WO2024106361A1 - Drive device, and method for controlling cooling device - Google Patents

Drive device, and method for controlling cooling device Download PDF

Info

Publication number
WO2024106361A1
WO2024106361A1 PCT/JP2023/040689 JP2023040689W WO2024106361A1 WO 2024106361 A1 WO2024106361 A1 WO 2024106361A1 JP 2023040689 W JP2023040689 W JP 2023040689W WO 2024106361 A1 WO2024106361 A1 WO 2024106361A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
flow
temperature
motor
control
Prior art date
Application number
PCT/JP2023/040689
Other languages
French (fr)
Japanese (ja)
Inventor
辰夫 細野
真二 久保
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2024106361A1 publication Critical patent/WO2024106361A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor

Definitions

  • the present invention relates to a method for controlling a drive device and a cooling device.
  • Patent Document 1 describes a cooling circuit that uses an oil pump to supply oil to heat-generating parts of an electric motor.
  • the output of the cooling device may be controlled based on the temperature of the motor, and the amount of refrigerant sent to the motor may be controlled.
  • the output of the cooling device may be changed based on the temperature of the motor and when the refrigerant actually reaches the motor.
  • the motor may not be sufficiently cooled if, for example, the temperature of the motor rises suddenly.
  • one of the objects of the present invention is to provide a drive device that can prevent the cooling of a motor by a cooling device from becoming insufficient, and a control method for a cooling device that can prevent the cooling of a motor from becoming insufficient.
  • One embodiment of the drive device of the present invention includes a motor, a cooling device that sends a refrigerant to the motor, and a control device that controls the cooling device.
  • the control device is capable of executing flow control that controls the flow rate of the refrigerant sent from the cooling device to the motor based on the temperature of the motor and a torque command value of the motor.
  • the control device is capable of switching the flow command value input to the cooling device between a first flow command value that varies based on the temperature of the motor and a second flow command value that is equal to or greater than the first flow command value, and when the flow command value is the first flow command value, the control device switches the flow command value from the first flow command value to the second flow command value when the torque command value becomes equal to or greater than the first torque command value.
  • One aspect of the cooling device control method of the present invention is a method for controlling a cooling device that sends a refrigerant to a motor, and includes flow control for controlling the flow rate of the refrigerant sent from the cooling device to the motor based on the temperature of the motor and a torque command value of the motor.
  • the flow control includes switching the flow command value from the first flow command value to a second flow command value equal to or greater than the first flow command value when the flow command value input to the cooling device is a first flow command value that varies based on the temperature of the motor and the torque command value becomes equal to or greater than the first torque command value.
  • the cooling device it is possible to prevent the cooling device from insufficiently cooling the motor in the drive device.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a drive device according to an embodiment.
  • FIG. 2 is a flowchart illustrating an example of a flow rate control procedure according to an embodiment.
  • FIG. 3 is a graph showing an example of the relationship between the first flow rate command value and the temperature of the motor in one embodiment.
  • FIG. 4 is a graph showing an example of changes over time of the torque command value, the flow command value, and the switching flag in the flow control of one embodiment.
  • the drive unit 100 of this embodiment shown in FIG. 1 is a drive unit that is mounted on a vehicle and rotates the vehicle's axle.
  • the drive unit 100 of this embodiment includes a drive unit main body 10, a cooling device 40, a cooler 50, a control device 60, and a temperature sensor 70.
  • the drive unit main body 10 has a housing 11, a motor 20, and a transmission device 30.
  • the drive unit 100 includes a housing 11, a motor 20, and a transmission device 30.
  • the housing 11 accommodates the motor 20 and the transmission device 30 inside.
  • the housing 11 has a storage section 12 in which oil O is stored as a refrigerant.
  • the storage section 12 is formed, for example, by a vertically lower portion of the housing 11 accommodation section in which the transmission device 30 is accommodated.
  • the oil O is used as a refrigerant to cool the motor 20.
  • the oil O is also used as a lubricant for the transmission device 30.
  • ATF Automatic Transmission Fluid
  • the motor 20 has a rotor 21 that can rotate around the central axis of the motor 20, and a stator 22 that faces the rotor 21 across a gap.
  • the rotor 21 has a shaft 21a that is connected to the transmission device 30.
  • the stator 22 has a coil 23.
  • the transmission device 30 is a device that transmits the rotation of the rotor 21 to the axle of the vehicle.
  • the transmission device 30 has a reduction gear 31 connected to the shaft 21a, and a differential gear 32 connected to the reduction gear 31.
  • the differential gear 32 is connected to the axle of the vehicle (not shown).
  • the differential gear 32 has a ring gear whose lower vertical end is immersed in the oil O stored in the storage section 12. As the ring gear rotates, a portion of the oil O in the storage section 12 is scooped up in the storage section of the housing 11 that houses the transmission device 30, and is supplied to the transmission device 30 as lubricating oil.
  • the cooling device 40 is a device that sends oil O as a refrigerant to the motor 20.
  • the cooling device 40 is a pump. More specifically, the cooling device 40 is an electric pump.
  • the cooling device 40 is attached to the housing 11.
  • the cooling device 40 has a pump drive unit 41, a pump mechanism unit 42, and a pump control unit 43.
  • the pump drive unit 41 is, for example, a motor controlled by the pump control unit 43.
  • the pump control unit 43 controls the pump drive unit 41 based on a flow command value FC input from the control device 60.
  • the pump mechanism 42 is driven by the pump drive unit 41 to send the oil O.
  • the pump mechanism 42 has, for example, an inner rotor rotated by the pump drive unit 41, and an outer rotor that surrounds the inner rotor and meshes with the inner rotor.
  • the pump mechanism 42 discharges the oil O drawn in from an intake port connected to the inside of the storage unit 12 to an outlet port connected to a flow path provided in the housing 11.
  • the oil O discharged by the pump mechanism 42 to the flow path flows through the flow path and is supplied to the motor 20.
  • the cooling device 40 sends the oil O as a refrigerant to the motor 20.
  • the cooling device 40 sends oil O to the rotor 21 and the stator 22.
  • the oil O sent to the motor 20 by the cooling device 40 accumulates, for example, in the housing 11, in the accommodating portion that accommodates the motor 20.
  • the oil O that accumulates in the housing 11, in the accommodating portion that accommodates the motor 20, returns to the reservoir 12 through a hole provided in the partition wall that separates the housing 11, in which the motor 20 is accommodated, from the accommodating portion of the transmission device 30.
  • the cooler 50 is attached to the housing 11.
  • the cooler 50 is provided midway through the flow path through which the oil O sent to the motor 20 flows.
  • the cooler 50 cools the oil O sent to the motor 20.
  • the oil O that flows from inside the reservoir 12 into the flow path of the housing 11 by the cooling device 40 is cooled by the cooler 50 before being supplied to the motor 20.
  • the oil O that flows into the cooler 50 is cooled by heat exchange with water W that flows into the drive unit 100 from the outside.
  • the water W that cools the oil O in the cooler 50 flows into the drive unit 100 from a radiator (not shown) mounted on the vehicle.
  • the water W that flows into the drive unit 100 passes through the control unit 60, cooling the control unit 60 before flowing into the cooler 50.
  • the temperature sensor 70 is a sensor capable of detecting the temperature Tm of the motor 20.
  • the temperature sensor 70 is attached to the coil 23 and detects the temperature of the coil 23.
  • the temperature Tm of the motor 20 detected by the temperature sensor 70 is the temperature of the coil 23.
  • the control device 60 controls the motor 20 and the cooling device 40.
  • the control device 60 has an inverter circuit that supplies a current Im to the motor 20.
  • the control device 60 controls the current Im supplied to the motor 20 based on a torque command value NC for the motor 20 input from a vehicle control unit ECU mounted on the vehicle. More specifically, the control device 60 controls the value of the current Im to a value at which the torque of the motor 20 becomes the torque command value NC input from the vehicle control unit ECU.
  • the current Im is supplied to the coil 23 of the motor 20.
  • the temperature Tm of the motor 20 detected by the temperature sensor 70 is input to the control device 60.
  • the rotation speed of the pump drive unit 41 may also be input to the control device 60 from the pump control unit 43 of the cooling device 40.
  • the control device 60 can execute flow control CF to control the cooling device 40.
  • the control method for the cooling device 40 includes flow control CF.
  • the flow control CF is a control that controls the flow rate of oil O, which serves as a refrigerant, sent from the cooling device 40 to the motor 20 based on the temperature Tm of the motor 20 and the torque command value NC of the motor 20.
  • the control device 60 always executes the flow control CF, for example, while the drive device 100 is being driven. Note that the control device 60 may not execute the flow control CF when a predetermined condition is satisfied, and may execute a control different from the flow control CF to control the cooling device 40 when the flow control CF is not executed.
  • the control device 60 controls the cooling device 40 according to the flowchart shown in FIG. 2.
  • the control device 60 first inputs a first flow command value FC1 to the cooling device 40 as a flow command value FC (step S1).
  • the first flow command value FC1 is a value that varies based on the temperature Tm of the motor 20.
  • the control device 60 varies the value of the first flow command value FC1 based on the temperature Tm of the motor 20 input from the temperature sensor 70.
  • FIG. 3 is a graph showing an example of the relationship between the first flow command value FC1 and the temperature Tm of the motor 20 in this embodiment.
  • the horizontal axis indicates the temperature Tm of the motor 20, and the vertical axis indicates the first flow command value FC1.
  • the first flow command value FC1 is constant at a value FCa.
  • the value FCa is the minimum value of the first flow command value FC1.
  • the temperature Ta is not particularly limited.
  • the temperature Ta is, for example, about 0° C. or more and 20° C. or less.
  • the value FCa, which is the minimum value of the first flow command value FC1 is not particularly limited.
  • the value FCa is, for example, about 1.0 [L/min] or more and 5.0 [L/min] or less.
  • the first flow command value FC1 is constant at the value FCb.
  • the temperature Tb is higher than the temperature Ta.
  • the temperature Tc is higher than the temperature Tb.
  • the value FCb is greater than the value FCa.
  • the first flow command value FC1 is constant at the value FCc.
  • the temperature Td is higher than the temperature Tc.
  • the temperature Te is higher than the temperature Td.
  • the value FCc is greater than the value FCb.
  • the first flow command value FC1 is constant at a value FCd.
  • the temperature Tf is higher than the temperature Te.
  • the temperature Tf corresponds to the "first temperature”.
  • the temperature Tf which is the first temperature, is not particularly limited.
  • the temperature Tf is, for example, equal to or higher than 80°C and equal to or lower than 120°C.
  • the value FCd is greater than the value FCc.
  • the value FCd is the maximum value of the first flow command value FC1.
  • the value FCd which is the maximum value of the first flow command value FC1, is not particularly limited.
  • the value FCd is, for example, equal to or higher than 8.0 [L/min] and equal to or lower than 12.0 [L/min].
  • the first flow command value FC1 changes linearly between the values FCa and FCb, and increases as the temperature Tm of the motor 20 increases.
  • the first flow command value FC1 changes linearly between the values FCb and FCc, and increases as the temperature Tm of the motor 20 increases.
  • the first flow command value FC1 changes linearly between the values FCc and FCd, and increases as the temperature Tm of the motor 20 increases.
  • the first flow command value FC1 when the temperature Tm of the motor 20 is lower than the temperature Tf is smaller than the first flow command value FC1 when the temperature Tm of the motor 20 is equal to or higher than the temperature Tf, i.e., the value FCd.
  • the control device 60 determines whether the torque command value NC is equal to or greater than the first torque command value NC1 (step S2).
  • the first torque command value NC1 is not particularly limited.
  • the first torque command value NC1 is a constant value.
  • the first torque command value NC1 is, for example, a torque command value NC that is relatively large.
  • the first torque command value NC1 is, for example, a value that is 50% or more and less than 100% of the maximum value of the torque command value NC. More preferably, the first torque command value NC1 is, for example, a value that is within a range of 60% or more and 90% or less of the maximum value of the torque command value NC.
  • step S2 If the torque command value NC is smaller than the first torque command value NC1 (step S2: NO), the control device 60 maintains the flow command value FC input to the cooling device 40 at the first flow command value FC1. On the other hand, if the torque command value NC is equal to or greater than the first torque command value NC1 (step S2: YES), the control device 60 inputs the second flow command value FC2 as the flow command value FC to the cooling device 40 (step S3). That is, in the flow control CF, when the flow command value FC is the first flow command value FC1, if the torque command value NC becomes equal to or greater than the first torque command value NC1, the control device 60 switches the flow command value FC from the first flow command value FC1 to the second flow command value FC2.
  • the flow control CF includes switching the flow command value FC from the first flow command value FC1 to the second flow command value FC2 when the torque command value NC becomes equal to or greater than the first torque command value NC1 when the flow command value FC input to the cooling device 40 is the first flow command value FC1.
  • the second flow command value FC2 is a value equal to or greater than the first flow command value FC1.
  • the second flow command value FC2 is a constant value.
  • the second flow command value FC2 is greater than the first flow command value FC1 when the temperature Tm of the motor 20 is lower than the temperature Tf.
  • the second flow command value FC2 is the same value as the first flow command value FC1 when the temperature Tm of the motor 20 is equal to or greater than the temperature Tf, and is the same value as the maximum value of the first flow command value FC1, i.e., value FCd.
  • the second flow command value FC2 is greater than the first flow command value FC1, except when the first flow command value FC1 is the maximum value.
  • the control device 60 determines whether the torque command value NC has been equal to or less than the second torque command value NC2 for a predetermined time Pt (step S4).
  • the second torque command value NC2 is a constant value.
  • the second torque command value NC2 is smaller than the first torque command value NC1.
  • the difference between the first torque command value NC1 and the second torque command value NC2 is relatively small.
  • the maximum value of the torque command value NC is 100%, the difference between the first torque command value NC1 and the second torque command value NC2 is, for example, about 3% or more and 10% or less.
  • the predetermined time Pt is, for example, about 5 seconds or more and 100 seconds or less.
  • the control device 60 starts counting the predetermined time Pt when the torque command value NC becomes equal to or less than the second torque command value NC2. If the torque command value NC becomes greater than the second torque command value NC2 before the predetermined time Pt has elapsed, the control device 60 stops counting the predetermined time Pt and returns the count to zero. If the torque command value NC becomes equal to or less than the second torque command value NC2 again, the control device 60 starts counting the predetermined time Pt again.
  • step S4 If the torque command value NC is equal to or less than the second torque command value NC2 and the predetermined time Pt has not elapsed continuously (step S4: NO), the control device 60 maintains the flow command value FC input to the cooling device 40 at the second flow command value FC2. On the other hand, if the torque command value NC is equal to or less than the second torque command value NC2 and the predetermined time Pt has elapsed continuously (step S4: YES), the control device 60 inputs the first flow command value FC1 as the flow command value FC to the cooling device 40 (step S1).
  • the control device 60 switches the flow command value FC from the second flow command value FC2 to the first flow command value FC1. More specifically, in the flow control CF, when the flow command value FC is the second flow command value FC2, if the state in which the torque command value NC is equal to or less than the second torque command value NC2 continues for a predetermined time Pt or more, the control device 60 switches the flow command value FC from the second flow command value FC2 to the first flow command value FC1.
  • the flow control CF includes switching the flow command value FC from the second flow command value FC2 to the first flow command value FC1 when the flow command value FC is the second flow command value FC2 and the torque command value NC is equal to or less than the second torque command value NC2. More specifically, the flow control CF includes switching the flow command value FC from the second flow command value FC2 to the first flow command value FC1 when the flow command value FC is the second flow command value FC2 and the state in which the torque command value NC is equal to or less than the second torque command value NC2 continues for a predetermined time Pt or more.
  • the control device 60 can switch the flow command value FC input to the cooling device 40 between a first flow command value FC1 that varies based on the temperature Tm of the motor 20, and a second flow command value FC2 that is equal to or greater than the first flow command value FC1.
  • the control device 60 repeatedly performs steps S1 to S4 described above to control the cooling device 40 based on the temperature Tm of the motor 20 and the torque command value NC, and controls the flow rate of oil O sent to the motor 20.
  • the control device 60 switches the flow command value FC between a first flow command value FC1 and a second flow command value FC2, for example, by switching the switching flag FL between 0 and 1.
  • the control device 60 sets the flow command value FC to the first flow command value FC1.
  • the control device 60 sets the flow command value FC to the second flow command value FC2.
  • the control device 60 switches the switching flag FL based on the torque command value NC, and switches the flow command value FC as described above.
  • FIG. 4 is a graph showing an example of the change over time of the torque command value NC, the flow command value FC, and the switching flag FL in the flow control CF.
  • Three graphs are shown arranged vertically in FIG. 4.
  • the top graph in FIG. 4 is a graph showing an example of the change over time of the torque command value NC.
  • the horizontal axis indicates time t
  • the vertical axis indicates the torque command value NC.
  • the center graph in FIG. 4 is a graph showing an example of the change over time of the flow command value FC.
  • the horizontal axis indicates time t
  • the vertical axis indicates the flow command value FC.
  • the bottom graph in FIG. 4 is a graph showing an example of the change over time of the switching flag FL.
  • the horizontal axis indicates time t
  • the vertical axis indicates the switching flag FL.
  • the torque command value NC is smaller than the first torque command value NC1, and the flow command value FC is the first flow command value FC1.
  • the switching flag FL is 0, and the value of the first flow command value FC1 is the value FCc.
  • the switching flag FL is switched to 1
  • the flow command value FC is switched to the second flow command value FC2.
  • the value of the second flow command value FC2 is constant at the value FCd, so that at time t1 the flow command value FC increases from the value FCc to the value FCd.
  • the control device 60 starts counting the predetermined time Pt. Note that there is a period of time after time t1 and before time t2 when the torque command value NC is smaller than the first torque command value NC1, but since the torque command value NC is greater than the second torque command value NC2 during this period, counting the predetermined time Pt does not start.
  • the torque command value NC remains equal to or less than the second torque command value NC2 and the predetermined time Pt has elapsed since time t2 at time t3, the switching flag FL becomes 0, and the flow command value FC is switched to the first flow command value FC1.
  • the first flow command value FC1 is equal to the value FCc. Between time t4 and time t5, the first flow command value FC1 decreases linearly from the value FCc to the value FCb. Between time t5 and time t6, the first flow command value FC1 is equal to the value FCb. In other words, between time t3 and time t6, the temperature Tm of the motor 20 decreases, and the first flow command value FC1 changes from the value FCc to the value FCb.
  • the flow command value FC fluctuates based on the temperature Tm of the motor 20, and when the torque command value NC becomes a relatively large value, i.e., equal to or greater than the first torque command value NC1, the flow command value FC is forcibly set to a large constant value, i.e., the second flow command value FC2.
  • the flow command value FC2 is the same value as the maximum value of the first flow command value FC1
  • the torque command value NC becomes equal to or greater than the first torque command value NC1
  • the flow command value FC is forcibly set to the same value as the maximum value of the first flow command value FC1, which fluctuates based on the temperature Tm of the motor 20.
  • the control device 60 switches the flow command value FC from the first flow command value FC1, which varies based on the temperature Tm of the motor 20, to a second flow command value FC2 equal to or greater than the first flow command value FC1. Therefore, when the torque command value NC becomes equal to or greater than the first torque command value NC1, the flow command value FC input to the cooling device 40 can be set to the second flow command value FC2 equal to or greater than the first flow command value FC1 based on the temperature Tm of the motor 20, regardless of the temperature Tm of the motor 20.
  • the control device 60 varies the amount of oil O sent from the cooling device 40 to the motor 20 based on the temperature Tm of the motor 20. Therefore, when the torque command value NC is relatively small and the temperature Tm of the motor 20 is unlikely to rise suddenly, it is possible to prevent the amount of oil O sent from the cooling device 40 to the motor 20 from becoming unnecessarily large. Therefore, it is possible to prevent an increase in the power consumed by the cooling device 40, and to prevent an increase in the power consumed by the drive device 100.
  • the torque command value NC becomes larger than during normal driving, and the temperature Tm of the motor 20 is likely to rise sharply.
  • the flow rate of oil O sent from the cooling device 40 is controlled based only on the temperature Tm of the motor 20, the increase in the flow rate of oil O will not be able to keep up, as described above, and the cooling of the motor 20 will likely not be able to keep up.
  • the cooling device 40 is controlled based not only on the temperature Tm of the motor 20 but also on the torque command value NC, so that when the driver depresses the accelerator pedal deeply and the torque command value NC becomes larger than during normal driving, the flow rate of oil O can be forcibly increased regardless of the temperature Tm of the motor 20, and it is possible to prevent the cooling of the motor 20 from not being able to keep up.
  • the control device 60 switches the flow command value FC from the second flow command value FC2 to the first flow command value FC1. Therefore, when the torque command value NC becomes small and it is no longer necessary to forcibly increase the flow rate of the oil O sent to the motor 20, the control can be returned to one in which the flow rate of the oil O sent to the motor 20 varies based on the temperature Tm of the motor 20. This can further prevent the amount of oil O sent from the cooling device 40 to the motor 20 from becoming unnecessarily large. Therefore, it can further prevent the power consumed by the cooling device 40 from increasing, and can further prevent the power consumed by the drive device 100 from increasing.
  • the second torque command value NC2 is smaller than the first torque command value NC1. Therefore, for example, even if the torque command value NC is unstable and repeatedly rises and falls near the first torque command value NC1 after the torque command value NC becomes equal to or greater than the first torque command value NC1 and the flow command value FC becomes the second flow command value FC2, the flow command value FC will not be switched unless the torque command value NC becomes equal to or less than the second torque command value NC2. This makes it possible to prevent the flow command value FC from being frequently switched between the first flow command value FC1 and the second flow command value FC2 within a short period of time. Therefore, it is possible to prevent a load from being applied to the cooling device 40.
  • the control device 60 switches the flow command value FC from the second flow command value FC2 to the first flow command value FC1. Therefore, even if the torque command value NC becomes equal to or less than the second torque command value NC2, the flow command value FC does not immediately switch to the first flow command value FC1.
  • the torque command value NC may repeatedly change between a value equal to or greater than the first torque command value NC1 and a value equal to or less than the second torque command value NC2 in a short period of time.
  • the flow command value FC is immediately returned to the first flow command value FC1 when the torque command value NC becomes equal to or less than the second torque command value NC2
  • the flow command value FC will be frequently switched between the first flow command value FC1 and the second flow command value FC2 in a short period of time.
  • the flow command value FC will not return to the first flow command value FC1 until a predetermined time Pt has elapsed. Therefore, for example, when the accelerator pedal is repeatedly depressing the accelerator pedal heavily in a short period of time, it is possible to maintain the flow command value FC at the second flow command value FC2. This makes it possible to prevent the flow command value FC from being frequently switched between the first flow command value FC1 and the second flow command value FC2 in a short period of time. Therefore, it is possible to further prevent the load on the cooling device 40.
  • the second flow command value FC2 is greater than the first flow command value FC1 when the temperature Tm of the motor 20 is lower than the temperature Tf. Therefore, when the flow command value FC is switched from the first flow command value FC1 to the second flow command value FC2, it is easy to suitably increase the flow rate of the oil O sent to the motor 20.
  • the second flow command value FC2 is the same value as the first flow command value FC1 when the temperature Tm of the motor 20 is equal to or higher than the first temperature Tf, and is the same value as the maximum value of the first flow command value FC1. Therefore, when the flow command value FC is switched to the second flow command value FC2, the flow rate of the oil O sent from the cooling device 40 to the motor 20 can be set to the same flow rate as the maximum flow rate based on the first flow command value FC1. Therefore, when the flow command value FC is switched to the second flow command value FC2, the flow rate of the oil O sent to the motor 20 can be more suitably increased.
  • the control device 60 executes the above-described flow control CF when the temperature Tm of the motor 20 is equal to or higher than the temperature Tg.
  • the temperature Tg corresponds to a second temperature lower than the temperature Tf, which is the first temperature. As shown in FIG. 3, the temperature Tg is lower than the temperature Ta.
  • the temperature Tg is not particularly limited.
  • the temperature Tg is, for example, about ⁇ 40° C. or higher and ⁇ 20° C. or lower.
  • the first flow command value FC1 is the value FCa, so that even when the temperature Tm of the motor 20 is equal to or lower than the temperature Tg, the first flow command value FC1 is the value FCa.
  • the first flow command value FC1 is the minimum value of the first flow command value FC1.
  • the temperature Tm of the motor 20 is sufficiently low, even if the torque command value NC increases to a certain extent, the temperature Tm of the motor 20 is unlikely to rise, or is unlikely to rise to a temperature that causes problems. Therefore, when the temperature Tm of the motor 20 is sufficiently low, even if the torque command value NC increases to a certain extent, there may be cases where it is not necessary to forcibly increase the flow rate of the oil O. Therefore, by executing the flow rate control CF when the temperature Tm of the motor 20 is equal to or higher than the temperature Tg, and not executing the flow rate control CF when the temperature Tm of the motor 20 is lower than the temperature Tg, it is possible to prevent the flow rate of the oil O from increasing unnecessarily. This makes it possible to further prevent an increase in the power consumed by the cooling device 40, and to further prevent an increase in the power consumed by the drive device 100.
  • the first flow command value FC1 when the temperature Tm of the motor 20 is lower than the second temperature Tg is the minimum value of the first flow command value FC1.
  • the temperature Tm of the motor 20 is lower than the temperature Tg, the amount of oil O that needs to be supplied to the motor 20 is small. Therefore, in the range in which the temperature Tm of the motor 20 is lower than the temperature Tg, the cooling of the motor 20 is unlikely to be insufficient even if the flow control CF is not executed. Therefore, by executing the flow control CF when the temperature Tm of the motor 20 is equal to or higher than the temperature Tg, the flow control CF can be executed more suitably within the required range.
  • the control device may have any configuration and may be capable of performing any type of control, so long as it is a device that controls the cooling device and is capable of performing flow control to control the flow rate of refrigerant sent from the cooling device to the motor based on the motor temperature and the motor torque command value.
  • the control device does not have to control the motor.
  • a device that controls the motor may be provided separately from a control device that is capable of performing flow control and controls the cooling device.
  • the control device may be provided integrally with the cooling device.
  • the control device may be capable of executing other control that controls the flow rate of the refrigerant sent from the cooling device to the motor, which is different from the flow rate control that controls the flow rate of the refrigerant based on the motor temperature and torque command value.
  • the other control may be control of the flow rate of the refrigerant based only on the motor temperature, or may be control of the flow rate of the refrigerant based on other parameters.
  • the control device may decide based on what conditions whether or not to execute flow rate control.
  • the flow control controls the flow rate of the refrigerant based on the motor temperature and the motor torque command value
  • the flow control includes at least a calculation that uses the motor temperature as a parameter and a calculation that uses the motor torque command value as a parameter.
  • the flow control that controls the flow rate of the refrigerant based on the motor temperature and the motor torque command value may be any type of control as long as, when the flow rate command value is the first flow rate command value, the flow rate command value can be switched from the first flow rate command value to the second flow rate command value when the torque command value becomes equal to or greater than the first torque command value.
  • the flow rate control may be a control that immediately switches the flow rate command value to the first flow rate command value when the flow rate command value is the second flow rate command value and the torque command value becomes equal to or less than the second torque command value.
  • the second torque command value may be the same value as the first torque command value.
  • the flow control may be a control in which, when the flow command value is the second flow command value, the flow command value is switched to the first flow command value based on a parameter other than the torque command value.
  • the flow control may be a control in which, after the flow command value is switched to the second flow command value, the flow command value is switched to the first flow command value based on the temperature of the motor.
  • the control device may switch the flow command value from the second flow command value to the first flow command value when the temperature of the motor is equal to or lower than a predetermined temperature when the flow command value is the second flow command value.
  • the flow control may be a control in which, after the flow command value is switched to the second flow command value, the control device may switch the flow command value to the first flow command value based on both the temperature of the motor and the torque command value of the motor.
  • the control device may switch the flow command value from the second flow command value to the first flow command value when the temperature of the motor is equal to or lower than a predetermined temperature and the torque command value is equal to or lower than a predetermined value when the flow command value is the second flow command value.
  • the first flow command value may vary in any manner based on the temperature of the motor.
  • the second flow command value may be any value equal to or greater than the first flow command value.
  • the second flow command value may be greater than the maximum value of the first flow command value.
  • the second flow command value may not be a constant value, but may be a variable value. In this case, in flow control, when the flow command value is the second flow command value, the control device may vary the second flow command value based on the temperature of the motor.
  • Each control, including the flow control, performed by the control device described above may be control realized by hardware including digital circuits and analog circuits, or may be control realized by software, i.e., control realized by the control device executing a program, or may be control realized by hardware and software.
  • the cooling device may be any device that sends a refrigerant to the motor.
  • the refrigerant sent to the motor by the cooling device may be any type of refrigerant.
  • the refrigerant does not have to be oil and may be water.
  • the drive unit to which the present invention is applied is not particularly limited.
  • the drive unit may be mounted on a vehicle for a purpose other than rotating an axle, or may be mounted on equipment other than a vehicle.
  • the present technology may be configured as follows: (1) A drive device including a motor, a cooling device that sends a refrigerant to the motor, and a control device that controls the cooling device, the control device being capable of executing flow control for controlling a flow rate of the refrigerant sent from the cooling device to the motor based on a temperature of the motor and a torque command value of the motor, the control device being capable of switching a flow command value input to the cooling device between a first flow command value that varies based on the temperature of the motor and a second flow command value that is equal to or greater than the first flow command value in the flow control, and switching the flow command value from the first flow command value to the second flow command value when the torque command value becomes equal to or greater than the first torque command value when the flow command value is the first flow command value.
  • a control method for a cooling device that supplies a refrigerant to a motor comprising flow rate control for controlling a flow rate of the refrigerant sent from the cooling device to the motor based on a temperature of the motor and a torque command value of the motor, the flow rate control comprising, when a flow rate command value input to the cooling device is a first flow rate command value that varies based on the temperature of the motor, switching the flow rate command value from the first flow rate command value to a second flow rate command value that is equal to or greater than the first flow rate command value when the torque command value becomes equal to or greater than the first torque command value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

This drive device is equipped with a motor, a cooling device for sending a coolant to the motor, and a control device for controlling the cooling device. The control device is capable of executing a flow control for controlling the flow of the coolant delivered to the motor from the cooling device on the basis of the temperature of the motor and a torque command value of the motor. During the flow control, the control device is capable of switching a flow command value to be inputted into the cooling device between a first flow command value which changes on the basis of the motor temperature and a second flow command value which is greater than or equal to the first flow command value, and when the flow command value is the first flow command value, switches the flow command value from the first flow command value to the second flow command value if the torque command value is greater than or equal to the first torque command value.

Description

駆動装置、および冷却装置の制御方法Drive device and cooling device control method
 本発明は、駆動装置、および冷却装置の制御方法に関する。 The present invention relates to a method for controlling a drive device and a cooling device.
 モータに冷媒を送る冷却装置が知られている。例えば、特許文献1には、オイルポンプによってオイルを電動モータの発熱部に供給する冷却回路が記載されている。 Cooling devices that send refrigerant to a motor are known. For example, Patent Document 1 describes a cooling circuit that uses an oil pump to supply oil to heat-generating parts of an electric motor.
特表2018-537933号公報JP 2018-537933 A
 上記のような冷却装置においては、モータの温度に基づいて冷却装置の出力が制御され、モータに送られる冷媒の量が制御される場合がある。しかしながら、冷却装置の出力がモータの温度に基づいて変更されてから、実際に冷媒がモータに到達するまでには時間差が生じる場合がある。そのため、例えばモータの温度が急上昇する場合などに、モータの冷却が不十分となる恐れがあった。 In cooling devices such as those described above, the output of the cooling device may be controlled based on the temperature of the motor, and the amount of refrigerant sent to the motor may be controlled. However, there may be a time lag between when the output of the cooling device is changed based on the temperature of the motor and when the refrigerant actually reaches the motor. As a result, there is a risk that the motor may not be sufficiently cooled if, for example, the temperature of the motor rises suddenly.
 本発明は、上記事情に鑑みて、冷却装置によるモータの冷却が不十分となることを抑制できる駆動装置、およびモータの冷却が不十分となることを抑制できる冷却装置の制御方法を提供することを目的の一つとする。 In view of the above circumstances, one of the objects of the present invention is to provide a drive device that can prevent the cooling of a motor by a cooling device from becoming insufficient, and a control method for a cooling device that can prevent the cooling of a motor from becoming insufficient.
 本発明の駆動装置の一つの態様は、モータと、前記モータに冷媒を送る冷却装置と、前記冷却装置を制御する制御装置と、を備える。前記制御装置は、前記モータの温度および前記モータのトルク指令値に基づいて前記冷却装置から前記モータに送られる前記冷媒の流量を制御する流量制御を実行可能である。前記流量制御において前記制御装置は、前記冷却装置に入力する流量指令値を、前記モータの温度に基づいて変動する第1流量指令値と、前記第1流量指令値以上の第2流量指令値と、に切り替え可能であり、かつ、前記流量指令値が前記第1流量指令値である場合において、前記トルク指令値が第1トルク指令値以上となった場合に、前記流量指令値を前記第1流量指令値から前記第2流量指令値に切り替える。 One embodiment of the drive device of the present invention includes a motor, a cooling device that sends a refrigerant to the motor, and a control device that controls the cooling device. The control device is capable of executing flow control that controls the flow rate of the refrigerant sent from the cooling device to the motor based on the temperature of the motor and a torque command value of the motor. In the flow control, the control device is capable of switching the flow command value input to the cooling device between a first flow command value that varies based on the temperature of the motor and a second flow command value that is equal to or greater than the first flow command value, and when the flow command value is the first flow command value, the control device switches the flow command value from the first flow command value to the second flow command value when the torque command value becomes equal to or greater than the first torque command value.
 本発明の冷却装置の制御方法の一つの態様は、モータに冷媒を送る冷却装置の制御方法であって、前記モータの温度および前記モータのトルク指令値に基づいて前記冷却装置から前記モータに送られる前記冷媒の流量を制御する流量制御を含む。前記流量制御は、前記冷却装置に入力する流量指令値が前記モータの温度に基づいて変動する第1流量指令値である場合において、前記トルク指令値が第1トルク指令値以上となった場合に、前記流量指令値を前記第1流量指令値から前記第1流量指令値以上の第2流量指令値に切り替えることを含む。 One aspect of the cooling device control method of the present invention is a method for controlling a cooling device that sends a refrigerant to a motor, and includes flow control for controlling the flow rate of the refrigerant sent from the cooling device to the motor based on the temperature of the motor and a torque command value of the motor. The flow control includes switching the flow command value from the first flow command value to a second flow command value equal to or greater than the first flow command value when the flow command value input to the cooling device is a first flow command value that varies based on the temperature of the motor and the torque command value becomes equal to or greater than the first torque command value.
 本発明の一つの態様によれば、駆動装置において、冷却装置によるモータの冷却が不十分となることを抑制できる。 According to one aspect of the present invention, it is possible to prevent the cooling device from insufficiently cooling the motor in the drive device.
図1は、一実施形態における駆動装置の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a drive device according to an embodiment. 図2は、一実施形態における流量制御の手順の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of a flow rate control procedure according to an embodiment. 図3は、一実施形態における第1流量指令値とモータの温度との関係の一例を示すグラフである。FIG. 3 is a graph showing an example of the relationship between the first flow rate command value and the temperature of the motor in one embodiment. 図4は、一実施形態の流量制御におけるトルク指令値、流量指令値、および切替フラグのそれぞれの時間変化の一例を示すグラフである。FIG. 4 is a graph showing an example of changes over time of the torque command value, the flow command value, and the switching flag in the flow control of one embodiment.
 図1に示す本実施形態の駆動装置100は、車両に搭載され、車両の車軸を回転させる駆動装置である。図1に示すように、本実施形態の駆動装置100は、駆動装置本体10と、冷却装置40と、クーラ50と、制御装置60と、温度センサ70と、を備える。駆動装置本体10は、ハウジング11と、モータ20と、伝達装置30と、を有する。つまり、駆動装置100は、ハウジング11と、モータ20と、伝達装置30と、を備える。 The drive unit 100 of this embodiment shown in FIG. 1 is a drive unit that is mounted on a vehicle and rotates the vehicle's axle. As shown in FIG. 1, the drive unit 100 of this embodiment includes a drive unit main body 10, a cooling device 40, a cooler 50, a control device 60, and a temperature sensor 70. The drive unit main body 10 has a housing 11, a motor 20, and a transmission device 30. In other words, the drive unit 100 includes a housing 11, a motor 20, and a transmission device 30.
 ハウジング11は、モータ20および伝達装置30を内部に収容している。ハウジング11は、冷媒としてのオイルOが貯留される貯留部12を有する。貯留部12は、例えば、ハウジング11のうち伝達装置30が収容される収容部の鉛直方向下側の部分によって構成されている。オイルOは、モータ20を冷却する冷媒として使用される。また、オイルOは、伝達装置30に対して潤滑油として使用される。オイルOとしては、例えば、冷媒および潤滑油の機能を奏するために、比較的粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のオイルを用いることが好ましい。 The housing 11 accommodates the motor 20 and the transmission device 30 inside. The housing 11 has a storage section 12 in which oil O is stored as a refrigerant. The storage section 12 is formed, for example, by a vertically lower portion of the housing 11 accommodation section in which the transmission device 30 is accommodated. The oil O is used as a refrigerant to cool the motor 20. The oil O is also used as a lubricant for the transmission device 30. For example, it is preferable to use an oil equivalent to an automatic transmission lubricant (ATF: Automatic Transmission Fluid) with a relatively low viscosity as the oil O in order to perform the functions of refrigerant and lubricant.
 モータ20は、モータ20の中心軸を中心として回転可能なロータ21と、ロータ21と隙間を介して対向するステータ22と、を有する。ロータ21は、伝達装置30に接続されたシャフト21aを有する。ステータ22は、コイル23を有する。 The motor 20 has a rotor 21 that can rotate around the central axis of the motor 20, and a stator 22 that faces the rotor 21 across a gap. The rotor 21 has a shaft 21a that is connected to the transmission device 30. The stator 22 has a coil 23.
 伝達装置30は、ロータ21の回転を車両の車軸に伝達する装置である。伝達装置30は、シャフト21aに接続された減速装置31と、減速装置31に接続された差動装置32と、を有する。差動装置32は、図示しない車両の車軸に接続されている。図示は省略するが、差動装置32は、鉛直方向下側の端部が貯留部12に貯留されたオイルOに浸漬されるリングギヤを有する。当該リングギヤが回転することで、ハウジング11のうち伝達装置30が収容された収容部内において、貯留部12内のオイルOの一部がかき上げられて、伝達装置30に潤滑油として供給される。 The transmission device 30 is a device that transmits the rotation of the rotor 21 to the axle of the vehicle. The transmission device 30 has a reduction gear 31 connected to the shaft 21a, and a differential gear 32 connected to the reduction gear 31. The differential gear 32 is connected to the axle of the vehicle (not shown). Although not shown, the differential gear 32 has a ring gear whose lower vertical end is immersed in the oil O stored in the storage section 12. As the ring gear rotates, a portion of the oil O in the storage section 12 is scooped up in the storage section of the housing 11 that houses the transmission device 30, and is supplied to the transmission device 30 as lubricating oil.
 冷却装置40は、モータ20に冷媒としてのオイルOを送る装置である。本実施形態において冷却装置40は、ポンプである。より詳細には、冷却装置40は、電動ポンプである。冷却装置40は、ハウジング11に取り付けられている。冷却装置40は、ポンプ駆動部41と、ポンプ機構部42と、ポンプ制御部43と、を有する。ポンプ駆動部41は、例えば、ポンプ制御部43によって制御されるモータである。ポンプ制御部43は、制御装置60から入力される流量指令値FCに基づいて、ポンプ駆動部41を制御する。 The cooling device 40 is a device that sends oil O as a refrigerant to the motor 20. In this embodiment, the cooling device 40 is a pump. More specifically, the cooling device 40 is an electric pump. The cooling device 40 is attached to the housing 11. The cooling device 40 has a pump drive unit 41, a pump mechanism unit 42, and a pump control unit 43. The pump drive unit 41 is, for example, a motor controlled by the pump control unit 43. The pump control unit 43 controls the pump drive unit 41 based on a flow command value FC input from the control device 60.
 ポンプ機構部42は、ポンプ駆動部41によって駆動されてオイルOを送る。ポンプ機構部42は、例えば、ポンプ駆動部41によって回転させられるインナーロータと、インナーロータを囲みインナーロータと噛み合うアウターロータと、を有する。本実施形態においてポンプ機構部42は、貯留部12の内部に繋がる吸入口から吸入されたオイルOを、ハウジング11に設けられた流路部に繋がる吐出口へと吐出する。ポンプ機構部42によって当該流路部に吐出されたオイルOは、当該流路部内を流れて、モータ20に供給される。このようにして、冷却装置40は、モータ20に冷媒としてのオイルOを送る。 The pump mechanism 42 is driven by the pump drive unit 41 to send the oil O. The pump mechanism 42 has, for example, an inner rotor rotated by the pump drive unit 41, and an outer rotor that surrounds the inner rotor and meshes with the inner rotor. In this embodiment, the pump mechanism 42 discharges the oil O drawn in from an intake port connected to the inside of the storage unit 12 to an outlet port connected to a flow path provided in the housing 11. The oil O discharged by the pump mechanism 42 to the flow path flows through the flow path and is supplied to the motor 20. In this way, the cooling device 40 sends the oil O as a refrigerant to the motor 20.
 本実施形態において冷却装置40は、ロータ21およびステータ22にオイルOに送る。冷却装置40によってモータ20に送られたオイルOは、例えば、ハウジング11のうちモータ20を収容する収容部内に溜まる。ハウジング11のうちモータ20を収容する収容部内に溜まったオイルOは、ハウジング11のうちモータ20の収容部と伝達装置30の収容部とを隔てる隔壁部に設けられた孔を介して、貯留部12内へと戻る。 In this embodiment, the cooling device 40 sends oil O to the rotor 21 and the stator 22. The oil O sent to the motor 20 by the cooling device 40 accumulates, for example, in the housing 11, in the accommodating portion that accommodates the motor 20. The oil O that accumulates in the housing 11, in the accommodating portion that accommodates the motor 20, returns to the reservoir 12 through a hole provided in the partition wall that separates the housing 11, in which the motor 20 is accommodated, from the accommodating portion of the transmission device 30.
 クーラ50は、ハウジング11に取り付けられている。クーラ50は、モータ20に送られるオイルOが流れる流路部の途中に設けられている。クーラ50は、モータ20に送られるオイルOを冷却する。つまり、冷却装置40によって貯留部12内からハウジング11の流路部に流入したオイルOは、クーラ50によって冷却されてからモータ20へと供給される。 The cooler 50 is attached to the housing 11. The cooler 50 is provided midway through the flow path through which the oil O sent to the motor 20 flows. The cooler 50 cools the oil O sent to the motor 20. In other words, the oil O that flows from inside the reservoir 12 into the flow path of the housing 11 by the cooling device 40 is cooled by the cooler 50 before being supplied to the motor 20.
 クーラ50内に流入したオイルOは、外部から駆動装置100内に流入した水Wとの熱交換によって冷却される。クーラ50においてオイルOを冷却する水Wは、車両に搭載された図示しないラジエータから駆動装置100内に流入する。駆動装置100内に流入した水Wは、制御装置60内を通って制御装置60を冷却してからクーラ50に流入する。クーラ50内に流入した水Wは、オイルOから熱を奪った後に、駆動装置100の外部に排出され、図示しないラジエータで冷却されてから再び駆動装置100内に流入する。 The oil O that flows into the cooler 50 is cooled by heat exchange with water W that flows into the drive unit 100 from the outside. The water W that cools the oil O in the cooler 50 flows into the drive unit 100 from a radiator (not shown) mounted on the vehicle. The water W that flows into the drive unit 100 passes through the control unit 60, cooling the control unit 60 before flowing into the cooler 50. After the water W that flows into the cooler 50 removes heat from the oil O, it is discharged outside the drive unit 100, is cooled by a radiator (not shown), and then flows back into the drive unit 100.
 温度センサ70は、モータ20の温度Tmを検出可能なセンサである。本実施形態において温度センサ70は、コイル23に取り付けられ、コイル23の温度を検出する。つまり、本実施形態において温度センサ70によって検出されるモータ20の温度Tmは、コイル23の温度である。 The temperature sensor 70 is a sensor capable of detecting the temperature Tm of the motor 20. In this embodiment, the temperature sensor 70 is attached to the coil 23 and detects the temperature of the coil 23. In other words, in this embodiment, the temperature Tm of the motor 20 detected by the temperature sensor 70 is the temperature of the coil 23.
 制御装置60は、モータ20および冷却装置40を制御する。制御装置60は、モータ20に電流Imを供給するインバータ回路を有する。制御装置60は、車両に搭載された車両制御部ECUから入力されるモータ20のトルク指令値NCに基づいて、モータ20に供給する電流Imを制御する。より具体的には、制御装置60は、電流Imの値を、モータ20のトルクが車両制御部ECUから入力されるトルク指令値NCとなる値に制御する。電流Imは、モータ20のコイル23に供給される。制御装置60には、温度センサ70によって検出されたモータ20の温度Tmが入力される。なお、制御装置60には、冷却装置40のポンプ制御部43からポンプ駆動部41の回転速度などが入力されてもよい。 The control device 60 controls the motor 20 and the cooling device 40. The control device 60 has an inverter circuit that supplies a current Im to the motor 20. The control device 60 controls the current Im supplied to the motor 20 based on a torque command value NC for the motor 20 input from a vehicle control unit ECU mounted on the vehicle. More specifically, the control device 60 controls the value of the current Im to a value at which the torque of the motor 20 becomes the torque command value NC input from the vehicle control unit ECU. The current Im is supplied to the coil 23 of the motor 20. The temperature Tm of the motor 20 detected by the temperature sensor 70 is input to the control device 60. The rotation speed of the pump drive unit 41 may also be input to the control device 60 from the pump control unit 43 of the cooling device 40.
 制御装置60は、冷却装置40を制御する流量制御CFを実行可能である。つまり、冷却装置40の制御方法は、流量制御CFを含む。流量制御CFは、モータ20の温度Tmおよびモータ20のトルク指令値NCに基づいて冷却装置40からモータ20に送られる冷媒としてのオイルOの流量を制御する制御である。制御装置60は、例えば、駆動装置100が駆動されている間、常に流量制御CFを実行する。なお、制御装置60は、所定の条件を満たす場合に流量制御CFを実行しないことがあってもよく、流量制御CFを実行しない場合に流量制御CFとは異なる制御を実行して冷却装置40を制御してもよい。 The control device 60 can execute flow control CF to control the cooling device 40. In other words, the control method for the cooling device 40 includes flow control CF. The flow control CF is a control that controls the flow rate of oil O, which serves as a refrigerant, sent from the cooling device 40 to the motor 20 based on the temperature Tm of the motor 20 and the torque command value NC of the motor 20. The control device 60 always executes the flow control CF, for example, while the drive device 100 is being driven. Note that the control device 60 may not execute the flow control CF when a predetermined condition is satisfied, and may execute a control different from the flow control CF to control the cooling device 40 when the flow control CF is not executed.
 本実施形態の流量制御CFにおいて制御装置60は、図2に示すフローチャートに沿って冷却装置40を制御する。図2に示すように、流量制御CFにおいて制御装置60は、まず、流量指令値FCとして第1流量指令値FC1を冷却装置40に入力する(ステップS1)。第1流量指令値FC1は、モータ20の温度Tmに基づいて変動する値である。流量制御CFにおいて制御装置60は、温度センサ70から入力されるモータ20の温度Tmに基づいて第1流量指令値FC1の値を変動させる。 In the flow control CF of this embodiment, the control device 60 controls the cooling device 40 according to the flowchart shown in FIG. 2. As shown in FIG. 2, in the flow control CF, the control device 60 first inputs a first flow command value FC1 to the cooling device 40 as a flow command value FC (step S1). The first flow command value FC1 is a value that varies based on the temperature Tm of the motor 20. In the flow control CF, the control device 60 varies the value of the first flow command value FC1 based on the temperature Tm of the motor 20 input from the temperature sensor 70.
 図3は、本実施形態における第1流量指令値FC1とモータ20の温度Tmとの関係の一例を示すグラフである。図3において、横軸はモータ20の温度Tmを示し、縦軸は第1流量指令値FC1を示している。図3に示すように、本実施形態においてモータ20の温度Tmが温度Taよりも低い場合、第1流量指令値FC1は、値FCaで一定である。本実施形態において値FCaは、第1流量指令値FC1の最小値である。温度Taは、特に限定されない。温度Taは、例えば、0℃以上、20℃以下程度である。第1流量指令値FC1の最小値である値FCaは、特に限定されない。値FCaは、例えば、1.0[L/min]以上、5.0[L/min]以下程度である。 FIG. 3 is a graph showing an example of the relationship between the first flow command value FC1 and the temperature Tm of the motor 20 in this embodiment. In FIG. 3, the horizontal axis indicates the temperature Tm of the motor 20, and the vertical axis indicates the first flow command value FC1. As shown in FIG. 3, in this embodiment, when the temperature Tm of the motor 20 is lower than the temperature Ta, the first flow command value FC1 is constant at a value FCa. In this embodiment, the value FCa is the minimum value of the first flow command value FC1. The temperature Ta is not particularly limited. The temperature Ta is, for example, about 0° C. or more and 20° C. or less. The value FCa, which is the minimum value of the first flow command value FC1, is not particularly limited. The value FCa is, for example, about 1.0 [L/min] or more and 5.0 [L/min] or less.
 モータ20の温度Tmが温度Tb以上で、かつ、温度Tcよりも低い場合、第1流量指令値FC1は、値FCbで一定である。温度Tbは、温度Taよりも高い。温度Tcは、温度Tbよりも高い。値FCbは、値FCaよりも大きい。モータ20の温度Tmが温度Td以上で、かつ、温度Teよりも低い場合、第1流量指令値FC1は、値FCcで一定である。温度Tdは、温度Tcよりも高い。温度Teは、温度Tdよりも高い。値FCcは、値FCbよりも大きい。 When the temperature Tm of the motor 20 is equal to or higher than the temperature Tb and lower than the temperature Tc, the first flow command value FC1 is constant at the value FCb. The temperature Tb is higher than the temperature Ta. The temperature Tc is higher than the temperature Tb. The value FCb is greater than the value FCa. When the temperature Tm of the motor 20 is equal to or higher than the temperature Td and lower than the temperature Te, the first flow command value FC1 is constant at the value FCc. The temperature Td is higher than the temperature Tc. The temperature Te is higher than the temperature Td. The value FCc is greater than the value FCb.
 モータ20の温度Tmが温度Tf以上の場合、第1流量指令値FC1は、値FCdで一定である。温度Tfは、温度Teよりも高い。本実施形態において温度Tfは、「第1温度」に相当する。第1温度である温度Tfは、特に限定されない。温度Tfは、例えば、80℃以上、120℃以下程度である。値FCdは、値FCcよりも大きい。本実施形態において値FCdは、第1流量指令値FC1の最大値である。第1流量指令値FC1の最大値である値FCdは、特に限定されない。値FCdは、例えば、8.0[L/min]以上、12.0[L/min]以下程度である。 When the temperature Tm of the motor 20 is equal to or higher than the temperature Tf, the first flow command value FC1 is constant at a value FCd. The temperature Tf is higher than the temperature Te. In this embodiment, the temperature Tf corresponds to the "first temperature". The temperature Tf, which is the first temperature, is not particularly limited. The temperature Tf is, for example, equal to or higher than 80°C and equal to or lower than 120°C. The value FCd is greater than the value FCc. In this embodiment, the value FCd is the maximum value of the first flow command value FC1. The value FCd, which is the maximum value of the first flow command value FC1, is not particularly limited. The value FCd is, for example, equal to or higher than 8.0 [L/min] and equal to or lower than 12.0 [L/min].
 モータ20の温度Tmが温度Ta以上で、かつ、温度Tbよりも低い場合、第1流量指令値FC1は、値FCaと値FCbとの間で線形に変化し、モータ20の温度Tmが高いほど大きくなる。モータ20の温度Tmが温度Tc以上で、かつ、温度Tdよりも低い場合、第1流量指令値FC1は、値FCbと値FCcとの間で線形に変化し、モータ20の温度Tmが高いほど大きくなる。モータ20の温度Tmが温度Te以上で、かつ、温度Tfよりも低い場合、第1流量指令値FC1は、値FCcと値FCdとの間で線形に変化し、モータ20の温度Tmが高くなるほど大きくなる。本実施形態においてモータ20の温度Tmが温度Tfよりも低い場合の第1流量指令値FC1は、モータ20の温度Tmが温度Tf以上である場合の第1流量指令値FC1、すなわち値FCdよりも小さい。 When the temperature Tm of the motor 20 is equal to or higher than the temperature Ta and lower than the temperature Tb, the first flow command value FC1 changes linearly between the values FCa and FCb, and increases as the temperature Tm of the motor 20 increases. When the temperature Tm of the motor 20 is equal to or higher than the temperature Tc and lower than the temperature Td, the first flow command value FC1 changes linearly between the values FCb and FCc, and increases as the temperature Tm of the motor 20 increases. When the temperature Tm of the motor 20 is equal to or higher than the temperature Te and lower than the temperature Tf, the first flow command value FC1 changes linearly between the values FCc and FCd, and increases as the temperature Tm of the motor 20 increases. In this embodiment, the first flow command value FC1 when the temperature Tm of the motor 20 is lower than the temperature Tf is smaller than the first flow command value FC1 when the temperature Tm of the motor 20 is equal to or higher than the temperature Tf, i.e., the value FCd.
 図2に示すように、流量制御CFにおいて制御装置60は、冷却装置40に入力される流量指令値FCが第1流量指令値FC1である場合に、トルク指令値NCが第1トルク指令値NC1以上か否かを判定する(ステップS2)。第1トルク指令値NC1は、特に限定されない。第1トルク指令値NC1は、一定の値である。第1トルク指令値NC1は、例えば、比較的大きい値のトルク指令値NCである。第1トルク指令値NC1は、例えば、トルク指令値NCの最大値の50%以上、100%未満の値である。より好ましくは、第1トルク指令値NC1は、例えば、トルク指令値NCの最大値の60%以上、90%以下程度の範囲内の値である。 As shown in FIG. 2, in the flow control CF, when the flow command value FC input to the cooling device 40 is the first flow command value FC1, the control device 60 determines whether the torque command value NC is equal to or greater than the first torque command value NC1 (step S2). The first torque command value NC1 is not particularly limited. The first torque command value NC1 is a constant value. The first torque command value NC1 is, for example, a torque command value NC that is relatively large. The first torque command value NC1 is, for example, a value that is 50% or more and less than 100% of the maximum value of the torque command value NC. More preferably, the first torque command value NC1 is, for example, a value that is within a range of 60% or more and 90% or less of the maximum value of the torque command value NC.
 トルク指令値NCが第1トルク指令値NC1よりも小さい場合(ステップS2:NO)、制御装置60は、冷却装置40に入力される流量指令値FCを第1流量指令値FC1に維持する。一方、トルク指令値NCが第1トルク指令値NC1以上の場合(ステップS2:YES)、制御装置60は、流量指令値FCとして第2流量指令値FC2を冷却装置40に入力する(ステップS3)。つまり、流量制御CFにおいて制御装置60は、流量指令値FCが第1流量指令値FC1である場合において、トルク指令値NCが第1トルク指令値NC1以上となった場合に、流量指令値FCを第1流量指令値FC1から第2流量指令値FC2に切り替える。言い換えれば、流量制御CFは、冷却装置40に入力する流量指令値FCが第1流量指令値FC1である場合において、トルク指令値NCが第1トルク指令値NC1以上となった場合に、流量指令値FCを第1流量指令値FC1から第2流量指令値FC2に切り替えることを含む。 If the torque command value NC is smaller than the first torque command value NC1 (step S2: NO), the control device 60 maintains the flow command value FC input to the cooling device 40 at the first flow command value FC1. On the other hand, if the torque command value NC is equal to or greater than the first torque command value NC1 (step S2: YES), the control device 60 inputs the second flow command value FC2 as the flow command value FC to the cooling device 40 (step S3). That is, in the flow control CF, when the flow command value FC is the first flow command value FC1, if the torque command value NC becomes equal to or greater than the first torque command value NC1, the control device 60 switches the flow command value FC from the first flow command value FC1 to the second flow command value FC2. In other words, the flow control CF includes switching the flow command value FC from the first flow command value FC1 to the second flow command value FC2 when the torque command value NC becomes equal to or greater than the first torque command value NC1 when the flow command value FC input to the cooling device 40 is the first flow command value FC1.
 第2流量指令値FC2は、第1流量指令値FC1以上の値である。本実施形態において第2流量指令値FC2は、一定の値である。第2流量指令値FC2は、モータ20の温度Tmが温度Tfよりも低い場合の第1流量指令値FC1よりも大きい。本実施形態において第2流量指令値FC2は、モータ20の温度Tmが温度Tf以上である場合の第1流量指令値FC1と同じ値であり、第1流量指令値FC1の最大値、すなわち値FCdと同じ値である。このように本実施形態では、第1流量指令値FC1が最大値である場合を除いて、第2流量指令値FC2は、第1流量指令値FC1よりも大きい。 The second flow command value FC2 is a value equal to or greater than the first flow command value FC1. In this embodiment, the second flow command value FC2 is a constant value. The second flow command value FC2 is greater than the first flow command value FC1 when the temperature Tm of the motor 20 is lower than the temperature Tf. In this embodiment, the second flow command value FC2 is the same value as the first flow command value FC1 when the temperature Tm of the motor 20 is equal to or greater than the temperature Tf, and is the same value as the maximum value of the first flow command value FC1, i.e., value FCd. Thus, in this embodiment, the second flow command value FC2 is greater than the first flow command value FC1, except when the first flow command value FC1 is the maximum value.
 図2に示すように、流量制御CFにおいて制御装置60は、冷却装置40に入力される流量指令値FCが第2流量指令値FC2である場合に、トルク指令値NCが第2トルク指令値NC2以下となった状態が所定時間Pt、連続経過したか否かを判定する(ステップS4)。第2トルク指令値NC2は、一定の値である。本実施形態において第2トルク指令値NC2は、第1トルク指令値NC1よりも小さい。第1トルク指令値NC1と第2トルク指令値NC2との差は、比較的小さい。第1トルク指令値NC1と第2トルク指令値NC2との差は、トルク指令値NCの最大値を100%としたとき、例えば、3%以上、10%以下程度である。 As shown in FIG. 2, in the flow control CF, when the flow command value FC input to the cooling device 40 is the second flow command value FC2, the control device 60 determines whether the torque command value NC has been equal to or less than the second torque command value NC2 for a predetermined time Pt (step S4). The second torque command value NC2 is a constant value. In this embodiment, the second torque command value NC2 is smaller than the first torque command value NC1. The difference between the first torque command value NC1 and the second torque command value NC2 is relatively small. When the maximum value of the torque command value NC is 100%, the difference between the first torque command value NC1 and the second torque command value NC2 is, for example, about 3% or more and 10% or less.
 所定時間Ptは、例えば、5秒以上、100秒以下程度である。流量制御CFにおいて制御装置60は、冷却装置40に入力される流量指令値FCが第2流量指令値FC2である場合に、トルク指令値NCが第2トルク指令値NC2以下となった時点で、所定時間Ptのカウントを開始する。所定時間Ptが経過する前に、トルク指令値NCが第2トルク指令値NC2よりも大きくなった場合には、制御装置60は、所定時間Ptのカウントを停止し、所定時間Ptのカウントをゼロに戻す。トルク指令値NCが再び第2トルク指令値NC2以下となった場合、制御装置60は、所定時間Ptのカウントを再び開始する。 The predetermined time Pt is, for example, about 5 seconds or more and 100 seconds or less. In the flow control CF, when the flow command value FC input to the cooling device 40 is the second flow command value FC2, the control device 60 starts counting the predetermined time Pt when the torque command value NC becomes equal to or less than the second torque command value NC2. If the torque command value NC becomes greater than the second torque command value NC2 before the predetermined time Pt has elapsed, the control device 60 stops counting the predetermined time Pt and returns the count to zero. If the torque command value NC becomes equal to or less than the second torque command value NC2 again, the control device 60 starts counting the predetermined time Pt again.
 トルク指令値NCが第2トルク指令値NC2以下となった状態で所定時間Ptが連続経過していない場合(ステップS4:NO)、制御装置60は、冷却装置40に入力される流量指令値FCを第2流量指令値FC2に維持する。一方、トルク指令値NCが第2トルク指令値NC2以下となった状態で所定時間Ptが連続経過した場合(ステップS4:YES)、制御装置60は、流量指令値FCとして第1流量指令値FC1を冷却装置40に入力する(ステップS1)。 If the torque command value NC is equal to or less than the second torque command value NC2 and the predetermined time Pt has not elapsed continuously (step S4: NO), the control device 60 maintains the flow command value FC input to the cooling device 40 at the second flow command value FC2. On the other hand, if the torque command value NC is equal to or less than the second torque command value NC2 and the predetermined time Pt has elapsed continuously (step S4: YES), the control device 60 inputs the first flow command value FC1 as the flow command value FC to the cooling device 40 (step S1).
 このように、流量制御CFにおいて制御装置60は、流量指令値FCが第2流量指令値FC2である場合において、トルク指令値NCが第2トルク指令値NC2以下である場合に、流量指令値FCを第2流量指令値FC2から第1流量指令値FC1に切り替える。より詳細には、流量制御CFにおいて制御装置60は、流量指令値FCが第2流量指令値FC2である場合において、トルク指令値NCが第2トルク指令値NC2以下である状態が所定時間Pt以上続いた場合に、流量指令値FCを第2流量指令値FC2から第1流量指令値FC1に切り替える。 In this way, in the flow control CF, when the flow command value FC is the second flow command value FC2, if the torque command value NC is equal to or less than the second torque command value NC2, the control device 60 switches the flow command value FC from the second flow command value FC2 to the first flow command value FC1. More specifically, in the flow control CF, when the flow command value FC is the second flow command value FC2, if the state in which the torque command value NC is equal to or less than the second torque command value NC2 continues for a predetermined time Pt or more, the control device 60 switches the flow command value FC from the second flow command value FC2 to the first flow command value FC1.
 言い換えれば、流量制御CFは、流量指令値FCが第2流量指令値FC2である場合において、トルク指令値NCが第2トルク指令値NC2以下である場合に、流量指令値FCを第2流量指令値FC2から第1流量指令値FC1に切り替えることを含む。より詳細には、流量制御CFは、流量指令値FCが第2流量指令値FC2である場合において、トルク指令値NCが第2トルク指令値NC2以下である状態が所定時間Pt以上続いた場合に、流量指令値FCを第2流量指令値FC2から第1流量指令値FC1に切り替えることを含む。 In other words, the flow control CF includes switching the flow command value FC from the second flow command value FC2 to the first flow command value FC1 when the flow command value FC is the second flow command value FC2 and the torque command value NC is equal to or less than the second torque command value NC2. More specifically, the flow control CF includes switching the flow command value FC from the second flow command value FC2 to the first flow command value FC1 when the flow command value FC is the second flow command value FC2 and the state in which the torque command value NC is equal to or less than the second torque command value NC2 continues for a predetermined time Pt or more.
 以上のように、流量制御CFにおいて制御装置60は、冷却装置40に入力する流量指令値FCを、モータ20の温度Tmに基づいて変動する第1流量指令値FC1と、第1流量指令値FC1以上の第2流量指令値FC2と、に切り替え可能である。本実施形態の流量制御CFにおいて制御装置60は、上述したステップS1からステップS4までを繰り返し行うことで、モータ20の温度Tmおよびトルク指令値NCに基づいて冷却装置40を制御し、モータ20に送られるオイルOの流量の制御を行う。 As described above, in the flow control CF, the control device 60 can switch the flow command value FC input to the cooling device 40 between a first flow command value FC1 that varies based on the temperature Tm of the motor 20, and a second flow command value FC2 that is equal to or greater than the first flow command value FC1. In the flow control CF of this embodiment, the control device 60 repeatedly performs steps S1 to S4 described above to control the cooling device 40 based on the temperature Tm of the motor 20 and the torque command value NC, and controls the flow rate of oil O sent to the motor 20.
 本実施形態の流量制御CFにおいて制御装置60は、例えば、切替フラグFLを0と1との間で切り替えて、流量指令値FCを第1流量指令値FC1と第2流量指令値FC2との間で切り替えている。切替フラグFLが0の場合には、制御装置60は、流量指令値FCを第1流量指令値FC1とする。切替フラグFLが1の場合には、制御装置60は、流量指令値FCを第2流量指令値FC2とする。制御装置60は、トルク指令値NCに基づいて切替フラグFLを切り替えて、上述したように流量指令値FCを切り替えている。 In the flow control CF of this embodiment, the control device 60 switches the flow command value FC between a first flow command value FC1 and a second flow command value FC2, for example, by switching the switching flag FL between 0 and 1. When the switching flag FL is 0, the control device 60 sets the flow command value FC to the first flow command value FC1. When the switching flag FL is 1, the control device 60 sets the flow command value FC to the second flow command value FC2. The control device 60 switches the switching flag FL based on the torque command value NC, and switches the flow command value FC as described above.
 図4は、流量制御CFにおけるトルク指令値NC、流量指令値FC、および切替フラグFLのそれぞれの時間変化の一例を示すグラフである。図4には、上下方向に並べて3つのグラフを示している。図4の一番上のグラフは、トルク指令値NCの時間変化の一例を示すグラフである。図4の一番上のグラフにおいて、横軸は時間tを示し、縦軸はトルク指令値NCを示している。図4の中央のグラフは、流量指令値FCの時間変化の一例を示すグラフである。図4の中央のグラフにおいて、横軸は時間tを示し、縦軸は流量指令値FCを示している。図4の一番下のグラフは、切替フラグFLの時間変化の一例を示すグラフである。図4の一番下のグラフにおいて、横軸は時間tを示し、縦軸は切替フラグFLを示している。 FIG. 4 is a graph showing an example of the change over time of the torque command value NC, the flow command value FC, and the switching flag FL in the flow control CF. Three graphs are shown arranged vertically in FIG. 4. The top graph in FIG. 4 is a graph showing an example of the change over time of the torque command value NC. In the top graph in FIG. 4, the horizontal axis indicates time t, and the vertical axis indicates the torque command value NC. The center graph in FIG. 4 is a graph showing an example of the change over time of the flow command value FC. In the center graph in FIG. 4, the horizontal axis indicates time t, and the vertical axis indicates the flow command value FC. The bottom graph in FIG. 4 is a graph showing an example of the change over time of the switching flag FL. In the bottom graph in FIG. 4, the horizontal axis indicates time t, and the vertical axis indicates the switching flag FL.
 図4の例では、時刻t0から時刻t1までは、トルク指令値NCが第1トルク指令値NC1よりも小さく、流量指令値FCは、第1流量指令値FC1となっている。このとき、切替フラグFLは0であり、第1流量指令値FC1の値は値FCcである。時刻t1においてトルク指令値NCが第1トルク指令値NC1以上になると、切替フラグFLが1に切り替えられ、流量指令値FCが第2流量指令値FC2に切り替えられる。本実施形態において第2流量指令値FC2の値は値FCdで一定であるため、時刻t1において流量指令値FCは、値FCcから値FCdに大きくなる。 In the example of FIG. 4, from time t0 to time t1, the torque command value NC is smaller than the first torque command value NC1, and the flow command value FC is the first flow command value FC1. At this time, the switching flag FL is 0, and the value of the first flow command value FC1 is the value FCc. When the torque command value NC becomes equal to or greater than the first torque command value NC1 at time t1, the switching flag FL is switched to 1, and the flow command value FC is switched to the second flow command value FC2. In this embodiment, the value of the second flow command value FC2 is constant at the value FCd, so that at time t1 the flow command value FC increases from the value FCc to the value FCd.
 時刻t1よりも後の時刻t2になり、トルク指令値NCが第2トルク指令値NC2以下になると、制御装置60は、所定時間Ptのカウントを開始する。なお、時刻t1の後、かつ、時刻t2よりも前においてトルク指令値NCが第1トルク指令値NC1よりも小さくなっている時間があるが、この時間においてはトルク指令値NCが第2トルク指令値NC2よりも大きいため、所定時間Ptのカウントは開始されない。トルク指令値NCが第2トルク指令値NC2以下のまま、時刻t2から所定時間Ptが経過した時刻t3になると、切替フラグFLが0となり、流量指令値FCが第1流量指令値FC1に切り替えられる。 When the torque command value NC becomes equal to or less than the second torque command value NC2 at time t2, which is later than time t1, the control device 60 starts counting the predetermined time Pt. Note that there is a period of time after time t1 and before time t2 when the torque command value NC is smaller than the first torque command value NC1, but since the torque command value NC is greater than the second torque command value NC2 during this period, counting the predetermined time Pt does not start. When the torque command value NC remains equal to or less than the second torque command value NC2 and the predetermined time Pt has elapsed since time t2 at time t3, the switching flag FL becomes 0, and the flow command value FC is switched to the first flow command value FC1.
 時刻t3から時刻t4までの間においては、第1流量指令値FC1は、値FCcとなっている。時刻t4から時刻t5までの間においては、第1流量指令値FC1は、値FCcから値FCbに向けて線形に低下している。時刻t5から時刻t6までの間においては、第1流量指令値FC1は、値FCbとなっている。つまり、時刻t3から時刻t6までの間に、モータ20の温度Tmが低下し、第1流量指令値FC1が値FCcから値FCbに変動している。 Between time t3 and time t4, the first flow command value FC1 is equal to the value FCc. Between time t4 and time t5, the first flow command value FC1 decreases linearly from the value FCc to the value FCb. Between time t5 and time t6, the first flow command value FC1 is equal to the value FCb. In other words, between time t3 and time t6, the temperature Tm of the motor 20 decreases, and the first flow command value FC1 changes from the value FCc to the value FCb.
 時刻t6においてトルク指令値NCが再び第1トルク指令値NC1以上になると、切替フラグFLが再び1に切り替えられ、流量指令値FCが第2流量指令値FC2に再び切り替えられる。その後、トルク指令値NCが第2トルク指令値NC2以下となった時刻t7において所定時間Ptのカウントが開始され、時刻t7の所定時間Pt後の時刻t8において、切替フラグFLが再び0に切り替えられ、流量指令値FCが第1流量指令値FC1に再び切り替えられる。 When the torque command value NC again becomes equal to or greater than the first torque command value NC1 at time t6, the switching flag FL is switched back to 1, and the flow command value FC is switched back to the second flow command value FC2. Then, at time t7 when the torque command value NC becomes equal to or less than the second torque command value NC2, counting of the predetermined time Pt begins, and at time t8, the predetermined time Pt after time t7, the switching flag FL is switched back to 0, and the flow command value FC is switched back to the first flow command value FC1.
 以上のように、本実施形態の流量制御CFでは、トルク指令値NCが比較的小さい値、すなわち第1トルク指令値NC1よりも小さい値である場合には、モータ20の温度Tmに基づいて流量指令値FCが変動し、トルク指令値NCが比較的大きい値、すなわち第1トルク指令値NC1以上になった際には、流量指令値FCが強制的に大きな一定の値、すなわち第2流量指令値FC2となる。本実施形態の流量制御CFでは、第2流量指令値FC2が第1流量指令値FC1の最大値と同じ値であるため、トルク指令値NCが第1トルク指令値NC1以上になった際に、流量指令値FCが、強制的に、モータ20の温度Tmに基づいて変動する第1流量指令値FC1の最大値と同じ値となる。 As described above, in the flow control CF of this embodiment, when the torque command value NC is a relatively small value, i.e., a value smaller than the first torque command value NC1, the flow command value FC fluctuates based on the temperature Tm of the motor 20, and when the torque command value NC becomes a relatively large value, i.e., equal to or greater than the first torque command value NC1, the flow command value FC is forcibly set to a large constant value, i.e., the second flow command value FC2. In the flow control CF of this embodiment, since the second flow command value FC2 is the same value as the maximum value of the first flow command value FC1, when the torque command value NC becomes equal to or greater than the first torque command value NC1, the flow command value FC is forcibly set to the same value as the maximum value of the first flow command value FC1, which fluctuates based on the temperature Tm of the motor 20.
 車両制御部ECUから制御装置60に入力されるトルク指令値NCが大きくなると、モータ20に供給される電流Imが増加し、モータ20の温度Tmも高くなる。特に、トルク指令値NCが或る程度の値よりも大きくなると、モータ20の温度Tmが急激に上昇しやすい。このような場合、モータ20の温度Tmに基づいて冷却装置40からモータ20に送られるオイルOの流量を増加させても、オイルOがモータ20に到達するまでの時間差によって、モータ20の冷却が間に合わない場合がある。そのため、モータ20の冷却が不十分となる恐れがある。 When the torque command value NC input from the vehicle control unit ECU to the control device 60 increases, the current Im supplied to the motor 20 increases and the temperature Tm of the motor 20 also increases. In particular, when the torque command value NC exceeds a certain value, the temperature Tm of the motor 20 is likely to rise suddenly. In such a case, even if the flow rate of oil O sent from the cooling device 40 to the motor 20 is increased based on the temperature Tm of the motor 20, the motor 20 may not be cooled in time due to the time difference until the oil O reaches the motor 20. As a result, there is a risk that the motor 20 will not be cooled sufficiently.
 これに対して、本実施形態によれば、流量制御CFにおいて制御装置60は、流量指令値FCが第1流量指令値FC1である場合において、トルク指令値NCが第1トルク指令値NC1以上となった場合に、流量指令値FCを、モータ20の温度Tmに基づいて変動する第1流量指令値FC1から、第1流量指令値FC1以上の第2流量指令値FC2に切り替える。そのため、トルク指令値NCが第1トルク指令値NC1以上となった際に、冷却装置40に入力される流量指令値FCを、モータ20の温度Tmによらず、モータ20の温度Tmに基づく第1流量指令値FC1以上の第2流量指令値FC2とすることができる。これにより、トルク指令値NCの上昇に伴ってモータ20の温度Tmが実際に上昇する前に冷却装置40に送られる流量指令値FCを上昇させやすく、モータ20の温度Tmが実際に上昇する前、またはモータ20の温度Tmの上昇に合わせて、モータ20に到達するオイルOの流量を大きくしやすい。したがって、冷却装置40から送られるオイルOによるモータ20の冷却が間に合わないことを抑制でき、冷却装置40によるモータ20の冷却が不十分となることを抑制できる。 In contrast, according to the present embodiment, in the flow control CF, when the flow command value FC is the first flow command value FC1, if the torque command value NC becomes equal to or greater than the first torque command value NC1, the control device 60 switches the flow command value FC from the first flow command value FC1, which varies based on the temperature Tm of the motor 20, to a second flow command value FC2 equal to or greater than the first flow command value FC1. Therefore, when the torque command value NC becomes equal to or greater than the first torque command value NC1, the flow command value FC input to the cooling device 40 can be set to the second flow command value FC2 equal to or greater than the first flow command value FC1 based on the temperature Tm of the motor 20, regardless of the temperature Tm of the motor 20. This makes it easier to increase the flow command value FC sent to the cooling device 40 before the temperature Tm of the motor 20 actually rises with the increase in the torque command value NC, and makes it easier to increase the flow rate of the oil O that reaches the motor 20 before the temperature Tm of the motor 20 actually rises, or in accordance with the rise in the temperature Tm of the motor 20. This prevents the oil O sent from the cooling device 40 from cooling the motor 20 in time, and prevents the cooling device 40 from cooling the motor 20 insufficiently.
 また、トルク指令値NCが第1トルク指令値NC1以上となる前においては、制御装置60は、モータ20の温度Tmに基づいて冷却装置40からモータ20に送られるオイルOの量を変動させる。そのため、トルク指令値NCが比較的小さく、モータ20の温度Tmが急上昇しにくい場合には、冷却装置40からモータ20に送られるオイルOの量が不必要に多くなることを抑制できる。したがって、冷却装置40において消費される電力が増大することを抑制でき、駆動装置100において消費される電力が増大することを抑制できる。 In addition, before the torque command value NC becomes equal to or greater than the first torque command value NC1, the control device 60 varies the amount of oil O sent from the cooling device 40 to the motor 20 based on the temperature Tm of the motor 20. Therefore, when the torque command value NC is relatively small and the temperature Tm of the motor 20 is unlikely to rise suddenly, it is possible to prevent the amount of oil O sent from the cooling device 40 to the motor 20 from becoming unnecessarily large. Therefore, it is possible to prevent an increase in the power consumed by the cooling device 40, and to prevent an increase in the power consumed by the drive device 100.
 より具体的に説明すると、例えば、車両を運転する運転者がアクセルを大きく踏み込んだ場合には、トルク指令値NCが通常の走行時よりも大きくなり、モータ20の温度Tmが急上昇しやすい。このような場合に、モータ20の温度Tmのみに基づいて冷却装置40から送られるオイルOの流量を制御すると、上述したようにオイルOの流量の増加が間に合わず、モータ20の冷却が間に合わなくなりやすい。これに対して、本実施形態によれば、モータ20の温度Tmだけでなく、トルク指令値NCにも基づいて冷却装置40を制御するため、運転者がアクセルを大きく踏み込んでトルク指令値NCが通常の走行時よりも大きくなった場合には、モータ20の温度TmによらずオイルOの流量を強制的に大きくすることができ、モータ20の冷却が間に合わなくなることを抑制できる。 To explain more specifically, for example, if the driver of the vehicle depresses the accelerator pedal deeply, the torque command value NC becomes larger than during normal driving, and the temperature Tm of the motor 20 is likely to rise sharply. In such a case, if the flow rate of oil O sent from the cooling device 40 is controlled based only on the temperature Tm of the motor 20, the increase in the flow rate of oil O will not be able to keep up, as described above, and the cooling of the motor 20 will likely not be able to keep up. In contrast, according to this embodiment, the cooling device 40 is controlled based not only on the temperature Tm of the motor 20 but also on the torque command value NC, so that when the driver depresses the accelerator pedal deeply and the torque command value NC becomes larger than during normal driving, the flow rate of oil O can be forcibly increased regardless of the temperature Tm of the motor 20, and it is possible to prevent the cooling of the motor 20 from not being able to keep up.
 また、本実施形態によれば、流量制御CFにおいて制御装置60は、流量指令値FCが第2流量指令値FC2である場合において、トルク指令値NCが第2トルク指令値NC2以下である場合に、流量指令値FCを第2流量指令値FC2から第1流量指令値FC1に切り替える。そのため、トルク指令値NCが小さくなり、モータ20に送られるオイルOの流量を強制的に大きくしておく必要がなくなった場合には、モータ20に送られるオイルOの流量をモータ20の温度Tmに基づいて変動させる制御に戻すことができる。これにより、冷却装置40からモータ20に送られるオイルOの量が不必要に多くなることをより抑制できる。したがって、冷却装置40において消費される電力が増大することをより抑制でき、駆動装置100において消費される電力が増大することをより抑制できる。 Furthermore, according to this embodiment, in the flow control CF, when the flow command value FC is the second flow command value FC2, and the torque command value NC is equal to or less than the second torque command value NC2, the control device 60 switches the flow command value FC from the second flow command value FC2 to the first flow command value FC1. Therefore, when the torque command value NC becomes small and it is no longer necessary to forcibly increase the flow rate of the oil O sent to the motor 20, the control can be returned to one in which the flow rate of the oil O sent to the motor 20 varies based on the temperature Tm of the motor 20. This can further prevent the amount of oil O sent from the cooling device 40 to the motor 20 from becoming unnecessarily large. Therefore, it can further prevent the power consumed by the cooling device 40 from increasing, and can further prevent the power consumed by the drive device 100 from increasing.
 また、本実施形態によれば、第2トルク指令値NC2は、第1トルク指令値NC1よりも小さい。そのため、例えば、トルク指令値NCが第1トルク指令値NC1以上となって流量指令値FCが第2流量指令値FC2となった後に、トルク指令値NCが不安定で第1トルク指令値NC1の近傍で上昇と下降を繰り返すような場合などであっても、トルク指令値NCが第2トルク指令値NC2以下とならなければ、流量指令値FCが切り替わることがない。これにより、短時間の間に流量指令値FCが第1流量指令値FC1と第2流量指令値FC2との間で頻繁に切り替えられることを抑制できる。したがって、冷却装置40に負荷が掛かることを抑制できる。 Furthermore, according to this embodiment, the second torque command value NC2 is smaller than the first torque command value NC1. Therefore, for example, even if the torque command value NC is unstable and repeatedly rises and falls near the first torque command value NC1 after the torque command value NC becomes equal to or greater than the first torque command value NC1 and the flow command value FC becomes the second flow command value FC2, the flow command value FC will not be switched unless the torque command value NC becomes equal to or less than the second torque command value NC2. This makes it possible to prevent the flow command value FC from being frequently switched between the first flow command value FC1 and the second flow command value FC2 within a short period of time. Therefore, it is possible to prevent a load from being applied to the cooling device 40.
 また、本実施形態によれば、流量制御CFにおいて制御装置60は、流量指令値FCが第2流量指令値FC2である場合において、トルク指令値NCが第2トルク指令値NC2以下である状態が所定時間Pt以上続いた場合に、流量指令値FCを第2流量指令値FC2から第1流量指令値FC1に切り替える。そのため、トルク指令値NCが第2トルク指令値NC2以下となっても直ちに流量指令値FCが第1流量指令値FC1に切り替わることがない。これにより、トルク指令値NCが第2トルク指令値NC2以下となった際にモータ20の温度Tmが十分に低下していない場合であっても、引き続き第2流量指令値FC2に基づく流量のオイルOをモータ20に送ることができ、モータ20を好適に冷却できる。したがって、モータ20の冷却が不十分になることをより抑制できる。 Furthermore, according to this embodiment, in the flow control CF, when the flow command value FC is the second flow command value FC2, if the state in which the torque command value NC is equal to or less than the second torque command value NC2 continues for a predetermined time Pt or more, the control device 60 switches the flow command value FC from the second flow command value FC2 to the first flow command value FC1. Therefore, even if the torque command value NC becomes equal to or less than the second torque command value NC2, the flow command value FC does not immediately switch to the first flow command value FC1. As a result, even if the temperature Tm of the motor 20 has not dropped sufficiently when the torque command value NC becomes equal to or less than the second torque command value NC2, the oil O can continue to be sent to the motor 20 at a flow rate based on the second flow command value FC2, and the motor 20 can be appropriately cooled. Therefore, it is possible to further prevent the motor 20 from being insufficiently cooled.
 また、例えば、運転者によっては、アクセルを大きく踏み込む動作を短時間の間に繰り返し行うこともある。このような場合、トルク指令値NCは、短時間の間に、第1トルク指令値NC1以上の値と、第2トルク指令値NC2以下の値と、を繰り返す場合がある。この場合において、トルク指令値NCが第2トルク指令値NC2以下になった場合に直ちに流量指令値FCが第1流量指令値FC1に戻されると、流量指令値FCが第1流量指令値FC1と第2流量指令値FC2との間で短時間の間に頻繁に切り替えられることとなる。これに対して、本実施形態では、トルク指令値NCが第2トルク指令値NC2以下となっても、所定時間Ptが経過しなければ、流量指令値FCが第1流量指令値FC1に戻らない。そのため、例えば、アクセルを大きく踏み込む動作が短時間の間に繰り返し行われるような場合には、流量指令値FCを第2流量指令値FC2のまま維持しておくことが可能である。これにより、短時間の間に流量指令値FCが第1流量指令値FC1と第2流量指令値FC2との間で頻繁に切り替えられることをより抑制できる。したがって、冷却装置40に負荷が掛かることをより抑制できる。 Also, for example, some drivers may repeatedly depress the accelerator pedal heavily in a short period of time. In such a case, the torque command value NC may repeatedly change between a value equal to or greater than the first torque command value NC1 and a value equal to or less than the second torque command value NC2 in a short period of time. In this case, if the flow command value FC is immediately returned to the first flow command value FC1 when the torque command value NC becomes equal to or less than the second torque command value NC2, the flow command value FC will be frequently switched between the first flow command value FC1 and the second flow command value FC2 in a short period of time. In contrast, in this embodiment, even if the torque command value NC becomes equal to or less than the second torque command value NC2, the flow command value FC will not return to the first flow command value FC1 until a predetermined time Pt has elapsed. Therefore, for example, when the accelerator pedal is repeatedly depressing the accelerator pedal heavily in a short period of time, it is possible to maintain the flow command value FC at the second flow command value FC2. This makes it possible to prevent the flow command value FC from being frequently switched between the first flow command value FC1 and the second flow command value FC2 in a short period of time. Therefore, it is possible to further prevent the load on the cooling device 40.
 また、本実施形態によれば、第2流量指令値FC2は、モータ20の温度Tmが温度Tfよりも低い場合の第1流量指令値FC1よりも大きい。そのため、流量指令値FCが第1流量指令値FC1から第2流量指令値FC2に切り替えられた際に、モータ20に送られるオイルOの流量を好適に増加させやすい。 Furthermore, according to this embodiment, the second flow command value FC2 is greater than the first flow command value FC1 when the temperature Tm of the motor 20 is lower than the temperature Tf. Therefore, when the flow command value FC is switched from the first flow command value FC1 to the second flow command value FC2, it is easy to suitably increase the flow rate of the oil O sent to the motor 20.
 また、本実施形態によれば、第2流量指令値FC2は、モータ20の温度Tmが第1温度である温度Tf以上である場合の第1流量指令値FC1と同じ値であり、第1流量指令値FC1の最大値と同じ値である。そのため、流量指令値FCが第2流量指令値FC2に切り替えられると、冷却装置40からモータ20に送られるオイルOの流量を、第1流量指令値FC1に基づいた最大の流量と同じ流量にすることができる。したがって、流量指令値FCが第2流量指令値FC2に切り替えられた際に、モータ20に送られるオイルOの流量をより好適に増加させることができる。 Furthermore, according to this embodiment, the second flow command value FC2 is the same value as the first flow command value FC1 when the temperature Tm of the motor 20 is equal to or higher than the first temperature Tf, and is the same value as the maximum value of the first flow command value FC1. Therefore, when the flow command value FC is switched to the second flow command value FC2, the flow rate of the oil O sent from the cooling device 40 to the motor 20 can be set to the same flow rate as the maximum flow rate based on the first flow command value FC1. Therefore, when the flow command value FC is switched to the second flow command value FC2, the flow rate of the oil O sent to the motor 20 can be more suitably increased.
(変形例)
 本変形例において制御装置60は、モータ20の温度Tmが温度Tg以上である場合に上述した流量制御CFを実行する。温度Tgは、第1温度である温度Tfよりも低い第2温度に相当する。図3に示すように、温度Tgは、温度Taよりも低い温度である。温度Tgは、特に限定されない。温度Tgは、例えば、-40℃以上、-20℃以下程度である。本実施形態ではモータ20の温度Tmが温度Taよりも低い場合に第1流量指令値FC1が値FCaであるため、モータ20の温度Tmが温度Tg以下である場合にも、第1流量指令値FC1は、値FCaである。つまり、モータ20の温度Tmが第2温度である温度Tgよりも低い場合における第1流量指令値FC1は、第1流量指令値FC1の最小値である。
(Modification)
In this modification, the control device 60 executes the above-described flow control CF when the temperature Tm of the motor 20 is equal to or higher than the temperature Tg. The temperature Tg corresponds to a second temperature lower than the temperature Tf, which is the first temperature. As shown in FIG. 3, the temperature Tg is lower than the temperature Ta. The temperature Tg is not particularly limited. The temperature Tg is, for example, about −40° C. or higher and −20° C. or lower. In this embodiment, when the temperature Tm of the motor 20 is lower than the temperature Ta, the first flow command value FC1 is the value FCa, so that even when the temperature Tm of the motor 20 is equal to or lower than the temperature Tg, the first flow command value FC1 is the value FCa. In other words, when the temperature Tm of the motor 20 is lower than the temperature Tg, the first flow command value FC1 is the minimum value of the first flow command value FC1.
 モータ20の温度Tmが十分に低い場合には、トルク指令値NCが或る程度大きくなっても、モータ20の温度Tmが上昇しにくい、または上昇しても問題となる温度になりにくい。そのため、モータ20の温度Tmが十分に低い場合には、トルク指令値NCが或る程度大きくなっても、強制的にオイルOの流量を増加させる必要がない場合がある。したがって、モータ20の温度Tmが温度Tg以上である場合に流量制御CFを実行することとし、モータ20の温度Tmが温度Tgよりも低い場合には流量制御CFを実行しないことで、不必要にオイルOの流量が大きくなることを抑制できる。これにより、冷却装置40において消費される電力が増大することをより抑制でき、駆動装置100において消費される電力が増大することをより抑制できる。 When the temperature Tm of the motor 20 is sufficiently low, even if the torque command value NC increases to a certain extent, the temperature Tm of the motor 20 is unlikely to rise, or is unlikely to rise to a temperature that causes problems. Therefore, when the temperature Tm of the motor 20 is sufficiently low, even if the torque command value NC increases to a certain extent, there may be cases where it is not necessary to forcibly increase the flow rate of the oil O. Therefore, by executing the flow rate control CF when the temperature Tm of the motor 20 is equal to or higher than the temperature Tg, and not executing the flow rate control CF when the temperature Tm of the motor 20 is lower than the temperature Tg, it is possible to prevent the flow rate of the oil O from increasing unnecessarily. This makes it possible to further prevent an increase in the power consumed by the cooling device 40, and to further prevent an increase in the power consumed by the drive device 100.
 また、本変形例によれば、モータ20の温度Tmが第2温度である温度Tgよりも低い場合における第1流量指令値FC1は、第1流量指令値FC1の最小値である。つまり、モータ20の温度Tmが温度Tgよりも低い場合には、モータ20に供給する必要があるオイルOの量が少ない。そのため、モータ20の温度Tmが温度Tgよりも低い範囲においては、流量制御CFを実行しなくても、モータ20の冷却が不十分になりにくい。したがって、モータ20の温度Tmが温度Tg以上の場合に流量制御CFを実行することで、流量制御CFを必要な範囲でより好適に実行することができる。 Furthermore, according to this modified example, the first flow command value FC1 when the temperature Tm of the motor 20 is lower than the second temperature Tg is the minimum value of the first flow command value FC1. In other words, when the temperature Tm of the motor 20 is lower than the temperature Tg, the amount of oil O that needs to be supplied to the motor 20 is small. Therefore, in the range in which the temperature Tm of the motor 20 is lower than the temperature Tg, the cooling of the motor 20 is unlikely to be insufficient even if the flow control CF is not executed. Therefore, by executing the flow control CF when the temperature Tm of the motor 20 is equal to or higher than the temperature Tg, the flow control CF can be executed more suitably within the required range.
 本発明は上述の実施形態に限られず、本発明の技術的思想の範囲内において、他の構成および他の方法を採用することもできる。制御装置は、モータの温度およびモータのトルク指令値に基づいて冷却装置からモータに送られる冷媒の流量を制御する流量制御を実行可能で、冷却装置を制御する装置であれば、どのような構成であってもよいし、どのような制御を実行可能であってもよい。制御装置は、モータを制御しなくもよい。この場合、流量制御を実行可能で冷却装置を制御する制御装置とは別に、モータを制御する装置が設けられてもよい。また、この場合、制御装置は、冷却装置と一体に設けられてもよい。 The present invention is not limited to the above-described embodiment, and other configurations and methods may be adopted within the scope of the technical concept of the present invention. The control device may have any configuration and may be capable of performing any type of control, so long as it is a device that controls the cooling device and is capable of performing flow control to control the flow rate of refrigerant sent from the cooling device to the motor based on the motor temperature and the motor torque command value. The control device does not have to control the motor. In this case, a device that controls the motor may be provided separately from a control device that is capable of performing flow control and controls the cooling device. Also, in this case, the control device may be provided integrally with the cooling device.
 制御装置は、モータの温度およびトルク指令値に基づいて冷媒の流量を制御する流量制御とは異なる制御で、かつ、冷却装置からモータに送られる冷媒の流量を制御する他の制御を実行可能であってもよい。当該他の制御は、モータの温度のみに基づいた冷媒の流量の制御であってもよいし、その他のパラメータに基づいた冷媒の流量の制御であってもよい。制御装置は、どのような条件に基づいて流量制御を実行するか否かを決めてもよい。 The control device may be capable of executing other control that controls the flow rate of the refrigerant sent from the cooling device to the motor, which is different from the flow rate control that controls the flow rate of the refrigerant based on the motor temperature and torque command value. The other control may be control of the flow rate of the refrigerant based only on the motor temperature, or may be control of the flow rate of the refrigerant based on other parameters. The control device may decide based on what conditions whether or not to execute flow rate control.
 なお、「流量制御がモータの温度およびモータのトルク指令値に基づいて冷媒の流量を制御する」とは、当該流量制御が、モータの温度をパラメータとして使用する演算、およびモータのトルク指令値をパラメータとして使用する演算を、少なくとも含んでいればよい。 Note that "the flow control controls the flow rate of the refrigerant based on the motor temperature and the motor torque command value" means that the flow control includes at least a calculation that uses the motor temperature as a parameter and a calculation that uses the motor torque command value as a parameter.
 モータの温度およびモータのトルク指令値に基づいて冷媒の流量を制御する流量制御は、流量指令値が第1流量指令値である場合において、トルク指令値が第1トルク指令値以上となった場合に、流量指令値を第1流量指令値から第2流量指令値に切り替えられるならば、どのような制御であってもよい。例えば、流量制御は、流量指令値が第2流量指令値である場合においてトルク指令値が第2トルク指令値以下となった場合に直ちに、流量指令値を第1流量指令値に切り替える制御であってもよい。第2トルク指令値は、第1トルク指令値と同じ値であってもよい。 The flow control that controls the flow rate of the refrigerant based on the motor temperature and the motor torque command value may be any type of control as long as, when the flow rate command value is the first flow rate command value, the flow rate command value can be switched from the first flow rate command value to the second flow rate command value when the torque command value becomes equal to or greater than the first torque command value. For example, the flow rate control may be a control that immediately switches the flow rate command value to the first flow rate command value when the flow rate command value is the second flow rate command value and the torque command value becomes equal to or less than the second torque command value. The second torque command value may be the same value as the first torque command value.
 また、例えば、流量制御は、流量指令値が第2流量指令値である場合において、トルク指令値以外のパラメータに基づいて、流量指令値が第1流量指令値に切り替えられる制御であってもよい。具体的に、例えば、流量制御は、流量指令値が第2流量指令値に切り替えられた後に、モータの温度に基づいて流量指令値を第1流量指令値に切り替える制御であってもよい。この場合、例えば、流量制御において制御装置は、流量指令値が第2流量指令値である場合において、モータの温度が所定の温度以下である場合に、流量指令値を第2流量指令値から第1流量指令値に切り替えてもよい。また、例えば、流量制御は、流量指令値が第2流量指令値に切り替えられた後に、モータの温度およびモータのトルク指令値の両方に基づいて流量指令値を第1流量指令値に切り替える制御であってもよい。この場合、例えば、流量制御において制御装置は、流量指令値が第2流量指令値である場合において、モータの温度が所定の温度以下で、かつ、トルク指令値が所定の値以下である場合に、流量指令値を第2流量指令値から第1流量指令値に切り替えてもよい。 Furthermore, for example, the flow control may be a control in which, when the flow command value is the second flow command value, the flow command value is switched to the first flow command value based on a parameter other than the torque command value. Specifically, for example, the flow control may be a control in which, after the flow command value is switched to the second flow command value, the flow command value is switched to the first flow command value based on the temperature of the motor. In this case, for example, in the flow control, the control device may switch the flow command value from the second flow command value to the first flow command value when the temperature of the motor is equal to or lower than a predetermined temperature when the flow command value is the second flow command value. Furthermore, for example, the flow control may be a control in which, after the flow command value is switched to the second flow command value, the control device may switch the flow command value to the first flow command value based on both the temperature of the motor and the torque command value of the motor. In this case, for example, in the flow control, the control device may switch the flow command value from the second flow command value to the first flow command value when the temperature of the motor is equal to or lower than a predetermined temperature and the torque command value is equal to or lower than a predetermined value when the flow command value is the second flow command value.
 第1流量指令値は、モータの温度に基づいてどのように変動してもよい。第2流量指令値は、第1流量指令値以上であれば、どのような値であってもよい。第2流量指令値は、第1流量指令値の最大値より大きくてもよい。第2流量指令値は、一定の値でなく、変動する値であってもよい。この場合、流量制御において制御装置は、流量指令値が第2流量指令値である場合において、モータの温度に基づいて、第2流量指令値を変動させてもよい。 The first flow command value may vary in any manner based on the temperature of the motor. The second flow command value may be any value equal to or greater than the first flow command value. The second flow command value may be greater than the maximum value of the first flow command value. The second flow command value may not be a constant value, but may be a variable value. In this case, in flow control, when the flow command value is the second flow command value, the control device may vary the second flow command value based on the temperature of the motor.
 上述した制御装置が実行する流量制御を含む各制御は、デジタル回路およびアナログ回路を含むハードウェアによって実現される制御であってもよいし、ソフトウェアによって実現される制御、すなわち制御装置がプログラムを実行することで実現される制御であってもよいし、ハードウェアおよびソフトウェアによって実現される制御であってもよい。 Each control, including the flow control, performed by the control device described above may be control realized by hardware including digital circuits and analog circuits, or may be control realized by software, i.e., control realized by the control device executing a program, or may be control realized by hardware and software.
 冷却装置は、モータに冷媒を送る装置であれば、どのような装置であってもよい。冷却装置によってモータに送られる冷媒は、どのような冷媒であってもよい。冷媒は、オイルでなくてもよく、水であってもよい。 The cooling device may be any device that sends a refrigerant to the motor. The refrigerant sent to the motor by the cooling device may be any type of refrigerant. The refrigerant does not have to be oil and may be water.
 本発明が適用される駆動装置の用途は、特に限定されない。駆動装置は、例えば、車軸を回転させる用途以外の用途で車両に搭載されてもよいし、車両以外の機器に搭載されてもよい。 The use of the drive unit to which the present invention is applied is not particularly limited. For example, the drive unit may be mounted on a vehicle for a purpose other than rotating an axle, or may be mounted on equipment other than a vehicle.
 なお、本技術は以下のような構成をとることが可能である。(1) モータと、前記モータに冷媒を送る冷却装置と、前記冷却装置を制御する制御装置と、を備え、前記制御装置は、前記モータの温度および前記モータのトルク指令値に基づいて前記冷却装置から前記モータに送られる前記冷媒の流量を制御する流量制御を実行可能であり、前記流量制御において前記制御装置は、前記冷却装置に入力する流量指令値を、前記モータの温度に基づいて変動する第1流量指令値と、前記第1流量指令値以上の第2流量指令値と、に切り替え可能であり、かつ、前記流量指令値が前記第1流量指令値である場合において、前記トルク指令値が第1トルク指令値以上となった場合に、前記流量指令値を前記第1流量指令値から前記第2流量指令値に切り替える、駆動装置。(2) 前記流量制御において前記制御装置は、前記流量指令値が前記第2流量指令値である場合において、前記トルク指令値が第2トルク指令値以下である場合に、前記流量指令値を前記第2流量指令値から前記第1流量指令値に切り替える、(1)に記載の駆動装置。
(3) 前記第2トルク指令値は、前記第1トルク指令値よりも小さい、(2)に記載の駆動装置。(4) 前記流量制御において前記制御装置は、前記流量指令値が前記第2流量指令値である場合において、前記トルク指令値が前記第2トルク指令値以下である状態が所定時間以上続いた場合に、前記流量指令値を前記第2流量指令値から前記第1流量指令値に切り替える、(2)または(3)に記載の駆動装置。(5) 前記モータの温度が第1温度よりも低い場合の前記第1流量指令値は、前記モータの温度が前記第1温度以上である場合の前記第1流量指令値よりも小さく、前記第2流量指令値は、前記モータの温度が前記第1温度よりも低い場合の前記第1流量指令値よりも大きい、(1)から(4)のいずれか一項に記載の駆動装置。(6) 前記第2流量指令値は、前記モータの温度が前記第1温度以上である場合の前記第1流量指令値と同じ値であり、前記第1流量指令値の最大値と同じ値である、(5)に記載の駆動装置。(7) 前記制御装置は、前記モータの温度が前記第1温度よりも低い第2温度以上である場合に前記流量制御を実行する、(5)または(6)に記載の駆動装置。(8)
 前記モータの温度が前記第2温度よりも低い場合における前記第1流量指令値は、前記第1流量指令値の最小値である、(7)に記載の駆動装置。(9) モータに冷媒を送る冷却装置の制御方法であって、前記モータの温度および前記モータのトルク指令値に基づいて前記冷却装置から前記モータに送られる前記冷媒の流量を制御する流量制御を含み、前記流量制御は、前記冷却装置に入力する流量指令値が前記モータの温度に基づいて変動する第1流量指令値である場合において、前記トルク指令値が第1トルク指令値以上となった場合に、前記流量指令値を前記第1流量指令値から前記第1流量指令値以上の第2流量指令値に切り替えることを含む、冷却装置の制御方法。(10) 前記流量制御は、前記流量指令値が前記第2流量指令値である場合において、前記トルク指令値が第2トルク指令値以下である場合に、前記流量指令値を前記第2流量指令値から前記第1流量指令値に切り替えることを含み、前記第2トルク指令値は、前記第1トルク指令値よりも小さい、(9)に記載の冷却装置の制御方法。(11) 前記流量制御は、前記流量指令値が前記第2流量指令値である場合において、前記トルク指令値が前記第2トルク指令値以下である状態が所定時間以上続いた場合に、前記流量指令値を前記第2流量指令値から前記第1流量指令値に切り替えることを含む、(10)に記載の冷却装置の制御方法。(12) 前記モータの温度が第1温度よりも低い場合の前記第1流量指令値は、前記モータの温度が前記第1温度以上である場合の前記第1流量指令値よりも小さく、前記第2流量指令値は、前記モータの温度が前記第1温度よりも低い場合の前記第1流量指令値よりも大きい、(9)から(11)のいずれか一項に記載の冷却装置の制御方法。(13) 前記第2流量指令値は、前記モータの温度が前記第1温度以上である場合の前記第1流量指令値と同じ値であり、前記第1流量指令値の最大値と同じ値である、(12)に記載の冷却装置の制御方法。(14) 前記モータの温度が前記第1温度よりも低い第2温度以上である場合に前記流量制御を実行する、(12)または(13)に記載の冷却装置の制御方法。(15) 前記モータの温度が前記第2温度よりも低い場合における前記第1流量指令値は、前記第1流量指令値の最小値である、(14)に記載の冷却装置の制御方法。
The present technology may be configured as follows: (1) A drive device including a motor, a cooling device that sends a refrigerant to the motor, and a control device that controls the cooling device, the control device being capable of executing flow control for controlling a flow rate of the refrigerant sent from the cooling device to the motor based on a temperature of the motor and a torque command value of the motor, the control device being capable of switching a flow command value input to the cooling device between a first flow command value that varies based on the temperature of the motor and a second flow command value that is equal to or greater than the first flow command value in the flow control, and switching the flow command value from the first flow command value to the second flow command value when the torque command value becomes equal to or greater than the first torque command value when the flow command value is the first flow command value. (2) The drive device according to (1), wherein in the flow control, the control device being capable of switching the flow command value from the second flow command value to the first flow command value when the torque command value is equal to or less than the second torque command value when the flow command value is the second flow command value.
(3) The drive device according to (2), in which the second torque command value is smaller than the first torque command value. (4) The drive device according to (2) or (3), in which, in the flow control, when the flow command value is the second flow command value, the control device switches the flow command value from the second flow command value to the first flow command value if a state in which the torque command value is equal to or smaller than the second torque command value continues for a predetermined time or more. (5) The drive device according to any one of (1) to (4), in which the first flow command value when the temperature of the motor is lower than a first temperature is smaller than the first flow command value when the temperature of the motor is equal to or larger than the first temperature, and the second flow command value is larger than the first flow command value when the temperature of the motor is lower than the first temperature. (6) The drive device according to (5), in which the second flow command value is the same value as the first flow command value when the temperature of the motor is equal to or larger than the first temperature, and is the same value as a maximum value of the first flow command value. (7) The drive device according to (5) or (6), wherein the control device executes the flow rate control when the temperature of the motor is equal to or higher than a second temperature that is lower than the first temperature.
The drive device according to (7), wherein the first flow rate command value is a minimum value of the first flow rate command value when the temperature of the motor is lower than the second temperature. (9) A control method for a cooling device that supplies a refrigerant to a motor, comprising flow rate control for controlling a flow rate of the refrigerant sent from the cooling device to the motor based on a temperature of the motor and a torque command value of the motor, the flow rate control comprising, when a flow rate command value input to the cooling device is a first flow rate command value that varies based on the temperature of the motor, switching the flow rate command value from the first flow rate command value to a second flow rate command value that is equal to or greater than the first flow rate command value when the torque command value becomes equal to or greater than the first torque command value. (10) The control method for a cooling device according to (9), wherein the flow rate control comprises, when the flow rate command value is the second flow rate command value, switching the flow rate command value from the second flow rate command value to the first flow rate command value when the torque command value is equal to or less than the second torque command value, the second torque command value being smaller than the first torque command value. (11) The method for controlling a cooling device according to (10), wherein the flow control includes switching the flow command value from the second flow command value to the first flow command value when the torque command value continues to be equal to or lower than the second torque command value for a predetermined period of time or more when the flow command value is the second flow command value. (12) The method for controlling a cooling device according to any one of (9) to (11), wherein the first flow command value when the temperature of the motor is lower than a first temperature is smaller than the first flow command value when the temperature of the motor is equal to or higher than the first temperature, and the second flow command value is larger than the first flow command value when the temperature of the motor is lower than the first temperature. (13) The method for controlling a cooling device according to (12), wherein the second flow command value is the same value as the first flow command value when the temperature of the motor is equal to or higher than the first temperature, and is the same value as a maximum value of the first flow command value. (14) The method for controlling a cooling device according to (12) or (13), wherein the flow control is executed when the temperature of the motor is equal to or higher than a second temperature lower than the first temperature. (15) The method for controlling a cooling device according to (14), wherein the first flow rate command value when the temperature of the motor is lower than the second temperature is a minimum value of the first flow rate command value.
 以上、本明細書において説明した構成および方法は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The configurations and methods described in this specification can be combined as appropriate within the limits of not being mutually inconsistent.

Claims (15)

  1.  モータと、
     前記モータに冷媒を送る冷却装置と、
     前記冷却装置を制御する制御装置と、
     を備え、
     前記制御装置は、前記モータの温度および前記モータのトルク指令値に基づいて前記冷却装置から前記モータに送られる前記冷媒の流量を制御する流量制御を実行可能であり、
     前記流量制御において前記制御装置は、
      前記冷却装置に入力する流量指令値を、前記モータの温度に基づいて変動する第1流量指令値と、前記第1流量指令値以上の第2流量指令値と、に切り替え可能であり、かつ、
      前記流量指令値が前記第1流量指令値である場合において、前記トルク指令値が第1トルク指令値以上となった場合に、前記流量指令値を前記第1流量指令値から前記第2流量指令値に切り替える、駆動装置。
    A motor;
    a cooling device for supplying a refrigerant to the motor;
    A control device for controlling the cooling device;
    Equipped with
    the control device is capable of executing flow rate control for controlling a flow rate of the refrigerant sent from the cooling device to the motor based on a temperature of the motor and a torque command value of the motor;
    In the flow rate control, the control device
    A flow rate command value input to the cooling device is switchable between a first flow rate command value that varies based on a temperature of the motor and a second flow rate command value that is equal to or greater than the first flow rate command value, and
    a drive device that switches the flow rate command value from the first flow rate command value to the second flow rate command value when the torque command value becomes equal to or greater than the first torque command value while the flow rate command value is the first flow rate command value.
  2.  前記流量制御において前記制御装置は、前記流量指令値が前記第2流量指令値である場合において、前記トルク指令値が第2トルク指令値以下である場合に、前記流量指令値を前記第2流量指令値から前記第1流量指令値に切り替える、請求項1に記載の駆動装置。 The drive device according to claim 1, wherein in the flow control, when the flow command value is the second flow command value and the torque command value is equal to or less than the second torque command value, the control device switches the flow command value from the second flow command value to the first flow command value.
  3.  前記第2トルク指令値は、前記第1トルク指令値よりも小さい、請求項2に記載の駆動装置。 The drive device of claim 2, wherein the second torque command value is smaller than the first torque command value.
  4.  前記流量制御において前記制御装置は、前記流量指令値が前記第2流量指令値である場合において、前記トルク指令値が前記第2トルク指令値以下である状態が所定時間以上続いた場合に、前記流量指令値を前記第2流量指令値から前記第1流量指令値に切り替える、請求項3に記載の駆動装置。 The drive device according to claim 3, wherein in the flow control, when the flow command value is the second flow command value, if the torque command value remains equal to or less than the second torque command value for a predetermined period of time or more, the control device switches the flow command value from the second flow command value to the first flow command value.
  5.  前記モータの温度が第1温度よりも低い場合の前記第1流量指令値は、前記モータの温度が前記第1温度以上である場合の前記第1流量指令値よりも小さく、
     前記第2流量指令値は、前記モータの温度が前記第1温度よりも低い場合の前記第1流量指令値よりも大きい、請求項1から4のいずれか一項に記載の駆動装置。
    the first flow rate command value when the temperature of the motor is lower than a first temperature is smaller than the first flow rate command value when the temperature of the motor is equal to or higher than the first temperature;
    The drive device according to claim 1 , wherein the second flow rate command value is greater than the first flow rate command value when a temperature of the motor is lower than the first temperature.
  6.  前記第2流量指令値は、前記モータの温度が前記第1温度以上である場合の前記第1流量指令値と同じ値であり、前記第1流量指令値の最大値と同じ値である、請求項5に記載の駆動装置。 The drive device according to claim 5, wherein the second flow command value is the same as the first flow command value when the temperature of the motor is equal to or higher than the first temperature, and is the same as the maximum value of the first flow command value.
  7.  前記制御装置は、前記モータの温度が前記第1温度よりも低い第2温度以上である場合に前記流量制御を実行する、請求項5に記載の駆動装置。 The drive device according to claim 5, wherein the control device executes the flow control when the temperature of the motor is equal to or higher than a second temperature that is lower than the first temperature.
  8.  前記モータの温度が前記第2温度よりも低い場合における前記第1流量指令値は、前記第1流量指令値の最小値である、請求項7に記載の駆動装置。 The drive device according to claim 7, wherein the first flow command value when the temperature of the motor is lower than the second temperature is the minimum value of the first flow command value.
  9.  モータに冷媒を送る冷却装置の制御方法であって、
     前記モータの温度および前記モータのトルク指令値に基づいて前記冷却装置から前記モータに送られる前記冷媒の流量を制御する流量制御を含み、
     前記流量制御は、前記冷却装置に入力する流量指令値が前記モータの温度に基づいて変動する第1流量指令値である場合において、前記トルク指令値が第1トルク指令値以上となった場合に、前記流量指令値を前記第1流量指令値から前記第1流量指令値以上の第2流量指令値に切り替えることを含む、冷却装置の制御方法。
    1. A method for controlling a cooling device that supplies a refrigerant to a motor, comprising:
    a flow rate control for controlling a flow rate of the refrigerant sent from the cooling device to the motor based on a temperature of the motor and a torque command value of the motor;
    The flow control method for a cooling device includes, when a flow command value input to the cooling device is a first flow command value that varies based on a temperature of the motor, switching the flow command value from the first flow command value to a second flow command value that is equal to or greater than the first flow command value when the torque command value becomes equal to or greater than the first torque command value.
  10.  前記流量制御は、前記流量指令値が前記第2流量指令値である場合において、前記トルク指令値が第2トルク指令値以下である場合に、前記流量指令値を前記第2流量指令値から前記第1流量指令値に切り替えることを含み、
     前記第2トルク指令値は、前記第1トルク指令値よりも小さい、請求項9に記載の冷却装置の制御方法。
    the flow rate control includes, when the flow rate command value is the second flow rate command value, switching the flow rate command value from the second flow rate command value to the first flow rate command value when the torque command value is equal to or less than a second torque command value;
    The method of claim 9 , wherein the second torque command value is smaller than the first torque command value.
  11.  前記流量制御は、前記流量指令値が前記第2流量指令値である場合において、前記トルク指令値が前記第2トルク指令値以下である状態が所定時間以上続いた場合に、前記流量指令値を前記第2流量指令値から前記第1流量指令値に切り替えることを含む、請求項10に記載の冷却装置の制御方法。 The cooling device control method according to claim 10, wherein the flow control includes switching the flow command value from the second flow command value to the first flow command value when the torque command value remains equal to or less than the second torque command value for a predetermined period of time or more when the flow command value is the second flow command value.
  12.  前記モータの温度が第1温度よりも低い場合の前記第1流量指令値は、前記モータの温度が前記第1温度以上である場合の前記第1流量指令値よりも小さく、
     前記第2流量指令値は、前記モータの温度が前記第1温度よりも低い場合の前記第1流量指令値よりも大きい、請求項9から11のいずれか一項に記載の冷却装置の制御方法。
    the first flow rate command value when the temperature of the motor is lower than a first temperature is smaller than the first flow rate command value when the temperature of the motor is equal to or higher than the first temperature;
    The method for controlling a cooling device according to claim 9 , wherein the second flow rate command value is greater than the first flow rate command value when a temperature of the motor is lower than the first temperature.
  13.  前記第2流量指令値は、前記モータの温度が前記第1温度以上である場合の前記第1流量指令値と同じ値であり、前記第1流量指令値の最大値と同じ値である、請求項12に記載の冷却装置の制御方法。 The cooling device control method according to claim 12, wherein the second flow command value is the same as the first flow command value when the temperature of the motor is equal to or higher than the first temperature, and is the same as the maximum value of the first flow command value.
  14.  前記モータの温度が前記第1温度よりも低い第2温度以上である場合に前記流量制御を実行する、請求項12に記載の冷却装置の制御方法。 The method for controlling a cooling device according to claim 12, wherein the flow control is performed when the temperature of the motor is equal to or higher than a second temperature that is lower than the first temperature.
  15.  前記モータの温度が前記第2温度よりも低い場合における前記第1流量指令値は、前記第1流量指令値の最小値である、請求項14に記載の冷却装置の制御方法。 The method for controlling a cooling device according to claim 14, wherein the first flow command value when the temperature of the motor is lower than the second temperature is the minimum value of the first flow command value.
PCT/JP2023/040689 2022-11-15 2023-11-13 Drive device, and method for controlling cooling device WO2024106361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022182384 2022-11-15
JP2022-182384 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024106361A1 true WO2024106361A1 (en) 2024-05-23

Family

ID=91084684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040689 WO2024106361A1 (en) 2022-11-15 2023-11-13 Drive device, and method for controlling cooling device

Country Status (1)

Country Link
WO (1) WO2024106361A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074962A (en) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd Motor cooler
JP2006187105A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Cooling device for rotary electric machine
JP2013198378A (en) * 2012-03-22 2013-09-30 Mitsubishi Motors Corp Electric motor
JP2020200900A (en) * 2019-06-11 2020-12-17 株式会社ミツバ Clutch engagement electric oil pump of transmission of automobile, clutch engagement electric oil pump control method of transmission of automobile and clutch engagement vehicle electric oil pump of transmission of vehicle and automobile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074962A (en) * 2004-09-06 2006-03-16 Nissan Motor Co Ltd Motor cooler
JP2006187105A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Cooling device for rotary electric machine
JP2013198378A (en) * 2012-03-22 2013-09-30 Mitsubishi Motors Corp Electric motor
JP2020200900A (en) * 2019-06-11 2020-12-17 株式会社ミツバ Clutch engagement electric oil pump of transmission of automobile, clutch engagement electric oil pump control method of transmission of automobile and clutch engagement vehicle electric oil pump of transmission of vehicle and automobile

Similar Documents

Publication Publication Date Title
KR102142171B1 (en) System and method for adaptive control of a hydraulic control system of a transmission
EP3067588A1 (en) Lubricating structure for hybrid vehicle
CN112576730A (en) Control device for motor unit
CN1550698B (en) Hydraulic pressure control apparatus for vehicular hydraulic power transmission device with lock-up clutch
JP2017114477A (en) Cooling device for vehicle
JP6065397B2 (en) Electric motor
EP2322399A1 (en) Drive source stop control device for vehicle
JP2011525601A (en) Method and apparatus for refueling an automobile transmission
WO2020213709A1 (en) Driving device
JP6565439B2 (en) Cooling system
JP2022154736A (en) Drive unit and control method of drive unit
WO2024106361A1 (en) Drive device, and method for controlling cooling device
JP2017150367A (en) Electric oil pump control device
JP3826935B2 (en) Vehicle drive device
JP2016201959A (en) Cooling device for vehicle electric motor
JP2006258033A (en) Electric liquid pump, its control method and control device
CN209462156U (en) The cooling system of rotating electric machine
WO2020213507A1 (en) Drive device
WO2021171050A1 (en) Method for controlling electric vehicle, and electric vehicle
JP2013193511A (en) Vehicle control system
CN112829546A (en) Control method of vehicle air conditioning system and vehicle air conditioning system
JP5985290B2 (en) Electric pump control device
JP7119900B2 (en) vehicle cooling system
JP4574455B2 (en) Vehicle drive motor cooling system and control method for vehicle drive motor cooling system
KR102463462B1 (en) Control method of electric oil pump for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891508

Country of ref document: EP

Kind code of ref document: A1