WO2024108451A1 - 通信方法、电子设备及存储介质 - Google Patents

通信方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2024108451A1
WO2024108451A1 PCT/CN2022/133844 CN2022133844W WO2024108451A1 WO 2024108451 A1 WO2024108451 A1 WO 2024108451A1 CN 2022133844 W CN2022133844 W CN 2022133844W WO 2024108451 A1 WO2024108451 A1 WO 2024108451A1
Authority
WO
WIPO (PCT)
Prior art keywords
sta
ppdu
sub
bandwidth
channel
Prior art date
Application number
PCT/CN2022/133844
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/133844 priority Critical patent/WO2024108451A1/zh
Priority to CN202280004995.1A priority patent/CN118383068A/zh
Publication of WO2024108451A1 publication Critical patent/WO2024108451A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present disclosure relate to the field of mobile communication technology. Specifically, the embodiments of the present disclosure relate to a communication method, an electronic device and a storage medium.
  • Wi-Fi Wireless Fidelity
  • UHR Ultra High Reliability
  • WLAN Wireless Local Area Networks
  • SNR signal-to-noise ratio
  • the access point (AP) device side may support large bandwidth, such as 320MHz or 640MHz communication, while the STA only supports small bandwidth communication, such as 160MHz or 80MHz, etc.; and the station (STA) device usually only supports small bandwidth, such as 160MHz or 80MHz, etc.; in this case, in order to maximize the use of AP capabilities, the aggregated physical layer protocol data unit (A-PPDU) can be transmitted. Therefore, it is necessary to provide an implementation method for transmitting A-PPDU to support UHR.
  • A-PPDU aggregated physical layer protocol data unit
  • the embodiments of the present disclosure provide a communication method, an electronic device, and a storage medium to provide an implementation method for transmitting A-PPDU.
  • an embodiment of the present disclosure provides a communication method, which is applied to an access point device AP, and the method includes:
  • the first radio frame includes uplink bandwidth information of a first sub-PPDU of an uplink aggregate physical layer protocol data unit A-PPDU transmitted by a station device STA;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • an embodiment of the present disclosure further provides a communication method, which is applied to a station device STA, and the method includes:
  • the first radio frame includes uplink bandwidth information of a first sub-PPDU of an uplink aggregate physical layer protocol data unit A-PPDU transmitted by the STA;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • an embodiment of the present disclosure further provides an electronic device, wherein the electronic device is an access point device AP, and the electronic device includes:
  • a sending module configured to send a first radio frame, wherein the first radio frame includes uplink bandwidth information of a first sub-PPDU of an uplink aggregate physical layer protocol data unit A-PPDU transmitted by a station device STA;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • an embodiment of the present disclosure further provides an electronic device, the electronic device is a station device STA, and the electronic device includes:
  • a receiving module configured to receive a first radio frame, wherein the first radio frame includes uplink bandwidth information of a first sub-PPDU of an uplink aggregate physical layer protocol data unit A-PPDU transmitted by the STA;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • the embodiments of the present disclosure also provide an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, one or more methods described in the embodiments of the present disclosure are implemented.
  • the embodiments of the present disclosure further provide a computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the computer program is executed by a processor, one or more of the methods described in the embodiments of the present disclosure are implemented.
  • the AP sends a first wireless frame, which includes uplink bandwidth information of the first sub-PPDU of the uplink A-PPDU transmitted by the station device STA; wherein, in the case that the STA includes the first STA or the second STA, the uplink bandwidth of the first sub-PPDU transmitted by the first STA or the second STA includes the main channel, that is, in the UHR transmission, the main channel is preferentially allocated to the first STA (if the first STA does not exist, it is preferentially allocated to the second STA), and the auxiliary channel is allocated to the UHR STA; subsequently, different transmission protocols are configured for different channels, and the receiving end parses the sub-PPDU transmitted by each sub-channel according to different transmission protocols to ensure backward compatibility and standardize the process of STA supporting different protocols transmitting uplink A-PPDU to make it applicable to UHR requirements.
  • FIG1 is a flow chart of a communication method according to an embodiment of the present disclosure.
  • FIG2 is a schematic diagram of a first example of an embodiment of the present disclosure
  • FIG3 is a second schematic diagram of the first example of the embodiment of the present disclosure.
  • FIG4 is a second flowchart of the communication method provided in an embodiment of the present disclosure.
  • FIG5 is a schematic diagram of a structure of an electronic device provided by an embodiment of the present disclosure.
  • FIG6 is a second structural diagram of an electronic device provided in an embodiment of the present disclosure.
  • FIG. 7 is a third schematic diagram of the structure of the electronic device provided in the embodiment of the present disclosure.
  • first, second, third, etc. may be used in the present disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word “if” used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
  • the embodiments of the present disclosure provide a communication method, an electronic device, and a storage medium, so as to provide an implementation method for transmitting A-PPDU.
  • the method and the device are based on the same application concept. Since the method and the device solve the problem in a similar principle, the implementation of the device and the method can refer to each other, and the repeated parts will not be repeated.
  • an embodiment of the present disclosure provides a communication method, which may be optionally applied to an access point (AP) device;
  • the AP is, for example, a device having a wireless to wired bridging function, and the AP is responsible for extending the services provided by the wired network to the wireless network;
  • the station device (STA) is, for example, an electronic device having a wireless network access function, and provides a frame delivery (Frame Delivery) service to enable information to be transmitted.
  • the method may include the following steps:
  • Step 101 Send a first radio frame, where the first radio frame includes uplink bandwidth information of a first sub-PPDU of an uplink aggregate physical layer protocol data unit A-PPDU transmitted by a station device STA;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • a Basic Service Set can be composed of an AP and one or more stations (STA) communicating with the AP.
  • a Basic Service Set can be connected to a Distribution System (DS) through its AP, and then connected to another Basic Service Set to form an Extended Service Set (ESS).
  • DS Distribution System
  • ESS Extended Service Set
  • the AP and the STA may be devices supporting multiple connections, for example, they may be represented as AP MLD and non-AP MLD, respectively.
  • AP MLD AP MLD
  • non-AP MLD non-AP MLD
  • AP MLD may represent an access point supporting a multi-connection communication function
  • non-AP MLD may represent a station supporting a multi-connection communication function
  • AP1 and STA1 form BSS1
  • AP2 and STA2 form BSS2.
  • the AP MLD may include three subordinate APs, such as AP1, AP2, and AP3 as shown in FIG2 ; each AP may work in connection 1, connection 2, and connection 3, respectively; the non-AP MLD may also include three subordinate STAs, such as STA1, STA2, and STA3 as shown in FIG2 ; STA1 works in connection 1, STA2 works in connection 2, and STA3 works in connection 3.
  • AP1 communicates with STA1 through the corresponding first connection Link 1
  • AP2 communicates with STA2 through the corresponding second connection Link 2
  • the AP communicates with STA3 through the third connection Link 3.
  • Link 1 to Link 3 may be multiple connections at different frequencies, for example, connections at 2.4 GHz, 5 GHz, and 6 GHz, or several connections at 2.4 GHz with the same or different bandwidths.
  • multiple channels may exist under each connection. It is understood that the communication scenario shown in FIG2 is only exemplary, and the present disclosure is not limited thereto.
  • the AP MLD may be connected to multiple (three) non-AP MLDs, or under each connection, the AP may communicate with multiple other types of stations.
  • A-PPDU can be transmitted.
  • A-PPDU is the transmission of data frames at a large bandwidth. For example, at 320MHz, PPDU transmission is performed for different STAs using bandwidths of 160MHz, 80MHz, and 80MHz, respectively; the PPDU transmitted by each STA is a sub-PPDU of the A-PPDU, namely the first sub-PPDU.
  • Different STAs may support different protocols. For example, there may be a STA that supports Enhancements For Extremely High Throughput (EHT) (hereinafter referred to as EHT STA), and there may be a STA that supports High Efficiency (HE) (hereinafter referred to as HE STA).
  • EHT STA Enhancements For Extremely High Throughput
  • HE STA High Efficiency
  • the uplink bandwidth information of the first sub-PPDU of the uplink A-PPDU transmitted by the STA is carried in the first wireless frame.
  • the first STA is a HE/EHT STA that does not support subchannel selective transmission (SST)
  • the second STA is a HE/EHT STA that supports SST.
  • HE/EHT STA includes HE STA or EHT STA.
  • the sub-PPDU configured for the first STA includes a primary channel (Primary Channel); and the secondary channel (Secondary Channel) is configured to other STAs, such as a UHR STA or a second STA.
  • Primary Channel Primary Channel
  • Secondary Channel Secondary Channel
  • the STA includes a first STA or a second STA
  • the following scenarios may be specifically included:
  • the first STA and the UHR STA need to allocate uplink bandwidth for the sub-PPDU.
  • the main channel is allocated to the first STA and the auxiliary channel is allocated to the UHR STA.
  • the uplink bandwidth allocation for the sub-PPDU needs to be performed for the first STA, the second STA and the UHR STA; at this time, the main channel is allocated to the first STA, and the auxiliary channel is allocated to the second STA and the UHR STA.
  • the second STA and the UHR STA need to allocate uplink bandwidth for the sub-PPDU.
  • the second STA can be allocated a main channel and the UHR STA can be allocated an auxiliary channel; or, the second STA can be allocated an auxiliary channel and the UHR STA can be allocated a main channel.
  • uplink bandwidth allocation of sub-PPDU only includes UHR STA (5).
  • the main channel is allocated to the UHR STA, and the auxiliary channel can also be allocated.
  • the channel allocated to the UHR STA is a channel other than the channels allocated to the first STA and/or the second STA (including the main channel or the auxiliary channel).
  • the total channel bandwidth is 320MHz
  • 80MHz in the primary channel is allocated to HE/EHT STA, and the remaining is 80MHz in the secondary channel and 160MHz in the secondary channel, which are distributed to other STAs.
  • the AP can allocate the 80MHz channel in the main primary channel to the HE/EHT STA supporting SST, that is, the second STA.
  • the main channel is preferentially allocated to the first STA (if the first STA does not exist, it can also be preferentially allocated to the second STA), and the auxiliary channel is allocated to the UHR STA; subsequently, different transmission protocols are configured for different channels, and the receiving end parses the sub-PPDU transmitted by each sub-channel according to different transmission protocols to ensure backward compatibility and standardize the process of STA supporting different protocols transmitting uplink A-PPDU to make it suitable for UHR requirements.
  • the embodiment of the present disclosure provides a communication method, and optionally, the method can be applied to an access point (AP) device;
  • AP access point
  • the method may include the following steps:
  • the first radio frame includes uplink bandwidth information of a first sub-PPDU of an uplink aggregate physical layer protocol data unit A-PPDU transmitted by a station device STA;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • AP When establishing individual TWT with STA, AP negotiates the bandwidth of A-PPDU transmitted by STA: for example, the maximum bandwidth supported by AP is 320MHz, while the maximum bandwidth supported by the first STA is 80MHz (the bandwidth capability supported by STA can be parsed in the HE/EHT capabilities information element). Then, in the TWT response frame sent back, AP carries the bandwidth of the sub-PPDU in A-PPDU sent by STA, for example, 80MHz of the main channel.
  • allocating an uplink bandwidth for transmitting a sub-PPDU of the A-PPDU to the STA includes at least one of the following:
  • the STA includes the first STA, and a primary channel is allocated to the first sub-PPDU of the first STA;
  • the STA includes the second STA and the UHR STA, then the main channel is allocated to the first sub-PPDU of the second STA, and the auxiliary channel is allocated to the UHR STA.
  • Case three If the STA only includes UHR STA, a main channel or a secondary channel is allocated to the UHR STA.
  • the sub-PPDU configured for the first STA includes a primary channel (Primary Channel); and the secondary channel (Secondary Channel) is configured for other STAs, such as UHR STA or second STA, such as the aforementioned scenarios (1) and (2).
  • Primary Channel Primary Channel
  • secondary Channel Secondary Channel
  • the total channel bandwidth is 320MHz
  • 80MHz of the primary channel is allocated to HE/EHT STA, and the remaining is secondary channel 80MHz and secondary channel 160MHz, which are divided among other STAs.
  • the allocation method in the following case 2 can be referred to.
  • a primary channel is allocated to the STA, referring to the aforementioned scenario (4).
  • the AP can allocate the primary channel to the second STA and allocate a secondary channel to the UHR STA; or allocate a secondary channel to the first sub-PPDU of the second STA and allocate a primary channel to the UHR STA.
  • the STA only includes UHR STA, such as the aforementioned scenario (5), and the main channel or auxiliary channel is allocated to the UHR STA.
  • AP can also allocate Primary Channel or Secondary Channel to UHR STA to transmit sub-PPDU of A-PPDU during the establishment of Individual TWT; optionally, AP can carry Individual TWT Parameter Set field in TWT response frame, and identify the primary channel and secondary channel through TWT channel subfield in Individual TWT Parameter Set field.
  • the i-th bit in the TWT channel field indicates whether the corresponding channel is the main channel; for example, when the i-th bit is 1, it indicates that the channel corresponding to the i-th bit is the main channel, and other channels set to 0 are auxiliary channels.
  • the sending of the first radio frame includes at least one of the following situations 4 to 6:
  • the first wireless frame includes a trigger frame and a CTS (Clear to send)-to-self frame.
  • the communication method provided in the embodiment of the present disclosure includes the following steps:
  • the trigger frame is sent at the bandwidth of the A-PPDU, where the trigger frame is a multi-user physical layer protocol data unit MU-PPDU; the second sub-PPDU of the MU-PPDU includes the uplink bandwidth information of the STA corresponding to the second sub-PPDU;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • the AP sends a trigger frame at the bandwidth of A-PPDU, and the format of the trigger frame is MU (multi-user)-PPDU; the trigger frame includes the STA ID of each STA and the uplink bandwidth information (UL BW value) of its corresponding sending sub-PPDU (second sub-PPDU); the bandwidth information, such as the value negotiated by the AP and the STA in the process of establishing an individual TWT, may be different for each STA; in addition, the CS (carrier sensing) bit of the trigger frame is set to 0.
  • a communication method provided in an embodiment of the present disclosure includes the following steps:
  • the trigger frame is sent under the bandwidth of the BSS, and the uplink bandwidth UL BW subfield in the Common Info field of the trigger frame is set to the maximum bandwidth supported and resolved by the first STA; the trigger frame includes uplink bandwidth information of the first sub-PPDU of the uplink aggregate physical layer protocol data unit A-PPDU transmitted by the station device STA;
  • the trigger frame also includes a user information User Info field, and the User Info field includes the association identifier AID of the STA and the resource unit allocation information RU allocation.
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • the AP sends a trigger frame under the BSS bandwidth, and the HE/EHT STA can parse the trigger frame; the AP sets the UL BW subfield in the Common Info field of the trigger frame to the maximum bandwidth that the HE STA can parse, such as 160MHz; the Common Info field also includes the User Info field, the User Info field contains the Association Identifier (AID) and its corresponding resource unit allocation information (Resource Unit Allocation), where RU Allocation is the uplink bandwidth information of the first sub-PPDU negotiated by the AP and the STA in the process of establishing an individual TWT.
  • AID Association Identifier
  • Resource Unit Allocation Resource Unit Allocation
  • the embodiment of the present disclosure provides a communication method, comprising the following steps:
  • the CTS-to-self frame is sent at the bandwidth of A-PPDU; the CTS-to-self frame includes the duration information of the A-PPDU; the UL BW subfield in the Common Info field of the CTS-to-self frame is set to the maximum bandwidth supported and resolved by the first STA, such as 160MHz; the CTS-to-self frame includes the uplink bandwidth information of the first sub-PPDU of the uplink aggregate physical layer protocol data unit A-PPDU transmitted by the station device STA, such as the uplink bandwidth information of the first sub-PPDU negotiated by the AP and the STA in the process of establishing individual TWT.
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • the AP sends a first wireless frame, which includes uplink bandwidth information of the first sub-PPDU of the uplink A-PPDU transmitted by the station device STA; wherein, in the case that the STA includes the first STA or the second STA, the uplink bandwidth of the first sub-PPDU transmitted by the first STA or the second STA includes the main channel, that is, in the UHR transmission, the main channel is preferentially allocated to the first STA (if the first STA does not exist, it is preferentially allocated to the second STA), and the auxiliary channel is allocated to the UHR STA; subsequently, different transmission protocols are configured for different channels, and the receiving end parses the sub-PPDU transmitted by each sub-channel according to different transmission protocols to ensure backward compatibility and standardize the process of STA supporting different protocols transmitting uplink A-PPDU to make it applicable to UHR requirements.
  • an embodiment of the present disclosure provides a communication method.
  • the method may be applied to a STA.
  • the method may include the following steps:
  • Step 401 receiving a first radio frame, where the first radio frame includes uplink bandwidth information of a first sub-PPDU of an uplink aggregate physical layer protocol data unit A-PPDU transmitted by the STA;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • the architecture of the WLAN applied to the communication method provided in the embodiment of the present disclosure refers to the aforementioned first example and will not be repeated here.
  • A-PPDU can be transmitted.
  • A-PPDU is the transmission of data frames at a large bandwidth. For example, at 320MHz, PPDU transmission is performed for different STAs using bandwidths of 160MHz, 80MHz, and 80MHz, respectively; the PPDU transmitted by each STA is a sub-PPDU of the A-PPDU, namely the first sub-PPDU.
  • EHT STA Enhancements For Extremely High Throughput
  • HE STA High Efficiency STA
  • the uplink bandwidth information of the first sub-PPDU of the uplink A-PPDU transmitted by the STA is carried in the first wireless frame.
  • the first STA is a HE/EHT STA that does not support Subchannel Selective Transmission (SST)
  • the second STA is a HE/EHT STA that supports SST.
  • the STA determines the channel allocated to it by the AP based on whether it is the first STA, the second STA, or the UHR STA. It can be understood that in the disclosed embodiment, HE/EHT STA includes HE STA or EHT STA.
  • the sub-PPDU configured by the AP for the first STA includes a primary channel (Primary Channel); and the secondary channel (Secondary Channel) is configured for other STAs, such as a UHR STA or a second STA.
  • Primary Channel Primary Channel
  • Secondary Channel Secondary Channel
  • the STA includes a first STA or a second STA
  • the following scenarios may be specifically included:
  • the first STA and the UHR STA need to allocate uplink bandwidth for the sub-PPDU.
  • the main channel is allocated to the first STA and the auxiliary channel is allocated to the UHR STA.
  • the uplink bandwidth allocation for the sub-PPDU needs to be performed for the first STA, the second STA and the UHR STA; at this time, the main channel is allocated to the first STA, and the auxiliary channel is allocated to the second STA and the UHR STA.
  • the second STA and the UHR STA need to allocate uplink bandwidth for the sub-PPDU.
  • the second STA can be allocated a main channel and the UHR STA can be allocated an auxiliary channel; or, the second STA can be allocated an auxiliary channel and the UHR STA can be allocated a main channel.
  • uplink bandwidth allocation of sub-PPDU only includes UHR STA (5).
  • the main channel is allocated to the UHR STA, and the auxiliary channel can also be allocated.
  • the channel allocated to the UHR STA is a channel other than the channels allocated to the first STA and/or the second STA (including the main channel or the auxiliary channel).
  • the total channel bandwidth is 320MHz
  • 80MHz in the primary channel is allocated to HE/EHT STA, and the remaining is 80MHz in the secondary channel and 160MHz in the secondary channel, which are distributed to other STAs.
  • the AP can allocate the 80MHz channel in the main primary channel to the HE/EHT STA supporting SST, that is, the second STA.
  • the STA receives the first radio frame, which includes the uplink bandwidth information of the first sub-PPDU of the uplink aggregate physical layer protocol data unit A-PPDU transmitted by the STA; in UHR transmission, the AP preferentially allocates the main channel to the first STA (if the first STA does not exist, it can also be preferentially allocated to the second STA), and allocates the auxiliary channel to the UHR STA; the STA determines the channel allocated to it by the AP according to whether it is the first STA, the second STA or the UHR STA.
  • the receiving end parses the sub-PPDU transmitted by each sub-channel according to different transmission protocols to ensure backward compatibility and standardize the process of STAs supporting different protocols transmitting uplink A-PPDUs to make it applicable to UHR requirements.
  • the embodiment of the present disclosure provides a communication method.
  • the method may be applied to a STA.
  • the method may include the following steps:
  • the receiving access point device AP allocates an uplink bandwidth for transmitting the sub-PPDU of the A-PPDU to the STA;
  • the first radio frame includes uplink bandwidth information of a first sub-PPDU of an uplink aggregate physical layer protocol data unit A-PPDU transmitted by the STA;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • STA When establishing individual TWT with AP, STA negotiates the bandwidth for STA to transmit A-PPDU: for example, the maximum bandwidth supported by AP is 320MHz, while the maximum bandwidth supported by the first STA is 80MHz (the bandwidth capability supported by STA can be parsed in the HE/EHT capabilities information element). Then, in the TWT response frame sent back by AP, AP carries the bandwidth of the sub-PPDU in A-PPDU sent by STA, for example, 80MHz for the main channel.
  • the receiving access point device AP allocates an uplink bandwidth for transmitting a sub-PPDU of the A-PPDU to the STA, including at least one of the following:
  • the STA includes the first STA, and a primary channel is allocated to the first sub-PPDU of the first STA;
  • the STA includes the second STA and the UHR STA
  • the main channel is allocated to the first sub-PPDU of the second STA
  • the auxiliary channel is allocated to the UHR STA
  • the auxiliary channel is allocated to the first sub-PPDU of the second STA
  • the main channel is allocated to the UHR STA.
  • Case three If the STA only includes UHR STA, a main channel or a secondary channel is allocated to the UHR STA.
  • the sub-PPDU configured by the AP for the first STA includes the primary channel (Primary Channel); and the secondary channel (Secondary Channel) is configured for other STAs, such as UHR STA or second STA. , such as the aforementioned scenarios (1) and (2).
  • the total channel bandwidth is 320MHz
  • 80MHz of the primary channel is allocated to HE/EHT STA, and the remaining is secondary channel 80MHz and secondary channel 160MHz, which are divided among other STAs.
  • the allocation method in the following case 2 can be referred to.
  • a primary channel is allocated to the STA, referring to the aforementioned scenario (4).
  • the AP can allocate the primary channel to the second STA and allocate a secondary channel to the UHR STA; or allocate a secondary channel to the first sub-PPDU of the second STA and allocate a primary channel to the UHR STA.
  • the STA only includes UHR STA, such as the aforementioned scenario (5), then the AP allocates a main channel or a secondary channel to the UHR STA.
  • AP can also allocate Primary Channel or Secondary Channel to UHR STA to transmit sub-PPDU of A-PPDU during the establishment of Individual TWT; optionally, AP can carry Individual TWT Parameter Set field in TWT response frame, and identify the primary channel and secondary channel through TWT channel subfield in Individual TWT Parameter Set field.
  • the format of the Individual TWT Parameter Set field refers to the aforementioned Table 1, wherein the i-th bit in the TWT channel field indicates whether the corresponding channel is the main channel; for example, when the i-th bit is 1, it indicates that the channel corresponding to the i-th bit is the main channel, and other channels set to 0 are auxiliary channels.
  • the first radio frame includes a trigger frame and a CTS (Clear to send)-to-self frame; and the receiving the first radio frame includes at least one of the following:
  • a trigger frame is received at the bandwidth of the A-PPDU
  • Receive self-clear to receive CTS-to-self frames at the bandwidth of A-PPDU.
  • an embodiment of the present disclosure provides a communication method, which may include the following steps:
  • the trigger frame including uplink bandwidth information of a first sub-PPDU for transmitting an uplink aggregate physical layer protocol data unit A-PPDU by the STA;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • STA receives a trigger frame under the bandwidth of A-PPDU, and the format of the trigger frame is MU (multi-user)-PPDU; the trigger frame includes the STA ID of each STA and the uplink bandwidth information (UL BW value) of its corresponding sending sub-PPDU (second sub-PPDU); the bandwidth information, such as the value negotiated by AP and STA in the process of establishing individual TWT, may be different for each STA; in addition, the CS (carrier sensing) bit of the trigger frame is set to 0.
  • the AP preferentially allocates the main channel to the first STA (if the first STA does not exist, it is preferentially allocated to the second STA), and allocates the auxiliary channel to the UHR STA; the STA determines the channel allocated to it by the AP according to whether it is the first STA, the second STA or the UHR STA.
  • different transmission protocols are configured for different channels, and the receiving end parses the sub-PPDU transmitted by each sub-channel according to different transmission protocols to ensure backward compatibility and standardize the process of STAs supporting different protocols transmitting uplink A-PPDUs to meet UHR requirements.
  • the present disclosure provides a communication method, which may include the following steps:
  • the trigger frame including uplink bandwidth information of the first sub-PPDU of the uplink aggregate physical layer protocol data unit A-PPDU transmitted by the STA;
  • the uplink bandwidth for transmitting the first sub-PPDU by the first STA or the second STA includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • STA receives the trigger frame under the BSS bandwidth, and HE/EHT STA can parse the trigger frame; AP sets the UL BW subfield in the Common Info field of the trigger frame to the maximum bandwidth that HE STA can parse, such as 160MHz; the Common Info field also includes the User Info field, and the User Info field contains the Association Identifier (AID) and its corresponding resource unit allocation information (Resource Unit Allocation), wherein RU Allocation is, for example, the uplink bandwidth information of the first sub-PPDU negotiated by AP and STA in the process of establishing individual TWT.
  • AID Association Identifier
  • Resource Unit Allocation Resource Unit Allocation
  • the present disclosure provides a communication method, which may include the following steps:
  • a self-clearing received CTS-to-self frame is received, wherein the CTS-to-self frame includes the uplink bandwidth information of the first sub-PPDU of the uplink aggregate physical layer protocol data unit A-PPDU transmitted by the STA; for example, the uplink bandwidth information of the first sub-PPDU negotiated by the AP and the STA during the process of establishing an individual TWT.
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • a STA receives a first wireless frame, which includes uplink bandwidth information of a first sub-PPDU of an uplink aggregate physical layer protocol data unit A-PPDU transmitted by the STA; in UHR transmission, the AP preferentially allocates the main channel to the first STA (if the first STA does not exist, it is preferentially allocated to the second STA), and allocates the auxiliary channel to the UHR STA; the STA determines the channel allocated to it by the AP according to whether it is the first STA, the second STA or the UHR STA.
  • the receiving end parses the sub-PPDU transmitted by each sub-channel according to different transmission protocols to ensure backward compatibility and standardize the process of STAs supporting different protocols transmitting uplink A-PPDUs to meet UHR requirements.
  • the embodiment of the present disclosure further provides an electronic device, the electronic device is an access point device AP, and the electronic device includes:
  • a sending module 501 is configured to send a first radio frame, where the first radio frame includes uplink bandwidth information of a first sub-PPDU of an uplink aggregate physical layer protocol data unit A-PPDU transmitted by a station device STA;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • the electronic device further includes:
  • the TWT establishment module is used to allocate the uplink bandwidth for transmitting the sub-PPDU of the A-PPDU to the STA during the process of establishing a single target wake-up time individual TWT.
  • the TWT establishment module performs at least one of the following:
  • the STA includes the first STA, and a primary channel is allocated to the first sub-PPDU of the first STA;
  • a main channel or a secondary channel is allocated to the UHR STA.
  • the sending module 501 performs at least one of the following:
  • sending a trigger frame under the bandwidth of the A-PPDU includes:
  • the trigger frame is sent at the bandwidth of A-PPDU, and the trigger frame is a multi-user physical layer protocol data unit MU-PPDU; the second sub-PPDU of the MU-PPDU includes the uplink bandwidth information of the STA corresponding to the second sub-PPDU.
  • sending a trigger frame under the bandwidth of a basic service set BSS includes:
  • the trigger frame is sent at the bandwidth of the BSS, and the uplink bandwidth UL BW subfield in the common information Common Info field of the trigger frame is set to the maximum bandwidth supported by the first STA;
  • the trigger frame also includes a user information User Info field, and the User Info field includes the association identifier AID of the STA and the resource unit allocation information RU allocation.
  • the present disclosure also provides a communication device, which is applied to an access point device AP, and the device includes:
  • a radio frame sending module configured to send a first radio frame, wherein the first radio frame includes uplink bandwidth information of a first sub-PPDU of an uplink aggregate physical layer protocol data unit A-PPDU transmitted by a station device STA;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • the device also includes other modules of the electronic device in the aforementioned embodiment, which will not be described in detail here.
  • the embodiment of the present disclosure further provides an electronic device, the electronic device is a site device, and the electronic device includes:
  • the receiving module 601 is configured to receive a first radio frame, where the first radio frame includes uplink bandwidth information of a first sub-PPDU of an uplink aggregate physical layer protocol data unit A-PPDU transmitted by the STA;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • the electronic device further includes:
  • a module is established, which is used to receive the uplink bandwidth allocated by the access point device AP to the STA for transmitting the sub-PPDU of the A-PPDU during the process of establishing a single target wake-up time individual TWT.
  • the establishing module performs at least one of the following:
  • the STA includes the first STA, and a primary channel is allocated to the first sub-PPDU of the first STA;
  • a main channel or a secondary channel is allocated to the UHR STA.
  • the receiving module 601 performs at least one of the following:
  • a trigger frame is received at the bandwidth of the A-PPDU
  • Receive self-clear to receive CTS-to-self frames at the bandwidth of A-PPDU.
  • receiving a trigger frame under the bandwidth of the A-PPDU includes:
  • the trigger frame is received at the bandwidth of A-PPDU, where the trigger frame is a multi-user physical layer protocol data unit MU-PPDU; the second sub-PPDU of the MU-PPDU includes the uplink bandwidth information of the STA corresponding to the second sub-PPDU.
  • the trigger frame is a multi-user physical layer protocol data unit MU-PPDU
  • the second sub-PPDU of the MU-PPDU includes the uplink bandwidth information of the STA corresponding to the second sub-PPDU.
  • receiving a trigger frame under the bandwidth of a basic service set BSS includes:
  • the trigger frame is received at the bandwidth of the BSS, and the uplink bandwidth UL BW subfield in the common information Common Info field of the trigger frame is set to the maximum bandwidth supported by the first STA;
  • the trigger frame also includes a user information User Info field, and the User Info field includes the association identifier AID of the STA and the resource unit allocation information RU allocation.
  • receiving a self-clearing reception CTS-to-self frame under the bandwidth of the A-PPDU includes:
  • the CTS-to-self frame is received at the bandwidth of the A-PPDU; the CTS-to-self frame includes the duration information of the A-PPDU; the UL BW subfield in the Common Info field of the CTS-to-self frame is set to the maximum bandwidth supported by the first STA.
  • the embodiment of the present disclosure further provides a communication device, which is applied to a site device, and the device includes:
  • a receiving module configured to receive a first radio frame, wherein the first radio frame includes uplink bandwidth information of a first sub-PPDU of an uplink aggregate physical layer protocol data unit A-PPDU transmitted by the STA;
  • the uplink bandwidth of the first STA or the second STA transmitting the first sub-PPDU includes a main channel;
  • the first STA is a high-efficiency HE/enhanced extremely high throughput EHT STA that does not support sub-channel selective transmission SST;
  • the second STA is a HE/EHT STA that supports SST.
  • the device also includes other modules of the electronic device in the aforementioned embodiment, which will not be described in detail here.
  • the embodiment of the present disclosure further provides an electronic device, as shown in FIG7
  • the electronic device 700 shown in FIG7 may be a server, including: a processor 701 and a memory 703.
  • the processor 701 and the memory 703 are connected, such as through a bus 702.
  • the electronic device 700 may further include a transceiver 704. It should be noted that in actual applications, the transceiver 704 is not limited to one, and the structure of the electronic device 700 does not constitute a limitation on the embodiment of the present disclosure.
  • Processor 701 may be a CPU (Central Processing Unit), a general-purpose processor, a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute various exemplary logic blocks, modules and circuits described in conjunction with the disclosure of the present invention. Processor 701 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, etc.
  • the bus 702 may include a path for transmitting information between the above components.
  • the bus 702 may be a PCI (Peripheral Component Interconnect) bus or an EISA (Extended Industry Standard Architecture) bus, etc.
  • the bus 702 may be divided into an address bus, a data bus, a control bus, etc.
  • FIG. 7 only uses a thick line, but it does not mean that there is only one bus or one type of bus.
  • the memory 703 can be a ROM (Read Only Memory) or other types of static storage devices that can store static information and instructions, a RAM (Random Access Memory) or other types of dynamic storage devices that can store information and instructions, or an EEPROM (Electrically Erasable Programmable Read Only Memory), a CD-ROM (Compact Disc Read Only Memory) or other optical disk storage, optical disk storage (including compressed optical disk, laser disk, optical disk, digital versatile disk, Blu-ray disk, etc.), magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited to these.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • optical disk storage including compressed optical disk, laser disk, optical disk, digital versatile disk, Blu-ray disk, etc.
  • magnetic disk storage medium or other magnetic storage device or any other medium
  • the memory 703 is used to store application code for executing the solution of the present disclosure, and the execution is controlled by the processor 701.
  • the processor 701 is used to execute the application code stored in the memory 703 to implement the content shown in the above method embodiment.
  • the electronic devices include, but are not limited to, mobile phones, laptop computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablet computers), PMPs (portable multimedia players), vehicle-mounted terminals (such as vehicle-mounted navigation terminals), etc., and fixed terminals such as digital TVs, desktop computers, etc.
  • PDAs personal digital assistants
  • PADs tablet computers
  • PMPs portable multimedia players
  • vehicle-mounted terminals such as vehicle-mounted navigation terminals
  • fixed terminals such as digital TVs, desktop computers, etc.
  • the electronic device shown in FIG7 is only an example and should not bring any limitation to the functions and scope of use of the embodiments of the present disclosure.
  • the server provided by the present disclosure may be an independent physical server, or a server cluster or distributed system composed of multiple physical servers, or a cloud server that provides basic cloud computing services such as cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud communications, middleware services, domain name services, security services, CDN, and big data and artificial intelligence platforms.
  • the terminal may be a smart phone, tablet computer, laptop computer, desktop computer, smart speaker, smart watch, etc., but is not limited thereto.
  • the terminal and the server may be directly or indirectly connected via wired or wireless communication, which is not limited by the present disclosure.
  • An embodiment of the present disclosure provides a computer-readable storage medium, on which a computer program is stored.
  • the computer-readable storage medium is run on a computer, the computer can execute the corresponding contents of the aforementioned method embodiment.
  • the computer-readable medium disclosed above may be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above.
  • Computer-readable storage media may include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium containing or storing a program that may be used by or in combination with an instruction execution system, device or device.
  • a computer-readable signal medium may include a data signal propagated in a baseband or as part of a carrier wave, in which a computer-readable program code is carried.
  • This propagated data signal may take a variety of forms, including but not limited to an electromagnetic signal, an optical signal, or any suitable combination of the above.
  • the computer readable signal medium may also be any computer readable medium other than a computer readable storage medium, which may send, propagate or transmit a program for use by or in conjunction with an instruction execution system, apparatus or device.
  • the program code contained on the computer readable medium may be transmitted using any suitable medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
  • the computer-readable medium may be included in the electronic device, or may exist independently without being incorporated into the electronic device.
  • the computer-readable medium carries one or more programs.
  • the electronic device executes the method shown in the above embodiment.
  • a computer program product or a computer program comprising computer instructions, the computer instructions being stored in a computer-readable storage medium.
  • a processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the methods provided in the above-mentioned various optional implementations.
  • Computer program code for performing the operations of the present disclosure may be written in one or more programming languages, or a combination thereof, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional procedural programming languages, such as "C" or similar programming languages.
  • the program code may be executed entirely on the user's computer, partially on the user's computer, as a separate software package, partially on the user's computer and partially on a remote computer, or entirely on a remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., through the Internet using an Internet service provider).
  • LAN local area network
  • WAN wide area network
  • Internet service provider e.g., AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function.
  • the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved.
  • each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs a specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
  • modules involved in the embodiments described in the present disclosure may be implemented by software or hardware.
  • the name of a module does not limit the module itself in some cases.
  • module A may also be described as "module A for performing operation B".

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例涉及移动通信技术领域,提供了一种通信方法、电子设备及存储介质。所述通信方法应用于接入点设备AP,其特征在于,所述方法包括:发送第一无线帧,所述第一无线帧包括站点设备STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。本公开实施例提供了一种传输A-PPDU的实现方式。

Description

通信方法、电子设备及存储介质 技术领域
本公开实施例涉及移动通信技术领域,具体而言,本公开实施例涉及一种通信方法、电子设备及存储介质。
背景技术
随着移动通信技术的迅速发展,无线保真(Wireless Fidelity,Wi-Fi)技术在传输速率以及吞吐量等方面已经取得了巨大的进步。目前,Wi-Fi技术所研究的内容例如超高可靠性(Ultra High Reliability,UHR),其愿景为提高无线局域网(Wireless Local Area Networks,WLAN)连接的可靠性、减少延迟、提高可管理性、在不同信噪比(Signal to Noise Ratio,SNR)级别下增加吞吐量并降低设备级功耗等。并且,在UHR中,为了提高***的吞吐量,提出了在sub7GHz(吉赫兹)与45GHz和/或60GHz频段下同时进行通信的方式。
为了提高***的吞吐量,可能会在接入点(Access Point,AP)设备侧支持大带宽,例如320MHz或640MHz通信,而STA只支持小带宽通信,例如160MHz或80MHz等;而站点(Station,STA)设备通常只支持小带宽,例如160MHz或80MHz等;在此情况下,为了更大化的利用AP的能力,可以传输聚合物理层协议数据单元(Aggregated Physical Layer Protocol Data Unit,A-PPDU)。因此,需要提供一种传输A-PPDU的实现方式,以支持UHR。
发明内容
本公开实施例提供了一种通信方法、电子设备及存储介质,以提供一种传输A-PPDU的实现方式。
一方面,本公开实施例提供了一种通信方法,应用于接入点设备AP,所述方法包括:
发送第一无线帧,所述第一无线帧包括站点设备STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
另一方面,本公开实施例还提供了一种通信方法,应用于站点设备STA,所述方法包括:
接收第一无线帧,所述第一无线帧包括所述STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
另一方面,本公开实施例还提供了一种电子设备,所述电子设备为接入点设备AP,所述电子设备包括:
发送模块,用于发送第一无线帧,所述第一无线帧包括站点设备STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
另一方面,本公开实施例还提供了一种电子设备,所述电子设备为站点设备STA,所述电子设备包括:
接收模块,用于接收第一无线帧,所述第一无线帧包括所述STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
本公开实施例还提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如本公开实施例中一个或多个所述的方法。
本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本公开实施例中一个或多个所述的方法。
本公开实施例中,AP发送第一无线帧,所述第一无线帧包括站点设备STA传输上行A-PPDU的第一子PPDU的上行带宽信息;其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道,也即在UHR传输中,优先将主信道分给第一STA(若不存在第一STA,则优先分给第二STA),而将辅助信道分配给UHR STA;后续为不同的信道配置不同的传输协议,接收端根据不同的传输协议解析每个子信道所传输的子PPDU,以保证后向兼容性,规范支持不同协议的STA传输上行A-PPDU的过程,使之适用UHR需求。
本公开实施例附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附 图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的通信方法的流程图之一;
图2为本公开实施例的第一示例的示意图之一;
图3为本公开实施例的第一示例的示意图之二;
图4为本公开实施例提供的通信方法的流程图之二;
图5为本公开实施例提供的电子设备的结构示意图之一;
图6为本公开实施例提供的电子设备的结构示意图之二;
图7为本公开实施例提供的电子设备的结构示意图之三。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开实施例中,使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。术语“多个”是指两个或两个以上,鉴于此,本公开实施例中也可以将“多个”理解为“至少两个”。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,例如,在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响 应于确定”。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种通信方法、电子设备及存储介质,用以提供一种传输A-PPDU的实现方式。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
如图1中所示,本公开实施例提供了一种通信方法,可选地,所述方法可应用于接入点(Access Point,AP)设备;可选地,本公开实施例中,AP例如具有无线至有线桥接(Bridging)功能的设备,AP负责将有线网络所提供的服务延伸至无线网络;站点设备(Station,STA)例如具有无线网络接入功能的电子设备,提供帧传递(Frame Delivery)服务让信息得以传递。
该方法可以包括以下步骤:
步骤101,发送第一无线帧,所述第一无线帧包括站点设备STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
在无线局域网中,一个基本服务集(Basic Service Set,BSS)可以由AP以及与AP通信的一个或多个站点(Station,STA)构成。一个基本服务集可以通过其AP连接到分配***(Distribution System,DS),然后再接入到另一个基本服务集,构成扩展的服务集(Extended Service Set, ESS)。
可选地,在本公开实施例中,AP和STA可以为支持多连接的设备,例如,可以被分别表示为AP MLD和non-AP MLD。为了便于描述,在下文中,主要描述一个AP与一个STA在多连接下进行通信的示例,然而,本公开的示例实施例不限于此。
作为第一示例,参见图2以及图3,AP MLD可以表示支持多连接通信功能的接入点,non-AP MLD可以表示支持多连接通信功能的站点。图3中,AP1与STA1构成了BSS1,AP2与STA2构成了BSS2。
参照图2,AP MLD可以包括三个附属AP,如图2所示的AP1、AP2和AP3;每个AP可以分别工作在连接1、连接2以及连接3;non-AP MLD也可以工包括三个附属STA,如图2所示的STA1、STA2和STA3;STA1工作在连接1、STA2工作在连接2以及STA3工作在连接3。在图2的示例中,假设AP1与STA1通过对应的第一连接Link 1进行通信,类似地,AP2与STA2通过对应的第二连接Link 2进行通信,AP通过第三连接Link3与STA3进行通信。此外,Link 1至Link 3可以分别是不同频率下的多个连接,例如,2.4GHz、5GHz、6GHz下的连接,或2.4GHz下的几个相同或不同带宽的连接。此外,在每个连接下可以存在多个信道。可以理解的是,图2所示的通信场景仅是示例性的,本公开构思不限于此,例如,AP MLD可以连接到多个(三个)non-AP MLD,或者在每个连接下,AP可以与多个其他类型的站点进行通信。
通常情况下,AP和与其建立关联连接的STA能够支持的最大工作带宽不同。例如,AP可能支持最大工作带宽320MHz或640MHz,而STA可能只支持最大工作带宽160MHz或80MHz,或者更小。在此情况下,为了更大化的利用AP MLD的能力,提高***的吞吐量,可以传输A-PPDU。A-PPDU即在大带宽下进行数据帧的传输,例如在320MHz下,分别使用160MHz、80MHz、80MHz的带宽分别为不同的STAs进行PPDU传输;每个STA所传输的PPDU作为A-PPDU的一个子PPDU,即第一子PPDU。而不同的STA可能各自所支持的协议不同,例如可能存在支持增强极高 吞吐量(Enhancements For Extremely High Throughput,EHT)的STA(下文简称EHT STA),也可能存在支持高效率(High Efficiency,HE)的STA(下文简称HE STA);为了实现支持不同协议的STA均能传输A-PPDU给UHR AP,本公开实施例中在所述第一无线帧中携带所述STA传输上行A-PPDU的第一子PPDU的上行带宽信息;第一STA为不支持子信道选择性传输(Subchannel Selective Transmission,SST)的HE/EHT STA,所述第二STA为支持SST的HE/EHT STA;可以理解的是,本公开实施例中,HE/EHT STA包括HE STA或EHT STA。
其中,在所述STA包括第一STA的情况下,为第一STA配置的子PPDU包括主信道(Primary Channel);而将辅助信道(Secondary Channel)配置给其他STA,其他STA例如UHR STA或第二STA。
可选地,在所述STA包括第一STA或第二STA的情况下,具体可包括以下几种场景:
场景(1)需要进行子PPDU的上行带宽分配的包括所述第一STA和UHR STA,此时,为第一STA分配主信道,并为UHR STA分配辅助信道。
场景(2)需要进行子PPDU的上行带宽分配的包括所述第一STA、第二STA和UHR STA;此时,为第一STA分配主信道,并为第二STA、UHR STA分配辅助信道。
场景(3)需要进行子PPDU的上行带宽分配的包括所述第二STA和UHR STA,此时,可以为第二STA分配主信道,并为UHR STA分配辅助信道;或者,为第二STA分配辅助信道,并为UHR STA分配主信道。
场景(4)需要进行子PPDU的上行带宽分配的仅包括所述第一STA和第二STA中的一种时:当仅包括第一STA时,为该STA分配主信道;当仅包括第二STA时,为该STA分配主信道,也可分配辅助信道。
此外,还有需要进行子PPDU的上行带宽分配的仅包括UHR STA的场景(5),此时,为UHR STA分配主信道,也可分配辅助信道。
实际上,当存在UHR STA时,分配给UHR STA的信道为第一STA和/或第二STA分配的信道(包括主信道或辅助信道)之外的信道。
例如,总信道带宽为320MHz,则将主信道中的80MHz分配给HE/EHT STA,剩余为secondary channel 80MHz,及secondary channel 160MHz,将二者分给其他STA。
在所述STA存在第二STA而不存在所述第一STA的情况下,则AP可将主primary channel中的80MHz信道分配给支持SST的HE/EHT STA,即第二STA。
这样,在UHR传输中,优先将主信道分给第一STA(若不存在第一STA,则也可优先分给第二STA),而将辅助信道分配给UHR STA;后续为不同的信道配置不同的传输协议,接收端根据不同的传输协议解析每个子信道所传输的子PPDU,以保证后向兼容性,规范支持不同协议的STA传输上行A-PPDU的过程,使之适用UHR需求。
本公开实施例提供了一种通信方法,可选地,所述方法可应用于接入点(Access Point,AP)设备;
该方法可以包括以下步骤:
在建立单个目标唤醒时间individual TWT的过程中,为所述STA分配传输所述A-PPDU的子PPDU的上行带宽;
发送第一无线帧,所述第一无线帧包括站点设备STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
AP在与STA建立individual TWT过程中,协商STA传输A-PPDU的带宽:例如AP支持的最大带宽为320MHz,而第一STA支持的最大带宽为80MHz(STA支持的带宽能力可在HE/EHT capabilities信息元素中解析得到),则AP在回复的TWT response帧中携带STA发送A-PPDU中的子PPDU的带宽,例如为主信道的80MHz。
可选地,本公开实施例中,所述在在建立单个目标唤醒时间individual TWT的过程中,为所述STA分配传输所述A-PPDU的子PPDU的上行带宽,包括以下至少一项:
情况一,所述STA包括所述第一STA,则为所述第一STA的所述第一子PPDU分配主信道;
情况二,所述STA包括所述第二STA和UHR STA,则为所述第二STA的所述第一子PPDU分配主信道,为所述UHR STA分配辅助信道。
或为所述第二STA的所述第一子PPDU分配辅助信道,为所述UHR STA分配主信道。
情况三:所述STA仅包括UHR STA,则为所述UHR STA分配主信道或辅助信道。
情况一中,在所述STA包括第一STA的情况下,为第一STA配置的子PPDU包括主信道(Primary Channel);而将辅助信道(Secondary Channel)配置给其他STA,其他STA例如UHR STA或第二STA,例如前述场景(1)和场景(2)。例如,总信道带宽为320MHz,则将主信道中的80MHz分配给HE/EHT STA,剩余为secondary channel 80MHz,及secondary channel 160MHz,将二者分给其他STA。若所述其他STA中存在第二STA,则可参考下述情况二中的分配方式。
当所述STA仅包括第一STA时,为该STA分配主信道,参考前述场景(4)。
情况二中,在所述STA存在第二STA而不存在所述第一STA的情况下,例如前述场景(3),则AP可将主primary channel信道分配给即第二STA,为所述UHR STA分配辅助信道;或为所述第二STA的所述第一子PPDU分配辅助信道,为所述UHR STA分配主信道。
情况三中,所述STA仅包括UHR STA,例如前述场景(5),则为所述UHR STA分配主信道或辅助信道。
此外,对于UHR STA来说,其需具备支持A-PPDU能力信息,具体为Reception能力及Transmission能力。AP也可在Individual TWT建立的过程中分配Primary Channel或Secondary Channel给UHR STA来进行 A-PPDU的子PPDU传输;可选地,AP可在TWT response帧中携带Individual TWT Parameter Set字段,通过Individual TWT Parameter Set field中的TWT信道子字段标识主信道和辅助信道。
作为第二示例,Individual TWT Parameter Set field的格式如以下表1所示:
表1:
Figure PCTCN2022133844-appb-000001
其中,TWT信道字段中第i位表示其对应的信道是否为主信道;例如,第i位置1时,标识第i位对应的信道为主信道,其他置0的信道为辅助信道。
可选地,本公开实施例中,所述发送第一无线帧,包括以下情况四至情况六中至少一项:
情况四,在A-PPDU的带宽下,发送触发帧;
情况五,在基本服务集BSS的带宽下,发送触发帧;
情况六,在A-PPDU的带宽下,发送自我清除发送CTS-to-self帧。
其中,第一无线帧包括触发帧以及CTS(Clear to send)-to-self帧。
情况四中,本公开实施例提供的通信方法,包括以下步骤:
在A-PPDU的带宽下发送所述触发帧,所述触发帧为多用户物理层协议数据单元MU-PPDU;所述MU-PPDU的第二子PPDU包括所述第二子PPDU对应的STA的所述上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
其中,AP在A-PPDU的带宽下发送触发帧,触发帧的格式为MU(multi-user)-PPDU;在触发帧中包括每个STA的STA ID及其对应的发送子PPDU(第二子PPDU)的上行带宽信息(UL BW值);所述带宽信息例如AP在与STA在建立individual TWT过程中所协商的值,对每个STA来说可能不一样;此外,所述触发帧的CS(carrier sensing载波侦听)比特位设置为0。
情况五中,本公开实施例提供的一种通信方法,包括以下步骤:
在BSS的带宽下发送所述触发帧,所述触发帧的公共信息Common Info域中的上行带宽UL BW子域设置为所述第一STA所支持解析的最大带宽;所述触发帧括站点设备STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
所述触发帧还包括用户信息User Info域,所述User Info域包括所述STA的关联标识AID及以及资源单元分配信息RU allocation。
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
其中,AP在BSS带宽下发送触发帧,HE/EHT STA能够解析触发帧;AP将触发帧的Common Info域中的UL BW子域设置为HE STA能够解析的最大带宽,例如160MHz;Common Info域中还包括User Info域,User Info域包含关联标识(Association Identifier,AID)及其对应的资源单元分配信息(Resource Unit Allocation)分配,其中RU Allocation例如AP在与STA在建立individual TWT过程中所协商的第一子PPDU的上行带 宽信息。
情况六中,本公开实施例提供通信方法,包括以下步骤:
在A-PPDU的带宽下,发送所述CTS-to-self帧;所述CTS-to-self帧包括所述A-PPDU的时长信息;所述CTS-to-self帧的Common Info域中的UL BW子域设置为所述第一STA所支持解析的最大带宽,例如160MHz;所述CTS-to-self帧包括站点设备STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息,例如AP在与STA在建立individual TWT过程中所协商的第一子PPDU的上行带宽信息。
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
本公开实施例中,AP发送第一无线帧,所述第一无线帧包括站点设备STA传输上行A-PPDU的第一子PPDU的上行带宽信息;其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道,也即在UHR传输中,优先将主信道分给第一STA(若不存在第一STA,则优先分给第二STA),而将辅助信道分配给UHR STA;后续为不同的信道配置不同的传输协议,接收端根据不同的传输协议解析每个子信道所传输的子PPDU,以保证后向兼容性,规范支持不同协议的STA传输上行A-PPDU的过程,使之适用UHR需求。
参见图4,本公开实施例提供了一种通信方法,可选地,所述方法可应用于STA,该方法可以包括以下步骤:
步骤401,接收第一无线帧,所述第一无线帧包括所述STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
其中,本公开实施例提供的通信方法的所应用WLAN的架构参考前述第一示例,在此不再赘述。
通常情况下,AP和与其建立关联连接的STA能够支持的最大工作带宽不同。例如,AP可能支持最大工作带宽320MHz或640MHz,而STA可能只支持最大工作带宽160MHz或80MHz,或者更小。在此情况下,为了更大化的利用AP MLD的能力,提高***的吞吐量,可以传输A-PPDU。A-PPDU即在大带宽下进行数据帧的传输,例如在320MHz下,分别使用160MHz、80MHz、80MHz的带宽分别为不同的STAs进行PPDU传输;每个STA所传输的PPDU作为A-PPDU的一个子PPDU,即第一子PPDU。而不同的STA可能各自所支持的协议不同,例如可能存在支持增强极高吞吐量(Enhancements For Extremely High Throughput,EHT)的STA(下文简称EHT STA),也可能存在支持高效率(High Efficiency,HE)的STA(下文简称HE STA);为了实现支持不同协议的STA均能传输A-PPDU给UHR AP,本公开实施例中在所述第一无线帧中携带所述STA传输上行A-PPDU的第一子PPDU的上行带宽信息;第一STA为不支持子信道选择性传输(Subchannel Selective Transmission,SST)的HE/EHT STA,所述第二STA为支持SST的HE/EHT STA;STA根据自身为第一STA、第二STA或UHR STA,确定AP为其分配的信道。可以理解的是,本公开实施例中,HE/EHT STA包括HE STA或EHT STA。
其中,在所述STA包括第一STA的情况下,AP为第一STA配置的子PPDU包括主信道(Primary Channel);而将辅助信道(Secondary Channel)配置给其他STA,其他STA例如UHR STA或第二STA。
可选地,在所述STA包括第一STA或第二STA的情况下,具体可包括以下几种场景:
场景(1)需要进行子PPDU的上行带宽分配的包括所述第一STA和 UHR STA,此时,为第一STA分配主信道,并为UHR STA分配辅助信道。
场景(2)需要进行子PPDU的上行带宽分配的包括所述第一STA、第二STA和UHR STA;此时,为第一STA分配主信道,并为第二STA、UHR STA分配辅助信道。
场景(3)需要进行子PPDU的上行带宽分配的包括所述第二STA和UHR STA,此时,可以为第二STA分配主信道,并为UHR STA分配辅助信道;或者,为第二STA分配辅助信道,并为UHR STA分配主信道。
场景(4)需要进行子PPDU的上行带宽分配的仅包括所述第一STA和第二STA中的一种时:当仅仅包括第一STA时,为该STA分配主信道;当仅仅包括第二STA时,为该STA分配主信道,也可分配辅助信道。
此外,还有需要进行子PPDU的上行带宽分配的仅包括UHR STA的场景(5),此时,为UHR STA分配主信道,也可分配辅助信道。
实际上,当存在UHR STA时,分配给UHR STA的信道为第一STA和/或第二STA分配的信道(包括主信道或辅助信道)之外的信道。
例如,总信道带宽为320MHz,则将主信道中的80MHz分配给HE/EHT STA,剩余为secondary channel 80MHz,及secondary channel 160MHz,将二者分给其他STA。
在所述STA存在第二STA而不存在所述第一STA的情况下,则AP可将主primary channel中的80MHz信道分配给支持SST的HE/EHT STA,即第二STA。
这样,STA接收第一无线帧,所述第一无线帧包括所述STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;在UHR传输中,AP优先将主信道分给第一STA(若不存在第一STA,则也可优先分给第二STA),而将辅助信道分配给UHR STA;STA根据自身为第一STA、第二STA或UHR STA,确定AP为其分配的信道。后续为不同的信道配置不同的传输协议,接收端根据不同的传输协议解析每个子信道所传输的子PPDU,以保证后向兼容性,规范支持不同协议的STA传输上行A-PPDU的过程,使之适用UHR需求。
本公开实施例提供了一种通信方法,可选地,所述方法可应用于STA,该方法可以包括以下步骤:
在建立单个目标唤醒时间individual TWT的过程中,接收接入点设备AP为所述STA分配传输所述A-PPDU的子PPDU的上行带宽;
接收第一无线帧,所述第一无线帧包括所述STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
STA在与AP建立individual TWT过程中,协商STA传输A-PPDU的带宽:例如AP支持的最大带宽为320MHz,而第一STA支持的最大带宽为80MHz(STA支持的带宽能力可在HE/EHT capabilities信息元素中解析得到),则AP在回复的TWT response帧中携带STA发送A-PPDU中的子PPDU的带宽,例如为主信道的80MHz。
可选地,本公开实施例中,所述在建立单个目标唤醒时间individual TWT的过程中,接收接入点设备AP为所述STA分配传输所述A-PPDU的子PPDU的上行带宽,包括以下至少一项:
情况一,所述STA包括所述第一STA,则为所述第一STA的所述第一子PPDU分配主信道;
情况二,所述STA包括所述第二STA和UHR STA,则为所述第二STA的所述第一子PPDU分配主信道,为所述UHR STA分配辅助信道;或为所述第二STA的所述第一子PPDU分配辅助信道,为所述UHR STA分配主信道。
情况三:所述STA仅包括UHR STA,则为所述UHR STA分配主信道或辅助信道。
情况一中,在所述STA包括第一STA的情况下,AP为第一STA配置的子PPDU包括主信道(Primary Channel);而将辅助信道(Secondary Channel)配置给其他STA,其他STA例如UHR STA或第二STA。,例如前述场景(1)和场景(2)。例如,总信道带宽为320MHz,则将主信道中的80MHz分配给HE/EHT STA,剩余为secondary channel 80MHz,及secondary channel 160MHz,将二者分给其他STA。若所述其他STA中存在第二STA,则可参考下述情况二中的分配方式。
当所述STA仅包括第一STA时,为该STA分配主信道,参考前述场景(4)。
情况二中,在所述STA存在第二STA而不存在所述第一STA的情况下,如前述场景(3),则AP可将主primary channel信道分配给即第二STA,为所述UHR STA分配辅助信道;或为所述第二STA的所述第一子PPDU分配辅助信道,为所述UHR STA分配主信道。
情况三中,所述STA仅包括UHR STA,例如前述场景(5),则AP为所述UHR STA分配主信道或辅助信道。
此外,对于UHR STA来说,其需具备支持A-PPDU能力信息,具体为Reception能力及Transmission能力。AP也可在Individual TWT建立的过程中分配Primary Channel或Secondary Channel给UHR STA来进行A-PPDU的子PPDU传输;可选地,AP可在TWT response帧中携带Individual TWT Parameter Set字段,通过Individual TWT Parameter Set field中的TWT信道子字段标识主信道和辅助信道。
作为第二示例,Individual TWT Parameter Set field的格式参考前述表1,其中,TWT信道字段中第i位表示其对应的信道是否为主信道;例如,第i位置1时,标识第i位对应的信道为主信道,其他置0的信道为辅助信道。
可选地,本公开实施例中,第一无线帧包括触发帧以及CTS(Clear to send)-to-self帧;所述接收第一无线帧,包括以下至少一项:
在A-PPDU的带宽下,接收触发帧;
在基本服务集BSS的带宽下,接收触发帧;
在A-PPDU的带宽下,接收自我清除接收CTS-to-self帧。
相应地,本公开实施例提供了一种通信方法,该方法可以包括以下步骤:
在A-PPDU的带宽下,接收触发帧,所述触发帧包括所述STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
其中,STA在A-PPDU的带宽下接收触发帧,触发帧的格式为MU(multi-user)-PPDU;在触发帧中包括每个STA的STA ID及其对应的发送子PPDU(第二子PPDU)的上行带宽信息(UL BW值);所述带宽信息例如AP在与STA在建立individual TWT过程中所协商的值,对每个STA来说可能不一样;此外,所述触发帧的CS(carrier sensing载波侦听)比特位设置为0。
本公开实施例中,在UHR传输中,AP优先将主信道分给第一STA(若不存在第一STA,则优先分给第二STA),而将辅助信道分配给UHR STA;STA根据自身为第一STA、第二STA或UHR STA,确定AP为其分配的信道。后续为不同的信道配置不同的传输协议,接收端根据不同的传输协议解析每个子信道所传输的子PPDU,以保证后向兼容性,规范支持不同协议的STA传输上行A-PPDU的过程,使之适用UHR需求。
本公开实施例提供了一种通信方法,该方法可以包括以下步骤:
在基本服务集BSS的带宽下,接收触发帧,所述触发帧包括所述STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一 STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
其中,STA在BSS带宽下接收触发帧,HE/EHT STA能够解析触发帧;AP将触发帧的Common Info域中的UL BW子域设置为HE STA能够解析的最大带宽,例如160MHz;Common Info域中还包括User Info域,User Info域包含关联标识(Association Identifier,AID)及其对应的资源单元分配信息(Resource Unit Allocation)分配,其中RU Allocation例如AP在与STA在建立individual TWT过程中所协商的第一子PPDU的上行带宽信息。
本公开实施例提供了一种通信方法,该方法可以包括以下步骤:
在A-PPDU的带宽下,接收自我清除接收CTS-to-self帧,所述CTS-to-self帧包括所述STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;例如AP在与STA在建立individual TWT过程中所协商的第一子PPDU的上行带宽信息。
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
本公开实施例中,STA接收第一无线帧,所述第一无线帧包括所述STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;在UHR传输中,AP优先将主信道分给第一STA(若不存在第一STA,则优先分给第二STA),而将辅助信道分配给UHR STA;STA根据自身为第一STA、第二STA或UHR STA,确定AP为其分配的信道。后续为不同的信道配置不同的传输协议,接收端根据不同的传输协议解析每个子信道所传输的子PPDU,以保证后向兼容性,规范支持不同协议的STA传输上行A-PPDU的过程,使之适用UHR需求。
参见图5,基于与本公开实施例所提供的方法相同的原理,本公开实施例还提供了一种电子设备,所述电子设备为接入点设备AP,所述电子设备包括:
发送模块501,用于发送第一无线帧,所述第一无线帧包括站点设备STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
在一个可选实施例中,所述电子设备还包括:
TWT建立模块,用于在建立单个目标唤醒时间individual TWT的过程中,为所述STA分配传输所述A-PPDU的子PPDU的上行带宽。
在一个可选实施例中,所述TWT建立模块,执行以下至少一项:
所述STA包括所述第一STA,则为所述第一STA的所述第一子PPDU分配主信道;
所述STA仅包括UHR STA,则为所述UHR STA分配主信道或辅助信道。
在一个可选实施例中,所述发送模块501,执行以下至少一项:
在A-PPDU的带宽下,发送触发帧;
在基本服务集BSS的带宽下,发送触发帧;
在A-PPDU的带宽下,发送自我清除发送CTS-to-self帧。
在一个可选实施例中,所述在A-PPDU的带宽下,发送触发帧,包括:
在A-PPDU的带宽下发送所述触发帧,所述触发帧为多用户物理层协议数据单元MU-PPDU;所述MU-PPDU的第二子PPDU包括所述第二子PPDU对应的STA的所述上行带宽信息。
在一个可选实施例中,所述在基本服务集BSS的带宽下,发送触发帧,包括:
在BSS的带宽下发送所述触发帧,所述触发帧的公共信息Common  Info域中的上行带宽UL BW子域设置为所述第一STA所支持解析的最大带宽;
所述触发帧还包括用户信息User Info域,所述User Info域包括所述STA的关联标识AID及以及资源单元分配信息RU allocation。
本公开实施例还提供了一种通信装置,应用于接入点设备AP,所述装置包括:
无线帧发送模块,用于发送第一无线帧,所述第一无线帧包括站点设备STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
所述装置还包括前述实施例中电子设备的其他模块,在此不再赘述。
参见图6,基于与本公开实施例所提供的方法相同的原理,本公开实施例还提供了一种电子设备,所述电子设备为站点设备,所述电子设备包括:
接收模块601,用于接收第一无线帧,所述第一无线帧包括所述STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
在一个可选实施例中,所述电子设备还包括:
建立模块,用于在建立单个目标唤醒时间individual TWT的过程中,接收接入点设备AP为所述STA分配传输所述A-PPDU的子PPDU的上 行带宽。
在一个可选实施例中,所述建立模块执行以下至少一项:
所述STA包括所述第一STA,则为所述第一STA的所述第一子PPDU分配主信道;
所述STA仅包括UHR STA,则为所述UHR STA分配主信道或辅助信道。
在一个可选实施例中,所述接收模块601,执行以下至少一项:
在A-PPDU的带宽下,接收触发帧;
在基本服务集BSS的带宽下,接收触发帧;
在A-PPDU的带宽下,接收自我清除接收CTS-to-self帧。
在一个可选实施例中,所述在A-PPDU的带宽下,接收触发帧,包括:
在A-PPDU的带宽下接收所述触发帧,所述触发帧为多用户物理层协议数据单元MU-PPDU;所述MU-PPDU的第二子PPDU包括所述第二子PPDU对应的STA的所述上行带宽信息。
在一个可选实施例中,所述在基本服务集BSS的带宽下,接收触发帧,包括:
在BSS的带宽下接收所述触发帧,所述触发帧的公共信息Common Info域中的上行带宽UL BW子域设置为所述第一STA所支持解析的最大带宽;
所述触发帧还包括用户信息User Info域,所述User Info域包括所述STA的关联标识AID及以及资源单元分配信息RU allocation。
在一个可选实施例中,所述在A-PPDU的带宽下,接收自我清除接收CTS-to-self帧,包括:
在A-PPDU的带宽下,接收所述CTS-to-self帧;所述CTS-to-self帧包括所述A-PPDU的时长信息;所述CTS-to-self帧的Common Info域中的UL BW子域设置为所述第一STA所支持解析的最大带宽。
本公开实施例还提供了一种通信装置,应用于站点设备,所述装置包 括:
接收模块,用于接收第一无线帧,所述第一无线帧包括所述STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
所述装置还包括前述实施例中电子设备的其他模块,在此不再赘述。
在一个可选实施例中,本公开实施例还提供了一种电子设备,如图7所示,图7所示的电子设备700可以为服务器,包括:处理器701和存储器703。其中,处理器701和存储器703相连,如通过总线702相连。可选地,电子设备700还可以包括收发器704。需要说明的是,实际应用中收发器704不限于一个,该电子设备700的结构并不构成对本公开实施例的限定。
处理器701可以是CPU(Central Processing Unit,中央处理器),通用处理器,DSP(Digital Signal Processor,数据信号处理器),ASIC(Application Specific Integrated Circuit,专用集成电路),FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器701也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
总线702可包括一通路,在上述组件之间传送信息。总线702可以是PCI(Peripheral Component Interconnect,外设部件互连标准)总线或EISA(Extended Industry Standard Architecture,扩展工业标准结构)总线等。总线702可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器703可以是ROM(Read Only Memory,只读存储器)或可存 储静态信息和指令的其他类型的静态存储设备,RAM(Random Access Memory,随机存取存储器)或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器703用于存储执行本公开方案的应用程序代码,并由处理器701来控制执行。处理器701用于执行存储器703中存储的应用程序代码,以实现前述方法实施例所示的内容。
其中,电子设备包括但不限于:移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图7示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
本公开提供的服务器可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式***,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN、以及大数据和人工智能平台等基础云计算服务的云服务器。终端可以是智能手机、平板电脑、笔记本电脑、台式计算机、智能音箱、智能手表等,但并不局限于此。终端以及服务器可以通过有线或无线通信方式进行直接或间接地连接,本公开在此不做限制。
本公开实施例提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当其在计算机上运行时,使得计算机可以执行前述方法实施例中相应内容。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他 的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行***、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备执行上述实施例所示的方法。
根据本公开的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计 算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述各种可选实现方式中提供的方法。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的***、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的***来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的模块可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,模块的名称在某种情况下并不构成对该模块本身的限定,例如,A模块还可以被描述为“用于执行B操作的A模块”。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术 特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (18)

  1. 一种通信方法,应用于接入点设备AP,其特征在于,所述方法包括:
    发送第一无线帧,所述第一无线帧包括站点设备STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
    其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
  2. 根据权利要求1所述的通信方法,其特征在于,所述发送第一无线帧之前,所述方法还包括:
    在建立单个目标唤醒时间individual TWT的过程中,为所述STA分配传输所述A-PPDU的子PPDU的上行带宽。
  3. 根据权利要求2所述的通信方法,其特征在于,所述在在建立单个目标唤醒时间individual TWT的过程中,为所述STA分配传输所述A-PPDU的子PPDU的上行带宽,包括以下至少一项:
    所述STA包括所述第一STA,则为所述第一STA的所述第一子PPDU分配主信道;
    所述STA仅包括UHR STA,则为所述UHR STA分配主信道或辅助信道。
  4. 根据权利要求1或2所述的通信方法,其特征在于,所述发送第一无线帧,包括以下至少一项:
    在A-PPDU的带宽下,发送触发帧;
    在基本服务集BSS的带宽下,发送触发帧;
    在A-PPDU的带宽下,发送自我清除发送CTS-to-self帧。
  5. 根据权利要求4所述的通信方法,其特征在于,所述在A-PPDU的带宽下,发送触发帧,包括:
    在A-PPDU的带宽下发送所述触发帧,所述触发帧为多用户物理层协议数据单元MU-PPDU;所述MU-PPDU的第二子PPDU包括所述第二子PPDU对应的STA的所述上行带宽信息。
  6. 根据权利要求4所述的通信方法,其特征在于,所述在基本服务集BSS的带宽下,发送触发帧,包括:
    在BSS的带宽下发送所述触发帧,所述触发帧的公共信息Common Info域中的上行带宽UL BW子域设置为所述第一STA所支持解析的最大带宽;
    所述触发帧还包括用户信息User Info域,所述User Info域包括所述STA的关联标识AID及以及资源单元分配信息RU allocation。
  7. 根据权利要求4所述的通信方法,其特征在于,所述在A-PPDU的带宽下,发送自我清除发送CTS-to-self帧,包括:
    在A-PPDU的带宽下,发送所述CTS-to-self帧;所述CTS-to-self帧包括所述A-PPDU的时长信息;所述CTS-to-self帧的Common Info域中的UL BW子域设置为所述第一STA所支持解析的最大带宽。
  8. 一种通信方法,应用于站点设备STA,其特征在于,所述方法包括:
    接收第一无线帧,所述第一无线帧包括所述STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
    其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
  9. 根据权利要求8所述的通信方法,其特征在于,所述接收第一无线帧之前,所述方法还包括:
    在建立单个目标唤醒时间individual TWT的过程中,接收接入点设备AP为所述STA分配传输所述A-PPDU的子PPDU的上行带宽。
  10. 根据权利要求9所述的通信方法,其特征在于,所述在建立单个 目标唤醒时间individual TWT的过程中,接收接入点设备AP为所述STA分配传输所述A-PPDU的子PPDU的上行带宽,包括以下至少一项:
    所述STA包括所述第一STA,则为所述第一STA的所述第一子PPDU分配主信道;
    所述STA仅包括UHR STA,则为所述UHR STA分配主信道或辅助信道。
  11. 根据权利要求8或9所述的通信方法,其特征在于,所述接收第一无线帧,包括以下至少一项:
    在A-PPDU的带宽下,接收触发帧;
    在基本服务集BSS的带宽下,接收触发帧;
    在A-PPDU的带宽下,接收自我清除接收CTS-to-self帧。
  12. 根据权利要求11所述的通信方法,其特征在于,所述在A-PPDU的带宽下,接收触发帧,包括:
    在A-PPDU的带宽下接收所述触发帧,所述触发帧为多用户物理层协议数据单元MU-PPDU;所述MU-PPDU的第二子PPDU包括所述第二子PPDU对应的STA的所述上行带宽信息。
  13. 根据权利要求12所述的通信方法,其特征在于,所述在基本服务集BSS的带宽下,接收触发帧,包括:
    在BSS的带宽下接收所述触发帧,所述触发帧的公共信息Common Info域中的上行带宽UL BW子域设置为所述第一STA所支持解析的最大带宽;
    所述触发帧还包括用户信息User Info域,所述User Info域包括所述STA的关联标识AID及以及资源单元分配信息RU allocation。
  14. 根据权利要求12所述的通信方法,其特征在于,所述在A-PPDU的带宽下,接收自我清除接收CTS-to-self帧,包括:
    在A-PPDU的带宽下,接收所述CTS-to-self帧;所述CTS-to-self帧包括所述A-PPDU的时长信息;所述CTS-to-self帧的Common Info域中的UL BW子域设置为所述第一STA所支持解析的最大带宽。
  15. 一种电子设备,所述电子设备为接入点设备AP,其特征在于,所述电子设备包括:
    发送模块,用于发送第一无线帧,所述第一无线帧包括站点设备STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
    其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
  16. 一种电子设备,所述电子设备为站点设备STA,其特征在于,所述电子设备包括:
    接收模块,用于接收第一无线帧,所述第一无线帧包括所述STA传输上行聚合物理层协议数据单元A-PPDU的第一子PPDU的上行带宽信息;
    其中,在所述STA包括第一STA或第二STA的情况下,所述第一STA或第二STA传输所述第一子PPDU的上行带宽包括主信道;所述第一STA为不支持子信道选择性传输SST的高效率HE/增强极高吞吐量EHT STA;所述第二STA为支持SST的HE/EHT STA。
  17. 一种电子设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至7中任一项所述的方法或实现权利要求8至14中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的方法或实现权利要求8至14中任一项所述的方法。
PCT/CN2022/133844 2022-11-23 2022-11-23 通信方法、电子设备及存储介质 WO2024108451A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/133844 WO2024108451A1 (zh) 2022-11-23 2022-11-23 通信方法、电子设备及存储介质
CN202280004995.1A CN118383068A (zh) 2022-11-23 2022-11-23 通信方法、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/133844 WO2024108451A1 (zh) 2022-11-23 2022-11-23 通信方法、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024108451A1 true WO2024108451A1 (zh) 2024-05-30

Family

ID=91194809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133844 WO2024108451A1 (zh) 2022-11-23 2022-11-23 通信方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN118383068A (zh)
WO (1) WO2024108451A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210351894A1 (en) * 2020-05-06 2021-11-11 Mediatek Inc. Apparatuses and methods for resource unit (ru) allocation signaling to support trigger-based physical layer protocol data unit (tb ppdu) with multi-ru
WO2022059974A1 (ko) * 2020-09-16 2022-03-24 엘지전자 주식회사 무선랜 시스템에서 공간 재사용 필드를 구성하는 방법 및 장치
US20220232424A1 (en) * 2020-12-09 2022-07-21 Lg Electronics Inc. Configuration of trigger frame
WO2022220455A1 (ko) * 2021-04-12 2022-10-20 엘지전자 주식회사 무선랜 시스템에서 20mhz에서만 동작하는 sta에 대한 피드백 프레임을 송신하는 방법 및 장치
CN115333908A (zh) * 2021-05-10 2022-11-11 苏州速通半导体科技有限公司 无线局域网中的发射器及由其执行的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210351894A1 (en) * 2020-05-06 2021-11-11 Mediatek Inc. Apparatuses and methods for resource unit (ru) allocation signaling to support trigger-based physical layer protocol data unit (tb ppdu) with multi-ru
WO2022059974A1 (ko) * 2020-09-16 2022-03-24 엘지전자 주식회사 무선랜 시스템에서 공간 재사용 필드를 구성하는 방법 및 장치
US20220232424A1 (en) * 2020-12-09 2022-07-21 Lg Electronics Inc. Configuration of trigger frame
WO2022220455A1 (ko) * 2021-04-12 2022-10-20 엘지전자 주식회사 무선랜 시스템에서 20mhz에서만 동작하는 sta에 대한 피드백 프레임을 송신하는 방법 및 장치
CN115333908A (zh) * 2021-05-10 2022-11-11 苏州速通半导体科技有限公司 无线局域网中的发射器及由其执行的方法

Also Published As

Publication number Publication date
CN118383068A (zh) 2024-07-23

Similar Documents

Publication Publication Date Title
US20160309481A1 (en) Reduction of channel access delay in wireless systems
US11916710B2 (en) Data transmission method and apparatus
WO2020010880A1 (zh) 数据传输方法及相关装置
WO2019214523A1 (zh) 一种通信方法及装置
EP4277435A1 (en) Communication method and communication device
WO2024108451A1 (zh) 通信方法、电子设备及存储介质
WO2023010249A1 (zh) 通信方法及装置、电子设备及存储介质
WO2022222775A1 (zh) 信息传输的方法、装置、计算机可读存储介质和芯片
WO2023056652A1 (zh) 通信连接控制方法及装置、电子设备及存储介质
WO2024092465A1 (zh) 关联标识分配方法、接收方法、电子设备及存储介质
WO2024082223A1 (zh) 通信方法、电子设备及存储介质
WO2024152218A1 (zh) 通信方法、电子设备及存储介质
WO2024119313A1 (zh) 通信方法、电子设备及存储介质
WO2024130513A1 (zh) 块确认ba消息传输方法、电子设备及存储介质
WO2024103229A1 (zh) 通信方法、电子设备及存储介质
WO2024103226A1 (zh) 通信方法、电子设备及存储介质
WO2024145777A1 (zh) 通信方法、电子设备及存储介质
WO2024148482A1 (zh) 通信方法、电子设备及存储介质
WO2024124451A1 (zh) 数据帧传输方法、电子设备及存储介质
WO2024152217A1 (zh) 无线帧传输方法、电子设备及存储介质
WO2024152220A1 (zh) 通信方法、电子设备及存储介质
WO2024108440A1 (zh) Tdls通信方法、电子设备及存储介质
WO2024082245A1 (zh) 通信方法、电子设备及存储介质
WO2024124382A1 (zh) 通信方法、电子设备及存储介质
WO2022261900A1 (zh) 参数处理方法及接入点设备、站点设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22966146

Country of ref document: EP

Kind code of ref document: A1