WO2024106464A1 - Antenna - Google Patents

Antenna Download PDF

Info

Publication number
WO2024106464A1
WO2024106464A1 PCT/JP2023/041088 JP2023041088W WO2024106464A1 WO 2024106464 A1 WO2024106464 A1 WO 2024106464A1 JP 2023041088 W JP2023041088 W JP 2023041088W WO 2024106464 A1 WO2024106464 A1 WO 2024106464A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply conductor
conductor
distributor
unit structure
Prior art date
Application number
PCT/JP2023/041088
Other languages
French (fr)
Japanese (ja)
Inventor
博道 吉川
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024106464A1 publication Critical patent/WO2024106464A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • This disclosure relates to antennas.
  • the antenna of the present disclosure includes a plurality of unit structures, each of which includes a radiating conductor, a reference conductor, a first power supply conductor configured to be electromagnetically connected by the radiating conductor, a second power supply conductor configured to be electromagnetically connected by the radiating conductor, a third power supply conductor configured to be electromagnetically connected by the radiating conductor, and a fourth power supply conductor configured to be electromagnetically connected by the radiating conductor, and the first power supply conductor and the second power supply conductor are configured to receive signals of opposite phases to each other, and the third power supply conductor and the fourth power supply conductor are configured to receive signals of opposite phases to each other.
  • the antenna disclosed herein includes a radiation conductor, a reference conductor, and five or more input ports to which input signals are input from the outside, and the input signals input to the input ports are provided with a phase difference that allows them to be circularly polarized.
  • FIG. 1 is a diagram showing an example of the configuration of an antenna according to the first embodiment.
  • FIG. 2 is a diagram showing an example of the configuration of a unit structure according to the first embodiment.
  • FIG. 3 is a diagram for explaining a phase distribution of an input signal according to the second embodiment.
  • FIG. 4 is a diagram for explaining the direction of a current vector in a unit structure corresponding to a left-handed circularly polarized wave according to the third embodiment.
  • FIG. 5 is a diagram for explaining the direction of a current vector in a unit structure compatible with right-handed circular polarization according to the third embodiment.
  • FIG. 6 is a diagram for explaining power distribution of an input signal input to a power supply conductor according to the fourth embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of an antenna according to the first embodiment.
  • FIG. 2 is a diagram showing an example of the configuration of a unit structure according to the first embodiment.
  • FIG. 3 is a diagram for explaining a phase distribution of an input signal
  • FIG. 7 is a diagram showing the power value of radio waves according to a comparative example of the fourth embodiment.
  • FIG. 8 is a diagram showing the power value of radio waves according to the fourth embodiment.
  • FIG. 9 is a diagram for explaining a method of inputting signals of different phases to the power supply conductor according to the fifth embodiment.
  • FIG. 10 is a diagram for explaining a method of inputting signals of different phases to the power supply conductor according to the sixth embodiment.
  • Fig. 1 is a diagram showing a configuration example of an antenna according to the first embodiment.
  • antenna 1 includes unit structure 10a, unit structure 10b, unit structure 10c, and unit structure 10d.
  • the unit structure 10a includes a base 11, a first radiation conductor 21a, a second radiation conductor 22a, a third radiation conductor 23a, a fourth radiation conductor 24a, an internal conductor 31a, a first power supply conductor 41a, a second power supply conductor 42a, a third power supply conductor 43a, a fourth power supply conductor 44a, a first connecting conductor 51a, a second connecting conductor 52a, a third connecting conductor 53a, a fourth connecting conductor 54a, and a ground conductor 60.
  • the unit structure 10b includes a base 11, a first radiation conductor 21b, a second radiation conductor 22b, a third radiation conductor 23b, a fourth radiation conductor 24b, an internal conductor 31b, a first power supply conductor 41b, a second power supply conductor 42b, a third power supply conductor 43b, a fourth power supply conductor 44b, a first connecting conductor 51b, a second connecting conductor 52b, a third connecting conductor 53b, a fourth connecting conductor 54b, and a ground conductor 60.
  • the unit structure 10c includes a base 11, a first radiation conductor 21c, a second radiation conductor 22c, a third radiation conductor 23c, a fourth radiation conductor 24c, an internal conductor 31c, a first power supply conductor 41c, a second power supply conductor 42c, a third power supply conductor 43c, a fourth power supply conductor 44c, a first connecting conductor 51c, a second connecting conductor 52c, a third connecting conductor 53c, a fourth connecting conductor 54c, and a ground conductor 60.
  • the unit structure 10d includes a base 11, a first radiation conductor 21d, a second radiation conductor 22d, a third radiation conductor 23d, a fourth radiation conductor 24d, an internal conductor 31d, a first power supply conductor 41d, a second power supply conductor 42d, a third power supply conductor 43d, a fourth power supply conductor 44d, a first connecting conductor 51d, a second connecting conductor 52d, a third connecting conductor 53d, a fourth connecting conductor 54d, and a ground conductor 60.
  • Unit structures 10a to 10d have the same configuration.
  • Figure 2 is a diagram showing an example of the configuration of a unit structure according to the first embodiment.
  • the unit structure 10 includes a base 11, a first radiation conductor 21, a second radiation conductor 22, a third radiation conductor 23, a fourth radiation conductor 24, an internal conductor 31, a first power supply conductor 41, a second power supply conductor 42, a third power supply conductor 43, a fourth power supply conductor 44, a first connecting conductor 51, a second connecting conductor 52, a third connecting conductor 53, a fourth connecting conductor 54, and a ground conductor 60.
  • the base 11 may be formed of a dielectric material.
  • the base 11 may include, for example, either a ceramic material or a resin material.
  • the base 11 may be formed, for example, into a substantially rectangular prism, but is not limited to this.
  • the first radiation conductor 21 to the fourth radiation conductor 24 may each be formed of a conductive material.
  • the first radiation conductor 21 to the fourth radiation conductor 24 each function as a resonator.
  • the first radiation conductor 21 to the fourth radiation conductor 24 may be formed on the upper surface of the base 11.
  • the first radiation conductor 21 to the fourth radiation conductor 24 each extend in the XY plane.
  • the first radiation conductor 21 to the fourth radiation conductor 24 may each be formed at a distance from each other.
  • Each of the first radiation conductor 21 to the fourth radiation conductor 24 may be formed, for example, in the same shape.
  • Each of the first radiation conductor 21 to the fourth radiation conductor 24 may be formed, for example, in a substantially square shape, but is not limited to this.
  • each of the first radiation conductor 21 to the fourth radiation conductor 24 may be changed arbitrarily depending on the design.
  • four radiation conductors, the first radiation conductor 21 to the fourth radiation conductor 24, are formed, but the present disclosure is not limited to this.
  • the first radiation conductor 21 and the second radiation conductor 22 are aligned along a diagonal direction on the top surface of the base 11.
  • the first radiation conductor 21 and the third radiation conductor 23 are aligned along the X direction on the top surface of the base 11.
  • the first radiation conductor 21 and the fourth radiation conductor 24 are aligned along the Y direction on the top surface of the base 11.
  • the second radiation conductor 22 and the third radiation conductor 23 are aligned along the Y direction on the upper surface of the base 11.
  • the second radiation conductor 22 and the fourth radiation conductor 24 are aligned along the X direction on the upper surface of the base 11.
  • the third radiation conductor 23 and the fourth radiation conductor 24 are aligned diagonally on the top surface of the base 11.
  • the internal conductor 31 may be formed of a conductive material.
  • the internal conductor 31 may be formed inside the base 11.
  • the internal conductor 31 extends in the XY plane.
  • the internal conductor 31 may be formed, for example, in a substantially square shape, but is not limited to this.
  • the internal conductor 31 faces the first radiating conductor 21 to the fourth radiating conductor 24.
  • the internal conductor 31 is configured to capacitively connect each of the first radiating conductor 21 to the fourth radiating conductor 24. The strength of the capacitive coupling can be adjusted by adjusting the area of the internal conductor 31 and the distance between the internal conductor 31 and the first radiating conductor 21 to the fourth radiating conductor 24.
  • the ground conductor 60 may be formed of a conductive material.
  • the ground conductor 60 may be formed to extend over the entire lower surface of the base 11.
  • the ground conductor 60 may be electrically connected, for example, to a reference potential (e.g., ground).
  • the first power supply conductor 41 to the fourth power supply conductor 44 may be formed of a conductive material.
  • the first power supply conductor 41 to the fourth power supply conductor 44 may be a through-hole conductor or a via conductor formed from the upper surface to the lower surface of the base 11.
  • One end of the first power supply conductor 41 is electrically connected near the corner of the first radiation conductor 21.
  • the other end of the first power supply conductor 41 is electrically connected to an external device such as a power supply device (not shown).
  • One end of the second power supply conductor 42 is electrically connected near the corner of the second radiation conductor 22.
  • the other end of the second power supply conductor 42 is electrically connected to an external device such as a power supply device (not shown).
  • One end of the third power supply conductor 43 is electrically connected near the corner of the third radiation conductor 23.
  • the other end of the third power supply conductor 43 is electrically connected to an external device such as a power supply device (not shown).
  • One end of the fourth power supply conductor 44 is electrically connected near the corner of the fourth radiation conductor 24.
  • the other end of the fourth power supply conductor 44 is electrically connected to an external device such as a power supply device (not shown).
  • signals of different phases can be input to the first power supply conductor 41 to the fourth power supply conductor 44 from a power supply device or the like.
  • the first power supply conductor 41 to the fourth power supply conductor 44 can function as input ports to which signals are input.
  • the unit structure 10 has four input ports.
  • the first connecting conductor 51 to the fourth connecting conductor 54 may be formed of a conductive material.
  • the first connecting conductor 51 to the fourth connecting conductor 54 may be through-hole conductors or via conductors formed from the upper surface to the lower surface of the base 11.
  • One end of the first connecting conductor 51 is electrically connected to the first radiation conductor 21, outside the position to which one end of the first power supply conductor 41 is connected.
  • the other end of the first connecting conductor 51 is electrically connected to the ground conductor 60.
  • the number of first connecting conductors 51 includes, for example, two, but is not limited to this.
  • the number of first connecting conductors 51 may be, for example, one, or three or more.
  • One end of the second connecting conductor 52 is electrically connected to the second radiation conductor 22, outside the position to which one end of the second power supply conductor 42 is connected.
  • the other end of the second connecting conductor 52 is electrically connected to the ground conductor 60.
  • the number of second connecting conductors 52 may be, for example, two, but is not limited to this.
  • the number of second connecting conductors 52 may be, for example, one, or three or more.
  • One end of the third connecting conductor 53 is electrically connected to the third radiation conductor 23, outside the position to which one end of the third power supply conductor 43 is connected.
  • the other end of the third connecting conductor 53 is electrically connected to the ground conductor 60.
  • the number of third connecting conductors 53 includes, for example, two, but is not limited to this.
  • the number of third connecting conductors 53 may be, for example, one, or three or more.
  • One end of the fourth connecting conductor 54 is electrically connected to the fourth radiation conductor 24, outside the position to which one end of the fourth power supply conductor 44 is connected.
  • the other end of the fourth connecting conductor 54 is electrically connected to the ground conductor 60.
  • the number of fourth connecting conductors 54 may be, for example, two, but is not limited to this.
  • the number of fourth connecting conductors 54 may be, for example, one, or three or more.
  • the antenna 1 can be constructed by arranging unit structures 10 so that rotational symmetry occurs in the XY plane.
  • the antenna 1 is constructed by arranging unit structures 10a, 10b, 10c, and 10d in a square shape in the XY plane.
  • unit structure 10a and unit structure 10b are aligned along the X direction.
  • Unit structure 10a and unit structure 10d are aligned along the Y direction.
  • Unit structure 10a and unit structure 10c are aligned along the diagonal direction.
  • Unit structure 10b and unit structure 10c are aligned along the Y direction.
  • Unit structure 10b and unit structure 10d are aligned along the diagonal direction.
  • Unit structure 10c and unit structure 10d are aligned along the X direction.
  • the unit structures 10 arranged along the diagonal direction have the same shape.
  • the shape of unit structure 10a and the shape of unit structure 10c are the same.
  • the shape of unit structure 10b and the shape of unit structure 10d are the same.
  • the antenna 1 has 16 input ports, including the first power supply conductor 41a, the first power supply conductor 41b, the first power supply conductor 41c, the first power supply conductor 41d, the second power supply conductor 42a, the second power supply conductor 42b, the second power supply conductor 42c, the second power supply conductor 42d, the third power supply conductor 43a, the third power supply conductor 43b, the third power supply conductor 43c, the third power supply conductor 43d, the fourth power supply conductor 44a, the fourth power supply conductor 44b, the fourth power supply conductor 44c, and the fourth power supply conductor 44d.
  • the antenna 1 has 16 input ports, but the present disclosure is not limited to this.
  • the antenna 1 may have, for example, five or more input ports. A signal with an appropriate phase difference can be input to each input port of the antenna 1 so that a circularly polarized signal can be output.
  • signals with phase differences adjusted in 90° increments are input from the first power supply conductor 41a to the first power supply conductor 41d, from the second power supply conductor 42a to the second power supply conductor 42d, from the third power supply conductor 43a to the third power supply conductor 43d, and from the fourth power supply conductor 44a to the fourth power supply conductor 44d.
  • the antenna 1 is constructed by arranging a number of unit structures. An input signal with a phase difference set so that the antenna 1 can output circularly polarized radio waves is input to each of the power supply conductors of the multiple unit structures. This makes it possible for the first embodiment to realize a high isolation antenna compatible with circularly polarized waves.
  • Fig. 3 is a diagram for explaining the phase distribution of the input signal according to the second embodiment.
  • An input signal with a phase of 90° is input to the first power supply conductor 41a.
  • An input signal with a phase of -90° is input to the second power supply conductor 42a.
  • An input signal with a phase of 90° is input to the third power supply conductor 43a.
  • An input signal with a phase of -90° is input to the fourth power supply conductor 44a.
  • the phase difference between the input signals input to the first power supply conductor 41a and the fourth power supply conductor 44a is 180°.
  • the phase difference between the input signals input to the second power supply conductor 42a and the third power supply conductor 43a is 180°.
  • An input signal with a phase of -180° is input to the first power supply conductor 41b.
  • An input signal with a phase of 0° is input to the second power supply conductor 42b.
  • An input signal with a phase of 180° is input to the third power supply conductor 43b.
  • An input signal with a phase of 0° is input to the fourth power supply conductor 44b.
  • the phase difference between the input signals input to the first power supply conductor 41b and the fourth power supply conductor 44b is 180°.
  • the phase difference between the input signals input to the second power supply conductor 42b and the third power supply conductor 43b is 180°.
  • An input signal with a phase of 90° is input to the first power supply conductor 41c.
  • An input signal with a phase of -90° is input to the second power supply conductor 42c.
  • An input signal with a phase of 90° is input to the third power supply conductor 43c.
  • An input signal with a phase of -90° is input to the fourth power supply conductor 44c.
  • the phase difference between the input signals input to the first power supply conductor 41c and the fourth power supply conductor 44c is 180°.
  • the phase difference between the input signals input to the second power supply conductor 42c and the third power supply conductor 43c is 180°.
  • An input signal with a phase of -180° is input to the first power supply conductor 41d.
  • An input signal with a phase of 0° is input to the second power supply conductor 42d.
  • An input signal with a phase of 180° is input to the third power supply conductor 43d.
  • An input signal with a phase of 0° is input to the fourth power supply conductor 44d.
  • the phase difference between the input signals input to the first power supply conductor 41d and the fourth power supply conductor 44d is 180°.
  • the phase difference between the input signals input to the second power supply conductor 42d and the third power supply conductor 43d is 180°.
  • the antenna 1 can output left-handed circularly polarized radio waves by inputting an input signal to the third feed conductor 43a, the fourth feed conductor 44a, the first feed conductor 41b, the second feed conductor 42b, the third feed conductor 43c, the fourth feed conductor 44c, the first feed conductor 41d, and the second feed conductor 42d.
  • the antenna 1 can output right-handed circularly polarized radio waves by inputting an input signal to the first power supply conductor 41a, the second power supply conductor 42a, the third power supply conductor 43b, the fourth power supply conductor 44b, the first power supply conductor 41c, the fourth power supply conductor 44c, the third power supply conductor 43d, and the fourth power supply conductor 44d.
  • the phase distribution of the input signal input to each power supply conductor is set to have rotational symmetry in the XY plane.
  • the phase distribution of the input signal input to each power supply conductor is set to have 90° rotational symmetry.
  • the phase of the input signal input to each power supply conductor is set to a different value for left-handed and right-handed circular polarization. This makes it possible for the second embodiment to realize a high-isolation antenna compatible with left-handed and right-handed circular polarization.
  • FIG. 4 is a diagram for explaining the direction of the current vector in the unit structure corresponding to the left circularly polarized wave according to the third embodiment.
  • Current vector V1 is a vector that indicates the direction of the current flowing within unit structure 10a. As indicated by current vector V1, in unit structure 10a, the current flows in the direction from third power supply conductor 43a to fourth power supply conductor 44a.
  • Current vector V2 is a vector that indicates the direction of the current flowing within unit structure 10b. As indicated by current vector V2, in unit structure 10b, the current flows in the direction from second power supply conductor 42b to first power supply conductor 41b.
  • Current vector V3 is a vector that indicates the direction of the current flowing within unit structure 10c. As indicated by current vector V3, in unit structure 10c, the current flows in the direction from the third power supply conductor 43c to the fourth power supply conductor 44c.
  • Current vector V4 is a vector that indicates the direction of the current flowing within unit structure 10d. As indicated by current vector V4, in unit structure 10d, the current flows in the direction from second power supply conductor 42d to first power supply conductor 41d.
  • the direction indicated by current vector V1 is the same as the direction indicated by current vector V3.
  • the direction indicated by current vector V2 is the same as the direction indicated by current vector V4.
  • the direction of the current flowing through unit structures 10 lined up along the diagonal direction is the same.
  • the phase of the input signal input to each power supply conductor is set so that the current flowing through unit structures 10 lined up along the diagonal direction is not canceled out when antenna 1 outputs left-handed circularly polarized radio waves.
  • FIG. 5 is a diagram for explaining the direction of the current vector in a unit structure corresponding to right-handed circular polarization according to the third embodiment.
  • Current vector V11 is a vector that indicates the direction of current flowing within unit structure 10a. As indicated by current vector V11, in unit structure 10a, current flows in the direction from first power supply conductor 41a to second power supply conductor 42a.
  • Current vector V12 is a vector that indicates the direction of the current flowing within unit structure 10b. As indicated by current vector V12, in unit structure 10b, the current flows in the direction from the third power supply conductor 43b to the fourth power supply conductor 44b.
  • Current vector V13 is a vector that indicates the direction of the current flowing within unit structure 10c. As indicated by current vector V13, in unit structure 10c, the current flows in the direction from the first power supply conductor 41c to the second power supply conductor 42c.
  • Current vector V14 is a vector that indicates the direction of current flowing within unit structure 10d. As indicated by current vector V14, in unit structure 10d, current flows in the direction from third power supply conductor 43d to fourth power supply conductor 44d.
  • the direction indicated by current vector V11 is the same as the direction indicated by current vector V13.
  • the direction indicated by current vector V12 is the same as the direction indicated by current vector V14.
  • the direction of the current flowing through unit structures 10 lined up along the diagonal direction is the same.
  • the phase of the input signal input to each power supply conductor is set so that the current flowing through unit structures 10 lined up along the diagonal direction is not canceled out when antenna 1 outputs right-handed circularly polarized radio waves.
  • the direction of the current flowing through each unit structure is appropriately set to construct an antenna 1 that supports left-hand and right-hand circular polarization. This makes it possible for the third embodiment to more appropriately realize a high-isolation antenna that supports left-hand and right-hand circular polarization.
  • the power of the input signal input to each power supply conductor is not distributed equally, but is set according to the position of the power supply conductor, so that the peak power values are set to be the same in the case of left-handed circular polarization and right-handed circular polarization.
  • Fig. 6 is a diagram for explaining the power distribution of an input signal input to a power supply conductor according to the fourth embodiment.
  • the power ratio of the input signals input to the third power supply conductor 43a and the fourth power supply conductor 44a is 1, and the power ratio of the input signals input to the first power supply conductor 41a and the second power supply conductor 42a is 0.43.
  • the power of the input signals input to the third power supply conductor 43a and the fourth power supply conductor 44a is greater than the power of the input signals input to the first power supply conductor 41a and the second power supply conductor 42a.
  • the power ratio of the input signals input to the first power supply conductor 41b and the second power supply conductor 42b is 1, and the power ratio of the input signals input to the third power supply conductor 43b and the fourth power supply conductor 44b is 0.43.
  • the power of the input signals input to the first power supply conductor 41b and the second power supply conductor 42b is greater than the power of the input signals input to the third power supply conductor 43b and the fourth power supply conductor 44b.
  • the power ratio of the input signals input to the third power supply conductor 43c and the fourth power supply conductor 44c is 1, and the power ratio of the input signals input to the first power supply conductor 41c and the second power supply conductor 42c is 0.43. That is, the power of the input signals input to the third power supply conductor 43c and the fourth power supply conductor 44c is greater than the power of the input signals input to the first power supply conductor 41c and the second power supply conductor 42c.
  • the power ratio of the input signals input to the first power supply conductor 41d and the second power supply conductor 42d is 1, and the power ratio of the power input to the third power supply conductor 43d and the fourth power supply conductor 44d is 0.43.
  • the power of the input signals input to the first power supply conductor 41d and the second power supply conductor 42d is greater than the power of the input signals input to the third power supply conductor 43c and the fourth power supply conductor 44.
  • the power ratio between the input signal input to each of the first power supply conductors 41 and second power supply conductors 42 and the input signal input to each of the third power supply conductors 43 and fourth power supply conductors 44 is 1:0.43, but the present disclosure is not limited to this.
  • the power ratio between the input signal input to each of the first power supply conductors 41 and second power supply conductors 42 and the input signal input to each of the third power supply conductors 43 and fourth power supply conductors 44 may be set arbitrarily depending on the usage environment, etc.
  • Fig. 7 is a diagram showing the power value of the radio wave according to a comparative example of the fourth embodiment.
  • Fig. 8 is a diagram showing the power value of the radio wave according to the fourth embodiment.
  • Waveform W1 indicates the power value of right-handed circularly polarized radio waves output by antenna 1 when the power of the input signal input to each power feed conductor is uniform.
  • Waveform W2 indicates the power value of left-handed circularly polarized radio waves output by antenna 1 when the power of the input signal input to each power feed conductor is uniform.
  • waveforms W1 and W2 show, when the power of the input signal input to each power feed conductor is uniform, the power value of radio waves with a phase of 0° output by antenna 1 can differ between left-handed and right-handed circular polarization.
  • Waveform W3 indicates the power value of the right-handed circularly polarized radio wave output by antenna 1 when the power distribution of the input signal input to each power feed conductor is as shown in Figure 6.
  • Waveform W3 indicates the power value of the left-handed circularly polarized radio wave output by antenna 1 when the power distribution of the input signal input to each power feed conductor is as shown in Figure 6.
  • the power value of the radio wave with a phase of 0° output by antenna 1 can be the same in both the case of left-handed circular polarization and right-handed circular polarization.
  • the fourth embodiment adjusts the power ratio of the input signals input to each power supply conductor of each unit structure to a predetermined value. This allows the fourth embodiment to make the peak power value of the output radio waves approximately the same in the case of left-handed circular polarization and right-handed circular polarization.
  • FIG. 9 is a diagram for explaining a method for inputting signals of different phases to the power supply conductor according to the fifth embodiment.
  • a first distributor 71, a first distributor 72, a second distributor 81, a second distributor 82, a second distributor 83, a second distributor 84, a third distributor 91, a third distributor 92, a third distributor 93, a third distributor 94, a third distributor 95, a third distributor 96, a third distributor 97, and a third distributor 98 are arranged around the antenna 1.
  • an input signal is input to each power supply conductor of the antenna 1 via each distributor.
  • First distributor 71 and first distributor 72 are 90° hybrids (90° phase difference distributors). When first distributor 71 and first distributor 72 receive a signal, they are configured to output two signals whose phases differ by 90° from each other. In the fifth embodiment, two 90° hybrids are arranged around antenna 1.
  • Second distributor 81 to second distributor 84 are 0° phase difference distributors. That is, second distributor 81 to second distributor 84 are configured to output two signals of the same phase when they receive a signal. In the fifth embodiment, four 0° phase difference distributors are arranged around antenna 1.
  • Third distributor 91 to third distributor 98 are baluns (180° phase difference distributors). That is, third distributor 91 to third distributor 98 are configured to output two signals with a phase difference of 180° when they receive a signal. In the fifth embodiment, eight baluns are arranged around antenna 1.
  • the first distributor 71 is electromagnetically connected to wiring 101, through which an input signal from an external device is input.
  • the first distributor 71 and the second distributor 81 are electromagnetically connected by wiring 102.
  • the first distributor 71 and the second distributor 82 are electromagnetically connected by wiring 103.
  • the first distributor 71 is configured to output a signal with a phase of 90° to the second distributor 81, and to output a signal with a phase of 0° to the second distributor 82.
  • the second distributor 81 and the third distributor 91 are electromagnetically connected by wiring 104.
  • the second distributor 81 and the third distributor 93 are electromagnetically connected by wiring 105.
  • the second distributor 81 is configured to output a signal with a phase of 90° to the third distributor 91 and the third distributor 93.
  • the second distributor 82 and the third distributor 92 are electromagnetically connected by wiring 106.
  • the second distributor 82 and the third distributor 94 are electromagnetically connected by wiring 107.
  • the second distributor 82 is configured to output a signal with a phase of 0° to the third distributor 92 and the third distributor 94.
  • the third distributor 91 and the first power supply conductor 41a are electromagnetically connected by wiring 108.
  • the third distributor 91 and the second power supply conductor 42a are electromagnetically connected by wiring 109.
  • the third distributor 91 is configured to output a signal with a phase of 90° to the first power supply conductor 41a, and to output a signal with a phase of -90° to the second power supply conductor 42a.
  • the third distributor 92 and the third power supply conductor 43b are electromagnetically connected by wiring 110.
  • the third distributor 92 and the fourth power supply conductor 44b are electromagnetically connected by wiring 111.
  • the third distributor 92 is configured to output a signal with a phase of 180° to the third power supply conductor 43b and to output a signal with a phase of 0° to the fourth power supply conductor 44b.
  • the third distributor 93 and the first power supply conductor 41c are electromagnetically connected by wiring 112.
  • the third distributor 93 and the second power supply conductor 42c are electromagnetically connected by wiring 113.
  • the third distributor 93 is configured to output a signal with a phase of 90° to the first power supply conductor 41c, and to output a signal with a phase of -90° to the second power supply conductor 42c.
  • the third distributor 94 and the third power supply conductor 43d are electromagnetically connected by wiring 114.
  • the third distributor 94 and the fourth power supply conductor 44d are electromagnetically connected by wiring 115.
  • the third distributor 94 is configured to output a signal with a phase of 180° to the third power supply conductor 43d and a signal with a phase of 0° to the fourth power supply conductor 44d.
  • the first distributor 72 is electromagnetically connected to wiring 201, through which an input signal from an external device is input.
  • the first distributor 71 and the second distributor 83 are electromagnetically connected by wiring 202.
  • the first distributor 72 and the second distributor 84 are electromagnetically connected by wiring 203.
  • the first distributor 71 is configured to output a signal with a phase of 90° to the second distributor 83 and output a signal with a phase of 0° to the second distributor 84.
  • the second distributor 83 and the third distributor 95 are electromagnetically connected by wiring 204.
  • the second distributor 83 and the third distributor 97 are electromagnetically connected by wiring 205.
  • the second distributor 81 is configured to output a signal with a phase of 90° to the third distributor 95 and the third distributor 97.
  • the second distributor 84 and the third distributor 96 are electromagnetically connected by wiring 206.
  • the second distributor 84 and the third distributor 98 are electromagnetically connected by wiring 207.
  • the second distributor 84 is configured to output a signal with a phase of 0° to the third distributor 96 and the third distributor 98.
  • the third distributor 95 and the third power supply conductor 43a are electromagnetically connected by wiring 208.
  • the third distributor 95 and the fourth power supply conductor 44a are electromagnetically connected by wiring 209.
  • the third distributor 95 is configured to output a signal with a phase of 90° to the third power supply conductor 43a, and to output a signal with a phase of -90° to the fourth power supply conductor 44a.
  • the third distributor 96 and the first power supply conductor 41b are electromagnetically connected by wiring 210.
  • the third distributor 96 and the second power supply conductor 42b are electromagnetically connected by wiring 211.
  • the third distributor 92 is configured to output a signal with a phase of -180° to the first power supply conductor 41b, and to output a signal with a phase of 0° to the second power supply conductor 42b.
  • the third distributor 97 and the third power supply conductor 43c are electromagnetically connected by wiring 212.
  • the third distributor 97 and the fourth power supply conductor 44c are electromagnetically connected by wiring 213.
  • the third distributor 93 is configured to output a signal with a phase of 90° to the third power supply conductor 43c, and to output a signal with a phase of -90° to the fourth power supply conductor 44c.
  • the third distributor 98 and the first power supply conductor 41d are electromagnetically connected by wiring 214.
  • the third distributor 98 and the second power supply conductor 42d are electromagnetically connected by wiring 215.
  • the third distributor 94 is configured to output a signal with a phase of -180° to the first power supply conductor 41d and a signal with a phase of 0° to the fourth power supply conductor 44d.
  • each distributor by arranging each distributor as shown in FIG. 9, the phase distribution shown in FIG. 4 and FIG. 5 can be realized. Specifically, by inputting a signal to the first distributor 71, right-handed circular polarization can be realized as shown in FIG. 5. Also, by inputting a signal to the first distributor 72, left-handed circular polarization can be realized as shown in FIG. 4.
  • wiring 102 and wiring 103 are the same length. By making wiring 102 and wiring 103 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 104 and wiring 105 are the same length. By making wiring 104 and wiring 105 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 106 and wiring 107 are the same length. By making wiring 106 and wiring 107 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 108 and wiring 109 are the same length. By making wiring 108 and wiring 109 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 110 and wiring 111 are the same length. By making wiring 110 and wiring 111 the same length, it is possible to prevent a phase shift when signals flow through each wiring.
  • wiring 112 and wiring 113 are the same length. By making wiring 112 and wiring 113 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 114 and wiring 115 are the same length. By making wiring 114 and wiring 115 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 202 and wiring 203 are the same length. By making wiring 202 and wiring 203 the same length, it is possible to prevent a phase shift when signals flow through each wiring.
  • wiring 204 and wiring 205 are the same length. By making wiring 204 and wiring 205 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 206 and wiring 207 are the same length. By making wiring 206 and wiring 207 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 208 and wiring 209 are the same length. By making wiring 208 and wiring 209 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 210 and wiring 211 are the same length. By making wiring 210 and wiring 211 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 212 and wiring 213 are the same length. By making wiring 212 and wiring 213 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 214 and wiring 215 are the same length. By making wiring 214 and wiring 215 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • the fifth embodiment can appropriately emit left- or right-handed circularly polarized radio waves by inputting a signal to the antenna 1 using three types of distributors.
  • Fig. 10 is a diagram for explaining a method for inputting signals of different phases to the power supply conductor according to the sixth embodiment.
  • a first distributor 71, a first distributor 72, a second distributor 81, a second distributor 82, a second distributor 83, a second distributor 84, a second distributor 85, a second distributor 86, a second distributor 87, a second distributor 88, a third distributor 91, a third distributor 92, a third distributor 93, and a third distributor 94 are arranged around the antenna 1.
  • an input signal is input to each power supply conductor of the antenna 1 via each distributor.
  • two 90° hybrids are arranged around the antenna 1.
  • eight 0° phase difference splitters are arranged around the antenna 1.
  • Four baluns are arranged around the antenna 1.
  • the first distributor 71 is electromagnetically connected to wiring 301, through which an input signal from an external device is input.
  • the first distributor 71 and the third distributor 91 are electromagnetically connected by wiring 302.
  • the first distributor 71 and the third distributor 92 are electromagnetically connected by wiring 303.
  • the first distributor 71 is configured to output a signal with a phase of 90° to the third distributor 91, and to output a signal with a phase of 0° to the third distributor 92.
  • the third distributor 91 and the second distributor 81 are electromagnetically connected by wiring 304.
  • the third distributor 91 and the second distributor 82 are electromagnetically connected by wiring 305.
  • the third distributor 91 is configured to output a signal with a phase of 90° to the second distributor 81, and to output a signal with a phase of -90° to the second distributor 82.
  • the third distributor 92 and the second distributor 83 are electromagnetically connected by wiring 306.
  • the third distributor 92 and the second distributor 84 are electromagnetically connected by wiring 307.
  • the third distributor 92 is configured to output a signal with a phase of 180° to the second distributor 83, and to output a signal with a phase of 0° to the second distributor 84.
  • the second distributor 81 and the first power supply conductor 41a are electromagnetically connected by wiring 308.
  • the second distributor 81 and the first power supply conductor 41c are electromagnetically connected by wiring 309.
  • the second distributor 81 is configured to output a signal with a phase of 90° to the first power supply conductor 41a and the first power supply conductor 41c.
  • the second distributor 82 and the second power supply conductor 42a are electromagnetically connected by wiring 310.
  • the second distributor 82 and the second power supply conductor 42c are electromagnetically connected by wiring 311.
  • the second distributor 82 is configured to output a signal with a phase of 180° to the second power supply conductor 42a and the second power supply conductor 42c.
  • the second distributor 83 and the third power supply conductor 43b are electromagnetically connected by wiring 312.
  • the second distributor 83 and the third power supply conductor 43d are electromagnetically connected by wiring 313.
  • the second distributor 83 is configured to output a signal with a phase of 180° to the third power supply conductor 43b and the third power supply conductor 43d.
  • the second distributor 84 and the fourth power supply conductor 44b are electromagnetically connected by wiring 314.
  • the second distributor 84 and the fourth power supply conductor 44d are electromagnetically connected by wiring 315.
  • the second distributor 84 is configured to output a signal with a phase of 0° to the fourth power supply conductor 44b and the fourth power supply conductor 44d.
  • the first distributor 72 is electromagnetically connected to wiring 401, through which an input signal from an external device is input.
  • the first distributor 72 and the third distributor 93 are electromagnetically connected by wiring 402.
  • the first distributor 72 and the third distributor 94 are electromagnetically connected by wiring 403.
  • the first distributor 71 is configured to output a signal with a phase of 90° to the third distributor 93 and output a signal with a phase of 0° to the third distributor 94.
  • the third distributor 93 and the second distributor 85 are electromagnetically connected by wiring 404.
  • the third distributor 93 and the second distributor 86 are electromagnetically connected by wiring 405.
  • the third distributor 93 is configured to output a signal with a phase of -90° to the second distributor 85, and to output a signal with a phase of 90° to the second distributor 82.
  • the third distributor 94 and the second distributor 87 are electromagnetically connected by wiring 406.
  • the third distributor 94 and the second distributor 88 are electromagnetically connected by wiring 407.
  • the third distributor 94 is configured to output a signal with a phase of -180° to the second distributor 87, and to output a signal with a phase of 0° to the second distributor 88.
  • the second distributor 85 and the fourth power supply conductor 44a are electromagnetically connected by wiring 408.
  • the second distributor 85 and the fourth power supply conductor 44c are electromagnetically connected by wiring 409.
  • the second distributor 85 is configured to output a signal with a phase of -90° to the fourth power supply conductor 44a and the fourth power supply conductor 44c.
  • the second distributor 86 and the third power supply conductor 43a are electromagnetically connected by wiring 410.
  • the second distributor 86 and the third power supply conductor 43c are electromagnetically connected by wiring 411.
  • the second distributor 82 is configured to output a signal with a phase of 90° to the third power supply conductor 43a and the third power supply conductor 43c.
  • the second distributor 87 and the first power supply conductor 41b are electromagnetically connected by wiring 412.
  • the second distributor 87 and the first power supply conductor 41d are electromagnetically connected by wiring 413.
  • the second distributor 87 is configured to output a signal with a phase of -180° to the first power supply conductor 41b and the first power supply conductor 41d.
  • the second distributor 88 and the second power supply conductor 42b are electromagnetically connected by wiring 414.
  • the second distributor 88 and the second power supply conductor 42d are electromagnetically connected by wiring 415.
  • the second distributor 88 is configured to output a signal with a phase of 0° to the second power supply conductor 42b and the second power supply conductor 42d.
  • each distributor by arranging each distributor as shown in FIG. 10, the phase distribution shown in FIG. 4 and FIG. 5 can be realized. Specifically, by inputting a signal to the first distributor 71, right-hand circular polarization can be realized as shown in FIG. 5. Also, by inputting a signal to the first distributor 72, left-hand circular polarization can be realized as shown in FIG. 4.
  • wiring 302 and wiring 303 are the same length. By making wiring 302 and wiring 303 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 304 and wiring 305 are the same length. By making wiring 304 and wiring 305 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 306 and wiring 307 are the same length. By making wiring 306 and wiring 307 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 308 and wiring 309 are the same length. By making wiring 308 and wiring 309 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 310 and wiring 311 are the same length. By making wiring 310 and wiring 311 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 312 and wiring 313 are the same length. By making wiring 312 and wiring 313 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 314 and wiring 315 are the same length. By making wiring 314 and wiring 315 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 402 and wiring 403 are the same length. By making wiring 402 and wiring 403 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 404 and wiring 405 are the same length. By making wiring 404 and wiring 405 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 406 and wiring 407 are the same length. By making wiring 406 and wiring 407 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 408 and wiring 409 are the same length. By making wiring 408 and wiring 409 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 410 and wiring 411 are the same length. By making wiring 410 and wiring 411 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 412 and wiring 413 are the same length. By making wiring 412 and wiring 413 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • wiring 414 and wiring 415 are the same length. By making wiring 414 and wiring 315 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
  • the sixth embodiment by inputting a signal to the antenna 1 using three types of distributors, it is possible to appropriately emit left-handed or right-handed circularly polarized radio waves.
  • each distributor may be arranged inside the antenna 1.
  • the number of 90° phase difference splitters is preferably two or less. By limiting the number of 90° phase difference splitters to two or less, the device can be made more compact.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

This antenna includes a plurality of unit structures. The plurality of unit structures comprise a radiation conductor, a reference conductor, a first feed conductor configured to be electromagnetically connected by the radiation conductor, a second feed conductor configured to be electromagnetically connected by the radiation conductor, a third feed conductor configured to be electromagnetically connected by the radiation conductor, and a fourth feed conductor configured to be electromagnetically connected by the radiation conductor. The first feed conductor and the second feed conductor are configured such that signals having opposite phases to each other are inputted thereto, and the third feed conductor and the fourth feed conductor are configured such that signals having opposite phases to each other are inputted thereto.

Description

アンテナantenna
 本開示は、アンテナに関する。 This disclosure relates to antennas.
 2つのポートから入力を行うアンテナにおいて、2つのポートの信号の相互干渉を防ぐ、アイソレーションの高いアンテナが知られている。 For antennas that receive input from two ports, there are known antennas that have high isolation and prevent mutual interference between the signals of the two ports.
特開2020-78045号公報JP 2020-78045 A
 本開示のアンテナは、複数の単位構造を含み、複数の前記単位構造は、放射導体と、基準導体と、前記放射導体により電磁気的に接続するように構成されている第1給電導体と、前記放射導体により電磁気的に接続するように構成されている第2給電導体と、前記放射導体により電磁気的に接続するように構成されている第3給電導体と、前記放射導体により電磁気的に接続するように構成されている第4給電導体と、を備え、前記第1給電導体と前記第2給電導体とは互いに逆位相の信号が入力されるように構成され、前記第3給電導体と前記第4給電導体とは互いに逆位相の信号が入力されるように構成されている。 The antenna of the present disclosure includes a plurality of unit structures, each of which includes a radiating conductor, a reference conductor, a first power supply conductor configured to be electromagnetically connected by the radiating conductor, a second power supply conductor configured to be electromagnetically connected by the radiating conductor, a third power supply conductor configured to be electromagnetically connected by the radiating conductor, and a fourth power supply conductor configured to be electromagnetically connected by the radiating conductor, and the first power supply conductor and the second power supply conductor are configured to receive signals of opposite phases to each other, and the third power supply conductor and the fourth power supply conductor are configured to receive signals of opposite phases to each other.
 本開示のアンテナは、放射導体と、基準導体と、外部から入力信号が入力される5個以上の入力ポートと、を含み、前記入力ポートに入力される前記入力信号は円偏波可能な位相差が設けられている。 The antenna disclosed herein includes a radiation conductor, a reference conductor, and five or more input ports to which input signals are input from the outside, and the input signals input to the input ports are provided with a phase difference that allows them to be circularly polarized.
図1は、第1実施形態に係るアンテナの構成例を示す図である。FIG. 1 is a diagram showing an example of the configuration of an antenna according to the first embodiment. 図2は、第1実施形態に係る単位構造の構成例を示す図である。FIG. 2 is a diagram showing an example of the configuration of a unit structure according to the first embodiment. 図3は、第2実施形態に係る入力信号の位相分布を説明するための図である。FIG. 3 is a diagram for explaining a phase distribution of an input signal according to the second embodiment. 図4は、第3実施形態に係る左円偏波に対応した単位構造における電流ベクトルの向きを説明するための図である。FIG. 4 is a diagram for explaining the direction of a current vector in a unit structure corresponding to a left-handed circularly polarized wave according to the third embodiment. 図5は、第3実施形態に係る右円偏波に対応した単位構造における電流ベクトルの向きを説明するための図である。FIG. 5 is a diagram for explaining the direction of a current vector in a unit structure compatible with right-handed circular polarization according to the third embodiment. 図6は、第4実施形態に係る給電導体に入力される入力信号の電力分配を説明するための図である。FIG. 6 is a diagram for explaining power distribution of an input signal input to a power supply conductor according to the fourth embodiment. 図7は、第4実施形態の比較例に係る電波の電力値を示す図である。FIG. 7 is a diagram showing the power value of radio waves according to a comparative example of the fourth embodiment. 図8は、第4実施形態に係る電波の電力値を示す図である。FIG. 8 is a diagram showing the power value of radio waves according to the fourth embodiment. 図9は、第5実施形態に係る給電導体に異なる位相の信号を入力する方法を説明するための図である。FIG. 9 is a diagram for explaining a method of inputting signals of different phases to the power supply conductor according to the fifth embodiment. 図10は、第6実施形態に係る給電導体に異なる位相の信号を入力する方法を説明するための図である。FIG. 10 is a diagram for explaining a method of inputting signals of different phases to the power supply conductor according to the sixth embodiment.
 以下、添付図面を参照して、本発明に係る実施形態を詳細に説明する。なお、この実施形態により本開示が限定されるものではなく、また、以下の実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。 Below, an embodiment of the present invention will be described in detail with reference to the attached drawings. Note that the present disclosure is not limited to this embodiment, and in the following embodiments, the same parts are designated by the same reference numerals to avoid redundant description.
[第1実施形態]
(アンテナの構成)
 図1を用いて、第1実施形態に係るアンテナの構成例について説明する。図1は、第1実施形態に係るアンテナの構成例を示す図である。
[First embodiment]
(Antenna Configuration)
A configuration example of an antenna according to the first embodiment will be described with reference to Fig. 1. Fig. 1 is a diagram showing a configuration example of an antenna according to the first embodiment.
 図1に示すように、アンテナ1は、単位構造10aと、単位構造10bと、単位構造10cと、単位構造10dと、を含む。 As shown in FIG. 1, antenna 1 includes unit structure 10a, unit structure 10b, unit structure 10c, and unit structure 10d.
 単位構造10aは、基体11と、第1放射導体21aと、第2放射導体22aと、第3放射導体23aと、第4放射導体24aと、内部導体31aと、第1給電導体41aと、第2給電導体42aと、第3給電導体43aと、第4給電導体44aと、第1接続導体51aと、第2接続導体52aと、第3接続導体53aと、第4接続導体54aと、グラウンド導体60と、を備える。 The unit structure 10a includes a base 11, a first radiation conductor 21a, a second radiation conductor 22a, a third radiation conductor 23a, a fourth radiation conductor 24a, an internal conductor 31a, a first power supply conductor 41a, a second power supply conductor 42a, a third power supply conductor 43a, a fourth power supply conductor 44a, a first connecting conductor 51a, a second connecting conductor 52a, a third connecting conductor 53a, a fourth connecting conductor 54a, and a ground conductor 60.
 単位構造10bは、基体11と、第1放射導体21bと、第2放射導体22bと、第3放射導体23bと、第4放射導体24bと、内部導体31bと、第1給電導体41bと、第2給電導体42bと、第3給電導体43bと、第4給電導体44bと、第1接続導体51bと、第2接続導体52bと、第3接続導体53bと、第4接続導体54bと、グラウンド導体60と、を備える。 The unit structure 10b includes a base 11, a first radiation conductor 21b, a second radiation conductor 22b, a third radiation conductor 23b, a fourth radiation conductor 24b, an internal conductor 31b, a first power supply conductor 41b, a second power supply conductor 42b, a third power supply conductor 43b, a fourth power supply conductor 44b, a first connecting conductor 51b, a second connecting conductor 52b, a third connecting conductor 53b, a fourth connecting conductor 54b, and a ground conductor 60.
 単位構造10cは、基体11と、第1放射導体21cと、第2放射導体22cと、第3放射導体23cと、第4放射導体24cと、内部導体31cと、第1給電導体41cと、第2給電導体42cと、第3給電導体43cと、第4給電導体44cと、第1接続導体51cと、第2接続導体52cと、第3接続導体53cと、第4接続導体54cと、グラウンド導体60と、を備える。 The unit structure 10c includes a base 11, a first radiation conductor 21c, a second radiation conductor 22c, a third radiation conductor 23c, a fourth radiation conductor 24c, an internal conductor 31c, a first power supply conductor 41c, a second power supply conductor 42c, a third power supply conductor 43c, a fourth power supply conductor 44c, a first connecting conductor 51c, a second connecting conductor 52c, a third connecting conductor 53c, a fourth connecting conductor 54c, and a ground conductor 60.
 単位構造10dは、基体11と、第1放射導体21dと、第2放射導体22dと、第3放射導体23dと、第4放射導体24dと、内部導体31dと、第1給電導体41dと、第2給電導体42dと、第3給電導体43dと、第4給電導体44dと、第1接続導体51dと、第2接続導体52dと、第3接続導体53dと、第4接続導体54dと、グラウンド導体60と、を備える。 The unit structure 10d includes a base 11, a first radiation conductor 21d, a second radiation conductor 22d, a third radiation conductor 23d, a fourth radiation conductor 24d, an internal conductor 31d, a first power supply conductor 41d, a second power supply conductor 42d, a third power supply conductor 43d, a fourth power supply conductor 44d, a first connecting conductor 51d, a second connecting conductor 52d, a third connecting conductor 53d, a fourth connecting conductor 54d, and a ground conductor 60.
 単位構造10aから単位構造10dは、同様の構成を有している。図2は、第1実施形態に係る単位構造の構成例を示す図である。 Unit structures 10a to 10d have the same configuration. Figure 2 is a diagram showing an example of the configuration of a unit structure according to the first embodiment.
 単位構造10は、基体11と、第1放射導体21と、第2放射導体22と、第3放射導体23と、第4放射導体24と、内部導体31と、第1給電導体41と、第2給電導体42と、第3給電導体43と、第4給電導体44と、第1接続導体51と、第2接続導体52と、第3接続導体53と、第4接続導体54と、グラウンド導体60と、を備える。 The unit structure 10 includes a base 11, a first radiation conductor 21, a second radiation conductor 22, a third radiation conductor 23, a fourth radiation conductor 24, an internal conductor 31, a first power supply conductor 41, a second power supply conductor 42, a third power supply conductor 43, a fourth power supply conductor 44, a first connecting conductor 51, a second connecting conductor 52, a third connecting conductor 53, a fourth connecting conductor 54, and a ground conductor 60.
 基体11は、誘電体材料で形成され得る。基体11は、例えば、セラミック材料または樹脂材料のいずれかを含み得る。基体11は、例えば、略四角柱に形成され得るが、これに限定されない。 The base 11 may be formed of a dielectric material. The base 11 may include, for example, either a ceramic material or a resin material. The base 11 may be formed, for example, into a substantially rectangular prism, but is not limited to this.
 第1放射導体21から第4放射導体24は、それぞれ、導電性材料で形成され得る。第1放射導体21から第4放射導体24は、それぞれ、共振器として機能する。第1放射導体21から第4放射導体24は、基体11の上面に形成され得る。第1放射導体21から第4放射導体24は、それぞれ、XY平面に広がる。第1放射導体21から第4放射導体24は、それぞれ、互いに間隔を空けて形成され得る。第1放射導体21から第4放射導体24の各々は、例えば、同一形状に形成され得る。第1放射導体21から第4放射導体24の各々は、例えば、略正方形状に形成され得るが、これに限定されない。第1放射導体21から第4放射導体24の各々の形状は、設計に応じて任意に変更されてよい。また、本実施形態では、第1放射導体21から第4放射導体24の4つの放射導体が形成されているものとするが、本開示は、これに限定されない。本開示では、基体11の上面に形成される放射導体は、1つ以上であればよい。 The first radiation conductor 21 to the fourth radiation conductor 24 may each be formed of a conductive material. The first radiation conductor 21 to the fourth radiation conductor 24 each function as a resonator. The first radiation conductor 21 to the fourth radiation conductor 24 may be formed on the upper surface of the base 11. The first radiation conductor 21 to the fourth radiation conductor 24 each extend in the XY plane. The first radiation conductor 21 to the fourth radiation conductor 24 may each be formed at a distance from each other. Each of the first radiation conductor 21 to the fourth radiation conductor 24 may be formed, for example, in the same shape. Each of the first radiation conductor 21 to the fourth radiation conductor 24 may be formed, for example, in a substantially square shape, but is not limited to this. The shape of each of the first radiation conductor 21 to the fourth radiation conductor 24 may be changed arbitrarily depending on the design. In addition, in this embodiment, four radiation conductors, the first radiation conductor 21 to the fourth radiation conductor 24, are formed, but the present disclosure is not limited to this. In this disclosure, there may be one or more radiating conductors formed on the upper surface of the base 11.
 第1放射導体21と、第2放射導体22とは、基体11の上面において、対角線方向に沿って並ぶ。第1放射導体21と、第3放射導体23とは、基体11の上面において、X方向に沿って並ぶ。第1放射導体21と、第4放射導体24とは、基体11の上面において、Y方向に沿って並ぶ。 The first radiation conductor 21 and the second radiation conductor 22 are aligned along a diagonal direction on the top surface of the base 11. The first radiation conductor 21 and the third radiation conductor 23 are aligned along the X direction on the top surface of the base 11. The first radiation conductor 21 and the fourth radiation conductor 24 are aligned along the Y direction on the top surface of the base 11.
 第2放射導体22と、第3放射導体23とは、基体11の上面において、Y方向に沿って並ぶ。第2放射導体22と、第4放射導体24とは、基体11の上面において、X方向に沿って並ぶ。 The second radiation conductor 22 and the third radiation conductor 23 are aligned along the Y direction on the upper surface of the base 11. The second radiation conductor 22 and the fourth radiation conductor 24 are aligned along the X direction on the upper surface of the base 11.
 第3放射導体23と、第4放射導体24とは、基体11の上面において、対角線方向に沿って並ぶ。 The third radiation conductor 23 and the fourth radiation conductor 24 are aligned diagonally on the top surface of the base 11.
 内部導体31は、導電性材料で形成され得る。内部導体31は、基体11の内部に形成され得る。内部導体31は、XY平面に広がる。内部導体31は、例えば、略正方形状に形成され得るが、これに限定されない。内部導体31は、第1放射導体21から第4放射導体24と対向する。内部導体31は、第1放射導体21から第4放射導体24の各々を容量的に接続するように構成されている。内部導体31の面積と、内部導体31と、第1放射導体21から第4放射導体24との距離とを調整することにより、容量結合の強さを調整し得る。 The internal conductor 31 may be formed of a conductive material. The internal conductor 31 may be formed inside the base 11. The internal conductor 31 extends in the XY plane. The internal conductor 31 may be formed, for example, in a substantially square shape, but is not limited to this. The internal conductor 31 faces the first radiating conductor 21 to the fourth radiating conductor 24. The internal conductor 31 is configured to capacitively connect each of the first radiating conductor 21 to the fourth radiating conductor 24. The strength of the capacitive coupling can be adjusted by adjusting the area of the internal conductor 31 and the distance between the internal conductor 31 and the first radiating conductor 21 to the fourth radiating conductor 24.
 グラウンド導体60は、導電性材料で形成され得る。グラウンド導体60は、基体11の下面の全体に広がるように形成され得る。グラウンド導体60は、例えば、基準電位(例えば、グラウンド)により電気的に接続されている。 The ground conductor 60 may be formed of a conductive material. The ground conductor 60 may be formed to extend over the entire lower surface of the base 11. The ground conductor 60 may be electrically connected, for example, to a reference potential (e.g., ground).
 第1給電導体41から第4給電導体44は、導電性材料で形成され得る。第1給電導体41から第4給電導体44は、基体11の上面から下面にわたって形成されているスルーホール導体またはビア導体などであってよい。 The first power supply conductor 41 to the fourth power supply conductor 44 may be formed of a conductive material. The first power supply conductor 41 to the fourth power supply conductor 44 may be a through-hole conductor or a via conductor formed from the upper surface to the lower surface of the base 11.
 第1給電導体41は、一端が第1放射導体21の角部の近傍により電気的に接続されている。第1給電導体41は、他端が図示しない給電装置等の外部装置と電気的に接続されている。 One end of the first power supply conductor 41 is electrically connected near the corner of the first radiation conductor 21. The other end of the first power supply conductor 41 is electrically connected to an external device such as a power supply device (not shown).
 第2給電導体42は、一端が第2放射導体22の角部の近傍により電気的に接続されている。第2給電導体42は、他端が図示しない給電装置等の外部装置と電気的に接続されている。 One end of the second power supply conductor 42 is electrically connected near the corner of the second radiation conductor 22. The other end of the second power supply conductor 42 is electrically connected to an external device such as a power supply device (not shown).
 第3給電導体43は、一端が第3放射導体23の角部の近傍により電気的に接続されている。第3給電導体43は、他端が図示しない給電装置等の外部装置と電気的に接続されている。 One end of the third power supply conductor 43 is electrically connected near the corner of the third radiation conductor 23. The other end of the third power supply conductor 43 is electrically connected to an external device such as a power supply device (not shown).
 第4給電導体44は、一端が第4放射導体24の角部の近傍により電気的に接続されている。第4給電導体44は、他端が図示しない給電装置等の外部装置と電気的に接続されている。 One end of the fourth power supply conductor 44 is electrically connected near the corner of the fourth radiation conductor 24. The other end of the fourth power supply conductor 44 is electrically connected to an external device such as a power supply device (not shown).
 具体的には後述するが、第1給電導体41から第4給電導体44には、給電装置等からそれぞれ異なる位相の信号が入力され得る。第1給電導体41から第4給電導体44は、信号が入力される入力ポートとして機能し得る。すなわち、単位構造10は、4個の入力ポートを有する。 As will be described in detail later, signals of different phases can be input to the first power supply conductor 41 to the fourth power supply conductor 44 from a power supply device or the like. The first power supply conductor 41 to the fourth power supply conductor 44 can function as input ports to which signals are input. In other words, the unit structure 10 has four input ports.
 第1接続導体51から第4接続導体54は、導電性材料で形成され得る。第1接続導体51から第4接続導体54は、基体11の上面から下面にわたって形成されているスルーホール導体またはビア導体などであってよい。 The first connecting conductor 51 to the fourth connecting conductor 54 may be formed of a conductive material. The first connecting conductor 51 to the fourth connecting conductor 54 may be through-hole conductors or via conductors formed from the upper surface to the lower surface of the base 11.
 第1接続導体51は、一端が第1放射導体21において、第1給電導体41の一端が接続されている位置よりも外側により電気的に接続されている。第1接続導体51は、他端がグラウンド導体60により電気的に接続されている。第1接続導体51は、例えば、2つ含むが、これに限定されない。第1接続導体51は、例えば、1個であってもよいし、3個以上であってもよい。 One end of the first connecting conductor 51 is electrically connected to the first radiation conductor 21, outside the position to which one end of the first power supply conductor 41 is connected. The other end of the first connecting conductor 51 is electrically connected to the ground conductor 60. The number of first connecting conductors 51 includes, for example, two, but is not limited to this. The number of first connecting conductors 51 may be, for example, one, or three or more.
 第2接続導体52は、一端が第2放射導体22において、第2給電導体42の一端が接続されている位置よりも外側により電気的に接続されている。第2接続導体52は、他端がグラウンド導体60により電気的に接続されている。第2接続導体52は、例えば、2個含むが、これに限定されない。第2接続導体52は、例えば、1個であってもよいし、3個以上であってもよい。 One end of the second connecting conductor 52 is electrically connected to the second radiation conductor 22, outside the position to which one end of the second power supply conductor 42 is connected. The other end of the second connecting conductor 52 is electrically connected to the ground conductor 60. The number of second connecting conductors 52 may be, for example, two, but is not limited to this. The number of second connecting conductors 52 may be, for example, one, or three or more.
 第3接続導体53は、一端が第3放射導体23において、第3給電導体43の一端が接続されている位置よりも外側により電気的に接続されている。第3接続導体53は、他端がグラウンド導体60により電気的に接続されている。第3接続導体53は、例えば、2つ含むが、これに限定されない。第3接続導体53は、例えば、1個であってもよいし、3個以上であってもよい。 One end of the third connecting conductor 53 is electrically connected to the third radiation conductor 23, outside the position to which one end of the third power supply conductor 43 is connected. The other end of the third connecting conductor 53 is electrically connected to the ground conductor 60. The number of third connecting conductors 53 includes, for example, two, but is not limited to this. The number of third connecting conductors 53 may be, for example, one, or three or more.
 第4接続導体54は、一端が第4放射導体24において、第4給電導体44の一端が接続されている位置よりも外側により電気的に接続されている。第4接続導体54は、他端がグラウンド導体60により電気的に接続されている。第4接続導体54は、例えば、2つ含むが、これに限定されない。第4接続導体54は、例えば、1個であってもよいし、3個以上であってもよい。 One end of the fourth connecting conductor 54 is electrically connected to the fourth radiation conductor 24, outside the position to which one end of the fourth power supply conductor 44 is connected. The other end of the fourth connecting conductor 54 is electrically connected to the ground conductor 60. The number of fourth connecting conductors 54 may be, for example, two, but is not limited to this. The number of fourth connecting conductors 54 may be, for example, one, or three or more.
 再び図1を参照する。アンテナ1は、XY平面において、回転対称が生じるように単位構造10を並べることで構成され得る。図1に示す例では、アンテナ1は、単位構造10aと、単位構造10bと、単位構造10cと、単位構造10dとをXY平面において正方形状に配置することで構成されている。 Referring again to FIG. 1, the antenna 1 can be constructed by arranging unit structures 10 so that rotational symmetry occurs in the XY plane. In the example shown in FIG. 1, the antenna 1 is constructed by arranging unit structures 10a, 10b, 10c, and 10d in a square shape in the XY plane.
 具体的には、単位構造10aと、単位構造10bとは、X方向に沿って並ぶ。単位構造10aと、単位構造10dとは、Y方向に沿って並ぶ。単位構造10aと、単位構造10cとは、対角線方向に沿って並ぶ。 Specifically, unit structure 10a and unit structure 10b are aligned along the X direction. Unit structure 10a and unit structure 10d are aligned along the Y direction. Unit structure 10a and unit structure 10c are aligned along the diagonal direction.
 単位構造10bと、単位構造10cとは、Y方向に沿って並ぶ。単位構造10bと、単位構造10dとは、対角線方向に沿って並ぶ。 Unit structure 10b and unit structure 10c are aligned along the Y direction. Unit structure 10b and unit structure 10d are aligned along the diagonal direction.
 単位構造10cと、単位構造10dとは、X方向に沿って並ぶ。 Unit structure 10c and unit structure 10d are aligned along the X direction.
 また、本開示においては、対角線方向に沿って並ぶ単位構造10の形状は同じであることが好ましい。すなわち、単位構造10aの形状と、単位構造10cの形状とは、同じであることが好ましい。単位構造10bの形状と、単位構造10dの形状とは、同じであることが好ましい。 Furthermore, in the present disclosure, it is preferable that the unit structures 10 arranged along the diagonal direction have the same shape. In other words, it is preferable that the shape of unit structure 10a and the shape of unit structure 10c are the same. It is preferable that the shape of unit structure 10b and the shape of unit structure 10d are the same.
 アンテナ1は、第1給電導体41aと、第1給電導体41bと、第1給電導体41cと、第1給電導体41dと、第2給電導体42aと、第2給電導体42bと、第2給電導体42cと、第2給電導体42dと、第3給電導体43aと、第3給電導体43bと、第3給電導体43cと、第3給電導体43dと、第4給電導体44aと、第4給電導体44bと、第4給電導体44cと、第4給電導体44dと、16個の入力ポートを有する。アンテナ1は、16個の入力ポートを有しているが、本開示はこれに限定されない。アンテナ1は、例えば、5個以上の入力ポートを有していればよい。アンテナ1が有する各入力ポートには、円偏波の信号を出力することができるように適切な位相差を設けた信号が入力され得る。 The antenna 1 has 16 input ports, including the first power supply conductor 41a, the first power supply conductor 41b, the first power supply conductor 41c, the first power supply conductor 41d, the second power supply conductor 42a, the second power supply conductor 42b, the second power supply conductor 42c, the second power supply conductor 42d, the third power supply conductor 43a, the third power supply conductor 43b, the third power supply conductor 43c, the third power supply conductor 43d, the fourth power supply conductor 44a, the fourth power supply conductor 44b, the fourth power supply conductor 44c, and the fourth power supply conductor 44d. The antenna 1 has 16 input ports, but the present disclosure is not limited to this. The antenna 1 may have, for example, five or more input ports. A signal with an appropriate phase difference can be input to each input port of the antenna 1 so that a circularly polarized signal can be output.
 例えば、第1給電導体41aから第1給電導体41d、第2給電導体42aから第2給電導体42d、第3給電導体43aから第3給電導体43d、および第4給電導体44aから第4給電導体44dには、それぞれ、90°単位で位相差が調整された信号が入力される。 For example, signals with phase differences adjusted in 90° increments are input from the first power supply conductor 41a to the first power supply conductor 41d, from the second power supply conductor 42a to the second power supply conductor 42d, from the third power supply conductor 43a to the third power supply conductor 43d, and from the fourth power supply conductor 44a to the fourth power supply conductor 44d.
 上述のとおり、第1実施形態では、アンテナ1は、複数の単位構造を並べることで構成されている。そして、複数の単位構造の各給電導体には、アンテナ1が円偏波の電波を出力できるように位相差が設定された入力信号が入力される。これにより、第1実施形態は、円偏波に対応した高アイソレーションアンテナを実現することができる。 As described above, in the first embodiment, the antenna 1 is constructed by arranging a number of unit structures. An input signal with a phase difference set so that the antenna 1 can output circularly polarized radio waves is input to each of the power supply conductors of the multiple unit structures. This makes it possible for the first embodiment to realize a high isolation antenna compatible with circularly polarized waves.
[第2実施形態]
(入力信号の位相)
 図3を用いて、第2実施形態に係る入力信号の位相について説明する。図3は、第2実施形態に係る入力信号の位相分布を説明するための図である。
[Second embodiment]
(Phase of input signal)
The phase of the input signal according to the second embodiment will be described with reference to Fig. 3. Fig. 3 is a diagram for explaining the phase distribution of the input signal according to the second embodiment.
 第1給電導体41aには、位相が90°の入力信号が入力される。第2給電導体42aには、位相が-90°の入力信号が入力される。第3給電導体43aには、位相が90°の入力信号が入力される。第4給電導体44aには、位相が-90°の入力信号が入力される。第1給電導体41aと、第4給電導体44aとに入力される入力信号の位相差は、180°である。第2給電導体42aと、第3給電導体43aとに入力される入力信号の位相差は、180°である。 An input signal with a phase of 90° is input to the first power supply conductor 41a. An input signal with a phase of -90° is input to the second power supply conductor 42a. An input signal with a phase of 90° is input to the third power supply conductor 43a. An input signal with a phase of -90° is input to the fourth power supply conductor 44a. The phase difference between the input signals input to the first power supply conductor 41a and the fourth power supply conductor 44a is 180°. The phase difference between the input signals input to the second power supply conductor 42a and the third power supply conductor 43a is 180°.
 第1給電導体41bには、位相が-180°の入力信号が入力される。第2給電導体42bには、位相が0°の入力信号が入力される。第3給電導体43bには、位相が180°の入力信号が入力される。第4給電導体44bには、位相が0°の入力信号が入力される。第1給電導体41bと、第4給電導体44bとに入力される入力信号の位相差は、180°である。第2給電導体42bと、第3給電導体43bとに入力される入力信号の位相差は、180°である。 An input signal with a phase of -180° is input to the first power supply conductor 41b. An input signal with a phase of 0° is input to the second power supply conductor 42b. An input signal with a phase of 180° is input to the third power supply conductor 43b. An input signal with a phase of 0° is input to the fourth power supply conductor 44b. The phase difference between the input signals input to the first power supply conductor 41b and the fourth power supply conductor 44b is 180°. The phase difference between the input signals input to the second power supply conductor 42b and the third power supply conductor 43b is 180°.
 第1給電導体41cには、位相が90°の入力信号が入力される。第2給電導体42cには、位相が-90°の入力信号が入力される。第3給電導体43cには、位相が90°の入力信号が入力される。第4給電導体44cには、位相が-90°の入力信号が入力される。第1給電導体41cと、第4給電導体44cとに入力される入力信号の位相差は、180°である。第2給電導体42cと、第3給電導体43cとに入力される入力信号の位相差は、180°である。 An input signal with a phase of 90° is input to the first power supply conductor 41c. An input signal with a phase of -90° is input to the second power supply conductor 42c. An input signal with a phase of 90° is input to the third power supply conductor 43c. An input signal with a phase of -90° is input to the fourth power supply conductor 44c. The phase difference between the input signals input to the first power supply conductor 41c and the fourth power supply conductor 44c is 180°. The phase difference between the input signals input to the second power supply conductor 42c and the third power supply conductor 43c is 180°.
 第1給電導体41dには、位相が-180°の入力信号が入力される。第2給電導体42dには、位相が0°の入力信号が入力される。第3給電導体43dには、位相が180°の入力信号が入力される。第4給電導体44dには、位相が0°の入力信号が入力される。第1給電導体41dと、第4給電導体44dとに入力される入力信号の位相差は、180°である。第2給電導体42dと、第3給電導体43dとに入力される入力信号の位相差は、180°である。 An input signal with a phase of -180° is input to the first power supply conductor 41d. An input signal with a phase of 0° is input to the second power supply conductor 42d. An input signal with a phase of 180° is input to the third power supply conductor 43d. An input signal with a phase of 0° is input to the fourth power supply conductor 44d. The phase difference between the input signals input to the first power supply conductor 41d and the fourth power supply conductor 44d is 180°. The phase difference between the input signals input to the second power supply conductor 42d and the third power supply conductor 43d is 180°.
 アンテナ1は、第3給電導体43a、第4給電導体44a、第1給電導体41b、第2給電導体42b、第3給電導体43c、第4給電導体44c、第1給電導体41d、および第2給電導体42dに入力信号を入力することで、左円偏波の電波を出力し得る。 The antenna 1 can output left-handed circularly polarized radio waves by inputting an input signal to the third feed conductor 43a, the fourth feed conductor 44a, the first feed conductor 41b, the second feed conductor 42b, the third feed conductor 43c, the fourth feed conductor 44c, the first feed conductor 41d, and the second feed conductor 42d.
 アンテナ1は、第1給電導体41a、第2給電導体42a、第3給電導体43b、第4給電導体44b、第1給電導体41c、第4給電導体44c、第3給電導体43d、および第4給電導体44dに入力信号を入力することで、右円偏波の電波を出力し得る。 The antenna 1 can output right-handed circularly polarized radio waves by inputting an input signal to the first power supply conductor 41a, the second power supply conductor 42a, the third power supply conductor 43b, the fourth power supply conductor 44b, the first power supply conductor 41c, the fourth power supply conductor 44c, the third power supply conductor 43d, and the fourth power supply conductor 44d.
 各給電導体に入力される入力信号の位相分布は、XY平面において、回転対称性を持つように設定されている。図3に示す例では、各給電導体に入力される入力信号の位相分布は、90°の回転対称性を持つように設定されている。これらの位相は、90°ハイブリットやバランを組み合わせることで容易に実現できる。 The phase distribution of the input signal input to each power supply conductor is set to have rotational symmetry in the XY plane. In the example shown in Figure 3, the phase distribution of the input signal input to each power supply conductor is set to have 90° rotational symmetry. These phases can be easily achieved by combining a 90° hybrid or a balun.
 上述のとおり、第2実施形態は、左円偏波および右円偏波の場合とで、各給電導体に入力される入力信号の位相を異なる値に設定する。これにより、第2実施形態は、左円偏波および右円偏波に対応した高アイソレーションアンテナを実現することができる。 As described above, in the second embodiment, the phase of the input signal input to each power supply conductor is set to a different value for left-handed and right-handed circular polarization. This makes it possible for the second embodiment to realize a high-isolation antenna compatible with left-handed and right-handed circular polarization.
[第3実施形態]
(電流ベクトル)
 図4を用いて、第3実施形態に係る単位構造における電流ベクトルに向きについて説明する。図4は、第3実施形態に係る左円偏波に対応した単位構造における電流ベクトルの向きを説明するための図である。
[Third embodiment]
(current vector)
The direction of the current vector in the unit structure according to the third embodiment will be described with reference to Fig. 4. Fig. 4 is a diagram for explaining the direction of the current vector in the unit structure corresponding to the left circularly polarized wave according to the third embodiment.
 電流ベクトルV1は、単位構造10a内に流れる電流の方向を示すベクトルである。電流ベクトルV1が示すように、単位構造10aにおいて、電流は、第3給電導体43aから第4給電導体44aへ向かう方向に流れる。 Current vector V1 is a vector that indicates the direction of the current flowing within unit structure 10a. As indicated by current vector V1, in unit structure 10a, the current flows in the direction from third power supply conductor 43a to fourth power supply conductor 44a.
 電流ベクトルV2は、単位構造10b内に流れる電流の方向を示すベクトルである。電流ベクトルV2が示すように、単位構造10bにおいて、電流は、第2給電導体42bから第1給電導体41bへ向かう方向に流れる。 Current vector V2 is a vector that indicates the direction of the current flowing within unit structure 10b. As indicated by current vector V2, in unit structure 10b, the current flows in the direction from second power supply conductor 42b to first power supply conductor 41b.
 電流ベクトルV3は、単位構造10c内に流れる電流の方向を示すベクトルである。電流ベクトルV3が示すように、単位構造10cにおいて、電流は、第3給電導体43cから第4給電導体44cへ向かう方向に流れる。 Current vector V3 is a vector that indicates the direction of the current flowing within unit structure 10c. As indicated by current vector V3, in unit structure 10c, the current flows in the direction from the third power supply conductor 43c to the fourth power supply conductor 44c.
 電流ベクトルV4は、単位構造10d内に流れる電流の方向を示すベクトルである。電流ベクトルV4が示すように、単位構造10dにおいて、電流は、第2給電導体42dから第1給電導体41dへ向かう方向に流れる。 Current vector V4 is a vector that indicates the direction of the current flowing within unit structure 10d. As indicated by current vector V4, in unit structure 10d, the current flows in the direction from second power supply conductor 42d to first power supply conductor 41d.
 電流ベクトルV1が示す方向と、電流ベクトルV3が示す方向とは、同じである。電流ベクトルV2が示す方向と、電流ベクトルV4が示す方向とは、同じである。すなわち、アンテナ1が左円偏波の電波を出力する際に、対角線方向に沿って並ぶ単位構造10に流れる電流の方向は、同じである。言い換えれば、アンテナ1が左円偏波の電波を出力する際に、対角線方向に沿って並ぶ単位構造10に流れる電流が打ち消されないように、各給電導体に入力される入力信号の位相が設定されている。 The direction indicated by current vector V1 is the same as the direction indicated by current vector V3. The direction indicated by current vector V2 is the same as the direction indicated by current vector V4. In other words, when antenna 1 outputs left-handed circularly polarized radio waves, the direction of the current flowing through unit structures 10 lined up along the diagonal direction is the same. In other words, the phase of the input signal input to each power supply conductor is set so that the current flowing through unit structures 10 lined up along the diagonal direction is not canceled out when antenna 1 outputs left-handed circularly polarized radio waves.
 図5は、第3実施形態に係る右円偏波に対応した単位構造における電流ベクトルの向きを説明するための図である。 FIG. 5 is a diagram for explaining the direction of the current vector in a unit structure corresponding to right-handed circular polarization according to the third embodiment.
 電流ベクトルV11は、単位構造10a内に流れる電流の方向を示すベクトルである。電流ベクトルV11が示すように、単位構造10aにおいて、電流は、第1給電導体41aから第2給電導体42aへ向かう方向に流れる。 Current vector V11 is a vector that indicates the direction of current flowing within unit structure 10a. As indicated by current vector V11, in unit structure 10a, current flows in the direction from first power supply conductor 41a to second power supply conductor 42a.
 電流ベクトルV12は、単位構造10b内に流れる電流の方向を示すベクトルである。電流ベクトルV12が示すように、単位構造10bにおいて、電流は、第3給電導体43bから第4給電導体44bへ向かう方向に流れる。 Current vector V12 is a vector that indicates the direction of the current flowing within unit structure 10b. As indicated by current vector V12, in unit structure 10b, the current flows in the direction from the third power supply conductor 43b to the fourth power supply conductor 44b.
 電流ベクトルV13は、単位構造10c内に流れる電流の方向を示すベクトルである。電流ベクトルV13が示すように、単位構造10cにおいて、電流は、第1給電導体41cから第2給電導体42cへ向かう方向に流れる。 Current vector V13 is a vector that indicates the direction of the current flowing within unit structure 10c. As indicated by current vector V13, in unit structure 10c, the current flows in the direction from the first power supply conductor 41c to the second power supply conductor 42c.
 電流ベクトルV14は、単位構造10d内に流れる電流の方向を示すベクトルである。電流ベクトルV14が示すように、単位構造10dにおいて、電流は、第3給電導体43dから第4給電導体44dへ向かう方向に流れる。 Current vector V14 is a vector that indicates the direction of current flowing within unit structure 10d. As indicated by current vector V14, in unit structure 10d, current flows in the direction from third power supply conductor 43d to fourth power supply conductor 44d.
 電流ベクトルV11が示す方向と、電流ベクトルV13が示す方向とは、同じである。電流ベクトルV12が示す方向と、電流ベクトルV14が示す方向とは、同じである。すなわち、アンテナ1が右円偏波の電波を出力する際に、対角線方向に沿って並ぶ単位構造10に流れる電流の方向は、同じである。言い換えれば、アンテナ1が右円偏波の電波を出力する際に、対角線方向に沿って並ぶ単位構造10に流れる電流が打ち消されないように、各給電導体に入力される入力信号の位相が設定されている。 The direction indicated by current vector V11 is the same as the direction indicated by current vector V13. The direction indicated by current vector V12 is the same as the direction indicated by current vector V14. In other words, when antenna 1 outputs right-handed circularly polarized radio waves, the direction of the current flowing through unit structures 10 lined up along the diagonal direction is the same. In other words, the phase of the input signal input to each power supply conductor is set so that the current flowing through unit structures 10 lined up along the diagonal direction is not canceled out when antenna 1 outputs right-handed circularly polarized radio waves.
 上述のとおり、第3実施形態は、各単位構造に流れる電流の向きを適切に設定することで左円偏波および右円偏波に対応するアンテナ1を構成する。これにより、第3実施形態は、左円偏波および右円偏波に対応した高アイソレーションアンテナをより適切に実現することができる。 As described above, in the third embodiment, the direction of the current flowing through each unit structure is appropriately set to construct an antenna 1 that supports left-hand and right-hand circular polarization. This makes it possible for the third embodiment to more appropriately realize a high-isolation antenna that supports left-hand and right-hand circular polarization.
[第4実施形態]
 第4実施形態では、各給電導体に入力される入力信号の電力を均等に分配せずに、給電導体の位置に応じた電力することで、左円偏波の場合と右円偏波の場合とでピーク電力値を同じになるように設定する。
[Fourth embodiment]
In the fourth embodiment, the power of the input signal input to each power supply conductor is not distributed equally, but is set according to the position of the power supply conductor, so that the peak power values are set to be the same in the case of left-handed circular polarization and right-handed circular polarization.
(電力分配)
 図6を用いて、第4実施形態に係る給電導体に入力される入力信号の電力分配について説明する。図6は、第4実施形態に係る給電導体に入力される入力信号の電力分配を説明するための図である。
(Power distribution)
The power distribution of an input signal input to a power supply conductor according to the fourth embodiment will be described with reference to Fig. 6. Fig. 6 is a diagram for explaining the power distribution of an input signal input to a power supply conductor according to the fourth embodiment.
 図6に示すように、単位構造10aにおいては、第3給電導体43aおよび第4給電導体44aに入力される入力信号の電力比は1であり、第1給電導体41aおよび第2給電導体42aに入力信号の電力比は0.43である。すなわち、第3給電導体43aおよび第4給電導体44aに入力される入力信号の電力は、第1給電導体41aおよび第2給電導体42aに入力される入力信号の電力よりも大きい。 As shown in FIG. 6, in the unit structure 10a, the power ratio of the input signals input to the third power supply conductor 43a and the fourth power supply conductor 44a is 1, and the power ratio of the input signals input to the first power supply conductor 41a and the second power supply conductor 42a is 0.43. In other words, the power of the input signals input to the third power supply conductor 43a and the fourth power supply conductor 44a is greater than the power of the input signals input to the first power supply conductor 41a and the second power supply conductor 42a.
 単位構造10bにおいては、第1給電導体41bおよび第2給電導体42bに入力される入力信号の電力比は1であり、第3給電導体43bおよび第4給電導体44bに入力される入力信号の電力比は0.43である。すなわち、第1給電導体41bおよび第2給電導体42bに入力される入力信号の電力は、第3給電導体43bおよび第4給電導体44bに入力される入力信号の電力よりも大きい。 In unit structure 10b, the power ratio of the input signals input to the first power supply conductor 41b and the second power supply conductor 42b is 1, and the power ratio of the input signals input to the third power supply conductor 43b and the fourth power supply conductor 44b is 0.43. In other words, the power of the input signals input to the first power supply conductor 41b and the second power supply conductor 42b is greater than the power of the input signals input to the third power supply conductor 43b and the fourth power supply conductor 44b.
 単位構造10cにおいては、第3給電導体43cおよび第4給電導体44cに入力される入力信号の電力比は1であり、第1給電導体41cおよび第2給電導体42cに入力される入力信号の電力比は0.43である。すなわち、第3給電導体43cおよび第4給電導体44cに入力される入力信号の電力は、第1給電導体41cおよび第2給電導体42cに入力される入力信号の電力よりも大きい。 In unit structure 10c, the power ratio of the input signals input to the third power supply conductor 43c and the fourth power supply conductor 44c is 1, and the power ratio of the input signals input to the first power supply conductor 41c and the second power supply conductor 42c is 0.43. That is, the power of the input signals input to the third power supply conductor 43c and the fourth power supply conductor 44c is greater than the power of the input signals input to the first power supply conductor 41c and the second power supply conductor 42c.
 単位構造10dにおいては、第1給電導体41dおよび第2給電導体42dに入力される入力信号の電力比は1であり、第3給電導体43dおよび第4給電導体44dに入力される電力の電力比は0.43である。すなわち、第1給電導体41dおよび第2給電導体42dに入力される入力信号の電力は、第3給電導体43cおよび第4給電導体44に入力される入力信号の電力よりも大きい。 In unit structure 10d, the power ratio of the input signals input to the first power supply conductor 41d and the second power supply conductor 42d is 1, and the power ratio of the power input to the third power supply conductor 43d and the fourth power supply conductor 44d is 0.43. In other words, the power of the input signals input to the first power supply conductor 41d and the second power supply conductor 42d is greater than the power of the input signals input to the third power supply conductor 43c and the fourth power supply conductor 44.
 なお、第4実施形態では、各第1給電導体41および各第2給電導体42に入力される入力信号と、各第3給電導体43および各第4給電導体44に入力される入力信号との電力比は、1:0.43であるものとしたが、本開示はこれに限定されない。各第1給電導体41および各第2給電導体42に入力される入力信号と、各第3給電導体43および各第4給電導体44に入力さえる入力信号との電力比は、使用環境などに応じて任意に設定してよい。 In the fourth embodiment, the power ratio between the input signal input to each of the first power supply conductors 41 and second power supply conductors 42 and the input signal input to each of the third power supply conductors 43 and fourth power supply conductors 44 is 1:0.43, but the present disclosure is not limited to this. The power ratio between the input signal input to each of the first power supply conductors 41 and second power supply conductors 42 and the input signal input to each of the third power supply conductors 43 and fourth power supply conductors 44 may be set arbitrarily depending on the usage environment, etc.
(電力値)
 第4実施形態に係るアンテナ1が放射する電波の電力値について説明する。図7は、第4実施形態の比較例に係る電波の電力値を示す図である。図8は、第4実施形態に係る電波の電力値を示す図である。
(Power value)
The power value of the radio wave radiated by the antenna 1 according to the fourth embodiment will be described. Fig. 7 is a diagram showing the power value of the radio wave according to a comparative example of the fourth embodiment. Fig. 8 is a diagram showing the power value of the radio wave according to the fourth embodiment.
 図7は、横軸が位相[deg]を示し、縦軸が電力値[dB]を示す。波形W1は、各給電導体に入力される入力信号の電力が均一である場合に、アンテナ1が出力する右円偏波の電波の電力値を示す。波形W2は、各給電導体に入力される入力信号の電力が均一である場合に、アンテナ1が出力する左円偏波の電波の電力値を示す。波形W1と、波形W2とが示すように、各給電導体に入力される入力信号の電力が均一の場合には、アンテナ1が出力する位相が0°の電波の電力値が左円偏波の場合と右円偏波の場合とで、異なり得る。 In Figure 7, the horizontal axis indicates phase [deg] and the vertical axis indicates power value [dB]. Waveform W1 indicates the power value of right-handed circularly polarized radio waves output by antenna 1 when the power of the input signal input to each power feed conductor is uniform. Waveform W2 indicates the power value of left-handed circularly polarized radio waves output by antenna 1 when the power of the input signal input to each power feed conductor is uniform. As waveforms W1 and W2 show, when the power of the input signal input to each power feed conductor is uniform, the power value of radio waves with a phase of 0° output by antenna 1 can differ between left-handed and right-handed circular polarization.
 図8は、横軸が位相[deg]を示し、縦軸が電力値[dB]を示す。波形W3は、各給電導体に入力される入力信号の電力の分布が図6に示す場合に、アンテナ1が出力する右円偏波の電波の電力値を示す。波形W3は、各給電導体に入力される入力信号の電力の分布が図6に示す場合に、アンテナ1が出力する左円偏波の電波の電力値を示す。波形W3と、波形W4とが示すように、各給電導体に入力される入力信号の電力の分布が図6に示すように設定されている場合には、アンテナ1が出力する位相が0°の電波の電力値が左円偏波の場合と右円偏波の場合とで、同じになり得る。 In Figure 8, the horizontal axis indicates phase [deg] and the vertical axis indicates power value [dB]. Waveform W3 indicates the power value of the right-handed circularly polarized radio wave output by antenna 1 when the power distribution of the input signal input to each power feed conductor is as shown in Figure 6. Waveform W3 indicates the power value of the left-handed circularly polarized radio wave output by antenna 1 when the power distribution of the input signal input to each power feed conductor is as shown in Figure 6. As shown by waveforms W3 and W4, when the power distribution of the input signal input to each power feed conductor is set as shown in Figure 6, the power value of the radio wave with a phase of 0° output by antenna 1 can be the same in both the case of left-handed circular polarization and right-handed circular polarization.
 上述のとおり、第4実施形態は、各単位構造の各給電導体に入力される入力信号の電力比を所定の値に調整する。これにより、第4実施形態は、左円偏波の場合と、右円偏波の場合とで出力する電波の電力のピーク値を略同じにすることができる。 As described above, the fourth embodiment adjusts the power ratio of the input signals input to each power supply conductor of each unit structure to a predetermined value. This allows the fourth embodiment to make the peak power value of the output radio waves approximately the same in the case of left-handed circular polarization and right-handed circular polarization.
[第5実施形態]
 図9を用いて、第5実施形態に係る給電導体に異なる位相の信号を入力する方法について説明する。図9は、第5実施形態に係る給電導体に異なる位相の信号を入力する方法を説明するための図である。
[Fifth embodiment]
A method for inputting signals of different phases to the power supply conductor according to the fifth embodiment will be described with reference to Fig. 9. Fig. 9 is a diagram for explaining a method for inputting signals of different phases to the power supply conductor according to the fifth embodiment.
 図9に示すように、第5実施形態では、アンテナ1の周囲には、第1分配器71と、第1分配器72と、第2分配器81と、第2分配器82と、第2分配器83と、第2分配器84と、第3分配器91と、第3分配器92と、第3分配器93と、第3分配器94と、第3分配器95と、第3分配器96と、第3分配器97と、第3分配器98とが、配置されている。第5実施形態では、アンテナ1の各給電導体には、各分配器を介して入力信号が入力される。 As shown in FIG. 9, in the fifth embodiment, a first distributor 71, a first distributor 72, a second distributor 81, a second distributor 82, a second distributor 83, a second distributor 84, a third distributor 91, a third distributor 92, a third distributor 93, a third distributor 94, a third distributor 95, a third distributor 96, a third distributor 97, and a third distributor 98 are arranged around the antenna 1. In the fifth embodiment, an input signal is input to each power supply conductor of the antenna 1 via each distributor.
 第1分配器71および第1分配器72は、90°ハイブリッド(90°位相差分配器)である。第1分配器71および第1分配器72は、信号を受けると、互いに位相が90°異なる2つの信号を出力するように構成されている。第5実施形態では、アンテナ1の周囲には、90°ハイブリッドが2個配置されている。 First distributor 71 and first distributor 72 are 90° hybrids (90° phase difference distributors). When first distributor 71 and first distributor 72 receive a signal, they are configured to output two signals whose phases differ by 90° from each other. In the fifth embodiment, two 90° hybrids are arranged around antenna 1.
 第2分配器81から第2分配器84は、0°位相差分配器である。すなわち、第2分配器81から第2分配器84は、信号を受けると、同じ位相の2つの信号を出力するように構成されている。第5実施形態では、アンテナ1の周囲には、0°位相差分配器が4個配置されている。 Second distributor 81 to second distributor 84 are 0° phase difference distributors. That is, second distributor 81 to second distributor 84 are configured to output two signals of the same phase when they receive a signal. In the fifth embodiment, four 0° phase difference distributors are arranged around antenna 1.
 第3分配器91から第3分配器98は、バラン(180°位相差分配器)である。すなわち、第3分配器91から第3分配器98は、信号を受けると、互いに位相が180°異なる2つの信号を出力するように構成されている。第5実施形態では、アンテナ1の周囲には、バランが8個配置されている。 Third distributor 91 to third distributor 98 are baluns (180° phase difference distributors). That is, third distributor 91 to third distributor 98 are configured to output two signals with a phase difference of 180° when they receive a signal. In the fifth embodiment, eight baluns are arranged around antenna 1.
 第1分配器71には、外部装置からの入力信号が入力される配線101が電磁気的に接続されている。第1分配器71と、第2分配器81との間は、配線102により電磁気的に接続されている。第1分配器71と、第2分配器82との間は、配線103により電磁気的に接続されている。第1分配器71は、配線101から位相が0°の入力信号が入力された場合、第2分配器81に位相が90°の信号を出力し、第2分配器82に位相が0°の信号を出力するように構成されている。 The first distributor 71 is electromagnetically connected to wiring 101, through which an input signal from an external device is input. The first distributor 71 and the second distributor 81 are electromagnetically connected by wiring 102. The first distributor 71 and the second distributor 82 are electromagnetically connected by wiring 103. When an input signal with a phase of 0° is input from the wiring 101, the first distributor 71 is configured to output a signal with a phase of 90° to the second distributor 81, and to output a signal with a phase of 0° to the second distributor 82.
 第2分配器81と、第3分配器91との間は、配線104により電磁気的に接続されている。第2分配器81と、第3分配器93との間は、配線105により電磁気的に接続されている。第2分配器81は、第3分配器91と、第3分配器93とに位相が90°の信号を出力するように構成されている。 The second distributor 81 and the third distributor 91 are electromagnetically connected by wiring 104. The second distributor 81 and the third distributor 93 are electromagnetically connected by wiring 105. The second distributor 81 is configured to output a signal with a phase of 90° to the third distributor 91 and the third distributor 93.
 第2分配器82と、第3分配器92との間は、配線106により電磁気的に接続されている。第2分配器82と、第3分配器94との間は、配線107により電磁気的に接続されている。第2分配器82は、第3分配器92と、第3分配器94とに位相が0°の信号を出力するように構成されている。 The second distributor 82 and the third distributor 92 are electromagnetically connected by wiring 106. The second distributor 82 and the third distributor 94 are electromagnetically connected by wiring 107. The second distributor 82 is configured to output a signal with a phase of 0° to the third distributor 92 and the third distributor 94.
 第3分配器91と、第1給電導体41aとの間は、配線108により電磁気的に接続されている。第3分配器91と、第2給電導体42aとの間は、配線109により電磁気的に接続されている。第3分配器91は、第1給電導体41aに位相が90°の信号を出力し、第2給電導体42aに位相が-90°の信号を出力するように構成されている。 The third distributor 91 and the first power supply conductor 41a are electromagnetically connected by wiring 108. The third distributor 91 and the second power supply conductor 42a are electromagnetically connected by wiring 109. The third distributor 91 is configured to output a signal with a phase of 90° to the first power supply conductor 41a, and to output a signal with a phase of -90° to the second power supply conductor 42a.
 第3分配器92と、第3給電導体43bとの間は、配線110により電磁気的に接続されている。第3分配器92と、第4給電導体44bとの間は、配線111により電磁気的に接続されている。第3分配器92は、第3給電導体43bに位相が180°の信号を出力し、第4給電導体44bに位相が0°の信号を出力するように構成されている。 The third distributor 92 and the third power supply conductor 43b are electromagnetically connected by wiring 110. The third distributor 92 and the fourth power supply conductor 44b are electromagnetically connected by wiring 111. The third distributor 92 is configured to output a signal with a phase of 180° to the third power supply conductor 43b and to output a signal with a phase of 0° to the fourth power supply conductor 44b.
 第3分配器93と、第1給電導体41cとの間は、配線112により電磁気的に接続されている。第3分配器93と、第2給電導体42cとの間は、配線113により電磁気的に接続されている。第3分配器93は、第1給電導体41cに位相が90°の信号を出力し、第2給電導体42cに位相が-90°の信号を出力するように構成されている。 The third distributor 93 and the first power supply conductor 41c are electromagnetically connected by wiring 112. The third distributor 93 and the second power supply conductor 42c are electromagnetically connected by wiring 113. The third distributor 93 is configured to output a signal with a phase of 90° to the first power supply conductor 41c, and to output a signal with a phase of -90° to the second power supply conductor 42c.
 第3分配器94と、第3給電導体43dとの間は、配線114により電磁気的に接続されている。第3分配器94と、第4給電導体44dとの間は、配線115により電磁気的に接続されている。第3分配器94は、第3給電導体43dに位相が180°の信号を出力し、第4給電導体44dに0°の信号を出力するように構成されている。 The third distributor 94 and the third power supply conductor 43d are electromagnetically connected by wiring 114. The third distributor 94 and the fourth power supply conductor 44d are electromagnetically connected by wiring 115. The third distributor 94 is configured to output a signal with a phase of 180° to the third power supply conductor 43d and a signal with a phase of 0° to the fourth power supply conductor 44d.
 第1分配器72には、外部装置からの入力信号が入力される配線201が電磁気的に接続されている。第1分配器71と、第2分配器83との間は、配線202により電磁気的に接続されている。第1分配器72と、第2分配器84との間は、配線203により電磁気的に接続されている。第1分配器71は、配線101から位相が0°の入力信号が入力された場合、第2分配器83に位相が90°の信号を出力し、第2分配器84に位相が0°の信号を出力するように構成されている。 The first distributor 72 is electromagnetically connected to wiring 201, through which an input signal from an external device is input. The first distributor 71 and the second distributor 83 are electromagnetically connected by wiring 202. The first distributor 72 and the second distributor 84 are electromagnetically connected by wiring 203. When an input signal with a phase of 0° is input from wiring 101, the first distributor 71 is configured to output a signal with a phase of 90° to the second distributor 83 and output a signal with a phase of 0° to the second distributor 84.
 第2分配器83と、第3分配器95との間は、配線204により電磁気的に接続されている。第2分配器83と、第3分配器97との間は、配線205により電磁気的に接続されている。第2分配器81は、第3分配器95と、第3分配器97とに位相が90°の信号を出力するように構成されている。 The second distributor 83 and the third distributor 95 are electromagnetically connected by wiring 204. The second distributor 83 and the third distributor 97 are electromagnetically connected by wiring 205. The second distributor 81 is configured to output a signal with a phase of 90° to the third distributor 95 and the third distributor 97.
 第2分配器84と、第3分配器96との間は、配線206により電磁気的に接続されている。第2分配器84と、第3分配器98との間は、配線207により電磁気的に接続されている。第2分配器84は、第3分配器96と、第3分配器98とに位相が0°の信号を出力するように構成されている。 The second distributor 84 and the third distributor 96 are electromagnetically connected by wiring 206. The second distributor 84 and the third distributor 98 are electromagnetically connected by wiring 207. The second distributor 84 is configured to output a signal with a phase of 0° to the third distributor 96 and the third distributor 98.
 第3分配器95と、第3給電導体43aとの間は、配線208により電磁気的に接続されている。第3分配器95と、第4給電導体44aとの間は、配線209により電磁気的に接続されている。第3分配器95は、第3給電導体43aに位相が90°の信号を出力し、第4給電導体44aに位相が-90°の信号を出力するように構成されている。 The third distributor 95 and the third power supply conductor 43a are electromagnetically connected by wiring 208. The third distributor 95 and the fourth power supply conductor 44a are electromagnetically connected by wiring 209. The third distributor 95 is configured to output a signal with a phase of 90° to the third power supply conductor 43a, and to output a signal with a phase of -90° to the fourth power supply conductor 44a.
 第3分配器96と、第1給電導体41bとの間は、配線210により電磁気的に接続されている。第3分配器96と、第2給電導体42bとの間は、配線211により電磁気的に接続されている。第3分配器92は、第1給電導体41bに位相が-180°の信号を出力し、第2給電導体42bに位相が0°の信号を出力するように構成されている。 The third distributor 96 and the first power supply conductor 41b are electromagnetically connected by wiring 210. The third distributor 96 and the second power supply conductor 42b are electromagnetically connected by wiring 211. The third distributor 92 is configured to output a signal with a phase of -180° to the first power supply conductor 41b, and to output a signal with a phase of 0° to the second power supply conductor 42b.
 第3分配器97と、第3給電導体43cとの間は、配線212により電磁気的に接続されている。第3分配器97と、第4給電導体44cとの間は、配線213により電磁気的に接続されている。第3分配器93は、第3給電導体43cに位相が90°の信号を出力し、第4給電導体44cに位相が-90°の信号を出力するように構成されている。 The third distributor 97 and the third power supply conductor 43c are electromagnetically connected by wiring 212. The third distributor 97 and the fourth power supply conductor 44c are electromagnetically connected by wiring 213. The third distributor 93 is configured to output a signal with a phase of 90° to the third power supply conductor 43c, and to output a signal with a phase of -90° to the fourth power supply conductor 44c.
 第3分配器98と、第1給電導体41dとの間は、配線214により電磁気的に接続されている。第3分配器98と、第2給電導体42dとの間は、配線215により電磁気的に接続されている。第3分配器94は、第1給電導体41dに位相が-180°の信号を出力し、第4給電導体44dに0°の信号を出力するように構成されている。 The third distributor 98 and the first power supply conductor 41d are electromagnetically connected by wiring 214. The third distributor 98 and the second power supply conductor 42d are electromagnetically connected by wiring 215. The third distributor 94 is configured to output a signal with a phase of -180° to the first power supply conductor 41d and a signal with a phase of 0° to the fourth power supply conductor 44d.
 すなわち、図9に示すように、各分配器を配置することにより、図4および図5に示す位相分布を実現することができる。具体的には、第1分配器71に信号を入力することで、図5に示すように、右円偏波を実現することができる。また、第1分配器72に信号を入力することで、図4に示すように、左円偏波を実現することができる。 In other words, by arranging each distributor as shown in FIG. 9, the phase distribution shown in FIG. 4 and FIG. 5 can be realized. Specifically, by inputting a signal to the first distributor 71, right-handed circular polarization can be realized as shown in FIG. 5. Also, by inputting a signal to the first distributor 72, left-handed circular polarization can be realized as shown in FIG. 4.
 配線102と、配線103とは、同じ長さであることが好ましい。配線102と、配線103とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 102 and wiring 103 are the same length. By making wiring 102 and wiring 103 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線104と、配線105とは、同じ長さであることが好ましい。配線104と、配線105とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 104 and wiring 105 are the same length. By making wiring 104 and wiring 105 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線106と、配線107とは、同じ長さであることが好ましい。配線106と、配線107とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 106 and wiring 107 are the same length. By making wiring 106 and wiring 107 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線108と、配線109とは、同じ長さであることが好ましい。配線108と、配線109とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 108 and wiring 109 are the same length. By making wiring 108 and wiring 109 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線110と、配線111とは、同じ長さであることが好ましい。配線110と、配線111とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 110 and wiring 111 are the same length. By making wiring 110 and wiring 111 the same length, it is possible to prevent a phase shift when signals flow through each wiring.
 配線112と、配線113とは、同じ長さであることが好ましい。配線112と、配線113とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 112 and wiring 113 are the same length. By making wiring 112 and wiring 113 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線114と、配線115とは、同じ長さであることが好ましい。配線114と、配線115とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 114 and wiring 115 are the same length. By making wiring 114 and wiring 115 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線202と、配線203とは、同じ長さであることが好ましい。配線202と、配線203とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 202 and wiring 203 are the same length. By making wiring 202 and wiring 203 the same length, it is possible to prevent a phase shift when signals flow through each wiring.
 配線204と、配線205とは、同じ長さであることが好ましい。配線204と、配線205とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 204 and wiring 205 are the same length. By making wiring 204 and wiring 205 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線206と、配線207とは、同じ長さであることが好ましい。配線206と、配線207とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 206 and wiring 207 are the same length. By making wiring 206 and wiring 207 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線208と、配線209とは、同じ長さであることが好ましい。配線208と、配線209とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 208 and wiring 209 are the same length. By making wiring 208 and wiring 209 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線210と、配線211とは、同じ長さであることが好ましい。配線210と、配線211とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 210 and wiring 211 are the same length. By making wiring 210 and wiring 211 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線212と、配線213とは、同じ長さであることが好ましい。配線212と、配線213とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 212 and wiring 213 are the same length. By making wiring 212 and wiring 213 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線214と、配線215とは、同じ長さであることが好ましい。配線214と、配線215とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 214 and wiring 215 are the same length. By making wiring 214 and wiring 215 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 上述のとおり、第5実施形態は、3種類の分配器を用いてアンテナ1に信号を入力することで、左円偏波または右円偏波の電波を適切に出射することができる。 As described above, the fifth embodiment can appropriately emit left- or right-handed circularly polarized radio waves by inputting a signal to the antenna 1 using three types of distributors.
[第6実施形態]
 図10を用いて、第6実施形態に係る給電導体に異なる位相の信号を入力する方法について説明する。図10は、第6実施形態に係る給電導体に異なる位相の信号を入力する方法を説明するための図である。
Sixth Embodiment
A method for inputting signals of different phases to the power supply conductor according to the sixth embodiment will be described with reference to Fig. 10. Fig. 10 is a diagram for explaining a method for inputting signals of different phases to the power supply conductor according to the sixth embodiment.
 図10に示すように、第6実施形態では、アンテナ1の周囲には、第1分配器71と、第1分配器72と、第2分配器81と、第2分配器82と、第2分配器83と、第2分配器84と、第2分配器85と、第2分配器86と、第2分配器87と、第2分配器88と、第3分配器91と、第3分配器92と、第3分配器93と、第3分配器94とが、配置されている。第6実施形態では、アンテナ1の各給電導体には、各分配器を介して入力信号が入力される。 As shown in FIG. 10, in the sixth embodiment, a first distributor 71, a first distributor 72, a second distributor 81, a second distributor 82, a second distributor 83, a second distributor 84, a second distributor 85, a second distributor 86, a second distributor 87, a second distributor 88, a third distributor 91, a third distributor 92, a third distributor 93, and a third distributor 94 are arranged around the antenna 1. In the sixth embodiment, an input signal is input to each power supply conductor of the antenna 1 via each distributor.
 第6実施形態では、アンテナ1の周囲には、90°ハイブリッドが2個配置されている。第6実施形態では、アンテナ1の周囲には、0°位相差分配器が8個配置されている。アンテナ1の周囲には、バランが4個配置されている。 In the sixth embodiment, two 90° hybrids are arranged around the antenna 1. In the sixth embodiment, eight 0° phase difference splitters are arranged around the antenna 1. Four baluns are arranged around the antenna 1.
 第1分配器71には、外部装置からの入力信号が入力される配線301が電磁気的に接続されている。第1分配器71と、第3分配器91との間は、配線302により電磁気的に接続されている。第1分配器71と、第3分配器92との間は、配線303により電磁気的に接続されている。第1分配器71は、配線301から位相が0°の入力信号が入力された場合、第3分配器91に位相が90°の信号を出力し、第3分配器92に位相が0°の信号を出力するように構成されている。 The first distributor 71 is electromagnetically connected to wiring 301, through which an input signal from an external device is input. The first distributor 71 and the third distributor 91 are electromagnetically connected by wiring 302. The first distributor 71 and the third distributor 92 are electromagnetically connected by wiring 303. When an input signal with a phase of 0° is input from the wiring 301, the first distributor 71 is configured to output a signal with a phase of 90° to the third distributor 91, and to output a signal with a phase of 0° to the third distributor 92.
 第3分配器91と、第2分配器81との間は、配線304により電磁気的に接続されている。第3分配器91と、第2分配器82との間は、配線305により電磁気的に接続されている。第3分配器91は、第2分配器81に位相が90°の信号を出力し、第2分配器82に位相が-90°の信号を出力するように構成されている。 The third distributor 91 and the second distributor 81 are electromagnetically connected by wiring 304. The third distributor 91 and the second distributor 82 are electromagnetically connected by wiring 305. The third distributor 91 is configured to output a signal with a phase of 90° to the second distributor 81, and to output a signal with a phase of -90° to the second distributor 82.
 第3分配器92と、第2分配器83との間は、配線306により電磁気的に接続されている。第3分配器92と、第2分配器84との間は、配線307により電磁気的に接続されている。第3分配器92は、第2分配器83に位相が180°の信号を出力し、第2分配器84に位相が0°の信号を出力するように構成されている。 The third distributor 92 and the second distributor 83 are electromagnetically connected by wiring 306. The third distributor 92 and the second distributor 84 are electromagnetically connected by wiring 307. The third distributor 92 is configured to output a signal with a phase of 180° to the second distributor 83, and to output a signal with a phase of 0° to the second distributor 84.
 第2分配器81と、第1給電導体41aとの間は、配線308により電磁気的に接続されている。第2分配器81と、第1給電導体41cとの間は、配線309により電磁気的に接続されている。第2分配器81は、第1給電導体41aと、第1給電導体41cとに位相が90°の信号を出力するように構成されている。 The second distributor 81 and the first power supply conductor 41a are electromagnetically connected by wiring 308. The second distributor 81 and the first power supply conductor 41c are electromagnetically connected by wiring 309. The second distributor 81 is configured to output a signal with a phase of 90° to the first power supply conductor 41a and the first power supply conductor 41c.
 第2分配器82と、第2給電導体42aとの間は、配線310により電磁気的に接続されている。第2分配器82と、第2給電導体42cとの間は、配線311により電磁気的に接続されている。第2分配器82は、第2給電導体42aと、第2給電導体42cとに位相が180°の信号を出力するように構成されている。 The second distributor 82 and the second power supply conductor 42a are electromagnetically connected by wiring 310. The second distributor 82 and the second power supply conductor 42c are electromagnetically connected by wiring 311. The second distributor 82 is configured to output a signal with a phase of 180° to the second power supply conductor 42a and the second power supply conductor 42c.
 第2分配器83と、第3給電導体43bとの間は、配線312により電磁気的に接続されている。第2分配器83と、第3給電導体43dとの間は、配線313により電磁気的に接続されている。第2分配器83は、第3給電導体43bと、第3給電導体43dとに位相が180°の信号を出力するように構成されている。 The second distributor 83 and the third power supply conductor 43b are electromagnetically connected by wiring 312. The second distributor 83 and the third power supply conductor 43d are electromagnetically connected by wiring 313. The second distributor 83 is configured to output a signal with a phase of 180° to the third power supply conductor 43b and the third power supply conductor 43d.
 第2分配器84と、第4給電導体44bとの間は、配線314により電磁気的に接続されている。第2分配器84と、第4給電導体44dとの間は、配線315により電磁気的に接続されている。第2分配器84は、第4給電導体44bと、第4給電導体44dとに位相が0°の信号を出力するように構成されている。 The second distributor 84 and the fourth power supply conductor 44b are electromagnetically connected by wiring 314. The second distributor 84 and the fourth power supply conductor 44d are electromagnetically connected by wiring 315. The second distributor 84 is configured to output a signal with a phase of 0° to the fourth power supply conductor 44b and the fourth power supply conductor 44d.
 第1分配器72には、外部装置からの入力信号が入力される配線401が電磁気的に接続されている。第1分配器72と、第3分配器93との間は、配線402により電磁気的に接続されている。第1分配器72と、第3分配器94との間は、配線403により電磁気的に接続されている。第1分配器71は、配線401から位相が0°の入力信号が入力された場合、第3分配器93に位相が90°の信号を出力し、第3分配器94に位相が0°の信号を出力するように構成されている。 The first distributor 72 is electromagnetically connected to wiring 401, through which an input signal from an external device is input. The first distributor 72 and the third distributor 93 are electromagnetically connected by wiring 402. The first distributor 72 and the third distributor 94 are electromagnetically connected by wiring 403. When an input signal with a phase of 0° is input from wiring 401, the first distributor 71 is configured to output a signal with a phase of 90° to the third distributor 93 and output a signal with a phase of 0° to the third distributor 94.
 第3分配器93と、第2分配器85との間は、配線404により電磁気的に接続されている。第3分配器93と、第2分配器86との間は、配線405により電磁気的に接続されている。第3分配器93は、第2分配器85に位相が-90°の信号を出力し、第2分配器82に位相が90°の信号を出力するように構成されている。 The third distributor 93 and the second distributor 85 are electromagnetically connected by wiring 404. The third distributor 93 and the second distributor 86 are electromagnetically connected by wiring 405. The third distributor 93 is configured to output a signal with a phase of -90° to the second distributor 85, and to output a signal with a phase of 90° to the second distributor 82.
 第3分配器94と、第2分配器87との間は、配線406により電磁気的に接続されている。第3分配器94と、第2分配器88との間は、配線407により電磁気的に接続されている。第3分配器94は、第2分配器87に位相が-180°の信号を出力し、第2分配器88に位相が0°の信号を出力するように構成されている。 The third distributor 94 and the second distributor 87 are electromagnetically connected by wiring 406. The third distributor 94 and the second distributor 88 are electromagnetically connected by wiring 407. The third distributor 94 is configured to output a signal with a phase of -180° to the second distributor 87, and to output a signal with a phase of 0° to the second distributor 88.
 第2分配器85と、第4給電導体44aとの間は、配線408により電磁気的に接続されている。第2分配器85と、第4給電導体44cとの間は、配線409により電磁気的に接続されている。第2分配器85は、第4給電導体44aと、第4給電導体44cとに位相が-90°の信号を出力するように構成されている。 The second distributor 85 and the fourth power supply conductor 44a are electromagnetically connected by wiring 408. The second distributor 85 and the fourth power supply conductor 44c are electromagnetically connected by wiring 409. The second distributor 85 is configured to output a signal with a phase of -90° to the fourth power supply conductor 44a and the fourth power supply conductor 44c.
 第2分配器86と、第3給電導体43aとの間は、配線410により電磁気的に接続されている。第2分配器86と、第3給電導体43cとの間は、配線411により電磁気的に接続されている。第2分配器82は、第3給電導体43aと、第3給電導体43cとに位相が90°の信号を出力するように構成されている。 The second distributor 86 and the third power supply conductor 43a are electromagnetically connected by wiring 410. The second distributor 86 and the third power supply conductor 43c are electromagnetically connected by wiring 411. The second distributor 82 is configured to output a signal with a phase of 90° to the third power supply conductor 43a and the third power supply conductor 43c.
 第2分配器87と、第1給電導体41bとの間は、配線412により電磁気的に接続されている。第2分配器87と、第1給電導体41dとの間は、配線413により電磁気的に接続されている。第2分配器87は、第1給電導体41bと、第1給電導体41dとに位相が-180°の信号を出力するように構成されている。 The second distributor 87 and the first power supply conductor 41b are electromagnetically connected by wiring 412. The second distributor 87 and the first power supply conductor 41d are electromagnetically connected by wiring 413. The second distributor 87 is configured to output a signal with a phase of -180° to the first power supply conductor 41b and the first power supply conductor 41d.
 第2分配器88と、第2給電導体42bとの間は、配線414により電磁気的に接続されている。第2分配器88と、第2給電導体42dとの間は、配線415により電磁気的に接続されている。第2分配器88は、第2給電導体42bと、第2給電導体42dとに位相が0°の信号を出力するように構成されている。 The second distributor 88 and the second power supply conductor 42b are electromagnetically connected by wiring 414. The second distributor 88 and the second power supply conductor 42d are electromagnetically connected by wiring 415. The second distributor 88 is configured to output a signal with a phase of 0° to the second power supply conductor 42b and the second power supply conductor 42d.
 すなわち、図10に示すように、各分配器を配置することにより、図4および図5に示す位相分布を実現することができる。具体的には、第1分配器71に信号を入力することで、図5に示すように、右円偏波を実現することができる。また、第1分配器72に信号を入力することで、図4に示すように。左円偏波を実現することができる。 In other words, by arranging each distributor as shown in FIG. 10, the phase distribution shown in FIG. 4 and FIG. 5 can be realized. Specifically, by inputting a signal to the first distributor 71, right-hand circular polarization can be realized as shown in FIG. 5. Also, by inputting a signal to the first distributor 72, left-hand circular polarization can be realized as shown in FIG. 4.
 配線302と、配線303とは、同じ長さであることが好ましい。配線302と、配線303とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 302 and wiring 303 are the same length. By making wiring 302 and wiring 303 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線304と、配線305とは、同じ長さであることが好ましい。配線304と、配線305とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 304 and wiring 305 are the same length. By making wiring 304 and wiring 305 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線306と、配線307とは、同じ長さであることが好ましい。配線306と、配線307とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 306 and wiring 307 are the same length. By making wiring 306 and wiring 307 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線308と、配線309とは、同じ長さであることが好ましい。配線308と、配線309とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 308 and wiring 309 are the same length. By making wiring 308 and wiring 309 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線310と、配線311とは、同じ長さであることが好ましい。配線310と、配線311とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 310 and wiring 311 are the same length. By making wiring 310 and wiring 311 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線312と、配線313とは、同じ長さであることが好ましい。配線312と、配線313とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 312 and wiring 313 are the same length. By making wiring 312 and wiring 313 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線314と、配線315とは、同じ長さであることが好ましい。配線314と、配線315とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 314 and wiring 315 are the same length. By making wiring 314 and wiring 315 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線402と、配線403とは、同じ長さであることが好ましい。配線402と、配線403とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 402 and wiring 403 are the same length. By making wiring 402 and wiring 403 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線404と、配線405とは、同じ長さであることが好ましい。配線404と、配線405とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 404 and wiring 405 are the same length. By making wiring 404 and wiring 405 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線406と、配線407とは、同じ長さであることが好ましい。配線406と、配線407とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 406 and wiring 407 are the same length. By making wiring 406 and wiring 407 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線408と、配線409とは、同じ長さであることが好ましい。配線408と、配線409とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 408 and wiring 409 are the same length. By making wiring 408 and wiring 409 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線410と、配線411とは、同じ長さであることが好ましい。配線410と、配線411とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 410 and wiring 411 are the same length. By making wiring 410 and wiring 411 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線412と、配線413とは、同じ長さであることが好ましい。配線412と、配線413とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 412 and wiring 413 are the same length. By making wiring 412 and wiring 413 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 配線414と、配線415とは、同じ長さであることが好ましい。配線414と、配線315とを同じ長さにすることにより、信号が各配線を流れた際に位相がずれてしまうことを防止することができる。 It is preferable that wiring 414 and wiring 415 are the same length. By making wiring 414 and wiring 315 the same length, it is possible to prevent phase shifts when signals flow through each wiring.
 上述のとおり、第6実施形態は、3種類の分配器を用いてアンテナ1に信号を入力することで、左円偏波または右円偏波の電波を適切に出射することができる。 As described above, in the sixth embodiment, by inputting a signal to the antenna 1 using three types of distributors, it is possible to appropriately emit left-handed or right-handed circularly polarized radio waves.
 なお、第5実施形態および第6実施形態では、アンテナ1の周囲に各分配器を配置するものとして説明したが、本開示はこれに限定されない。例えば、各分配器は、アンテナ1の内部に配置されていてもよい。 Note that, although the fifth and sixth embodiments have been described as each distributor being arranged around the antenna 1, the present disclosure is not limited to this. For example, each distributor may be arranged inside the antenna 1.
 第5実施形態および第6実施形態において、90°位相差分配器の数は、2個以下であることが好ましい。90°位相差分配器の数を2個以下にすることで、小型化することができる。 In the fifth and sixth embodiments, the number of 90° phase difference splitters is preferably two or less. By limiting the number of 90° phase difference splitters to two or less, the device can be made more compact.
 以上、本開示の実施形態を説明したが、これら実施形態の内容により本開示が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the contents of these embodiments. Furthermore, the components described above include those that a person skilled in the art can easily imagine, those that are substantially the same, and those that are within the so-called equivalent range. Furthermore, the components described above can be combined as appropriate. Furthermore, various omissions, substitutions, or modifications of the components can be made without departing from the spirit of the embodiments described above.
 1 アンテナ
 10 単位構造
 11 基体
 21 第1放射導体
 22 第2放射導体
 23 第3放射導体
 24 第4放射導体
 31 内部導体
 41 第1給電導体
 42 第2給電導体
 43 第3給電導体
 44 第4給電導体
 51 第1接続導体
 52 第2接続導体
 53 第3接続導体
 54 第4接続導体
 60 グラウンド導体
 71,72 第1分配器
 81,82,83,84,85,86,87,88 第2分配器
 91,92,93,94,95,96,97,98 第3分配器
REFERENCE SIGNS LIST 1 Antenna 10 Unit structure 11 Base 21 First radiation conductor 22 Second radiation conductor 23 Third radiation conductor 24 Fourth radiation conductor 31 Internal conductor 41 First power feed conductor 42 Second power feed conductor 43 Third power feed conductor 44 Fourth power feed conductor 51 First connecting conductor 52 Second connecting conductor 53 Third connecting conductor 54 Fourth connecting conductor 60 Ground conductor 71, 72 First divider 81, 82, 83, 84, 85, 86, 87, 88 Second divider 91, 92, 93, 94, 95, 96, 97, 98 Third divider

Claims (13)

  1.  複数の単位構造を含み、
     複数の前記単位構造は、
     放射導体と、
     基準導体と、
     前記放射導体により電磁気的に接続するように構成されている第1給電導体と、
     前記放射導体により電磁気的に接続するように構成されている第2給電導体と、
     前記放射導体により電磁気的に接続するように構成されている第3給電導体と、
     前記放射導体により電磁気的に接続するように構成されている第4給電導体と、
     を備え、
     前記第1給電導体と前記第2給電導体とは互いに逆位相の信号が入力されるように構成され、
     前記第3給電導体と前記第4給電導体とは互いに逆位相の信号が入力されるように構成されている、
     アンテナ。
    Contains a plurality of unit structures,
    The plurality of unit structures are
    A radiating conductor;
    A reference conductor;
    a first feed conductor configured to be electromagnetically connected by the radiation conductor;
    a second feed conductor configured to be electromagnetically connected by the radiation conductor;
    a third feed conductor configured to be electromagnetically connected by the radiation conductor;
    a fourth feed conductor configured to be electromagnetically connected by the radiation conductor;
    Equipped with
    The first power supply conductor and the second power supply conductor are configured to receive signals of opposite phases,
    The third power supply conductor and the fourth power supply conductor are configured to receive signals having opposite phases.
    antenna.
  2.  前記放射導体は、第1放射導体と、第2放射導体と、第3放射導体と、第4放射導体と、を含み、
     前記第1給電導体は、前記第1放射導体により電気的に接続するように構成され、
     前記第2給電導体は、前記第2放射導体により電気的に接続するように構成され、
     前記第3給電導体は、前記第3放射導体により電気的に接続するように構成され、
     前記第4給電導体は、前記第4放射導体により電気的に接続するように構成されている、
     請求項1に記載のアンテナ。
    the radiation conductor includes a first radiation conductor, a second radiation conductor, a third radiation conductor, and a fourth radiation conductor;
    the first feeding conductor is configured to be electrically connected by the first radiating conductor;
    the second feeding conductor is configured to be electrically connected by the second radiating conductor;
    the third feeding conductor is configured to be electrically connected by the third radiation conductor;
    the fourth feeding conductor is configured to be electrically connected by the fourth radiation conductor;
    2. The antenna of claim 1.
  3.  複数の前記単位構造は、第1平面において、回転対称となるように並べられている、
     請求項2に記載のアンテナ。
    The plurality of unit structures are arranged to be rotationally symmetric on a first plane.
    3. The antenna of claim 2.
  4.  4つの前記単位構造を含み、
     4つの前記単位構造の各々が備える前記第1給電導体、前記第2給電導体、前記第3給電導体、および前記第4給電導体に入力される信号の位相は、90°単位で調整されている、
     請求項3に記載のアンテナ。
    Contains four of the unit structures,
    the phases of signals input to the first power supply conductor, the second power supply conductor, the third power supply conductor, and the fourth power supply conductor included in each of the four unit structures are adjusted in 90° increments;
    4. The antenna of claim 3.
  5.  4つの前記単位構造の各々が備える前記第1給電導体、前記第2給電導体、前記第3給電導体、および前記第4給電導体に入力される信号の位相差の分布は、回転対称性を持つ、
     請求項4に記載のアンテナ。
    a distribution of phase differences of signals input to the first power supply conductor, the second power supply conductor, the third power supply conductor, and the fourth power supply conductor included in each of the four unit structures has rotational symmetry;
    5. The antenna of claim 4.
  6.  4つの前記単位構造を回転対称に正方形に並べた場合、対角に並ぶ前記単位構造は形状が同じであり、かつ電流ベクトルの向きが等しくなるように、前記第1給電導体、前記第2給電導体、前記第3給電導体、および前記第4給電導体に入力される信号の位相が調整されている、
     請求項4に記載のアンテナ。
    when the four unit structures are arranged in a rotationally symmetrical square, the unit structures arranged diagonally have the same shape, and the phases of signals input to the first power supply conductor, the second power supply conductor, the third power supply conductor, and the fourth power supply conductor are adjusted so that the directions of current vectors are the same.
    5. The antenna of claim 4.
  7.  前記単位構造において、前記電流ベクトルの向きと直交する対角ベクトル上に位置する前記第1給電導体、前記第2給電導体、前記第3給電導体、および前記第4給電導体に入力される信号の電力が、前記電流ベクトル上に位置する前記第1給電導体、前記第2給電導体、前記第3給電導体、および前記第4給電導体に入力される信号よりも大きい、
     請求項6に記載のアンテナ。
    In the unit structure, power of a signal input to the first power supply conductor, the second power supply conductor, the third power supply conductor, and the fourth power supply conductor located on a diagonal vector perpendicular to a direction of the current vector is greater than power of a signal input to the first power supply conductor, the second power supply conductor, the third power supply conductor, and the fourth power supply conductor located on the current vector.
    7. The antenna of claim 6.
  8.  信号を受けると同じ位相の2つの信号を出力するように構成されている第1分配器と、
     信号を受けると位相が90°異なる2つの信号を出力するように構成されている第2分配器と、
     信号を受けると位相が180°異なる2つの信号を出力するように構成されている第3分配器と、を含み、
     前記第1給電導体、前記第2給電導体、前記第3給電導体、および前記第4給電導体には、前記第1分配器、前記第2分配器、および前記第3分配器を介して信号が入力されるように構成されている、
     請求項1に記載のアンテナ。
    A first distributor configured to receive a signal and output two signals of the same phase;
    a second distributor configured to receive a signal and output two signals having a phase difference of 90°;
    a third distributor configured to receive a signal and output two signals having a phase difference of 180°;
    A signal is input to the first power supply conductor, the second power supply conductor, the third power supply conductor, and the fourth power supply conductor via the first divider, the second divider, and the third divider.
    2. The antenna of claim 1.
  9.  前記第2分配器は、2個以下である、
     請求項8に記載のアンテナ。
    The number of the second distributors is two or less.
    9. The antenna of claim 8.
  10.  複数の前記単位構造は、第1単位構造と、第2単位構造と、第3単位構造と、第4単位構造とを含み、
     前記第1分配器、前記第2分配器、および前記第3分配器を介して、
     第2単位構造の第3給電導体と、第4単位構造の第3給電導体には位相が180°の信号が入力され、
     前記第1単位構造の前記第1給電導体および前記第3給電導体と、前記第3単位構造の前記第1給電導体および前記第3給電導体には、位相が90°の信号が入力され、
     前記第2単位構造の前記第2給電導体および前記第4給電導体と、前記第4単位構造の前記第2給電導体および前記第4給電導体には、位相が0°の信号が入力され、
     前記第1単位構造の前記第2給電導体および前記第4給電導体と、前記第3単位構造の前記第2給電導体および前記第4給電導体には、位相が-90°の信号が入力され、
     前記第2単位構造の前記第1給電導体と、前記第4単位構造の第4給電導体には、位相が-180°の信号が入力されるように構成されている、
     請求項8に記載のアンテナ。
    the plurality of unit structures include a first unit structure, a second unit structure, a third unit structure, and a fourth unit structure,
    via the first distributor, the second distributor, and the third distributor,
    a signal having a phase of 180° is input to the third power supply conductor of the second unit structure and the third power supply conductor of the fourth unit structure;
    a signal having a phase of 90° is input to the first power supply conductor and the third power supply conductor of the first unit structure and the first power supply conductor and the third power supply conductor of the third unit structure;
    a signal having a phase of 0° is input to the second power supply conductor and the fourth power supply conductor of the second unit structure and the second power supply conductor and the fourth power supply conductor of the fourth unit structure;
    a signal having a phase of −90° is input to the second power supply conductor and the fourth power supply conductor of the first unit structure and the second power supply conductor and the fourth power supply conductor of the third unit structure;
    A signal having a phase of −180° is input to the first power supply conductor of the second unit structure and the fourth power supply conductor of the fourth unit structure.
    9. The antenna of claim 8.
  11.  複数の前記単位構造は、第1単位構造と、第2単位構造と、第3単位構造と、第4単位構造とを含み、
     前記第1単位構造の前記第1給電導体および前記第2給電導体とは、同じ前記第3分配器に電磁気的に接続され、
     前記第1単位構造の前記第3給電導体および前記第4給電導体とは、同じ前記第3分配器に電磁気的に接続され、
     前記第2単位構造の前記第1給電導体および前記第2給電導体とは、同じ前記第3分配器に電磁気的に接続され、
     前記第2単位構造の前記第3給電導体および前記第4給電導体とは、同じ前記第3分配器に電磁気的に接続され、
     前記第3単位構造の前記第1給電導体および前記第2給電導体とは、同じ前記第3分配器に電磁気的に接続され、
     前記第3単位構造の前記第3給電導体および前記第4給電導体とは、同じ前記第3分配器に電磁気的に接続され、
     前記第4単位構造の前記第1給電導体および前記第2給電導体とは、同じ前記第3分配器に電磁気的に接続され、
     前記第4単位構造の前記第3給電導体および前記第4給電導体とは、同じ前記第3分配器に電磁気的に接続されている、
     請求項8に記載のアンテナ。
    the plurality of unit structures include a first unit structure, a second unit structure, a third unit structure, and a fourth unit structure,
    The first power supply conductor and the second power supply conductor of the first unit structure are electromagnetically connected to the same third distributor;
    The third power supply conductor and the fourth power supply conductor of the first unit structure are electromagnetically connected to the same third distributor;
    The first power supply conductor and the second power supply conductor of the second unit structure are electromagnetically connected to the same third distributor;
    The third power supply conductor and the fourth power supply conductor of the second unit structure are electromagnetically connected to the same third distributor;
    The first power supply conductor and the second power supply conductor of the third unit structure are electromagnetically connected to the same third distributor;
    The third power supply conductor and the fourth power supply conductor of the third unit structure are electromagnetically connected to the same third distributor;
    The first power supply conductor and the second power supply conductor of the fourth unit structure are electromagnetically connected to the same third distributor;
    The third power supply conductor and the fourth power supply conductor of the fourth unit structure are electromagnetically connected to the same third distributor.
    9. The antenna of claim 8.
  12.  複数の前記単位構造は、第1単位構造と、第2単位構造と、第3単位構造と、第4単位構造とを含み、
     前記第1単位構造の第1給電導体および前記第3単位構造の前記第1給電導体とは、同じ前記第2分配器に電磁気的に接続され、
     前記第1単位構造の第2給電導体および前記第3単位構造の前記第2給電導体とは、同じ前記第2分配器に電磁気的に接続され、
     前記第2単位構造の第3給電導体および前記第4単位構造の前記第3給電導体とは、同じ前記第2分配器に電磁気的に接続され、
     前記第2単位構造の第4給電導体および前記第4単位構造の前記第4給電導体とは、同じ前記第2分配器に電磁気的に接続され、
     前記第1単位構造の第4給電導体および前記第3単位構造の前記第4給電導体とは、同じ前記第2分配器に電磁気的に接続され、
     前記第1単位構造の第3給電導体および前記第3単位構造の前記第3給電導体とは、同じ前記第2分配器に電磁気的に接続され、
     前記第2単位構造の第1給電導体および前記第4単位構造の前記第1給電導体とは、同じ前記第2分配器に電磁気的に接続され、
     前記第2単位構造の第2給電導体および前記第4単位構造の前記第2給電導体とは、同じ前記第2分配器に電磁気的に接続されている、
     請求項8に記載のアンテナ。
    the plurality of unit structures include a first unit structure, a second unit structure, a third unit structure, and a fourth unit structure,
    a first power supply conductor of the first unit structure and a first power supply conductor of the third unit structure are electromagnetically connected to the same second distributor;
    The second power supply conductor of the first unit structure and the second power supply conductor of the third unit structure are electromagnetically connected to the same second distributor;
    a third power supply conductor of the second unit structure and the third power supply conductor of the fourth unit structure are electromagnetically connected to the same second distributor;
    a fourth power supply conductor of the second unit structure and the fourth power supply conductor of the fourth unit structure are electromagnetically connected to the same second distributor;
    a fourth power supply conductor of the first unit structure and the fourth power supply conductor of the third unit structure are electromagnetically connected to the same second distributor;
    a third power supply conductor of the first unit structure and the third power supply conductor of the third unit structure are electromagnetically connected to the same second distributor;
    a first power supply conductor of the second unit structure and a first power supply conductor of the fourth unit structure are electromagnetically connected to the same second distributor;
    The second power supply conductor of the second unit structure and the second power supply conductor of the fourth unit structure are electromagnetically connected to the same second distributor.
    9. The antenna of claim 8.
  13.  放射導体と、
     基準導体と、
     外部から入力信号が入力される5個以上の入力ポートと、
     を含み、
     前記入力ポートに入力される前記入力信号は円偏波可能な位相差が設けられている、
     アンテナ。
    A radiating conductor;
    A reference conductor;
    Five or more input ports to which input signals are input from the outside;
    Including,
    The input signal input to the input port is provided with a phase difference that allows circular polarization.
    antenna.
PCT/JP2023/041088 2022-11-18 2023-11-15 Antenna WO2024106464A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022185177 2022-11-18
JP2022-185177 2022-11-18
JP2023031091 2023-03-01
JP2023-031091 2023-03-01

Publications (1)

Publication Number Publication Date
WO2024106464A1 true WO2024106464A1 (en) 2024-05-23

Family

ID=91084858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041088 WO2024106464A1 (en) 2022-11-18 2023-11-15 Antenna

Country Status (1)

Country Link
WO (1) WO2024106464A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144606A (en) * 1986-11-29 1988-06-16 ノーザン テレコム リミテッド Circularly polarized wave antenna
JP2000508144A (en) * 1996-04-03 2000-06-27 グランホルム,ヨハン Dual polarization antenna array with ultra-low cross polarization and low side lobe
JP2004221964A (en) * 2003-01-15 2004-08-05 Fdk Corp Antenna module
WO2015126496A1 (en) * 2014-02-12 2015-08-27 Battelle Memorial Institute Shared aperture antenna array
JP2017527146A (en) * 2014-06-11 2017-09-14 華為技術有限公司Huawei Technologies Co.,Ltd. Sensing screen, control circuit and control method thereof, and sensing screen device
WO2020072237A1 (en) * 2018-10-01 2020-04-09 Avx Antenna, Inc. D/B/A Ethertronics, Inc. Patch antenna array system
JP2021005795A (en) * 2019-06-26 2021-01-14 日本電気株式会社 Polarization shared array antenna and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144606A (en) * 1986-11-29 1988-06-16 ノーザン テレコム リミテッド Circularly polarized wave antenna
JP2000508144A (en) * 1996-04-03 2000-06-27 グランホルム,ヨハン Dual polarization antenna array with ultra-low cross polarization and low side lobe
JP2004221964A (en) * 2003-01-15 2004-08-05 Fdk Corp Antenna module
WO2015126496A1 (en) * 2014-02-12 2015-08-27 Battelle Memorial Institute Shared aperture antenna array
JP2017527146A (en) * 2014-06-11 2017-09-14 華為技術有限公司Huawei Technologies Co.,Ltd. Sensing screen, control circuit and control method thereof, and sensing screen device
WO2020072237A1 (en) * 2018-10-01 2020-04-09 Avx Antenna, Inc. D/B/A Ethertronics, Inc. Patch antenna array system
JP2021005795A (en) * 2019-06-26 2021-01-14 日本電気株式会社 Polarization shared array antenna and method of manufacturing the same

Similar Documents

Publication Publication Date Title
AU2002332225B2 (en) Patch fed printed antenna
US8063832B1 (en) Dual-feed series microstrip patch array
US5703601A (en) Double layer circularly polarized antenna with single feed
US8558749B2 (en) Method and apparatus for elimination of duplexers in transmit/receive phased array antennas
Ding et al. 2-D Butler matrix and phase-shifter group
US12015184B2 (en) Radio-frequency component comprising several waveguide devices with ridges
US7609205B2 (en) Electrically steerable phased array antenna system
AU2002332225A1 (en) Patch fed printed antenna
KR20160056262A (en) Waveguide slotted array antenna
JP2007110256A (en) Phased-array antenna
KR102242123B1 (en) Triode current loop radiating element with integrated circular polarization feed
JP2004007034A (en) Two-element and multi-element array slot antennas
WO2024106464A1 (en) Antenna
JP2013085075A (en) Antenna feeding circuit
CN112448176B (en) Wide-angle polarization non-sensitive rectification antenna
JP2020501462A (en) High frequency polymers in metal radiators
EP1154519A1 (en) Antenna device
US6211751B1 (en) Microstrip broadband balun with four ground plates
EP3422465A1 (en) Hybrid circuit, power supply circuit, antenna device, and power supply method
Piekarz et al. Four-node antenna feeding network for interfacing with differential front-end electronics
US20220239002A1 (en) Antenna apparatus and feed network thereof
JPH04122101A (en) Plane antenna
US11984658B2 (en) Antenna device
WO2022049951A1 (en) Antenna device
JPS61164303A (en) Dual circularly polarized wave antenna