WO2024106868A1 - Cable for electric vehicle battery diagnostic device and method for selecting vehicle model by using same cable - Google Patents

Cable for electric vehicle battery diagnostic device and method for selecting vehicle model by using same cable Download PDF

Info

Publication number
WO2024106868A1
WO2024106868A1 PCT/KR2023/018132 KR2023018132W WO2024106868A1 WO 2024106868 A1 WO2024106868 A1 WO 2024106868A1 KR 2023018132 W KR2023018132 W KR 2023018132W WO 2024106868 A1 WO2024106868 A1 WO 2024106868A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electric vehicle
diagnostic equipment
connector
cable
Prior art date
Application number
PCT/KR2023/018132
Other languages
French (fr)
Korean (ko)
Inventor
고홍기
Original Assignee
르노코리아자동차 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230154816A external-priority patent/KR20240070422A/en
Application filed by 르노코리아자동차 주식회사 filed Critical 르노코리아자동차 주식회사
Publication of WO2024106868A1 publication Critical patent/WO2024106868A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements

Definitions

  • the present invention is a technology related to battery reuse of electric vehicles.
  • the battery can be reused in an electric vehicle. Even if reusing the battery for an electric vehicle of the same model is not possible, secondary use of the battery for agricultural machinery or construction machinery can be attempted. Alternatively, it is possible to disassemble the battery pack and selectively reuse the batteries contained within it. In any case, it is desirable to approach battery reuse rather than recycling electric vehicle batteries through simple waste disposal.
  • the batteries built into electric vehicles are different for each vehicle. Even if the manufacturer is the same, the battery is different depending on the vehicle model. Nevertheless, the present invention starts from the perspective that manufacturing battery diagnostic equipment for each vehicle type is a methodology with very little industrial applicability, even if it is technically reasonable. Therefore, the purpose of the present invention is to explore and propose a methodology that can diagnose different electric vehicle batteries with one diagnostic equipment.
  • N is an integer greater than 1
  • the goal is to ensure that each battery diagnostic equipment cable is a unique diagnostic solution.
  • common principles apply to these cables.
  • the corresponding cable that corresponds to a specific battery itself serves as a keycode and operates the software appropriate for the battery.
  • the diagnostic equipment can accurately diagnose the battery by detecting the circuit inside the diagnostic equipment cable and selecting a diagnostic solution appropriate for the vehicle.
  • the technical task of the present invention is to be able to diagnose various types of electric vehicle batteries with a single battery diagnostic equipment.
  • the first aspect of the present invention to achieve the above task is a method of selecting a vehicle model using a cable for battery diagnostic equipment:
  • the electric vehicle battery diagnostic equipment reads a preset key code value of the key code circuit installed in the first connector of the battery diagnostic equipment cable and automatically selects an electric vehicle model matching the key code value,
  • the specified electric vehicle model information and battery diagnostic information of the electric vehicle battery pack are displayed on the screen of the electric vehicle battery diagnostic equipment. It is characterized by including the step of:
  • the preset key code value is different for each model of electric vehicle.
  • the preset key code value is measured while a resistance circuit is connected to specific connection pins of the first connector. This can be done with the output voltage value.
  • the second aspect of the present invention is a cable for electric vehicle battery diagnostic equipment:
  • a first connector at one end connected to an electric vehicle battery diagnostic equipment
  • It includes a key code circuit installed in the first connector,
  • the keycode circuit unit transmits the preset keycode value of the first connector to the electric vehicle battery diagnostic equipment, and the electric vehicle battery pack and the electric vehicle battery diagnostic equipment automatically select a vehicle model based on the keycode value. It is characterized by connecting to enable CAN communication.
  • the preset key code value is different for each type of electric vehicle. Additionally, the preset key code value may be an output voltage value measured when a resistance circuit is connected to specific connection pins of the first connector.
  • the cable for diagnostic equipment connected to the battery pack can be separated from the diagnostic equipment. Cables for diagnostic equipment are different for each vehicle model.
  • the cable for diagnostic equipment of the present invention which is connected to the diagnostic equipment and also to the battery pack, itself serves as a key code, allowing the software suitable for the battery to operate properly.
  • the diagnostic equipment detects the circuit inside the cable for the diagnostic equipment, activates CAN communication suitable for the vehicle, and automatically selects the diagnostic solution suitable for the battery, making it easier to diagnose or control the battery. According to the present invention, it is possible to safely diagnose various types of batteries with a single electric automatic battery diagnostic equipment, which has the effect of further promoting the reuse of batteries separated from electric vehicles. Through the GUI of the diagnostic equipment, users can accurately check at a glance the types of batteries that can be connected and the types of batteries that can be metered using the cable being connected.
  • Figure 1 shows the concept of a method for selecting a vehicle type for battery reuse according to an embodiment of the present invention.
  • Figure 2 schematically shows the configuration of a cable for battery diagnostic equipment according to a preferred embodiment of the present invention.
  • Figure 3 schematically illustrates an example of the configuration of a keycode circuit installed in the first connector of a cable for battery diagnostic equipment according to a preferred embodiment of the present invention.
  • Figure 4 schematically illustrates an example of the configuration of a keycode circuit installed in the first connector of a cable for battery diagnostic equipment according to another preferred embodiment of the present invention.
  • Figure 5 shows an example of the configuration of the keycode circuit unit 150 installed in the first connector of a cable for battery diagnostic equipment according to a preferred embodiment of the present invention.
  • Figure 6 schematically illustrates the overall process of the method according to one preferred embodiment of the invention.
  • Figure 1 shows the concept of a method for selecting a vehicle type for reuse of an electric vehicle battery according to a preferred embodiment of the present invention.
  • the electric vehicle battery pack (10) to reuse the battery of an electric vehicle, the electric vehicle battery pack (10) must be separated from the vehicle. Additionally, the separated vehicle battery pack 10 must be diagnosed. To do this, connect the electric vehicle battery pack 10 and the electric vehicle battery diagnostic equipment 200 through the battery diagnostic equipment cable 100 so that the electric vehicle battery diagnostic equipment 200 is connected to the BMS of the electric vehicle battery pack 10. In addition to supplying voltage, it must be possible to send and receive data through CAN communication. In addition, in order to do this, the electric vehicle battery diagnosis equipment 200 must know which type of vehicle the battery pack 10 is used in. If the user is confused and selects a different battery from the connected battery in the diagnostic equipment software, the equipment will not operate properly. In the worst case, incorrect connections may result in damage to the battery or diagnostic equipment.
  • Figure 2 shows an example of the external configuration of a cable 100 for battery diagnostic equipment according to a preferred embodiment of the present invention.
  • a first connector 110 is formed at one end of the battery diagnostic equipment cable 100, and a second connector 190 is formed at the other end.
  • the first connector 110 is connected to the connector of the electric vehicle battery diagnostic equipment, and the second connector 190 is connected to the connector of the electric vehicle battery pack. Since the physical specifications of the connector of the electric vehicle battery pack are different for each vehicle type, the second connector 190 is manufactured to different specifications to correspond to the specifications. However, despite the different specifications of the second connector 190, since the specifications of the first connector 110 are connected to one diagnostic equipment, the physical specifications of the first connector 110 are the same.
  • the first connector 110 connected to the diagnostic equipment includes a circuit board on which a key code circuit 130 is installed, and this key code circuit 130 connects a portion of the connection terminal 120 of the first connector 110. It is electrically connected to pins to generate a specific keycode value.
  • M is an integer greater than 1 and is determined by the number of vehicle models
  • the second connectors 190 of these M cables 100 for battery diagnostic equipment may each have different specifications.
  • the specifications for the first connector 110 are the same.
  • the keycode values of the first connector 110 generated by the keycode circuit unit 130 are all different. With these different keycode values, the diagnostic equipment can automatically select the electric vehicle model. By selecting the vehicle model, the BMS protocol that can diagnose the battery pack can be specified.
  • the present invention recognizes that by connecting an electric vehicle battery and a diagnostic equipment with the cable of the present invention, the vehicle type using the battery can be selected based on the difference in the logic signal recognized by the electronic circuit of the first connector 110. am.
  • the diagnostic equipment has information about various BMS protocols in advance.
  • FIG. 3 shows an example of the configuration of the connecting pin portion 120 of the first connector 110 and the circuit configuration of the key code circuit portion 130 in FIG. 2 according to a preferred embodiment of the present invention.
  • connection pins 121 and 121 ⁇ of the first connector constituting the connection terminal 120 there are 25 connection pins in the diagnostic equipment connector.
  • the functions of the 25 connection pins (121, 121 ⁇ ) are preset during circuit design. 25 are design changes.
  • the connector can also be configured with 12 connecting pins. As the number of connection pins increases, more key codes can be defined, which has the advantage of increasing the number of batteries that diagnostic equipment and cables can support.
  • the key code circuit was formed by electrically connecting the first, second, and third connection pins among the connection pins 121 and 121 ⁇ .
  • Connect pin 1 as the input terminal
  • connect pin 3 as the ground
  • connect pin 2 as the output terminal.
  • the sizes of resistor R1 and resistor R2 installed between connection pins are fixed.
  • resistor R1 is set to 1K ⁇
  • resistor R2 is set to 4K ⁇
  • the model of the battery connected to the second connector on the other side of the diagnostic equipment cable is "XYZ" (this is determined when designing the second connector).
  • battery information for the electric vehicle model "XYZ”, a communication protocol with the corresponding battery BMS, and other information are stored in advance in the diagnostic equipment.
  • Such information includes battery pack manufacturer information, battery cell manufacturer information, cell configuration, rated voltage, rated current, charging SOC range, maximum voltage, maximum current, maximum charge C-rate, maximum discharge C-rate, cell charge end voltage, These include cell discharge end voltage, charge end current, discharge end current, capacity, inter-cell voltage deviation, battery maximum critical temperature, battery minimum critical temperature, battery operating temperature, and insulation resistance.
  • the 5V supply voltage of the diagnostic equipment is supplied to the No. 1 connection pin of the first connector of the diagnostic equipment cable, and accordingly, the diagnostic equipment cable connects 1 through the No. 2 connection pin.
  • the output voltage of V is sent to the diagnostic equipment as a logic signal.
  • the diagnostic equipment recognizes that the cable is a dedicated cable for "XYZ”, and the battery diagnostic software automatically selects "XYZ” as the vehicle model information.
  • CAN communication according to the battery pack BMS communication protocol of the "XYZ" electric vehicle is initiated.
  • the diagnostic information of the battery is displayed through the battery diagnostic software screen of the diagnostic equipment.
  • connection pins 4 to 25 of the remaining connection terminals 120 circuit functions such as BMS power supply function, battery temperature measurement function, function of receiving battery state of charge (SOC) data, and voltage measurement between battery cells are performed. This is preset.
  • the circuit was constructed using three connection pins 121 and two resistors. If the circuit is constructed with more resistance using more connection pins 121, it can be used in more electric vehicle models. You will be able to respond.
  • FIG. 4 shows an example of the configuration of the connection terminal 120 of the first connector 110 and the circuit configuration of the keycode circuit unit 130 in FIG. 2 according to another preferred embodiment of the present invention.
  • connection pins 121, 121 ⁇ of the first connector constituting the connection terminal 120 there are 25 connection pins 121, 121 ⁇ of the first connector constituting the connection terminal 120.
  • the first key code circuit was formed by electrically connecting connection pins 14, 15, and 16 among the connection pins 121 and 121 ⁇ .
  • a second key code circuit was formed by electrically connecting connection pins 17, 18, and 19.
  • connection pin No. 14 is used as the input terminal
  • connection pin No. 16 is connected to the ground
  • connection pin No. 15 is used as the output terminal of point M.
  • Resistor R1 and resistor R2 form a resistance circuit between the connection pins as shown.
  • connection pin No. 17 is used as the input terminal
  • connection pin No. 19 is connected to the ground
  • connection pin No. 18 is used as the output terminal of point N.
  • a resistance circuit is formed with resistor R3 and resistor R5. 5V voltage is supplied from the diagnostic equipment through connection pins 14 and 17. The size of each resistor and the output voltage at point M and N are prese
  • the electric vehicle model of the battery connected to the second connector on the other side of this cable is "ABC". It can be set in advance. In addition, this means that when the diagnostic equipment control unit receives an output voltage signal of point M of 1V and point N of 4V from the connected cable, the cable is connected to the battery pack of the "ABC" electric vehicle model. It means judging.
  • the key code value serial number, the size of the output voltage at point M, the size of the output voltage at point N, and the vehicle model are preset in the table of the software of the diagnostic equipment, and similarly, the electric vehicle model "ABC" is set in advance. Battery information, communication protocol with the battery BMS, and other information are stored in advance.
  • the diagnostic equipment supplies a voltage of 5V to connection pins 14 and 17 of the first connector of the cable, and the cable of the present invention connects pins 15 and 17. Through the connection, the output voltage of point M and point N, respectively determined by the resistance circuit, are sent as logic signals to the diagnostic equipment.
  • the diagnostic equipment recognizes the cable and automatically selects the vehicle model of the battery pack that matches the logic signal of the cable.
  • the vehicle model is displayed on the battery diagnosis software screen.
  • CAN communication according to the communication protocol of the vehicle model is initiated with the battery pack connected to the second connector of the cable. If CAN communication is successful, battery information is displayed on the screen. Preferably, not only the information necessary for charging but also the information necessary for fault diagnosis can be transmitted and received.
  • Figure 5 illustrates a keycode circuit board 150 on which the keycode circuit of the first connector 110 is installed according to a preferred embodiment of the present invention.
  • connection pins of the connection terminal 120 of the first connector are electrically connected to the connection terminals 151a arranged on the key code circuit board 150, and these connection terminals 151a are arranged according to the designed sequence. It is electrically connected to the cable connection terminals 151b. And in this embodiment, the resistance element 155 is connected between the first connection terminal and the second connection terminal. And cables connected to the connection terminals 151b of the first connector 110 constitute the battery diagnostic equipment cable 100.
  • the key code circuit board 150 is installed on the first connector 110 connected to the connector of the diagnostic equipment.
  • a battery diagnostic equipment cable 100 of this configuration is provided for each battery pack for each vehicle type.
  • Figure 6 schematically shows the entire process of a vehicle model selection method using a battery diagnostic equipment cable according to a preferred embodiment of the present invention.
  • the battery diagnosis software of the diagnostic equipment S100.
  • diagnostic equipment In order for diagnostic equipment to diagnose the battery of an electric vehicle, it must obtain information about the model of the electric vehicle.
  • the preset key code value of the battery diagnostic equipment cable for each vehicle type, the functions defined for the connection pins of the cable, the CAN communication protocol for communicating with the battery BMS, etc. are preset and stored for each vehicle type, that is, for each cable.
  • the cable for battery diagnostic equipment (S110).
  • the first connector of this cable connects to the diagnostic equipment.
  • the diagnostic equipment applies the input voltage to the cable through the first connector (S120).
  • a voltage of approximately 5V is supplied.
  • a key code circuit is installed in the first connector of the cable.
  • the keycode circuit unit transmits the determined keycode value to the diagnostic equipment (S130).
  • the first connector of the cable sends an output voltage signal using a resistor circuit as a key code value to the diagnostic equipment.
  • the control unit of the diagnostic equipment compares the received key code value with a pre-stored key code value and automatically selects the vehicle model (S140).
  • the battery diagnosis software screen displays the specified vehicle model and initiates CAN communication for the vehicle model through the cable. It supplies BMS power to the battery pack connected through the second connector of the diagnostic equipment cable and initiates communication in accordance with the CAN communication standard of the battery pack.
  • the battery pack's BMS then transmits battery information to the diagnostic equipment.
  • the diagnostic equipment obtains diagnostic information from the connected battery (S150) and displays the information as predetermined items on the software screen.
  • Battery diagnostic information at this time includes battery status, battery SCO, battery voltage, battery current, battery remaining capacity, and insulation resistance, as well as battery SOH, battery cell maximum voltage, battery cell minimum voltage, battery cell maximum temperature, and battery cell minimum. It further includes temperature, maximum voltage cell number, minimum voltage cell number, and voltage difference between battery cells. In other words, not only the information necessary for charging but also the information necessary for fault diagnosis can be transmitted and received.
  • the method of selecting a vehicle model using a battery diagnostic equipment cable may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, etc., singly or in combination.
  • the program instructions recorded on the medium may be specially designed and configured for the present invention or may be known and available to those skilled in the art of computer software.
  • Examples of computer-readable media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical recording media such as CD-ROMs and DVDs, magneto-optical media such as floptical disks, and ROM, RAM, Hardware devices specifically configured to store and perform program instructions, such as flash memory, may be included.
  • Examples of program instructions include not only machine code such as that created by a compiler, but also high-level language code that can be executed by a computer using an interpreter, etc.
  • the hardware devices described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a diagnostic device that is required for reusing electric vehicle batteries. Electric vehicle batteries need to be reused, both from an environmental perspective and an industrial policy perspective. However, there are technical and practical difficulties in reusing electric vehicle batteries. Before a battery can be reused, the battery must be diagnosed. However, due to the risk of hacking of a battery BMS, manufacturers do not disclose detailed technology, specifications of a physical interface of a battery pack are different for each vehicle model, and communication protocols are also different for each vehicle model. As a result, diagnostic devices have to be manufactured for each battery and vehicle model. The present invention proposes a solution that can most efficiently diagnose a battery with a single diagnostic device. A key code circuit unit that specifies a vehicle model is installed on a cable for an electric vehicle battery diagnostic device, and the diagnostic device can automatically select the vehicle model through a preset key code value.

Description

전기자동차 배터리 진단 장비용 케이블 및 그 케이블을 이용한 차종 선택 방법Cable for electric vehicle battery diagnostic equipment and method of selecting vehicle model using the cable
본 발명은 전기자동차의 배터리 재사용에 관한 기술이다.The present invention is a technology related to battery reuse of electric vehicles.
지구 환경을 위해서 각 나라의 정부는 전기 자동차의 보급 촉진을 위해 힘쓰고 있다. 정부 주도의 전기자동차 보급 정책은 구매 보조금을 지급하는 방식으로 실행된다. 대한민국의 구매 보조금은 정부가 배터리를 소비자 대신 구매하는 명목으로 지급된다. 따라서 전기차 소유자가 해당 차량의 폐기 등으로 인해 자동차 등록을 말소할 경우, 배터리를 반납해야 한다. 그러면 반납한 전기차의 배터리를 수거하여 분해하고 해체한 다음 배터리에 내장된 희귀 금속(리튬, 니켈, 망간, 코발트 등)이나 비철금속(구리, 알루미늄 등)을 추출하여 재활용할 수 있다. 그러나 이러한 단순 폐기물 처리보다는 배터리 자체를 재사용하는 것이 훨씬 경제적이며 환경적으로 가치 있는 활용방법이다.For the sake of the global environment, governments in each country are working to promote the distribution of electric vehicles. The government-led electric vehicle distribution policy is implemented by providing purchase subsidies. In Korea, purchase subsidies are provided by the government in the name of purchasing batteries on behalf of consumers. Therefore, if the electric vehicle owner cancels the vehicle registration due to disposal of the vehicle, the battery must be returned. Then, the battery of the returned electric vehicle can be collected, disassembled and dismantled, and the rare metals (lithium, nickel, manganese, cobalt, etc.) or non-ferrous metals (copper, aluminum, etc.) contained in the battery can be extracted and recycled. However, reusing the battery itself is a much more economical and environmentally valuable method of use than simple waste disposal.
예를 교통사고가 발생하여 차량을 폐기해야 하지만 배터리는 온전한 경우가 있다. 이런 경우 배터리를 전기차에 재사용할 수 있다. 같은 모델의 전기차에 배터리를 재사용하는 방법이 아니더라도 농업용 기계나 건설기계 등에 배터리의 2차 사용을 시도할 수도 있다. 또는 배터리 팩을 분해하여 그 안에 내장된 배터리를 선별적으로 재사용하는 것도 가능하다. 어떤 방식으로든 전기차 배터리를 단순 폐기물 처리로 재활용하기보다는 배터리를 재사용하는 방식으로 접근하는 것이 바람직하다.For example, there may be a car accident and the vehicle must be scrapped, but the battery is still intact. In this case, the battery can be reused in an electric vehicle. Even if reusing the battery for an electric vehicle of the same model is not possible, secondary use of the battery for agricultural machinery or construction machinery can be attempted. Alternatively, it is possible to disassemble the battery pack and selectively reuse the batteries contained within it. In any case, it is desirable to approach battery reuse rather than recycling electric vehicle batteries through simple waste disposal.
그러나 배터리의 재사용은 상당히 어려운 것이 당면한 현실이다. 배터리를 재사용하려면 먼저 배터리를 진단할 수 있어야 하고, 해당 배터리에 대한 정확한 정보를 입수해야 한다. 그러나 전기자동차 메이커가 배터리에 관한 정보를 공개할 수 있을까? 전기자동차 배터리에 대한 정보는 배터리 BMS(Battery Management System)에서 관리한다. 그러나 배터리 제조사와 전기자동차 제조사는 이 BMS 정보를 공유하지 않는다. 왜냐하면 BMS에서 관리하는 정보가 외부에 공개되는 경우, 그 정보를 이용하여 전기자동차 해킹이 가능하기 때문이다. 배터리 정보 해킹은 전기자동차를 시한폭탄처럼 사용할 수 있어서 매우 위험하며 교통사고를 일으키는 요인이 될 수 있다. 이런 이유로 차량 제조사는 BMS 정보를 공개하지 않는 것이다. 이런 상황에서 배터리를 재사용하려면, 제조사 별로 고유한 폐배터리 진단장비를 만들어서, 배터리 팩을 해당 진단장비에 연결하고, 배터리의 수명과 상태에 관한 정보만을 표시되도록 하는 방법을 이용해야 한다.However, the reality is that reusing batteries is quite difficult. To reuse a battery, you must first be able to diagnose the battery and obtain accurate information about the battery. But can electric car manufacturers disclose information about their batteries? Information about electric vehicle batteries is managed by the battery BMS (Battery Management System). However, battery manufacturers and electric vehicle manufacturers do not share this BMS information. This is because if the information managed by the BMS is disclosed to the outside, hacking of electric vehicles is possible using that information. Hacking battery information is very dangerous because it can use electric vehicles like a time bomb and can be a factor in traffic accidents. For this reason, vehicle manufacturers do not disclose BMS information. In order to reuse batteries in this situation, each manufacturer must create its own waste battery diagnostic equipment, connect the battery pack to the diagnostic equipment, and use a method to display only information about the life and condition of the battery.
그런데 전기자동차 배터리 팩을 외부 장비에 연결하는 인터페이스와 통신 프로토콜이 차종별로 모두 다르다. 결국 종래의 방식에서는 배터리를 재사용하고자 해도 차종별로 전기차 배터리 진단 장비가 필요하게 되었다. 고가의 장비를 차종별로 제조한다는 것은 매우 비효율적이다. 본 발명자는 이러한 문제를 해결하기 위하여 오랫동안 연구한 결과 본 발명을 완성하기에 이르렀다.However, the interface and communication protocol that connects the electric vehicle battery pack to external equipment are different for each vehicle type. Ultimately, in the conventional method, even if the battery was to be reused, electric vehicle battery diagnostic equipment was needed for each vehicle type. Manufacturing expensive equipment for each vehicle type is very inefficient. The present inventor has completed the present invention as a result of long-term research to solve this problem.
전술한 바와 같이, 전기자동차에 내장되는 배터리는 차량마다 모두 다르다. 심지어 제조사가 같더라도 차종에 따라 배터리가 다르다. 그럼에도 불구하고 차종마다 배터리 진단 장비를 제조하는 것은 기술적으로는 합당하더라도 산업상 이용 가능성이 매우 적은 방법론이라는 관점에서 본 발명이 출발한다. 그러므로 본 발명의 목적은 하나의 진단장비로 상이한 전기자동차 배터리들을 진단할 수 있는 방법론을 모색하고 그것을 제안함에 있다. As mentioned above, the batteries built into electric vehicles are different for each vehicle. Even if the manufacturer is the same, the battery is different depending on the vehicle model. Nevertheless, the present invention starts from the perspective that manufacturing battery diagnostic equipment for each vehicle type is a methodology with very little industrial applicability, even if it is technically reasonable. Therefore, the purpose of the present invention is to explore and propose a methodology that can diagnose different electric vehicle batteries with one diagnostic equipment.
N(N은 1 이상의 정수)대의 배터리 진단 장비를 제조하는 것보다는 N대의 배터리 진단 장비용 케이블을 제조하는 것이 훨씬 경제적인 방법이다. 각각의 배터리 진단 장비용 케이블이 하나의 고유한 진단 솔루션이 되도록 하는 것이다. 그러나 이들 케이블에는 공통된 원리가 적용된다. 특정 배터리에 대응하는 대응 케이블 자체가 키코드 역할을 하며, 배터리에 맞는 소프트웨어를 동작하도록 한다. 진단 장비는 진단 장비용 케이블 내부의 회로를 감지하여 차량에 맞는 진단 솔루션을 선택함으로써 배터리를 적확하게 진단할 수 있다. 요컨대 배터리 진단 장비 1대로 다양한 종류의 전기자동차 배터리를 진단할 수 있도록 한다는 것, 그것이 본 발명의 기술적 과제이다. It is a much more economical method to manufacture N cables for battery diagnostic equipment rather than manufacturing N (N is an integer greater than 1) battery diagnostic equipment. The goal is to ensure that each battery diagnostic equipment cable is a unique diagnostic solution. However, common principles apply to these cables. The corresponding cable that corresponds to a specific battery itself serves as a keycode and operates the software appropriate for the battery. The diagnostic equipment can accurately diagnose the battery by detecting the circuit inside the diagnostic equipment cable and selecting a diagnostic solution appropriate for the vehicle. In short, the technical task of the present invention is to be able to diagnose various types of electric vehicle batteries with a single battery diagnostic equipment.
한편, 본 발명의 명시되지 않은 또 다른 목적들은 하기의 상세한 설명 및 그 효과로부터 용이하게 추론 할 수 있는 범위 내에서 추가적으로 고려될 것이다.Meanwhile, other unspecified purposes of the present invention will be additionally considered within the scope that can be easily inferred from the detailed description and effects below.
위와 같은 과제를 달성하기 위한 본 발명의 제1국면은 배터리 진단 장비용 케이블을 이용한 차종 선택 방법으로서:The first aspect of the present invention to achieve the above task is a method of selecting a vehicle model using a cable for battery diagnostic equipment:
배터리 진단 장비용 케이블의 제1커넥터를 전기자동차 배터리 진단 장비에 연결하고 제2 커넥터를 전기자동차 배터리 팩에 연결하면,When the first connector of the battery diagnostic equipment cable is connected to the electric vehicle battery diagnostic equipment and the second connector is connected to the electric vehicle battery pack,
상기 전기자동차 배터리 진단 장비가 상기 배터리 진단 장비용 케이블의 제1 커넥터에 설치된 키코드 회로부의 미리 설정한 키코드 값을 독출하여 해당 키코드 값에 매칭되는 전기자동차 차종을 자동으로 선택하고, The electric vehicle battery diagnostic equipment reads a preset key code value of the key code circuit installed in the first connector of the battery diagnostic equipment cable and automatically selects an electric vehicle model matching the key code value,
상기 전기자동차 배터리 팩과 상기 전기자동차 배터리 진단 장비의 CAN 통신을 개시하는 데 성공하면, 상기 전기자동차 배터리 진단 장비의 화면을 통해 특정된 전기자동차 차종 정보 및 상기 전기자동차 배터리 팩의 배터리 진단 정보를 표시하는 단계를 포함하는 것을 특징으로 한다.If CAN communication between the electric vehicle battery pack and the electric vehicle battery diagnostic equipment is successfully initiated, the specified electric vehicle model information and battery diagnostic information of the electric vehicle battery pack are displayed on the screen of the electric vehicle battery diagnostic equipment. It is characterized by including the step of:
본 발명의 바람직한 어느 실시예에 따른 배터리 진단 장비용 케이블을 이용한 차종 선택 방법에 있어서, 상기 미리 설정한 키코드 값은 전기자동차의 차종마다 상이하다.In the method of selecting a vehicle model using a battery diagnostic equipment cable according to a preferred embodiment of the present invention, the preset key code value is different for each model of electric vehicle.
또한, 본 발명의 바람직한 어느 실시예에 따른 배터리 진단 장비용 케이블을 이용한 차종 선택 방법에 있어서, 상기 미리 설정한 키코드 값은 상기 제1 커넥터의 특정 연결핀들에 저항 회로를 연결한 상태에서 측정되는 출력전압 값으로 할 수 있다.In addition, in the method of selecting a vehicle model using a cable for battery diagnostic equipment according to a preferred embodiment of the present invention, the preset key code value is measured while a resistance circuit is connected to specific connection pins of the first connector. This can be done with the output voltage value.
본 발명의 제2국면은 전기자동차 배터리 진단 장비용 케이블로서:The second aspect of the present invention is a cable for electric vehicle battery diagnostic equipment:
전기자동차 배터리 진단 장비에 연결되는 한쪽 단부의 제1 커넥터;A first connector at one end connected to an electric vehicle battery diagnostic equipment;
전기자동차 배터리 팩에 연결되는 다른 쪽 단부의 제2 커넥터; 및a second connector at the other end connected to the electric vehicle battery pack; and
상기 제1 커넥터에 설치된 키코드 회로부를 포함하고,It includes a key code circuit installed in the first connector,
상기 키코드 회로부는 상기 제1 커넥터의 미리 설정한 키코드 값을 상기 전기자동차 배터리 진단 장비로 전송하고, 상기 키코드 값에 의해 차종이 자동으로 선택되는 전기자동차 배터리 팩과 상기 전기자동차 배터리 진단 장비를 연결하여 CAN 통신이 이루어지도록 하는 것을 특징으로 한다.The keycode circuit unit transmits the preset keycode value of the first connector to the electric vehicle battery diagnostic equipment, and the electric vehicle battery pack and the electric vehicle battery diagnostic equipment automatically select a vehicle model based on the keycode value. It is characterized by connecting to enable CAN communication.
본 발명의 바람직한 전기자동차 배터리 진단 장비용 케이블에 있어서, 상기 미리 설정한 키코드 값은 전기자동차의 차종마다 상이하다. 또한, 상기 미리 설정한 키코드 값은 상기 제1 커넥터의 특정 연결핀들에 저항 회로를 연결한 상태에서 측정되는 출력전압 값인 것이 좋다.In the preferred electric vehicle battery diagnostic equipment cable of the present invention, the preset key code value is different for each type of electric vehicle. Additionally, the preset key code value may be an output voltage value measured when a resistance circuit is connected to specific connection pins of the first connector.
배터리 팩과 연결되는 진단 장비용 케이블은 진단 장비로부터 분리할 수 있다. 진단 장비용 케이블은 차종마다 상이하다. 진단 장비에 연결되고 또한 배터리 팩에 연결되는 본 발명의 진단 장비용 케이블은 그 자체가 키코드 역할을 하여, 배터리에 맞는 소프트웨어를 적확하게 동작하도록 한다. 진단 장비는 진단 장비용 케이블 내부의 회로를 감지하여 차량에 맞는 CAN 통신을 활성화하며 배터리에 맞는 진단 솔루션이 자동으로 선택되도록 함으로써 더 용이하게 배터리를 진단하거나 제어 동작을 시킬 수 있다. 이와 같은 본 발명에 따르면, 전기자동 배터리 진단장비 1대로 다양한 종류의 배터리를 안전하게 진단할 수 있게 하고, 이로써 전기자동차에서 분리한 배터리 재사용을 더욱 촉진할 수 있다는 효과를 발휘한다. 사용자는 진단 장비의 GUI를 통해 연결 가능한 배터리의 종류와 연결 중인 케이블로 검침 가능한 배터리 종류를 한눈으로 정확하게 확인할 수 있다. The cable for diagnostic equipment connected to the battery pack can be separated from the diagnostic equipment. Cables for diagnostic equipment are different for each vehicle model. The cable for diagnostic equipment of the present invention, which is connected to the diagnostic equipment and also to the battery pack, itself serves as a key code, allowing the software suitable for the battery to operate properly. The diagnostic equipment detects the circuit inside the cable for the diagnostic equipment, activates CAN communication suitable for the vehicle, and automatically selects the diagnostic solution suitable for the battery, making it easier to diagnose or control the battery. According to the present invention, it is possible to safely diagnose various types of batteries with a single electric automatic battery diagnostic equipment, which has the effect of further promoting the reuse of batteries separated from electric vehicles. Through the GUI of the diagnostic equipment, users can accurately check at a glance the types of batteries that can be connected and the types of batteries that can be metered using the cable being connected.
한편, 여기에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 이하의 명세서에서 기재된 효과 및 그 잠정적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급됨을 첨언한다.Meanwhile, it is to be added that even if the effects are not explicitly mentioned herein, the effects described in the following specification and their potential effects expected from the technical features of the present invention are treated as if described in the specification of the present invention.
도 1은 본 발명의 어느 실시예에 따른 배터리 재사용을 차종 선택 방법의 개념을 나타낸다.Figure 1 shows the concept of a method for selecting a vehicle type for battery reuse according to an embodiment of the present invention.
도 2는 본 발명의 바람직한 어느 실시예에 따른 배터리 진단 장비용 케이블의 구성을 개략적으로 나타낸다.Figure 2 schematically shows the configuration of a cable for battery diagnostic equipment according to a preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 어느 실시예에 따른 배터리 진단 장비용 케이블의 제1 커넥터에 설치된 키코드 회로의 구성 예를 개략적으로 예시한다.Figure 3 schematically illustrates an example of the configuration of a keycode circuit installed in the first connector of a cable for battery diagnostic equipment according to a preferred embodiment of the present invention.
도 4는 본 발명의 바람직한 다른 실시예에 따른 배터리 진단 장비용 케이블의 제1 커넥터에 설치된 키코드 회로의 구성 예를 개략적으로 예시한다.Figure 4 schematically illustrates an example of the configuration of a keycode circuit installed in the first connector of a cable for battery diagnostic equipment according to another preferred embodiment of the present invention.
도 5는 본 발명의 바람직한 어느 실시예에 따른 배터리 진단 장비용 케이블의 제1 커넥터에 설치된 키코드 회로부(150)의 구성 예를 나타낸다.Figure 5 shows an example of the configuration of the keycode circuit unit 150 installed in the first connector of a cable for battery diagnostic equipment according to a preferred embodiment of the present invention.
도 6은 본 발명의 바람직한 어느 실시예에 따른 방법의 전체 프로세스를 개략적으로 예시한다.Figure 6 schematically illustrates the overall process of the method according to one preferred embodiment of the invention.
* 첨부된 도면은 본 발명의 기술사상에 대한 이해를 위하여 참조로서 예시된 것임을 밝히며, 그것에 의해 본 발명의 권리범위가 제한되지는 아니한다.* The attached drawings are intended as reference for understanding the technical idea of the present invention, and are not intended to limit the scope of the present invention.
이하 도면을 이용하여 바람직한 실시예로서 본 발명의 원리와 구성을 설명한다. 본 발명을 설명함에 있어서 관련된 공지기능에 대하여 이 분야의 기술자에게 자명한 사항으로서 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. The principles and configuration of the present invention will be explained as a preferred embodiment using the drawings below. In describing the present invention, if it is determined that related known functions may unnecessarily obscure the gist of the present invention as they are obvious to those skilled in the art, the detailed description thereof will be omitted.
도 1은 본 발명의 바람직한 어느 실시예에 따른 전기자동차 배터리의 재사용을 위한 차종 선택 방법의 개념을 나타낸다.Figure 1 shows the concept of a method for selecting a vehicle type for reuse of an electric vehicle battery according to a preferred embodiment of the present invention.
기본적으로 전기자동차의 배터리를 재사용하려면 차량에서 전기자동차 배터리 팩(10)을 분리해야 한다. 또한 분리된 상태의 자동차 배터리 팩(10)을 진단해야 한다. 그러려면 전기자동차 배터리 팩(10)과 전기자동차 배터리 진단 장비(200)를 배터리 진단 장비용 케이블(100)를 통해 연결해서 전기자동차 배터리 진단 장비(200)가 전기자동차 배터리 팩(10)의 BMS로 전압을 공급함과 동시에 CAN 통신으로 데이터를 주고받을 수 있어야 한다. 또한 그러려면 전기자동차 배터리 진단 장비(200)가 해당 배터리 팩(10)이 어떤 차종에서 사용하는 배터리 팩(10)인지를 알아야 한다. 만약 사용자가 혼동해서 연결된 배터리와 다른 배터리를 진단 장비 소프트웨어에서 선택하면, 장비가 정상적으로 동작하지 않게 된다. 최악의 경우, 잘못된 연결로 말미암아 배터리 혹은 진단 장비가 파손될 수도 있다. Basically, to reuse the battery of an electric vehicle, the electric vehicle battery pack (10) must be separated from the vehicle. Additionally, the separated vehicle battery pack 10 must be diagnosed. To do this, connect the electric vehicle battery pack 10 and the electric vehicle battery diagnostic equipment 200 through the battery diagnostic equipment cable 100 so that the electric vehicle battery diagnostic equipment 200 is connected to the BMS of the electric vehicle battery pack 10. In addition to supplying voltage, it must be possible to send and receive data through CAN communication. In addition, in order to do this, the electric vehicle battery diagnosis equipment 200 must know which type of vehicle the battery pack 10 is used in. If the user is confused and selects a different battery from the connected battery in the diagnostic equipment software, the equipment will not operate properly. In the worst case, incorrect connections may result in damage to the battery or diagnostic equipment.
배터리 팩(10)이 어떤 차종인지 안 다음에 전기자동차 배터리 진단 장비를 연결하는 방법과, 배터리 팩(10)의 차종을 모르지만 전기자동차 배터리 진단 장비를 연결하는 방법이 있을 것이다. 그러나 후자는 사실상 의미가 없다. 차종마다 통신 프로토콜과 인터페이스 규격이 다르기 때문이다. 그렇기 때문에 전자의 방법일지라도 케이블이 차종만큼이나 필요할 수도 있다. 차종만큼 배터리 진단 장비용 케이블(100)을 제작했더라도, 그것을 전기자동차 배터리 진단 장비(200)에 연결한 다음, 진단 장비 화면에서 차종을 선택하는 절차를 실행하여야 한다. 본 발명은 바로 이 국면에서 진단 장비용 케이블(100)을 진단 장비(200)에 연결하는 순간, 진단 장비용 케이블(100) 자체에서 차종을 자동으로 즉시 선택되도록 할 수 있는 방법을 완성하였다.There may be a method of connecting electric vehicle battery diagnostic equipment after knowing what type of vehicle the battery pack 10 is, and a method of connecting electric vehicle battery diagnostic equipment without knowing the vehicle type of the battery pack 10. But the latter is virtually meaningless. This is because communication protocols and interface specifications are different for each vehicle model. Therefore, even with the former method, the cable may be as necessary as the vehicle type. Even if the battery diagnostic equipment cable 100 is manufactured for the number of vehicle models, it must be connected to the electric vehicle battery diagnostic equipment 200 and then the procedure for selecting the vehicle model on the diagnostic equipment screen must be performed. In this context, the present invention has completed a method that allows the diagnostic equipment cable 100 itself to automatically and immediately select the vehicle model the moment the diagnostic equipment cable 100 is connected to the diagnostic equipment 200.
도 2는 본 발명의 바람직한 어느 실시예에 따른 배터리 진단 장비용 케이블(100)의 외관 구성 예를 나타낸다. Figure 2 shows an example of the external configuration of a cable 100 for battery diagnostic equipment according to a preferred embodiment of the present invention.
배터리 진단 장비용 케이블(100)의 한쪽 단부에는 제1 커넥터(110)가 구성되고, 다른 쪽 단부에는 제2 커넥터(190)가 구성된다. 제1 커넥터(110)은 전기자동차 배터리 진단 장비의 커넥터에 연결되고, 제2 커넥터(190)는 전기자동차 배터리 팩의 커넥터에 연결된다. 제2 커넥터(190)는 차종마다 전기자동차 배터리 팩의 커넥터의 물리 규격이 상이하기 때문에 그 규격에 대응하기 위해서 제2 커넥터(190)의 규격도 상이하게 제작한다. 그러나 상이한 제2 커넥터(190)의 규격에도 불구하고, 제1 커넥터(110)의 규격은 1대의 진단 장비와 연결되기 때문에, 제1 커넥터(110)의 물리 규격은 동일하다. A first connector 110 is formed at one end of the battery diagnostic equipment cable 100, and a second connector 190 is formed at the other end. The first connector 110 is connected to the connector of the electric vehicle battery diagnostic equipment, and the second connector 190 is connected to the connector of the electric vehicle battery pack. Since the physical specifications of the connector of the electric vehicle battery pack are different for each vehicle type, the second connector 190 is manufactured to different specifications to correspond to the specifications. However, despite the different specifications of the second connector 190, since the specifications of the first connector 110 are connected to one diagnostic equipment, the physical specifications of the first connector 110 are the same.
진단 장비에 연결되는 제1 커넥터(110)에는 키코드 회로부(130)가 설치된 회로기판이 구성되어 있으며, 이 키코드 회로부(130)는 제1 커넥터(110)의 연결 단자(120)의 일부 연결핀들에 전기적으로 연결되어 특정 키코드 값을 생성한다. The first connector 110 connected to the diagnostic equipment includes a circuit board on which a key code circuit 130 is installed, and this key code circuit 130 connects a portion of the connection terminal 120 of the first connector 110. It is electrically connected to pins to generate a specific keycode value.
본 발명의 방법 및 배터리 진단 시스템에서는 M(M은 1 이상의 정수로, 차종 개수로 정해진다)개의 배터리 진단 장비용 케이블(100)이 구비된다. 전술한 것처럼, 이들 M개의 배터리 진단 장비용 케이블(100)의 제2 커넥터(190)는 저마다 규격이 상이할 수 있다. 그러나 제1 커넥터(110)만큼은 규격이 동일하다. 그럼에도 불구하고 상기 키코드 회로부(130)가 생성하는 제1 커넥터(110)의 키코드 값은 모두 상이하다. 이들 상이한 키코드 값으로 진단 장비는 전기자동차 차종을 자동으로 선택할 수 있다. 차종이 선택됨으로써 배터리 팩의 진단할 수 있는 BMS 프로토콜을 특정할 수 있다.In the method and battery diagnosis system of the present invention, M (M is an integer greater than 1 and is determined by the number of vehicle models) cables 100 for battery diagnosis equipment are provided. As described above, the second connectors 190 of these M cables 100 for battery diagnostic equipment may each have different specifications. However, the specifications for the first connector 110 are the same. Nevertheless, the keycode values of the first connector 110 generated by the keycode circuit unit 130 are all different. With these different keycode values, the diagnostic equipment can automatically select the electric vehicle model. By selecting the vehicle model, the BMS protocol that can diagnose the battery pack can be specified.
전기자동차 배터리와 진단 장비 사이를 본 발명의 케이블로 연결하면, 제1 커넥터(110)의 전자 회로에 인식된 논리 신호의 차이에 의해 그 배터리를 사용하는 차종 선택을 할 수 있다는 것이 본 발명의 인식이다. 진단 장비가 차종 선택을 해야 하는 까닭은 그래야만 정확한 BMS 프로토콜을 특정할 수 있음을 다시 한 번 강조한다. 진단 장비는 사전에 다양한 BMS 프로토콜에 대한 정보를 갖고 있다.The present invention recognizes that by connecting an electric vehicle battery and a diagnostic equipment with the cable of the present invention, the vehicle type using the battery can be selected based on the difference in the logic signal recognized by the electronic circuit of the first connector 110. am. We emphasize once again that the reason why diagnostic equipment must select the vehicle model is that only then can the correct BMS protocol be specified. The diagnostic equipment has information about various BMS protocols in advance.
도 3은 본 발명의 바람직한 어느 실시예에 따른 제1 커넥터(110)의 연결핀부(120)의 구성과 도 2에서의 키코드 회로부(130)의 회로 구성 예를 나타낸다.FIG. 3 shows an example of the configuration of the connecting pin portion 120 of the first connector 110 and the circuit configuration of the key code circuit portion 130 in FIG. 2 according to a preferred embodiment of the present invention.
도시된 실시예에서는 연결 단자(120)를 구성하는 제1 커넥터의 연결핀(121, 121~)이 25개가 있다. 이는 곧 진단 장비 커넥터의 연결핀들도 25개가 있다는 의미가 된다. 25개의 연결핀(121, 121~)의 기능은 회로 설계 시에 미리 설정된다. 25개는 설계 변경 사항이다. 12개의 연결핀으로 커넥터를 구성할 수도 있다. 연결핀이 많아지면 더 많은 키코드를 정의할 수 있기 때문에, 진단 장비 및 케이블이 대응할 수 있는 배터리가 많아지는 장점이 있다. In the illustrated embodiment, there are 25 connection pins 121 and 121~ of the first connector constituting the connection terminal 120. This means that there are 25 connection pins in the diagnostic equipment connector. The functions of the 25 connection pins (121, 121~) are preset during circuit design. 25 are design changes. The connector can also be configured with 12 connecting pins. As the number of connection pins increases, more key codes can be defined, which has the advantage of increasing the number of batteries that diagnostic equipment and cables can support.
도 3의 실시예에서 연결핀(121, 121~) 중 1번 연결핀, 2번 연결핀, 3번 연결핀을 전기적으로 연결하여 키코드 회로를 구성하였다. 1번 연결핀을 입력단으로 하고, 3번 연결핀을 그라운드로 연결하고, 2번 연결핀을 출력단으로 한다. 연결핀 사이에 설치되는 저항 R1과 저항 R2의 크기는 정해져 있다. 예컨대 저항 R1은 1KΩ으로, 저항 R2는 4KΩ으로 하고 1번 연결핀과 연결된 입력단의 공급전압이 5V일 때, P점의 출력 전압이 1V가 되도록 회로 구성을 한다. 즉, 도 3의 제1커넥터를 갖는 진단 장비용 케이블은 P점의 출력 전압이 1V이다. 그리고 이 진단 장비용 케이블의 다른 쪽 제2 커넥터로 연결되는 배터리의 차종은 "XYZ"(이것은 제2 커넥터를 설계할 때 결정되어 있다)이다. In the embodiment of Figure 3, the key code circuit was formed by electrically connecting the first, second, and third connection pins among the connection pins 121 and 121~. Connect pin 1 as the input terminal, connect pin 3 as the ground, and connect pin 2 as the output terminal. The sizes of resistor R1 and resistor R2 installed between connection pins are fixed. For example, resistor R1 is set to 1KΩ, resistor R2 is set to 4KΩ, and when the supply voltage of the input terminal connected to connection pin 1 is 5V, the circuit is configured so that the output voltage at point P is 1V. That is, the cable for diagnostic equipment having the first connector of FIG. 3 has an output voltage of 1V at point P. And the model of the battery connected to the second connector on the other side of the diagnostic equipment cable is "XYZ" (this is determined when designing the second connector).
위와 같은 실시예에서 진단 장비에는 전기자동차 모델 "XYZ"에 대한 배터리 정보, 해당 배터리 BMS와의 통신 프로토콜, 기타 정보가 미리 저장되어 있다. 그런 정보로는 배터리 팩 제조사 정보, 배터리 셀 제조사 정보, 셀 구성, 정격전압, 정격전류, 충전 SOC 범위, 최대전압, 최대전류, 최대충전 C-rate, 최대방전 C-rate, 셀 충전종지전압, 셀 방전종지전압, 충전 종지전류, 방전 종지전류, 용량, 셀간 전압 편차, 배터리 최대 임계온도, 배터리 최소 임계온도, 배터리 사용온도, 절연저항 등이 있다. In the above embodiment, battery information for the electric vehicle model "XYZ", a communication protocol with the corresponding battery BMS, and other information are stored in advance in the diagnostic equipment. Such information includes battery pack manufacturer information, battery cell manufacturer information, cell configuration, rated voltage, rated current, charging SOC range, maximum voltage, maximum current, maximum charge C-rate, maximum discharge C-rate, cell charge end voltage, These include cell discharge end voltage, charge end current, discharge end current, capacity, inter-cell voltage deviation, battery maximum critical temperature, battery minimum critical temperature, battery operating temperature, and insulation resistance.
도 3의 제1 커넥터를 진단 장비에 연결하면, 진단 장비의 5V 공급전압이 진단 장비용 케이블 제1 커넥터의 1번 연결핀으로 공급되고, 이에 따라 진단 장비용 케이블은 2번 연결핀을 통해 1 V의 출력전압을 논리 신호로 진단 장비로 보낸다. 그러면 진단 장비는 해당 케이블이 "XYZ" 전용 케이블임을 인식하여 배터리 진단 소프트웨어는 차종 정보로 "XYZ"를 자동으로 선택한다. 그리고 제2 커넥터로 연결된 배터리 팩으로, "XYZ" 전기자동차의 배터리 팩 BMS 통신 프로토콜에 따른 CAN 통신을 개시한다. 또한 연결된 배터리 팩의 BMS 정보가 입수되면 진단 장비의 배터리 진단 소프트웨어 화면을 통해 해당 배터리의 진단 정보를 표시한다. When the first connector in FIG. 3 is connected to the diagnostic equipment, the 5V supply voltage of the diagnostic equipment is supplied to the No. 1 connection pin of the first connector of the diagnostic equipment cable, and accordingly, the diagnostic equipment cable connects 1 through the No. 2 connection pin. The output voltage of V is sent to the diagnostic equipment as a logic signal. Then, the diagnostic equipment recognizes that the cable is a dedicated cable for "XYZ", and the battery diagnostic software automatically selects "XYZ" as the vehicle model information. And with the battery pack connected to the second connector, CAN communication according to the battery pack BMS communication protocol of the "XYZ" electric vehicle is initiated. In addition, when the BMS information of the connected battery pack is obtained, the diagnostic information of the battery is displayed through the battery diagnostic software screen of the diagnostic equipment.
한편, 나머지 연결 단자(120)의 4번~25번 연결핀들에 대해서는 BMS 전원 공급 기능, 배터리 온도 측정 기능, 배터리의 충전 상태(SOC) 데이터를 전달받는 기능, 배터리 셀 간의 전압 측정 등의 회로 기능이 미리 설정되어 있다.Meanwhile, for connection pins 4 to 25 of the remaining connection terminals 120, circuit functions such as BMS power supply function, battery temperature measurement function, function of receiving battery state of charge (SOC) data, and voltage measurement between battery cells are performed. This is preset.
도 3의 실시예에서는 3개의 연결핀(121)과 2개의 저항을 이용하여 회로 구성을 했던 것인데, 더 많은 연결핀(121)을 이용해서 더 많은 저항으로 회로 구성을 한다면 더 많은 전기자동차 차종에 대응할 수 있을 것이다. In the embodiment of Figure 3, the circuit was constructed using three connection pins 121 and two resistors. If the circuit is constructed with more resistance using more connection pins 121, it can be used in more electric vehicle models. You will be able to respond.
그러므로 도 4는 본 발명의 바람직한 다른 실시예에 따른 제1 커넥터(110)의 연결 단자(120)의 구성과 도 2에서의 키코드 회로부(130)의 회로 구성 예를 나타낸다.Therefore, FIG. 4 shows an example of the configuration of the connection terminal 120 of the first connector 110 and the circuit configuration of the keycode circuit unit 130 in FIG. 2 according to another preferred embodiment of the present invention.
도 3의 실시예와 마찬가지로 연결 단자(120)를 구성하는 제1 커넥터의 연결핀(121, 121~)이 25개가 있다. 도 4의 실시예에서 연결핀(121, 121~) 중 14번 연결핀, 15번 연결핀, 16번 연결핀을 전기적으로 연결하여 제1 키코드 회로를 구성하였다. 또한, 17번 연결핀, 18번 연결핀, 19번 연결핀을 전기적으로 연결하여 제2 키코드 회로를 구성하였다. 제1 키코드 회로에서는, 14번 연결핀을 입력단으로 하고, 16번 연결핀을 그라운드로 연결하고, 15번 연결핀을 M점의 출력단으로 한다. 저항 R1과 저항 R2가 도시되어 있는 것처럼 연결핀들 사이에 저항 회로를 구성한다. 제2 키코드 회로에서는, 17번 연결핀을 입력단으로 하고, 19번 연결핀을 그라운드로 연결하고, 18번 연결핀을 N점의 출력단으로 한다. 저항 R3와 저항 R5로 저항 회로를 구성한다. 14번 연결핀과 17번 연결핀을 통해 진단 장비로부터 5V 전압이 공급된다. 각 저항들의 크기와 M점 및 N점의 출력 전압의 크기가 미리 설정되어 있다. Like the embodiment of FIG. 3, there are 25 connection pins 121, 121~ of the first connector constituting the connection terminal 120. In the embodiment of Figure 4, the first key code circuit was formed by electrically connecting connection pins 14, 15, and 16 among the connection pins 121 and 121~. Additionally, a second key code circuit was formed by electrically connecting connection pins 17, 18, and 19. In the first key code circuit, connection pin No. 14 is used as the input terminal, connection pin No. 16 is connected to the ground, and connection pin No. 15 is used as the output terminal of point M. Resistor R1 and resistor R2 form a resistance circuit between the connection pins as shown. In the second key code circuit, connection pin No. 17 is used as the input terminal, connection pin No. 19 is connected to the ground, and connection pin No. 18 is used as the output terminal of point N. A resistance circuit is formed with resistor R3 and resistor R5. 5V voltage is supplied from the diagnostic equipment through connection pins 14 and 17. The size of each resistor and the output voltage at point M and N are preset.
제1커넥터를 갖는 진단 장비용 케이블은 M점의 출력 전압이 1V이고, N점의 출력 전압이 4V라면, 이때의 이 케이블의 다른 쪽 제2 커넥터로 연결되는 배터리의 전기자동차 차종은 "ABC"라고 미리 설정할 수 있다. 또한, 이 말은, 진단 장비 제어부가 연결된 케이블로부터 1V의 M점의 출력전압 신호와 4V크기의 N점의 출력전압신호를 받으면 그 케이블은 "ABC" 전기자동차 차종의 배터리 팩에 연결되는 케이블로 판단한다는 의미이다. In a diagnostic equipment cable with a first connector, if the output voltage at point M is 1V and the output voltage at point N is 4V, then the electric vehicle model of the battery connected to the second connector on the other side of this cable is "ABC". It can be set in advance. In addition, this means that when the diagnostic equipment control unit receives an output voltage signal of point M of 1V and point N of 4V from the connected cable, the cable is connected to the battery pack of the "ABC" electric vehicle model. It means judging.
본 실시예에서 진단 장비의 소프트웨어의 테이블에는 키코드 값 일련 번호, M점의 출력전압의 크기, N점의 출력전압의 크기, 차종이 미리 설정되게 되어 있고, 또한, 마찬가지로 전기자동차 모델 "ABC"에 대한 배터리 정보, 해당 배터리 BMS와의 통신 프로토콜, 기타 정보가 미리 저장되어 있다. 도 4의 제1 커넥터를 진단 장비에 연결하면, 진단 장비는 5V의 전압을 케이블 제1 커넥터의 14번 연결핀과 17번 연결핀으로 공급하고, 본 발명의 케이블은 15번 연결핀 및 17번 연결을 통해 저항 회로에 의해 각각 정해진 M점의 출력전압과 N점의 출력전압을 논리 신호로 진단 장비에 보낸다. 그러면 진단 장비는 해당 케이블을 인식하여, 해당 케이블의 논리 신호에 매칭된 차종으로 해당 배터리 팩의 차종을 자동으로 선택한다. 그리고 배터리 진단 소프트웨어 화면을 통해 해당 차종을 나타낸다. 케이블의 제2 커넥터로 연결된 배터리 팩으로 해당 차종의 통신 프로토콜에 따른 CAN 통신을 개시한다. CAN 통신에 성공하면 화면을 통해 배터리 정보를 표시한다. 바람직하게는 충전에 필요한 정보뿐 아니라, 고장 진단에 필요한 정보도 같이 송수신할 수 있다.In this embodiment, the key code value serial number, the size of the output voltage at point M, the size of the output voltage at point N, and the vehicle model are preset in the table of the software of the diagnostic equipment, and similarly, the electric vehicle model "ABC" is set in advance. Battery information, communication protocol with the battery BMS, and other information are stored in advance. When the first connector of FIG. 4 is connected to a diagnostic equipment, the diagnostic equipment supplies a voltage of 5V to connection pins 14 and 17 of the first connector of the cable, and the cable of the present invention connects pins 15 and 17. Through the connection, the output voltage of point M and point N, respectively determined by the resistance circuit, are sent as logic signals to the diagnostic equipment. Then, the diagnostic equipment recognizes the cable and automatically selects the vehicle model of the battery pack that matches the logic signal of the cable. The vehicle model is displayed on the battery diagnosis software screen. CAN communication according to the communication protocol of the vehicle model is initiated with the battery pack connected to the second connector of the cable. If CAN communication is successful, battery information is displayed on the screen. Preferably, not only the information necessary for charging but also the information necessary for fault diagnosis can be transmitted and received.
도 5는 본 발명의 바람직한 어느 실시예에 따른 제1 커넥터(110)의 키코드 회로가 설치된 키코드 회로기판(150)을 예시한다.Figure 5 illustrates a keycode circuit board 150 on which the keycode circuit of the first connector 110 is installed according to a preferred embodiment of the present invention.
제1 커넥터의 연결 단자(120)의 연결핀들은 키코드 회로기판(150)에 배열된 연결 단자(151a)들과 전기적으로 연결되어 있으며, 또한 이들 연결 단자(151a)가 설계된 순번에 따라 배열된 케이블용 연결 단자(151b)들에 전기적으로 연결된다. 그리고 이 실시예에서는 저항 소자(155)가 1번 연결 단자와 2번 연결 단자 사이에 연결되어 있다. 그리고 이 제1 커넥터(110)의 연결 단자(151b)들에 접속된 케이블들이 배터리 진단 장비용 케이블(100)을 구성한다. 이처럼 본 발명에서는 진단 장비의 커넥터와 연결되는 제1 커넥터(110)에 키코드 회로기판(150)이 설치된다. 또한 이와 같은 구성의 배터리 진단 장비용 케이블(100)이 차종별 배터리 팩마다 구비된다. The connection pins of the connection terminal 120 of the first connector are electrically connected to the connection terminals 151a arranged on the key code circuit board 150, and these connection terminals 151a are arranged according to the designed sequence. It is electrically connected to the cable connection terminals 151b. And in this embodiment, the resistance element 155 is connected between the first connection terminal and the second connection terminal. And cables connected to the connection terminals 151b of the first connector 110 constitute the battery diagnostic equipment cable 100. As such, in the present invention, the key code circuit board 150 is installed on the first connector 110 connected to the connector of the diagnostic equipment. In addition, a battery diagnostic equipment cable 100 of this configuration is provided for each battery pack for each vehicle type.
도 6은 본 발명의 바람직한 어느 실시예에 따른 배터리 진단 장비용 케이블을 이용한 차종 선택 방법의 전체 프로세스를 개략적으로 나타내었다. Figure 6 schematically shows the entire process of a vehicle model selection method using a battery diagnostic equipment cable according to a preferred embodiment of the present invention.
먼저 진단 장비의 배터리 진단 소프트웨어를 세팅한다(S100). 진단 장비가 전기자동차의 배터리를 진단하기 위해서는 전기자동차의 차종에 대한 정보를 입수해야 한다. 그리고 차종별 배터리 진단 장비용 케이블의 미리 설정한 키코드 값, 해당 케이블의 연결핀들에 정의된 기능, 배터리 BMS와 통신하기 위한 CAN 통신의 프로토콜 등이 차종별로, 즉 케이블별로 미리 설정하여 보관한다.First, set the battery diagnosis software of the diagnostic equipment (S100). In order for diagnostic equipment to diagnose the battery of an electric vehicle, it must obtain information about the model of the electric vehicle. In addition, the preset key code value of the battery diagnostic equipment cable for each vehicle type, the functions defined for the connection pins of the cable, the CAN communication protocol for communicating with the battery BMS, etc. are preset and stored for each vehicle type, that is, for each cable.
다음으로 배터리 진단 장비용 케이블을 연결한다(S110). 전술한 바와 같이, 이 케이블의 제1 커넥터를 진단 장비에 연결한다. 그러면 진단 장비는 제1 커넥터를 통해 입력 전압을 케이블로 인가한다(S120). 바람직하게는 대략 5V의 전압을 공급한다. Next, connect the cable for battery diagnostic equipment (S110). As described above, the first connector of this cable connects to the diagnostic equipment. Then, the diagnostic equipment applies the input voltage to the cable through the first connector (S120). Preferably, a voltage of approximately 5V is supplied.
케이블의 제1 커넥터에는 키코드 회로부가 설치되어 있다. 키코드 회로부는 정해진 키코드 값을 진단 장비로 전송한다(S130). 바람직하게는 케이블의 제1 커넥터는 저항 회로를 이용한 출력전압 신호를 키코드 값으로 진단 장비로 보낸다. A key code circuit is installed in the first connector of the cable. The keycode circuit unit transmits the determined keycode value to the diagnostic equipment (S130). Preferably, the first connector of the cable sends an output voltage signal using a resistor circuit as a key code value to the diagnostic equipment.
진단 장비의 제어부는 수신한 키코드 값을 미리 저장되어 있는 키코드 값과 비교하여, 차종을 자동으로 선택한다(S140). 배터리 진단 소프트웨어 화면을 통해 특정된 차종을 보여주고, 케이블을 통해 해당 차종에 대한 CAN 통신을 개시한다. 진단 장비용 케이블의 제2 커넥터를 통해 연결되어 있는 배터리 팩으로 BMS 전원을 공급함과 함께 해당 배터리 팩의 CAN 통신 규격에 맞게 통신을 개시하는 것이다.The control unit of the diagnostic equipment compares the received key code value with a pre-stored key code value and automatically selects the vehicle model (S140). The battery diagnosis software screen displays the specified vehicle model and initiates CAN communication for the vehicle model through the cable. It supplies BMS power to the battery pack connected through the second connector of the diagnostic equipment cable and initiates communication in accordance with the CAN communication standard of the battery pack.
그러면 배터리 팩의 BMS는 진단 장비로 배터리 정보를 전송한다. 진단 장비는 연결되어 있는 배터리 진단 정보를 입수하고(S150), 그 정보를 미리 정한 항목으로 소프트웨어 화면을 통해 표시한다. The battery pack's BMS then transmits battery information to the diagnostic equipment. The diagnostic equipment obtains diagnostic information from the connected battery (S150) and displays the information as predetermined items on the software screen.
이때의 배터리 진단 정보는 배터리 상태, 배터리 SCO, 배터리 전압, 배터리 전류, 배터리 잔량, 절연저항을 포함하며, 또한, 배터리 SOH, 배터리 셀 최대 전압, 배터리 셀 최소 전압, 배터리 셀 최대 온도, 배터리 셀 최소 온도, 최대 전압 셀번호, 최소 전압 셀 번호, 배터리 셀 간 전압 편차 등을 더 포함한다. 즉, 충전에 필요한 정보뿐 아니라, 고장 진단에 필요한 정보도 같이 송수신할 수 있다.Battery diagnostic information at this time includes battery status, battery SCO, battery voltage, battery current, battery remaining capacity, and insulation resistance, as well as battery SOH, battery cell maximum voltage, battery cell minimum voltage, battery cell maximum temperature, and battery cell minimum. It further includes temperature, maximum voltage cell number, minimum voltage cell number, and voltage difference between battery cells. In other words, not only the information necessary for charging but also the information necessary for fault diagnosis can be transmitted and received.
참고로, 본 발명의 일 실시예에 따른 배터리 진단 장비용 케이블을 이용한 차종 선택 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독가능매체에 기록될 수 있다. 상기 컴퓨터 판독가능매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계 되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. For reference, the method of selecting a vehicle model using a battery diagnostic equipment cable according to an embodiment of the present invention may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer-readable medium. The computer-readable medium may include program instructions, data files, data structures, etc., singly or in combination. The program instructions recorded on the medium may be specially designed and configured for the present invention or may be known and available to those skilled in the art of computer software.
컴퓨터 판독가능매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광기록 매체, 플롭티컬 디스크 (floptical disk)와 같은 자기-광 매체, 및 ROM, RAM, 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함될 수 있다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어코드뿐 만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급언어코드를 포함한다. 상술한 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지다.Examples of computer-readable media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical recording media such as CD-ROMs and DVDs, magneto-optical media such as floptical disks, and ROM, RAM, Hardware devices specifically configured to store and perform program instructions, such as flash memory, may be included. Examples of program instructions include not only machine code such as that created by a compiler, but also high-level language code that can be executed by a computer using an interpreter, etc. The hardware devices described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.
본 발명의 보호범위가 이상에서 명시적으로 설명한 실시예의 기재와 표현에 제한되는 것은 아니다. 설명의 편의를 위해 제공된 도면의 가시적인 형상과 수치와 비례에 의해서도 제한되지 않는다. 또한, 본 발명이 속하는 기술분야에서 자명한 변경이나 치환으로 말미암아 본 발명이 보호범위가 제한될 수도 없음을 다시 한번 첨언한다.The scope of protection of the present invention is not limited to the description and expression of the embodiments explicitly described above. It is not limited by the visible shape, dimensions, or proportions of the drawings provided for convenience of explanation. In addition, it is once again added that the scope of protection of the present invention may not be limited due to changes or substitutions that are obvious in the technical field to which the present invention pertains.

Claims (2)

  1. 배터리 진단 장비용 케이블의 제1커넥터를 전기자동차 배터리 진단 장비에 연결하고 제2 커넥터를 전기자동차 배터리 팩에 연결하면,When the first connector of the battery diagnostic equipment cable is connected to the electric vehicle battery diagnostic equipment and the second connector is connected to the electric vehicle battery pack,
    상기 전기자동차 배터리 진단 장비가 상기 배터리 진단 장비용 케이블의 제1 커넥터에 설치된 키코드 회로부의 미리 설정한 키코드 값을 독출하여 해당 키코드 값에 매칭되는 전기자동차 차종을 자동으로 선택하고, The electric vehicle battery diagnostic equipment reads a preset key code value of the key code circuit installed in the first connector of the battery diagnostic equipment cable and automatically selects an electric vehicle model matching the key code value,
    상기 전기자동차 배터리 팩과 상기 전기자동차 배터리 진단 장비의 CAN 통신을 개시하는 데 성공하면, 상기 전기자동차 배터리 진단 장비의 화면을 통해 특정된 전기자동차 차종 정보 및 상기 전기자동차 배터리 팩의 배터리 진단 정보를 표시하는 단계를 포함하며,If CAN communication between the electric vehicle battery pack and the electric vehicle battery diagnostic equipment is successfully initiated, the specified electric vehicle model information and battery diagnostic information of the electric vehicle battery pack are displayed on the screen of the electric vehicle battery diagnostic equipment. It includes the steps of:
    상기 미리 설정한 키코드 값은 전기자동차의 차종마다 상이한 것으로, 상기 제1 커넥터의 특정 연결핀들에 저항 회로를 연결한 상태에서 측정되는 출력전압 값인, 배터리 진단 장비용 케이블을 이용한 차종 선택 방법.The preset key code value is different for each model of electric vehicle, and is an output voltage value measured when a resistance circuit is connected to specific connection pins of the first connector. A method of selecting a vehicle type using a battery diagnostic equipment cable.
  2. 전기자동차 배터리 진단 장비에 연결되는 한쪽 단부의 제1 커넥터;A first connector at one end connected to an electric vehicle battery diagnostic equipment;
    전기자동차 배터리 팩에 연결되는 다른 쪽 단부의 제2 커넥터; 및a second connector at the other end connected to the electric vehicle battery pack; and
    상기 제1 커넥터에 설치된 키코드 회로부를 포함하고,It includes a key code circuit installed in the first connector,
    상기 키코드 회로부는 상기 제1 커넥터의 미리 설정한 키코드 값을 상기 전기자동차 배터리 진단 장비로 전송하고, 상기 키코드 값에 의해 차종이 자동으로 선택되는 전기자동차 배터리 팩과 상기 전기자동차 배터리 진단 장비를 연결하여 CAN 통신이 이루어지도록 하는 것이며, 상기 미리 설정한 키코드 값은 전기자동차의 차종마다 상이한 것으로, 상기 제1 커넥터의 특정 연결핀들에 저항 회로를 연결한 상태에서 측정되는 출력전압 값인, 전기자동차 배터리 진단 장비용 케이블.The keycode circuit unit transmits the preset keycode value of the first connector to the electric vehicle battery diagnostic equipment, and the electric vehicle battery pack and the electric vehicle battery diagnostic equipment automatically select a vehicle model based on the keycode value. CAN communication is performed by connecting, and the preset key code value is different for each model of electric vehicle, and is an output voltage value measured when a resistance circuit is connected to specific connection pins of the first connector. Cable for automotive battery diagnostic equipment.
PCT/KR2023/018132 2022-11-14 2023-11-13 Cable for electric vehicle battery diagnostic device and method for selecting vehicle model by using same cable WO2024106868A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220151279 2022-11-14
KR10-2022-0151279 2022-11-14
KR1020230154816A KR20240070422A (en) 2022-11-14 2023-11-09 The cable for electric vehicle battery diagnosis equipment and the method of selecting vehicle model using the cable
KR10-2023-0154816 2023-11-09

Publications (1)

Publication Number Publication Date
WO2024106868A1 true WO2024106868A1 (en) 2024-05-23

Family

ID=91084759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018132 WO2024106868A1 (en) 2022-11-14 2023-11-13 Cable for electric vehicle battery diagnostic device and method for selecting vehicle model by using same cable

Country Status (1)

Country Link
WO (1) WO2024106868A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080079728A (en) * 2007-02-28 2008-09-02 (주)율시스템즈 Vehicles diagnosis system and display method
JP2010032480A (en) * 2008-07-03 2010-02-12 Banzai Ltd Diagnosis system for cars
KR20100065734A (en) * 2008-12-08 2010-06-17 한국전자통신연구원 In-vehicle terminal for diagnosing vehicle using obd connector
US20180364311A1 (en) * 2015-12-22 2018-12-20 Vito Nv Device for measuring characteristics of high voltage batteries
KR20190054640A (en) * 2017-11-14 2019-05-22 (주)세코인터페이스 A terminal and a method of collecting CAN date of vehicle using a OBD-Ⅱ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080079728A (en) * 2007-02-28 2008-09-02 (주)율시스템즈 Vehicles diagnosis system and display method
JP2010032480A (en) * 2008-07-03 2010-02-12 Banzai Ltd Diagnosis system for cars
KR20100065734A (en) * 2008-12-08 2010-06-17 한국전자통신연구원 In-vehicle terminal for diagnosing vehicle using obd connector
US20180364311A1 (en) * 2015-12-22 2018-12-20 Vito Nv Device for measuring characteristics of high voltage batteries
KR20190054640A (en) * 2017-11-14 2019-05-22 (주)세코인터페이스 A terminal and a method of collecting CAN date of vehicle using a OBD-Ⅱ

Similar Documents

Publication Publication Date Title
US9187000B2 (en) Battery pack and electrically driven automobile
CN107757401A (en) Control method and device for working mode of vehicle-mounted bidirectional charger and electric vehicle
CN110999023B (en) Method and apparatus for balancing states of charge of individual cells of a battery system
CN101515023A (en) Accumulator and accumulator tester
US20050212521A1 (en) Electronic battery tester or charger with databus connection
CN111060829B (en) System and method for performing PACK detection on PACK battery PACK
WO2006047384A2 (en) Power supply and communications controller
CN113442750B (en) Control method of charging port cover, charging pile, vehicle, medium and equipment
CN103827685A (en) Battery management system and method for determining the charge state battery cells, battery and motor vehicle comprising a battery management system
WO2013147395A1 (en) Automatic system for recognizing battery characteristics, battery information storage device applied to same, and method for optimizing battery management using same
WO2019088430A1 (en) Battery pack having fastening recognition function
CN107491155A (en) The hard reset control system and method for board information terminal
CN110520746A (en) Battery electromechanical switching device diagnostic systems and methods
CN110171310A (en) The method and system to charge from the onboard power system of motor vehicle to electric bicycle
WO2024106868A1 (en) Cable for electric vehicle battery diagnostic device and method for selecting vehicle model by using same cable
KR20240070422A (en) The cable for electric vehicle battery diagnosis equipment and the method of selecting vehicle model using the cable
CN116788069A (en) Electric engineering vehicle and charging guiding method thereof
CN108819732B (en) BMS hardware function test system
US11563241B2 (en) Apparatus and methods for removable battery module with internal relay and internal controller
CN211528637U (en) Simple battery simulation test equipment for BMS
CN113858995B (en) Method for identifying charge and discharge modes of vehicle, vehicle-mounted charger, vehicle and medium
CN219487227U (en) Battery management system and car
KR20200006026A (en) Apparatus for diagnosis of battery
CN115923587A (en) Battery management system and car
CN215375729U (en) Sampling wire harness detection tool and battery system applied to automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891935

Country of ref document: EP

Kind code of ref document: A1