WO2024109333A1 - Wifi模组的通信方法、wifi模组和终端设备 - Google Patents

Wifi模组的通信方法、wifi模组和终端设备 Download PDF

Info

Publication number
WO2024109333A1
WO2024109333A1 PCT/CN2023/121568 CN2023121568W WO2024109333A1 WO 2024109333 A1 WO2024109333 A1 WO 2024109333A1 CN 2023121568 W CN2023121568 W CN 2023121568W WO 2024109333 A1 WO2024109333 A1 WO 2024109333A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
wifi module
microprocessor
power
power supply
Prior art date
Application number
PCT/CN2023/121568
Other languages
English (en)
French (fr)
Inventor
张莹
关红涛
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024109333A1 publication Critical patent/WO2024109333A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present disclosure belongs to the field of communication technology, and in particular relates to a communication method of a WIFI module, a WIFI module and a terminal device.
  • the WIFI module When the terminal device is working, the WIFI module does not work continuously. For example, when the terminal device is processing data and does not have a strong demand for networking, the WIFI module can be turned off to reduce power consumption. In particular, when the terminal device is powered by a mobile power source, such as a battery, power consumption has a greater impact on the terminal, so it is necessary to reduce the power consumption of the terminal device as much as possible.
  • a mobile power source such as a battery
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and provides a communication method of a WIFI module, a WIFI module and a terminal device.
  • an embodiment of the present disclosure provides a communication method of a WIFI module, wherein the WIFI module includes a microprocessor, a power control module, and a WIFI module; wherein the microprocessor, the power control module, and the WIFI module are connected to each other for communication, and the communication method includes:
  • the power control module loads the working voltage provided by the power supply module to the WIFI module in response to the first control signal
  • the WIFI module enters a working state in response to the working voltage provided by the power supply module, receives a serial port instruction sent by a host computer, and executes a corresponding working mode.
  • the WIFI module enters the working state, receives the serial port command sent by the host computer and executes it.
  • the steps include:
  • the WIFI module directly receives the serial port command sent by the host computer, and determines whether the serial port command is a shutdown command;
  • the WIFI module directly executes the corresponding command
  • the WIFI module feeds back shutdown instruction information to the microprocessor; the microprocessor sends a second control signal to the power control module in response to the shutdown instruction information; the power control module cuts off the connection between the power supply module and the WIFI module in response to the second control signal, and the WIFI module executes shutdown.
  • the communication method of the WIFI module also includes:
  • the microprocessor When the microprocessor detects that the power supply module has a power level less than or equal to a preset value, it determines whether the WIIF module is in a shutdown state or a working state;
  • the microprocessor feeds back the power reminder information of the power supply module to the host computer, and the microprocessor returns to the standby state;
  • the microprocessor sends a second control signal to the power control module, and feeds back the power reminder information of the power supply module to the host computer; the power control module responds to the second control signal; cuts off the connection between the power supply module and the WIFI module, the WIFI module executes shutdown, and the microprocessor enters standby state.
  • the communication method of the WIFI module further includes: when the WIFI module is in a working state,
  • the microprocessor performs periodic power detection on the power supply module
  • the microprocessor If the microprocessor detects that the power supply module has a power level greater than the preset value, the microprocessor sends the first control signal to the power control module;
  • the microprocessor If the microprocessor detects that the power supply module has a power level less than or equal to the preset value, the microprocessor sends a second control signal to the power control module and feeds back power supply module reminder information to the host computer; the power control module responds to the second control signal by cutting off the connection between the power supply module and the WIFI module, and the WIFI The module is shut down and the microprocessor enters standby mode.
  • an embodiment of the present disclosure further provides a WIFI module, wherein the WIFI module includes a microprocessor, a power control module and a WIFI module;
  • the microprocessor is configured to send a first control signal to the power control module when detecting that the power supply module has a power level greater than a preset value
  • the power control module in response to the first control signal, loads the working voltage provided by the power supply module to the WIFI module to control the WIFI module to enter a working state;
  • the WIFI module is configured to receive serial port instructions sent by the host computer and execute a corresponding working mode when in working state.
  • the WIFI module is specifically configured to receive a serial port instruction sent by the host computer when in a working state, directly execute the corresponding instruction when the serial port instruction is a non-shutdown instruction, and feedback the shutdown instruction information to the microprocessor when the serial port instruction is a shutdown instruction, so that the microprocessor sends a second control signal to the power control module to control the WIFI module to execute shutdown.
  • the microprocessor is also configured to control the power control module to send a second control signal to control the power module to shut down when it detects that the power supply module has a power level less than or equal to a preset value, and to feed back the power reminder information of the source supply module to the host computer, and the microprocessor enters a standby state.
  • the microprocessor is configured to periodically detect whether the power supply module is greater than the preset value when the WIFI module is in working state, and send the first control signal to the power control module when the power supply module is greater than the preset value, send the second control signal to the power control module when the power supply module is less than or equal to the preset value, and feed back the power supply module reminder information to the host computer, and the microprocessor enters the standby state.
  • microprocessor and the WIFI module are connected via a UART interface.
  • microprocessor and the power control module are connected via an IO interface.
  • the minimum operating voltage of the microprocessor is less than the minimum operating voltage of the WIFI module. pressure.
  • the present disclosure further provides a terminal device, wherein the terminal device comprises any of the WIFI modules described above.
  • FIG. 1 is a schematic diagram of a communication method of a WIFI module provided in an embodiment of the present disclosure.
  • FIG. 2 is a flow chart of a communication method of a WIFI module provided in an embodiment of the present disclosure.
  • FIG3 is a schematic diagram of a communication method after a WIFI module enters a working state according to an embodiment of the present disclosure.
  • FIG4 is a schematic diagram of a communication method provided in an embodiment of the present disclosure when a microprocessor detects that the power level of a power supply module is less than or equal to a preset value.
  • FIG5 is a schematic diagram of the working process of the microprocessor after the WIFI module provided in the embodiment of the present disclosure enters the working state.
  • FIG. 6 is a schematic diagram of the structure of a WIFI module provided in an embodiment of the present disclosure.
  • terminal devices there are many types of terminal devices, each of which includes multiple modules, which are used to implement different functions. Different terminal devices have different main functions and different power supply methods. We hope that the terminal can be used for as long as possible and the power consumption is as low as possible, which will require the power consumption of each module on the corresponding terminal to be reduced.
  • the electronic ink screen terminal that uses a battery as a power supply module as an example, it includes software or operating programs that need to be connected to the Internet to be realized, and there are also software or operating programs that can be processed without the Internet.
  • the WIFI module can be turned off or in standby mode to achieve the effect of reducing the power consumption of the terminal device.
  • a power enable module needs to be added to the circuit to control the power on and off of the WIFI module, resulting in a longer transmission link of the WIFI module; putting the WIFI module on standby still requires an external device to wake it up, and the WIFI module standby cannot effectively reduce the power consumption.
  • the embodiments of the present disclosure provide a communication method of a WIFI module, a WIFI module and a terminal device.
  • a traditional WIFI module is combined with a microprocessor to design a WIFI module and a communication method of the WIFI module, so as to realize a WIFI module with low power consumption and standby without increasing the transmission link between the WIFI module and the terminal device.
  • the embodiment of the present disclosure discloses a communication method of a WIFI module.
  • FIG. 1 is a schematic diagram of the communication method of the WIFI module provided in the embodiment of the present disclosure
  • FIG. 2 is a flow chart of the communication method of the WIFI module provided in the embodiment of the present disclosure.
  • the communication method of the WIFI module includes: the WIFI module includes a microprocessor, a power control module and a WIFI module; wherein the microprocessor, the power control module and the WIFI module are connected to each other in communication, and the communication method includes:
  • S1 Detecting the power of the power supply module through a microprocessor, and sending a first control signal to the power control module when detecting that the power of the power supply module is greater than a preset value.
  • the microprocessor when the WIFI module is turned off and the microprocessor is in standby mode, the microprocessor initializes itself before executing instructions under the premise of being powered on. After the WIFI module receives the data signal from the host computer, the initialized microprocessor reads the enable signal from the data signal to wake up the microprocessor in standby mode. After waking up, the microprocessor begins to detect power information based on data such as current and voltage input from the power supply module to the power control module. When the detected power of the power supply module is greater than the preset value, the microprocessor sends a first control signal to the power control module.
  • the microprocessor is also powered by the power supply module, and the microprocessor directly Connect the power supply module;
  • the data signal read by the microprocessor can also be a control signal, where the control signal is used as an enable signal to wake up the microprocessor.
  • the power supply module in the embodiment of the present disclosure is a mobile power source, such as a battery.
  • the host computer in the embodiment of the present disclosure can be any terminal device, and the WIFI module can be connected to the board in the terminal device to communicate through a UART interface or a USB interface.
  • no further limitation is made on the host computer, the connection method between the WIFI module and the host computer, and the structure of the connection between the WIFI module and the host computer.
  • the power control module loads the working voltage provided by the power supply module to the WIFI module in response to the first control signal.
  • the power control module plays the role of a switch. After receiving the first control signal, the power control module connects the power supply module and the WIFI module, so that the WIFI module is connected to the working voltage.
  • the WIFI module enters the working state in response to the working voltage provided by the power supply module, receives the serial port command sent by the host computer and executes the corresponding working mode.
  • the WIFI module is initialized according to the specific situation, and then the WIFI module enters the working state. After the WIFI module enters the working state, the WIFI module can directly receive the serial port command sent by the host computer, and execute the corresponding working mode according to the serial port command.
  • the WIFI module executes the shutdown process and feeds back the shutdown command information to the microprocessor; if the serial port command is a start-up command, the WIFI module is initialized and starts working under the wake-up of the start-up command after the power is turned on; when the serial port command is a data transmission command, a data reception command and a data analysis command, the WIFI module executes the corresponding working mode to process the transmitted data accordingly.
  • a microprocessor is added to detect the power information of the power supply module and control whether the power control module supplies power to the WIFI module.
  • the WIFI module standby is changed to the microprocessor standby in this application.
  • the power supply voltage of the WIFI module is usually 3.3V to 5V, and the microprocessor adopts a wide potential power supply, which can be achieved at a voltage of 1V to 2V. Standby and wake up to start working at any time.
  • a microprocessor with lower power supply voltage and lower power consumption is added to the WIFI module to control the working state of the entire module, thereby reducing the overall power consumption of the WIFI module. If the microprocessor is not added, if you want to turn off or turn on the WIFI module at any time, you need to design a power enable module in the circuit or board, which will make the entire circuit or board relatively complicated, and extend the data link length when the WIFI module performs data interaction at work.
  • the method of directly interacting with the host computer when the WIFI module is working under the premise of reducing the working power of the WIFI module, the data link of the WIFI module is not extended, and the efficiency of data transmission will not be affected, and the data link growth due to the extension of the data link will not cause additional load due to the increase of the data link of the transmitted data.
  • the power control module After the power control module receives the first control signal, the power control module connects the power supply module to the WIFI module, and the WIFI module enters the working state, and the steps of receiving and executing the serial port command sent by the host computer include:
  • the WIFI module directly receives the serial port command sent by the host computer, and determines whether the serial port command is a shutdown command.
  • the WIFI module when the WIFI module is in working state, after directly receiving the serial port command from the host computer, the WIFI module first judges the command to determine whether it is a shutdown command, and enters the corresponding subsequent process according to the judgment result.
  • the WIFI module determines that the serial port command sent by the host computer is not a shutdown command
  • the WIFI module directly executes the serial port command.
  • the serial port command can be a data transmission command, a data reception command, a data analysis command, or a start-up command after the WIFI module is just powered on.
  • the WIFI module feeds back shutdown instruction information to the microprocessor; the microprocessor responds to the shutdown instruction information and sends a second control signal to the power control module; the power control module responds to the second control signal and cuts off the connection between the power supply module and the WIFI module, and the WIFI module executes shutdown.
  • the WIFI module can directly receive the serial port command of the host computer in the working state, the host computer directly sends the shutdown command to the WIFI module to control the power supply of the WIFI module.
  • the control module needs to be controlled by a microprocessor. After receiving the shutdown command from the host computer, the WIFI module first feeds back the shutdown command information to the microprocessor, and then the microprocessor sends a second control signal to the power control module to cut off the connection between the power supply module and the WIFI module, the WIFI module shuts down, and the microprocessor returns to the standby state.
  • the microprocessor is only used to detect the power information of the power supply module and control the working state of the power control module. There is no need to increase additional work requirements, power consumption, or generate too many serial port commands to increase the computing power of the WIFI module.
  • the communication method of the WIFI module further includes:
  • the microprocessor detects the power of the power supply module when in the standby wake-up state, and also detects the power of the power supply module when the WIFI module is in the working state. Therefore, when the microprocessor detects that the power of the power supply module is less than or equal to the preset value, it is necessary to first determine the working state of the WIFI module to select the subsequent workflow.
  • the microprocessor receives an enable signal to wake up, and after waking up, it first detects the power supply module. When the power after detection is less than or equal to the preset value, it directly feeds back the power reminder information of the power supply module to the host computer and returns to the standby state.
  • the microprocessor sends a second control signal to the power supply control module, and feeds back the power reminder information of the power supply module to the host computer; the power supply control module responds to the second control signal; cuts off the connection between the power supply module and the WIFI module, the WIFI module executes shutdown, and the microprocessor enters standby state.
  • the microprocessor detects the power supply module. When the detected power is less than or equal to the preset value, the microprocessor directly sends a second control signal to the power control module. The power control module cuts off the power supply in response to the second control signal. The module is connected to the WIFI module and feeds back the power supply module's power reminder information to the host computer; the WIFI module does not need to wait for the host computer to give a shutdown command.
  • the microprocessor detects that the power of the power supply module is less than or equal to the preset value, it directly controls the power control module to cut off the connection between the power supply module and the WIFI module, thereby improving the working efficiency of the WIFI module.
  • the sending end of the microprocessor for sending power reminder information to the upper computer can only be used to send power reminder information, and is in a high-impedance off state when no information needs to be sent. Before sending power reminder information, the sending end of the microprocessor for sending power reminder information to the upper computer is initialized.
  • the communication method of the WIFI module also includes:
  • the microprocessor keeps periodically detecting the power supply module's power. For example, within a certain period, the host computer intermittently sends an enable signal to the microprocessor, and the microprocessor performs power detection on the power supply module after receiving the enable signal. When power detection is not needed, the microprocessor returns to the standby state.
  • the microprocessor If the microprocessor detects that the power supply module has a power level less than or equal to a preset value, the microprocessor sends a second control signal to the power control module and feeds back power supply module reminder information to the host computer; the power control module responds to the second control signal, cuts off the connection between the power supply module and the WIFI module, shuts down the WIFI module, and the microprocessor enters a standby state.
  • the embodiment of the present disclosure further provides a WIFI module, as shown in FIG6 , the WIFI module includes a microprocessor, a power control module and a WIFI module; the microprocessor is configured to send a first control signal to the power control module when detecting that the power of the power supply module is greater than a preset value; The power control module responds to the first control signal and loads the working voltage provided by the power supply module to the WIFI module to control the WIFI module to enter the working state; the WIFI module is configured to receive the serial port command sent by the host computer and execute the corresponding working mode when in the working state.
  • the WIFI module includes a microprocessor, a power control module and a WIFI module
  • the microprocessor is configured to send a first control signal to the power control module when detecting that the power of the power supply module is greater than a preset value
  • the power control module responds to the first control signal and loads the working voltage provided by the power supply module to the WIFI module to control the WIFI module to enter the working state
  • the microprocessor, the power control module and the WIFI module are connected in pairs, wherein the microprocessor and the WIFI module are connected via a UART interface; the microprocessor and the power control module are connected via an IO interface.
  • the WIFI module and the microprocessor can share a connection interface for sending and receiving data.
  • the WIFI module receives the data signal from the host computer, reads the enable signal from the data signal, and wakes up the microprocessor in the standby state. After being awakened, the microprocessor begins to detect the power information according to the current and voltage data input from the power supply module to the power control module.
  • the microprocessor sends a first control signal to the power control module.
  • the power control module acts as a switch. After the power control module receives the first control signal, the power supply module and the WIFI module are turned on, so that the WIFI module is connected to the working voltage. After the WIFI module is loaded with the working voltage provided by the power module, the WIFI module is initialized first according to the specific situation, and then the WIFI module enters the working state. After the WIFI module enters the working state, the WIFI module can directly receive the serial port command sent by the host computer, and execute the corresponding working mode according to the serial port command.
  • the WIFI module executes the shutdown process and feeds back the shutdown command information to the microprocessor; if the serial port command is a start-up command, the WIFI module is initialized and starts working under the wake-up of the start-up command after the power is turned on; when the serial port command is a data transmission command, a data reception command and a data analysis command, the WIFI module executes the corresponding working mode to process the transmitted data accordingly.
  • the WIFI module in the disclosed embodiment without extending the data link between the WIFI module and the host computer, adds a microprocessor to detect the power information of the power supply module and control whether the power control module supplies power to the WIFI module.
  • the WIFI module standby is changed to the microprocessor standby in the present application.
  • the power supply voltage of the WIFI module is usually between 3.3V and 5V, and the microprocessor is powered by a wide potential, which can achieve standby at a voltage of 1V to 2V and wake up to start working at any time. It is understandable that the minimum operating voltage of the microprocessor is less than the minimum operating voltage of the WIFI module.
  • a microprocessor with a lower power supply voltage and lower power consumption is added to the WIFI module to control the working state of the entire module, thereby achieving In order to reduce the overall power consumption of the WIFI module. If the microprocessor is not added, and the WIFI module is to be turned off or on at any time, a power enable module needs to be designed in the circuit or board, which will make the entire circuit or board relatively complicated, and extend the data link length when the WIFI module performs data interaction during work.
  • the data link of the WIFI module is not extended under the premise of reducing the working power of the WIFI module, which will not affect the efficiency of data transmission, and will not cause additional load due to the increase of the data link of the transmitted data due to the extension of the data link.
  • the WIFI module is specifically configured to receive a serial port instruction sent by the host computer when in the working state, directly execute the corresponding instruction when the serial port instruction is not a shutdown instruction, and feedback the shutdown instruction information to the microprocessor when the serial port instruction is a shutdown instruction, so that the microprocessor sends a second control signal to the power control module to control the WIFI module to execute shutdown.
  • the microprocessor is also configured to control the power control module to send a second control signal to control the power module to shut down when it is detected that the power supply module is less than or equal to a preset value, and feedback the power supply module reminder information to the host computer, and the microprocessor enters the standby state.
  • the WIFI module can directly receive the serial port command of the host computer in the working state, so the host computer directly sends the shutdown command to the WIFI module, and the power control module that controls the power of the WIFI module needs to be controlled by the microprocessor.
  • the WIFI module receives the shutdown command from the host computer, it first feeds back the shutdown command information to the microprocessor, and then the microprocessor sends a second control signal to the power control module to cut off the connection between the power supply module and the WIFI module, the WIFI module shuts down, and the microprocessor returns to the standby state.
  • the microprocessor is only used to detect the power information of the power supply module and control the working state of the power control module, without adding additional work requirements, will not increase additional power consumption, and will not generate too many serial port commands to increase the amount of calculation of the WIFI module.
  • the microprocessor is also configured to control the power control module to send a second control signal to control the power module to shut down when it detects that the power supply module has a power level less than or equal to a preset value, and to provide feedback to the host computer on the power supply module's power reminder information, and the microprocessor enters a standby state.
  • the microprocessor detects the power supply module's power when in the standby wake-up state, and also detects the power supply module's power when the WIFI module is in the working state.
  • the processor detects that the power supply module has a power level less than or equal to a preset value, it needs to first determine the working state of the WIFI module to select the subsequent workflow. If the WIFI module is in the shutdown state and the microprocessor is in the standby state, the microprocessor receives the enable signal to wake up, and after waking up, it first detects the power supply module. When the power after detection is less than or equal to the preset value, it directly feeds back the power supply module's power reminder information to the upper computer, and the microprocessor returns to the standby state.
  • the microprocessor detects the power supply module. When the power after detection is less than or equal to the preset value, the microprocessor directly sends a second control signal to the power control module. The power control module responds to the second control signal, cuts off the connection between the power supply module and the WIFI module, and feeds back the power supply module's power reminder information to the upper computer.
  • the sending end of the microprocessor for sending power reminder information to the upper computer can only be used to send power reminder information, and is in a high-impedance off state when no information needs to be sent. Before sending power reminder information, the sending end of the microprocessor for sending power reminder information to the upper computer is initialized.
  • the microprocessor is configured to periodically detect whether the power of the power supply module is greater than a preset value when the WIFI module is in working state, and send a first control signal to the power control module when the power of the power supply module is greater than the preset value, send a second control signal to the power control module when the power of the power supply module is less than or equal to the preset value, and feedback the power reminder information of the power supply module to the upper computer, and the microprocessor enters the standby state.
  • the microprocessor maintains periodic power detection of the power supply module.
  • the upper computer intermittently sends an enable signal to the microprocessor, and the microprocessor performs power detection of the power supply module after receiving the enable signal.
  • the microprocessor returns to the standby state.
  • the embodiments of the present disclosure further provide a terminal device, which includes the above-mentioned WIFI module.
  • the terminal device may be an electronic ink screen terminal, a computer terminal or other physical terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Sources (AREA)

Abstract

本公开提供一种WIFI模组的通信方法、WIFI模组和终端设备,属于通信技术领域。本公开的所述WIFI模组包括微处理器、电源控制模块和WIFI模块;其中,所述微处理器、所述电源控制模块和WIFI模块两两通信连接,所述通信方法包括:通过微处理器检测电源供给模块的电量,并在检测出所述电源供给模块的电量大于预设值时,向所述电源控制模块发送第一控制信号;所述电源控制模块响应于所述第一控制信号,将所述电源供给模块所提供的工作电压加载至所述WIFI模块;所述WIFI模块响应于所述电源供给模块所提供的工作电压,而进入工作状态,并接收上位机发送的串口指令并执行相应的工作模式。

Description

WIFI模组的通信方法、WIFI模组和终端设备 技术领域
本公开属于通信技术领域,具体涉及一种WIFI模组的通信方法、WIFI模组和终端设备。
背景技术
在终端设备的多个功能模块中,其中包括有WIFI模块,在终端设备进行工作的时候,WIFI模块并非持续工作,例如在终端设备进行数据处理且对联网需求不强烈的时候,可以将WIFI模块关闭,以降低功耗。特别的,在终端设备采用移动电源供电是,例如:电池;功耗对终端的影响更大,因此需要尽可能多的降低终端设备的功耗。
在现有的WIFI模块待机时,依旧需要较大的待机电压,因此在不使用网络时,将WIFI模块待机不能显著的降低终端设备的整体功耗,因此急需设计出一个WIFI模组用于在终端设备不使用网络时,降低终端设备的功耗。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种WIFI模组的通信方法、WIFI模组和终端设备。
第一方面,本公开实施例提供了一种WIFI模组的通信方法,所述WIFI模组包括微处理器、电源控制模块和WIFI模块;其中,所述微处理器、所述电源控制模块和WIFI模块两两通信连接,所述通信方法包括:
通过微处理器检测电源供给模块的电量,并在检测出所述电源供给模块的电量大于预设值时,向所述电源控制模块发送第一控制信号;
所述电源控制模块响应于所述第一控制信号,将所述电源供给模块所提供的工作电压加载至所述WIFI模块;
所述WIFI模块响应于所述电源供给模块所提供的工作电压,而进入工作状态,并接收上位机发送的串口指令并执行相应的工作模式。
其中,所述WIFI模块进入工作状态,接收上位机发送的串口指令并执 行的步骤,包括:
所述WIFI模块直接接收上位机发送的串口指令,并判断所述串口指令是否关机指令;
若所述串口指令为非关机指令,所述WIFI模块直接执行相应指令;
若所述串口指令为关机指令,所述WIFI模块向所述微处理器反馈关机指令信息;所述微处器响应于所述关机指令信息,向所述电源控制模块发送第二控制信号;所述电源控制模块响应于所述第二控制信号,切断所述电源供给模块与所述WIFI模块的连接,所述WIFI模块执行关机。
其中,所述WIFI模组的通信方法还包括:
在所述微处理器在检测到所述电源供给模块的电量小于或者等于预设值时,判断所述WIIF模块处于关机状态还是工作状态;
若所述WIIF模块处于关机状态,所述微处理器向所述上位机反馈所述电源供给模块的电量提醒信息,所述微处理器恢复待机状态;
若所述WIIF模块处于工作状态,所述微处理器向所述电源控制模块发送第二控制信号,并向所述上位机反馈所述电源供给模块的电量提醒信息;所述电源控制模块响应于所述第二控制信号;切断所述电源供给模块与所述WIFI模块的连接,所述WIFI模块执行关机,所述微处理器进入待机状态。
其中,所述WIFI模组的通信方法还包括:在所述WIFI模块处于工作状态时,
所述微处理器对所述电源供给模块进行周期性的电量检测;
若所述微处理器检测所述电源供给模块的电量大于所述预设值,所述微处理器向所述电源控制模块发送所述第一控制信号;
若所述微处理器检测所述电源供给模块的电量小于或者等于所述预设值,所述微处理器向所述电源控制模块发送第二控制信号,并向所述上位机反馈所述电源供给模块的电量提醒信息;所述电源控制模块响应于所述第二控制信号,切断所述电源供给模块与所述WIFI模块的连接,将所述WIFI 模块关机,所述微处理器进入待机状态。
第二方面,本公开实施例还提供了一种WIFI模组,所述WIFI模组包括微处理器、电源控制模块和WIFI模块;
所述微处理器,被配置为在检测到所述电源供给模块的电量大于预设值时,向所述电源控制模块发送第一控制信号;
所述电源控制模块,响应于所述第一控制信号,并将所述电源供给模块所提供的工作电压加载至所述WIFI模块,以控制所述WIFI模块进入工作状态;
所述WIFI模块,被配置为在处于工作状态时,接收上位机发送的串口指令并执行相应的工作模式。
其中,所述WIFI模块,具体被配置为在工作状态时,接收上位机发送的串口指令,在所述串口指令为非关机指令时,直接执行相应指令,在所述串口指令为关机指令时,向所述微处理器反馈关机指令信息,以使所述微处器向所述电源控制模块发送第二控制信号,以控制所述WIFI模块执行关机。
其中,所述微处理器,还被配置为在检测到所述电源供给模块的电量小于或者等于预设值时,控制所述电源控制模块发送第二控制信号,以控制所述电源模块关断,并向所述上位机反馈所述源供给模块的电量提醒信息,所述微处理器进入待机状态。
其中,所述微处理器,被配置为在所述WIFI模块处于工作状态时,周期性检测所述电源供给模块的电量是否大于所述预设值,并在所述电源供给模块的电量大于所述预设值时向所述电源控制模块发送所述第一控制信号,在所述电源供给模块的电量小于或者等于所述预设值时向所述电源控制模块发送第二控制信号,以及向所述上位机反馈所述电源供给模块的电量提醒信息,所述微处理器进入待机状态。
其中,所述微处理器和所述WIFI模块通过UART接口连接。
其中,所述微处理器和所述电源控制模块通过IO接口连接。
其中,所述微处理器的最小工作电压小于所述WIFI模块的最小工作电 压。
第三方面,本公开还提供了一种终端设备,所述终端设备包括上述中任一所述的WIFI模组。
附图说明
图1为本公开实施例中提供的WIFI模组的通信方法的示意图。
图2为本公开实施例中提供的WIFI模组的通信方法的流程图。
图3为本公开实施例中提供的WIFI模块进入工作状态后的通信方法的示意图。
图4为本公开实施例中提供的在微处理器在检测到电源供给模块的电量小于或者等于预设值时的通信方法的示意图。
图5为本公开实施例中提供的WIFI模块进入工作状态后的微处理器的工作流程的示意图。
图6为本公开实施例中提供的WIFI模组的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
终端设备包括有多种类型,每个终端设备包括有多个模块,其用来实现不同的功能,不同终端设备的主要功能不同,供电方式也不同。我们希望终端使用的时间能够尽量的长,功耗尽量的小,则会要求相应的终端上各个模块功耗降低,以采用电池作为电源供电模块的电子墨水屏幕终端为例,其上的包括有需要联网得以实现的软件或是操作程序,也有无需网络即可处理的软件或是操作程序,在联网需求不强烈时,则可以使WIFI模块进入到关机或是待机状态,以达到降低终端设备功耗的效果。如果在WIFI模块不工作时将其关机,则需要在电路中增加一个电源使能模块来控制WIFI模块的开机和关机,导致WIFI模块的传输链路变长;将WIFI模块待机依旧需要外部设备对其唤醒,并且WIFI模块待机并不能有效的降低消耗的功率。
鉴于此,本公开实施例提供了一种WIFI模组的通信方法、WIFI模组和终端设备。将传统的WIFI模块与微处理器结合,设计出一种WIFI模组,并设计出一种WIFI模组的通信方法,实现在不增长WIFI模块与终端设备的传输链路的前提下,实现可低功耗待机的WIFI模组。
第一方面,本公开实施例公开了一种WIFI模组的通信方法,图1为本公开实施例中提供的WIFI模组的通信方法的示意图,图2为本公开实施例中提供的WIFI模组的通信方法的流程图,如图1、2所示,WIFI模组的通信方法包括:WIFI模组包括微处理器、电源控制模块和WIFI模块;其中,微处理器、电源控制模块和WIFI模块两两通信连接,通信方法包括:
S1:通过微处理器检测电源供给模块的电量,并在检测出电源供给模块的电量大于预设值时,向电源控制模块发送第一控制信号。
具体的,在WIFI模块关闭,微处理器处于待机状态时,微处理器在接通电源的前提下,在执行指令前先对自身进行初始化的操作。WIFI模组接收到上位机的数据信号后,初始化后的微处理器从数据信号中读取使能信号,唤醒处于待机状态的微处理器。唤醒后的微处理器开始根据从电源供给模块输入到电源控制模块的电流电压等数据检测电量信息,当检测出的电源供给模块的电量大于预设值时,微处理器向电源控制模块发送第一控制信号。可理解的是,微处理器的也通过电源供给模块进行供电,微处理器直接 连接电源供给模块;微处理器读取的数据信号也可以是控制信号,在此处控制信号用作使能信号唤醒微处理器。
需要说明的是,本公开实施例中的电源供给模块为移动电源,例如:电池。本公开实施例中的上位机可以是任一一种终端设备,WIFI模组可以与终端设备中的板卡连接,通过一个UART接口进行通信,也可以通过USB接口进行通信,在本公开实施例中,不对上位机、WIFI模组与上位机的连接方式以及WIFI模组与上位机连接的结构做进一步的限定。
S2:电源控制模块响应于第一控制信号,将电源供给模块所提供的工作电压加载至WIFI模块。
具体的,电源控制模块起到一个开关的作用,在电源控制模块接收到第一控制信号后,将电源供给模块与WIFI模块导通,使WIFI模块接通工作电压。
S3:WIFI模块响应于电源供给模块所提供的工作电压,而进入工作状态,并接收上位机发送的串口指令并执行相应的工作模式。
具体的,WIFI模块在加载上电源模块提供的工作电压后,根据具体情况先进行WIFI模块初始化,然后WIFI模块进入工作状态,在WIFI模块进入工作状态后,WIFI模块可以直接接收上位机发送的串口指令,并根据串口指令执行相应的工作模式,例如:串口指令为关机指令,则WIFI模块执行关机流程,向微处理器反馈关机指令信息;串口指令为开启工作指令,则WIFI模块在接通电源的后在开启工作指令的唤醒下进行初始化并开启工作;串口指令为数据传输指令、数据接收指令和数据分析指令时,WIFI模块执行相应的工作模式对传输的数据进行相应的处理。
通过上述的方法,在没有延长WIFI模块与上位机的数据链路的前提下,增加了一个微处理器用来检测电源供给模块的电量信息并控制电源控制模块是否向WIFI模块供电。将现有技术中,在终端设备无需网络时将WIFI模块待机更改为本申请中的微处理器待机。WIFI模块的供电电压通常在3.3V到5V,而微处理器采用宽电位供电,在1V到2V的电压下便可以实现 待机并随时唤醒开始工作。通过该技术方案,在WIFI模组中增加了供电电压更低且功耗更低的微处理器来控制整个模组的工作状态,实现了降低WIFI模组的整体的功耗。如果不增加微处理器,想要随时关闭或是开启WIFI模块,则需要在电路或是板卡中设计电源使能模块,会使整个电路或是板卡变得相对复杂,并且延长了WIFI模块在工作中进行数据交互时的数据链路长度,因此,通过在WIFI模组中增加微处理器,在WIFI模块工作时直接与上位机进行交互的方法,在降低了WIFI模组的工作功率的前提下,没有延长WIFI模块的数据链路,不会影响到数据传输的效率,也不会因为延长了数据链路导致因传输数据的数据链增长而造成额外的负载。
如图3所示,电源控制模块接收到第一控制信号后,电源控制模块将电源供给模块与WIFI模块接通,WIFI模块进入工作状态,接收上位机发送的串口指令并执行的步骤,包括:
S11:WIFI模块直接接收上位机发送的串口指令,并判断串口指令是否关机指令。
具体的,WIFI模块在工作状态时,直接从上位机接收到串口指令后,在接收到串口指令后,WIFI模块先对指令进行判断,判断其是否为关机指令,根据判断结果进入相应的后续流程。
S12:若串口指令为非关机指令,WIFI模块直接执行相应指令。
具体的,当WIFI模块判断出上位机发送的串口指令不是关机指令时,WIFI模块直接执行串口指令,此时串口指令可以是数据传输指令、数据接收指令和数据分析指令亦或是在WIFI模块刚刚通电后的开启工作指令。
S13:若串口指令为关机指令,WIFI模块向微处理器反馈关机指令信息;微处器响应于关机指令信息,向电源控制模块发送第二控制信号;电源控制模块响应于第二控制信号,切断电源供给模块与WIFI模块的连接,WIFI模块执行关机。
具体的,由于WIFI模块在工作状态可以直接接收上位机的串口指令,因此上位机直接将关机指令发送到WIFI模块,控制WIFI模块电源的电源 控制模块需要通过微处理器进行控制,WIFI模块接收到上位机的关机指令后先向微处理器反馈关机指令信息,再由微处理器向电源控制模块发送第二控制信号,切断电源供给模块与WIFI模块的连接,WIFI模块关机,微处理器恢复到待机状态。微处理器仅用于检测电源供电模块的电量信息并控制电源控制模块的工作状态,无需增加额外的工作需求,不会增加额外的功耗,也不会生成过多的串口指令增加WIFI模组的运算量。
如图4所示,在微处理器在检测到电源供给模块的电量小于或者等于预设值时,WIFI模组的通信方法还包括:
S21:在微处理器在检测到电源供给模块的电量小于或者等于预设值时,判断WIIF模块处于关机状态还是工作状态。
具体的,微处理器在待机唤醒状态时检测电源供给模块的电量,在WIFI模块处于工作状态时也会对电源供给模块的电量进行检测。因此微处理器在检测到电源供给模块的电量小于或者等于预设值时,需要先对WIFI模块的工作状态进行判断,以选择后续的工作流程。
S22:若WIIF模块处于关机状态,微处理器向上位机反馈电源供给模块的电量提醒信息,微处理器恢复待机状态。
具体的,在WIFI模块处于关机状态,微处理器处于待机状态时,微处理器接收使能信号唤醒,在唤醒后先对电源供电模块进行电量检测,检测后的电量小于或者等于预设值时,直接向上位机反馈电源供给模块的电量提醒信息,并恢复至待机状态。
S23:若WIIF模块处于工作状态,微处理器向电源控制模块发送第二控制信号,并向上位机反馈电源供给模块的电量提醒信息;电源控制模块响应于第二控制信号;切断电源供给模块与WIFI模块的连接,WIFI模块执行关机,微处理器进入待机状态。
具体的,在WIFI模块处于工作状态时,微处理器对电源供电模块进行电量检测,检测后的电量小于或者等于预设值时,微处理器直接向电源控制模块发送第二控制信号,电源控制模块响应于第二控制信号,切断电源供给 模块与WIFI模块的连接,并向上位机反馈电源供给模块的电量提醒信息;WIFI模块无需等待上位机给出关机指令,在微处理器检测到电源供电模块的电量小于或者等于预设值时,直接控制电源控制模块将电源供给模块与WIFI模块的连接切断,提高了WIFI模组的工作效率。
需要说明的是,微处理器用于向上位机发送电量提醒信息的发送端可以仅用于发送电量提醒信息,在无需发送信息的情况处于高阻态的关断状态。在发送电量提醒信息前,先对微处理器向上位机发送电量提醒信息的发送端进行初始化。
如图5所示,在WIFI模块处于工作状态时,需要对电源供电模块的电量信息进行实时检测,因此WIFI模组的通信方法还包括:
S31:在WIFI模块处于工作状态时,微处理器对电源供给模块进行周期性的电量检测。
具体的,为了可以实时检测电源供给模块的电量信息,在WIFI模块处于工作状态时,微处理器保持对电源供给模块进行周期性的电量检测。例如,在一定周期内,上位机间断向微处理器发送使能信号,微处理器接收到使能信号后执行对电源供给模块的电量检测,在无需进行电量检测的时候,微处理器回复待机状态。
S32:若微处理器检测电源供给模块的电量大于预设值,微处理器向电源控制模块发送第一控制信号。
S33:若微处理器检测电源供给模块的电量小于或者等于预设值,微处理器向电源控制模块发送第二控制信号,并向上位机反馈电源供给模块的电量提醒信息;电源控制模块响应于第二控制信号,切断电源供给模块与WIFI模块的连接,将WIFI模块关机,微处理器进入待机状态。
具体的,S33的工作流程与S23一致,在此不再赘叙。
第二方面,本公开实施例还提供了一种WIFI模组,如图6所示,WIFI模组包括微处理器、电源控制模块和WIFI模块;微处理器被配置为在检测到电源供给模块的电量大于预设值时,向电源控制模块发送第一控制信号; 电源控制模块响应于第一控制信号,并将电源供给模块所提供的工作电压加载至WIFI模块,以控制WIFI模块进入工作状态;WIFI模块被配置为在处于工作状态时,接收上位机发送的串口指令并执行相应的工作模式。
微处理器、电源控制模块和WIFI模块两两通信连接,其中,微处理器和WIFI模块通过UART接口连接;微处理器和电源控制模块通过IO接口连接。为了减少WIFI模组与上位机的连接接口,WIFI模块与微处理器可以共用连接接口用于发送数据和接收数据。WIFI模组接收到上位机的数据信号,从数据信号中读取使能信号,唤醒处于待机状态的微处理器。唤醒后的微处理器开始根据从电源供给模块输入到电源控制模块的电流电压等数据检测电量信息,当检测出的电源供给模块的电量大于预设值时,微处理器向电源控制模块发送第一控制信号。电源控制模块起到一个开关的作用,在电源控制模块接收到第一控制信号后,将电源供给模块与WIFI模块导通,使WIFI模块接通工作电压。WIFI模块在加载上电源模块提供的工作电压后,根据具体情况先进行WIFI模块初始化,然后WIFI模块进入工作状态,在WIFI模块进入工作状态后,WIFI模块可以直接接收上位机发送的串口指令,并根据串口指令执行相应的工作模式,例如:串口指令为关机指令,则WIFI模块执行关机流程,向微处理器反馈关机指令信息;串口指令为开启工作指令,则WIFI模块在接通电源的后在开启工作指令的唤醒下进行初始化并开启工作;串口指令为数据传输指令、数据接收指令和数据分析指令时,WIFI模块执行相应的工作模式对传输的数据进行相应的处理。
本公开实施例中的WIFI模组,在没有延长WIFI模块与上位机的数据链路的前提下,增加了一个微处理器用来检测电源供给模块的电量信息并控制电源控制模块是否向WIFI模块供电。将现有技术中,在终端设备无需网络时将WIFI模块待机更改为本申请中的微处理器待机。WIFI模块的供电电压通常在3.3V到5V,而微处理器采用宽电位供电,在1V到2V的电压下便可以实现待机并随时唤醒开始工作。可以理解的是,微处理器的最小工作电压小于WIFI模块的最小工作电压。通过该技术方案,在WIFI模组中增加了供电电压更低且功耗更低的微处理器来控制整个模组的工作状态,实现 了降低WIFI模组的整体的功耗。如果不增加微处理器,想要随时关闭或是开启WIFI模块,则需要在电路或是板卡中设计电源使能模块,会使整个电路或是板卡变得相对复杂,并且延长了WIFI模块在工作中进行数据交互时的数据链路长度,因此,通过在WIFI模组中增加微处理器,在WIFI模块工作时直接与上位机进行交互的方法,在降低了WIFI模组的工作功率的前提下,没有延长WIFI模块的数据链路,不会影响到数据传输的效率,也不会因为延长了数据链路导致因传输数据的数据链增长而造成额外的的负载。
在一些示例中,WIFI模块具体被配置为在工作状态时,接收上位机发送的串口指令,在串口指令为非关机指令时,直接执行相应指令,在串口指令为关机指令时,向微处理器反馈关机指令信息,以使微处器向电源控制模块发送第二控制信号,以控制WIFI模块执行关机。微处理器还被配置为在检测到电源供给模块的电量小于或者等于预设值时,控制电源控制模块发送第二控制信号,以控制电源模块关断,并向上位机反馈源供给模块的电量提醒信息,微处理器进入待机状态。
进一步的,WIFI模块在工作状态可以直接接收上位机的串口令,因此上位机直接将关机指令发送到WIFI模块,控制WIFI模块电源的电源控制模块需要通过微处理器进行控制,WIFI模块接收到上位机的关机指令后先向微处理器反馈关机指令信息,再由微处理器向电源控制模块发送第二控制信号,切断电源供给模块与WIFI模块的连接,WIFI模块关机,微处理器恢复到待机状态。微处理器仅用于检测电源供电模块的电量信息并控制电源控制模块的工作状态,无需增加额外的工作需求,不会增加额外的功耗,也不会生成过多的串口指令增加WIFI模组的运算量。
在一些示例中,微处理器,还被配置为在检测到电源供给模块的电量小于或者等于预设值时,控制电源控制模块发送第二控制信号,以控制电源模块关断,并向上位机反馈源供给模块的电量提醒信息,微处理器进入待机状态。
进一步的,微处理器在待机唤醒状态时检测电源供给模块的电量,在WIFI模块处于工作状态时也会对电源供给模块的电量进行检测。因此微处 理器在检测到电源供给模块的电量小于或者等于预设值时,需要先对WIFI模块的工作状态进行判断,以选择后续的工作流程。若WIFI模块处于关机状态、微处理器处于待机状态,微处理器接收使能信号唤醒,在唤醒后先对电源供电模块进行电量检测,检测后的电量小于或者等于预设值时,直接向上位机反馈电源供给模块的电量提醒信息,微处理器恢复至待机状态。若WIFI模块处于工作状态,微处理器对电源供电模块进行电量检测,检测后的电量小于或者等于预设值时,微处理器直接向电源控制模块发送第二控制信号,电源控制模块响应于第二控制信号,切断电源供给模块与WIFI模块的连接,并向上位机反馈电源供给模块的电量提醒信息。
需要说明的是,微处理器用于向上位机发送电量提醒信息的发送端可以仅用于发送电量提醒信息,在无需发送信息的情况处于高阻态的关断状态。在发送电量提醒信息前,先对微处理器向上位机发送电量提醒信息的发送端进行初始化。
在一些示例中,微处理器被配置为在WIFI模块处于工作状态时,周期性检测电源供给模块的电量是否大于预设值,并在电源供给模块的电量大于预设值时向电源控制模块发送第一控制信号,在电源供给模块的电量小于或者等于预设值时向电源控制模块发送第二控制信号,以及向上位机反馈电源供给模块的电量提醒信息,微处理器进入待机状态。为了可以实时检测电源供给模块的电量信息,在WIFI模块处于工作状态时,微处理器保持对电源供给模块进行周期性的电量检测。例如,在一定周期内,上位机间断向微处理器发送使能信号,微处理器接收到使能信号后执行对电源供给模块的电量检测,在无需进行电量检测的时候,微处理器回复待机状态。
第三方面,本公开实施例还提供了一种终端设备,其包括上述WIFI模组,该终端设备可以是电子墨水屏终端,计算机终端或其他物理机终端。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (12)

  1. 一种WIFI模组的通信方法,其特征在于,所述WIFI模组包括微处理器、电源控制模块和WIFI模块;其中,所述微处理器、所述电源控制模块和WIFI模块两两通信连接,所述通信方法包括:
    通过微处理器检测电源供给模块的电量,并在检测出所述电源供给模块的电量大于预设值时,向所述电源控制模块发送第一控制信号;
    所述电源控制模块响应于所述第一控制信号,将所述电源供给模块所提供的工作电压加载至所述WIFI模块;
    所述WIFI模块响应于所述电源供给模块所提供的工作电压,而进入工作状态,并接收上位机发送的串口指令并执行相应的工作模式。
  2. 根据权利要求1所述的WIFI模组的通信方法,其特征在于,所述WIFI模块进入工作状态,接收上位机发送的串口指令并执行的步骤,包括:
    所述WIFI模块直接接收上位机发送的串口指令,并判断所述串口指令是否关机指令;
    若所述串口指令为非关机指令,所述WIFI模块直接执行相应指令;
    若所述串口指令为关机指令,所述WIFI模块向所述微处理器反馈关机指令信息;所述微处器响应于所述关机指令信息,向所述电源控制模块发送第二控制信号;所述电源控制模块响应于所述第二控制信号,切断所述电源供给模块与所述WIFI模块的连接,所述WIFI模块执行关机。
  3. 根据权利要求1所述的WIFI模组的通信方法,其特征在于,所述WIFI模组的通信方法还包括:
    在所述微处理器在检测到所述电源供给模块的电量小于或者等于预设值时,判断所述WIIF模块处于关机状态还是工作状态;
    若所述WIIF模块处于关机状态,所述微处理器向所述上位机反馈所述 电源供给模块的电量提醒信息,所述微处理器恢复待机状态;
    若所述WIIF模块处于工作状态,所述微处理器向所述电源控制模块发送第二控制信号,并向所述上位机反馈所述电源供给模块的电量提醒信息;所述电源控制模块响应于所述第二控制信号;切断所述电源供给模块与所述WIFI模块的连接,所述WIFI模块执行关机,所述微处理器进入待机状态。
  4. 根据权利要求1所述的WIFI模组的通信方法,其特征在于,所述WIFI模组的通信方法还包括:在所述WIFI模块处于工作状态时,
    所述微处理器对所述电源供给模块进行周期性的电量检测;
    若所述微处理器检测所述电源供给模块的电量大于所述预设值,所述微处理器向所述电源控制模块发送所述第一控制信号;
    若所述微处理器检测所述电源供给模块的电量小于或者等于所述预设值,所述微处理器向所述电源控制模块发送第二控制信号,并向所述上位机反馈所述电源供给模块的电量提醒信息;所述电源控制模块响应于所述第二控制信号,切断所述电源供给模块与所述WIFI模块的连接,将所述WIFI模块关机,所述微处理器进入待机状态。
  5. 一种WIFI模组,其特征在于,所述WIFI模组包括微处理器、电源控制模块和WIFI模块;
    所述微处理器,被配置为在检测到所述电源供给模块的电量大于预设值时,向所述电源控制模块发送第一控制信号;
    所述电源控制模块,响应于所述第一控制信号,并将所述电源供给模块所提供的工作电压加载至所述WIFI模块,以控制所述WIFI模块进入工作状态;
    所述WIFI模块,被配置为在处于工作状态时,接收上位机发送的串口指令并执行相应的工作模式。
  6. 根据权利要求5所述的WIFI模组,其特征在于,所述WIFI模块,具体被配置为在工作状态时,接收上位机发送的串口指令,在所述串口指令为非关机指令时,直接执行相应指令,在所述串口指令为关机指令时,向所述微处理器反馈关机指令信息,以使所述微处器向所述电源控制模块发送第二控制信号,以控制所述WIFI模块执行关机。
  7. 根据权利要求5所述的WIFI模组,其特征在于,所述微处理器,还被配置为在检测到所述电源供给模块的电量小于或者等于预设值时,控制所述电源控制模块发送第二控制信号,以控制所述电源模块关断,并向所述上位机反馈所述源供给模块的电量提醒信息,所述微处理器进入待机状态。
  8. 根据权利要求5所述的WIFI模组,其特征在于,所述微处理器,被配置为在所述WIFI模块处于工作状态时,周期性检测所述电源供给模块的电量是否大于所述预设值,并在所述电源供给模块的电量大于所述预设值时向所述电源控制模块发送所述第一控制信号,在所述电源供给模块的电量小于或者等于所述预设值时向所述电源控制模块发送第二控制信号,以及向所述上位机反馈所述电源供给模块的电量提醒信息,所述微处理器进入待机状态。
  9. 根据权利要求5所述的WIFI模组,其特征在于,所述微处理器和所述WIFI模块通过UART接口通信连接。
  10. 根据权利要求5所述的WIFI模组,其特征在于,所述微处理器和所述电源控制模块通过IO接口连接。
  11. 根据权利要求5所述的WIFI模组,其特征在于,所述微处理器的最小工作电压小于所述WIFI模块的最小工作电压。
  12. 一种终端设备,其特征在于,所述终端设备包括权利要求5-11中任一所述的WIFI模组。
PCT/CN2023/121568 2022-11-23 2023-09-26 Wifi模组的通信方法、wifi模组和终端设备 WO2024109333A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211475639.6A CN115866728A (zh) 2022-11-23 2022-11-23 Wifi模组的通信方法、wifi模组和终端设备
CN202211475639.6 2022-11-23

Publications (1)

Publication Number Publication Date
WO2024109333A1 true WO2024109333A1 (zh) 2024-05-30

Family

ID=85665431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121568 WO2024109333A1 (zh) 2022-11-23 2023-09-26 Wifi模组的通信方法、wifi模组和终端设备

Country Status (2)

Country Link
CN (1) CN115866728A (zh)
WO (1) WO2024109333A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115866728A (zh) * 2022-11-23 2023-03-28 京东方科技集团股份有限公司 Wifi模组的通信方法、wifi模组和终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332159A (zh) * 2016-08-10 2017-01-11 深圳市奥尼电子工业有限公司 Wifi异常自动重连装置、***及方法
CN106792127A (zh) * 2016-12-19 2017-05-31 深圳Tcl数字技术有限公司 网络唤醒方法及装置、唤醒终端及电视机
US20190372745A1 (en) * 2018-06-01 2019-12-05 Whelen Engineering Company, Inc. Half-Duplex Communication System
CN113708428A (zh) * 2020-05-20 2021-11-26 台达电子企业管理(上海)有限公司 移动式x射线机电源管理***及其控制方法
WO2022052801A1 (zh) * 2020-09-08 2022-03-17 陈林 数据传输装置及方法
CN115866728A (zh) * 2022-11-23 2023-03-28 京东方科技集团股份有限公司 Wifi模组的通信方法、wifi模组和终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332159A (zh) * 2016-08-10 2017-01-11 深圳市奥尼电子工业有限公司 Wifi异常自动重连装置、***及方法
CN106792127A (zh) * 2016-12-19 2017-05-31 深圳Tcl数字技术有限公司 网络唤醒方法及装置、唤醒终端及电视机
US20190372745A1 (en) * 2018-06-01 2019-12-05 Whelen Engineering Company, Inc. Half-Duplex Communication System
CN113708428A (zh) * 2020-05-20 2021-11-26 台达电子企业管理(上海)有限公司 移动式x射线机电源管理***及其控制方法
WO2022052801A1 (zh) * 2020-09-08 2022-03-17 陈林 数据传输装置及方法
CN115866728A (zh) * 2022-11-23 2023-03-28 京东方科技集团股份有限公司 Wifi模组的通信方法、wifi模组和终端设备

Also Published As

Publication number Publication date
CN115866728A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
CN101470509B (zh) 计算机***的控制方法、该计算机***及笔记本电脑
EP2267575B1 (en) Electronic device for reducing power consumption of computer motherboard and motherboard thereof
CN101859173B (zh) 待机休眠状态下的计算机主机板的节电装置及其主机板
CN102778943B (zh) 状态控制方法、装置及便携终端
JP3168471U (ja) サスペンド中の電力消費削減が可能なコンピューターマザーボード
WO2024109333A1 (zh) Wifi模组的通信方法、wifi模组和终端设备
WO2018157689A1 (zh) 一种实现蓝牙安全设备低功耗待机的方法及蓝牙安全设备
CN1920749B (zh) 节电电子装置及其节电方法
JP3150567U (ja) コンピューターマザーボードのシャットダウン時の電力消費を減少させる電子装置
KR20100090513A (ko) 저전력 시스템온칩
JP5773288B2 (ja) ハイスピードインターチップhsicインタフェースに基づくウェイクアップ方法、ホットスワップ方法、およびデバイス
CN201867678U (zh) 在休眠下可降低耗电量的计算机主机板
US9477293B2 (en) Embedded controller for power-saving and method thereof
CN101639724A (zh) 一种计算机、计算机供电控制装置和供电控制方法
JP2003158561A (ja) 携帯電話機
CN101853064A (zh) 节能控制***
CN103488270B (zh) 省电方法及其电子装置
CN108196481B (zh) 一种供电调节方法和电子设备
CN112910968B (zh) 一种集控接收***及其接收方法
CN215933161U (zh) 多路输入待机和唤醒的tft与led综合显示器低功耗电路
CN108874449A (zh) 具有唤醒辅助装置的电子***与应用于其中的唤醒辅助方法
US10007315B2 (en) Electronic device and method of preventing electronic device from entering hibernation
CN201489442U (zh) 搭配不间断电源使计算机在停电时安全休眠的装置
CN201657145U (zh) 基于tsumv26ku的低功耗电路
KR200375959Y1 (ko) 직렬포트 병렬포트를 이용한 멀티탭

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893425

Country of ref document: EP

Kind code of ref document: A1