WO2024106247A1 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
WO2024106247A1
WO2024106247A1 PCT/JP2023/039879 JP2023039879W WO2024106247A1 WO 2024106247 A1 WO2024106247 A1 WO 2024106247A1 JP 2023039879 W JP2023039879 W JP 2023039879W WO 2024106247 A1 WO2024106247 A1 WO 2024106247A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
cooling
electronic circuit
unit
refrigerant
Prior art date
Application number
PCT/JP2023/039879
Other languages
French (fr)
Japanese (ja)
Inventor
岩田崇司
前田拓洋
間邉崇志
小野沢智
村上聡
勝田巧也
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2024106247A1 publication Critical patent/WO2024106247A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/08Arrangements of lubricant coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control

Definitions

  • the present invention relates to a cooling system.
  • cooling systems are known in which heat exchange occurs between a cooling flow path in which cooling water circulates and a refrigerant flow path in which a refrigerant circulates (see, for example, Patent Document 1).
  • the cooling system of Patent Document 1 uses waste heat from electrical components to raise the temperature of the cooling water, thereby reducing the amount of heat given to the cooling water through heat exchange with the refrigerant and increasing the heating capacity of the refrigerant.
  • the cooling system described in Patent Document 1 has the coolant absorb heat from the outside air using a radiator, and the refrigerant absorb heat from the outside air using an outdoor unit.
  • both the radiator and the outdoor unit function as heat exchangers for absorbing heat.
  • the cooling system described in Patent Document 1 uses an outdoor unit in addition to a heat exchanger that exchanges heat between the refrigerant and the cooling water, so the refrigerant absorbs heat, which results in an increase in the size of the system even if the heating device is omitted.
  • the cooling system is characterized by comprising an electric vehicle drive unit including at least an electric motor that transmits drive torque to the vehicle's running system, an electronic circuit unit including at least an electronic circuit for driving the electric motor, a cooling flow path that circulates a coolant through the electronic circuit unit, an oil flow path that circulates oil through the electric vehicle drive unit and has a first heat exchanger that exchanges heat with the coolant circulating through the cooling flow path, and a refrigerant flow path that circulates a refrigerant for cooling and heating and has a second heat exchanger that exchanges heat with the coolant circulating through the cooling flow path, and the cooling flow path circulates the coolant through the electronic circuit unit, the first heat exchanger, and the second heat exchanger in that order.
  • This configuration includes a first heat exchanger that exchanges heat between the coolant and oil, and a second heat exchanger that exchanges heat between the coolant and refrigerant.
  • the temperature of the coolant changes as the first heat exchanger uses waste heat from the electric vehicle drive unit, and the second heat exchanger uses heat from the refrigerant.
  • the cooling flow path in this configuration circulates the coolant through the electronic circuit unit, the first heat exchanger, and the second heat exchanger in that order.
  • the coolant exchanges heat with the refrigerant while utilizing the heat generated by the electronic circuit unit and the waste heat from the electric vehicle drive unit, allowing the device to be made more compact.
  • the waste heat from the electric vehicle drive unit is applied to the coolant using the first heat exchanger, and then heat is exchanged between the refrigerant and the coolant using the second heat exchanger, so that the heating efficiency can be improved by utilizing the waste heat from the electric vehicle drive unit.
  • the waste heat from the electric vehicle drive unit is applied to the coolant using the first heat exchanger before heat is applied from the refrigerant to the coolant using the second heat exchanger, allowing the oil temperature to be lowered and motor performance to be improved.
  • FIG. 2 is an exploded perspective view of the integrated unit.
  • FIG. 2 is a side cross-sectional view of the integrated unit.
  • 1 is a diagram showing a circuit configuration of a cooling system according to a first embodiment.
  • FIG. FIG. 2 is a side cross-sectional view of an integrated unit with a heat exchanger.
  • FIG. 11 is a diagram showing a circuit configuration of a cooling system according to a second embodiment.
  • FIG. 13 is a diagram showing a circuit configuration of a cooling system according to a third embodiment.
  • FIG. 13 is a diagram showing a circuit configuration of a cooling system according to a fourth and fifth embodiment.
  • 13 is a side cross-sectional view of an integrated unit according to a fifth embodiment, in which a heat exchanger is integrated.
  • FIG. 1 is a diagram showing a circuit configuration of a cooling system according to a first embodiment.
  • FIG. FIG. 2 is a side cross-sectional view of an integrated unit with a heat exchanger.
  • An electric vehicle is equipped with an electric vehicle drive unit that drives the wheels using current supplied from a battery.
  • electric vehicles include vehicles that have a motor as a driving source, such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs).
  • HEVs hybrid electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • BEVs battery electric vehicles
  • FCEVs fuel cell electric vehicles
  • the electric vehicle includes an integrated unit 1 shown in FIG. 1 and FIG. 2.
  • the integrated unit 1 includes an electric vehicle drive unit 2 (hereinafter referred to as the "vehicle drive unit 2"), an electronic circuit unit 3, and a cooling module 4.
  • vehicle drive unit 2 hereinafter referred to as the "vehicle drive unit 2”
  • electronic circuit unit 3 the vehicle drive unit 2 and the electronic circuit unit 3 are housed and integrated in a unit case 5.
  • the cooling module 4 is disposed adjacent to the electronic circuit unit 3. In the example shown in FIG.
  • the cooling module 4 includes a chiller 86, a water-cooled condenser 81, an accumulator 82, and auxiliary equipment such as valves and pumps, which will be described later, and a part of a cooling flow path B and a refrigerant flow path D, which are modularized and housed in the unit case 5.
  • the cooling system A in the present embodiment shown below shows an example in which only the vehicle drive unit 2 and the electronic circuit unit 3 are housed in the unit case 5, but the shape and structure of the integrated unit 1 are not particularly limited.
  • the vehicle drive unit 2 includes at least an electric motor 21 that transmits a drive torque to the vehicle's running system.
  • the vehicle drive unit 2 includes the electric motor 21, a gear 22 with a reduction mechanism, and the like.
  • the electronic circuit unit 3 includes at least an electronic circuit 31 for driving the electric motor 21.
  • the electronic circuit unit 3 is housed in a unit case 5 to form a power supply module 100, and a plurality of electronic components that constitute the on-board charger (OBC) 32 (voltage conversion circuit) and the inverter (INV) 33 as the electronic circuit 31 are mounted on a board 35.
  • the electronic components mounted on the board 35 are cooled by a heat sink 36 that constitutes a part of the second flow path 55 of the cooling flow path B described later inside the board 35.
  • the electronic circuit unit 3 power supply module 100
  • the electronic circuit unit 3 is configured to be cooled by the coolant flowing through the cooling flow path B.
  • the cooling system A includes a vehicle drive unit 2, an electronic circuit unit 3 (power supply module 100), a cooling flow path B, an oil flow path C, and a refrigerant flow path D.
  • Cooling flow path B carries coolant such as antifreeze containing ethylene glycol as a main component, long-life coolant, cooling water, or insulating oil
  • refrigerant flow path D carries a refrigerant such as hydrofluorocarbon (HFC).
  • HFC hydrofluorocarbon
  • Cooling flow path B is the flow path shown above the electric motor 21 in FIG. 3.
  • Cooling flow path B includes the power supply module 100, an oil cooler 62 (an example of a first heat exchanger) described below, a water-cooled condenser 81 (an example of a second heat exchanger) described below, a water pump 51 (an example of a pump), and a radiator 53 along the way.
  • Cooling flow path B has a first flow path 54 that runs from the water-cooled condenser 81 to the radiator 53, and a second flow path 55 that runs from the radiator 53 to the water-cooled condenser 81.
  • the cooling flow path B is configured to circulate the cooling liquid to the electronic circuit unit 3 included in the power supply module 100.
  • a part of the second flow path 55 is formed inside the electronic circuit unit 3 as an internal flow path of the heat sink 36 (see FIG. 2). This allows the electronic circuit unit 3 to be cooled by the cooling liquid flowing through the second flow path 55.
  • cooling flow path B circulates the coolant through the power supply module 100, oil cooler 62, and water-cooled condenser 81 in that order.
  • cooling flow path B has a valve 52 (an example of a three-way valve) arranged in first flow path 54 that can be switched between a first state in which the coolant flows through radiator 53 and a second state in which the coolant is blocked from flowing into radiator 53 and diverted.
  • valve 52 an example of a three-way valve
  • the second flow path 55 of the cooling flow path B has a flow path 58 that runs from the electronic circuit unit 3 to the oil cooler 62, and a flow path 59 that runs from the oil cooler 62 to the water-cooled condenser 81.
  • the water pump 51 is disposed in the second flow path 55 adjacent to the valve 52, and is configured as a valve unit 6 in which the water pump 51 and the valve 52 are integrated.
  • Oil flow path C is the flow path shown below the electronic circuit unit 3 in FIG. 3.
  • Oil flow path C has an oil pump 61 and an oil cooler 62 (an example of a first heat exchanger) in the middle of the flow path, and supplies oil to the electric motor 21 etc. to circulate the oil to the vehicle drive unit 2.
  • the oil cooler 62 is also located downstream of the power supply module 100 (electronic circuit unit 3) in the cooling flow path B, and exchanges heat with the coolant circulating through the cooling flow path B.
  • valve unit 6 and the water-cooled condenser 81 are assembled to the unit case 5 of the electronic circuit unit 3.
  • the oil cooler 62 is built into the unit case 5 between the electronic circuit unit 3 and the vehicle drive unit 2.
  • the valve unit 6, the water-cooled condenser 81, and the oil cooler 62 are incorporated into the integrated unit 1.
  • the valve unit 6 and the water-cooled condenser 81 are fixed to the side of the unit case 5, but the valve unit 6 and the water-cooled condenser 81 may be fixed to the top surface of the unit case 5 or built into the unit case 5.
  • the refrigerant flow path D is a flow path shown on the right side in FIG. 3, and is configured to circulate a refrigerant for heating and cooling.
  • the refrigerant flow path D includes a heating flow path 71 that circulates a refrigerant for heating the vehicle interior, a cooling flow path 72 that circulates a refrigerant for cooling the vehicle interior, and a battery cooling flow path 73 that circulates a refrigerant to cool a battery 87 mounted on the vehicle.
  • the heating flow path 71 includes a water-cooled condenser 81, an accumulator 82, a compressor 83, and a cabin condenser 84 (heating condenser) arranged in order to form a heat pump as a whole.
  • the refrigerant flow path D includes a water-cooled condenser 81 (an example of a second heat exchanger) in the middle of the flow path that exchanges heat with the cooling liquid circulating in the cooling flow path B.
  • the water-cooled condenser 81 is also located in the middle of the second flow path 55 of the cooling flow path B, and exchanges heat with the cooling liquid circulating in the cooling flow path B.
  • an on-off valve 91 is disposed in the flow path 74 between the water-cooled condenser 81 and the accumulator 82, and a first expansion valve 92 is disposed in the flow path 76 between the cabin condenser 84 and the water-cooled condenser 81.
  • the compressor 83 and cabin condenser 84, and the flow path 75 passing through them, are disposed outside the unit case 5.
  • the cooling flow path 72 is composed of a flow path 77 that branches off from the flow path 74 upstream of the on-off valve 91.
  • the flow path 77 is configured to have a second expansion valve 93 and an evaporator 85, in that order, midway through the flow path, and to merge with the flow path 74 downstream of the on-off valve 91.
  • the second expansion valve 93 is driven with the on-off valve 91 closed, refrigerant flows through the flow path 77, and the evaporator 85 cools the passenger compartment.
  • the evaporator 85 is located outside the unit case 5 in the cooling flow path 72.
  • the battery cooling flow path 73 is composed of a flow path 78 that branches off from the upstream side of the second expansion valve 93 of the flow path 77 of the cooling flow path 72.
  • the flow path 78 is configured to have a third expansion valve 94 and a chiller 86 in that order along the way, and to merge with the downstream side of the evaporator 85 of the flow path 77.
  • the third expansion valve 94 is driven with the opening/closing valve 91 closed, the refrigerant flows through the flow path 78, and heat is exchanged between the refrigerant and the cooling liquid by the chiller 86.
  • the battery cooling flow path 73 is configured by arranging the chiller 86 in a cooling circulation path 79 through which coolant circulates between the battery 87 and the chiller 86.
  • a water pump 88 is arranged midway along the cooling circulation path 79.
  • the battery 87 is arranged, for example, in the space under the floor of the vehicle compartment, located outside and rearward of the unit case 5.
  • the flow of refrigerant in refrigerant flow path D will be described.
  • the refrigerant that flows through flow path 75 and becomes a high-temperature compressed gas in the compressor 83 has heat dissipated by the cabin condenser 84 and flows from flow path 76 through the first expansion valve 92 into the water-cooled condenser 81.
  • the refrigerant is then condensed and liquefied in the water-cooled condenser 81 as heat is absorbed by the cooling liquid flowing in from the cooling flow path B, and the gaseous refrigerant flows again into the compressor 83 through the accumulator 82.
  • the refrigerant liquefied in the water-cooled condenser 81 that is used for cooling the interior of the vehicle leaves the water-cooled condenser 81 and flows through the flow paths 74 and 77 in the cooling flow path 72, expands in the second expansion valve 93, and becomes a low-temperature, low-pressure mist. It is then sent to the evaporator 85 outside the unit case 5.
  • the mist of refrigerant absorbs heat from the air introduced from the outside in the evaporator 85 and evaporates. Conversely, the air is cooled by the refrigerant absorbing heat, and is sent to the interior of the vehicle as cold air.
  • the evaporated refrigerant is sent to the accumulator 82 via the flow paths 72 and 75.
  • the evaporated refrigerant contains liquid, the liquid is separated from the evaporated refrigerant.
  • the evaporated refrigerant then flows back to the compressor 83 in the flow path 75, where it is compressed again to become a high-temperature compressed gas.
  • the refrigerant liquefied in the water-cooled condenser 81 that is not used to cool the vehicle interior leaves the water-cooled condenser 81 and flows through the flow paths 74, 77, and 78, and is expanded in the third expansion valve 94 to become a low-temperature, low-pressure mist, which is then sent to the chiller 86.
  • the mist of refrigerant absorbs heat from the cooling liquid flowing in from the cooling circuit 79 and evaporates in the chiller 86.
  • the evaporated refrigerant is sent to the accumulator 82 via the flow paths 73 and 75. In the accumulator 82, if the evaporated refrigerant contains liquid, the liquid is separated from the evaporated refrigerant.
  • the evaporated refrigerant then flows back to the compressor 83 in the flow path 75, where it is compressed again to become a high-temperature compressed gas.
  • the cooling system A includes an oil cooler 62 that exchanges heat between the cooling liquid flowing through the cooling flow path B and the oil flowing through the oil flow path C, and a water-cooled condenser 81 that exchanges heat between the cooling liquid flowing through the cooling flow path B and the refrigerant flowing through the refrigerant flow path D.
  • the temperature of the cooling liquid changes in the oil cooler 62 by utilizing the waste heat of the vehicle drive unit 2, and in the water-cooled condenser 81 by utilizing the heat of the refrigerant.
  • the cooling flow path B in this embodiment circulates the coolant in the order of the power supply module 100 (electronic circuit unit 3), the oil cooler 62, and the water-cooled condenser 81.
  • the electronic circuit unit 3 is the part that becomes the hottest, by arranging the electronic circuit unit 3 upstream, it is possible to effectively recover the waste heat of the electronic circuit unit 3.
  • the coolant exchanges heat with the refrigerant while utilizing the heat generated by the electronic circuit unit 3 and the waste heat of the vehicle drive unit 2, so that the device can be made smaller.
  • the waste heat from the vehicle drive unit 2 is given to the coolant using the oil cooler 62, heat is exchanged between the refrigerant and the coolant using the water-cooled condenser 81, so that the heating efficiency can be improved by utilizing the waste heat of the vehicle drive unit 2.
  • the waste heat from the vehicle drive unit 2 is given to the coolant using the oil cooler 62, so that the temperature of the oil can be lowered and the motor performance can be improved.
  • a valve 52 (an example of a three-way valve) is arranged in the first flow path 54, which can be switched between a first state in which the coolant flows through the radiator 53 and a second state in which the coolant is blocked from flowing into the radiator 53 and diverted.
  • the coolant In the first state in which the coolant flows through the radiator 53, the coolant can be cooled by outside air when it is desired to exercise the cooling function of the coolant, such as in summer.
  • the refrigerant is circulated through the refrigerant flow path D in the order of the compressor 83, the cabin condenser 84, the water-cooled condenser 81, and the accumulator 82.
  • the second embodiment differs from the first embodiment in the following respects.
  • a bypass flow path 96 is provided to connect between the compressor 83 and the cabin condenser 84 and between the cabin condenser 84 and the water-cooled condenser 81, and a fourth expansion valve 95 is disposed in the bypass flow path 96.
  • the other configurations are the same as those of the first embodiment.
  • the efficiency of heat exchange between the refrigerant and the cooling liquid in the water-cooled condenser 81 is improved in situations where there is no need to use the cabin condenser 84, such as in summer.
  • the cooling flow path B is configured to circulate the coolant through the electronic circuit unit 3 included in the power supply module 100.
  • the third embodiment differs from the first embodiment in the following respects.
  • the cooling flow path B circulates the coolant through the power supply module 100, the water-cooled condenser 81, and the oil cooler 62 in that order.
  • the other configurations are the same as those of the first embodiment.
  • the cooling flow path B circulates the coolant through the power supply module 100, the water-cooled condenser 81, and the oil cooler 62 in that order, so that the coolant exchanges heat with the refrigerant while utilizing the heat generated by the electronic circuit unit 3 and the waste heat from the vehicle drive unit 2, thereby enabling the device to be made more compact.
  • the cooling flow path B circulates the coolant through the power supply module 100, the water-cooled condenser 81, and the oil cooler 62 in that order, so that the coolant exchanges heat with the refrigerant while utilizing the heat generated by the electronic circuit unit 3 and the waste heat from the vehicle drive unit 2, thereby enabling the device to be made more compact.
  • heat exchange is performed between the refrigerant and the coolant using the water-cooled condenser 81, so that it is possible to prevent the temperature of the refrigerant from becoming too high and reducing the cooling efficiency.
  • the refrigerant is circulated through the refrigerant flow path D in the order of the compressor 83, the cabin condenser 84, the water-cooled condenser 81, and the accumulator 82.
  • the fourth embodiment differs from the third embodiment in the following respects.
  • a bypass flow path 96 is provided to connect between the compressor 83 and the cabin condenser 84 and between the cabin condenser 84 and the water-cooled condenser 81, and a fourth expansion valve 95 is disposed in the bypass flow path 96.
  • the other configurations are the same as those of the third embodiment.
  • the efficiency of heat exchange between the refrigerant and the cooling liquid in the water-cooled condenser 81 is improved in situations where there is no need to use the cabin condenser 84, such as in summer.
  • the water pump 51 is disposed in the second flow passage 55 adjacent to the valve 52, and the water pump 51 and the valve 52 are integrated into a valve unit 6.
  • the valve unit 6 and the water-cooled condenser 81 are assembled to the unit case 5 of the electronic circuit unit 3.
  • the oil cooler 62 is assembled to the unit case 5 of the vehicle drive unit 2.
  • the valve unit 6 and the water-cooled condenser 81 are fixed to the side surface of the unit case 5, but the valve unit 6 and the water-cooled condenser 81 may be fixed to the upper surface of the unit case 5 or may be built in the unit case 5.
  • the oil cooler 62 is fixed to the side surface of the unit case 5, but may be built in the unit case 5.
  • a bypass flow path 96 is provided, and in the first or fifth embodiment, a valve unit 6 in which the water pump 51 and the valve 52 are integrated in the cooling flow path B is provided, but these embodiments may be combined as appropriate.
  • the flow direction of the cooling liquid and refrigerant that exchange heat, and the flow direction of the cooling liquid and oil may be either the same direction or opposite directions.
  • the vehicle drive unit 2 and the electronic circuit unit 3 are housed in the unit case 5 and integrated together, but the vehicle drive unit 2 and the electronic circuit unit 3 may be housed in different cases and connected together.
  • the cooling system A is characterized by the configuration of an electric vehicle drive unit 2 including at least an electric motor 21 that transmits drive torque to the vehicle's running system, an electronic circuit unit 3 including at least an electronic circuit 31 for driving the electric motor 21, a cooling flow path B that circulates a coolant through the electronic circuit unit 3, an oil flow path C that has a first heat exchanger (oil cooler 62) that exchanges heat with the coolant circulating through the cooling flow path B and circulates oil through the electric vehicle drive unit 2, and a refrigerant flow path D that has a second heat exchanger (water-cooled condenser 81) that exchanges heat with the coolant circulating through the cooling flow path B and circulates a refrigerant for heating and cooling.
  • the cooling flow path B circulates the coolant through the electronic circuit unit 3, the first heat exchanger (oil cooler 62), and the second heat exchanger (water-cooled condenser 81) in that order.
  • This configuration includes a first heat exchanger that exchanges heat between the coolant and oil, and a second heat exchanger (water-cooled condenser 81) that exchanges heat between the coolant and refrigerant.
  • the temperature of the coolant changes as the first heat exchanger (oil cooler 62) uses the waste heat from the electronic circuit unit 3 and the electric vehicle drive unit 2, and the second heat exchanger (water-cooled condenser 81) uses the heat of the refrigerant.
  • the cooling flow path B in this configuration circulates the coolant through the electronic circuit unit 3, the first heat exchanger (oil cooler 62), and the second heat exchanger (water-cooled condenser 81) in that order.
  • the coolant exchanges heat with the refrigerant while utilizing the heat generated by the electronic circuit unit 3 and the waste heat from the electric vehicle drive unit 2, making it possible to miniaturize the device.
  • the waste heat from the electric vehicle drive unit 2 is given to the coolant using the first heat exchanger (oil cooler 62), and then heat is exchanged between the refrigerant and the coolant using the second heat exchanger (water-cooled condenser 81), so that the heating efficiency can be improved by utilizing the waste heat from the electric vehicle drive unit 2.
  • the waste heat from the electric vehicle drive unit 2 is given to the coolant using the first heat exchanger (oil cooler 62) before heat is given from the refrigerant to the coolant using the second heat exchanger (water-cooled condenser 81), so that the oil temperature can be lowered and the motor performance can be improved.
  • the electronic circuit unit 3 is the part that generates the most heat, by placing the electronic circuit unit 3 upstream of the electric vehicle drive unit 2, it is possible to effectively recover the waste heat of the electronic circuit unit 3.
  • a three-way valve (valve 52) is disposed in the cooling flow path B, which can be switched between a first state in which the coolant flows through the radiator 53 and a second state in which the coolant is blocked from flowing into the radiator 53 and diverted.
  • valve unit 6 that integrates a pump (water pump 51) that circulates the cooling liquid through the cooling flow path B and a three-way valve (valve 52).
  • valve unit 6 that integrates a pump (water pump 51) and a three-way valve (valve 52), the integrated unit 1 can be made smaller.
  • valve unit 6 is assembled to the electronic circuit unit 3.
  • valve unit 6 Assembling the valve unit 6 to the electronic circuit unit 3 in this configuration allows the integrated unit 1 to be further miniaturized.
  • the electric vehicle drive unit 2 and the electronic circuit unit 3 are formed into an integrated unit 1, and it is preferable that the first heat exchanger (oil cooler 62) and the second heat exchanger (water-cooled condenser 81) are incorporated into the integrated unit 1.
  • the electronic circuit unit 3 includes an inverter 33.
  • the electronic circuit unit 3 includes an inverter 33, which allows the integrated unit 1 to be further miniaturized.
  • the electronic circuit unit 3 includes an on-board charger 32.
  • the electronic circuit unit 3 includes an on-board charger 32, which allows the integrated unit 1 to be further miniaturized.
  • the present invention can be widely used in cooling systems for electric vehicles.
  • Reference Signs List 1 integrated unit
  • 2 electric vehicle drive unit
  • 3 electronic circuit unit
  • 6 valve unit
  • 21 electric motor
  • 31 electronic circuit
  • 32 on-board charger
  • 33 inverter
  • 51 water pump (pump)
  • 52 valve (three-way valve)
  • 53 radiator
  • 62 oil cooler (first heat exchanger)
  • 81 water-cooled condenser (second heat exchanger)
  • B cooling flow path
  • C oil flow path
  • D refrigerant flow path

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A cooling system (A) comprises an electric vehicle drive unit (2) including, at least, an electric motor (21) for transmitting a driving rotational force to a running system of a vehicle, an electronic circuit unit (3) including, at least, an electronic circuit for driving the electric motor (21), a cooling flow path (B) for causing a cooling liquid to circulate to the electronic circuit unit (3), an oil flow path (C) which includes a first heat exchanger (62) for exchanging heat with the cooling liquid circulating through the cooling flow path (B), and which causes oil to circulate to the electric vehicle drive unit (2), and a refrigerant flow path (D) which includes a second heat exchanger (81) for exchanging heat with the cooling liquid circulating through the cooling flow path (B), and which causes a refrigerant for space cooling/heating to circulate, wherein the cooling flow path (B) causes the cooling liquid to circulate in the order of the electronic circuit unit (3), first heat exchanger (62), and second heat exchanger (81).

Description

冷却システムCooling System
 本発明は、冷却システムに関する。 The present invention relates to a cooling system.
 従来、冷却水が循環される冷却流路と冷媒が循環される冷媒流路との間で熱交換が行われる冷却システムが知られている(例えば、特許文献1参照)。特許文献1の冷却システムは、電気部品の廃熱を利用して冷却水の温度を上昇させることにより、冷媒との熱交換により冷却水に与える熱量を下げて冷媒による暖房能力を高めている。  Conventionally, cooling systems are known in which heat exchange occurs between a cooling flow path in which cooling water circulates and a refrigerant flow path in which a refrigerant circulates (see, for example, Patent Document 1). The cooling system of Patent Document 1 uses waste heat from electrical components to raise the temperature of the cooling water, thereby reducing the amount of heat given to the cooling water through heat exchange with the refrigerant and increasing the heating capacity of the refrigerant.
 また、特許文献1に記載の冷却システムは、専用の加熱装置を省略するために、冷却水に対してはラジエータで外気から吸熱させ、冷媒に対しては室外器で外気から吸熱させている。つまり、ラジエータ及び室外器の両方を吸熱用熱交換器として機能させている。 Furthermore, in order to omit a dedicated heating device, the cooling system described in Patent Document 1 has the coolant absorb heat from the outside air using a radiator, and the refrigerant absorb heat from the outside air using an outdoor unit. In other words, both the radiator and the outdoor unit function as heat exchangers for absorbing heat.
特開2019-199113号公報JP 2019-199113 A
 特許文献1に記載の冷却システムは、冷媒と冷却水との間で熱交換する熱交換器に加えて室外器を用いて冷媒が吸熱しているため、加熱装置を省略したとしても、装置の大型化を招いてしまう。 The cooling system described in Patent Document 1 uses an outdoor unit in addition to a heat exchanger that exchanges heat between the refrigerant and the cooling water, so the refrigerant absorbs heat, which results in an increase in the size of the system even if the heating device is omitted.
 そこで、小型化を図りながら効率的な熱マネジメントが可能な冷却システムが望まれている。 Therefore, there is a demand for a cooling system that can efficiently manage heat while being compact.
 本発明に係る冷却システムの特徴構成は、駆動回転力を車両の走行系に伝える電動モータを少なくとも含む電動車両用駆動ユニットと、前記電動モータを駆動するための電子回路を少なくとも含む電子回路ユニットと、前記電子回路ユニットに冷却液を循環させる冷却流路と、前記冷却流路を循環する前記冷却液と熱交換を行う第1熱交換器を有し、前記電動車両用駆動ユニットにオイルを循環させるオイル流路と、前記冷却流路を循環する前記冷却液と熱交換を行う第2熱交換器を有し、冷暖房用の冷媒を循環させる冷媒流路と、を備え、前記冷却流路は、前記電子回路ユニット、前記第1熱交換器、前記第2熱交換器の順で前記冷却液を循環させる点にある。 The cooling system according to the present invention is characterized by comprising an electric vehicle drive unit including at least an electric motor that transmits drive torque to the vehicle's running system, an electronic circuit unit including at least an electronic circuit for driving the electric motor, a cooling flow path that circulates a coolant through the electronic circuit unit, an oil flow path that circulates oil through the electric vehicle drive unit and has a first heat exchanger that exchanges heat with the coolant circulating through the cooling flow path, and a refrigerant flow path that circulates a refrigerant for cooling and heating and has a second heat exchanger that exchanges heat with the coolant circulating through the cooling flow path, and the cooling flow path circulates the coolant through the electronic circuit unit, the first heat exchanger, and the second heat exchanger in that order.
 本構成では、冷却液とオイルとの間で熱交換を行う第1熱交換器と、冷却液と冷媒との間で熱交換を行う第2熱交換器とを備えている。つまり、冷却液は、第1熱交換器で電動車両用駆動ユニットの廃熱を利用し、第2熱交換器で冷媒の熱を利用して温度が変化する。 This configuration includes a first heat exchanger that exchanges heat between the coolant and oil, and a second heat exchanger that exchanges heat between the coolant and refrigerant. In other words, the temperature of the coolant changes as the first heat exchanger uses waste heat from the electric vehicle drive unit, and the second heat exchanger uses heat from the refrigerant.
 また、本構成における冷却流路は、電子回路ユニット、第1熱交換器、第2熱交換器の順で冷却液を循環させる。その結果、冷却液は、電子回路ユニットの発熱、電動車両用駆動ユニットの廃熱を利用しながら、冷媒との間で熱交換を行うため、装置の小型化を図ることができる。例えば、冬場であれば、第1熱交換器を用いて電動車両用駆動ユニットからの廃熱が冷却液に与えられた後に、第2熱交換器を用いて冷媒と冷却液との間で熱交換するため、電動車両用駆動ユニットの廃熱を活用して暖房効率を高めることができる。例えば、夏場であれば、第2熱交換器を用いて冷媒から冷却液に熱が与えられる前に、第1熱交換器を用いて電動車両用駆動ユニットからの廃熱が冷却液に与えられるので、オイルの温度を低下させてモータ性能を向上することができる。 In addition, the cooling flow path in this configuration circulates the coolant through the electronic circuit unit, the first heat exchanger, and the second heat exchanger in that order. As a result, the coolant exchanges heat with the refrigerant while utilizing the heat generated by the electronic circuit unit and the waste heat from the electric vehicle drive unit, allowing the device to be made more compact. For example, in winter, the waste heat from the electric vehicle drive unit is applied to the coolant using the first heat exchanger, and then heat is exchanged between the refrigerant and the coolant using the second heat exchanger, so that the heating efficiency can be improved by utilizing the waste heat from the electric vehicle drive unit. For example, in summer, the waste heat from the electric vehicle drive unit is applied to the coolant using the first heat exchanger before heat is applied from the refrigerant to the coolant using the second heat exchanger, allowing the oil temperature to be lowered and motor performance to be improved.
 このように、電動車両用駆動ユニット及び電子回路ユニットを備えた冷却システムにおいて、小型化を図りながら効率的な熱マネジメントが可能となっている。 In this way, efficient heat management is possible while still achieving compact size in a cooling system equipped with an electric vehicle drive unit and an electronic circuit unit.
は、統合ユニットの分解斜視図である。FIG. 2 is an exploded perspective view of the integrated unit. は、統合ユニットの側断面図である。FIG. 2 is a side cross-sectional view of the integrated unit. は、第1実施形態の冷却システムの回路構成を示す図である。1 is a diagram showing a circuit configuration of a cooling system according to a first embodiment. FIG. は、統合ユニットに熱交換器を一体化させた側断面図である。FIG. 2 is a side cross-sectional view of an integrated unit with a heat exchanger. は、第2実施形態の冷却システムの回路構成を示す図である。FIG. 11 is a diagram showing a circuit configuration of a cooling system according to a second embodiment. は、第3実施形態の冷却システムの回路構成を示す図である。FIG. 13 is a diagram showing a circuit configuration of a cooling system according to a third embodiment. は、第4、5実施形態の冷却システムの回路構成を示す図である。FIG. 13 is a diagram showing a circuit configuration of a cooling system according to a fourth and fifth embodiment. は、第5実施形態に係る統合ユニットに熱交換器を一体化させた側断面図である。13 is a side cross-sectional view of an integrated unit according to a fifth embodiment, in which a heat exchanger is integrated. FIG.
 以下に、本発明に係る冷却システムの実施形態について、図面に基づいて説明する。ただし、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。 Below, an embodiment of the cooling system according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiment, and various modifications are possible without departing from the spirit of the present invention.
 電動自動車は、バッテリから供給される電流により車輪を駆動する電動車両用駆動ユニットを備えて構成されている。電動自動車は、走行駆動源としてモータを備えた自動車(ハイブリッド車(HEV:Hybrid Electric Vehicle)、プラグインハイブリッド車(PHEV:Plug-in Hybrid Electric Vehicle)、バッテリ車(BEV:Battery Electric Vehicle)、燃料電池車(FCEV:Fuel Cell Electric Vehicle)等)が挙げられる。 An electric vehicle is equipped with an electric vehicle drive unit that drives the wheels using current supplied from a battery. Examples of electric vehicles include vehicles that have a motor as a driving source, such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehicles (FCEVs).
〔第1実施形態〕
 電動自動車は、図1及び図2に示される統合ユニット1を備える。統合ユニット1は、電動車両用駆動ユニット2(以下、「車両用駆動ユニット2」と称する)、電子回路ユニット3、及び、冷却モジュール4を備える。統合ユニット1において、車両用駆動ユニット2及び電子回路ユニット3は、ユニットケース5に収容されて一体化されている。冷却モジュール4は、電子回路ユニット3に隣接して配置される。図1に示す例では、冷却モジュール4として、後述するチラー86、水冷コンデンサ81、アキュムレータ82、及び弁やポンプ等の補機類と、冷却流路B及び冷媒流路Dの一部がモジュール化されてユニットケース5に収容されている。以下に示す本実施形態における冷却システムAは、ユニットケース5に車両用駆動ユニット2及び電子回路ユニット3のみが収容された例を示すが、統合ユニット1の形状や構造は特に限定されない。
First Embodiment
The electric vehicle includes an integrated unit 1 shown in FIG. 1 and FIG. 2. The integrated unit 1 includes an electric vehicle drive unit 2 (hereinafter referred to as the "vehicle drive unit 2"), an electronic circuit unit 3, and a cooling module 4. In the integrated unit 1, the vehicle drive unit 2 and the electronic circuit unit 3 are housed and integrated in a unit case 5. The cooling module 4 is disposed adjacent to the electronic circuit unit 3. In the example shown in FIG. 1, the cooling module 4 includes a chiller 86, a water-cooled condenser 81, an accumulator 82, and auxiliary equipment such as valves and pumps, which will be described later, and a part of a cooling flow path B and a refrigerant flow path D, which are modularized and housed in the unit case 5. The cooling system A in the present embodiment shown below shows an example in which only the vehicle drive unit 2 and the electronic circuit unit 3 are housed in the unit case 5, but the shape and structure of the integrated unit 1 are not particularly limited.
 車両用駆動ユニット2は、駆動回転力を車両の走行系に伝える電動モータ21を少なくとも含んでいる。具体的には、車両用駆動ユニット2は、電動モータ21、減速機構を有するギア22等を有する。電子回路ユニット3は、電動モータ21を駆動するための電子回路31を少なくとも含んでいる。具体的には、電子回路ユニット3はユニットケース5に収容されて電源モジュール100を構成しており、電子回路31としてオンボードチャージャ(OBC)32(電圧変換回路)やインバータ(INV)33を構成する複数の電子部品が基板35に実装されている。基板35に実装された電子部品は、その内部に後述する冷却流路Bの第2流路55の一部を構成するヒートシンク36により冷却される。これにより、電子回路ユニット3(電源モジュール100)は、冷却流路Bを流れる冷却液によって冷却可能に構成されている。 The vehicle drive unit 2 includes at least an electric motor 21 that transmits a drive torque to the vehicle's running system. Specifically, the vehicle drive unit 2 includes the electric motor 21, a gear 22 with a reduction mechanism, and the like. The electronic circuit unit 3 includes at least an electronic circuit 31 for driving the electric motor 21. Specifically, the electronic circuit unit 3 is housed in a unit case 5 to form a power supply module 100, and a plurality of electronic components that constitute the on-board charger (OBC) 32 (voltage conversion circuit) and the inverter (INV) 33 as the electronic circuit 31 are mounted on a board 35. The electronic components mounted on the board 35 are cooled by a heat sink 36 that constitutes a part of the second flow path 55 of the cooling flow path B described later inside the board 35. As a result, the electronic circuit unit 3 (power supply module 100) is configured to be cooled by the coolant flowing through the cooling flow path B.
 図3に示されるように、冷却システムAは、車両用駆動ユニット2と、電子回路ユニット3(電源モジュール100)と、冷却流路Bと、オイル流路Cと、冷媒流路Dと、を備える。冷却流路Bにはエチレングリコール等を主成分とした不凍液、ロングライフクーラント等の冷却水や絶縁油等の冷却液が流通し、冷媒流路Dにはハイドロフルオロカーボン(HFC)等の冷媒が流通する。 As shown in FIG. 3, the cooling system A includes a vehicle drive unit 2, an electronic circuit unit 3 (power supply module 100), a cooling flow path B, an oil flow path C, and a refrigerant flow path D. Cooling flow path B carries coolant such as antifreeze containing ethylene glycol as a main component, long-life coolant, cooling water, or insulating oil, while refrigerant flow path D carries a refrigerant such as hydrofluorocarbon (HFC).
 まず、冷却流路Bについて説明する。冷却流路Bは、図3において、電動モータ21の上方に示される流路である。冷却流路Bは、電源モジュール100と、後述のオイルクーラ62(第1熱交換器の一例)と、後述の水冷コンデンサ81(第2熱交換器の一例)と、ウォータポンプ51(ポンプの一例)と、ラジエータ53と、を流路途中に備える。冷却流路Bは、水冷コンデンサ81からラジエータ53に向かう第1流路54と、ラジエータ53から水冷コンデンサ81に向かう第2流路55とを有する。 First, cooling flow path B will be described. Cooling flow path B is the flow path shown above the electric motor 21 in FIG. 3. Cooling flow path B includes the power supply module 100, an oil cooler 62 (an example of a first heat exchanger) described below, a water-cooled condenser 81 (an example of a second heat exchanger) described below, a water pump 51 (an example of a pump), and a radiator 53 along the way. Cooling flow path B has a first flow path 54 that runs from the water-cooled condenser 81 to the radiator 53, and a second flow path 55 that runs from the radiator 53 to the water-cooled condenser 81.
 冷却流路Bは、電源モジュール100に含まれる電子回路ユニット3に冷却液が循環するように構成されている。具体的には、第2流路55の一部が電子回路ユニット3の内側に、ヒートシンク36の内部流路として形成されている(図2参照)。これにより、電子回路ユニット3は、第2流路55を流れる冷却液によって冷却することができる。 The cooling flow path B is configured to circulate the cooling liquid to the electronic circuit unit 3 included in the power supply module 100. Specifically, a part of the second flow path 55 is formed inside the electronic circuit unit 3 as an internal flow path of the heat sink 36 (see FIG. 2). This allows the electronic circuit unit 3 to be cooled by the cooling liquid flowing through the second flow path 55.
 本実施形態では、冷却流路Bは、電源モジュール100、オイルクーラ62、水冷コンデンサ81の順で冷却液を循環させる。また、冷却流路Bには、第1流路54に、ラジエータ53に冷却液を流通させる第1状態と、ラジエータ53への冷却液の流入を遮断して迂回させる第2状態と、に切替可能な弁52(三方弁の一例)が配置されている。これにより、冷却流路Bは、弁52によって、冷却液がラジエータ53を経由して第2流路55に合流する流路56と、冷却液がラジエータ53を経由せずに流れて第2流路55に合流する流路57とに切替えることができる。 In this embodiment, cooling flow path B circulates the coolant through the power supply module 100, oil cooler 62, and water-cooled condenser 81 in that order. In addition, cooling flow path B has a valve 52 (an example of a three-way valve) arranged in first flow path 54 that can be switched between a first state in which the coolant flows through radiator 53 and a second state in which the coolant is blocked from flowing into radiator 53 and diverted. As a result, cooling flow path B can be switched by valve 52 between flow path 56 in which the coolant passes through radiator 53 and merges with second flow path 55, and flow path 57 in which the coolant flows without passing through radiator 53 and merges with second flow path 55.
 冷却流路Bの第2流路55は、電子回路ユニット3からオイルクーラ62に向かう流路58と、オイルクーラ62から水冷コンデンサ81に向かう流路59と、を有する。冷却流路Bにおいて、ウォータポンプ51は弁52に近接する第2流路55に配置されており、ウォータポンプ51と弁52が一体化された弁ユニット6で構成されている。 The second flow path 55 of the cooling flow path B has a flow path 58 that runs from the electronic circuit unit 3 to the oil cooler 62, and a flow path 59 that runs from the oil cooler 62 to the water-cooled condenser 81. In the cooling flow path B, the water pump 51 is disposed in the second flow path 55 adjacent to the valve 52, and is configured as a valve unit 6 in which the water pump 51 and the valve 52 are integrated.
 次に、オイル流路Cについて説明する。オイル流路Cは、図3において、電子回路ユニット3の下方に示される流路である。オイル流路Cは、オイルポンプ61とオイルクーラ62(第1熱交換器の一例)とを流路途中に備え、電動モータ21等にオイルを供給して車両用駆動ユニット2にオイルを循環させる。オイルクーラ62は、冷却流路Bにおいて電源モジュール100(電子回路ユニット3)の下流側にも位置し、冷却流路Bを循環する冷却液と熱交換を行う。 Next, oil flow path C will be described. Oil flow path C is the flow path shown below the electronic circuit unit 3 in FIG. 3. Oil flow path C has an oil pump 61 and an oil cooler 62 (an example of a first heat exchanger) in the middle of the flow path, and supplies oil to the electric motor 21 etc. to circulate the oil to the vehicle drive unit 2. The oil cooler 62 is also located downstream of the power supply module 100 (electronic circuit unit 3) in the cooling flow path B, and exchanges heat with the coolant circulating through the cooling flow path B.
 図4に示すように、弁ユニット6及び水冷コンデンサ81は、電子回路ユニット3のユニットケース5に組付けられている。また、オイルクーラ62は、電子回路ユニット3と車両用駆動ユニット2との間でユニットケース5に内蔵されている。つまり、弁ユニット6及び水冷コンデンサ81とオイルクーラ62とは、統合ユニット1に組み込まれている。図4に示す例では、弁ユニット6及び水冷コンデンサ81は、ユニットケース5の側面に固定されているが、弁ユニット6及び水冷コンデンサ81をユニットケース5の上面に固定してもよいし、ユニットケース5に内蔵してもよい。 As shown in FIG. 4, the valve unit 6 and the water-cooled condenser 81 are assembled to the unit case 5 of the electronic circuit unit 3. The oil cooler 62 is built into the unit case 5 between the electronic circuit unit 3 and the vehicle drive unit 2. In other words, the valve unit 6, the water-cooled condenser 81, and the oil cooler 62 are incorporated into the integrated unit 1. In the example shown in FIG. 4, the valve unit 6 and the water-cooled condenser 81 are fixed to the side of the unit case 5, but the valve unit 6 and the water-cooled condenser 81 may be fixed to the top surface of the unit case 5 or built into the unit case 5.
 次に、冷媒流路Dについて説明する。冷媒流路Dは、図3において右側に示される流路であり、冷暖房用の冷媒が循環するように構成されている。冷媒流路Dは、車内の暖房用の冷媒を循環させる暖房流路71と、車内の冷房用の冷媒を循環させる冷房流路72と、車両に搭載されたバッテリ87を冷却するために冷媒を循環させるバッテリ冷却流路73と、を備える。暖房流路71は、水冷コンデンサ81、アキュムレータ82、コンプレッサ83、及び、キャビンコンデンサ84(暖房用コンデンサ)が順に配置されて全体としてヒートポンプを構成する。冷媒流路Dは、冷却流路Bを循環する冷却液と熱交換を行う水冷コンデンサ81(第2熱交換器の一例)を流路途中に備える。水冷コンデンサ81は、冷却流路Bの第2流路55の流路途中にも位置し、冷却流路Bを循環する冷却液と熱交換を行う。 Next, the refrigerant flow path D will be described. The refrigerant flow path D is a flow path shown on the right side in FIG. 3, and is configured to circulate a refrigerant for heating and cooling. The refrigerant flow path D includes a heating flow path 71 that circulates a refrigerant for heating the vehicle interior, a cooling flow path 72 that circulates a refrigerant for cooling the vehicle interior, and a battery cooling flow path 73 that circulates a refrigerant to cool a battery 87 mounted on the vehicle. The heating flow path 71 includes a water-cooled condenser 81, an accumulator 82, a compressor 83, and a cabin condenser 84 (heating condenser) arranged in order to form a heat pump as a whole. The refrigerant flow path D includes a water-cooled condenser 81 (an example of a second heat exchanger) in the middle of the flow path that exchanges heat with the cooling liquid circulating in the cooling flow path B. The water-cooled condenser 81 is also located in the middle of the second flow path 55 of the cooling flow path B, and exchanges heat with the cooling liquid circulating in the cooling flow path B.
 暖房流路71において、水冷コンデンサ81とアキュムレータ82との間の流路74に開閉弁91が配置され、キャビンコンデンサ84と水冷コンデンサ81との間の流路76には第1膨張弁92が配置されている。図1に示す例では、コンプレッサ83及びキャビンコンデンサ84と、これらを経由する流路75とが、ユニットケース5の外部に配置されている。 In the heating flow path 71, an on-off valve 91 is disposed in the flow path 74 between the water-cooled condenser 81 and the accumulator 82, and a first expansion valve 92 is disposed in the flow path 76 between the cabin condenser 84 and the water-cooled condenser 81. In the example shown in FIG. 1, the compressor 83 and cabin condenser 84, and the flow path 75 passing through them, are disposed outside the unit case 5.
 冷房流路72は、流路74の開閉弁91の上流側から分岐する流路77によって構成されている。流路77は、流路途中に第2膨張弁93とエバポレータ85とを順に備え、流路74の開閉弁91の下流側に合流するように構成されている。つまり、開閉弁91を閉じた状態で第2膨張弁93を駆動させると、流路77に冷媒が流通し、エバポレータ85により車室冷房が実行される。図1に示す例では、冷房流路72において、エバポレータ85はユニットケース5の外部に配置されている。 The cooling flow path 72 is composed of a flow path 77 that branches off from the flow path 74 upstream of the on-off valve 91. The flow path 77 is configured to have a second expansion valve 93 and an evaporator 85, in that order, midway through the flow path, and to merge with the flow path 74 downstream of the on-off valve 91. In other words, when the second expansion valve 93 is driven with the on-off valve 91 closed, refrigerant flows through the flow path 77, and the evaporator 85 cools the passenger compartment. In the example shown in FIG. 1, the evaporator 85 is located outside the unit case 5 in the cooling flow path 72.
 バッテリ冷却流路73は、冷房流路72の流路77の第2膨張弁93の上流側から分岐する流路78によって構成されている。流路78は、流路途中に第3膨張弁94とチラー86とを順に備え、流路77のエバポレータ85の下流側に合流するように構成されている。つまり、開閉弁91を閉じた状態で第3膨張弁94を駆動させると、流路78に冷媒が流通し、チラー86により冷却液との間で熱交換される。なお、冷媒流路Dにおいて、開閉弁91、第1膨張弁92、第2膨張弁93、第3膨張弁94はモジュール化してユニットケース5の内部に収容することが好ましい。 The battery cooling flow path 73 is composed of a flow path 78 that branches off from the upstream side of the second expansion valve 93 of the flow path 77 of the cooling flow path 72. The flow path 78 is configured to have a third expansion valve 94 and a chiller 86 in that order along the way, and to merge with the downstream side of the evaporator 85 of the flow path 77. In other words, when the third expansion valve 94 is driven with the opening/closing valve 91 closed, the refrigerant flows through the flow path 78, and heat is exchanged between the refrigerant and the cooling liquid by the chiller 86. In addition, in the refrigerant flow path D, it is preferable to modularize the opening/closing valve 91, the first expansion valve 92, the second expansion valve 93, and the third expansion valve 94 and house them inside the unit case 5.
 さらに、バッテリ冷却流路73は、チラー86がバッテリ87との間で冷却液が循環する冷却循環路79に配置されて構成されている。冷却循環路79には、流路途中にウォータポンプ88が配置されている。図1に示す例では、バッテリ冷却流路73において、バッテリ87はユニットケース5の外部後方に位置する例えば車室床下空間に配置されている。 Furthermore, the battery cooling flow path 73 is configured by arranging the chiller 86 in a cooling circulation path 79 through which coolant circulates between the battery 87 and the chiller 86. A water pump 88 is arranged midway along the cooling circulation path 79. In the example shown in FIG. 1, in the battery cooling flow path 73, the battery 87 is arranged, for example, in the space under the floor of the vehicle compartment, located outside and rearward of the unit case 5.
 次に、冷媒流路Dにおける冷媒の流れについて説明する。暖房流路71では、流路75を流通してコンプレッサ83で高温圧縮気体になった冷媒は、キャビンコンデンサ84により放熱されて流路76から第1膨張弁92を介して水冷コンデンサ81に流入する。その後、冷媒は、水冷コンデンサ81で冷却流路Bから流入する冷却液に熱を奪われることにより凝縮されて液化し、再びアキュムレータ82を介して気体状の冷媒がコンプレッサ83に流入する。 Next, the flow of refrigerant in refrigerant flow path D will be described. In the heating flow path 71, the refrigerant that flows through flow path 75 and becomes a high-temperature compressed gas in the compressor 83 has heat dissipated by the cabin condenser 84 and flows from flow path 76 through the first expansion valve 92 into the water-cooled condenser 81. The refrigerant is then condensed and liquefied in the water-cooled condenser 81 as heat is absorbed by the cooling liquid flowing in from the cooling flow path B, and the gaseous refrigerant flows again into the compressor 83 through the accumulator 82.
 水冷コンデンサ81で液化した冷媒のうち車内の冷房に使用されるものは、冷房流路72において、水冷コンデンサ81を出て流路74から流路77を流通し、第2膨張弁93で膨張されて低温、低圧の霧状にされた後、ユニットケース5の外部のエバポレータ85に送られる。霧状の冷媒は、エバポレータ85で外部から導入された空気から熱を奪って蒸発する。逆に空気は冷媒に熱を奪われることにより冷却され、冷風となって車内に送られる。蒸発して気化された冷媒は、流路72,75を介してアキュムレータ82に送られる。アキュムレータ82では、気化された冷媒に液体が含まれている場合に、該液体を気化された冷媒から分離する。その後、気化した冷媒は、流路75のコンプレッサ83に環流し、再度圧縮されて高温圧縮気体になる。 The refrigerant liquefied in the water-cooled condenser 81 that is used for cooling the interior of the vehicle leaves the water-cooled condenser 81 and flows through the flow paths 74 and 77 in the cooling flow path 72, expands in the second expansion valve 93, and becomes a low-temperature, low-pressure mist. It is then sent to the evaporator 85 outside the unit case 5. The mist of refrigerant absorbs heat from the air introduced from the outside in the evaporator 85 and evaporates. Conversely, the air is cooled by the refrigerant absorbing heat, and is sent to the interior of the vehicle as cold air. The evaporated refrigerant is sent to the accumulator 82 via the flow paths 72 and 75. In the accumulator 82, if the evaporated refrigerant contains liquid, the liquid is separated from the evaporated refrigerant. The evaporated refrigerant then flows back to the compressor 83 in the flow path 75, where it is compressed again to become a high-temperature compressed gas.
 水冷コンデンサ81で液化された冷媒のうち車内の冷房に使用されないものは、水冷コンデンサ81を出て流路74、77,78を流通し、第3膨張弁94で膨張されて低温、低圧の霧状にされた後、チラー86に送られる。霧状の冷媒は、チラー86で、冷却循環路79から流入する冷却液から熱を奪って蒸発する。蒸発して気化された冷媒は、流路73,75を介してアキュムレータ82に送られる。アキュムレータ82では、気化された冷媒に液体が含まれている場合に、該液体を気化された冷媒から分離する。その後、気化した冷媒は、流路75のコンプレッサ83に環流し、再度圧縮されて高温圧縮気体になる。 The refrigerant liquefied in the water-cooled condenser 81 that is not used to cool the vehicle interior leaves the water-cooled condenser 81 and flows through the flow paths 74, 77, and 78, and is expanded in the third expansion valve 94 to become a low-temperature, low-pressure mist, which is then sent to the chiller 86. The mist of refrigerant absorbs heat from the cooling liquid flowing in from the cooling circuit 79 and evaporates in the chiller 86. The evaporated refrigerant is sent to the accumulator 82 via the flow paths 73 and 75. In the accumulator 82, if the evaporated refrigerant contains liquid, the liquid is separated from the evaporated refrigerant. The evaporated refrigerant then flows back to the compressor 83 in the flow path 75, where it is compressed again to become a high-temperature compressed gas.
 本実施形態では、冷却システムAが、冷却流路Bを流れる冷却液とオイル流路Cを流れるオイルとの間で熱交換を行うオイルクーラ62と、冷却流路Bを流れる冷却液と冷媒流路Dを流れる冷媒との間で熱交換を行う水冷コンデンサ81とを備えている。つまり、冷却液は、オイルクーラ62で車両用駆動ユニット2の廃熱を利用し、水冷コンデンサ81で冷媒の熱を利用して温度が変化する。 In this embodiment, the cooling system A includes an oil cooler 62 that exchanges heat between the cooling liquid flowing through the cooling flow path B and the oil flowing through the oil flow path C, and a water-cooled condenser 81 that exchanges heat between the cooling liquid flowing through the cooling flow path B and the refrigerant flowing through the refrigerant flow path D. In other words, the temperature of the cooling liquid changes in the oil cooler 62 by utilizing the waste heat of the vehicle drive unit 2, and in the water-cooled condenser 81 by utilizing the heat of the refrigerant.
 また、本実施形態における冷却流路Bは、電源モジュール100(電子回路ユニット3)、オイルクーラ62、水冷コンデンサ81の順で冷却液を循環させる。特に、電子回路ユニット3は、最も高熱となる部分であるので、電子回路ユニット3を上流に配置することにより電子回路ユニット3の廃熱を有効に回収することが可能となる。その結果、冷却液は、電子回路ユニット3の発熱、車両用駆動ユニット2の廃熱を利用しながら、冷媒との間で熱交換を行うため、装置の小型化を図ることができる。例えば、冬場であれば、オイルクーラ62を用いて車両用駆動ユニット2からの廃熱が冷却液に与えられた後に、水冷コンデンサ81を用いて冷媒と冷却液との間で熱交換するため、車両用駆動ユニット2の廃熱を活用して暖房効率を高めることができる。また、例えば、夏場であれば、水冷コンデンサ81を用いて冷媒から冷却液に熱が与えられる前に、オイルクーラ62を用いて車両用駆動ユニット2からの廃熱が冷却液に与えられるので、オイルの温度を低下させてモータ性能を向上することができる。 In addition, the cooling flow path B in this embodiment circulates the coolant in the order of the power supply module 100 (electronic circuit unit 3), the oil cooler 62, and the water-cooled condenser 81. In particular, since the electronic circuit unit 3 is the part that becomes the hottest, by arranging the electronic circuit unit 3 upstream, it is possible to effectively recover the waste heat of the electronic circuit unit 3. As a result, the coolant exchanges heat with the refrigerant while utilizing the heat generated by the electronic circuit unit 3 and the waste heat of the vehicle drive unit 2, so that the device can be made smaller. For example, in winter, after the waste heat from the vehicle drive unit 2 is given to the coolant using the oil cooler 62, heat is exchanged between the refrigerant and the coolant using the water-cooled condenser 81, so that the heating efficiency can be improved by utilizing the waste heat of the vehicle drive unit 2. Also, for example, in summer, before heat is given from the refrigerant to the coolant using the water-cooled condenser 81, the waste heat from the vehicle drive unit 2 is given to the coolant using the oil cooler 62, so that the temperature of the oil can be lowered and the motor performance can be improved.
 このように、本実施形態では、車両用駆動ユニット2及び電子回路ユニット3を備えた冷却システムAにおいて、小型化を図りながら効率的な熱マネジメントが可能となっている。 In this way, in this embodiment, efficient heat management is possible while achieving compactness in the cooling system A equipped with the vehicle drive unit 2 and the electronic circuit unit 3.
 また、冷却流路Bには、第1流路54に、ラジエータ53に冷却液を流通させる第1状態と、ラジエータ53への冷却液の流入を遮断して迂回させる第2状態と、に切替可能な弁52(三方弁の一例)が配置されているので、ラジエータ53に冷却液を流通させる第1状態により、夏場のように冷却液の冷却機能を発揮したい場合、冷却液を外気によって冷却することが可能となる。また、ラジエータ53に冷却液を流通させない第2状態により、冬場のように冷却液による暖機をしたい場合、車両用駆動ユニット2及び電子回路ユニット3(電源モジュール100)の廃熱を活用して冷却液を速やかに昇温することが可能となる。その結果、水冷コンデンサ81で冷却液から冷媒へ熱を与えることも可能となり、冷媒流路Dに加熱装置を設ける必要がなくなる。 In addition, in the cooling flow path B, a valve 52 (an example of a three-way valve) is arranged in the first flow path 54, which can be switched between a first state in which the coolant flows through the radiator 53 and a second state in which the coolant is blocked from flowing into the radiator 53 and diverted. In the first state in which the coolant flows through the radiator 53, the coolant can be cooled by outside air when it is desired to exercise the cooling function of the coolant, such as in summer. In addition, in the second state in which the coolant is not flowed through the radiator 53, it is possible to quickly raise the temperature of the coolant by utilizing the waste heat of the vehicle drive unit 2 and the electronic circuit unit 3 (power supply module 100) when it is desired to warm up the vehicle using the coolant, such as in winter. As a result, it is also possible to transfer heat from the coolant to the refrigerant in the water-cooled condenser 81, and there is no need to provide a heating device in the refrigerant flow path D.
〔第2実施形態〕
 図5に示すように、第2実施形態では、第1実施形態と同様に、冷媒流路Dは、コンプレッサ83、キャビンコンデンサ84、水冷コンデンサ81、アキュムレータ82の順で冷媒を循環させている。ただし、第2実施形態は、以下の点で第1実施形態とは異なる。第2実施形態では、コンプレッサ83及びキャビンコンデンサ84の間と、キャビンコンデンサ84及び水冷コンデンサ81の間とを接続するバイパス流路96が設けられており、バイパス流路96には第4膨張弁95が配置されている。他の形態は第1実施形態と同じである。
Second Embodiment
As shown in Fig. 5, in the second embodiment, similarly to the first embodiment, the refrigerant is circulated through the refrigerant flow path D in the order of the compressor 83, the cabin condenser 84, the water-cooled condenser 81, and the accumulator 82. However, the second embodiment differs from the first embodiment in the following respects. In the second embodiment, a bypass flow path 96 is provided to connect between the compressor 83 and the cabin condenser 84 and between the cabin condenser 84 and the water-cooled condenser 81, and a fourth expansion valve 95 is disposed in the bypass flow path 96. The other configurations are the same as those of the first embodiment.
 本実施形態のようにバイパス流路96を設ければ、夏場のようにキャビンコンデンサ84を用いる必要のない状況下において、水冷コンデンサ81による冷媒と冷却液との熱交換効率が良くなる。 By providing a bypass flow path 96 as in this embodiment, the efficiency of heat exchange between the refrigerant and the cooling liquid in the water-cooled condenser 81 is improved in situations where there is no need to use the cabin condenser 84, such as in summer.
〔第3実施形態〕
 図6に示すように、第3実施形態では、第1実施形態と同様に、冷却流路Bは、電源モジュール100に含まれる電子回路ユニット3に冷却液が循環するように構成されている。ただし、第3実施形態は、以下の点で第1実施形態とは異なる。第3実施形態では、冷却流路Bは、電源モジュール100、水冷コンデンサ81、オイルクーラ62の順で冷却液を循環させる。他の形態は第1実施形態と同じである。
Third Embodiment
As shown in Fig. 6, in the third embodiment, similarly to the first embodiment, the cooling flow path B is configured to circulate the coolant through the electronic circuit unit 3 included in the power supply module 100. However, the third embodiment differs from the first embodiment in the following respects. In the third embodiment, the cooling flow path B circulates the coolant through the power supply module 100, the water-cooled condenser 81, and the oil cooler 62 in that order. The other configurations are the same as those of the first embodiment.
 本実施形態のように、冷却流路Bが、電源モジュール100、水冷コンデンサ81、オイルクーラ62の順で冷却液を循環させることにより、冷却液は、電子回路ユニット3の発熱、車両用駆動ユニット2の廃熱を利用しながら、冷媒との間で熱交換を行うため、装置の小型化を図ることができる。例えば、夏場であれば、オイルクーラ62を用いて車両用駆動ユニット2からの廃熱が冷却液に与えられる前に、水冷コンデンサ81を用いて冷媒と冷却液との間で熱交換するため、冷媒の温度が高くなりすぎて冷房効率が低下することを防止できる。また、例えば、冬場であれば、水冷コンデンサ81を用いて冷媒から冷却液に熱が与えられた後、オイルクーラ62を用いてオイルと冷却液との間で熱交換するため、オイルの熱が冷却液に過剰に奪われてモータ性能が低下することを防止できる。 As in this embodiment, the cooling flow path B circulates the coolant through the power supply module 100, the water-cooled condenser 81, and the oil cooler 62 in that order, so that the coolant exchanges heat with the refrigerant while utilizing the heat generated by the electronic circuit unit 3 and the waste heat from the vehicle drive unit 2, thereby enabling the device to be made more compact. For example, in summer, before the waste heat from the vehicle drive unit 2 is given to the coolant using the oil cooler 62, heat exchange is performed between the refrigerant and the coolant using the water-cooled condenser 81, so that it is possible to prevent the temperature of the refrigerant from becoming too high and reducing the cooling efficiency. Also, for example, in winter, after heat is given from the refrigerant to the coolant using the water-cooled condenser 81, heat exchange is performed between the oil and the coolant using the oil cooler 62, so that it is possible to prevent the heat of the oil from being excessively taken by the coolant and the motor performance from being reduced.
〔第4実施形態〕
 図7に示すように、第4実施形態では、第3実施形態と同様に、冷媒流路Dは、コンプレッサ83、キャビンコンデンサ84、水冷コンデンサ81、アキュムレータ82の順で冷媒を循環させている。ただし、第4実施形態は、以下の点で第3実施形態とは異なる。第4実施形態では、コンプレッサ83及びキャビンコンデンサ84の間と、キャビンコンデンサ84及び水冷コンデンサ81の間とを接続するバイパス流路96が設けられており、バイパス流路96には第4膨張弁95が配置されている。他の形態は第3実施形態と同じである。
Fourth Embodiment
As shown in Fig. 7, in the fourth embodiment, similarly to the third embodiment, the refrigerant is circulated through the refrigerant flow path D in the order of the compressor 83, the cabin condenser 84, the water-cooled condenser 81, and the accumulator 82. However, the fourth embodiment differs from the third embodiment in the following respects. In the fourth embodiment, a bypass flow path 96 is provided to connect between the compressor 83 and the cabin condenser 84 and between the cabin condenser 84 and the water-cooled condenser 81, and a fourth expansion valve 95 is disposed in the bypass flow path 96. The other configurations are the same as those of the third embodiment.
 本実施形態のようにバイパス流路96を設ければ、夏場のようにキャビンコンデンサ84を用いる必要のない状況下において、水冷コンデンサ81による冷媒と冷却液との熱交換効率が良くなる。 By providing a bypass flow path 96 as in this embodiment, the efficiency of heat exchange between the refrigerant and the cooling liquid in the water-cooled condenser 81 is improved in situations where there is no need to use the cabin condenser 84, such as in summer.
〔第5実施形態〕
 図7に示すように、第5実施形態では、冷却流路Bにおいて、ウォータポンプ51は弁52に近接する第2流路55に配置されており、ウォータポンプ51と弁52が一体化された弁ユニット6で構成されている。図8に示すように、弁ユニット6及び水冷コンデンサ81は、電子回路ユニット3のユニットケース5に組付けられている。また、オイルクーラ62は、車両用駆動ユニット2のユニットケース5に組付けられている。図8に示す例では、弁ユニット6及び水冷コンデンサ81は、ユニットケース5の側面に固定されているが、弁ユニット6及び水冷コンデンサ81をユニットケース5の上面に固定してもよいし、ユニットケース5に内蔵してもよい。また、オイルクーラ62は、ユニットケース5の側面に固定されているが、ユニットケース5に内蔵してもよい。
Fifth Embodiment
As shown in Fig. 7, in the fifth embodiment, in the cooling flow passage B, the water pump 51 is disposed in the second flow passage 55 adjacent to the valve 52, and the water pump 51 and the valve 52 are integrated into a valve unit 6. As shown in Fig. 8, the valve unit 6 and the water-cooled condenser 81 are assembled to the unit case 5 of the electronic circuit unit 3. In addition, the oil cooler 62 is assembled to the unit case 5 of the vehicle drive unit 2. In the example shown in Fig. 8, the valve unit 6 and the water-cooled condenser 81 are fixed to the side surface of the unit case 5, but the valve unit 6 and the water-cooled condenser 81 may be fixed to the upper surface of the unit case 5 or may be built in the unit case 5. In addition, the oil cooler 62 is fixed to the side surface of the unit case 5, but may be built in the unit case 5.
〔その他の実施形態〕
(1)第2実施形態では、バイパス流路96を設け、第1実施形態又は第5実施形態では、冷却流路Bにおいてウォータポンプ51と弁52が一体化された弁ユニット6を設けたが、これらの実施形態は適宜組み合わせて設けてもよい。
Other embodiments
(1) In the second embodiment, a bypass flow path 96 is provided, and in the first or fifth embodiment, a valve unit 6 in which the water pump 51 and the valve 52 are integrated in the cooling flow path B is provided, but these embodiments may be combined as appropriate.
(2)熱交換をする冷却液と冷媒の流通方向、及び、冷却液とオイルの流通方向は同方向及び反対方向のいずれでもよい。 (2) The flow direction of the cooling liquid and refrigerant that exchange heat, and the flow direction of the cooling liquid and oil, may be either the same direction or opposite directions.
(3)上述した実施形態における統合ユニット1において、車両用駆動ユニット2及び電子回路ユニット3は、ユニットケース5に収容されて一体化されていたが、車両用駆動ユニット2及び電子回路ユニット3は、夫々異なるケースに収容して夫々のケースを連結して構成してもよい。 (3) In the integrated unit 1 in the above-described embodiment, the vehicle drive unit 2 and the electronic circuit unit 3 are housed in the unit case 5 and integrated together, but the vehicle drive unit 2 and the electronic circuit unit 3 may be housed in different cases and connected together.
〔上記実施形態の概要〕
 以下、上記において説明した冷却システムAの概要について説明する。
[Summary of the above embodiment]
The cooling system A described above will now be outlined.
(1)冷却システムAの特徴構成は、駆動回転力を車両の走行系に伝える電動モータ21を少なくとも含む電動車両用駆動ユニット2と、電動モータ21を駆動するための電子回路31を少なくとも含む電子回路ユニット3と、電子回路ユニット3に冷却液を循環させる冷却流路Bと、冷却流路Bを循環する冷却液と熱交換を行う第1熱交換器(オイルクーラ62)を有し、電動車両用駆動ユニット2にオイルを循環させるオイル流路Cと、冷却流路Bを循環する冷却液と熱交換を行う第2熱交換器(水冷コンデンサ81)を有し、冷暖房用の冷媒を循環させる冷媒流路Dと、を備え、冷却流路Bは、電子回路ユニット3、第1熱交換器(オイルクーラ62)、第2熱交換器(水冷コンデンサ81)の順で冷却液を循環させる点にある。 (1) The cooling system A is characterized by the configuration of an electric vehicle drive unit 2 including at least an electric motor 21 that transmits drive torque to the vehicle's running system, an electronic circuit unit 3 including at least an electronic circuit 31 for driving the electric motor 21, a cooling flow path B that circulates a coolant through the electronic circuit unit 3, an oil flow path C that has a first heat exchanger (oil cooler 62) that exchanges heat with the coolant circulating through the cooling flow path B and circulates oil through the electric vehicle drive unit 2, and a refrigerant flow path D that has a second heat exchanger (water-cooled condenser 81) that exchanges heat with the coolant circulating through the cooling flow path B and circulates a refrigerant for heating and cooling. The cooling flow path B circulates the coolant through the electronic circuit unit 3, the first heat exchanger (oil cooler 62), and the second heat exchanger (water-cooled condenser 81) in that order.
 本構成では、冷却液とオイルとの間で熱交換を行う第1熱交換器と、冷却液と冷媒との間で熱交換を行う第2熱交換器(水冷コンデンサ81)とを備えている。つまり、冷却液は、第1熱交換器(オイルクーラ62)で電子回路ユニット3及び電動車両用駆動ユニット2の廃熱を利用し、第2熱交換器(水冷コンデンサ81)で冷媒の熱を利用して温度が変化する。 This configuration includes a first heat exchanger that exchanges heat between the coolant and oil, and a second heat exchanger (water-cooled condenser 81) that exchanges heat between the coolant and refrigerant. In other words, the temperature of the coolant changes as the first heat exchanger (oil cooler 62) uses the waste heat from the electronic circuit unit 3 and the electric vehicle drive unit 2, and the second heat exchanger (water-cooled condenser 81) uses the heat of the refrigerant.
 また、本構成における冷却流路Bは、電子回路ユニット3、第1熱交換器(オイルクーラ62)、第2熱交換器(水冷コンデンサ81)の順で冷却液を循環させる。その結果、冷却液は、電子回路ユニット3の発熱、電動車両用駆動ユニット2の廃熱を利用しながら、冷媒との間で熱交換を行うため、装置の小型化を図ることができる。例えば、冬場であれば、第1熱交換器(オイルクーラ62)を用いて電動車両用駆動ユニット2からの廃熱が冷却液に与えられた後に、第2熱交換器(水冷コンデンサ81)を用いて冷媒と冷却液との間で熱交換するため、電動車両用駆動ユニット2の廃熱を活用して暖房効率を高めることができる。例えば、夏場であれば、第2熱交換器(水冷コンデンサ81)を用いて冷媒から冷却液に熱が与えられる前に、第1熱交換器(オイルクーラ62)を用いて電動車両用駆動ユニット2からの廃熱が冷却液に与えられるので、オイルの温度を低下させてモータ性能を向上することができる。特に、電子回路ユニット3は、最も高熱となる部分であるので、電子回路ユニット3を電動車両用駆動ユニット2よりも上流に配置することにより、電子回路ユニット3の廃熱を有効に回収することが可能となる。 In addition, the cooling flow path B in this configuration circulates the coolant through the electronic circuit unit 3, the first heat exchanger (oil cooler 62), and the second heat exchanger (water-cooled condenser 81) in that order. As a result, the coolant exchanges heat with the refrigerant while utilizing the heat generated by the electronic circuit unit 3 and the waste heat from the electric vehicle drive unit 2, making it possible to miniaturize the device. For example, in winter, the waste heat from the electric vehicle drive unit 2 is given to the coolant using the first heat exchanger (oil cooler 62), and then heat is exchanged between the refrigerant and the coolant using the second heat exchanger (water-cooled condenser 81), so that the heating efficiency can be improved by utilizing the waste heat from the electric vehicle drive unit 2. For example, in summer, the waste heat from the electric vehicle drive unit 2 is given to the coolant using the first heat exchanger (oil cooler 62) before heat is given from the refrigerant to the coolant using the second heat exchanger (water-cooled condenser 81), so that the oil temperature can be lowered and the motor performance can be improved. In particular, since the electronic circuit unit 3 is the part that generates the most heat, by placing the electronic circuit unit 3 upstream of the electric vehicle drive unit 2, it is possible to effectively recover the waste heat of the electronic circuit unit 3.
 このように、電動車両用駆動ユニット2及び電子回路ユニット3を備えた冷却システムAにおいて、冷却システムAを構成する装置の小型化を図りながら効率的な熱マネジメントが可能となっている。 In this way, in a cooling system A equipped with an electric vehicle drive unit 2 and an electronic circuit unit 3, efficient heat management is possible while miniaturizing the devices that make up the cooling system A.
(2)(1)に記載の冷却システムAにおいて、冷却流路Bには、ラジエータ53に冷却液を流通させる第1状態と、ラジエータ53への冷却液の流入を遮断して迂回させる第2状態と、に切替える三方弁(弁52)が配置されていると好適である。 (2) In the cooling system A described in (1), it is preferable that a three-way valve (valve 52) is disposed in the cooling flow path B, which can be switched between a first state in which the coolant flows through the radiator 53 and a second state in which the coolant is blocked from flowing into the radiator 53 and diverted.
 本構成のように、ラジエータ53に冷却液を流通させる第1状態により、夏場のように冷却液の冷却機能を発揮したい場合、冷却液を外気によって冷却することが可能となる。また、ラジエータ53に冷却液を流通させない第2状態により、冬場のように冷却液による暖機をしたい場合、電動車両用駆動ユニット2及び電子回路ユニット3の廃熱を活用して冷却液を速やかに昇温することが可能となる。その結果、第2熱交換器(水冷コンデンサ81)で冷却液から冷媒へ熱を与えることも可能となり、冷媒流路Dに加熱装置を設ける必要がなくなる。 As in this configuration, in the first state where the coolant is circulated through the radiator 53, when it is desired to exert the cooling function of the coolant, such as in summer, it is possible to cool the coolant with outside air. Also, in the second state where the coolant is not circulated through the radiator 53, when it is desired to warm up the engine using the coolant, such as in winter, it is possible to quickly raise the temperature of the coolant by utilizing the waste heat from the electric vehicle drive unit 2 and the electronic circuit unit 3. As a result, it is also possible to transfer heat from the coolant to the refrigerant in the second heat exchanger (water-cooled condenser 81), eliminating the need to provide a heating device in the refrigerant flow path D.
(3)(2)に記載の冷却システムAにおいて、冷却流路Bに冷却液を循環させるポンプ(ウォータポンプ51)と、三方弁(弁52)とを一体化させた弁ユニット6を備えていると好適である。 (3) In the cooling system A described in (2), it is preferable to provide a valve unit 6 that integrates a pump (water pump 51) that circulates the cooling liquid through the cooling flow path B and a three-way valve (valve 52).
 本構成のように、ポンプ(ウォータポンプ51)と三方弁(弁52)とを一体化させた弁ユニット6を設ければ、統合ユニット1の小型化を図ることができる。 As in this configuration, by providing a valve unit 6 that integrates a pump (water pump 51) and a three-way valve (valve 52), the integrated unit 1 can be made smaller.
(4)(3)に記載の冷却システムAにおいて、弁ユニット6は、電子回路ユニット3に組み付けられていると好適である。 (4) In the cooling system A described in (3), it is preferable that the valve unit 6 is assembled to the electronic circuit unit 3.
 本構成のように弁ユニット6を電子回路ユニット3に組み付ければ、統合ユニット1の更なる小型化を図ることができる。 Assembling the valve unit 6 to the electronic circuit unit 3 in this configuration allows the integrated unit 1 to be further miniaturized.
(5)(1)~(4)のいずれか一つに記載の冷却システムAにおいて、電動車両用駆動ユニット2と電子回路ユニット3とは、一体化された統合ユニット1で形成されており、第1熱交換器(オイルクーラ62)と第2熱交換器(水冷コンデンサ81)とは、統合ユニット1に組み込まれていると好適である。 (5) In the cooling system A described in any one of (1) to (4), the electric vehicle drive unit 2 and the electronic circuit unit 3 are formed into an integrated unit 1, and it is preferable that the first heat exchanger (oil cooler 62) and the second heat exchanger (water-cooled condenser 81) are incorporated into the integrated unit 1.
 本構成のように、電動車両用駆動ユニット2と電子回路ユニット3とを一体化した統合ユニット1で形成し、第1熱交換器(オイルクーラ62)及び第2熱交換器(水冷コンデンサ81)を統合ユニット1に組み込めば、統合ユニット1で冷却液を循環させることが可能となり、冷却配管の引き回しを無くして統合ユニット1の更なる小型化を図ることができる。 As in this configuration, by forming the electric vehicle drive unit 2 and the electronic circuit unit 3 into an integrated unit 1 and incorporating the first heat exchanger (oil cooler 62) and the second heat exchanger (water-cooled condenser 81) into the integrated unit 1, it becomes possible to circulate the coolant in the integrated unit 1, eliminating the need to run cooling piping and making the integrated unit 1 even more compact.
(6)(1)~(5)のいずれか一つに記載の冷却システムAにおいて、電子回路ユニット3は、インバータ33を含むと好適である。 (6) In the cooling system A described in any one of (1) to (5), it is preferable that the electronic circuit unit 3 includes an inverter 33.
 本構成のように、電子回路ユニット3がインバータ33を含むことにより、統合ユニット1の更なる小型化を図ることができる。 As in this configuration, the electronic circuit unit 3 includes an inverter 33, which allows the integrated unit 1 to be further miniaturized.
(7)(1)~(5)のいずれか一つに記載の冷却システムAにおいて、電子回路ユニット3は、オンボードチャージャ32を含むと好適である。 (7) In the cooling system A described in any one of (1) to (5), it is preferable that the electronic circuit unit 3 includes an on-board charger 32.
 本構成のように、電子回路ユニット3がオンボードチャージャ32を含むことにより、統合ユニット1の更なる小型化を図ることができる。 In this configuration, the electronic circuit unit 3 includes an on-board charger 32, which allows the integrated unit 1 to be further miniaturized.
 本発明は、電動車両の冷却システムに広く利用可能である。 The present invention can be widely used in cooling systems for electric vehicles.
1:統合ユニット、2:電動車両用駆動ユニット、3:電子回路ユニット、6:弁ユニット、21:電動モータ、31:電子回路、32:オンボードチャージャ、33:インバータ、51:ウォータポンプ(ポンプ)、52:弁(三方弁)、53:ラジエータ、62:オイルクーラ(第1熱交換器)、81:水冷コンデンサ(第2熱交換器)、A:冷却システム、B:冷却流路、C:オイル流路、D:冷媒流路
 
Reference Signs List 1: integrated unit, 2: electric vehicle drive unit, 3: electronic circuit unit, 6: valve unit, 21: electric motor, 31: electronic circuit, 32: on-board charger, 33: inverter, 51: water pump (pump), 52: valve (three-way valve), 53: radiator, 62: oil cooler (first heat exchanger), 81: water-cooled condenser (second heat exchanger), A: cooling system, B: cooling flow path, C: oil flow path, D: refrigerant flow path

Claims (7)

  1.  駆動回転力を車両の走行系に伝える電動モータを少なくとも含む電動車両用駆動ユニットと、
     前記電動モータを駆動するための電子回路を少なくとも含む電子回路ユニットと、
     前記電子回路ユニットに冷却液を循環させる冷却流路と、
     前記冷却流路を循環する前記冷却液と熱交換を行う第1熱交換器を有し、前記電動車両用駆動ユニットにオイルを循環させるオイル流路と、
     前記冷却流路を循環する前記冷却液と熱交換を行う第2熱交換器を有し、冷暖房用の冷媒を循環させる冷媒流路と、を備え、
     前記冷却流路は、前記電子回路ユニット、前記第1熱交換器、前記第2熱交換器の順で前記冷却液を循環させる冷却システム。
    a drive unit for an electric vehicle including at least an electric motor that transmits a drive torque to a running system of the vehicle;
    an electronic circuit unit including at least an electronic circuit for driving the electric motor;
    a cooling flow path for circulating a cooling liquid through the electronic circuit unit;
    an oil flow path that has a first heat exchanger that exchanges heat with the coolant circulating through the cooling flow path and circulates oil in the electric vehicle drive unit;
    a refrigerant flow path having a second heat exchanger for exchanging heat with the cooling liquid circulating through the cooling flow path and for circulating a refrigerant for heating and cooling;
    The cooling system includes a cooling passage that circulates the coolant through the electronic circuit unit, the first heat exchanger, and the second heat exchanger in this order.
  2.  前記冷却流路には、ラジエータに前記冷却液を流通させる第1状態と、前記ラジエータへの前記冷却液の流入を遮断して迂回させる第2状態と、に切替える三方弁が配置されている請求項1に記載の冷却システム。 The cooling system of claim 1, wherein the cooling passage is provided with a three-way valve that switches between a first state in which the cooling liquid flows through the radiator and a second state in which the cooling liquid is blocked from flowing into the radiator and diverted.
  3.  前記冷却流路に前記冷却液を循環させるポンプと、前記三方弁とを一体化させた弁ユニットを備えた請求項2に記載の冷却システム。 The cooling system of claim 2, further comprising a valve unit that integrates a pump that circulates the cooling liquid through the cooling flow path and the three-way valve.
  4.  前記弁ユニットは、前記電子回路ユニットに組み付けられている請求項3に記載の冷却システム。 The cooling system of claim 3, wherein the valve unit is assembled to the electronic circuit unit.
  5.  前記電動車両用駆動ユニットと前記電子回路ユニットとは、一体化された統合ユニットで形成されており、
     前記第1熱交換器と前記第2熱交換器とは、前記統合ユニットに組み込まれている請求項1に記載の冷却システム。
    the electric vehicle drive unit and the electronic circuit unit are formed as an integrated unit,
    The cooling system of claim 1 , wherein the first heat exchanger and the second heat exchanger are incorporated into the integrated unit.
  6.  前記電子回路ユニットは、インバータを含む請求項1から5のいずれか一項に記載の冷却システム。 The cooling system according to any one of claims 1 to 5, wherein the electronic circuit unit includes an inverter.
  7.  前記電子回路ユニットは、オンボードチャージャを含む請求項1から5のいずれか一項に記載の冷却システム。
     
    The cooling system of claim 1 , wherein the electronic circuit unit includes an on-board charger.
PCT/JP2023/039879 2022-11-16 2023-11-06 Cooling system WO2024106247A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022183673 2022-11-16
JP2022-183672 2022-11-16
JP2022-183673 2022-11-16
JP2022183672 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024106247A1 true WO2024106247A1 (en) 2024-05-23

Family

ID=91084599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039879 WO2024106247A1 (en) 2022-11-16 2023-11-06 Cooling system

Country Status (1)

Country Link
WO (1) WO2024106247A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315578A (en) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd Vehicular fuel cell system
JP2019199113A (en) * 2018-05-14 2019-11-21 トヨタ自動車株式会社 Vehicle heat management device
JP2020105943A (en) * 2018-12-26 2020-07-09 株式会社デンソー Vehicular heat management system
JP2020185829A (en) * 2019-05-10 2020-11-19 トヨタ自動車株式会社 On-vehicle temperature control device
JP2021090316A (en) * 2019-12-05 2021-06-10 トヨタ自動車株式会社 Thermal management system for electric automobile
CN214028292U (en) * 2020-10-29 2021-08-24 三一专用汽车有限责任公司 Heating device of electric mixer truck and electric mixer truck
JP2021146827A (en) * 2020-03-18 2021-09-27 本田技研工業株式会社 Electric vehicle device
JP2022073904A (en) * 2020-11-02 2022-05-17 現代自動車株式会社 Integrated thermal management system for vehicles
WO2022163056A1 (en) * 2021-01-29 2022-08-04 日本電産株式会社 Temperature regulator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315578A (en) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd Vehicular fuel cell system
JP2019199113A (en) * 2018-05-14 2019-11-21 トヨタ自動車株式会社 Vehicle heat management device
JP2020105943A (en) * 2018-12-26 2020-07-09 株式会社デンソー Vehicular heat management system
JP2020185829A (en) * 2019-05-10 2020-11-19 トヨタ自動車株式会社 On-vehicle temperature control device
JP2021090316A (en) * 2019-12-05 2021-06-10 トヨタ自動車株式会社 Thermal management system for electric automobile
JP2021146827A (en) * 2020-03-18 2021-09-27 本田技研工業株式会社 Electric vehicle device
CN214028292U (en) * 2020-10-29 2021-08-24 三一专用汽车有限责任公司 Heating device of electric mixer truck and electric mixer truck
JP2022073904A (en) * 2020-11-02 2022-05-17 現代自動車株式会社 Integrated thermal management system for vehicles
WO2022163056A1 (en) * 2021-01-29 2022-08-04 日本電産株式会社 Temperature regulator

Similar Documents

Publication Publication Date Title
CN111409411B (en) Air conditioning and battery cooling device and method for operating an air conditioning and battery cooling device
KR102277723B1 (en) Air conditioning and battery cooling arrangement with high cooling capacity and passive battery cooling as well as method for operating an air conditioning and battery cooling arrangement
KR102320361B1 (en) Heat pump arrangement for vehicles with a vehicle cabin heating circuit and a battery heating circuit
US20120304674A1 (en) Climate control system for a vehicle and method for controlling temperature
US20050061497A1 (en) Temperature control device for motor vehicle, for example electrical or hybrid
KR102294593B1 (en) Thermal system of a motor vehicle and method for operating the thermal system
CN111845250B (en) Air conditioner for vehicle
US20140208789A1 (en) Vehicle heat pump system and method utilizing thermal storage
CN112706577B (en) Automobile air conditioning system, automobile thermal management system and electric automobile
JP6753379B2 (en) Vehicle heat exchange system
JP2021147044A (en) System for air-conditioning air in vehicle interior and transferring heat through drive component of motor vehicle, and method for operating the system
US20220281285A1 (en) Integrated thermal management circuit for vehicle
US20230339293A1 (en) System for air-conditioning the air of a passenger compartment and for heat transfer by way of components of a powertrain of a motor vehicle, as well as method for operating the system
KR20220022536A (en) Thermal management system for electric vehicle
JP2012091547A (en) Cooling system for hybrid vehicle
CN216033622U (en) Integrated thermal management system and vehicle
CN112046239A (en) Thermal management system and electric automobile
WO2024106247A1 (en) Cooling system
EP4269168A1 (en) Thermal management system used for electric vehicle, and electric vehicle
JP2005297684A (en) Evaporating compression type refrigerating machine
CN112046242A (en) Thermal management system and electric automobile
CN115626030B (en) Thermal management system and vehicle
CN115465090B (en) Thermal management system and vehicle with same
CN113580882B (en) Thermal management system and vehicle
CN218287365U (en) Vehicle thermal management system and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891399

Country of ref document: EP

Kind code of ref document: A1