WO2024108613A1 - 一种测试地铁无线网络服务质量的方法和*** - Google Patents

一种测试地铁无线网络服务质量的方法和*** Download PDF

Info

Publication number
WO2024108613A1
WO2024108613A1 PCT/CN2022/134679 CN2022134679W WO2024108613A1 WO 2024108613 A1 WO2024108613 A1 WO 2024108613A1 CN 2022134679 W CN2022134679 W CN 2022134679W WO 2024108613 A1 WO2024108613 A1 WO 2024108613A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
communication
service
testing
industrial computer
Prior art date
Application number
PCT/CN2022/134679
Other languages
English (en)
French (fr)
Inventor
蔡昌俊
陈希隽
梁东升
何治新
叶富智
姜强梁
德刚
张世平
马九洋
王文斌
戴源廷
魏志恒
宋天浩
吉祥雨
杨磊
Original Assignee
广州地铁集团有限公司
城轨创新网络中心有限公司
铁科院(北京)工程咨询有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州地铁集团有限公司, 城轨创新网络中心有限公司, 铁科院(北京)工程咨询有限公司 filed Critical 广州地铁集团有限公司
Publication of WO2024108613A1 publication Critical patent/WO2024108613A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/42Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for mass transport vehicles, e.g. buses, trains or aircraft

Definitions

  • the invention belongs to the field of wireless communication networks, and in particular relates to a method and system for testing the service quality of a subway wireless network.
  • a frequency sweeper is a high-precision, high-speed frequency sweep receiving device that can sweep to receive wireless signals and output RSRP, SINR, RSRI, RSRQ and other main parameters.
  • the frequency sweeper also has a spectrum analysis function, which measures the signal power of a specified frequency band, displays the measurement results in the form of a two-dimensional spectrum diagram, a three-dimensional spectrum diagram, and a sampling point signal strength trajectory diagram, and has the function of replaying and exporting test data. It is also equipped with a professional data analysis platform and has strong data analysis capabilities.
  • the detection equipment of urban rail vehicles is generally placed in the head car of the rail vehicle, commonly known as the TC1 car.
  • the space in the head car that is more suitable for the installation of detection equipment is mainly in the 8 seat equipment cabinets under the seats.
  • the three-dimensional space size of the seat equipment cabinet is 480*280*220 (mm).
  • the space is limited.
  • the dimensions of the common frequency sweepers on the market are much larger than the seat cabinet, mainly in terms of depth.
  • the frequency sweeper cannot be mounted on the wall or installed in the seat cabinet by rail, and cannot guarantee smooth operation on high-speed moving trains. 2.
  • the frequency sweeper is a dedicated hardware device, and the data is displayed on the terminal display or on the PC through the data analysis platform. Although the frequency sweeper can collect network service quality and field strength data, its data definition and data display logic are defined in advance by the original equipment manufacturer. If the owner wants to change/customize to match the business scenario of the urban rail wireless network, it is difficult to get support from the original equipment manufacturer.
  • an object of the present invention is to provide a method and system for testing the service quality of a subway wireless network, so as to solve the above problems existing in the prior art.
  • a system for testing the quality of service of a subway wireless network includes: existing on-board equipment, and also includes: m detection devices, a detection storage industrial computer, a control terminal, and a communication detection intranet switch;
  • the communication detection intranet switch is used to communicate with the detection device intranet and provide communication services so that the control terminal can control the detection device to work;
  • the detection and storage industrial computer is used to detect the data communicated in the communication detection intranet switch and temporarily store it;
  • m detection devices are used to detect urban rail wireless communication signals in parallel;
  • the existing vehicle-mounted equipment is signal-connected to the detection equipment and the communication detection intranet switch.
  • each of the detection devices includes 1 to n wireless access modules
  • the wireless access module is connected to the antenna of the existing vehicle-mounted equipment based on the included wireless communication type.
  • the detection equipment includes: a field strength detection industrial computer and a service quality detection industrial computer;
  • the field strength detection industrial computer and the service quality detection industrial computer are both connected to the communication detection intranet switch for communication;
  • the field strength detection industrial computer cooperates with the service quality detection industrial computer to perform concurrent testing.
  • it also includes: a network server compatible with the service quality detection industrial computer;
  • the network server is connected to the service quality detection industrial computer through a network, and is used to assist the service quality detection industrial computer in performing testing work.
  • the existing vehicle-mounted equipment includes a vehicle-mounted access unit TAU and a private network antenna;
  • the on-board access unit TAU is communicatively connected to the LTE-M wireless access module and the WLAN wireless access module in the detection device, and the private network antenna is communicatively connected to the radio frequency module in the detection device, thereby achieving indirect access to the subway wireless private network.
  • the existing vehicle-mounted equipment includes a private network antenna
  • the private network antenna is communicatively connected with the radio frequency module, the LTE-M wireless access module and the WLAN wireless access module in the detection device, and is used to directly access the subway wireless private network.
  • control terminal uses a time-space synchronization system to perform time-space synchronization control on the work of the detection equipment;
  • the time-space synchronization system is standardly equipped in the inspection vehicle, connected to the inspection vehicle's internal network, and uses a broadcast method to send information to each inspection module regularly and uniformly.
  • a method for testing the quality of service of a subway wireless network comprising:
  • a plurality of the detection subtasks are detected in parallel
  • the task types of the detection subtask include: field strength detection and quality of service detection.
  • the present invention has the following beneficial effects:
  • This system In the subway environment, it is normal for GPS to have no signal. This system has the ability to accurately synchronize time and GIS information without relying on GPS. It can centrally control multiple test tasks, flexibly define various test combinations, and flexibly define the trigger conditions for starting/ending tests. It supports unattended silent testing and remote one-click testing. It provides direct and indirect access to the subway wireless private network solution, simplifies deployment difficulty, and reduces operational risks. Various service quality test results and field strength test results are accurately synchronized in time and space, and can be played back and compared on the same screen without switching between multiple systems, which can greatly simplify the process of troubleshooting interference sources/fault sources.
  • Fig. 1 is a system block diagram of the present invention
  • Fig. 2 is a flow chart of the method of the present invention
  • FIG3 is a schematic diagram of the installation position of the present invention in an application scenario of an embodiment
  • FIG4 is an execution flow chart of the space-time synchronization system in the present invention.
  • a system for testing the quality of service of a subway wireless network comprises: existing on-board equipment, characterized in that it also comprises: m detection devices, a detection storage industrial computer, a control terminal, and a communication detection intranet switch;
  • the communication detection intranet switch is used to communicate with the detection device intranet and provide communication services so that the control terminal can control the detection device to work;
  • the detection and storage industrial computer is used to detect the data communicated in the communication detection intranet switch and temporarily store it;
  • m detection devices are used to detect urban rail wireless communication signals in parallel;
  • the existing vehicle-mounted equipment is signal-connected to the detection equipment and the communication detection intranet switch.
  • each of the detection devices includes 1 to n wireless access modules; and, in this embodiment, m is less than or equal to 5;
  • the wireless access module is connected to the antenna of the existing vehicle-mounted equipment based on the included wireless communication type.
  • this embodiment provides direct and indirect access to the subway wireless private network solution, which simplifies deployment difficulty and reduces operational risks;
  • Indirect access to the subway wireless private network the existing on-board equipment includes a vehicle access unit TAU and a private network antenna; the vehicle access unit TAU is connected to the LTE-M wireless access module and the WLAN wireless access module in the detection device, and the private network antenna is connected to the radio frequency module in the detection device to achieve indirect access to the subway wireless private network.
  • Direct access to the subway wireless private network the existing on-board equipment includes a private network antenna; the private network antenna is connected to the radio frequency module, the LTE-M wireless access module and the WLAN wireless access module in the detection device to directly access the subway wireless private network.
  • the existing on-board equipment includes: a private network antenna, a train timing system, a vehicle access unit TAU and a train positioning identification system PTI; wherein the train timing system and the train positioning identification system PTI are both connected to the communication detection intranet switch signal and receive the control of the control terminal.
  • the detection equipment in this embodiment includes: a field strength detection industrial computer and a service quality detection industrial computer;
  • the field strength detection industrial computer and the service quality detection industrial computer are both connected to the communication detection intranet switch for communication;
  • the field strength detection industrial computer cooperates with the service quality detection industrial computer to perform concurrent testing.
  • the service quality detection types include: LET-M, WLAN/WIFI, 5G, EUHT; it should be noted that in actual application, the service quality detection type is not limited to the content disclosed in this embodiment.
  • the field strength detection type LET-M/WLAN, in actual application, the field strength detection type is not limited to the content disclosed in this embodiment.
  • Each service quality detection industrial computer or the field strength detection industrial computer includes 1 to n wireless access modules.
  • This embodiment also includes: a network server compatible with the service quality detection industrial computer; the network server is installed in the IDC computer room, which is divided into a private network LET-M computer room, a WLAN computer room and various civil computer rooms according to different detection items.
  • the network server is connected to the service quality detection industrial computer through a network, and is used to assist the service quality detection industrial computer in performing testing work.
  • the control terminal uses a time-space synchronization system to perform time-space synchronization control on the work of the detection equipment;
  • the time-space synchronization system is standardly equipped in the inspection vehicle, connected to the inspection vehicle's internal network, and uses broadcasting to send information to each inspection module regularly and uniformly.
  • various service quality detection results and field strength detection results in this embodiment are accurately synchronized in time and space, and can be played back and compared on the same screen without switching multiple systems, which can greatly simplify the process of troubleshooting interference sources/fault sources.
  • system hardware configuration parameters are: (the on-board equipment are all corresponding industrial computers and switches that have passed the subway safety certification standards):
  • LTE-M private network field strength detection vehicle-mounted industrial computer i7-6822EQ, 16G, 256GSSD*2, RAID1, dual 1000 MM12 network card, NvidiaA2000MXM, 4G graphics card, hackRFOne.
  • the LTE-M private network field strength detection vehicle-mounted industrial computer supports LTE-M private communication network indicator data demodulation, cell decoding, and supports the collection of spectrum data in the specified frequency band; supports TDD uplink and downlink data separation in the scenario without GPS; supports spectrum data cleaning, merging, and compression storage; responds to the communication detection integrated control system instructions and performs corresponding detection operations according to the instructions.
  • WLAN private network field strength detection vehicle-mounted industrial computer i7-6822EQ, 16G, 256GSSD*2, RAID1, dual 1000 MM12 network card, NvidiaA2000MXM, 4G graphics card, hackRFOne.
  • the WLAN private network field strength detection vehicle-mounted industrial computer supports the collection of spectrum data in the specified frequency band of the WLAN private communication network; supports the collection and analysis of WLAN switch log data; supports spectrum data cleaning, merging, and compression storage; responds to the instructions of the communication detection integrated control system and performs corresponding detection operations according to the instructions.
  • LTE-M/WLAN/5G/WIFI/EUHT service quality detection vehicle-mounted industrial computer i5-6422EQ, 8G, 256GSSD*2, RAID1, dual 1000 MM12 network card, 2*SIM, 2PCI-E, 3*USBLTE-M/5G/WIFI/WLAN/EUHT module.
  • the service quality detection vehicle-mounted industrial computer supports: 5 network standards such as LTE-M/WLAN/5G/WIFI/EUHT for simultaneous service quality detection; supports connection success rate, connection delay, data transmission success rate, data transmission delay and other service quality indicators; responds to the communication detection integrated control system instructions and performs corresponding detection operations according to the instructions.
  • Temporary server vehicle-mounted industrial computer i5-6422EQ, 8G, 1TSSD*4, RAID10, dual 1000MM12 network card.
  • In-vehicle intranet switch M12 interface, full 1000M switch, 8 electrical ports (12 support POE, 4 support bypass).
  • LTE-M private network QoS server installed in the dedicated computer room for LTE-M private network; 1U server E-2124/16G*2/2TSATA/four-port Gigabit/400W.
  • 1.7.WLAN private network QoS server installed in the dedicated computer room for LTE-M private network; 1U server E-2124/16G*2/2TSATA/four-port Gigabit/400W.
  • a method for testing the quality of service of a subway wireless network comprising:
  • a plurality of the detection subtasks are detected in parallel
  • the application scenario of this embodiment is the communication detection method in the active operation and maintenance method project of Guangzhou Metro Line 11.
  • the communication detection method adopts the split-type industrial control computers of various standards disclosed in the embodiments to detect the line wireless communication signals, which can realize the detection of the field strength and electromagnetic environment of LTE-M/WLAN and the detection of the service quality of WLAN/LTE-M/5G/EUHT/WIFI.
  • the detection method hardware consists of communication detection equipment and communication detection method switches, which are reused with the existing LTE-M/WLAN communication antenna in the vehicle, and the test equipment's own antenna is used for tests such as civil networks. After receiving the wireless signal through the antenna, the method processes, stores, displays GIS graphics, and performs data statistics.
  • the detection equipment, communication detection subsystem switches, and communication detection storage servers are placed under the subway seat cabinets.
  • the dedicated network system antenna is shared with the vehicle, and the civilian network antenna is installed on the service quality detection equipment.
  • Vehicle-mounted testing equipment installation instructions :
  • the detection equipment refers to the LTE-M vehicle-mounted field strength detection industrial computer, the WLAN vehicle-mounted field strength detection industrial computer, and the service quality detection industrial computer (LTE-M/WLAN/5G/EUHT/WIFI).
  • the industrial computers are installed in the seat cabinets, each corresponding to a seat cabinet, occupying about 2U of space, a total of 3, and a total of 6U of space; specifically, in this embodiment, the detection equipment is used as the main equipment for executing the detection subtask to receive the detection task, execute the detection task according to the detection configuration, save the detection data, and update the detection operation status in real time.
  • the task types of the detection subtasks described in this embodiment include: field strength detection and quality service detection.
  • Temporary storage industrial computer is also called temporary storage server
  • the space occupied is 2U, the machine type is not limited, it is connected to the switch through a Category 6 network cable, and the remaining disk space is not less than 1T per day;
  • the communication detection storage server is implemented in the form of an industrial computer.
  • the temporary storage industrial computer described in this embodiment is used to receive operation instructions, generate detection tasks, assign detection tasks, control the detection operation status, query detection data, configure detection parameters, and export/backup detection data; and according to performance indicators and functional requirements, various types of data are stored in a classified manner, and the function of backing up historical data to a temporary server is provided.
  • the space occupied is about 1.5U.
  • the communication detection intranet switch is installed in the seat cabinet on the other side, with M12 interface and connected via Category 6 network cable.
  • the subway needs to provide an interface so that the detection system can adapt
  • the Console logical interface of the vehicle-mounted WLAN switch needs to be reserved.
  • the communication detection subsystem interface needs to be a (DB9) port or an M12 interface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种测试地铁无线网络服务质量的方法和***,用于城轨信号检测,包括:车载现有设备,还包括:m个检测设备、检测存储工控机、控制终端、以及通信检测内网交换机;通信检测内网交换机,用于与检测设备内网通讯,并提供通讯服务使控制终端控制检测设备工作;检测存储工控机,用于检测通信检测内网交换机内进行通讯的数据,并临时存储;m个检测设备,用于并行检测城轨无线通信信号;其中,车载现有设备与检测设备和通信检测内网交换机信号连接。本发明专为地铁应用环境量身定制,具备不依赖GPS的精准同步时间和GIS 信息的能力,***操作简便,自动化程度高,可实现灵活的专网接入方式和多种检测结果集中回放。

Description

一种测试地铁无线网络服务质量的方法和*** 技术领域
本发明属于无线通信网络领域,尤其涉及一种测试地铁无线网络服务质量的方法和***。
背景技术
在无线通信领域,扫频仪是电信运营商/设备商进行无线基站建设、网优等工作时的重要测试工具。扫频仪是一种高精度、高速度采集无线空口信号的扫频接收设备,能扫频接收无线信号,扫频输出RSRP、SINR、RSRI、RSRQ等主要参数。同时,扫频仪还具备频谱分析功能,对指定频段进行信号功率的测量,以二维频谱图、三维频谱图、采样点信号强度轨迹图等形式展现测量结果,并具备测试数据回放和导出功能,同时配备专业的数据分析平台,具有很强的数据分析能力。然而,在高速运行的列车上,应用扫频仪进行无线基站建设、网优等工作测试时,存在以下局限性:1.不支持高速移动性:城市轨道车辆的检测设备一般放置在轨道车辆的头车,俗称TC1车厢,头车中比较适合检测设备安装的空间主要在座椅下方的8个座椅设备柜。座椅设备柜的三维空间尺寸为480*280*220(mm),空间受限,市面上常见的扫频仪外形尺寸都比座椅柜大的多,主要是深度,扫频仪无法壁挂或者导轨方式装入座椅柜,在高速移动的列车上无法保证平稳运行。2.不支持工业级可靠性:不同于普通的网络机房或者实验室,列车头车车厢是一个高振动、高粉尘、极低或极高温等恶劣环境,属于工业级运行环境,扫频仪不能适应此环境下的长期稳定运行。3.封闭的软件平台:扫频仪是专用硬件设备,数据展现是在终端显示屏或者通过数据分析平台在PC上展现。虽然扫频仪可以收集到网络服务质量和场强数据,但其数据定义和数据展现逻辑或是设备原厂提前 定义的,如果业主想更改/定制以匹配城轨无线网络的业务场景,很难得到设备原厂的支持。
亟需此,本领域技术人员,亟需发明一种对无线基站建设、网优等工作进行测试的全新方法和***。
发明内容
有鉴于此,本发明的目的在于提供一种测试地铁无线网络服务质量的方法和***,以解决上述现有技术中存在的问题。
为实现上述技术目的,本发明公开了以下技术内容:
一种测试地铁无线网络服务质量的***,包括:车载现有设备,还包括:m个检测设备、检测存储工控机、控制终端、以及通信检测内网交换机;
所述通信检测内网交换机,用于与所述检测设备内网通讯,并提供通讯服务使所述控制终端控制所述检测设备工作;
所述检测存储工控机,用于检测所述通信检测内网交换机内进行通讯的数据,并临时存储;
m个所述检测设备,用于并行检测城轨无线通信信号;
其中,所述车载现有设备与所述检测设备和所述通信检测内网交换机信号连接。
优选的,每个所述检测设备中包括1至n个无线接入模块;
所述无线接入模块基于所含无线通讯类型与所述车载现有设备的天线连接。
优选的,所述检测设备中包括:场强检测工控机、服务质量检测工控机;
所述场强检测工控机、所述服务质量检测工控机均与所述通信检测内网交换机通信连接;
所述场强检测工控机与所述服务质量检测工控机配合进行并发测试。
优选的,还包括:与服务质量检测工控机相适配的网络服务器;
所述网络服务器与所述服务质量检测工控机网络连接,用于辅助所述服务质量检测工控机进行测试工作。
优选的,所述车载现有设备中包括车载接入单元TAU、专网天线;
所述车载接入单元TAU与所述检测设备中LTE-M无线接入模块和WLAN无线接入模块通信连接,所述专网天线与所述检测设备中射频模块通信连接,实现间接接入地铁无线专网。
优选的,所述车载现有设备中包括专网天线;
所述专网天线与所述检测设备中射频模块、LTE-M无线接入模块以及WLAN无线接入模块通信连接,用于直接接入地铁无线专网。
优选的,所述控制终端采用时空同步***对检测设备的工作进行时空同步控制;
其中,所述时空同步***由检测车标配,接入检测车内网,使用广播方式,定期统一向各检测模块发送信息。
一种测试地铁无线网络服务质量的方法,包括:
获取检测需求;
基于所述检测需求生成启动参数,并根据所述启动参数生成1至多个检测子任务;
多个所述检测子任务进行并行检测;
执行所述检测子任务,判断是否接收提前终止指令;
若是,临时存储检测记录,完成所述检测子任务;若否,临时存储检测记录,以实际需求设定所述检测子任务的检测持续时间,并基于所述检测持续时间对所述检测子任务是否达到检测持续时间进行检测;若检测结果为否,重新执行检测子任务;若检测结果为是,完成所述检测子任务;
完成多个所述检测子任务,更新检测项目状态。
优选的,所述检测子任务的任务类型包括:场强检测和质量服务检测。
与现有技术相比,本发明具有如下有益效果:
地铁环境下,GPS无信号是常态,本***具备不依赖GPS的精准同步时间和GIS信息的能力;多种测试任务集中控制,可灵活定义各种测试组合,灵活定义开启/结束测试触发条件;支持无人值守方式静默测试,支持远程一键测试;提供直接和间接接入地铁无线专网方案,简化部署难度,降低运营风险;各类服务质量检测结果与场强检测结果与在时空上实现精准同步,同屏回放,同屏对比,无需多***切换,可极大简化排查干扰源/故障源过程。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明***框图;
图2为本发明方法流程图;
图3为本发明在实施例的应用场景下的安装位置示意图;
图4为本发明中时空同步***的执行流程图。
具体实施方式
下面结合实施例对本发明提供的技术方案进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
一种测试地铁无线网络服务质量的***,包括:车载现有设备,其特征 在于,还包括:m个检测设备、检测存储工控机、控制终端、以及通信检测内网交换机;
所述通信检测内网交换机,用于与所述检测设备内网通讯,并提供通讯服务使所述控制终端控制所述检测设备工作;
所述检测存储工控机,用于检测所述通信检测内网交换机内进行通讯的数据,并临时存储;
m个所述检测设备,用于并行检测城轨无线通信信号;
其中,所述车载现有设备与所述检测设备和所述通信检测内网交换机信号连接。
具体地:
在本实施例中每个所述检测设备中包括1至n个无线接入模块;且,在本实施例中m小于等于5;
所述无线接入模块基于所含无线通讯类型与所述车载现有设备的天线连接。
为实现灵活的专网接入方式,本实施例提供直接和间接接入地铁无线专网方案,简化部署难度,降低运营风险;(1)间接接入地铁无线专网:所述车载现有设备中包括车载接入单元TAU、专网天线;所述车载接入单元TAU与所述检测设备中LTE-M无线接入模块和WLAN无线接入模块通信连接,所述专网天线与所述检测设备中射频模块通信连接,实现间接接入地铁无线专网。(2)直接接入地铁无线专网:所述车载现有设备中包括专网天线;所述专网天线与所述检测设备中射频模块、LTE-M无线接入模块以及WLAN无线接入模块通信连接,用于直接接入地铁无线专网。更进一步,在本实施例中,所述车载现有设备包括:专网天线、列车授时***、车载接入单元TAU以及列车定位识别***PTI;其中,所述列车授时***和所述列车定位识别***PTI均与所述通信检测内网交换机信号连接,接收所述控制终端的控制。
在本实施例中所述检测设备中包括:场强检测工控机、服务质量检测工控机;
所述场强检测工控机、所述服务质量检测工控机均与所述通信检测内网交换机通信连接;
所述场强检测工控机与所述服务质量检测工控机配合进行并发测试。更进一步,在本实施例中,服务质量检测类型包括:LET-M、WLAN/WIFI、5G、EUHT;需要说明的是,在实际应用时,服务质量检测类型并不仅限于本实施例中所公开的内容。在本实施例中场强检测类型:LET-M/WLAN,在实际应用时,场强检测类型并不仅限于本实施例中所公开的内容。每个服务质量检测工控机或所述场强检测工控机中包括1至n个无线接入模块。
在本实施例中还包括:与服务质量检测工控机相适配的网络服务器;所述网络服务器安装于IDC机房,根据检测项目的不同,分为专网LET-M机房、WLAN机房以及民用各类机房。
所述网络服务器与所述服务质量检测工控机网络连接,用于辅助所述服务质量检测工控机进行测试工作。
控制终端采用时空同步***对检测设备的工作进行时空同步控制;
其中,所述时空同步***由检测车标配,接入检测车内网,使用广播方式,定期统一向各检测模块发送信息。同时为实现多种检测结果集中回放,本实施例中各类服务质量检测结果和场强检测结果在时空上实现精准同步,同屏回放,同屏对比,无需多***切换,可极大简化排查干扰源/故障源过程。
另外,在本实施例中,***硬件配置参数为:(车载设备均为通过地铁安全认证标准的相应工控机,交换机):
1.1.LTE-M专网场强检测车载工控机:i7-6822EQ,16G,256GSSD*2,RAID1,双千MM12网卡,NvidiaA2000MXM,4G显卡,HackRFOne。在本实 施例中LTE-M专网场强检测车载工控机支持LTE-M专用通信网络指标数据解调,小区解码,支持指定频段频谱数据采集;支持无GPS场景下,支持TDD上下行数据分离采集;支持频谱数据清洗,合并,压缩存储;响应通信检测综合控制***指令,按指令执行相应检测操作。
1.2.WLAN专网场强检测车载工控机:i7-6822EQ,16G,256GSSD*2,RAID1,双千MM12网卡,NvidiaA2000MXM,4G显卡,HackRFOne。在本实施例中WLAN专网场强检测车载工控机支持WLAN专用通信网络指定频段频谱数据采集;支持WLAN交换机日志数据采集,分析;支持频谱数据清洗,合并,压缩存储;响应通信检测综合控制***指令,按指令执行相应检测操作。
1.3.LTE-M/WLAN/5G/WIFI/EUHT服务质量检测车载工控机:i5-6422EQ,8G,256GSSD*2,RAID1,双千MM12网卡,2*SIM,2PCI-E,3*USBLTE-M/5G/WIFI/WLAN/EUHT模块。在本实施例中服务质量检测车载工控机支持:LTE-M/WLAN/5G/WIFI/EUHT等5种网络制式同时进行服务质量检测;支持连接成功率,连接延迟,数据传输成功率,数据传输延迟等服务质量指标;响应通信检测综合控制***指令,按指令执行相应检测操作。
1.4.临时服务器车载工控机:i5-6422EQ,8G,1TSSD*4,RAID10,双千MM12网卡。在本实施例中临时服务器车载工控机支持本地检测调试:检测配置,检测启动/停止,检测记录回放;检测数据临时存放;支持对接车载综合数据***,实现物模型=>(穗腾OS云)接口对接;支持解析时空同步指令,检测数据时空标记,按指令执行相应检测操作;满足连续48小时或1000KM通讯检测数据存储。
1.5.车载内网交换机:M12接口,全千M交换机,8电口(12个支持POE,4个支持bypass)。
1.6.LET-M专网QoS服务器:安装在LTE-M专网专用机房;1U服务器E-2124/16G*2/2TSATA/四口千兆/400W。
1.7.WLAN专网QoS服务器:安装在LTE-M专网专用机房;1U服务器E-2124/16G*2/2TSATA/四口千兆/400W。
实施例2
一种测试地铁无线网络服务质量的方法,包括:
获取检测需求;
基于所述检测需求生成启动参数,并根据所述启动参数生成1至多个检测子任务;
多个所述检测子任务进行并行检测;
执行所述检测子任务,判断是否接收提前终止指令;
若是,临时存储检测记录,完成所述检测子任务;若否,临时存储检测记录,以实际需求设定所述检测子任务的检测持续时间,并基于所述检测持续时间对所述检测子任务是否达到检测持续时间进行检测;若检测结果为否,重新执行检测子任务;若检测结果为是,完成所述检测子任务;
完成多个所述检测子任务,更新检测项目状态。
具体地:
本实施例的应用场景为广州地铁11号线主动运维方法项目中的通信检测方法。
通信检测方法采用实施例公开的各制式分体式工控机方式对线路无线通信信号进行检测,可实现LTE-M/WLAN的场强、电磁环境的检测和WLAN/LTE-M/5G/EUHT/WIFI服务质量的检测。
其中,检测方法硬件由通信检测设备、通信检测方法交换机组成,与车内既有的LTE-M/WLAN通信天线复用,民用网络等测试使用测试设备自己的 天线。方法通过天线接收到无线信号后,对数据进行处理、存储、GIS图形显示、数据统计。
检测设备、通信检测分***交换机、通信检测存储服务器安放地铁座椅柜下面,专网***天线与车辆共用,民用网络天线安装在服务质量检测设备。
车载检测设备安装说明:
(1)检测设备
检测设备指LTE-M车载场强检测工控机、WLAN车载场强检测工控机、服务质量检测工控机(LTE-M/WLAN/5G/EUHT/WIFI)。工控机安装在座椅柜,每台对应一个座椅柜,占用2U左右空间,共3台,总共占用6U空间;具体地在本实施例中检测设备作为执行检测子任务的主要设备用于接收检测任务,根据检测配置执行检测任务,保存检测数据,实时更新检测运行状态。且在本实施例中所述检测子任务的任务类型包括:场强检测和质量服务检测。
(2)临时存储工控机也称临时存储服务器
占用空间2U,机型不限,通过六类网线连入交换机,每日剩余磁盘空间不少于1T;通信检测存储服务器的实现以工控机形式实现。具体地:在本实施例中所述临时存储工控机用于接收操作指令,生成检测任务,分派检测任务,控制检测运行状态,查询检测数据,配置检测参数,导出/备份检测数据;以及根据性能指标和功能要求,分类存储各类数据,提供将历史数据备份到临时服务器功能。
(3)通信检测内网交换机
占用空间大约1.5U,通信检测内网交换机安装在另一侧座椅柜,M12接口,通过六类网线连入;
(4)LTE-M/WLAN天线
复用车顶现有天线。在检测设备安装位置处,提供与列车上 LTE-M/WLAN天线相连的N型或SMA型天线接口;
(5)列车授时和定位接口
需地铁方提供接口,检测***进行适配;
(6)WLAN检测接口需求
①Console:用于实时查看交换机日志,需预留车载WLAN交换机Console逻辑接口,通信检测子***接口需要为(DB9)端口或M12接口;
②接列车WLAN以太网口:用于服务质量测试,需预留车载WLAN交换机以太网口,通信检测子***接口需要为M12接口。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种测试地铁无线网络服务质量的***,包括:车载现有设备,其特征在于,还包括:m个检测设备、检测存储工控机、控制终端、以及通信检测内网交换机;
    所述通信检测内网交换机,用于与所述检测设备内网通讯,并提供通讯服务使所述控制终端控制所述检测设备工作;
    所述检测存储工控机,用于检测所述通信检测内网交换机内进行通讯的数据,并临时存储;
    m个所述检测设备,用于并行检测城轨无线通信信号;
    其中,所述车载现有设备与所述通信检测内网交换机信号连接;所述检测设备与所述通信检测内网交换机信号连接。
  2. 根据权利要求1所述的一种测试地铁无线网络服务质量的***,其特征在于,每个所述检测设备中包括1至n个无线接入模块;
    所述无线接入模块基于所含无线通讯类型与所述车载现有设备的天线连接。
  3. 根据权利要求1所述的一种测试地铁无线网络服务质量的***,其特征在于,所述检测设备中包括:场强检测工控机、服务质量检测工控机;
    所述场强检测工控机、所述服务质量检测工控机均与所述通信检测内网交换机通信连接;
    所述场强检测工控机与所述服务质量检测工控机配合进行并发测试。
  4. 根据权利要求1所述的一种测试地铁无线网络服务质量的***,其特征在于,还包括:与服务质量检测工控机相适配的网络服务器;
    所述网络服务器与所述服务质量检测工控机网络连接,用于辅助所述服务质量检测工控机进行测试工作。
  5. 根据权利要求2所述的一种测试地铁无线网络服务质量的***,其特 征在于,所述车载现有设备中包括车载接入单元TAU、专网天线;
    所述车载接入单元TAU与所述检测设备中LTE-M无线接入模块和WLAN无线接入模块通信连接,所述专网天线与所述检测设备中射频模块通信连接,实现间接接入地铁无线专网。
  6. 根据权利要求2所述的一种测试地铁无线网络服务质量的***,其特征在于,所述车载现有设备中包括专网天线;
    所述专网天线与所述检测设备中射频模块、LTE-M无线接入模块以及WLAN无线接入模块通信连接,用于直接接入地铁无线专网。
  7. 根据权利要求1所述的一种测试地铁无线网络服务质量的***,其特征在于,所述控制终端采用时空同步***对检测设备的工作进行时空同步控制;
    其中,所述时空同步***由检测车标配,接入检测车内网,使用广播方式,定期统一向各检测模块发送信息。
  8. 一种测试地铁无线网络服务质量的方法,其特征在于,包括:
    获取检测需求;
    基于所述检测需求生成启动参数,并根据所述启动参数生成1至多个检测子任务;
    多个所述检测子任务进行并行检测;
    执行所述检测子任务,判断是否接收提前终止指令;
    若是,临时存储检测记录,完成所述检测子任务;若否,临时存储检测记录,以实际需求设定所述检测子任务的检测持续时间,并基于所述检测持续时间对所述检测子任务是否达到检测持续时间进行检测;若检测结果为否,重新执行检测子任务;若检测结果为是,完成所述检测子任务;
    完成多个所述检测子任务,更新检测项目状态。
  9. 根据权利要求8所述的一种测试地铁无线网络服务质量的方法,其特征在于,所述检测子任务的任务类型包括:场强检测和质量服务检测。
PCT/CN2022/134679 2022-11-23 2022-11-28 一种测试地铁无线网络服务质量的方法和*** WO2024108613A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211474790.8A CN115866663A (zh) 2022-11-23 2022-11-23 一种测试地铁无线网络服务质量的方法和***
CN202211474790.8 2022-11-23

Publications (1)

Publication Number Publication Date
WO2024108613A1 true WO2024108613A1 (zh) 2024-05-30

Family

ID=85665387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134679 WO2024108613A1 (zh) 2022-11-23 2022-11-28 一种测试地铁无线网络服务质量的方法和***

Country Status (2)

Country Link
CN (1) CN115866663A (zh)
WO (1) WO2024108613A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202395799U (zh) * 2011-12-14 2012-08-22 武汉烽火信息集成技术有限公司 城市轨道交通信号综合监测***
CN105722130A (zh) * 2016-02-04 2016-06-29 中国科学院上海高等研究院 一种监测地铁ap设备的方法及***
CN106960285A (zh) * 2017-04-01 2017-07-18 北京交通大学 一种地铁列车运行服务质量检测装置及方法
CN208171235U (zh) * 2018-04-18 2018-11-30 上海工程技术大学 一种地铁轨道检测装置
US20200166624A1 (en) * 2018-11-28 2020-05-28 Metrom Rail, Llc Methods and systems for ultra-wideband (uwb) based subway personnel detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202395799U (zh) * 2011-12-14 2012-08-22 武汉烽火信息集成技术有限公司 城市轨道交通信号综合监测***
CN105722130A (zh) * 2016-02-04 2016-06-29 中国科学院上海高等研究院 一种监测地铁ap设备的方法及***
CN106960285A (zh) * 2017-04-01 2017-07-18 北京交通大学 一种地铁列车运行服务质量检测装置及方法
CN208171235U (zh) * 2018-04-18 2018-11-30 上海工程技术大学 一种地铁轨道检测装置
US20200166624A1 (en) * 2018-11-28 2020-05-28 Metrom Rail, Llc Methods and systems for ultra-wideband (uwb) based subway personnel detection

Also Published As

Publication number Publication date
CN115866663A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
CN107167680B (zh) 一种基于rtds的配电网分布式测试***
CN106056896B (zh) 基于低压电力线载波的智能用电***及其测试方法
CN101321367B (zh) 一种铁路机车综合无线通信设备的监测***及其方法
CN107241232B (zh) 一种适用于调度自动化网络分析的故障定位***及方法
CN101923138B (zh) 内置了gps模块的at线路故障测距***
CN110943870A (zh) 一种智能站全景数据监测分析***及方法
CN110086653B (zh) 电力无线专网路测采集分析***及方法
CN113206684A (zh) 一种带拓扑识别功能的台区智能融合终端
CN116013055A (zh) 一种基于hplc与hrf双模通信技术实现快速抄读电能表的测试方法
CN103986775A (zh) 基于数字集群pdt基站的故障信息采集***
CN111127250A (zh) 一种电力数据监控事件分析***及方法
CN101166336B (zh) 路测记录装置及***
CN109165164A (zh) 面向车联网封闭测试场的数据管理***及数据管理方法
WO2024108613A1 (zh) 一种测试地铁无线网络服务质量的方法和***
CN109633345B (zh) 一种二次设备在线监测与分析装置
CN114063535A (zh) 车载无线传输装置
CN209402532U (zh) 一种车载数据采集装置和***
CN107942996B (zh) 一种现有站台门***局部、整体升级改造控制方法及***
CN203279191U (zh) 一种多制式网络综合业务监控***
CN203554072U (zh) 基于双层双网结构的变电站自动化***
CN113194128B (zh) 一种应用5g传输通信巡检机器人的定位***和方法
CN203027498U (zh) 测试装置
CN202077160U (zh) 带有远程无线通信模块的开关柜智能显示控制装置
RU2554524C1 (ru) Устройство для удаленного мониторинга и анализа работы технических средств передвижного выставочно-лекционного комплекса
CN209485703U (zh) 机车车辆远程无线数据采集装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22966299

Country of ref document: EP

Kind code of ref document: A1