WO2024106534A1 - Ac結合回路およびトランスインピーダンスアンプ - Google Patents

Ac結合回路およびトランスインピーダンスアンプ Download PDF

Info

Publication number
WO2024106534A1
WO2024106534A1 PCT/JP2023/041443 JP2023041443W WO2024106534A1 WO 2024106534 A1 WO2024106534 A1 WO 2024106534A1 JP 2023041443 W JP2023041443 W JP 2023041443W WO 2024106534 A1 WO2024106534 A1 WO 2024106534A1
Authority
WO
WIPO (PCT)
Prior art keywords
time constant
time
circuit
coupling circuit
switching
Prior art date
Application number
PCT/JP2023/041443
Other languages
English (en)
French (fr)
Inventor
淳 神田
浩崇 中村
泰彦 中西
直志 美濃谷
正俊 十林
修弘 豊田
正史 野河
義和 卜部
Original Assignee
日本電信電話株式会社
Nttイノベーティブデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社, Nttイノベーティブデバイス株式会社 filed Critical 日本電信電話株式会社
Publication of WO2024106534A1 publication Critical patent/WO2024106534A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/06Frequency selective two-port networks including resistors

Definitions

  • the present invention relates to an AC coupling circuit that inputs and outputs signals with different amplitudes, and a transimpedance amplifier to which this circuit is applied.
  • a transimpedance amplifier In optical transmission devices such as optical transmission systems that enable high-speed data transmission and Passive Optical Network (PON) systems, a transimpedance amplifier (TIA) is used in the optical receiving circuit that converts optical signals into electrical signals.
  • a photocurrent obtained by optically/electrically converting the received optical signal using a light-receiving element such as a photodiode (PD) is input to the TIA.
  • the input current is converted to a current-voltage by an impedance conversion gain that is proportional to the value of the feedback resistor, and the converted voltage is output.
  • upstream packet data from each of multiple subscriber devices (Optical Network Units: ONUs) to a central office device (Optical Line Terminal: OLT) is sent in bursts using time division multiplexing. Because the paths and distances between each ONU and the OLT are different, the optical signals that reach the OLT have different optical powers for each packet. For this reason, the photocurrent electrical signals obtained by optical/electrical conversion in the photodetector of the OLT's optical receiving circuit have different signal amplitudes for each packet.
  • upstream packet data consists of a specific pattern section (preamble pattern) for signal reproduction located at the beginning of the packet, followed by a data section (payload).
  • An alternating (repeated) signal of 1/0 (Hi/Lo) is often used as the preamble pattern.
  • FIG. 1 shows the configuration of a conventional TIA.
  • the TIA 10 connected to a PD is composed of a TIA core circuit 11 that amplifies the photocurrent input to the input terminal with the desired gain and outputs it as a voltage signal, and a buffer (amplifier) circuit 12 that differentially amplifies the output signal from the core circuit and outputs it.
  • the core circuit 11 and buffer circuit 12 are connected using an AC coupling circuit (i.e., high-pass filter: HPF) consisting of a capacitance C and resistors R1 and R2.
  • HPF high-pass filter
  • the core circuit 11 converts the photocurrent of the PD and outputs a voltage in single-ended format.
  • the buffer circuit 12 outputs an electrical signal corresponding to the received optical signal in differential format centered on VREF to the stage downstream of the TIA.
  • FIG. 2 shows the time constant dependency of the output voltage in a conventional TIA.
  • Each diagram in Figure 2 is a schematic depiction of the vicinity of the boundary between packets from different ONUs, with a guard time between the two packets where no data exists.
  • the output voltage of the core circuit 11 in the upper diagram of Figure 2 packets 1 and 2 from ONUs at different distances have different amplitudes. Since the output voltage of the TIA core circuit 11 is a single-ended output, the DC components of packets 1 and 2 are also different.
  • the AC coupling circuit in the TIA 10 should have the characteristic of removing only the DC component of the input signal and providing only the AC component of the data signal to the buffer circuit 12. However, in a TIA using an AC coupling circuit, when packets with different signal amplitudes are input, the time until a normal packet signal is output is affected by the time constant of the AC coupling circuit.
  • the signal amplitude of the output voltage of the TIA core circuit 11 is large (packet 1), and when an optical signal is received from an ONU far from the OLT, the signal amplitude of the output voltage of the TIA core circuit 11 is small (packet 2).
  • the DC component of the output voltage of the TIA core circuit 11 also changes for each packet, and changes in a step-like manner near the boundary of the packet. If the time constant of the HPF is relatively large and the cutoff frequency is low, as shown in Figure 2, a slow step-like change due to the transmitted low-frequency components appears in the output of the buffer circuit 12.
  • the time constant of the AC coupling circuit When the time constant of the AC coupling circuit is small, it responds quickly to DC component fluctuations near packet boundaries, and the time until a normal packet signal is output from the buffer circuit 12 is short. However, if the payload in the packet contains a long string of the same code, the VREF of the output voltage of the buffer circuit 12 cannot be maintained for the time required to distinguish these codes, resulting in misidentification. Conversely, if the time constant is made large so that VREF can be maintained for the duration of the string of the same code contained in the payload, the time until a normal packet signal is output will be longer. There is also a trade-off between accurate data discrimination for strings of the same code and rapid adaptation to DC component fluctuations near packet boundaries. Therefore, a configuration is known in which the time constant is switched by changing the capacitance and resistance of the AC coupling circuit using an external control signal.
  • FIG 24 is a diagram showing the configuration of a conventional TIA that switches time constants (Patent Document 1).
  • the TIA 11-1 has an automatic gain control (AGC) circuit 13 in the TIA core circuit 11, and an automatic offset control (AOC) circuit 14 for the DC offset of the differential output from the buffer circuit 12.
  • AGC automatic gain control
  • AOC automatic offset control
  • the TIA 11-1 has a configuration in which the AGC circuit 13 and the AOC circuit 14 switch between a small time constant state and a large time constant state.
  • the small time constant state is a state in which the time until a normal packet signal is output is short, and the large time constant state corresponds to a state in which the retention of successive identical codes contained in the packet signal is high.
  • the time constant of the AC coupling circuit 15 is switched by a reset control signal (RESET).
  • RESET reset control signal
  • Figure 3 shows the output voltage of the AC coupling circuit when the time constant in a conventional TIA is changed from small to large in a short time. It shows the output voltage of the AC coupling circuit when a reset control signal (RESET) applied from outside to reset the AOC circuit 14 is applied with a shifted timing with respect to the input voltage to the AC coupling circuit 15 in the TIA 11-1 shown in Figure 24.
  • the reset period includes the guard time during which packets from different ONUs are switched.
  • Figure 4 shows an enlarged view of the reset period in Figure 3.
  • Figure 4 (A) shows reset control signals (Hi-Lo-Hi) 1-0 to 1-9, which are shifted at intervals of 1/10 of one cycle of the AC-coupled input voltage.
  • reset control signal 1-0 which becomes Lo at timing of point a (110 ns)
  • the next reset control signal 1-1 there is a 1/10 cycle of the AC-coupled input voltage, i.e., a phase shift of 36°.
  • reset control signal 1-0 and reset control signal 1-5 there is a 5/10 cycle of the AC-coupled input voltage, i.e., a phase shift of 180°.
  • FIG. 4 shows the change in the time constant ⁇ of the AC-coupled circuit, which is indirectly obtained by monitoring the potential difference between certain nodes in TIA 11-1.
  • (C) and (D) in Figure 4 show the waveforms of the input voltage and output voltage of the AC coupling circuit 15, respectively. A sine wave is used as the input signal to easily explain the timing of the reset control signal.
  • reset control signal 1-0 which goes Lo at point a (110 ns) when the input voltage amplitude value is 0 and the phase is 0°, and goes Hi at point b (140 ns) when the phase is 0°.
  • the time constant is very small, so the cutoff frequency of the HPF is higher than the sine wave frequency.
  • the output voltage of the AC coupling circuit (D) disappears at point a, and output voltage waveform 2-0 immediately appears at point b, the edge where the time constant switches to Hi.
  • the sine wave is output from its initial state, with an instantaneous amplitude of 0 and a phase of 0°, so output voltage waveform 2-0 has no DC component and a normal AC coupled output sine wave is immediately obtained.
  • output voltage waveform 2-1 appears at a timing with a phase delay of 36° from point b.
  • output voltage waveform 2-1 starts from the initial state of the amplitude value on the positive side, reaches a positive peak, and then decreases to the negative side.
  • the AC-coupled output becomes output waveform 2-1, with the DC component shifted to the negative side.
  • the initial value of the output voltage appearing from the AC coupling circuit at the edge of the reset control signal changes depending on the timing of the reset control signal.
  • the DC component contained in the output signal of the AC coupling circuit also varies depending on the timing of the reset control signal.
  • the time until the DC component converges to 0 (VREF) and a normal AC coupling output voltage is obtained changes depending on the timing of application of the reset control signal.
  • the OLT controls the timing of packet transmission from each ONU based on the round trip time between the OLT and ONU. However, because the round trip time varies, the timing of packets arriving at the OLT's TIA circuit also varies. This means that it is impossible to align the timing of the reset control signal relative to the sine wave in Figures 3 and 4.
  • the object of the present invention is to provide an AC coupling circuit and a transimpedance amplifier that can obtain a stable output voltage in a short time, regardless of the timing of the control signal.
  • one embodiment of the AC coupling circuit of the present invention is characterized in that it includes a switching means for switching between two different time constants in accordance with the input signal amplitude, and the switching time from a small time constant to a large time constant is longer than the switching time from a large time constant to a small time constant.
  • one embodiment of the transimpedance amplifier includes a transimpedance amplifier core circuit that amplifies a current input to an input terminal with a desired gain and outputs it as a voltage signal, one or more buffer circuits that differentially amplify and output an output signal from the transimpedance amplifier core circuit, and an AC coupling circuit inserted between the transimpedance amplifier core circuit and the buffer circuit or between the multiple buffer circuits, which switches between two different time constants in accordance with the amplitude of the output signal, and is characterized in that the switching time from a small time constant to a large time constant is longer than the switching time from a large time constant to a small time constant.
  • the present invention provides an AC coupling circuit and a transimpedance amplifier that can obtain a stable output voltage in a short time, regardless of the timing of the control signal.
  • FIG. 1 is a diagram showing the configuration of a conventional TIA.
  • FIG. 1 is a diagram showing the time constant dependence of the output voltage in a conventional TIA.
  • 1 is a diagram showing the output voltage of an AC coupling circuit when the time constant in a conventional TIA is changed from small to large in a short time.
  • FIG. 4 is an enlarged view of a reset period in FIG. 3 .
  • FIG. 2 is a diagram showing the operation concept of a TIA according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration of a TIA according to a first embodiment.
  • FIG. 2 is a diagram illustrating time constant control of an AC coupling circuit of the TIA of the first embodiment.
  • FIG. 11 is a diagram showing the output voltage of the AC coupling circuit when the time constant of the TIA of the first embodiment is gradually changed from small to large.
  • FIG. FIG. 9 is an enlarged view of the reset period in FIG. 8 .
  • FIG. 13 is a diagram illustrating time constant control of an AC coupling circuit of a TIA according to a second embodiment.
  • FIG. 13 is a diagram showing the fluctuation of the charge charged in the capacitance of an AC coupling circuit.
  • FIG. 13 is a diagram showing the relationship between the difference of VREF with respect to the median value of the sine wave amplitude and the duty ratio of the output waveform.
  • FIG. 2 is a diagram showing the relationship between the average voltage of the AC-coupled output voltage and the allowable VREF range.
  • FIG. 1 is a diagram illustrating a low-pass filter in which the amplitude of an output signal is 1/10 of that of an input signal.
  • FIG. 13 is a diagram showing fluctuations in the average voltage of an output signal of a first-order low-pass filter.
  • FIG. 13 is a diagram illustrating a time constant control signal generating circuit of a TIA according to a third embodiment.
  • FIG. 13 is a diagram illustrating a configuration of a TIA according to a third embodiment.
  • FIG. 2 is a diagram showing the circuit configuration of an AC coupling circuit and a time constant control signal generating circuit.
  • FIG. 4 is a diagram illustrating time constant control by a time constant control signal generating circuit.
  • FIG. 13 is a diagram showing the output voltage of the AC coupling circuit when the time constant of the TIA of the third embodiment is gradually changed from small to large.
  • FIG. 21 is an enlarged view of the reset period in FIG. 20 .
  • FIG. 13 is a diagram showing the output voltage of the AC coupling circuit when the time constant of the TIA of the third embodiment is gradually changed from small to large.
  • FIG. 13 is a diagram showing the output voltage of the AC coupling circuit when the time constant of the TIA of the third embodiment is gradually changed from small to large.
  • FIG. 1 is a diagram showing a configuration of a conventional TIA that switches a time constant.
  • FIG. 5 is a diagram showing the operation concept of the TIA according to the first embodiment of the present invention.
  • the AC coupling circuit according to the first embodiment has a switching means for switching the time constant in two ways according to the input signal amplitude.
  • switching in two ways means that there are two ways of switching between different time constants.
  • FIG. 5(b) two different time constants are set, and the time constant is switched from large to small or from small to large. At this time, the switching time (2) from the small time constant to the large time constant is longer than the switching time (1) from the large time constant to the small time constant.
  • Fig. 6 is a diagram showing the configuration of a TIA according to the first embodiment.
  • the TIA 20 connected to the PD includes a TIA core circuit 21 that amplifies the photocurrent input to the input terminal with a desired gain and outputs it as a voltage signal, a buffer circuit 22 that differentially amplifies the output signal from the core circuit and outputs it, and an AC coupling circuit 23 that connects the TIA core circuit 21 and the buffer circuit 22.
  • the AC coupling circuit 23 includes a capacitance C that connects the two in series, and a resistance R that is connected in parallel, forming a so-called high-pass filter.
  • a switch SW is provided which is connected in parallel with resistor R and shorts resistor R.
  • a time constant control signal REET
  • the resistance value of the resistors which make up the high-pass filter can be changed and the CR time constant of AC coupling circuit 23 can be switched between two different values.
  • the time constant control signal REET
  • the time constant control signal (RESET) of Hi ⁇ Lo ⁇ Hi switches between the two time constants shown in Figure 5(b).
  • the switch SW connected in parallel to the resistor R is controlled to be turned on and off, but it is also possible to change the time constant by using multiple resistors and switches to switch between two different resistance values, for example.
  • the AC coupling circuit is inserted between the TIA core circuit and the buffer circuit, but if the buffer circuits are configured in multiple stages, the effect of the present invention can be achieved even if the AC coupling circuit is inserted between the buffer circuits.
  • FIG. 7 is a diagram showing the time constant control of the AC coupling circuit of the TIA of the first embodiment.
  • the OLT receives optical signals from multiple ONUs in a time-division manner.
  • the output voltage of the TIA core circuit 21 varies depending on the strength of the received optical signal, and the output voltage of the AC coupling circuit 23 is significantly affected by the change in the time constant when a packet 2 with a small signal amplitude is input. Therefore, in the TIA 20, when a packet 2 is input, the time constant is switched as shown in FIG. 5(b) by a time constant control signal (RESET) given from the outside.
  • REET time constant control signal
  • the OLT provides a guard time during the reception period from each ONU.
  • a time constant control signal REET
  • time constant control is performed so that the time required to switch from a small to a large time constant is longer than the time required to switch from a large to a small time constant.
  • the period between packet 1 and packet 2 where there is no optical signal becomes the guard time, which has a length of about several pulses, but FIG. 7 is a schematic illustration and the time relationship is not limited to the example in FIG. 7.
  • FIG. 8 is a diagram showing the output voltage of the AC coupling circuit when the time constant of the TIA of the first embodiment is gradually changed from small to large.
  • FIG. 8 corresponds to each waveform in FIG. 3 in the explanation of the prior art. Comparing the time constant waveforms in FIG. 3 and FIG. 8, it can be seen that the period during which the time constant switches from small to large is several tens of times longer, and that the time constant changes slowly from small to large. Furthermore, there is almost no variation in the DC component in the output voltage of the AC coupling circuit, and the normal AC coupling output is immediately achieved within a time of about two periods of a sine wave.
  • FIG. 9 is an enlarged view of the reset period in FIG. 8. Comparing FIG. 4B with FIG. 9B, it can be seen that the time required to switch from a small time constant to a large time constant is very long.
  • the DC component converges to 0 in 10 to 20 ns from the rising edge of the reset control signal going from Lo to Hi.
  • the input voltage does not appear immediately without attenuation from the rising edge of the time constant control signal (reset control signal) from Lo to Hi, but appears gradually (ramps up).
  • the time constant changes very slowly from a small to a large state as shown in FIG. 9(B), so the cutoff frequency of the HPF of the AC coupling circuit also changes slowly compared to the conventional configuration.
  • the attenuation of the sine wave frequency by the HPF of the AC coupling circuit gradually decreases from the maximum attenuation state, so the output voltage gradually appears from the time of the rising edge.
  • the HPF At the rising edge of the time constant control signal from Lo to Hi, the HPF is still in a state of large attenuation, so the initial value of the output voltage of the AC coupling circuit is approximately close to 0. Regardless of the timing of the rising edge, the initial value of the output voltage is approximately 0 and the DC component is also approximately 0, so a normal AC coupling output is immediately obtained within a time of about two periods of the sine wave.
  • Second Embodiment Fig. 10 is a diagram showing the time constant control of the AC coupling circuit of the TIA according to the second embodiment of the present invention.
  • the time required to switch from a small time constant to a large time constant is longer than the time required to switch from a large time constant to a small time constant.
  • the second embodiment differs from the first embodiment in that the time constant is changed from a small state to a large state in a discrete manner through a plurality of steps.
  • a plurality of resistors may be prepared as the resistor R of the AC coupling circuit 23, and the resistors may be switched using a switch to discretely change the time constant from a small state to a large state.
  • FIGS. 11A and 11B are diagrams showing the fluctuation of the electric charge charged to the capacitance of the AC coupling circuit.
  • Fig. 11A shows the relationship between the AC coupling output voltage and the fluctuation of the electric charge charged to the capacitance of the AC coupling circuit.
  • the voltage difference V between the input and output of the AC coupling circuit is determined by the amount of electric charge Q of the capacitance C, and is expressed by the following formula.
  • Q CV Equation (1)
  • the charge stored in the capacitance is constant. After that, when packet 2 with a small signal amplitude is input, charging and discharging of the charge occurs.
  • the response time at this time is the time it takes for the amount of charging and discharging to become constant and for the charge to become constant.
  • the operation until the charge becomes constant due to charging and discharging is determined by the time constant of the AC coupling circuit, and the result of charging and discharging of the charge affects the AC coupling output voltage.
  • Figure 11(b) shows the relationship of the charge fluctuation amount to two types of time constant, a small time constant and a large time constant. Regardless of the AC-coupled input voltage and the timing of changing the time constant from a small to a large state, in order to keep the time until a normal output voltage is obtained within a specified time, it is sufficient to keep this charge fluctuation amount within a certain range. In order to keep the charge fluctuation amount within a certain range, it is sufficient that the average voltage of the AC-coupled output voltage is within a certain range from the center voltage of the amplitude.
  • a reference voltage VREF is set as the reference voltage of the amplifier, as shown in Figure 6.
  • the allowable value of the duty ratio in the output waveform is used to define the amount of fluctuation in the charge of the capacitance, i.e., the range of the average voltage.
  • the input waveform is assumed to be a sine wave.
  • Fig. 12 is a diagram showing the relationship between the difference of VREF from the sine wave amplitude median value and the output waveform duty ratio.
  • the sine wave amplitude is ⁇ 1V
  • the frequency is 1GHz
  • the duty ratio is calculated when VREF is varied by ⁇ 0.5V in 0.1V increments.
  • Fig. 12(b) shows the relationship between the duty ratio and the value of deviation of VREF from the sine wave amplitude median. From this relationship, it can be seen that when a certain allowable duty ratio is determined, the allowable VREF range for that duty ratio is given by the following equation.
  • VREF fluctuation range [V] allowable duty ratio "%" / 33 Formula (2) For example, if the permissible duty ratio fluctuation is set to ⁇ 3.3% or less, the VREF fluctuation range is approximately ⁇ 0.1V or less.
  • Figure 13 shows the relationship between the average voltage of the AC-coupled output voltage and the allowable VREF range.
  • the maximum and minimum values of the response time constant are obtained under the condition that the time change of the response time constant is constant over time.
  • Figure 13(a) when the time constant is changed stepwise from a small state to a large state, the maximum and minimum values of the time constant are obtained when the time constant is changed through only one step along the way.
  • Figure 13(b) when the time constant is small, it is sufficient that the average voltage of the AC-coupled output voltage is within the VREF allowable range.
  • the allowable value of the duty ratio in the output waveform of the AC-coupled output voltage is satisfied, and the amount of charge fluctuation in the capacitance of the AC-coupled circuit is within a specified range.
  • the time constant is large, it is sufficient that the average voltage of the AC-coupled output voltage is within the VREF allowable range within the desired response time.
  • the allowable duty cycle fluctuation is ⁇ 3.3%
  • the VREF fluctuation range is approximately ⁇ 0.1 V or less, in other words, 1/10 of the sine wave amplitude of the input waveform.
  • the lower limit of the time constant is sufficient as long as the average voltage of the AC-coupled output voltage is within the VREF allowable range, so the average voltage of the input waveform needs to be ⁇ 10% or less of the amplitude. Therefore, as shown in Figure 14(a), a first-order low-pass filter consisting of a capacitance C and a resistance R is assumed as a circuit in which the amplitude of the output signal is 1/10 of the input signal. As shown in Figure 14(b), the CR time constant of the low-pass filter can be set as shown in the following equation so that the cutoff frequency is 1/10 of the input signal frequency.
  • f is the frequency of the input signal
  • the upper limit of the time constant is the desired response time, as mentioned above.
  • Figure 15 shows the fluctuation in the average voltage of the output signal of a first-order low-pass filter.
  • the fluctuation in the average voltage of the output signal is expressed by the following equation.
  • the time constant when the time constant is changed from a small state to a large state, the time constant has the following relationship with the lower and upper limits:
  • the lower and upper limits of the time constant are obtained when the time constant is changed stepwise from a small state to a large state.
  • a method of continuously changing the time constant from a small state to a large state will be described.
  • FIG. 16 is a diagram showing a time constant control signal generation circuit of a TIA according to a third embodiment of the present invention.
  • the time constant control signal generation circuit generates a time constant control signal, for example, from a pulse-shaped control signal (RESET) provided from the outside.
  • RESET pulse-shaped control signal
  • FIG. 16(b) in response to the input of the control signal (RESET), it is possible to perform time constant switching in which the switching time (2) from a small time constant to a large time constant is longer than the switching time (1) from a large time constant to a small time constant.
  • FIG 17 is a diagram showing the configuration of a TIA according to the third embodiment.
  • the TIA 30 connected to the PD includes a TIA core circuit 31 that amplifies the photocurrent input to the input terminal with a desired gain and outputs it as a voltage signal, a buffer circuit 32 that differentially amplifies the output signal from the core circuit and outputs it, and an AC coupling circuit 33 that connects the TIA core circuit 31 and the buffer circuit 32.
  • the AC coupling circuit 33 includes a capacitance C that connects the two in series and a resistor R connected in parallel, forming a so-called high-pass filter.
  • a switch SW is provided that is connected in parallel with the resistor R, and the time constant of the AC coupling circuit 33 is controlled by a time constant control signal generation circuit 34.
  • AC coupling circuits can be inserted between the buffer circuits.
  • FIG. 18 is a diagram showing the circuit configuration of the AC coupling circuit and the time constant control signal generation circuit.
  • the FET switch SW is connected in parallel with the resistor R of the AC coupling circuit 33, and the FET switch SW is controlled by the time constant control signal generation circuit 34.
  • the time constant control signal generation circuit 34 is configured, for example, with a two-stage buffer circuit, and generates a FET switch SW control voltage with a long fall time in response to the input of a rectangular control signal (RESET).
  • RESET rectangular control signal
  • an FET switch connected in parallel with resistor R of AC coupling circuit 33 is used to change the time constant, but a variable resistor may be used instead of the switch. Any configuration is acceptable as long as it is possible to continuously change the resistance value of the resistor that constitutes the high-pass filter.
  • FIG. 19 is a diagram showing time constant control by a time constant control signal generation circuit.
  • a pulse-shaped control signal (RESET) applied from the outside causes the time constant control signal generation circuit 34 to output a FET switch SW control voltage to the AC coupling circuit 33.
  • the circuit constants can be set so that the time constant defined by the combined resistance of the FET switch SW and resistor R (4.9 k ⁇ ) and the capacitance C falls within the range between the lower and upper limits mentioned above.
  • Figure 20 is a diagram showing the output voltage of the AC coupling circuit when the time constant of the TIA of the third embodiment is gradually changed from small to large.
  • Figure 21 is a diagram showing an enlarged reset period in Figure 20. The figure shows the result of simulating the response characteristics when the time constant is 1 ns, 1.6 ns, 20 ns, and 50 ns. The output voltage of the AC coupling circuit 33, the time constant, and the average voltage of the output voltage are shown side by side.
  • the lower limit of the time constant is 1.6 nsec and the upper limit is 21.6 nsec according to the relational expression shown in the second embodiment. If the time constant of the AC coupling circuit 33 is within this range, the average voltage of the output voltage of the AC coupling circuit 33 is within ⁇ 10% of the amplitude of the output voltage.
  • Figure 22 shows the AC-coupled output voltage when the time constant is set to 1.6 ns and the external control signal (RESET) is applied with a shift in timing relative to the AC-coupled input voltage.
  • Figure 23 shows the case when the time constant is set to 20 ns. In both cases, it can be seen that a normal output voltage is obtained regardless of the timing of the control signal (RESET).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

制御信号のタイミングによらず、短時間で安定した出力電圧を得るトランスインピーダンスアンプを提供する。入力端子に入力された電流を所望の利得で増幅し、電圧信号として出力するトランスインピーダンスアンプ・コア回路と、該トランスインピーダンスアンプ・コア回路からの出力信号を差動増幅して出力する1または複数のバッファ回路と、前記トランスインピーダンスアンプ・コア回路と前記バッファ回路の間または前記複数のバッファ回路の間に挿入されたAC結合回路であって、前記出力信号の振幅に合わせて異なる2つの時定数を切り替えるAC結合回路とを備え、前記AC結合回路は、時定数小から大への切替時間が、時定数大から小への切替時間よりも長い。

Description

AC結合回路およびトランスインピーダンスアンプ
 本発明は、振幅の異なる信号を入出力するAC結合回路、および、これを適用したトランスインピーダンスアンプに関する。
 高速データ伝送を可能とする光伝送システム、パッシブオプティカルネットワーク(Passive Optical Network:PON)システム等の光伝送装置において、光信号を電気信号に変換する光受信回路では、トランスインピーダンスアンプ(Transimpedance Amplifier:TIA)が用いられている。TIAは、受信した光信号をフォトダイオード(Photo Diode:PD)などの受光素子により光/電気変換して得られた光電流が入力される。入力電流は、帰還抵抗の値に比例するインピーダンス変換利得によって、電流電圧変換され、変換電圧が出力される。
 PONシステムにおいて、複数の加入者側装置(Optical Network Unit:ONU)の各々から局側装置(Optical Line Terminal:OLT)への上りパケットデータは、時分割多重でバースト状に送られる。各ONUとOLT間の経路および距離が、それぞれ異なるので、OLTに到達する光信号は、パケット毎に異なる光パワーを有する。このため、OLTの光受信回路の受光素子では、光/電気変換して得られる光電流の電気信号は、パケット毎に信号振幅が異なる。
 一般的に上りパケットデータは、パケットの先頭部分に位置する信号再生のための特定パターン部(プリアンブルパターン)と、それに続くデータ部(ペイロード)で構成されている。プリアンブルパターンとして、1/0(Hi/Lo)の交番(繰り返し)信号がよく用いられる。
 図1は、従来のTIAの構成を示す図である。PDに接続されたTIA10は、入力端子に入力された光電流を所望の利得で増幅し、電圧信号として出力するTIAコア回路11と、コア回路からの出力信号を差動増幅して出力するバッファ(増幅器)回路12とから構成される。さらに、コア回路11とバッファ回路12の間は、容量C、抵抗R1,R2からなるAC結合回路(すなわちハイパスフィルタ:HPF)を用いて接続される。バッファ回路12の一方の入力には、AC結合回路の出力が接続され、他方の入力には、リファレンス電圧VREFが入力される。
 コア回路11は、PDの光電流を変換して、シングルエンド形式で電圧出力する。バッファ回路12は、TIAよりも後段側に、VREFを中心とした差動形式で受信した光信号に対応する電気信号を出力する。
 図2は、従来のTIAにおける出力電圧の時定数依存性を示す図である。図2の各図は、異なるONUからのパケットの境界付近を模式的に描いたもので、2つのパケットの間は、データが存在しないガードタイムとなっている。図2の上図のコア回路11出力電圧で示したように、距離の異なるONUからのパケット1と、パケット2は、異なる振幅を持っている。TIAコア回路11の出力電圧はシングルエンド出力なので、パケット1と、パケット2の直流成分も異なっている。TIA10におけるAC結合回路は、理想的には、入力信号の直流成分のみを除去して、データ信号の交流成分のみをバッファ回路12に与える特性を持っているべきである。しかしながら、AC結合回路を使用したTIAにおいて、信号振幅の異なるパケットを入力した場合、正常なパケット信号が出力されるまでの時間は、AC結合回路の時定数に影響を受ける。
 上述のように、OLTに近いONUから光信号を受信すると、TIAコア回路11の出力電圧の信号振幅は大きく(パケット1)、OLTから遠いONUから光信号を受信すると、TIAコア回路11の出力電圧の信号振幅は小さい(パケット2)。パケット毎に、TIAコア回路11の出力電圧の直流成分も変化し、パケットの境界付近で階段状に変化する。HPFの時定数が比較的大きく、カットオフ周波数が低い場合、図2に示したように、バッファ回路12の出力には、透過した低周波成分によるゆっくりとした階段状変化が現れてしまう。逆に、HPFの時定数が比較的小さく、カットオフ周波数が高過ぎる場合、図2に示したように、バッファ回路12の出力のパルス波形にサグが生じデータ波形自体に歪みが生じてしまう。パケットの直流成分の阻止とパルス波形の維持の間には、トレードオフの関係がある。
 AC結合回路の時定数が小さい場合、パケットの境界付近での直流成分変動に対して素早く応答して、バッファ回路12から正常なパケット信号が出力されるまでの時間は短くなる。しかしながら、パケット内のペイロードに長い同符号連続が含まれると、それらの符号を判別するために必要な時間、バッファ回路12の出力電圧のVREFを保持できずに誤判別が生じる。逆に時定数を大きくして、ペイロードに含まれる同符号連続の間VREFを保持できるようにすると、正常なパケット信号が出力されるまでの時間が長くなる。同符号連続に対する正確なデータ判別と、パケットの境界付近での直流成分変動への素早い適応との間にも、トレードオフの関係がある。そこで、外部制御信号によってAC結合回路の容量値と抵抗値を変化させることにより、時定数を切り替える構成が知られている。
 図24は、時定数を切り替える従来のTIAの構成を示す図である(特許文献1)。TIA11-1は、TIAコア回路11の自動利得制御(Automatic Gain Control:AGC)回路13と、バッファ回路12からの差動出力の直流オフセットの自動オフセット制御(Automatic Offset Control:AOC)回路14とを有している。TIA11-1は、AGC回路13およびAOC回路14において、時定数小の状態および時定数大の状態を切り替える構成を有している。時定数小の状態は、正常なパケット信号出力までの時間が早い状態であり、時定数大の状態は、パケット信号に含まれる同符号連続の保持力が高い状態に対応する。AC結合回路15の時定数の切り換えは、リセット制御信号(RESET)によって行われる。
特許第5731615号公報
 短い時間でパケット信号出力を得て、かつ必要な同符号連続も保持するためには、パケット先頭のプリアンブル部において時定数を小さくして正常な信号出力を得た後、時定数を大きくする構成が考えられる。しかし、特許文献1に記載の回路において、パケット先頭のプリアンブル部において時定数を小さくして正常な信号出力を得た後、時定数を大きくするような構成を用いると、正常な出力電圧を得るまでの時間が制御信号のタイミングに大きく依存するという問題が生じる。
 図3は、従来のTIAにおいて時定数を小から大に短い時間で変化させた場合のAC結合回路の出力電圧を示す図である。図24に示したTIA11-1において、AOC回路14をリセットするために外部から与えるリセット制御信号(RESET)を、AC結合回路15への入力電圧に対して、タイミングをずらして印加したときの、AC結合回路の出力電圧を示している。リセット期間内は、異なるONUからのパケットが切り替わるガードタイムを含む期間である。
 図4は、図3におけるリセット期間を拡大して示した図である。具体的には、図4の(A)には、AC結合入力電圧の1周期の1/10ずつの間隔でずらしたリセット制御信号(Hi-Lo-Hi)1-0~1-9が示されている。例えば、a点(110ns)のタイミングでLoとなるリセット制御信号1-0と、次のリセット制御信号1-1との間では、AC結合入力電圧の1/10周期、すなわち位相は36°ずれている。リセット制御信号1-0と、リセット制御信号1-5との間では、AC結合入力電圧の5/10周期、すなわち位相は180°ずれている。図4の(B)で示したのは、TIA11-1におけるあるノード間の電位差をモニタすることで、間接的に得られたAC結合回路の時定数τの変化である。リセット制御信号のHiの期間と時定数大の状態、リセット制御信号のLoの期間と時定数小の状態は、概ね一致している。図4の(C)および(D)は、それぞれAC結合回路15の入力電圧および出力電圧の波形を示している。入力信号としてサイン波を使用しているのは、リセット制御信号のタイミングを分かりやすく説明するためである。
 ここで、入力電圧の振幅値が0で位相が0°のa点(110ns)でLoとなり、位相が0°のb点(140ns)でHiとなるリセット制御信号1-0の場合を考える。リセット制御信号がLoの状態では、時定数が非常に小さいためHPFのカットオフ周波数がサイン波周波数よりも高くなる。このため、(D)のAC結合回路の出力電圧はa点で消失し、時定数がHiへ切り替わるエッジのb点で、出力電圧波形2-0が直ちに出現する。b点では、サイン波の瞬時振幅が0、位相が0°の初期状態から出力されるため、出力電圧波形2-0は直流成分を持たず、直ちに正常なAC結合出力のサイン波が得られる。
 次に、位相が36°ずれたリセット制御信号1-1の場合を考える。(D)のAC結合回路の出力電圧として、b点から36°位相が遅れたタイミングで、出力電圧波形2-1が出現する。この時、出力電圧波形2-1は、+側の振幅値の初期状態から開始して+ピークに達しさらにマイナス側に減じる。結果としてAC結合出力は、直流成分がマイナス側にずれた、出力波形2-1となる。
 リセット制御信号1-1からさらに位相が36°ずれたリセット制御信号1-2の場合を考える。(D)のAC結合回路の出力電圧として、b点から72°位相が遅れたタイミングで、出力電圧波形2-2が出現する。AC結合出力は、出力波形2-1に比べて、直流成分がさらにマイナス側に増えた出力電圧波形2-2となる。直流成分がずれた状態の出力波形2-1、2-2は、時間の経過とともに、図3に示したように、直流成分が徐々に0へ収斂し、正常なAC結合出力が得られる。
 リセット制御信号1-0から位相が180°ずれたリセット制御信号1-5の場合を考える。(D)のAC結合回路の出力電圧として、b点から180°位相が遅れたタイミングで、出力電圧波形2-5が出現する。サイン波の瞬時振幅が0の初期状態から出力されるため、結果として出力電圧波形2-5の直流成分は0Vであり、リセット制御信号がHiの時定数の大きい状態になると、直ちに正常なAC結合出力のサイン波が得られる。
 上述のように、リセット制御信号がLoからHiに変化し、時定数が小さい状態から大きい状態に変化するとき、リセット制御信号のエッジでAC結合回路から現れる出力電圧の初期値は、リセット制御信号のタイミングによって変化する。初期値に依存して、AC結合回路の出力信号に含まれる直流成分も、リセット制御信号のタイミングによってばらばらとなる。結果として、直流成分が0(VREF)に収斂し、正常なAC結合出力電圧を得るまでの時間が、リセット制御信号を印加するタイミングによって変化することになる。
 各ONUからOLTまでの距離は異なるため、OLTはOLT-ONU間のラウンドトリップタイムに基づいて各ONUのパケットの送信タイミングを制御している。しかし、ラウンドトリップタイムは変動するため、OLTのTIA回路に到達するパケットのタイミングも変動が生じる。これは、図3および図4においてサイン波に対するリセット制御信号のタイミングを揃えることが不可能であることを意味する。
 本発明の目的は、制御信号のタイミングによらず、短時間で安定した出力電圧を得るためのAC結合回路およびトランスインピーダンスアンプを提供することにある。
 本発明は、このような目的を達成するために、AC結合回路の一実施態様は、入力信号振幅に合わせて異なる2つの時定数を切り替える切替手段を備え、時定数小から大への切替時間は、時定数大から小への切替時間よりも長いことを特徴とする。
 また、トランスインピーダンスアンプの一実施態様は、入力端子に入力された電流を所望の利得で増幅し、電圧信号として出力するトランスインピーダンスアンプ・コア回路と、該トランスインピーダンスアンプ・コア回路からの出力信号を差動増幅して出力する1または複数のバッファ回路と、前記トランスインピーダンスアンプ・コア回路と前記バッファ回路の間または前記複数のバッファ回路の間に挿入されたAC結合回路であって、前記出力信号の振幅に合わせて異なる2つの時定数を切り替えるAC結合回路とを備え、前記AC結合回路は、時定数小から大への切替時間が、時定数大から小への切替時間よりも長いことを特徴とする。
 本発明によれば、制御信号のタイミングによらず、短時間で安定した出力電圧を得ることができるAC結合回路およびトランスインピーダンスアンプを提供することができる。
従来のTIAの構成を示す図である。 従来のTIAにおける出力電圧の時定数依存性を示す図である。 従来のTIAにおいて時定数を小から大に短い時間で変化させた場合のAC結合回路の出力電圧を示す図である。 図3におけるリセット期間の拡大図である。 本発明の第1の実施形態にかかるTIAの動作概念を示す図である。 第1の実施形態のTIAの構成を示す図である。 第1の実施形態のTIAのAC結合回路の時定数制御を示す図である。 第1の実施形態のTIAの時定数を徐々に小から大に変化させた場合のAC結合回路の出力電圧を示す図である。 図8におけるリセット期間の拡大図である。 第2の実施形態のTIAのAC結合回路の時定数制御を示す図である。 AC結合回路の容量にチャージされた電荷の変動を示す図である。 正弦波振幅中央値に対するVREFの差分と出力波形デューティ比との関係を示す図である。 AC結合出力電圧の平均電圧と許容されるVREF範囲の関係を示す図である。 入力信号に対して出力信号の振幅が1/10となるローパスフィルタを示す図である。 1次のローパスフィルタの出力信号の平均電圧の変動を示す図である。 第3の実施形態のTIAの時定数制御信号生成回路を示す図である。 第3の実施形態のTIAの構成を示す図である。 AC結合回路と時定数制御信号生成回路の回路構成を示す図である。 時定数制御信号生成回路による時定数制御を示す図である。 第3の実施形態のTIAの時定数を徐々に小から大に変化させた場合のAC結合回路の出力電圧を示す図である。 図20におけるリセット期間の拡大図である。 第3の実施形態のTIAの時定数を徐々に小から大に変化させた場合のAC結合回路の出力電圧を示す図である。 第3の実施形態のTIAの時定数を徐々に小から大に変化させた場合のAC結合回路の出力電圧を示す図である。 時定数を切り替える従来のTIAの構成を示す図である。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。
  [第1の実施形態]
 図5は、本発明の第1の実施形態にかかるTIAの動作概念を示す図である。図5(a)に示したように、第1の実施形態にかかるAC結合回路は、入力信号振幅に合わせて時定数を2通りに切り替える切替手段を有している。ここで「2通りに切り替える」の意味するところは、異なる時定数の間の切り換えの態様が2通りであることである。具体的には、図5(b)に示したように、異なる2つの時定数が設定されており、時定数大から小へ、または時定数小から大へと切り替える。このとき、時定数小から大への切替時間(2)は、時定数大から小への切替時間(1)よりも長くなっている。
 図6は、第1の実施形態のTIAの構成を示す図である。PDに接続されたTIA20は、入力端子に入力された光電流を所望の利得で増幅し、電圧信号として出力するTIAコア回路21、コア回路からの出力信号を差動増幅して出力するバッファ回路22、およびTIAコア回路21とバッファ回路22とを接続するAC結合回路23を含む。AC結合回路23は、両者を直列接続する容量Cと、並列接続された抵抗Rを含み、いわゆるハイパスフィルタを形成している。
 さらに、抵抗Rと並列に接続され、抵抗Rを短絡させるスイッチSWが設けられている。外部から与えられる時定数制御信号(RESET)により、スイッチSWをオン/オフ制御することにより、ハイパスフィルタを構成する抵抗の抵抗値を変えて、AC結合回路23のCR時定数を2通りに切り替えることができる。尚、以下の説明において時定数制御信号(RESET)は、図3および図4において説明したリセット制御信号に対応している。Hi→Lo→Hiの時定数制御信号(RESET)によって、図5(b)に示した2通りの時定数の切り換えが実施される。
 なお、図6に示した構成では、抵抗Rと並列に接続したスイッチSWのオン/オフ制御を行っているが、例えば、複数の抵抗とスイッチを用いて抵抗値を2通りに切り替え、時定数を変化させてもよい。
 また、図6に示した構成では、AC結合回路をTIAコア回路とバッファ回路の間に挿入しているが、バッファ回路を多段で構成する場合は、バッファ回路とバッファ回路の間に挿入しても、本発明の作用効果を奏することができる。
 図7は、第1の実施形態のTIAのAC結合回路の時定数制御を示す図である。上述したPONシステムにおいて、OLTは、複数のONUから時分割で光信号を受信する。受信した光信号の強度に応じてTIAコア回路21の出力電圧が変動し、AC結合回路23の出力電圧は、信号振幅の小さなパケット2を入力した場合、時定数の変化に伴う影響が大きい。そこで、TIA20においては、パケット2を入力する際に、外部から与えられる時定数制御信号(RESET)により、図5(b)に示したように時定数を切り替える。
 具体的には、OLTは、各々のONUからの受信期間の間にガードタイムを設けている。このガードタイムの間に時定数制御信号(RESET)を出力し、時定数大から小への切替時間よりも時定数小から大への切替時間の方が長くなるような時定数制御を行う。パケット1とパケット2の間の光信号の無い期間がガードタイムとなり、数パルス程度の長さであるが、図7は模式的に示したものであり、時間関係は図7の例に限定されない。
 図8は、第1の実施形態のTIAの時定数を徐々に小から大に変化させた場合のAC結合回路の出力電圧を示す図である。図8は、従来技術の説明における図3の各波形に対応している。図3の時定数の波形と図8の時定数の波形を対比すれば、時定数が小から大に切り替わる期間が数十倍以上長く、時定数が小から大へゆっくりと変化していることがわかる。また、AC結合回路の出力電圧には、直流成分のバラツキがほとんどなく、サイン波の2周期程度の時間で直ちに正常なAC結合出力となっている。
 図9は、図8におけるリセット期間を拡大して示した図である。図4の(B)と図9の(B)を比較すれば、時定数小から大への切替時間が非常に長いことがわかる。第1の実施形態のTIAでは、リセット制御信号のタイミングに依らず、リセット制御信号のLoからHiへの立ち上がりエッジから10~20nsに時間を掛けて、直流成分が0に収斂している。
 図4に示した出力電圧波形では、リセット制御信号のLo状態と時定数の小の状態、Hiの状態と時定数の小の状態が、概ね一致していた。LoからHiへの立ち上がりエッジの瞬間からHPFはサイン波周波数に対して減衰なしの状態となって、直ちに入力電圧がそのまま現れていた。したがって、AC結合回路の出力電圧の瞬時初期値は、立ち上がりエッジのタイミングにおける、出力サイン波の位相に依って変動していた。直流成分も、リセット制御信号のタイミングによって変動し、正常なAC結合出力に到達する時間が変動していた。
 これに対して、図9の(D)に示した出力電圧波形は、時定数制御信号(リセット制御信号)のLoからHiへの立ち上がりエッジから入力電圧が減衰なしで直ちに現れるのではなく、徐々に現れる(ramp upする)。これは、図9の(B)に示したように時定数が小から大の状態に非常にゆっくりと変化するので、AC結合回路のHPFのカットオフ周波数も、従来構成と比べてゆっくりと変化するからである。AC結合回路のHPFによるサイン波周波数に対する減衰量は、減衰最大の状態から徐々に減少するで、立ち上がりエッジの時間から出力電圧が徐々に現れる。時定数制御信号におけるLoからHiへの立ち上がりエッジにおいて、HPFは未だ減衰量が大きい状態なので、AC結合回路の出力電圧の初期値は概ね0近辺である。立ち上がりエッジのタイミングに関係なく、出力電圧の初期値が概ね0となり、直流成分も概ね0となるので、サイン波の2周期程度の時間で直ちに正常なAC結合出力が得られる。
 このように、時定数小から大への切替時間がAC結合入力電圧の位相変化に比べて十分大きいので、時定数制御信号(RESET)のタイミングによらず正常な出力電圧が得られる。図4のAC結合出力電圧と図9のAC結合出力電圧とを比較して分かるように、TIA20においては、時定数制御信号(RESET)の立ち上がりから20ns程度の短時間で、正常な出力電圧が得ることができる。
  [第2の実施形態]
 図10は、本発明の第2の実施形態にかかるTIAのAC結合回路の時定数制御を示す図である。第2の実施形態のTIAにおいても、時定数大から小への切替時間よりも時定数小から大への切替時間の方が長くなっているが、時定数が小さい状態から大きい状態に離散的に、複数の段階を経て変化させている点で、第1の実施形態と異なる。例えば、図6に示した構成において、時定数を変化させるために、AC結合回路23の抵抗Rとして複数の抵抗を用意し、スイッチを用いて切り替え、時定数が小さい状態から大きい状態に離散的に変化さればよい。
 ここで時定数を小さい状態から大きい状態に変化させる場合、時定数の下限値と上限値とを、具体例を用いて定量的に考える。
 図11は、AC結合回路の容量にチャージされた電荷の変動を示す図である。図11(a)に、AC結合出力電圧とAC結合回路の容量にチャージされた電荷の変動の関係を示す。AC結合回路の入出力間の電位差Vは、容量Cの電荷量Qで決まり、次式で表される。
  Q=CV      式(1)
 定常状態において、容量にチャージされた電荷は一定である。その後、信号振幅の小さなパケット2が入力されると、電荷の充放電が発生する。この時の応答時間は、充放電量が一定となり電荷が一定になるまでの時間である。充放電により、電荷が一定になるまでの動作はAC結合回路の時定数で決まり、電荷の充放電の結果は、AC結合出力電圧に影響を与える。
 図11(b)に、時定数小の場合と時定数大の場合の2種類の時定数に対する電荷の変動量の関係を示す。AC結合入力電圧と、時定数が小さい状態から大きい状態に変化させるタイミングとに依らず、正常な出力電圧を得るまでの時間を、所定の時間内にするためには、この電荷の変動量がある範囲内に収めればよい。電荷の変動量をある範囲内に収めるためには、AC結合出力電圧の平均電圧が、振幅の中心電圧からある範囲内にあれば良い。AC結合回路の出力をバッファ回路で増幅する際には、増幅器の基準電圧として図6に示したように、リファレンス電圧VREFを設定する。
 しかしながら、リファレンス電圧に対して、AC結合出力電圧の平均電圧に差分が生じると、AC結合出力電圧の出力波形のデューティ比が変動する。そこで、容量の電荷の変動量、すなわち平均電圧の範囲の定義として、出力波形におけるデューティ比の許容値を用いることとする。ここでは一般化のため入力波形は正弦波とする。
 図12は、正弦波振幅中央値に対するVREFの差分と出力波形デューティ比との関係を示す図である。ここでは簡易化のために、図12(a)では正弦波振幅を±1V、周波数を1GHzとし、VREFを0.1V単位で±0.5V変動させた時のデューティ比を求めている。図12(b)に、デューティ比とVREFの正弦波振幅中央からのずれの値の関係を示す。この関係から、ある許容されるデューティ比を決めると、それに対して許容されるVREF範囲が、次式で与えられることが分かる。
 VREF変動範囲[V]=許容デューティ比「%」/33   式(2)
例えば、許容デューティ比の変動を±3.3%以下とすると、VREF変動範囲は約±0.1V以下となる。
 図13は、AC結合出力電圧の平均電圧と許容されるVREF範囲の関係を示す図である。上記で求めた許容されるVREF変動範囲に対して、応答時定数の時間変化一定という条件で、応答時定数の最大値と最小値を求めることとする。具体的には、図13(a)に示したように、時定数が小さい状態から大きい状態に段階的に変化させる場合に、途中1段階のみを経て変化させたときの、時定数の最大値と最小値を求める。図13(b)に示したように、時定数が小さい場合は、AC結合出力電圧の平均電圧がVREF許容範囲以内に入っていればよい。すなわち、AC結合出力電圧の出力波形におけるデューティ比の許容値を満たすことになり、AC結合回路の容量においては、電荷の変動量が所定の範囲内に収まることになる。一方、時定数が大きい場合は、所望の応答時間内で、AC結合出力電圧の平均電圧がVREF許容範囲に収まればよい。
 許容デューティ比の変動を±3.3%とした場合、VREF変動範囲は約±0.1V以下、すなわち入力波形の正弦波振幅の1/10となる場合について考える。このとき、時定数の下限は、AC結合出力電圧の平均電圧がVREF許容範囲以内に入っていればよいので、入力波形の平均電圧が振幅の±10%以下であればよい。そこで、図14(a)に示したように、入力信号に対して出力信号の振幅が1/10となる回路として、容量Cと抵抗Rで構成される1次のローパスフィルタを仮定する。図14(b)に示したように、入力信号の周波数の1/10の周波数がカットオフ周波数となるよう、次式のようにローパスフィルタのCR時定数を設定すれば良い。
Figure JPOXMLDOC01-appb-M000001
ここで、fは入力信号の周波数である。一方、時定数の上限は、上述したように所望の応答時間である。
 図15は、1次のローパスフィルタの出力信号の平均電圧の変動を示す図である。出力信号の平均電圧の変動は、1次のローパスフィルタの場合、次式で表される。
Figure JPOXMLDOC01-appb-M000002
 許容デューティ比の変動を±3.3%とした場合、図15に示したように平均電圧が±10%以下となる(0.9以上となる)時間(時定数)は、2.32CRである。すなわち、所望の応答時間をTsettleとすると、次式の関係が得られる。
Figure JPOXMLDOC01-appb-M000003
 したがって、時定数を小さい状態から大きい状態に変化させる際に、時定数は、下限値と上限値に対して次に示す関係を有することになる。
Figure JPOXMLDOC01-appb-M000004
または、入力信号の波形が正弦波の場合、次に示す関係となる。
Figure JPOXMLDOC01-appb-M000005
  [第3の実施形態]
 第2の実施形態では、時定数を小さい状態から大きい状態に段階的に変化させる場合に、時定数の下限と上限とを求めた。第3の実施形態では、時定数を小さい状態から大きい状態に連続的に変化させる方法を説明する。
 図16は、本発明の第3の実施形態にかかるTIAの時定数制御信号生成回路を示す図である。図16(a)に示したように、時定数制御信号生成回路は、例えば、外部から与えられるパルス状の制御信号(RESET)から、時定数制御信号を生成する。図16(b)に示したように、制御信号(RESET)の入力に対して、時定数小から大への切替時間(2)が時定数大から小への切替時間(1)よりも長い時定数の切替を行うことができる。
 図17は、第3の実施形態のTIAの構成を示す図である。PDに接続されたTIA30は、入力端子に入力された光電流を所望の利得で増幅し、電圧信号として出力するTIAコア回路31、コア回路からの出力信号を差動増幅して出力するバッファ回路32、およびTIAコア回路31とバッファ回路32とを接続するAC結合回路33を含む。AC結合回路33は、両者を直列接続する容量Cと、並列接続された抵抗Rを含み、いわゆるハイパスフィルタを形成している。さらに、抵抗Rと並列に接続されたスイッチSWが設けられ、時定数制御信号生成回路34により、AC結合回路33の時定数を制御している。
 なお、上述したように、バッファ回路を多段で構成する場合は、AC結合回路をバッファ回路とバッファ回路の間に挿入することもできる。
 図18は、AC結合回路と時定数制御信号生成回路の回路構成を示す図である。AC結合回路33の抵抗Rと並列にFETスイッチSWが接続され、時定数制御信号生成回路34によりFETスイッチSWを制御する。時定数制御信号生成回路34は、例えば、2段バッファ回路で構成され、矩形の制御信号(RESET)の入力に対して、立ち下がり時間が長いFETスイッチSW制御電圧を生成する。
 なお、図18に示した構成では、時定数を変化させるために、AC結合回路33の抵抗Rと並列に接続したFETスイッチを用いているが、スイッチの代わりに可変抵抗を使用しても構わない。ハイパスフィルタを構成する抵抗の抵抗値を連続的に変化させることができれば、どのような構成であってもよい。
 図19は、時定数制御信号生成回路による時定数制御を示す図である。外部から与えられるパルス状の制御信号(RESET)により、時定数制御信号生成回路34からFETスイッチSW制御電圧がAC結合回路33へ出力される。FETスイッチSWと抵抗R(4.9kΩ)との合成抵抗と容量Cとによる時定数が上述した下限値と上限値の範囲に入るように回路定数を設定すればよい。
 図20は、第3の実施形態のTIAの時定数を徐々に小から大に変化させた場合のAC結合回路の出力電圧を示す図である。図21は、図20におけるリセット期間を拡大して示した図である。時定数を1ns、1.6ns、20ns、50nsとしたときの応答特性をシミュレーションした結果である。AC結合回路33の出力電圧、時定数および出力電圧の平均電圧を並べて示している。
 入力信号の周波数を1GHz、所望の応答時間Tsettleを50nsecとした場合、第2の実施形態に示した関係式によれば、時定数の下限値は1.6nsec、上限値は21.6nsecとなる。AC結合回路33の時定数がこの範囲内にあれば、AC結合回路33の出力電圧の平均電圧は、出力電圧の振幅の±10%以下になっている。
 図22は、時定数を1.6nsとし、外部から与える制御信号(RESET)を、AC結合入力電圧に対して、タイミングをずらして印加したときの、AC結合出力電圧を示した図である。図23は、時定数を20nsとした場合を示す図である。いずれも制御信号(RESET)のタイミングによらず正常な出力電圧が得られることが分かる。
 10,11-1,20,30 TIA
 11,21,31 TIAコア回路
 12,22,32 バッファ回路
 23,33 AC結合回路
 34 時定数制御信号生成回路

Claims (7)

  1.  入力信号振幅に合わせて異なる2つの時定数を切り替える切替手段を備え、
     時定数小から大への切替時間は、時定数大から小への切替時間よりも長いことを特徴とするAC結合回路。
  2.  前記時定数小から大への切替は、時定数を離散的に大きくすることを特徴とする請求項1に記載のAC結合回路。
  3.  前記時定数小から大への切替は、時定数を連続的に大きくすることを特徴とする請求項1に記載のAC結合回路。
  4.  容量と抵抗とを含むハイパスフィルタで構成され、
     前記切替手段は、前記抵抗の抵抗値を変えることにより、前記2つの時定数を切り替えることを特徴とする請求項1、2または3に記載のAC結合回路。
  5.  入力端子に入力された電流を所望の利得で増幅し、電圧信号として出力するトランスインピーダンスアンプ・コア回路と、
     該トランスインピーダンスアンプ・コア回路からの出力信号を差動増幅して出力する1または複数のバッファ回路と、
     前記トランスインピーダンスアンプ・コア回路と前記バッファ回路の間または前記複数のバッファ回路の間に挿入されたAC結合回路であって、前記出力信号の振幅に合わせて異なる2つの時定数を切り替えるAC結合回路とを備え、
     前記AC結合回路は、時定数小から大への切替時間が、時定数大から小への切替時間よりも長いことを特徴とするトランスインピーダンスアンプ。
  6.  前記AC結合回路は、容量と抵抗とを含むハイパスフィルタで構成され、
     前記時定数小から大への切替は、前記抵抗の抵抗値を切り替えることにより、前記2つの時定数を離散的に大きくすることを特徴とする請求項5に記載のトランスインピーダンスアンプ。
  7.  前記AC結合回路は、容量と抵抗とを含むハイパスフィルタで構成され、
     前記時定数小から大への切替は、前記抵抗の抵抗値を変化させることにより、前記2つの時定数を連続的に大きくすることを特徴とする請求項5に記載のトランスインピーダンスアンプ。
PCT/JP2023/041443 2022-11-18 2023-11-17 Ac結合回路およびトランスインピーダンスアンプ WO2024106534A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-184841 2022-11-18
JP2022184841 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024106534A1 true WO2024106534A1 (ja) 2024-05-23

Family

ID=91084576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041443 WO2024106534A1 (ja) 2022-11-18 2023-11-17 Ac結合回路およびトランスインピーダンスアンプ

Country Status (1)

Country Link
WO (1) WO2024106534A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334137A (ja) * 1991-05-09 1992-11-20 Mitsubishi Electric Corp バースト光受信装置
JPH06260866A (ja) * 1993-03-04 1994-09-16 Mitsubishi Electric Corp 自動出力電力制御回路装置
JP2009177577A (ja) * 2008-01-25 2009-08-06 Sumitomo Electric Ind Ltd バースト信号受信方法、バースト信号受信装置、局側装置及びponシステム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334137A (ja) * 1991-05-09 1992-11-20 Mitsubishi Electric Corp バースト光受信装置
JPH06260866A (ja) * 1993-03-04 1994-09-16 Mitsubishi Electric Corp 自動出力電力制御回路装置
JP2009177577A (ja) * 2008-01-25 2009-08-06 Sumitomo Electric Ind Ltd バースト信号受信方法、バースト信号受信装置、局側装置及びponシステム

Similar Documents

Publication Publication Date Title
US10003410B2 (en) Optical receiver, optical termination device, and optical communication system
US7583904B2 (en) Transimpedance (TIA) circuit usable for burst mode communications
JP4935422B2 (ja) 前置増幅器およびそれを用いた光受信装置
US10819425B2 (en) Transimpedance amplifier for receiving burst optical signal
US9496826B2 (en) Transimpedance amplifier
KR101356862B1 (ko) 광통신 시스템에서 광수신기용 전치 증폭기 회로
EP1355464B1 (en) DC removal in an optical receiver
US11601203B2 (en) Transimpedance amplifier for receiving burst optical signal
KR20160049922A (ko) 차지 펌핑을 이용한 피크 검출 장치 및 버스트모드 트랜스 임피던스 증폭 장치
WO1999029056A2 (en) Optical receiver
JP2007274032A (ja) 光受信器
US20180034432A1 (en) Multi-data rate, burst-mode transimpedance amplifier (tia) circuit
US20220109508A1 (en) Optical receiver and station-side device
CN105432030A (zh) 电流电压转换电路、光接收器及光终端装置
US9325426B2 (en) Burst-mode receiver having a wide dynamic range and low pulse-width distortion and a method
US8301038B2 (en) Electronic circuit and communication system
US8390383B2 (en) Amplifier for receiving intermittent optical signal
WO2024106534A1 (ja) Ac結合回路およびトランスインピーダンスアンプ
CN113890493A (zh) 一种跨阻增益可切换跨阻放大器及单端转差分放大电路
GB2444147A (en) Adaptive decision threshold setting circuit, preferably with high and low thresholds
EP3694120B1 (en) Dynamic time constant for quick decision level acquisition
Lee et al. A single-chip 2.5-Gb/s burst-mode optical receiver with wide dynamic range
JP2012085229A (ja) Ponシステムとその局側装置及び光受信器並びに光受信方法
CN110708032B (zh) 跨阻放大电路
US9166702B2 (en) Signal level detect circuit with reduced loss-of-signal assertion delay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891679

Country of ref document: EP

Kind code of ref document: A1