used to directly blow the natural cooling electronic equipment and/or cabinets for cooling, or, instead of blowing directly, they assist in exhausting the hot air inside the natural cooling data center; preferably, the fans are located under the floor or on the air inlet side of the vertical wall, and are used to blow air to form airflow, and/or, the fans are located on the roof or on the air outlet side of the vertical wall, and are used to suck air to form airflow.
  • a plurality of detachable air guide plates are also arranged in the natural cooling data center, so as to guide the cold air to flow through the electronic equipment when the fan is working.
  • the natural cooling data center is also arranged with solar panels to provide energy, and the arrangement of the solar panels does not block the path of natural wind entering the natural cooling data center.
  • the natural cooling data center is also provided with a liquid cooling pipe, which is connected to a water source and is used to remove part of the heat generated by the electronic equipment through gravity self-drive or water pump drive; preferably, the water source is a rainwater collection pool on the roof or an underground cooling water storage pool.
  • electronic equipment In the natural cooling data center, electronic equipment is located on the floor, cabinets (racks), shelves, columns and/or facades (including walls); preferably, the electronic equipment conducts heat to the corresponding structure to enhance heat dissipation.
  • the embodiment 1 of the present disclosure discloses a naturally cooled electronic device 1 in which the heat generating electronic component 2 is a storage device.
  • the storage device is a hard disk group, and the heat generating part of the storage device (the heat generating electronic component 2) is tightly attached to a heat conductive metal strip (not shown in the figure) with a high thermal conductivity, and then tightly attached to the shell 31 of the closed shell 3.
  • the heat generated by the heat generating electronic component 2 is conducted to the closed shell 3 of the naturally cooled electronic device 1, and is naturally cooled by natural wind and heat radiation.
  • the naturally cooling electronic device 1 of Embodiment 1 of the present disclosure can be arranged on the floor, cabinet/rack, shelf, column and/or facade (including wall) in different ways.
  • the figure shows the contact with the metal facade 13 and the floor 14.
  • one surface of the naturally cooling electronic device 1 contacts the metal facade 13 (or chimney effect cabinet).
  • the area of the contact heat-conducting surface 5 is about 10% of the total outer surface area of the closed shell 3; as shown in Figure 8 (B), two surfaces of the naturally cooled electronic device 1 are in contact with the metal facade 13 (or the outer surface of the chimney effect cabinet 8), and the area of the contact heat-conducting surface 5 is about 20% of the total outer surface area of the closed shell 3; as shown in Figure 8 (C), two surfaces of the naturally cooled electronic device 1 are in contact with the metal facade 13 (or the outer surface of the chimney effect cabinet 8), and one surface is in contact with the floor 14, and the area of the contact heat-conducting surface 5 is about 50% of the total outer surface area of the closed shell 3.
  • Embodiment 2 of the present disclosure discloses a naturally cooled electronic device 1 in which the heat generating electronic component 2 is a computing device.
  • the computing device is a motherboard including a CPU and a GPU.
  • the backs of the CPU and GPU are tightly attached to a temperature averaging plate through thermal grease.
  • the temperature averaging plate (not shown in the figure) conducts the high heat generated by the CPU and GPU to the closed housing 3 and the device body cooling unit 4 of the naturally cooled electronic device 1.
  • the closed housing 3 and the device body cooling unit 4 are integrally formed, and are naturally cooled by natural wind and heat radiation.
  • Embodiment 3 of the present disclosure discloses a naturally cooled electronic device 1 in which the heat-generating electronic component 2 is a computing device.
  • the computing device is a motherboard including a CPU and a GPU.
  • the CPU and GPU sides are tightly fitted with non-metal with high thermal conductivity, such as aluminum-based silicon carbide material, through thermal pads.
  • the aluminum-based silicon carbide material (the left oblique line portion in the figure) conducts the high heat generated by the CPU and GPU to the contact thermal conductive surface 5 (the left black portion) of the naturally cooled electronic device 1.
  • the contact thermal conductive surface 5 is fitted with the contact fixing surface 11 (the right black portion) of the device external cooling unit 6, and the high heat generated by the CPU and GPU is efficiently conducted to the device external cooling unit 6 through a heat pipe (the right oblique line portion in the figure), and then further naturally cooled by natural wind and heat radiation.
  • the embodiment 4 of the present disclosure discloses a natural cooling electronic device 1 in which the heat generating electronic component 2 is a computing device.
  • the computing device is a motherboard including multiple CPUs and GPUs, and the CPUs and GPUs are connected to non-metals with high thermal conductivity, such as graphene, by thermal pads.
  • the materials fit tightly together, and the aluminum-based silicon carbide material (the part indicated by the diagonal lines on the left in the figure) conducts the high heat generated by the CPU and GPU to the closed shell 3, the device body cooling unit 4 and the contact heat-conducting surface 5 (the black part on the left) of the naturally cooled electronic device 1.
  • the closed shell 3 and the device body cooling unit 4 adopt a discrete design, and the contact heat-conducting surface 5 fits with the contact fixing surface 11 (the black part on the right) of the device external cooling unit 6, and conducts part of the high heat generated by the CPU and GPU to the device external cooling unit 6 efficiently through the heat pipe (the part indicated by the diagonal lines on the right in the figure), and then further performs natural cooling through natural wind and heat radiation.
  • the naturally cooling electronic device 1 of the fourth embodiment of the present disclosure can be quickly assembled and disassembled.
  • the electronic components 2 are enclosed in a closed shell 3 including a shell body 31 and a cover body 32.
  • the closed shell 3 is provided with a retractable spring pin 35 to fix the position.
  • the device body cooling unit 4 is mounted on the closed shell 3 so that the spring pin 35 is supported in position to fix the closed shell 3.
  • the spring pin 35 is pressed to retract it into the closed shell 3, and then the device body cooling unit 4 is slid to open the closed shell 3 to take out the heat-generating electronic components 2 encapsulated therein.
  • embodiment 5 of the present disclosure discloses a structure in which the naturally cooling electronic device 1 of the present disclosure is carried on a square frame-type cabinet 7, and the square frame-type cabinet 7 includes a heat-conducting frame 71, and the heat-conducting frame 71 is provided with a contact fixing area (not shown in the figure) that matches the outer contour of the contact heat-conducting surface 5 of the naturally cooling electronic device.
  • the contact fixing area diffuses part of the heat conducted from the naturally cooling electronic device 1 to the heat-conducting frame 71 through a heat pipe for natural cooling.
  • Example 6 of the present disclosure discloses a structure in which the naturally cooling electronic device 1 of the present disclosure is carried on a square frame cabinet 7, and the square frame cabinet 7 includes a heat conductive frame 71 and a cabinet cooling unit 72.
  • the heat conductive frame 71 is provided with a contact fixing area (not shown in the figure) that matches the outer contour of the contact heat conductive surface 5 of the naturally cooling electronic device.
  • the contact fixing area diffuses part of the heat conducted from the naturally cooling electronic device 1 to the heat conductive frame 71 and the cabinet cooling unit 72 through a heat pipe for natural cooling.
  • Example 7 of the present disclosure discloses a structure in which a naturally cooling electronic device 1 is suspended on a chimney effect type cabinet 8;
  • the chimney effect type cabinet 8 is a deformation of the cabinet frame structure, which is changed from a square frame to an internal hollow columnar structure, and its main structure is made of aluminum alloy material with high thermal conductivity, and the outer surface is provided with a plurality of equipment fixing installation areas (not shown in the figure) for contacting and fixing with the contact heat conduction area 5 of the naturally cooling electronic device 1, which are used to diffuse part of the heat conducted from the naturally cooling electronic device 1 to the entire chimney effect type cabinet 8, heat the air in the internal air flow channel 82 to form a "chimney effect" to naturally cool the entire equipment.
  • a base 84 fixedly connected to the I-beam frame of the floor (not shown in the figure) is welded at the bottom of the chimney effect type cabinet 8, so that the chimney effect type cabinet 8 is fixed in the room.
  • the metal floor and the base are designed to be through-connected from top to bottom.
  • the airflow inside the chimney effect type cabinet 8 can penetrate the metal floor and the base, and form an internal airflow channel that is through-connected from top to bottom with the airflow channels inside the chimney effect type cabinets 8 on different floors, all the way to the natural ventilator on the roof (not shown in the figure).
  • 12A-12C are respectively a top view of the base 84, a bottom view (from the bottom upward) of the base 84 welded with the chimney effect cabinet 8, and a top view of the metal floor 14.
  • the metal floor 14 has a metal mesh structure in the middle, and the mesh allows airflow to pass through unimpeded, which can also be a porous structure.
  • Embodiment 8 of the present disclosure discloses an edge data center (Edge Data Center) that uses the naturally cooled electronic device 1 of the present disclosure.
  • the edge data center includes an equipment chassis placed under a simple rainproof canopy, and the chassis carries a plurality of naturally cooled electronic devices 1 of the present disclosure.
  • Embodiment 9 of the present disclosure discloses a natural cooling data center using the natural cooling electronic device 1 of the present disclosure.
  • the natural cooling data center is an Internet data center. Center (IDC), National Data Center (NDC) or Enterprise Data Center (EDC).
  • the natural cooling data center is an equipment layer structure, the equipment layer is supported by pillars, and an air intake space is formed below (bottom floor), which is convenient for setting various air inlets and auxiliary fans.
  • the natural cooling data center is implemented by an all-steel building 9, and its pillars and metal floor 14 are made of steel with high thermal conductivity.
  • the chimney effect cabinets 8 of Example 7 are arranged in a room according to a specific layout.
  • the room is ventilated on all sides, and natural wind can pass through the room as a lateral wind.
  • the metal floor 14 adopts a mesh plate that is breathable up and down as shown in Figure 12C, so as to ensure that the air entering from the bottom floor passes through the internal air flow channel 82 of the chimney effect cabinet 8 directly to the natural ventilator 10 on the roof.
  • the heat generated by the heat-generating electronic components 2 of the natural cooling data center is diffused to the chimney effect cabinet 8 and the metal floor 14 through conduction, and diffused to the entire all-steel building 9, and the entire building becomes a radiator.
  • the air flow channels 82 inside each chimney effect cabinet 8 heat the cold air to generate rising hot air flows penetrating the floor, forming a "chimney effect" for the entire building, which also assists in natural cooling.
  • the embodiment 10 of the present disclosure discloses a natural cooling data center using the natural cooling electronic device 1 of the present disclosure.
  • the natural cooling data center is an Internet data center (IDC), a national data center (NDC) or an enterprise data center (EDC).
  • the natural cooling data center is a four-layer structure of equipment, the equipment layer is supported by pillars, and an air intake space is formed below (bottom floor), which is convenient for setting various air inlets and auxiliary fans.
  • the natural cooling data center is implemented by an all-steel building 9, and its pillars and metal floor 14 are made of steel with high thermal conductivity.
  • the chimney effect cabinet 8 of embodiment 7 is arranged in a room according to a specific layout, and the room is ventilated on all sides. Natural wind can pass through the room as a horizontal wind, and the metal floor 14 adopts a mesh plate with upper and lower air permeability as shown in Fig. 12C, so as to ensure that the air entering from the bottom floor passes through the internal air flow channel 82 of the chimney effect cabinet 8 and reaches the natural ventilator 10 on the roof.
  • the heat generated by the heat-generating electronic components 2 of the natural cooling data center is diffused to the chimney effect cabinet 8 and the metal floor 14 through conduction, and diffused to the entire all-steel building 9, and the entire building becomes a radiator.
  • the air flow channels 82 inside each chimney effect cabinet 8 heat the cold air to generate rising hot air flows penetrating the floor, forming a "chimney effect" for the entire building, which also assists in natural cooling.
  • Embodiment 11 discloses a natural cooling data center as described in Embodiment 10, except that, as shown in FIGS. 13A and 13B, a solar panel 91 is installed on the sun-facing side of the natural cooling data center.
  • FIGS. 13A and 13B are respectively a side view and a stereoscopic view of the natural cooling data center.
  • the arrangement of the solar panels 91 of the natural cooling data center cannot block the passage of natural wind. Therefore, the solar panels 91 are only arranged on the roof, the eaves space below the windows, and on the ground brackets. The natural wind from the south can enter the all-steel building 9 unimpeded and blow through the chimney effect cabinet 8 in the room, thereby naturally cooling the natural cooling electronic equipment 1 suspended on its side.
  • Embodiment 12 discloses a natural cooling data center as described in Embodiment 10, except that, as shown in FIG. 14 , a rainwater collection pool 92 is provided on the roof and a cooling water storage pool 93 is provided underground.
  • the rainwater collection pool 92 can take away the heat of the chimney effect cabinet 8 or even the entire steel frame building 9 through a cold water channel (not shown in the figure) arranged in the air flow channel 82 of the chimney effect cabinet 8. After the cold water absorbs the heat, it can be naturally cooled by, for example, a heat exchanger (not shown in the figure), or it can return to the upper part of the rainwater collection pool 92 on the roof after evaporation or boiling in the high-temperature area and then condense into liquid.
  • the cooling water storage pool 93 can take away the heat of the chimney effect cabinet 8 or even the entire steel frame building 9 through a cold water channel arranged in the air flow channel 82 of the chimney effect cabinet 8. After the cold water absorbs the heat, it can be naturally cooled by heat exchange with the low-temperature soil layer underground.
  • the cold water channel can circulate by gravity or a micro water pump to give a relatively small driving force, or circulate by phase change.
  • the rainwater collection pool 92 and the cooling water storage pool 93 can be circulated separately or form a large cycle to achieve natural cooling together.
  • the natural cooling data center disclosed in the present invention does not rely on any external input energy, but only relies on the endogenous power generated by itself, or only through micro-power assistance, to drive the heat energy to diffuse out of the equipment and exchange with the natural environment, which can greatly reduce the energy consumption of the data center and change its image of being a "power tiger".
  • the disclosed natural cooling data center can use an all-metal frame, the building structure has high strength and good energy absorption and deformation, and can withstand high-level typhoons and high-intensity earthquakes. Even a 14-level typhoon and a 7-level earthquake (intensity 8) are unlikely to affect the building structure.
  • a metal expansion frame can be set on the outer wall to prevent the building structure from being damaged in a storm or rainstorm.
  • a removable outer baffle or insulation layer can be flexibly set up to block wind and rain, and limit the entry of humid rain and/or cold air. It can be seen that the natural cooling data center disclosed in the present invention is not only energy-saving, but also can be flexibly set up and expanded as needed, can resist extreme weather attacks, and is easy to disassemble and maintain.
  • the natural cooling data center and the manufacturing method thereof disclosed in the present invention have at least one of the following beneficial effects:
  • the naturally cooling data center disclosed in the present invention does not rely on any external input energy, but only relies on its own endogenous power, or only needs a small amount of energy to assist in driving, to drive the heat energy to diffuse out of the equipment and exchange with the natural environment.
  • the energy consumption is extremely low, which meets the requirements of a general power data center and can greatly reduce the heat dissipation cost.
  • the naturally cooled data center disclosed in the present invention is easy to repair and maintain, with low subsequent maintenance costs, which reduces the system PUE value, construction costs and maintenance costs, and achieves the effect of energy conservation and emission reduction;
  • the naturally cooled data center disclosed in the present invention is transparent on all four sides, so that the main structure can be connected with the outside world in the horizontal direction.
  • the natural wind from the surrounding environment can be largely introduced into the main structure for heat dissipation, so that the interior of the main structure can efficiently dissipate heat by natural convection.
  • the hot air inside the main structure can also quickly float up to the rooftop natural ventilator through the chimney effect and be discharged into the atmosphere.
  • the steel frame structure does not require the construction of an additional cooling system, and can achieve zero-cost and efficient heat dissipation with the help of natural wind, thereby reducing the power consumption of the data center and achieving the effect of energy conservation and emission reduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种自然冷却数据中心及其制造方法。所述自然冷却数据中心包括至少一台电子设备,且所述自然冷却数据中心通过自然冷却方式冷却;所述自然冷却数据中心包括至少一容纳空间,用于容纳所述电子设备。本公开的自然冷却数据中心不借助任何外部能源即可实现高效冷却,能耗低,可降低冷却散热成本,降低数据中心PUE值;本公开的自然冷却数据中心制造方法简单,建设成本低,适合批量建造。

Description

自然冷却数据中心及其制造方法 技术领域
本公开涉及电子信息技术和散热技术领域,具体地涉及一种自然冷却数据中心及其制造方法。
背景技术
随着电子商务的兴起,企业用户会把越来越多的业务通过Internet或者Intranet来进行处理,各种商业模式都开始上“云”,这使得企业可以更好地节约成本、提高效率。数据中心(Internet Data Center,IDC)作为“网络云”的重要硬件支撑,数量和规模也逐年增长。数据中心用于在因特网上传递、加速、展示、计算、存储各种数据信息,逐渐成为各地的“电老虎”,主要是因为IT设备与制冷***的运转,都需要消耗大量的电能,尤其是传统的空调冷却***。
对于数据中心的冷却,目前主流的方式还是风冷和液冷,为了节能,陆续又提出了直接利用室外冷源,如新风,或间接利用室外冷源,如转轮热回收、冷水***等来为机房降温的方案。当采用室外新风作为冷源时,则必须保证新风的洁净度,需要进行过滤处理和通过风扇等设备引入机房。当采用传统的冷水***降温时,其管路庞大复杂,后期运维难度大,且管道泄漏会严重影响数据中心正常运营。
由此,在我国大力发展建设各种数据中心之际,如何提供既降低能耗,又能够减少维护复杂性的数据中心解决方案就是研发人员迫切需要解决的问题。
发明内容
本公开提供一种自然冷却数据中心及其制造方法。
作为本公开的一个实施方式,提出了一种自然冷却数据中心,所述自然冷却数据中心包括至少一台电子设备,且所述自然冷却数据中心仅通过自然冷却方式冷却。
作为本公开的另一个实施方式,还提出了一种自然冷却数据中心的制造方法,包括如下步骤:
建设至少一容纳空间,用于容纳至少一电子设备;其中,所述自然冷却数据中心以自然冷却的方式进行冷却。
附图说明
下面结合附图和实施例对本公开的方法和装置作进一步说明:
图1是本公开的边缘自然冷却数据中心的结构示意图;
图2A、2B分别是本公开的一层自然冷却数据中心的正视图和侧视图;
图3A、3B分别是本公开的四层自然冷却数据中心的正视图和侧视图;
图4是本公开的自然冷却电子设备的第一种实施方式的结构示意图;
图5是本公开的自然冷却电子设备的第二种实施方式的结构示意图;
图6是本公开的自然冷却电子设备的第三种实施方式的结构示意图;
图7A、7B分别是本公开的自然冷却电子设备的第四种实施方式的结构示意图及快装结构的***图;
图8是本公开的自然冷却电子设备与立面的安装位置示意图,其中(A)-(C)分别是一个面、两个面和三个面接触的示意图;
图9是本公开的自然冷却电子设备悬挂于方框型机柜上的一种实施方式的结构示意图;
图10是本公开的自然冷却电子设备悬挂于方框型机柜上的另一种实施方式的结构示意图;
图11是悬挂有本公开的自然冷却电子设备的烟囱效应型机柜的立体图;
图12A-12C分别是本公开的烟囱效应型机柜的底座的俯视图、悬挂有本公开的自然冷却电子设备的烟囱效应型机柜的底座的仰视图,以及金属地板的俯视图;
图13A、13B分别是安装有太阳能电池板的自然冷却数据中心的正视图和立体图;
图14是本公开具有屋顶的雨水收集池和地底的冷却水储存池的自然冷却数据中心的结构示意图;
在上述附图中,附图标记含义如下:
1  自然冷却电子设备       2  电子元器件
3  封闭外壳               4  设备本体冷却单元
5  接触导热面             6  设备外部冷却单元
7  方框型机柜             8  烟囱效应型机柜
9  全钢建筑               10 自然通风器
11 接触固定面
13 立面                   14 地板
31 壳体                   32 盖体
35 弹簧销
71 导热框架               72 机柜冷却单元
82 气流通道               84 底座
91 太阳能电池板           92 雨水收集池
93 冷却水储存池
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开作进一步的详细说明。
本公开中部分术语含义如下:
电子设备,是指由晶体管、电子管、集成电路等电子元器件组成,应用电子技术(包括软件)发挥作用的设备。电子设备包括各种采用了模拟或数字电路进行检测、控制、计算、通讯等功能的设备。
IT(Information Technology),即信息技术。
IT设备,是指进行信息技术处理的设备,也有将其限定为在机架上装载的任何设备(称为机架装载设备),这类设备通常包括服务器、专用存储阵列、网络交换机和路由器、供配电和远程管理设备等。
数据中心,是指“由计算机场地(机房)、其它基础设施、信息***软硬件、信息资源(数据)和人员以及相应的规章制度组成的实体”。本公开中,数据中心既包括高度集中管理的互联网数据中心(IDC)、国家数据中心(NDC)和企业数据中心(EDC),也包括布置在靠近用户端的边缘数据中心(Edge Data center)。
封闭外壳,包括全封闭外壳和半封闭外壳,全封闭外壳能对至少部分电子元器件进行完全封闭处理,半封闭外壳是在全封闭外壳的基础上有一定的开孔或开口。
机柜,用于固定电子器件和/或设备,为其提供容置环境和防护的设备。由于本公开中的机柜是开放式架构,因此“机柜”和“机架”可以互用。
自然冷却,也称“自然散热”,是指不借助任何外部动力源,不依赖强迫致冷和强迫对流手段,可以使电子设备正常工作的冷却/散热方式。本公开中,所述的自然冷却是仅靠自然环境的自然风,或者设备内生驱动力驱动的流体流动来实现冷却/散热。本发明所述的内生驱动力包括蒸发腔的蒸发冷凝、虹吸效应、加热空气后热空气自发上升、液体受热自发上升等。
PUE(PowerUsage Effectiveness,电能使用效率),是评价数据中心能源效率的指标,指数据中心消耗的所有能源与IT负载消耗的能源的比值。PUE=数据中心总能耗/IT设备能耗,其中数据中心总能耗包括IT设备能耗和制冷、配电等***的能耗,其值大于1,越接近1表明非IT设备耗能越少,即能效水平越好。
通透率,是指在所述数据中心正常工作时,房间开口通风的面积占房间六个面总面积的百分比。例如数据中心工作时,保持房间四面没有墙,完全敞开,地板和房顶(上一层房间的地板)有透气孔,则通透率=所有这些开孔通风的面积/房间六个面的总面积。
随着标准的不断制订和完善,数据中心的建设和发展逐渐发展成某几类固定模式,例如通常需要保证数据中心内部空间的温湿度,保证空气的洁净度等。数据中心的冷却方式主要为强制风冷和液冷,目前比较成熟的冷却方式包括空调制冷、带冷却塔的间接液冷、带有复杂换热设备的浸没液冷等,这些冷却方式都存在高耗能、高成本的弊端,现有技术中也针对 这些弊端而提出了不少改进,例如引入新风,或者是借助天然水体等。但由于上述标准的约束,数据中心的空间封闭,外部冷源的引入仍然需要采用风扇、水泵等需要消耗动力的驱动设备。随着数据中心的建设热潮,数据中心越建越大,电能消耗占总运营成本的比例也一直居高不下(据报道2025年将达50%左右),如何降低数据中心的日常能耗,低成本、高质量的运营,是数据中心的研发和制造产业技术人员迫切需要解决的技术问题。
对此,本发明人在深入研究之后,提出了一种与现有的数据中心集中强制冷却完全不同的思路。这一思路打破了数据中心一直以来都是采用集中强制冷却的思维定式,克服了本领域技术人员的偏见,可以省去强制冷却的高能耗及高成本,极大地降低整个数据中心的运营和维护成本。此外,上述思路也不是简单的复古思想,虽然散热领域早期确实提出了通过加大散热器体积实现自然冷却的方案,但是当现代化的、高集成度、高发热功率的数据中心需要冷却时,本领域技术人员并不会再去回溯这种笨重低效的散热方式,散热片体积太大会给***的安装和维护带来极大的麻烦,散热片的布局、电子设备的拆装检修、设备重量太大需要额外的支撑等都需要折腾技术人员大量的研发精力,因此本领域技术人员对于采用外加的笨重散热片进行自然冷却的思路有着强烈的技术偏见。本公开通过采取各种先进的自然冷却技术,并将自然冷却放在整个数据中心的范畴内进行综合考量,辅助设计各种横向风/纵向风冷却通道,以及特殊设计的机柜和机架,才提出了一种新的自然冷却思路,该方案通过在设备级就以自然冷却的方式将电子设备的单位面积热流密度降低到设定阈值以下,通过尽量将每一个电子设备的热量都扩散到其本体冷却单元、外部冷却单元上进行自然冷却,通过整个数据中心四面敞开让自然风帮助冷却设备,通过整个数据中心的建筑及部件变成一个大的散热器,来降低制冷设备能源的消耗。
具体地,本公开公开了一种自然冷却数据中心,所述自然冷却数据中心包括至少一台电子设备,且所述自然冷却数据中心仅通过自然冷却方式冷却,从而不依赖强迫致冷和强迫对流手段,就可以使所有电子设备进行正常工作。
其中,所述自然冷却数据中心可以包括至少一个容纳空间,用于容纳所述电子设备。容纳空间也可以为多个,例如一排单层房屋,若干层多层 建筑等;所述自然冷却数据中心可以包括一个或多个房间,可以分布在一层或多层的建筑物中。所述自然冷却数据中心的建筑结构主体例如可采用钢架、铝合金框架、木结构、混凝土结构、高分子膜、高分子纤维等来建造;优选地,可以采用高导热系数材料建造,从而其内容纳的所述自然冷却电子设备产生的部分热量能够传递到所述建筑结构主体上,并以自然冷却的方式传递到自然环境,不再借助外部输入能源强制制冷,达到节能环保的目的。进一步优选地,所述自然冷却数据中心的建筑结构主体可以采用钢材或铝材制造。
其中,所述自然冷却数据中心优选采用模块化结构,通过拼装的形式实现快速搭建成型。模块化结构例如包括标准化的、工厂预制的建筑部件,如承重立柱、框梁、墙板、地板安装框架(工字钢)、地板、带自然通风器的屋顶、外墙板、外墙百叶窗、制式机柜、风扇墙等。
其中,所述自然冷却数据中心可以采用开放式结构,即通透率不为零的结构,优选所述自然冷却数据中心的通透率大于等于5%,更优选大于等于33%,进一步优选大于等于60%。作为一个优选实施方式,所述自然冷却数据中心例如四面都没有外墙,允许自然风穿堂过;或者四面有保温外墙,但墙上开设有可控制进风大小的窗户,工作时窗户保证自然风自由进出。
其中,所述自然冷却数据中心的至少一个水平方向设置有遮挡结构,所述遮挡结构例如可以为卷帘门结构、卷帘膜结构、窗户结构、折叠屏障、推拉屏障中的任意一种,所述遮挡结构能够封闭或打开,以形成开放式结构;作为优选,所述自然冷却数据中心的四个方向也可以安装百叶窗形挡板,所述百叶窗形挡板的转轴为水平方向的轴,可以调节挡板转动的角度,来调节进入室内的风量。在冬天或极冷区域,例如南北极,可以减少冷风摄入量,保证自然冷却数据中心内的设备在合适温度区间运行。此外,所述百叶窗形挡板的间隙处也可以设置纱窗或过滤网,适当减少粉尘等。
其中,优选所述自然冷却数据中心的每一层均采用具有贯通结构的地板,从而使地板下方气流能够通过所述贯通结构向上运动。所述贯通结构例如可以是特定排列方式的小孔径的通孔,或者是大面积的镂空区域。
作为优选,所述自然冷却数据中心的地板由高导热系数的材料制成,所述高导热系数的材料包括金属和/或非金属,优选自铝合金、铜合金、镁合金、镁锂合金、银、碳钢、不锈钢、高导热率陶瓷(High Thermal Conductivity Ceramic Materials)、碳化硅、铝基碳化硅、石墨复合材料、金刚石复合材料、石墨烯复合材料等中的至少之一。
本公开的自然冷却数据中心中例如可以使用如下所述的机柜,所述机柜采用开放式结构,优选为四面开放结构,进一步优选为六面无面板的全敞开结构。所述机柜例如包括导热框架或导热板,以及用于固定所述自然冷却电子设备的接触固定面;所述接触固定面具有与所述自然冷却电子设备的接触导热面相匹配的外形轮廓,通过其将所述接触导热面传递的热量传导至所述导热框架或导热板上进行自然冷却;其中,所述自然冷却电子设备包括对所述自然冷却电子设备的电子元器件进行封闭处理的封闭外壳,所述接触导热面设置于所述封闭外壳外表面,所述自然冷却电子设备的发热通过热传导的方式传递到所述封闭外壳上的接触导热面上。
作为优选,所述机柜还可以包括机柜冷却单元,扩散到所述导热框架或导热板上的热量进一步被传导到所述机柜冷却单元上自然冷却。
作为优选,例如可以通过热管、均温板、高导热率的金属或非金属导热结构使热量均匀分布在所采用的导热框架、导热板和/或机柜冷却单元的表面。
作为优选,所述接触固定面和所述接触导热面之间还设有接触固定装置,所述接触固定装置采用快装结构,方便快速安装拆卸。
作为优选,所述机柜为方框型机柜,具有框架式结构,优选为矩形框架结构。
作为优选,所述机柜为烟囱效应型机柜,具有烟囱效应型结构,所述烟囱效应型结构为所述烟囱内部的气流通道,或者位于所述机柜表面。
其中,所述机柜的导热框架例如可以进行各种变形,例如变成平板状、柱状、螺旋状、双螺旋状、球形等,只要能够扩大散热面积,且不阻碍自然风对设备的冷却。更优选地,所述机柜的导热框架的变形还能够形成自发的气流通道,加速气体的流动,提高冷却效率,例如,在所述机柜的导 热框架内部或表面形成与屋顶烟囱贯通的连续气流通道,或者在室内形成不同温区而带动周边气流向中间的流动,等等。
作为优选,所述自然冷却数据中心例如可以通过上下贯通的地板及屋顶的自然通风器等设置,形成纵向风的流道,利用烟囱效应来增强自然冷却的效率。当自然冷却数据中心内的电子设备采用烟囱效应型机柜来挂载时,烟囱效应型机柜内部的气流通道直通屋顶,有强烈的“烟囱效应”,而由于上下贯通的地板,在机柜外表面的上升热气流同样也可以形成“烟囱效应”,同样也可以形成纵向风的流道。当自然冷却数据中心内的电子设备采用方框式机柜承载时,由于没有内部气流通道,则只有机柜外表面的上升热气流形成的“烟囱效应”,形成纵向风的流道。
当采用烟囱效应型机柜时,所述自然冷却数据中心优选第一层下设置一个夹层(底层)作为进气层,进气层的层顶设置若干穿透层板的进气口并与上一层的烟囱效应型机柜底部连通,进气层的四周侧的壁上可以设置开口进风,在开口中也可以设置风机辅助加强空气流动。也可以第一层直接设置在地面(底层),此时烟囱效应型机柜底部朝向四周设置进气口。
作为优选,上述进气口开口朝向例如采用螺旋状排列,从而进入的空气在烟囱效应型机柜内形成螺旋型增强气流,避免彼此干扰削弱气流。
所述烟囱效应型机柜的气流通道中还例如可以包括能够调节气流大小的阀门或挡板。所述阀门或挡板可以是旋转式,也可以是翻转式,或开闭式;可以设置在气流通道的任意位置,只要方便操作,但至少在底层进气口处应该要设置一组,因为从源头更利于控制,避免不利影响。
所述自然冷却数据中心还可以包括位于屋顶的排气结构,用于将上下贯通的热气流从屋顶排出;所述排气结构优选为自然通风器或无动力风帽。当楼层比较高、烟囱效应型机柜布局比较多时,优选采用自然通风器,其位于屋顶正中,将所有烟囱效应型机柜的上升气流汇聚。当烟囱效应型机柜比较少时,例如也可以采用无动力风帽,每一个烟囱效应型机柜对应一个烟囱,在烟囱顶部设置一个无动力风帽。通过自然通风器和无动力风帽,可以增强烟囱效应,提高烟囱效应型机柜的冷却效率,同时隔绝雨水进入气流通道内部。
所述自然冷却数据中心还可以设置若干风机,所述风机用于直吹所述自然冷却电子设备和/或机柜进行冷却,或者,不直吹而是辅助所述自然冷却数据中心内部的热空气排出。所述风机可以组成风扇墙,也可以分立式排列。作为优选,所述风机例如可以位于地板下方或立墙进风一侧,用于吹动空气形成气流,和/或,所述风机也可以位于屋顶或立墙出风一侧,用于抽吸空气形成气流。
所述自然冷却数据中心还可以设置若干可拆卸的导风板,用于在风机工作时引导冷空气流经所述自然冷却电子设备。导风板例如可以是独立设置,独立支撑,固定在地板或墙壁上;也可以是机柜的一部分,例如设置成口径逐渐收缩的缩口形状,对准自然冷却电子设备上的设备本体冷却单元和/或机柜上的设备外部冷却单元。
其中,所述自然冷却数据中心例如还可以适当布置太阳能电池板来提供部分能源,太阳能电池板的布置不能遮挡自然风的通路,因此在设置太阳能电池板时,既需要考虑太阳光的角度,即太阳光在太阳能电池板上的投影面积,又需要考虑常年自然风的方向,在设置时尽量利用屋顶、窗户以下的屋檐空间以及地面,所述自然冷却数据中心地面一层可以空出来作为办公、停车等其他用途,通过将主要发热设备都设置在高层,更容易受到自然风的吹拂而加快散热效率,也能够加高楼层,增强烟囱效应。
其中,所述自然冷却数据中心例如还可以利用太阳能电池板产生的电能驱动风机,引导或辅助控制所述自然冷却数据中心中由于受热自发运动的气流,使其形成稳定连续的气流来加速冷却。
其中,所述自然冷却数据中心例如也可以适当增加液冷,所述液冷设备属于自驱动或微驱动的自然冷却液冷设备,例如通过在屋顶屋檐下设置雨水收集池,或者在地底一定深度设置冷却水储存池,然后利用重力或微型水泵给予相对较小的推动力,来循环带走整个机柜甚至整个钢架建筑的热量,热量通过屋顶的无动力水冷塔来散发热量,或者通过与地底的低温土层换热来进行散热。那种高耗电、强制冷却的方案不在本公开考虑范围之内。
其中,所述自然冷却数据中心中,自然冷却电子设备例如可以位于地板、机柜(机架)、货架、立柱和/或立面(含墙壁)上。作为优选,所述自然冷却电子设备通过接触导热面将热量传导到对应结构上增强散热。
其中,如图1-14所示,本公开的自然冷却数据中心中使用的电子设备可以是各种之前提出的自然冷却电子设备,例如本公开人之前申请的几件专利申请披露的自然冷却电子设备。本公开的自然冷却数据中心中使用的电子设备也可以是如下所述的一种自然冷却电子设备1,包括:
封闭外壳3,用于对所述自然冷却电子设备的至少部分电子元器件2进行封闭处理,并通过热传导的方式将所述自然冷却电子设备内部产生的热量导出至封闭外壳3;
其中,所述自然冷却电子设备仅通过自然冷却方式进行冷却。
其中,所述封闭外壳3例如由高导热系数(例如大于等于10W/m·K,优选大于等于30W/m·K)的材料制成,所述高导热系数的材料可以包括金属和/或非金属,优选自不锈钢、碳钢、铝合金、镁合金、镁锂合金、铜合金、银、高导热率陶瓷(High Thermal Conductivity Ceramic Materials)、铝基碳化硅、石墨复合材料、金刚石复合材料、石墨烯复合材料中的至少之一。其中,高导热率陶瓷例如可以为氧化铍、氮化铝、碳化硅、氮化硅、氧化铝和聚晶金刚石(PCD)陶瓷等。
其中,所述封闭处理包括全封闭和半封闭处理,所述半封闭处理例如还可以包括在所述封闭外壳3上形成透气孔的步骤。
其中,所述封闭外壳3优选包括若干壳体31和可选择的、与之配套封闭的盖体32;所述自然冷却电子设备的发热元器件2贴合在所述壳体31上,或者,所述自然冷却电子设备1的发热电子元器件2通过热管、均温板、高导热系数金属或非金属导热结构将热量传导到所述封闭外壳3上。
作为优选,所述壳体31可以是一个,另外至少有一个与之配套,形成完整封闭空间的盖体32。所述壳体31也可以是两个,即两个半边,合并在一起形成完整封闭空间,此时可以没有盖体32。所述壳体31和盖体32还可以是其它数量,只要最后能合并在一起形成完整封闭空间即可。
作为优选,所述壳体31可以是一体成型的铝合金壳体31,例如是通过铝挤工艺一体成型的、一端通过焊接形成封堵、直四棱柱形的铝合金壳 体31。与之配合的盖体32则可以是与上述通过焊接形成封堵的端盖类似,通过快拆装置或可拆卸的螺栓等与壳体31连接固定。
作为优选,所述封闭外壳3能够对所述自然冷却电子设备1的至少部分电子元器件2提供普通的防水保护,例如IEC IP在6以上的防强溅射保护;进一步优选的,所述封闭外壳3能够对所述自然冷却电子设备1的部分电子元器件2提供防水防尘保护,例如IP56;再进一步优选的,所述封闭外壳3对所述自然冷却电子设备1的部分电子元器件2提供防水防尘、防霉菌和防盐雾的“三防”保护;最优选的,例如进行气密封处理。
作为优选,所述热管、均温板、高导热率的金属或非金属导热结构与所述自然冷却电子设备1的发热电子元器件2之间,或者所述封闭外壳3与所述自然冷却电子设备1的发热电子元器件2之间,或者所述封闭外壳3与所述热管、均温板、高导热率的金属或非金属导热结构之间,通过低热阻热界面材料实现热传递,所述低热阻热界面材料例如选自液态金属、相变材料、导热硅脂、导热胶、导热垫和/或铟箔。
作为优选,还可以通过热管、均温板、高导热率的金属或非金属导热结构使热量均匀分布在所述封闭外壳3表面,使整个封闭外壳3表面都能够发挥散热的作用。
通过上述设计,对于一些发热功耗相对低的场合,比如数据存储中心,仅仅是通过上述封闭外壳的设计,就可以充分利用自然风对设备进行冷却,极大地降低在冷却设备上投入的设备成本和运营费用。
其中,所述自然冷却电子设备1还可以包括设备本体冷却单元4,位于所述封闭外壳3外表面,用于将所述封闭外壳3的至少部分热量传递至自然环境。
作为优选,所述设备本体冷却单元4可以与所述封闭外壳3一体成型,从而简化了加工工艺。当然,也可以采用分体式设备本体冷却单元4,从而可以后期基于具体需求进行添加,设置更加灵活高效。
作为优选,所述设备本体冷却单元4为翅片散热器或无外部能源驱动的蒸发冷凝器。
作为优选,所述设备本体冷却单元4外表设置发射率大于等于0.8的热控涂层,既便于表面辐射散热,也减少粘附灰尘,便于吸尘器吸尘处理。
作为优选,所述设备本体冷却单元4包括若干散热鳍片,任意两散热鳍片间的间距在5~20mm之间,进一步优选为10mm;所述散热鳍片的厚度在0.5~5mm之间,优选为2mm;所述散热鳍片的高度在10~200mm之间。进一步优选的,所述散热鳍片为垂向排列,与上升热空气的方向一致。
作为优选,例如可以通过热管、均温板、高导热率的金属或非金属导热结构使热量均匀分布在所述设备本体冷却单元4的表面。
设备本体冷却单元4的加入可以使自然冷却数据中心冷却效率更高,胜任更多散热场景,例如低功率运行的数据计算中心等场景。
其中,所述自然冷却电子设备1例如还可以包括接触导热面5,所述接触导热面5设置于所述封闭外壳3外表面,用于将所述封闭外壳3上的部分热量传导到与所述接触导热面5接触的设备外部冷却单元6上;所述设备外部冷却单元6位于所述自然冷却电子设备1之外,不属于所述自然冷却电子设备1,用于以自然冷却的方式,将所述自然冷却电子设备1封闭外壳3上的部分热量传递至自然环境。所述设备外部冷却单元6可以有多种选择,在本公开中例如可以是下文介绍的方框式机柜、烟囱效应型机柜、全钢架建筑等,还可以是天然流动水体换热设备、自然蒸发冷却设备(不带强制冷却和换热)等,本公开也不限于此,只要能够实现自然冷却的设备均可以囊括进来。
作为优选,通过热管、均温板、高导热率的金属或非金属导热结构将热量从所述自然冷却电子设备1的发热电子元器件2上传导到所述接触导热面5上,并在整个接触导热面5表面均匀分布。
作为优选,所述接触导热面5的面积为所述封闭外壳3总外表面的1%~90%之间,优选在16.7%~50%之间;
作为优选,所述接触导热面5的粗糙度Ra优于3.2μm(即在3.2μm以下),优选0.4μm以下;
作为优选,所述接触导热面5的平面度优于0.3mm/(100mm*100mm)(即在0.3mm/(100mm*100mm)以下),优选0.1mm/(100mm*100mm)。
作为优选,所述接触导热面5的形状为平面,或者,为与设备外部冷却单元6进行接触导热部位的轮廓相匹配的形状;接触导热面5内部及与 之匹配的接触导热部位的内部例如均埋设彼此接触或邻接的热管、均温板、高导热率的金属或非金属导热结构,增大彼此传热效率。
作为优选,所述接触导热面5与所述设备外部冷却单元6之间通过低热阻热界面材料实现热传递,所述低热阻热界面材料优选选自液态金属、相变材料、导热硅脂、导热胶、导热垫和/或铟箔。
作为优选,通过所述接触导热面5散发的热量例如可以占所述自然冷却电子设备内部产生的总热量的十分之一以上,优选为三分之一以上,进一步优选为至少一半以上。所述接触导热面5散发的热量越多,要求从发热电子元器件2向接触导热面5的传热效率越高,对其中热管、均温板、高导热率的金属或非金属导热结构的导热系数就要求越高。
作为优选,当所述自然冷却电子设备以最大功率运行时,本公开能够将所述封闭外壳3的单位面积热流密度控制在第一阈值以下;所述第一阈值例如设置为0.1W/m2,优选设置为0.04W/m2
其中,所述自然冷却电子设备例如还包括临近或紧贴所述设备本体冷却单元4设置的风扇,用于通过直吹或引导气流流经所述设备本体冷却单元4来辅助散热。
其中,所述自然冷却电子设备例如包括IT设备和其它功能设备;所述IT设备可以包括计算设备、存储设备和网络设备中的至少之一;所述其它功能设备可以包括供配电设备、接口设备和安全防护设备中的至少之一。其中,对于计算设备,例如包括CPU、GPU等运算部件;对于存储设备,例如包括磁存储、光盘存储、磁光存储等,其中磁存储例如进一步包括硬盘(HD)、固态硬盘(SDD)、EPPRAM等。
在一个优选实施方式中,所述IT设备例如为计算设备,其中例如包含1、2、3、4、5、6、7、8、16、32、64、128、……个CPU和/或GPU,可以位于1、2、3、4、5、6、7、8、……块线路板上,CPU和/或GPU发热元件背面紧贴低热阻热界面材料和热管、均温板、高导热率的金属或非金属导热结构实现热传递,以便高效将其产生的热量输送到设备本体冷却单元4和/或接触导热面5。
在又一个优选实施方式中,所述IT设备例如为存储设备,其中例如包含1、2、3、4、5、6、7、8、16、32、64、128、……个机械硬盘(HD)、 固态硬盘(SDD)和/或单光盘或多光盘光驱设备(CD、DVD、SVCD、蓝光)等。存储设备的发热位置附近同样设置热管、均温板、高导热率的金属或非金属导热结构等,以便高效将其产生的热量输送到设备本体冷却单元4和/或接触导热面5。
在一个优选实施方式中,所述IT设备例如为供配电设备,其中包括若干功率较大的变压器和/或大电容,供配电设备的发热位置(例如变压器的硅钢片)同样紧贴热管、均温板、高导热率的金属或非金属导热结构等,以便高效将其产生的热量输送到设备本体冷却单元4和/或接触导热面5。
在一个优选实施方式中,所述IT设备例如通过缓冲防震结构来封装在封闭外壳3中,从而在安装时不小心掉落也不会损坏内部电子元器件2。
其中,所述自然冷却电子设备内部例如还可以设置有加热单元,用于使所述自然冷却电子设备在低温下也能够正常启停;作为优选,所述加热单元例如为加热膜、PTC加热片、TEC半导体致冷器等,在室内温度低于0℃时,启动上述加热单元,可以使所述自然冷却电子设备内部的温度高于0℃,从而保证所述自然冷却电子设备能够正常开机。正常开机后设备发热电子元器件产生的热量,能够维持设备一直在适当温区工作,此时可以结束上述加热单元的工作状态。
由此,由于本公开不同于传统的自然冷却数据中心,先将IT设备采用封闭外壳3封装,通过封闭外壳3来封闭保护核心部件,所以可以不避潮湿和灰尘,让自然冷却数据中心处于敞开式空间中,让室外风可以无阻碍、自由吹到设备机柜上;并且设备本身的本体散热元件4和接触导热面5极大地扩大了散热单元体积,可以减少强制制冷的能耗,适用于西北、东北等室外温度低,比较空旷,房租便宜的地方建立大型IDC。再进一步地,由于配置的散热结构均是经过精心计算和设计,满足特定阈值要求,从而可以保证很多台IT设备使用时,均能够满足设计要求,不会相互干扰或过度设计增加成本。
本公开还提出了一种自然冷却数据中心的制造方法,包括如下步骤:
建设至少一容纳空间,用于容纳至少一电子设备;其中,所有所述电子设备以自然冷却的方式进行冷却。
其中,所述自然冷却数据中心例如可以采用开放式结构,即通透率不为零的结构,优选所述自然冷却数据中心的通透率大于等于5%,更优选大于等于33%,进一步优选大于等于60%。作为一个优选实施方式,所述自然冷却数据中心。
其中,可以采用钢架、铝合金框架、木结构、混凝土结构、高分子膜结构或高分子纤维来制造所述自然冷却数据中心的建筑结构主体;作为优选,所述自然冷却数据中心的建筑结构主体采用高导热系数材料制造,从而其内容纳的所述电子设备产生的部分热量能够传递到所述建筑结构主体上,并以自然冷却的方式传递到自然环境;进一步优选地,所述自然冷却数据中心的建筑结构主体采用钢材或铝材制造。
其中,所述自然冷却数据中心采用模块化结构设计,通过拼装的形式实现快速搭建成型。
其中,在所述自然冷却数据中心的至少一个水平方向设置遮挡结构,所述遮挡结构为卷帘门结构、卷帘膜结构、窗户结构、折叠屏障、推拉屏障中的任意一种,所述遮挡结构能够封闭或打开,以形成开放式结构;作为优选,所述自然冷却数据中心的至少一个水平方向安装有百叶窗形挡板,所述百叶窗形挡板的转轴为水平方向的轴,能够调节百叶窗形挡板转动的角度来调节风量;所述百叶窗形挡板的间隙处设置有纱窗或过滤网。
其中,所述自然冷却数据中心的每一层均采用具有贯通结构的地板,从而使地板下方气流能够通过所述贯通结构向上运动;作为优选,所述自然冷却数据中心的地板由高导热系数的材料制成,所述高导热系数的材料包括金属和/或非金属;所述高导热系数的材料优选为不锈钢、碳钢、铝合金、镁合金、镁锂合金、铜合金、银、高导热率陶瓷(High Thermal Conductivity Ceramic Materials)、碳化硅、铝基碳化硅、石墨复合材料、金刚石复合材料、石墨烯复合材料中的至少之一。
其中,所述自然冷却数据中心的底层设置有若干进气口;作为优选,所述自然冷却数据中心的气流通道中还包括能够调节气流大小的阀门或挡板,所述阀门或挡板至少设置于底层进气口处。
其中,所述自然冷却数据中心还包括位于屋顶的排气结构,用于将上下贯通的热气流从屋顶排出;所述排气结构优选为自然通风器/无动力风帽。
其中,所述自然冷却数据中心中还设置有若干风机,所述风机用于直吹所述自然冷却电子设备和/或机柜进行冷却,或者,不直吹而是辅助所述自然冷却数据中心内部的热空气排出;作为优选,所述风机位于地板下方或立墙进风一侧,用于吹动空气形成气流,和/或,所述风机位于屋顶或立墙出风一侧,用于抽吸空气形成气流。
其中,所述自然冷却数据中心中还设置若干可拆卸的导风板,用于在风机工作时引导冷空气流经所述电子设备。
其中,所述自然冷却数据中心还布置有太阳能电池板来提供能源,所述太阳能电池板的布置不遮挡自然风进入所述自然冷却数据中心的路径。
其中,所述自然冷却数据中心中还设置有液冷管道,所述液冷管道连接于水源,用于通过重力自驱动或水泵驱动来带走所述电子设备产生的部分热量;作为优选,所述水源为位于屋顶的雨水收集池或地下的冷却水储存池。
所述自然冷却数据中心中,电子设备位于地板、机柜(机架)、货架、立柱和/或立面(含墙壁)上;作为优选,所述电子设备将热量传导到对应结构上增强散热。
下文将通过具体实施例来对本公开作进一步阐述说明。需要注意的是,下述的实施例仅是举例说明,而不是用于限定本公开。
实施例1
如图4所示,本公开实施例1公开了一种发热电子元器件2为存储设备的自然冷却电子设备1。所述存储设备为硬盘组,所述存储设备的发热部分(发热的电子元器件2)与高导热系数的导热金属条(图中未示出)紧紧贴合,再紧贴封闭外壳3的壳体31,发热的电子元器件2产生的热量被传导到自然冷却电子设备1的封闭外壳3上,通过自然风和热辐射来进行自然冷却。
如图8(A)-8(C)所示,本公开实施例1的自然冷却电子设备1可以以不同方式设置于地板、机柜/机架、货架、立柱和/或立面(含墙壁)上,图中示出的就是与金属立面13及地板14的接触情况。如图8(A)所示,自然冷却电子设备1一个面接触金属立面13(或者烟囱效应型机柜 8外表面),接触导热面5的面积约为所述封闭外壳3外表面总面积的10%左右;如图8(B)所示,自然冷却电子设备1两个面与金属立面13(或者烟囱效应型机柜8外表面)接触,接触导热面5的面积约为所述封闭外壳3外表面总面积的20%左右;如图8(C)所示,自然冷却电子设备1两个面接触金属立面13(或者烟囱效应型机柜8外表面),一个面接触地板14,接触导热面5的面积约为所述封闭外壳3外表面总面积的50%左右。
实施例2
如图5所示,本公开实施例2公开了一种发热电子元器件2为计算设备的自然冷却电子设备1。所述计算设备为包括一CPU和一GPU的主板,所述CPU和GPU背部通过导热硅脂与均温板紧紧贴合,均温板(图中未示出)将CPU和GPU产生的高热量传导到自然冷却电子设备1的封闭外壳3和设备本体冷却单元4上,所述封闭外壳3与设备本体冷却单元4一体成型,通过自然风和热辐射来进行自然冷却。
实施例3
如图6所示,本公开实施例3公开了一种发热电子元器件2为计算设备的自然冷却电子设备1。所述计算设备为包括一CPU和一GPU的主板,所述CPU和GPU侧面通过导热垫与高导热率的非金属,例如铝基碳化硅材料紧紧贴合,铝基碳化硅材料(图中左侧斜线表示部分)将CPU和GPU产生的高热量传导到自然冷却电子设备1的接触导热面5(左边黑色部分)上,所述接触导热面5与设备外部冷却单元6的接触固定面11(右边黑色部分)相贴合,将所述CPU和GPU产生的高热量以热管(图中右侧斜线表示部分)高效地传导到设备外部冷却单元6上,再进一步通过自然风和热辐射来进行自然冷却。
实施例4
如图7A所示,本公开实施例4公开了一种发热电子元器件2为计算设备的自然冷却电子设备1。所述计算设备为包括多个CPU和GPU的主板,所述CPU和GPU侧面通过导热垫与高导热率的非金属,例如石墨烯 材料紧紧贴合,铝基碳化硅材料(图中左侧斜线表示部分)将CPU和GPU产生的高热量传导到自然冷却电子设备1的封闭外壳3、设备本体冷却单元4和接触导热面5(左边黑色部分)上,所述封闭外壳3与设备本体冷却单元4采用分立式设计,所述接触导热面5与设备外部冷却单元6的接触固定面11(右边黑色部分)相贴合,将所述CPU和GPU产生的部分高热量以热管(图中右侧斜线表示部分)高效地传导到设备外部冷却单元6上,再进一步通过自然风和热辐射来进行自然冷却。
如图7B所示,本公开实施例4的自然冷却电子设备1可以实现快装快拆,电子元器件2被封闭在包括壳体31和盖体32的封闭外壳3中,所述封闭外壳3上设置有可伸缩的弹簧销35来固定定位,快装时将设备本体冷却单元4套设在所述封闭外壳3上,使弹簧销35顶住位置即固定所述封闭外壳3;快卸时按压所述弹簧销35,使其缩回封闭外壳3内部,再滑动所述设备本体冷却单元4,打开所述封闭外壳3,取出其中封装的发热电子元器件2。
实施例5
如图9所示,本公开实施例5公开了一种将本公开的自然冷却电子设备1承载于方框型机柜7上的结构,该方框型机柜7包括导热框架71,导热框架71上设置有与所述自然冷却电子设备的接触导热面5外形轮廓相匹配的接触固定区域(图中未示出),所述接触固定区域通过热管将自然冷却电子设备1传导过来的部分热量扩散到导热框架71上,进行自然冷却。
实施例6
如图10所示,本公开实施例6公开了一种将本公开的自然冷却电子设备1承载于方框型机柜7上的结构,该方框型机柜7包括导热框架71和机柜冷却单元72,导热框架71上设置有与所述自然冷却电子设备的接触导热面5外形轮廓相匹配的接触固定区域(图中未示出),所述接触固定区域通过热管将自然冷却电子设备1传导过来的部分热量扩散到导热框架71和机柜冷却单元72上,进行自然冷却。
实施例7
如图11所示,本公开实施例7公开了一种将自然冷却电子设备1悬挂于烟囱效应型机柜8上的结构;所述烟囱效应型机柜8是机柜框架结构的一种变形,由方框变成内部空心的柱状结构,其主体结构由高导热率的铝合金材料制成,外表面设有若干个用于与自然冷却电子设备1的接触导热区5接触固定的设备固定安置区(图中未示出),用于将自然冷却电子设备1传导过来的部分热量扩散到整个烟囱效应型机柜8上,加热内部气流通道82内的空气形成“烟囱效应”来给整个设备自然冷却降温。
其中,所述烟囱效应型机柜8的底部焊接有与楼层工字钢形框架(图中未示出)固定连接的底座84,将所述烟囱效应型机柜8固定在房间内,同时金属地板和底座均为上下贯通设计,所述烟囱效应型机柜8内部的气流能够穿透金属地板和底座,与不同楼层的烟囱效应型机柜8内部的气流通道形成上下贯通的内部气流通道,一直通到屋顶的自然通风器(图中未示出)。
图12A-12C分别是底座84的俯视图、焊接有烟囱效应型机柜8的底座84的仰视图(从底面向上看),以及金属地板14的俯视图。从图中可以看出,底座84上有大量的镂空部分,可以让气流无阻碍的通过;金属地板14中间为金属网状结构,网眼处可以让气流无阻碍的通过,其也可以是多孔状结构。
实施例8
如图1所示,本公开实施例8公开了一种采用本公开的自然冷却电子设备1的边缘数据中心(Edge Data Center)。所述边缘数据中心包括一个简易防雨棚下放置的设备机箱,机箱内部承载有若干台本公开的自然冷却电子设备1。
实施例9
如图2A、2B所示,本公开实施例9公开了一种采用本公开的自然冷却电子设备1的自然冷却数据中心。所述自然冷却数据中心为互联网数据 中心(IDC)、国家数据中心(NDC)或企业数据中心(EDC)。所述自然冷却数据中心为一个设备层结构,设备层用柱子支起来,在下面(底层)形成一个进气空间,方便设置各种进气口和辅助风机。所述自然冷却数据中心采用全钢建筑9来实现,其柱子和金属地板14均由高导热率的钢材制成,实施例7的烟囱效应型机柜8按特定布局排列在房间内,房间四面通风,自然风作为横向风可以穿堂而过,且金属地板14采用如图12C所示的上下透气的网格板,从而保证从底层进入的空气穿过烟囱效应型机柜8的内部气流通道82直达屋顶的自然通风器10。由此,自然冷却数据中心的发热电子元器件2产生的热量通过传导扩散到烟囱效应型机柜8和金属地板14,并扩散到整个全钢建筑9上,整个楼房都成了散热器。此外,各个烟囱效应型机柜8内部的气流通道82由于加热冷空气产生上升热气流穿透楼板,形成整个建筑的“烟囱效应”,也辅助进行了自然冷却。
实施例10
如图3A、3B所示,本公开实施例10公开了一种采用本公开的自然冷却电子设备1的自然冷却数据中心。所述自然冷却数据中心为互联网数据中心(IDC)、国家数据中心(NDC)或企业数据中心(EDC)。所述自然冷却数据中心为四个设备层结构,设备层用柱子支起来,在下面(底层)形成一个进气空间,方便设置各种进气口和辅助风机。所述自然冷却数据中心采用全钢建筑9来实现,其柱子和金属地板14均由高导热率的钢材制成,实施例7的烟囱效应型机柜8按特定布局排列在房间内,房间四面通风,自然风作为横向风可以穿堂而过,且金属地板14采用如图12C所示的上下透气的网格板,从而保证从底层进入的空气穿过烟囱效应型机柜8的内部气流通道82直达屋顶的自然通风器10。由此,自然冷却数据中心的发热电子元器件2产生的热量通过传导扩散到烟囱效应型机柜8和金属地板14,并扩散到整个全钢建筑9上,整个楼房都成了散热器。此外,各个烟囱效应型机柜8内部的气流通道82由于加热冷空气产生上升热气流穿透楼板,形成整个建筑的“烟囱效应”,也辅助进行了自然冷却。
实施例11
实施例11公开了一种实施例10所述的自然冷却数据中心,只是如图13A、13B所示,该自然冷却数据中心的向阳面安装有太阳能电池板91,图13A、13B分别是该自然冷却数据中心的侧视图和立体图,如图所示,该自然冷却数据中心太阳能电池板91的布置不能遮挡自然风的通路,因此太阳能电池板91只布置在屋顶、窗户以下的屋檐空间以及地面支架上,从南面来的自然风可以无阻碍的进入全钢建筑9,吹拂房间内的烟囱效应型机柜8,从而对悬挂安装在其侧面上的自然冷却电子设备1进行自然冷却。
实施例12
实施例12公开了一种实施例10所述的自然冷却数据中心,只是如图14所示,在屋顶设置有雨水收集池92,在地底设置有冷却水储存池93。雨水收集池92可以通过在烟囱效应型机柜8的气流通道82内布设的冷水通道(图中未示出)来带走烟囱效应型机柜8甚至整个钢架建筑9的热量,冷水吸收热量后例如可以通过换热片(图中未示出)来自然冷却,或者在高热区蒸发或沸腾后回到屋顶的雨水收集池92上部再冷凝成液体。而冷却水储存池93可以通过在烟囱效应型机柜8的气流通道82内布设的冷水通道来带走烟囱效应型机柜8甚至整个钢架建筑9的热量,冷水吸收热量后可以通过与地底的低温土层换热来进行自然冷却。所述冷水通道可以利用重力或微型水泵给予相对较小的推动力来进行循环,或者通过相变实现循环。雨水收集池92和冷却水储存池93可以分别循环,也可以组成一个大循环,共同来实现自然冷却。
通过上述几个实施例可以看到,本公开的自然冷却数据中心不借助任何外部输入能源,仅依靠自身形成的内生动力,或者仅通过微动力辅助加强,就可以驱动热能扩散出设备并与自然环境进行交换,可以极大降低数据中心能耗,改变其“电老虎”的形象。
此外,由于本公开的自然冷却数据中心可以采用全金属框架,建筑结构强度高,吸能形变好,可以抵抗高等级台风和高烈度地震,即使是14级台风、7级地震(烈度8度)也难对建筑结构造成影响。另外,本公开虽然是四面开放结构,但可以在外墙设置金属扩展框架,在狂风暴雨或者 极寒的冬天时可以灵活地设置可拆卸的外挡板或保温层来遮风挡雨,限制潮湿雨水和/或冷空气的进入。由此可见,本公开的自然冷却数据中心不仅节能,还能根据需要进行灵活设置和扩展,能够对抗极端天气侵袭,便于拆卸和维护。
综上所述,本公开的自然冷却数据中心及其制造方法至少具备如下有益效果之一:
(1)本公开的自然冷却数据中心不借助任何外部输入能源,仅依靠自身形成的内生动力,或者仅需要微小能源辅助推动,就可以驱动热能扩散出设备并与自然环境进行交换,能耗极低,满足一般功率的数据中心的要求,可以极大地降低散热成本;
(2)本公开的自然冷却数据中心制造方法简单,原料易得,成本低,也不需要额外的水源和风源等,适合中国广大东北、西北地域的自然冷却数据中心的成批建设;
(3)本公开的自然冷却数据中心便于维修和维护,后期维护成本低,降低了***PUE值,减少了建设成本和维护成本,实现了节能减排的效果;
(4)本公开的自然冷却数据中心,四面通透,使得主体结构能够在水平方向上与外界连通,周围环境的自然风可以大量地汇入主体结构内部进行散热,使得主体结构的内部能够进行自然对流的高效散热,同时主体内部的热空气也可以通过烟囱效应快速上浮至屋顶自然通风器,排出至大气环境;钢架结构,无需额外建造冷却***,能够借助自然风实现零成本高效散热,降低了数据中心的电能消耗,实现了节能减排的效果。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (28)

  1. 一种自然冷却数据中心,其特征在于,所述自然冷却数据中心包括至少一台电子设备,且所述自然冷却数据中心通过自然冷却方式冷却。
  2. 根据权利要求1所述的自然冷却数据中心,其特征在于,所述自然冷却数据中心包括至少一个容纳空间,用于容纳所述电子设备;和/或
    所述自然冷却数据中心的建筑结构主体采用钢架、铝合金框架、木结构、混凝土结构、高分子膜结构或高分子纤维建造;和/或
    所述自然冷却数据中心的通透率大于等于5%;和/或
    所述自然冷却数据中心采用模块化结构,通过拼装的形式实现快速搭建成型。
  3. 根据权利要求2所述的自然冷却数据中心,其特征在于,
    所述自然冷却数据中心的建筑结构主体采用高导热系数材料制造,从而其内容纳的所述电子设备产生的部分热量能够传递到所述建筑结构主体上,并以自然冷却的方式冷却;和/或
    所述自然冷却数据中心的通透率大于等于33%;和/或
    所述自然冷却数据中心的至少一个水平方向设置有遮挡结构,所述遮挡结构为卷帘门结构、卷帘膜结构、窗户结构、折叠屏障、推拉屏障中的任意一种,所述遮挡结构能够封闭或打开,以形成开放式结构;和/或
    所述自然冷却数据中心的每一层均采用具有贯通结构的地板,从而使地板下方气流能够通过所述贯通结构向上运动;和/或
    所述自然冷却数据中心的底层设置有若干进气口;和/或
    所述自然冷却数据中心还包括位于屋顶的排气结构,用于将上下贯通的热气流从屋顶排出;和/或
    所述自然冷却数据中心还设置若干可拆卸的导风板,用于在风机工作时引导冷空气流经所述自然冷却电子设备;和/或
    所述自然冷却数据中心还布置有太阳能电池板来提供能源,所述太阳能电池板的布置不遮挡自然风进入所述自然冷却数据中心的路径;和/或
    所述自然冷却数据中心还包括液冷管道,所述液冷管道连接于水源,用于通过重力自驱动或水泵驱动来带走所述电子设备产生的部分热量;和/或
    所述自然冷却数据中心中,电子设备位于地板、机柜、货架、立柱和/或立面上。
  4. 根据权利要求3所述的自然冷却数据中心,其特征在于,
    所述自然冷却数据中心的通透率大于等于60%;和/或
    所述自然冷却数据中心的至少一个水平方向安装有百叶窗形挡板,所述百叶窗形挡板的转轴为水平方向的轴,能够调节百叶窗形挡板转动的角度来调节风量;以及,所述百叶窗形挡板的间隙处设置有纱窗或过滤网;和/或
    所述自然冷却数据中心的地板由高导热系数的材料制成,所述高导热系数的材料包括金属和/或非金属;和/或
    所述自然冷却数据中心的气流通道中还包括能够调节气流大小的阀门或挡板,所述阀门或挡板至少设置于底层进气口处;和/或
    所述排气结构为自然通风器和/或无动力风帽;和/或
    所述水源为位于屋顶的雨水收集池或地下的冷却水储存池;和/或
    所述电子设备通过接触导热面将热量传导到对应结构上增强散热。
  5. 根据权利要求4所述的自然冷却数据中心,其特征在于,所述高导热系数的材料选自不锈钢、碳钢、铝合金、镁合金、镁锂合金、铜合金、银、高导热率陶瓷(High Thermal Conductivity Ceramic Materials)、碳化硅、铝基碳化硅、石墨复合材料、金刚石复合材料、石墨烯复合材料中的至少之一。
  6. 根据权利要求1所述的自然冷却数据中心,其特征在于,所述自然冷却数据中心中的电子设备为自然冷却电子设备。
  7. 根据权利要求6所述的自然冷却数据中心,其特征在于,所述自然冷却电子设备包括封闭外壳,用于对所述自然冷却电子设备的至少部分电子元器件进行封闭处理,并主要通过热传导的方式将所述自然冷却电子设备内部产生的热量导出至封闭外壳。
  8. 根据权利要求7所述的自然冷却数据中心,其特征在于,所述封闭外壳由高导热系数的材料制成,所述高导热系数的材料包括金属和/或非金属;和/或
    所述封闭外壳包括壳体和至少一与之配套封闭的盖体;所述自然冷却电子设备的发热元器件贴合在所述壳体上,或者,所述自然冷却电子设备的发热元器件通过热管、均温板、高导热率的金属或非金属导热结构将热量传导到所述封闭外壳上;和/或
    所述壳体是一体成型的铝合金壳体;和/或
    所述封闭外壳对所述自然冷却电子设备的电子元器件提供防水防尘、防霉菌和防盐雾的“三防”保护;和/或
    所述封闭外壳能够对所述自然冷却电子设备的电子元器件提供气密封保护;和/或
    通过热管、均温板、高导热率的金属或非金属导热结构使热量均匀分布在所述封闭外壳的壳体表面。
  9. 根据权利要求8所述的自然冷却数据中心,其特征在于,
    所述封闭外壳的材质为铝合金、铜合金、镁合金、镁锂合金、银、碳钢、不锈钢、高导热率陶瓷(High Thermal Conductivity Ceramic Materials)、碳化硅、铝基碳化硅、石墨复合材料、金刚石复合材料、石墨烯复合材料中的至少之一;和/或
    所述热管、均温板、高导热率的金属或非金属导热结构与所述自然冷却电子设备的发热元器件之间通过低热阻热界面材料实现热传递。
  10. 根据权利要求9所述的自然冷却数据中心,其特征在于,
    所述低热阻热界面材料优选自液态金属、相变材料、导热硅脂、导热胶、导热垫和/或铟箔。
  11. 根据权利要求6所述的自然冷却数据中心,其特征在于,所述自然冷却电子设备还包括设备本体冷却单元,位于所述封闭外壳外表面,用于将所述封闭外壳的至少部分热量传递至自然环境。
  12. 根据权利要求11所述的自然冷却数据中心,其特征在于,所述设备本体冷却单元与所述封闭外壳一体成型;和/或
    所述设备本体冷却单元为翅片散热器或无外部能源驱动的蒸发冷凝器;和/或
    所述设备本体冷却单元外表面设置发射率大于等于0.8的热控涂料;和/或
    所述设备本体冷却单元包括若干散热鳍片,任意两散热鳍片间的间距在5~20mm之间;所述散热鳍片的厚度在0.5~5mm之间;所述散热鳍片的高度在10~200mm之间;和/或
    通过热管、均温板、高导热率的金属或非金属导热结构使热量均匀分布在所述设备本体冷却单元的表面。
  13. 根据权利要求12所述的自然冷却数据中心,其特征在于,
    所述设备本体冷却单元的任意两散热鳍片间的间距为10mm;所述散热鳍片的厚度为2mm;和/或
    所述散热鳍片为垂向排列,与上升热空气的方向一致。
  14. 根据权利要求6所述的自然冷却数据中心,其特征在于,所述自然冷却电子设备还包括接触导热面,所述接触导热面独立设置于所述封闭外壳外表面,用于将所述封闭外壳上的部分热量传导到与所述接触导热面接触的设备外部冷却单元上;
    所述设备外部冷却单元位于所述自然冷却电子设备之外,不属于所述自然冷却电子设备,用于以自然冷却的方式,将所述自然冷却电子设备封闭外壳上的部分热量传递至自然环境。
  15. 根据权利要求14所述的自然冷却数据中心,其特征在于,所述接触导热面的面积为所述封闭外壳外表面的1%~90%之间;和/或
    所述接触导热面的粗糙度Ra优于3.2μm;和/或
    所述接触导热面的平面度优于0.3mm/(100mm*100mm);和/或
    所述接触导热面的形状为平面,或者,为与设备外部冷却单元进行接触导热部位的轮廓相匹配的形状;和/或
    所述接触导热面与所述设备外部冷却单元之间通过低热阻热界面材料实现热传递。
  16. 根据权利要求15所述的自然冷却数据中心,其特征在于,所述接触导热面的面积为所述封闭外壳外表面的16.7%~50%之间;和/或
    所述接触导热面的粗糙度Ra在0.4μm以下;和/或
    所述接触导热面的平面度为0.1mm/(100mm*100mm);和/或
    所述低热阻热界面材料选自液态金属、相变材料、导热硅脂、导热胶、导热垫和/或铟箔。
  17. 根据权利要求1所述的自然冷却数据中心,其特征在于,所述自然冷却数据中心中采用的机柜包括导热框架或导热板,以及用于固定所述自然冷却电子设备的接触固定面;所述接触固定面具有与所述自然冷却电子设备的接触导热面相匹配的外形轮廓,通过其将所述接触导热面传递的热量传导至所述导热框架或导热板上进行自然冷却;其中,所述自然冷却电子设备包括对所述自然冷却电子设备的电子元器件进行封闭处理的封闭外壳,所述接触导热面设置于所述封闭外壳外表面,所述自然冷却电子设备的发热通过热传导的方式传递到所述封闭外壳上的所述接触导热面上。
  18. 根据权利要求17所述的自然冷却数据中心,其特征在于,所述机柜采用四面开放结构。
  19. 根据权利要求18所述的自然冷却数据中心,其特征在于,所述机柜采用六面无面板的全敞开结构。
  20. 根据权利要求17所述的自然冷却数据中心,其特征在于,所述机柜还包括机柜冷却单元,扩散到所述导热框架或导热板上的热量进一步被传导到所述机柜冷却单元上进行自然冷却。
  21. 根据权利要求20所述的自然冷却数据中心,其特征在于,通过热管、均温板、高导热率的金属或非金属导热结构使热量均匀分布在所采用的导热框架、导热板和/或机柜冷却单元的表面;和/或
    所述接触固定面和所述接触导热面之间还设有接触固定装置,所述接触固定装置采用快装结构,方便快速安装拆卸;和/或
    所述机柜为框架式结构,或者,所述机柜具有烟囱效应型结构。
  22. 根据权利要求21所述的自然冷却数据中心,其特征在于,所述机柜为矩形框架结构,或者,所述烟囱效应型结构为所述机柜内部的气流通道,或者位于所述机柜表面。
  23. 根据权利要求1-22任一项所述的自然冷却数据中心,其特征在于,通过所述接触导热面散发的热量占所述自然冷却电子设备内部产生的总热量的十分之一以上;和/或
    所述自然冷却电子设备最大功率运行时,能够将所述封闭外壳的单位面积热流密度控制在第一阈值以下;所述第一阈值为0.1W/m2;和/或
    所述自然冷却电子设备还包括临近或紧贴所述设备本体冷却单元设置的风扇,用于通过直吹或引导气流流经所述设备本体冷却单元来辅助散热;和/或
    所述自然冷却电子设备包括IT设备和其它功能设备;所述IT设备包括计算设备、存储设备和网络设备中的至少之一;所述其它功能设备包括供电设备、接口设备和安全防护设备中的至少之一;和/或
    所述自然冷却电子设备内部还设置有加热单元,用于使所述自然冷却电子设备在低温下也能够正常启停;和/或
    所述自然冷却数据中心为互联网数据中心(IDC)、国家数据中心(NDC)、企业数据中心(EDC)和/或边缘数据中心(Edge Data center);和/或
    所述自然冷却数据中心还设置有若干风机,所述风机用于直吹所述自然冷却电子设备和/或机柜进行冷却,或者,不直吹而是辅助所述自然冷却数据中心内部的热空气排出。
  24. 根据权利要求23所述的自然冷却数据中心,其特征在于,
    通过所述接触导热面散发的热量占所述自然冷却电子设备内部产生的总热量的三分之一以上;和/或
    所述第一阈值为0.04W/m2;和/或
    所述加热单元为加热膜、PTC加热片、TEC半导体致冷器;和/或
    所述风机位于地板下方或立墙进风一侧,用于吹动空气形成气流,和/或,所述风机位于屋顶或立墙出风一侧,用于抽吸空气形成气流。
  25. 一种自然冷却数据中心的制造方法,其特征在于,包括如下步骤:
    建设至少一容纳空间,用于容纳至少一电子设备;其中,所述自然冷却数据中心以自然冷却的方式进行冷却。
  26. 根据权利要求25所述的制造方法,其特征在于,所述自然冷却数据中心的通透率大于等于5%;和/或
    采用钢架、铝合金框架、木结构、混凝土结构、高分子膜结构或高分子纤维来制造所述自然冷却数据中心的建筑结构主体;和/或
    所述自然冷却数据中心采用模块化结构设计,通过拼装的形式实现快速搭建成型;和/或
    在所述自然冷却数据中心的至少一个水平方向设置遮挡结构,所述遮挡结构为卷帘门结构、卷帘膜结构、窗户结构、折叠屏障、推拉屏障中的任意一种,所述遮挡结构能够封闭或打开,以形成开放式结构;和/或
    所述自然冷却数据中心的每一层均采用具有贯通结构的地板,从而使地板下方气流能够通过所述贯通结构向上运动;和/或
    所述自然冷却数据中心的底层设置有若干进气口;和/或
    所述自然冷却数据中心还包括位于屋顶的排气结构,用于将上下贯通的热气流从屋顶排出;和/或
    所述自然冷却数据中心中还设置有若干风机,所述风机用于直吹所述自然冷却电子设备和/或机柜进行冷却,或者,不直吹而是辅助所述自然冷却数据中心内部的热空气排出;和/或
    所述自然冷却数据中心中还设置若干可拆卸的导风板,用于在风机工作时引导冷空气流经所述电子设备;和/或
    所述自然冷却数据中心还布置有太阳能电池板来提供能源,所述太阳能电池板的布置不遮挡自然风进入所述自然冷却数据中心的路径;和/或
    所述自然冷却数据中心中还设置有液冷管道,所述液冷管道连接于水源,用于通过重力自驱动或水泵驱动来带走所述电子设备产生的部分热量;和/或
    所述自然冷却数据中心中,电子设备位于地板、机柜、货架、立柱和/或立面上。
  27. 根据权利要求26所述的制造方法,其特征在于,
    所述自然冷却数据中心的通透率大于等于33%;和/或
    所述自然冷却数据中心的建筑结构主体采用高导热系数材料制造,从而其内容纳的所述电子设备产生的部分热量能够传递到所述建筑结构主体上,并以自然冷却的方式传递到自然环境;和/或
    所述自然冷却数据中心的至少一个水平方向安装有百叶窗形挡板,所述百叶窗形挡板的转轴为水平方向的轴,能够调节百叶窗形挡板转动的角度来调节风量;所述百叶窗形挡板的间隙处设置有纱窗或过滤网;和/或
    所述自然冷却数据中心的地板由高导热系数的材料制成,所述高导热系数的材料包括金属和/或非金属;和/或
    所述自然冷却数据中心的气流通道中还包括能够调节气流大小的阀门或挡板,所述阀门或挡板至少设置于底层进气口处;和/或
    所述屋顶的排气结构为自然通风器和/或无动力风帽;和/或
    所述风机位于地板下方或立墙进风一侧,用于吹动空气形成气流,和/或,所述风机位于屋顶或立墙出风一侧,用于抽吸空气形成气流;和/或
    所述水源为位于屋顶的雨水收集池或地下的冷却水储存池;和/或
    所述自然冷却数据中心中,所述电子设备将热量传导到对应结构上增强散热。
  28. 根据权利要求27所述的制造方法,其特征在于,所述高导热系数的材料为不锈钢、碳钢、铝合金、镁合金、镁锂合金、铜合金、银、高导热率陶瓷(High Thermal Conductivity Ceramic Materials)、碳化硅、铝基碳化硅、石墨复合材料、金刚石复合材料、石墨烯复合材料中的至少之一。
PCT/CN2023/122640 2022-11-21 2023-09-28 自然冷却数据中心及其制造方法 WO2024109350A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211456194.7 2022-11-21
CN202211456194.7A CN115933822A (zh) 2022-11-21 2022-11-21 数据存储装置及数据存储***
CN202310075702.5 2023-01-13
CN202310075702 2023-01-13

Publications (1)

Publication Number Publication Date
WO2024109350A1 true WO2024109350A1 (zh) 2024-05-30

Family

ID=89003383

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/122642 WO2024109351A1 (zh) 2022-11-21 2023-09-28 自然冷却电子设备及制造方法、采用其的机柜和数据中心
PCT/CN2023/122640 WO2024109350A1 (zh) 2022-11-21 2023-09-28 自然冷却数据中心及其制造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122642 WO2024109351A1 (zh) 2022-11-21 2023-09-28 自然冷却电子设备及制造方法、采用其的机柜和数据中心

Country Status (2)

Country Link
CN (2) CN117336994A (zh)
WO (2) WO2024109351A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150085442A1 (en) * 2012-04-19 2015-03-26 Yoshihiro Kondo Computer provided with cooling system
CN207235257U (zh) * 2017-07-27 2018-04-13 湖南中科信为科技有限公司 一种音视频记录加固机箱
CN111107732A (zh) * 2018-10-29 2020-05-05 广达电脑股份有限公司 使服务器机柜维持于预定温度范围内的方法及其冷却***
CN212812411U (zh) * 2020-08-13 2021-03-26 河南中软上云技术有限公司 一种高效散热型服务器机柜
CN216123333U (zh) * 2021-08-20 2022-03-22 联想(北京)有限公司 机柜
CN115933822A (zh) * 2022-11-21 2023-04-07 北京国科环宇科技股份有限公司 数据存储装置及数据存储***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8472182B2 (en) * 2010-07-28 2013-06-25 International Business Machines Corporation Apparatus and method for facilitating dissipation of heat from a liquid-cooled electronics rack
CN104833029A (zh) * 2015-05-26 2015-08-12 长沙麦融高科股份有限公司 一种数据中心水冷热管冷却***及方法
CN209489061U (zh) * 2018-11-16 2019-10-11 云南朔铭电力工程有限公司 一种风力发电变频器功率模块的散热装置
CN114644094B (zh) * 2021-01-10 2023-11-07 深圳欧特海洋科技有限公司 数据舱用沉降结构、数据舱、水下数据中心
CN217591400U (zh) * 2022-02-25 2022-10-14 阿里巴巴(中国)有限公司 散热设备和水下数据中心机房
CN115166919A (zh) * 2022-07-27 2022-10-11 江苏亨通光电股份有限公司 一种数据中心光互联的mpo高密度布线***及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150085442A1 (en) * 2012-04-19 2015-03-26 Yoshihiro Kondo Computer provided with cooling system
CN207235257U (zh) * 2017-07-27 2018-04-13 湖南中科信为科技有限公司 一种音视频记录加固机箱
CN111107732A (zh) * 2018-10-29 2020-05-05 广达电脑股份有限公司 使服务器机柜维持于预定温度范围内的方法及其冷却***
CN212812411U (zh) * 2020-08-13 2021-03-26 河南中软上云技术有限公司 一种高效散热型服务器机柜
CN216123333U (zh) * 2021-08-20 2022-03-22 联想(北京)有限公司 机柜
CN115933822A (zh) * 2022-11-21 2023-04-07 北京国科环宇科技股份有限公司 数据存储装置及数据存储***

Also Published As

Publication number Publication date
WO2024109351A1 (zh) 2024-05-30
CN117336994A (zh) 2024-01-02
CN117202639A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
Zhang et al. A critical review of combined natural ventilation techniques in sustainable buildings
RU2581358C2 (ru) Блок подготовки воздуха на основе принципов умного дома для системы охлаждения пула серверов
US20210092866A1 (en) Fluid-cooled data centres without air coinditioning, and methods for operating same
US10117362B2 (en) Cold row encapsulation for server farm cooling system
EP2156268B1 (en) Cold row encapsulation for server farm cooling system
Shrivastava et al. Quantitative comparison of air containment systems
CN110278687B (zh) 一种用于机房环境的综合节能降温控制方法
WO2011069389A1 (zh) 散热设备、通信设备的散热方法及通信设备
WO2024109350A1 (zh) 自然冷却数据中心及其制造方法
CN206865855U (zh) 一种数据中心机柜
WO2020057140A1 (zh) 一种空调器及服务器***
WO2020237742A1 (zh) 基于新风及蒸发制冷的紧凑化叠加数据中心及其组合结构
CN204721778U (zh) 一种带有冷通道的数据中心机房结构
CN108305566A (zh) 一种具有高效散热防雨水功能的户外led显示屏
CN211352350U (zh) 小型基站室外机柜使用的降温节能装置
CN116916608A (zh) 自然散热it设备及制造方法、采用其的机柜和数据中心
CN217823886U (zh) 一种新型节能设备机柜
CN221261619U (zh) 一种耐高温式服务器
CN219587303U (zh) 数据中心
Maalouf et al. Effect of free cooling on the operation of a desiccant evaporative cooling system
US20240130092A1 (en) Data center computer room cooling system and control method thereof
CN220087836U (zh) 一种数据中心机房双层管道冷却装置
CN217929043U (zh) 路桥建设工地中的活动板房用空调***
CN220473947U (zh) 一种服务器散热组件
WO2023077561A1 (zh) 高层建筑用散热***及数据中心

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893442

Country of ref document: EP

Kind code of ref document: A1