WO2024105872A1 - Power conversion device and flying object - Google Patents

Power conversion device and flying object Download PDF

Info

Publication number
WO2024105872A1
WO2024105872A1 PCT/JP2022/042815 JP2022042815W WO2024105872A1 WO 2024105872 A1 WO2024105872 A1 WO 2024105872A1 JP 2022042815 W JP2022042815 W JP 2022042815W WO 2024105872 A1 WO2024105872 A1 WO 2024105872A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switching
inverter
sub
switching element
power conversion
Prior art date
Application number
PCT/JP2022/042815
Other languages
French (fr)
Japanese (ja)
Inventor
悠輔 城内
良太 朝倉
賢司 藤原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/042815 priority Critical patent/WO2024105872A1/en
Publication of WO2024105872A1 publication Critical patent/WO2024105872A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • This application relates to a power conversion device and a flying object equipped with the same.
  • the power conversion device used in the electric aircraft is required to be lightweight and reliable. For example, if the loss of the semiconductor device constituting the power conversion device is uneven, heat is generated locally, and if a failure occurs, reliability is impaired.
  • a cooling fan or heat sink is used to increase the cooling capacity of the part where local heat is generated in order to increase reliability, the weight of the device increases and the fuel efficiency of the aircraft decreases. Therefore, it is required to reduce the weight of the cooling fan or cooling heat sink while ensuring reliability by dispersing the semiconductor loss generated in the power conversion device. In this way, not only the reliability of the power conversion device but also its weight reduction is required for the electric aircraft. And, it can be seen that the challenge in reducing the weight of the cooling fan or cooling heat sink is to equalize the semiconductor loss constituting the power conversion device.
  • the applicant has disclosed a power conversion device that includes a three-phase main inverter and three single-phase sub-inverters connected to each phase of the main inverter, in which the semiconductor switching elements that make up the sub-inverters are PWM-controlled using a level-shifted carrier wave (see, for example, Patent Document 1).
  • the purpose of this application is to reduce the unevenness of losses in each semiconductor switching element that makes up the sub-inverter, to reduce the weight of the cooling fan or heat sink, and to reduce the risk of failure.
  • the power conversion device disclosed in the present application includes a main inverter having a capacitor with a neutral point between a positive terminal to which a positive DC potential is applied and a negative terminal to which a negative DC potential is applied, and capable of outputting at least the potential of the positive terminal, the potential of the negative terminal, and the potential of the neutral point; a sub-inverter connected to the output of the main inverter, having a plurality of semiconductor switching elements and an intermediate capacitor, and adjusting the voltage of the intermediate capacitor to the output voltage of the main inverter; and a control unit that controls the main inverter and the sub-inverter, the control unit controlling the sub-inverter by PWM control and controlling the voltage output by the sub-inverter, the control unit controlling the semiconductor switching elements of the plurality of semiconductor switching elements of the sub-inverter so that the losses of the respective semiconductor switching elements are equal.
  • the present application provides a power conversion device that can reduce the unevenness of losses in the semiconductor switching elements that make up the sub-inverter, reduce the weight of the cooling fan or heat sink, and reduce the risk of failure.
  • FIG. 1 is a schematic block diagram showing a configuration of a power conversion device according to a first embodiment.
  • 1 is a circuit diagram showing a configuration of a power conversion device according to a first embodiment.
  • 2 is a diagram showing a configuration of a semiconductor switching element used in the power conversion device according to the first embodiment;
  • 4A, 4B, and 4C are diagrams showing an example of voltage output command values for each inverter of the power conversion device according to the first embodiment.
  • 4 is a diagram showing gate drive signals for each semiconductor switching element of a main inverter of the power conversion device according to the first embodiment.
  • FIG. 11 is a diagram showing the operation of a sub-inverter of a power conversion device according to a comparative example.
  • FIG. 4 is a diagram showing the operation of a sub-inverter of the power conversion device according to the first embodiment.
  • FIG. 10 is a diagram showing current and voltage waveforms of a sub-inverter of a power conversion device according to a comparative example.
  • FIG. 1 is a diagram showing current and voltage waveforms of the output of a power conversion device according to a comparative example.
  • 3 is a diagram showing current and voltage waveforms of a sub-inverter of the power conversion device according to the first embodiment.
  • FIG. 2 is a diagram showing current and voltage waveforms of the output of the power conversion device according to the first embodiment.
  • 10 is a diagram showing an example of the operation of a sub-inverter of a power conversion device according to a comparative example.
  • FIG. 11 is a diagram showing another example of the operation of the sub-inverter of the power conversion device according to the comparative example.
  • 4 is a diagram showing an example of the operation of a sub-inverter of the power conversion device according to the first embodiment.
  • FIG. 10 is a diagram showing another example of the operation of the sub-inverter of the power conversion device according to embodiment 1.
  • FIG. 13 is a diagram for explaining an example of a switching pattern of a sub-inverter of a power conversion device according to embodiment 2.
  • FIG. FIG. 11 is a diagram showing an example of a switching pattern of a sub-inverter of a power conversion device according to the second embodiment. 13 is a diagram showing a transition of a current path due to the switching pattern of FIG.
  • FIG. FIG. 11 is a diagram showing another example of a switching pattern of the sub-inverter of the power conversion device according to the second embodiment.
  • 15 is a diagram showing a transition of a current path due to the switching pattern of FIG. 14 in the sub-inverter of the power conversion device according to the second embodiment.
  • FIG. FIG. 11 is a diagram showing yet another example of the switching pattern of the sub-inverter of the power conversion device according to the second embodiment.
  • 17 is a diagram showing a transition of a current path due to the switching pattern of FIG. 16 in the sub-inverter of the power conversion device according to the second embodiment.
  • FIG. 11 is a diagram showing yet another example of the switching pattern of the sub-inverter of the power conversion device according to the second embodiment.
  • 19 is a diagram showing a transition of a current path due to the switching pattern of FIG. 18 in the sub-inverter of the power conversion device according to the second embodiment.
  • FIG. 11 is a diagram showing yet another example of the switching pattern of the sub-inverter of the power conversion device according to the second embodiment.
  • 21 is a diagram showing a transition of a current path due to the switching pattern of FIG. 20 in the sub-inverter of the power conversion device according to the second embodiment.
  • FIG. FIG. 11 is a diagram showing yet another example of the switching pattern of the sub-inverter of the power conversion device according to the second embodiment.
  • FIG. 23 is a diagram showing a transition of a current path due to the switching pattern of FIG. 22 in the sub-inverter of the power conversion device according to the second embodiment.
  • FIG. FIG. 11 is a diagram showing yet another example of the switching pattern of the sub-inverter of the power conversion device according to the second embodiment.
  • 25 is a diagram showing a transition of a current path due to the switching pattern of FIG. 24 in the sub-inverter of the power conversion device according to the second embodiment.
  • FIG. FIG. 11 is a diagram showing yet another example of the switching pattern of the sub-inverter of the power conversion device according to the second embodiment.
  • 27 is a diagram showing a transition of a current path due to the switching pattern of FIG.
  • FIG. 13A and 13B are diagrams illustrating examples of switching patterns when a sub-inverter of a power conversion device according to a second embodiment generates a positive voltage and when a sub-inverter generates a negative voltage.
  • 29A, 29B, and 29C are diagrams for explaining current paths when the sub-inverter of the power conversion device according to embodiment 2 generates a positive voltage.
  • 30A, 30B, and 30C are diagrams illustrating current paths when the sub-inverter of the power conversion device according to embodiment 2 generates a negative voltage.
  • FIG. 11 is a block diagram showing the configuration of a flying object according to a third embodiment.
  • Fig. 1 is a schematic configuration diagram showing an example of a power conversion system using a power conversion device 3 according to the first embodiment.
  • the power conversion device 3 is connected in series between a DC source 1 and a load 4, and a DC link capacitor 2 is connected in parallel between the DC source 1 and the power conversion device 3.
  • the power conversion device 3 includes an inverter, which is a power conversion unit that converts power from the DC source 1 into a predetermined power and outputs it to the load 4, and a control unit that controls the inverter.
  • a DC/AC inverter will be described as an example of the inverter.
  • FIG. 2 is a circuit diagram showing an example of the configuration of the power conversion device 3.
  • the DC/AC inverter 30 shown in FIG. 1 is a DC/AC inverter and includes a main inverter 9, which is a three-phase three-level inverter, and a sub-inverter 12, which is a single-phase inverter connected in series to the outputs of each phase of the main inverter 9.
  • the semiconductor switching elements Q1 to Q12 constituting the main inverter 9 have a structure in which, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is connected to a diode in inverse parallel.
  • the semiconductor switching elements Q13 to Q24 constituting the sub-inverter 12 also have a structure in which, for example, a MOSFET is connected to a diode in inverse parallel.
  • the semiconductor switching elements Q1 to Q12 constituting the main inverter 9 and the semiconductor switching elements Q13 to Q24 constituting the sub-inverter 12 are all semiconductor switching elements made of wide band gap semiconductor materials. Details will be described later, but since the semiconductor switching elements Q13 to Q24 constituting the sub-inverter 12 perform high-speed switching, semiconductor switching elements made of wide band gap semiconductor materials are particularly preferable.
  • FIG. 3 shows an example of the configuration of the semiconductor switching elements applied to the semiconductor switching elements Q1 to Q12 constituting the main inverter 9 and the semiconductor switching elements Q13 to Q24 constituting the sub-inverter 12, and is composed of a MOSFET 15 having a drain terminal D, a gate terminal G, and a source terminal S, and a diode 16 connected in reverse parallel to the MOSFET 15.
  • the MOSFET 15 may be a Si-MOSFET or a wide band gap semiconductor material, such as a SiC-MOSFET.
  • the diode 16 may be a Si-diode or a wide band gap semiconductor material, such as a SiC-diode.
  • a semiconductor switching element made of a wide band gap semiconductor material is preferable.
  • a temperature sensor 102 for detecting the temperature of each semiconductor switching element may be provided.
  • the main inverter 9 is configured with a P-side capacitor 5 and an N-side capacitor 6 connected in series between the positive terminal to which the positive potential of the DC source 1 is applied and the negative terminal to which the negative potential of the DC source 1 is applied, semiconductor switching elements Q1 to Q4 connected in series, semiconductor switching elements Q5 to Q8 connected in series, and semiconductor switching elements Q9 to Q12 connected in series, all connected in parallel to the DC link capacitor 2.
  • connection point E (also called the neutral point) between the P-side capacitor 5 and the N-side capacitor 6 is connected to a connection point Eu between the anode terminal of diode D1 and the cathode terminal of diode D2, a connection point Ev between the anode terminal of diode D3 and the cathode terminal of diode D4, and a connection point Ew between the anode terminal of diode D5 and the cathode terminal of diode D6.
  • the cathode terminal of diode D1 is connected to the connection point Ku between semiconductor switching element Q1 and semiconductor switching element Q2, the cathode terminal of diode D3 is connected to the connection point Kv between semiconductor switching element Q5 and semiconductor switching element Q6, and the cathode terminal of diode D5 is connected to the connection point Kw between semiconductor switching element Q9 and semiconductor switching element Q10.
  • the anode terminal of diode D2 is connected to the connection point Au between semiconductor switching element Q3 and semiconductor switching element Q4, the anode terminal of diode D4 is connected to the connection point Av between semiconductor switching element Q7 and semiconductor switching element Q8, and the anode terminal of diode D6 is connected to the connection point Aw between semiconductor switching element Q11 and semiconductor switching element Q12.
  • connection point u between semiconductor switching element Q2 and semiconductor switching element Q3, connection point v between semiconductor switching element Q6 and semiconductor switching element Q7, and connection point w between semiconductor switching element Q10 and semiconductor switching element Q11 are each connected to the sub-inverter 12.
  • the semiconductor switching elements Q1 to Q4 connected in series form the U-phase leg
  • the semiconductor switching elements Q5 to Q8 connected in series form the V-phase leg
  • the semiconductor switching elements Q9 to Q12 connected in series form the W-phase leg.
  • the main inverter 9 is configured to be able to output at least three levels of potential in each phase: the potential of the positive DC terminal, the potential of the negative DC terminal, and the potential of the neutral point.
  • the sub-inverter 12 includes a U-phase inverter, a V-phase inverter, and a W-phase inverter, each of which is composed of a bridge circuit of four semiconductor switching elements corresponding to each phase.
  • the U-phase inverter is configured with semiconductor switching elements Q13 and Q14 connected in series, semiconductor switching elements Q15 and Q16 connected in series, and intermediate capacitor 10u connected in parallel.
  • the V-phase inverter is configured with semiconductor switching elements Q17 and Q18 connected in series, semiconductor switching elements Q19 and Q20 connected in series, and intermediate capacitor 10v connected in parallel.
  • the W-phase inverter is configured with semiconductor switching elements Q21 and Q22 connected in series, semiconductor switching elements Q23 and Q24 connected in series, and intermediate capacitor 10w connected in parallel.
  • connection point U between semiconductor switching element Q13 and semiconductor switching element Q14 is connected to connection point u of the main inverter 9
  • the connection point V between semiconductor switching element Q17 and semiconductor switching element Q18 is connected to connection point v of the main inverter 9
  • the connection point W between semiconductor switching element Q21 and semiconductor switching element Q22 is connected to connection point w of the main inverter 9.
  • connection point Uo between semiconductor switching element Q15 and semiconductor switching element Q16, the connection point Vo between semiconductor switching element Q19 and semiconductor switching element Q20, and the connection point Wo between semiconductor switching element Q23 and semiconductor switching element Q24 are each connected to load 4.
  • the control unit 19 receives sensor signals from sensors such as a current sensor 101, a voltage sensor (not shown), or a temperature sensor 102 provided in the main inverter 9 and the sub-inverter 12, and outputs gate drive signals to the semiconductor switching elements Q1 to Q24 provided in the main inverter 9 and the sub-inverter 12, controlling them to convert to a specified power.
  • sensors such as a current sensor 101, a voltage sensor (not shown), or a temperature sensor 102 provided in the main inverter 9 and the sub-inverter 12, and outputs gate drive signals to the semiconductor switching elements Q1 to Q24 provided in the main inverter 9 and the sub-inverter 12, controlling them to convert to a specified power.
  • Figures 4A to 4C are diagrams for explaining the output voltage command values of the main inverter 9 and the sub-inverter 12 in one cycle of the U phase AC output.
  • Figure 4A is a diagram showing the target output voltage command value from the inverter 3.
  • the target output waveform is a sine wave as shown in the figure.
  • Figure 4B is a diagram showing the output voltage command value of the main inverter 9, and in one cycle of the AC output, the output waveform is a square wave with one positive and one negative pulse.
  • Figure 4C shows the waveform of the output voltage command value of the sub-inverter 12, which is the waveform of the difference between the output voltage command value of Figure 4A and the output voltage command value of the main inverter 9 in Figure 4B.
  • the output of the inverter 30 is generated by adding or subtracting the voltage of the intermediate capacitor of the sub-inverter 12 to or from the output of the main inverter 9.
  • the main inverter 9 and the sub-inverter 12 output voltages according to the output voltage command values of their respective predetermined waveforms in response to gate drive signals from the control unit 19.
  • the main inverter 9 generates a positive and negative single-pulse waveform by low-frequency switching operation
  • the sub-inverter 12 generates multiple pulse-shaped voltage waveforms by PWM (Pulse Width Modulation) control so as to output a voltage of the output voltage command value.
  • PWM Pulse Width Modulation
  • the maximum value of the output voltage command value of the sub-inverter 12 is smaller than 1, for example, 0.5.
  • the output voltage of the sub-inverter 12 is the voltage of the intermediate capacitor 10u.
  • the voltage of each intermediate capacitor of the sub-inverter 12 is set to be smaller than the voltage of the P-side capacitor 5 and the N-side capacitor 6, which are the input capacitors of the main inverter 9.
  • FIG. 4C for example, if it is set to 1/2 (1/4 of the voltage of DC source 1), a stable waveform with fewer harmonic components can be output in the PWM operation of sub-inverter 12.
  • the control unit 19 calculates gate drive signals using sensor signals from current or voltage sensors provided in the main inverter 9 and sub-inverter 12 so as to maintain the relationship of the capacitor voltage ratios, and outputs the signals to each of the semiconductor switching elements Q1 to Q24.
  • the main inverter 9 generates a one-pulse waveform by low-frequency switching operation at a high DC voltage
  • the sub-inverter 12 performs high-speed switching operation at a low DC voltage.
  • Figure 5 shows ideal gate drive signals that are output to each semiconductor switching element to output a voltage waveform corresponding to the output voltage command value of the U-phase of the main inverter 9.
  • the output voltage command value of the main inverter 9 and the waveforms of the gate drive signals for driving the semiconductor switching elements Q1 to Q4 that make up the U-phase leg of the main inverter 9 are shown.
  • the semiconductor switching elements Q1 to Q4 are switched on and off once per AC output period.
  • the voltage applied between the drain and source of the semiconductor switching element becomes the voltage value of the input capacitor P-side capacitor 5 or N-side capacitor 6 while the gate drive signal is off (i.e. 0), and the voltage value becomes 0 while the gate drive signal is on (i.e. 1) (actually, the voltage drop due to internal factors is applied).
  • FIG. 6A is a diagram showing gate drive signals output to semiconductor switching elements for outputting a voltage waveform corresponding to the output voltage command value of the U-phase sub-inverter 12 according to the PWM control method described in Patent Document 1 as a comparative example.
  • the output voltage command value and carrier wave of the sub-inverter 12 and the waveforms of each gate drive signal for driving the semiconductor switching elements Q13 to Q16 constituting the U-phase inverter of the sub-inverter 12 are shown.
  • PWM control is performed using a level shift modulation method for two carrier waves, carrier wave A and carrier wave B.
  • the level shift modulation method is a method in which a DC offset is evenly added to the maximum amplitude of the carrier wave to (the number of levels - 1) carrier waves, and the output voltage command value and each carrier wave are compared.
  • the number of levels means the number of levels of voltage values that can be output.
  • the number of levels of the sub-inverter is 3.
  • Semiconductor switching element Q13 also referred to as first semiconductor switching element Q13
  • semiconductor switching element Q14 also referred to as second semiconductor switching element Q14
  • semiconductor switching element Q15 also referred to as third semiconductor switching element Q15
  • semiconductor switching element Q16 also referred to as fourth semiconductor switching element Q16
  • the semiconductor switching elements that make up the PWM-operated sub-inverter 12 switch many times, it is sufficient to use semiconductor switching elements that are suitable for high frequency driving such as SiC-MOSFETs with small switching losses.
  • the voltage applied between the drain and source of the semiconductor switching elements becomes the voltage value of intermediate capacitor 10u during the period when the gate drive signal is off (i.e.
  • semiconductor switching elements Q13 to Q16 each have a different switching conduction time, which means that different losses occur in each of the semiconductor switching elements that make up the sub-inverter, which can lead to localized heat generation. This is undesirable as it can reduce the lifespan of the device or increase the weight due to the strengthening of the heat sink.
  • FIG. 6B is a diagram explaining the operation of the sub-inverter in the U-phase of the power conversion device according to the first embodiment.
  • the losses (switching loss and conduction loss) occurring in the semiconductor switching elements constituting the sub-inverter are distributed to each semiconductor switching element.
  • the output voltage command value and carrier wave of the sub-inverter 12 and the waveforms of each gate drive signal for driving the semiconductor switching elements Q13 to Q16 constituting the inverter of the U-phase of the sub-inverter 12 are shown.
  • PWM control is performed using a phase shift modulation method.
  • Phase shift modulation is a method in which the phases of (number of levels - 1) carrier waves are shifted evenly and the voltage command value and the carrier wave are compared.
  • Semiconductor switching elements Q13 to Q16 are switched on and off multiple times per AC output cycle.
  • the switching elements that make up the PWM-operated sub-inverter 12 switch many times, so semiconductor switching elements suitable for high-frequency driving, such as SiC-MOSFETs with small switching losses, can be used.
  • the voltage applied between the drain and source of the semiconductor switching elements becomes the voltage value of the intermediate capacitor 10u while the gate drive signal is off (i.e., 0), and the voltage value becomes 0 while the gate drive signal is on (i.e., 1) (in reality, the voltage drop due to internal factors is applied).
  • each intermediate capacitor of the sub-inverter 12 is set to be smaller than the voltage of the P-side capacitor 5 and N-side capacitor 6, which are the input capacitors of the main inverter 9, for example to 1/2, the voltage applied to the semiconductor switching elements that make up the sub-inverter 12 will be 1/2 of the voltage applied to the semiconductor switching elements that make up the main inverter 9. These can be applied to other power conversion devices as well as three-phase power conversion devices.
  • the semiconductor switching elements Q13 to Q16 each have approximately the same switching conduction time, and the losses generated in each of the semiconductor switching elements constituting the sub-inverter are approximately the same. Therefore, compared to the comparative example, there is no risk of localized heat generation, and the cooling fan or heat sink can be made lighter and the risk of failure can be reduced.
  • FIG. 7A and 7B are diagrams showing an example of output waveforms when the gate drive signals of FIG. 5 and FIG. 6A according to a comparative example are applied to the semiconductor switching elements Q1 to Q4 and the semiconductor switching elements Q13 to Q16 of FIG. 2. That is, the diagrams show the operation of the comparative example.
  • FIG. 7A and 7B are diagrams showing an example of output waveforms when the gate drive signals of FIG. 5 and FIG. 6A according to a comparative example are applied to the semiconductor switching elements Q1 to Q4 and the semiconductor switching elements Q13 to Q16 of FIG. 2. That is, the diagrams show the operation of the comparative example.
  • FIG. 1 the diagrams showing an example of output waveforms when the gate drive signals of FIG. 5 and FIG. 6A according to a comparative example are applied to the semiconductor switching elements Q1 to Q4 and the semiconductor switching elements Q13 to Q16 of FIG. 2. That is, the diagrams show the operation of the comparative example.
  • the drain currents of the semiconductor switching elements Q13 and Q14 constituting the sub-inverter 12 The drain-source voltage of the semiconductor switching element Q13 constituting the sub-inverter 12, The drain-source voltage of the semiconductor switching element Q14 constituting the sub-inverter 12, The drain currents of the semiconductor switching elements Q15 and Q16 constituting the sub-inverter 12, The drain-source voltage of the semiconductor switching element Q15 constituting the sub-inverter 12, The drain-source voltage of the semiconductor switching element Q16 constituting the sub-inverter 12, This is the waveform.
  • phase currents output by the inverter 30 (main inverter 9+sub-inverter 12) are shown in order from the top.
  • Each line voltage output by the inverter 30, 1 is a waveform of each phase voltage output by the inverter 30.
  • the drain current waveform of each semiconductor switching element shows that the conduction time of Q14 and Q16 is longer than that of Q13 and Q15. This causes conduction loss according to the proportion of the conduction time, so the elements Q14 and Q16 generate more heat than Q13 and Q15, leading to a shorter lifespan of the elements.
  • the timing when it changes from 0V to 500V is called turn-off, and the timing when it changes from 500V to 0V is called turn-on, and switching loss occurs at turn-off and turn-on.
  • the number of turn-ons and turn-offs of Q13 to Q16 is almost equal, so there is almost no bias in switching loss. Since the loss generated by semiconductor switching elements is mainly the sum of switching loss and conduction loss (strictly speaking, it also includes recovery loss of the body diode), the loss generated by Q13 and Q15 is larger than that of Q14 and Q16, which is not desirable.
  • FIG. 8A and 8B show examples of output waveforms when the gate drive signals of FIG. 5 and FIG. 6B according to the first embodiment are applied to the semiconductor switching elements Q1 to Q4 and the semiconductor switching elements Q13 to Q16 of FIG. 2. That is, it is a diagram showing the operation of the power conversion device according to the first embodiment.
  • FIG. 8A and 8B show examples of output waveforms when the gate drive signals of FIG. 5 and FIG. 6B according to the first embodiment are applied to the semiconductor switching elements Q1 to Q4 and the semiconductor switching elements Q13 to Q16 of FIG. 2. That is, it is a diagram showing the operation of the power conversion device according to the first embodiment.
  • FIG. 8A and 8B show examples of output waveforms when the gate drive signals of FIG. 5 and FIG. 6B according to the first embodiment are applied to the semiconductor switching elements Q1 to Q4 and the semiconductor switching elements Q13 to Q16 of FIG. 2. That is, it is a diagram showing the operation of the power conversion device according to the first embodiment. In FIG.
  • the drain currents of the semiconductor switching elements Q13 and Q14 constituting the sub-inverter 12 The drain-source voltage of the semiconductor switching element Q13 constituting the sub-inverter 12, The drain-source voltage of the semiconductor switching element Q14 constituting the sub-inverter 12, The drain currents of the semiconductor switching elements Q15 and Q16 constituting the sub-inverter 12, The drain-source voltage of the semiconductor switching element Q15 constituting the sub-inverter 12, The drain-source voltage of the semiconductor switching element Q16 constituting the sub-inverter 12,
  • phase currents output by the inverter 30 are shown in order from the top.
  • Each line voltage output by the inverter 30, 4 shows the waveforms of the phase voltages output by the inverter 30.
  • the drain current waveforms of each semiconductor switching element show that the conduction times of Q13 to Q16 are almost equal, so there is almost no bias in conduction loss.
  • the drain-source voltage waveforms of each semiconductor switching element show that the timing when the voltage changes from 0V to 500V is called turn-off, and the timing when the voltage changes from 500V to 0V is called turn-on, and switching losses occur at the time of turn-off and turn-on.
  • the number of times Q13 to Q16 are turned on and off is almost equal, so there is almost no bias in switching losses. In other words, the losses generated by semiconductor switching elements Q13 to Q16 can be distributed almost equally.
  • phase currents, line voltages, and phase voltages in the comparative example and embodiment 1 do not differ significantly.
  • the loss of each semiconductor switching element constituting the sub-inverter is controlled so as to be distributed, thereby reducing localized loss bias, and reducing the weight of the cooling fan or heat sink and the risk of failure. In other words, it is possible to provide a power conversion device with improved reliability without increasing weight.
  • the power conversion device of this embodiment 1 can maintain a high loss distribution effect even during load fluctuation.
  • FIG. 9A shows the output voltage waveform and gate drive signal waveforms for Q13 to Q16 when the rotation speed of the load motor is controlled to 10,000 rpm using the same modulation method as in FIG. 6A, which is a comparative example.
  • 1 on the vertical axis indicates that each semiconductor switching element is on, i.e., conducting.
  • the gate drive signal waveforms of each semiconductor switching element show that Q13 and Q15 have a conduction time ratio (conduction ratio) of 18% per cycle, while Q14 and Q16 have a conduction ratio of 82%, resulting in a bias. This causes conduction loss according to the ratio of conduction time, and so the elements Q14 and Q16 generate more heat than Q13 and Q15, leading to a shortened lifespan of the elements.
  • Figure 9B shows the output voltage waveform and gate drive signal waveforms for Q13 to Q16 when the load motor speed is controlled to 8000 rpm using the same modulation method as Figure 6A (comparison example).
  • the gate drive signal waveforms for each semiconductor switching element show a bias in the conduction rate of Q13, 26%, Q14, 74%, Q15, 21%, and Q16, 79%.
  • the proportion of conduction time for Q14 and Q16 and Q13 and Q15 tends to be mitigated, but the elements Q14 and Q16 generate about three times as much heat as Q13 and Q15, leading to a shortened lifespan of the elements.
  • Fig. 10A shows the output waveform and the gate drive signal waveforms of Q13 to Q16 when the load motor speed is controlled to 10,000 rpm using the same modulation method as Fig. 6B, i.e., the modulation method of embodiment 1. From the gate drive signal waveforms of each semiconductor switching element, it can be seen that the conduction rate of each of the semiconductor switching elements Q13 to Q16 is 50%, and the losses are distributed.
  • FIG. 10B shows the output waveform and the gate drive signal waveforms of Q13 to Q16 when the rotation speed of the load motor is controlled to 8000 rpm using the same modulation method as in FIG. 6B, i.e., the modulation method of embodiment 1.
  • the gate drive signal waveforms of each semiconductor switching element show that the conduction rate of Q13 is 51%, the conduction rate of Q14 is 49%, the conduction rate of Q15 is 50%, and the conduction rate of Q16 is 50%.
  • the conduction rates of Q13 and Q14 change slightly, and the amount of heat generated by semiconductor switching element Q13 increases slightly, but it can be seen that the loss is distributed significantly compared to the comparative example shown in FIG. 9B.
  • the power conversion device controls the losses of the semiconductor switching elements of the sub-inverter 12, which has multiple semiconductor switching elements controlled by PWM control, to be equal. This reduces uneven heat generation among the semiconductor switching elements, and provides a power conversion device that can reduce the weight of the cooling fan or heat sink and the risk of failure.
  • Embodiment 2 a technology is described in which there are multiple switching patterns in which the sub-inverter 12 outputs the same voltage, each of which has a different conduction loss in each semiconductor switching element, and by selecting a switching pattern, it is possible to equalize the losses in the semiconductor switching elements.
  • Figure 11 shows the switching pattern of the sub-inverter 12.
  • the symbols are "+”, “zero up”, “zero down”, and “-”.
  • “+” means that the output voltage of the sub-inverter 12 is positive
  • “zero up” means that the current passes through the semiconductor switching elements Q13 and Q15 and the output voltage of the sub-inverter 12 is zero
  • “zero down” means that the current passes through the semiconductor switching elements Q14 and Q16 and the output voltage of the sub-inverter 12 is zero
  • “-” means that the output voltage of the sub-inverter 12 is negative.
  • Vsub means the voltage output by the sub-inverter.
  • Vcap is the voltage of the intermediate capacitor
  • the sub-inverter 12 outputs (generates) a voltage of +Vcap or -Vcap by switching the semiconductor switching elements on and off.
  • FIG. 12 shows a switching pattern, which is the transition of the on/off state of each semiconductor switching element Q13 to Q16 when current I>0 (the direction flowing to the load is positive) switching from “+” shown in FIG. 11 to "zero up,” and FIG. 13 shows the transition of the current path on the circuit diagram.
  • FIG. 14 shows the switching pattern when the sub-inverter is controlled to switch from “+” to "zero down” when current I>0
  • FIG. 15 shows the transition of the current path. Note that in FIG. 12 and FIG. 14, "OFF (D conduction)" indicates that the gate drive signal is off and current flows through the diode of the semiconductor switching element. This is the same below.
  • Dead time is a period during which the upper and lower switches are not turned on at the same time when switching on and off, in order to prevent a short circuit between the upper and lower arms. It is well known that dead time is used when operating a power conversion device in real equipment, so it will not be explained in detail.
  • Q13 and Q15 are made conductive, generating zero voltage. At this time, conduction loss occurs in Q13 and Q15.
  • Q14 and Q16 are made conductive, generating zero voltage. At this time, conduction loss occurs in Q14 and Q16.
  • the switching pattern in Fig. 12 and the switching pattern in Fig. 14 both output the same voltage.
  • the combination of semiconductor switching elements that are conductive i.e., the switching pattern, can be selected, making it possible to distribute the conduction loss.
  • the loss of Q13 is high among the semiconductor switching elements Q13 to Q16, the loss of Q13 can be suppressed by selecting the switching pattern in Fig. 14, which does not make Q13 conductive.
  • the loss of the semiconductor switching element can be determined from the temperature by placing a temperature sensor 102 directly under the element as shown in Fig. 3.
  • each semiconductor switching element is grasped depending on the temperature, and if there is a variation in temperature, the current path of the semiconductor switching element when the output voltage of the sub-inverter 12 becomes zero is changed, the on time of the semiconductor switching element with a high temperature is shortened, and control is performed in a direction to reduce the bias in loss. Making the temperature equal means that there is no bias in loss.
  • Figure 3 shows an example in which one semiconductor switching element is one module, it is also possible to use a structure in which, for example, Q13 and Q14 are one module, and Q15 and Q16 are one module, with a temperature sensor located directly under each semiconductor switching element of each module.
  • FIG. 16 the switching pattern when switching from "-" shown in FIG. 11 to "zero DOWN" when current I>0 (the direction flowing through the load is positive) is shown in FIG. 16, and the transition of the current path is shown in FIG. 17. Also, the switching pattern when switching from "-" to "zero UP” when current I>0 (the direction flowing through the load is positive) is shown in FIG. 18, and the transition of the current path is shown in FIG. 19.
  • Q14 and Q16 are made conductive to generate zero voltage. At this time, conduction loss occurs in Q14 and Q16.
  • Q13 and Q15 are made conductive to generate zero voltage. At this time, conduction loss occurs in Q13 and Q15.
  • FIG. 20 shows the switching pattern when switching from "+” shown in FIG. 11 to "zero UP" when current I ⁇ 0 (the direction flowing through the load is positive), and FIG. 21 shows the transition of the current path.
  • FIG. 22 shows the switching pattern when switching from "+” to "zero DOWN” when current I ⁇ 0 (the direction flowing through the load is positive), and FIG. 23 shows the transition of the current path.
  • Q13 and Q15 are made conductive to generate zero voltage. At this time, conduction loss occurs in Q13 and Q15.
  • Q14 and Q16 are made conductive to generate zero voltage. At this time, conduction loss occurs in Q14 and Q16.
  • FIG. 20 and FIG. 22 referring to FIG. 21 and FIG. 23, it can be seen that the voltage output is the same in both cases.
  • FIG. 24 the switching pattern when switching from "-" shown in FIG. 11 to "zero UP" when current I ⁇ 0 (the direction flowing through the load is positive) is shown in FIG. 24, and the transition of the current path is shown in FIG. 25.
  • FIG. 26 the switching pattern when switching from "-" to "zero DOWN" when current I ⁇ 0 (the direction flowing through the load is positive) is shown in FIG. 26, and the transition of the current path is shown in FIG. 27.
  • Q13 and Q15 are made conductive to generate zero voltage. At this time, conduction loss occurs in Q13 and Q15.
  • Q14 and Q16 are made conductive to generate zero voltage. At this time, conduction loss occurs in Q14 and Q16.
  • FIG. 24 and FIG. 26 by referring to FIG. 25 and FIG. 27, it can be seen that the voltage output is the same in both cases.
  • the switching pattern of the semiconductor switching elements when generating zero voltage in sub-inverter 12 can be selected, and the conduction time can be controlled by Q13 and Q15, and Q14 and Q16.
  • FIG. 28 shows the switching pattern of the sub-inverter for controlling the conduction time of Q13 and Q16, Q14 and Q15 when the sub-inverter 12 generates a positive voltage and a negative voltage.
  • the symbol “+” indicates that the sub-inverter 12 generates a positive voltage
  • "-" indicates that the sub-inverter generates a negative voltage.
  • Q14 and Q15 are made conductive.
  • a positive voltage can also be generated by turning off all of Q13 to Q16 when current I ⁇ 0. Therefore, when Q14 and Q15 are made conductive to generate a positive voltage, Q14 and Q15 can be turned off to continue generating a positive voltage, so that the conduction time of Q14 and Q15 can be controlled.
  • the average conduction time can be controlled by selecting the switching pattern, i.e., the current path, when generating a positive voltage.
  • Figures 30A and 30B show the current paths for generating "-", i.e., a negative voltage
  • Figure 30C shows the current path for generating a negative voltage when current I>0 (the direction flowing through the load is positive).
  • Q13 and Q16 are made conductive.
  • a negative voltage can also be generated by turning off all of Q13 to 16 when current I>0. Therefore, when Q13 and Q16 are made conductive to generate a negative voltage, Q13 and Q16 can be turned off to continue generating a negative voltage, so the conductive time of Q13 and Q16 can be controlled.
  • the average conductive time can be controlled by selecting the switching pattern, i.e., the current path, when generating a negative voltage.
  • the conduction time can be controlled by Q13 and Q16, and Q14 and Q15.
  • the semiconductor loss can be controlled to be distributed, reducing the bias in localized loss and reducing the weight of the cooling fan or heat sink and the risk of failure. In other words, it is possible to provide a power conversion device that improves reliability without increasing weight.
  • Embodiment 3 is an embodiment of a flying object including the power conversion device according to embodiment 1 or embodiment 2.
  • the flying object of this embodiment is, for example, an airplane, a helicopter, a drone, a flying car, or the like.
  • FIG. 31 is a schematic block diagram of a flying object 100 according to embodiment 3.
  • the flying object 100 is equipped with the power conversion device described in embodiment 1 or embodiment 2.
  • the flying object 100 is equipped with a propulsion power system 60 including a power source 63, a power source (DC power source) 1 connected to the power source 63, a DC/DC converter 50 connected to the power source 1 and equipped with a step-down chopper circuit for converting to a predetermined voltage, an inverter 30 that converts the DC power stepped down by the DC/DC converter 50 into AC power, a load 61 to which power is supplied from the inverter 30, and a control unit 62 that controls the DC/DC converter 50 and the inverter 30.
  • the load 61 is a propulsion load for obtaining propulsive force, such as an electric motor.
  • the inverter of the power conversion device according to embodiment 1 or embodiment 2 is used as the inverter 30 mounted on the flying object 100.
  • Devices mounted on flying objects such as aircraft that fly in the sky are required to be lightweight and reliable.
  • a power conversion device equipped with an inverter 30 in which the losses of the sub-inverters described in embodiment 1 or embodiment 2 are distributed is mounted on the propulsion power system 60. This makes it possible to reduce the weight of the cooling fan or cooling heat sink, suppressing increases in weight and cost, and also suppressing localized heat generation, improving reliability.
  • Embodiment 4 is an embodiment of a flying object including the power conversion device according to embodiment 1 or embodiment 2.
  • the flying object of this embodiment is, for example, an airplane, a helicopter, a drone, a flying car, or the like.
  • FIG. 32 is a schematic block diagram of a flying object 100 according to embodiment 4.
  • the flying object 100 is equipped with the power conversion device described in embodiment 1 or embodiment 2.
  • the flying object 100 is equipped with, as its equipment power system 70, a power source 74, an AC/DC converter 72 connected to the power source 74 and converting AC power to DC power, a DC source 1 connected to the AC/DC converter 72, a DC/DC converter 50 connected to the DC source 1 and equipped with a step-down chopper circuit for converting to a predetermined voltage, an inverter 30 that converts the DC power stepped down by the DC/DC converter 50 into AC power, a load 71 to which power is supplied from the inverter 30, and a control unit 73 that controls the DC/DC converter 50, the inverter 30, and the AC/DC converter 72.
  • the load 71 is an equipment load, and refers to, for example, an electric motor used to drive an air conditioner, an engine starter, and an auxiliary power device.
  • the inverter of the power conversion device according to embodiment 1 or embodiment 2 is used as inverter 30 of equipment power system 70 mounted on flying object 100.
  • Lightweight and reliable devices are required for mounting on flying objects that fly in the sky, such as flying objects represented by aircraft.
  • the control unit 19 shown in FIG. 2 specifically includes, as shown in FIG. 33, an arithmetic processing device 191 such as a CPU (Central Processing Unit), a storage device 192 for exchanging data with the arithmetic processing device 191, and an input/output interface 193 for inputting and outputting signals between the arithmetic processing device 191 and the outside.
  • the arithmetic processing device 191 may include an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), and various signal processing circuits.
  • ASIC Application Specific Integrated Circuit
  • IC Integrated Circuit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • multiple arithmetic processing devices 191 of the same type or different types may be provided, and each process may be shared and executed.
  • the storage device 192 includes a RAM (Random Access Memory) configured to be able to read and write data from the arithmetic processing device 191, a ROM (Read Only Memory) configured to be able to read data from the arithmetic processing device 191, and the like.
  • the input/output interface 193 is composed of, for example, each voltage detection means provided in the main inverter 9 and the sub-inverter 12, an A/D converter that inputs sensor signals output from the current sensor 101, the temperature sensor 102, etc., to the arithmetic processing device 191, a drive circuit for outputting drive signals to each semiconductor switching element, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

This power conversion device comprises: a main inverter (9) that can output voltages having at least three levels; a sub-inverter (12) that is connected to the output of the main inverter (9), has a plurality of semiconductor switching elements (Q13, Q14, Q15, Q16) and an intermediate capacitor (10U), and adjusts the voltage of the intermediate capacitor (10U) to the output voltage of the main inverter (9); and a control unit (19) that controls the main inverter (9) and the sub-inverter (12). The control unit (19) performs a PWM control so that the losses of the plurality of semiconductor switching elements (Q13, Q14, Q15, Q16) of the sub-inverter (12) become equal.

Description

電力変換装置、および飛行物体Power conversion device and flying object
 本願は、電力変換装置、およびそれを備えた飛行物体に関するものである。 This application relates to a power conversion device and a flying object equipped with the same.
 近年、環境問題の観点で、航空機に関してCO削減の動きから電動化への開発が進められている。電動航空機で用いる電力変換装置では、軽量化、信頼性が求められる。例えば電力変換装置を構成する半導体デバイスの損失の偏りが生じると局所的に発熱し、故障が発生してしまうと信頼性を損ねる。また、信頼性を上げるために局所発熱が発生した部分の冷却能力を高めるために冷却ファンあるいはヒートシンクを用いると、装置の重量が重くなり、航空機の燃費が低下する。そのため、電力変換装置で発生する半導体損失の分散により、信頼性を確保しつつ、冷却ファンあるいは冷却ヒートシンクの重量を低減することが求められる。このように、電動航空機では電力変換装置の信頼性のみならず、軽量化が求められる。そして、冷却ファンあるいは冷却ヒートシンクの軽量化には、電力変換装置を構成する半導体損失を均等化することが課題であることがわかる。 In recent years, from the viewpoint of environmental issues, the development of electric aircraft has been promoted due to the movement to reduce CO2 emissions. The power conversion device used in the electric aircraft is required to be lightweight and reliable. For example, if the loss of the semiconductor device constituting the power conversion device is uneven, heat is generated locally, and if a failure occurs, reliability is impaired. In addition, if a cooling fan or heat sink is used to increase the cooling capacity of the part where local heat is generated in order to increase reliability, the weight of the device increases and the fuel efficiency of the aircraft decreases. Therefore, it is required to reduce the weight of the cooling fan or cooling heat sink while ensuring reliability by dispersing the semiconductor loss generated in the power conversion device. In this way, not only the reliability of the power conversion device but also its weight reduction is required for the electric aircraft. And, it can be seen that the challenge in reducing the weight of the cooling fan or cooling heat sink is to equalize the semiconductor loss constituting the power conversion device.
 これに対し、出願人は、3相のメインインバータとメインインバータのそれぞれの相に接続された3つの単相のサブインバータとを備えた電力変換装置において、サブインバータを構成する半導体スイッチング素子をレベルシフトのキャリア波を用いてPWM制御する電力変換装置を開示している(例えば、特許文献1参照)。 In response to this, the applicant has disclosed a power conversion device that includes a three-phase main inverter and three single-phase sub-inverters connected to each phase of the main inverter, in which the semiconductor switching elements that make up the sub-inverters are PWM-controlled using a level-shifted carrier wave (see, for example, Patent Document 1).
国際公開第WO2020-261384号International Publication No. WO2020-261384
 特許文献1に記載のサブインバータを構成する半導体スイッチング素子のPWM制御では、指令値によってサブインバータを構成するそれぞれの半導体スイッチング素子のスイッチング回数および導通時間に差が生じ、損失のばらつきが発生する。それぞれの半導体に損失のばらつきが生じると、発熱が多い半導体スイッチング素子に対する冷却能力を高める冷却ファンあるいはヒートシンクを用いる必要があり、装置の重量が重くなる。よって、冷却装置の負荷を軽減し、冷却装置の小型化、軽量化のために、それぞれの半導体の損失を均等化することが求められる。 In the PWM control of the semiconductor switching elements that make up the sub-inverter described in Patent Document 1, differences in the number of switching times and conduction time of each semiconductor switching element that makes up the sub-inverter occur depending on the command value, resulting in variation in loss. When variation in loss occurs in each semiconductor, it becomes necessary to use a cooling fan or heat sink to increase the cooling capacity of the semiconductor switching elements that generate a lot of heat, which increases the weight of the device. Therefore, it is necessary to equalize the loss of each semiconductor in order to reduce the load on the cooling device and make it smaller and lighter.
 本願では、サブインバータを構成するそれぞれの半導体スイッチング素子の損失の偏りを減らし、冷却ファンあるいはヒートシンクの軽量化および故障のリスクを低減することを目的とする。 The purpose of this application is to reduce the unevenness of losses in each semiconductor switching element that makes up the sub-inverter, to reduce the weight of the cooling fan or heat sink, and to reduce the risk of failure.
 本願に開示される電力変換装置は、直流のプラス電位が印加されるプラス端子と、直流のマイナス電位が印加されるマイナス端子との間に中性点を有するコンデンサを備え、少なくとも、前記プラス端子の電位と前記マイナス端子の電位と、前記中性点の電位とを出力可能なメインインバータと、前記メインインバータの出力に接続され、複数の半導体スイッチング素子と中間コンデンサとを有し、前記中間コンデンサの電圧を前記メインインバータの出力電圧に加減するサブインバータと、前記メインインバータおよび前記サブインバータを制御する制御部と、を備え、前記制御部は、前記サブインバータをPWM制御により制御し、前記サブインバータが出力する電圧を制御する電力変換装置において、前記制御部は、前記サブインバータの前記複数の半導体スイッチング素子の各半導体スイッチング素子の損失が均等になるよう制御するものである。 The power conversion device disclosed in the present application includes a main inverter having a capacitor with a neutral point between a positive terminal to which a positive DC potential is applied and a negative terminal to which a negative DC potential is applied, and capable of outputting at least the potential of the positive terminal, the potential of the negative terminal, and the potential of the neutral point; a sub-inverter connected to the output of the main inverter, having a plurality of semiconductor switching elements and an intermediate capacitor, and adjusting the voltage of the intermediate capacitor to the output voltage of the main inverter; and a control unit that controls the main inverter and the sub-inverter, the control unit controlling the sub-inverter by PWM control and controlling the voltage output by the sub-inverter, the control unit controlling the semiconductor switching elements of the plurality of semiconductor switching elements of the sub-inverter so that the losses of the respective semiconductor switching elements are equal.
 本願によれば、サブインバータを構成するそれぞれの半導体スイッチング素子の損失の偏りを減らし、冷却ファンまたはヒートシンクの軽量化および故障のリスクを低減できる電力変換装置を提供することができる。 The present application provides a power conversion device that can reduce the unevenness of losses in the semiconductor switching elements that make up the sub-inverter, reduce the weight of the cooling fan or heat sink, and reduce the risk of failure.
実施の形態1による電力変換装置の構成を示す概略ブロック図である。1 is a schematic block diagram showing a configuration of a power conversion device according to a first embodiment. 実施の形態1による電力変換装置の構成を示す回路図である。1 is a circuit diagram showing a configuration of a power conversion device according to a first embodiment. 実施の形態1による電力変換装置に用いる半導体スイッチング素子の構成を示す図である。2 is a diagram showing a configuration of a semiconductor switching element used in the power conversion device according to the first embodiment; 図4A、図4B、および図4Cは、実施の形態1による電力変換装置の各インバータの電圧出力指令値の一例を示す線図である。4A, 4B, and 4C are diagrams showing an example of voltage output command values for each inverter of the power conversion device according to the first embodiment. 実施の形態1による電力変換装置のメインインバータの各半導体スイッチング素子のゲート駆動信号を示す線図である。4 is a diagram showing gate drive signals for each semiconductor switching element of a main inverter of the power conversion device according to the first embodiment. FIG. 比較例による電力変換装置のサブインバータの動作を示す線図である。11 is a diagram showing the operation of a sub-inverter of a power conversion device according to a comparative example. FIG. 実施の形態1による電力変換装置のサブインバータの動作を示す線図である。4 is a diagram showing the operation of a sub-inverter of the power conversion device according to the first embodiment. FIG. 比較例による電力変換装置のサブインバータの電流および電圧波形を示す線図である。10 is a diagram showing current and voltage waveforms of a sub-inverter of a power conversion device according to a comparative example. FIG. 比較例による電力変換装置の出力の電流および電圧波形を示す線図である。1 is a diagram showing current and voltage waveforms of the output of a power conversion device according to a comparative example. 実施の形態1による電力変換装置のサブインバータの電流および電圧波形を示す線図である。3 is a diagram showing current and voltage waveforms of a sub-inverter of the power conversion device according to the first embodiment. FIG. 実施の形態1による電力変換装置の出力の電流および電圧波形を示す線図である。2 is a diagram showing current and voltage waveforms of the output of the power conversion device according to the first embodiment. 比較例による電力変換装置のサブインバータの動作の一例を示す線図である。10 is a diagram showing an example of the operation of a sub-inverter of a power conversion device according to a comparative example. FIG. 比較例による電力変換装置のサブインバータの動作の別の例を示す線図である。FIG. 11 is a diagram showing another example of the operation of the sub-inverter of the power conversion device according to the comparative example. 実施の形態1による電力変換装置のサブインバータの動作の一例を示す線図である。4 is a diagram showing an example of the operation of a sub-inverter of the power conversion device according to the first embodiment. FIG. 実施の形態1による電力変換装置のサブインバータの動作の別の例を示す線図である。10 is a diagram showing another example of the operation of the sub-inverter of the power conversion device according to embodiment 1. FIG. 実施の形態2による電力変換装置のサブインバータのスイッチングパターンの一例を説明する図である。13 is a diagram for explaining an example of a switching pattern of a sub-inverter of a power conversion device according to embodiment 2. FIG. 実施の形態2による電力変換装置のサブインバータのスイッチングパターンの一例を示す図である。FIG. 11 is a diagram showing an example of a switching pattern of a sub-inverter of a power conversion device according to the second embodiment. 実施の形態2による電力変換装置のサブインバータの図12のスイッチングパターンによる電流経路の遷移を示す図である。13 is a diagram showing a transition of a current path due to the switching pattern of FIG. 12 in the sub-inverter of the power conversion device according to the second embodiment. FIG. 実施の形態2による電力変換装置のサブインバータのスイッチングパターンの別の例を示す図である。FIG. 11 is a diagram showing another example of a switching pattern of the sub-inverter of the power conversion device according to the second embodiment. 実施の形態2による電力変換装置のサブインバータの図14のスイッチングパターンによる電流経路の遷移を示す図である。15 is a diagram showing a transition of a current path due to the switching pattern of FIG. 14 in the sub-inverter of the power conversion device according to the second embodiment. FIG. 実施の形態2による電力変換装置のサブインバータのスイッチングパターンのさらに別の例を示す図である。FIG. 11 is a diagram showing yet another example of the switching pattern of the sub-inverter of the power conversion device according to the second embodiment. 実施の形態2による電力変換装置のサブインバータの図16のスイッチングパターンによる電流経路の遷移を示す図である。17 is a diagram showing a transition of a current path due to the switching pattern of FIG. 16 in the sub-inverter of the power conversion device according to the second embodiment. FIG. 実施の形態2による電力変換装置のサブインバータのスイッチングパターンのさらに別の例を示す図である。FIG. 11 is a diagram showing yet another example of the switching pattern of the sub-inverter of the power conversion device according to the second embodiment. 実施の形態2による電力変換装置のサブインバータの図18のスイッチングパターンによる電流経路の遷移を示す図である。19 is a diagram showing a transition of a current path due to the switching pattern of FIG. 18 in the sub-inverter of the power conversion device according to the second embodiment. 実施の形態2による電力変換装置のサブインバータのスイッチングパターンのさらに別の例を示す図である。FIG. 11 is a diagram showing yet another example of the switching pattern of the sub-inverter of the power conversion device according to the second embodiment. 実施の形態2による電力変換装置のサブインバータの図20のスイッチングパターンによる電流経路の遷移を示す図である。21 is a diagram showing a transition of a current path due to the switching pattern of FIG. 20 in the sub-inverter of the power conversion device according to the second embodiment. FIG. 実施の形態2による電力変換装置のサブインバータのスイッチングパターンのさらに別の例を示す図である。FIG. 11 is a diagram showing yet another example of the switching pattern of the sub-inverter of the power conversion device according to the second embodiment. 実施の形態2による電力変換装置のサブインバータの図22のスイッチングパターンによる電流経路の遷移を示す図である。23 is a diagram showing a transition of a current path due to the switching pattern of FIG. 22 in the sub-inverter of the power conversion device according to the second embodiment. FIG. 実施の形態2による電力変換装置のサブインバータのスイッチングパターンのさらに別の例を示す図である。FIG. 11 is a diagram showing yet another example of the switching pattern of the sub-inverter of the power conversion device according to the second embodiment. 実施の形態2による電力変換装置のサブインバータの図24のスイッチングパターンによる電流経路の遷移を示す図である。25 is a diagram showing a transition of a current path due to the switching pattern of FIG. 24 in the sub-inverter of the power conversion device according to the second embodiment. FIG. 実施の形態2による電力変換装置のサブインバータのスイッチングパターンのさらに別の例を示す図である。FIG. 11 is a diagram showing yet another example of the switching pattern of the sub-inverter of the power conversion device according to the second embodiment. 実施の形態2による電力変換装置のサブインバータの図26のスイッチングパターンによる電流経路の遷移を示す図である。27 is a diagram showing a transition of a current path due to the switching pattern of FIG. 26 in the sub-inverter of the power conversion device according to the second embodiment. FIG. 実施の形態2による電力変換装置のサブインバータのプラス電圧生成時、およびマイナス電圧生成時のスイッチングパターンの例を説明する図である。13A and 13B are diagrams illustrating examples of switching patterns when a sub-inverter of a power conversion device according to a second embodiment generates a positive voltage and when a sub-inverter generates a negative voltage. 図29A、図29B、図29Cは、実施の形態2による電力変換装置のサブインバータのプラス電圧生成時の電流経路を説明する図である。29A, 29B, and 29C are diagrams for explaining current paths when the sub-inverter of the power conversion device according to embodiment 2 generates a positive voltage. 図30A、図30B、図30Cは、実施の形態2による電力変換装置のサブインバータのマイナス電圧生成時の電流経路を説明する図である。30A, 30B, and 30C are diagrams illustrating current paths when the sub-inverter of the power conversion device according to embodiment 2 generates a negative voltage. 実施の形態3による飛行物体の構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a flying object according to a third embodiment. 実施の形態4による飛行物体の構成を示すブロック図である。FIG. 13 is a block diagram showing the configuration of a flying object according to a fourth embodiment. 本願の電力変換装置の制御部の構成の一例を示すブロック図である。2 is a block diagram showing an example of a configuration of a control unit of a power conversion device according to the present application; FIG.
実施の形態1.
 以下、実施の形態1に係る電力変換装置について図を用いて説明する。図1は、実施の形態1に係る電力変換装置3を用いた電力変換システムの一例を示す概略構成図である。図1において、直流源1と負荷4との間に、電力変換装置3が直列に接続され、直流源1と電力変換装置3との間にDCリンクコンデンサ2が並列に接続されている。電力変換装置3は、直流源1からの電力を所定の電力に変換して負荷4に出力する電力変換部であるインバータと、インバータを制御する制御部とを具備する。なお、本実施の形態1においてはインバータとして、DC/ACインバータを例に説明する。
Embodiment 1.
The power conversion device according to the first embodiment will be described below with reference to the drawings. Fig. 1 is a schematic configuration diagram showing an example of a power conversion system using a power conversion device 3 according to the first embodiment. In Fig. 1, the power conversion device 3 is connected in series between a DC source 1 and a load 4, and a DC link capacitor 2 is connected in parallel between the DC source 1 and the power conversion device 3. The power conversion device 3 includes an inverter, which is a power conversion unit that converts power from the DC source 1 into a predetermined power and outputs it to the load 4, and a control unit that controls the inverter. In the first embodiment, a DC/AC inverter will be described as an example of the inverter.
 図2は、電力変換装置3の構成の一例を示す回路図である。図1に示すDC/ACインバータ30は、DC/ACインバータであり、三相3レベルインバータであるメインインバータ9と、メインインバータ9のそれぞれの相の出力に直列に接続された単相インバータであるサブインバータ12を備えている。図2において、メインインバータ9を構成する半導体スイッチング素子Q1~Q12は、例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)にダイオードが逆並列接続された構造を有している。サブインバータ12を構成する半導体スイッチング素子Q13~Q24も、例えばMOSFETにダイオードが逆並列接続された構造を有している。 FIG. 2 is a circuit diagram showing an example of the configuration of the power conversion device 3. The DC/AC inverter 30 shown in FIG. 1 is a DC/AC inverter and includes a main inverter 9, which is a three-phase three-level inverter, and a sub-inverter 12, which is a single-phase inverter connected in series to the outputs of each phase of the main inverter 9. In FIG. 2, the semiconductor switching elements Q1 to Q12 constituting the main inverter 9 have a structure in which, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is connected to a diode in inverse parallel. The semiconductor switching elements Q13 to Q24 constituting the sub-inverter 12 also have a structure in which, for example, a MOSFET is connected to a diode in inverse parallel.
 ここで、メインインバータ9を構成する半導体スイッチング素子Q1~Q12及びサブインバータ12を構成する半導体スイッチング素子Q13~Q24は、いずれもワイドバンドギャップ半導体材料による半導体スイッチング素子が好ましい。詳細は後述するが、特にサブインバータ12を構成する半導体スイッチング素子Q13~Q24は高速スイッチングを行うので、ワイドバンドギャップ半導体材料による半導体スイッチング素子がより好適である。 Here, it is preferable that the semiconductor switching elements Q1 to Q12 constituting the main inverter 9 and the semiconductor switching elements Q13 to Q24 constituting the sub-inverter 12 are all semiconductor switching elements made of wide band gap semiconductor materials. Details will be described later, but since the semiconductor switching elements Q13 to Q24 constituting the sub-inverter 12 perform high-speed switching, semiconductor switching elements made of wide band gap semiconductor materials are particularly preferable.
 図2のメインインバータ9及びサブインバータ12を構成する半導体スイッチング素子Q1~Q24の構造について図3を用いて説明する。図3は、メインインバータ9を構成する半導体スイッチング素子Q1からQ12とサブインバータ12を構成する半導体スイッチング素子Q13~Q24に適用される半導体スイッチング素子の構成を示す一例で、ドレイン端子D、ゲート端子G、ソース端子Sを有するMOSFET15とこれに逆並列接続されたダイオード16とで構成される。MOSFET15は、Si-MOSFETであっても、ワイドバンドギャップ半導体材料による例えばSiC-MOSFETであってもよい。また、ダイオード16はSi-ダイオードであっても、ワイドバンドギャップ半導体材料による例えばSiC-ダイオードであってもよい。しかし、望ましくはワイドバンドギャップ半導体材料による半導体スイッチング素子がよい。例えば、それぞれの半導体スイッチング素子の温度を検知する温度センサ102が備えられている場合もある。 The structure of the semiconductor switching elements Q1 to Q24 constituting the main inverter 9 and the sub-inverter 12 in FIG. 2 will be described with reference to FIG. 3. FIG. 3 shows an example of the configuration of the semiconductor switching elements applied to the semiconductor switching elements Q1 to Q12 constituting the main inverter 9 and the semiconductor switching elements Q13 to Q24 constituting the sub-inverter 12, and is composed of a MOSFET 15 having a drain terminal D, a gate terminal G, and a source terminal S, and a diode 16 connected in reverse parallel to the MOSFET 15. The MOSFET 15 may be a Si-MOSFET or a wide band gap semiconductor material, such as a SiC-MOSFET. The diode 16 may be a Si-diode or a wide band gap semiconductor material, such as a SiC-diode. However, a semiconductor switching element made of a wide band gap semiconductor material is preferable. For example, a temperature sensor 102 for detecting the temperature of each semiconductor switching element may be provided.
 次に、図2を用いて、メインインバータ9の回路構成について説明する。図2において、メインインバータ9は、直流源1のプラス電位が印加されるプラス端子と直流源1のマイナス電位が印加されるマイナス端子との間に直列接続されたP側コンデンサ5とN側コンデンサ6、直列接続された半導体スイッチング素子Q1~半導体スイッチング素子Q4、直列接続された半導体スイッチング素子Q5~半導体スイッチング素子Q8、直列接続された半導体スイッチング素子Q9~半導体スイッチング素子Q12がDCリンクコンデンサ2に並列接続されて構成されている。 Next, the circuit configuration of the main inverter 9 will be described with reference to Figure 2. In Figure 2, the main inverter 9 is configured with a P-side capacitor 5 and an N-side capacitor 6 connected in series between the positive terminal to which the positive potential of the DC source 1 is applied and the negative terminal to which the negative potential of the DC source 1 is applied, semiconductor switching elements Q1 to Q4 connected in series, semiconductor switching elements Q5 to Q8 connected in series, and semiconductor switching elements Q9 to Q12 connected in series, all connected in parallel to the DC link capacitor 2.
 P側コンデンサ5とN側コンデンサ6との接続点E(中性点とも称する)は、ダイオードD1のアノード端子とダイオードD2のカソード端子との接続点Eu、ダイオードD3のアノード端子とダイオードD4のカソード端子との接続点Ev、及びダイオードD5のアノード端子とダイオードD6のカソード端子との接続点Ewと接続されている。 The connection point E (also called the neutral point) between the P-side capacitor 5 and the N-side capacitor 6 is connected to a connection point Eu between the anode terminal of diode D1 and the cathode terminal of diode D2, a connection point Ev between the anode terminal of diode D3 and the cathode terminal of diode D4, and a connection point Ew between the anode terminal of diode D5 and the cathode terminal of diode D6.
 ダイオードD1のカソード端子は半導体スイッチング素子Q1と半導体スイッチング素子Q2との接続点Kuと接続され、ダイオードD3のカソード端子は半導体スイッチング素子Q5と半導体スイッチング素子Q6との接続点Kvと接続され、ダイオードD5のカソード端子は半導体スイッチング素子Q9と半導体スイッチング素子Q10との接続点Kwと接続されている。 The cathode terminal of diode D1 is connected to the connection point Ku between semiconductor switching element Q1 and semiconductor switching element Q2, the cathode terminal of diode D3 is connected to the connection point Kv between semiconductor switching element Q5 and semiconductor switching element Q6, and the cathode terminal of diode D5 is connected to the connection point Kw between semiconductor switching element Q9 and semiconductor switching element Q10.
 ダイオードD2のアノード端子は半導体スイッチング素子Q3と半導体スイッチング素子Q4との接続点Auと接続され、ダイオードD4のアノード端子は半導体スイッチング素子Q7と半導体スイッチング素子Q8との接続点Avと接続され、ダイオードD6のアノード端子は半導体スイッチング素子Q11と半導体スイッチング素子Q12との接続点Awと接続されている。 The anode terminal of diode D2 is connected to the connection point Au between semiconductor switching element Q3 and semiconductor switching element Q4, the anode terminal of diode D4 is connected to the connection point Av between semiconductor switching element Q7 and semiconductor switching element Q8, and the anode terminal of diode D6 is connected to the connection point Aw between semiconductor switching element Q11 and semiconductor switching element Q12.
 半導体スイッチング素子Q2と半導体スイッチング素子Q3との接続点u、半導体スイッチング素子Q6と半導体スイッチング素子Q7との接続点v、及び半導体スイッチング素子Q10と半導体スイッチング素子Q11との接続点wはそれぞれサブインバータ12に接続されている。直列に接続された半導体スイッチング素子Q1~半導体スイッチング素子Q4はU相のレグを、直列に接続された半導体スイッチング素子Q5~半導体スイッチング素子Q8はV相のレグを、直列に接続された半導体スイッチング素子Q9~半導体スイッチング素子Q12はW相のレグをそれぞれ構成する。メインインバータ9は、それぞれの相において、少なくとも直流のプラス端子の電位と、直流のマイナス端子の電位と、中性点の電位の3レベルの電位を出力可能な構成となっている。  Connection point u between semiconductor switching element Q2 and semiconductor switching element Q3, connection point v between semiconductor switching element Q6 and semiconductor switching element Q7, and connection point w between semiconductor switching element Q10 and semiconductor switching element Q11 are each connected to the sub-inverter 12. The semiconductor switching elements Q1 to Q4 connected in series form the U-phase leg, the semiconductor switching elements Q5 to Q8 connected in series form the V-phase leg, and the semiconductor switching elements Q9 to Q12 connected in series form the W-phase leg. The main inverter 9 is configured to be able to output at least three levels of potential in each phase: the potential of the positive DC terminal, the potential of the negative DC terminal, and the potential of the neutral point.
 サブインバータ12は、各相に対応した、それぞれ4つの半導体スイッチング素子のブリッジ回路で構成された、U相インバータ、V相インバータ、およびW相インバータを備えている。U相インバータは、直列に接続された半導体スイッチング素子Q13と半導体スイッチング素子Q14、直列に接続された半導体スイッチング素子Q15と半導体スイッチング素子Q16、及び中間コンデンサ10uが並列に接続された構成である。V相インバータは、直列に接続された半導体スイッチング素子Q17と半導体スイッチング素子Q18、直列に接続された半導体スイッチング素子Q19と半導体スイッチング素子Q20、及び中間コンデンサ10vが並列に接続された構成である。W相インバータは、直列に接続された半導体スイッチング素子Q21と半導体スイッチング素子Q22、直列に接続された半導体スイッチング素子Q23と半導体スイッチング素子Q24、及び中間コンデンサ10wが並列に接続された構成である。 The sub-inverter 12 includes a U-phase inverter, a V-phase inverter, and a W-phase inverter, each of which is composed of a bridge circuit of four semiconductor switching elements corresponding to each phase. The U-phase inverter is configured with semiconductor switching elements Q13 and Q14 connected in series, semiconductor switching elements Q15 and Q16 connected in series, and intermediate capacitor 10u connected in parallel. The V-phase inverter is configured with semiconductor switching elements Q17 and Q18 connected in series, semiconductor switching elements Q19 and Q20 connected in series, and intermediate capacitor 10v connected in parallel. The W-phase inverter is configured with semiconductor switching elements Q21 and Q22 connected in series, semiconductor switching elements Q23 and Q24 connected in series, and intermediate capacitor 10w connected in parallel.
 半導体スイッチング素子Q13と半導体スイッチング素子Q14との接続点Uはメインインバータ9の接続点uと接続され、半導体スイッチング素子Q17と半導体スイッチング素子Q18との接続点Vはメインインバータ9の接続点vと接続され、半導体スイッチング素子Q21と半導体スイッチング素子Q22との接続点Wはメインインバータ9の接続点wとそれぞれ接続されている。 The connection point U between semiconductor switching element Q13 and semiconductor switching element Q14 is connected to connection point u of the main inverter 9, the connection point V between semiconductor switching element Q17 and semiconductor switching element Q18 is connected to connection point v of the main inverter 9, and the connection point W between semiconductor switching element Q21 and semiconductor switching element Q22 is connected to connection point w of the main inverter 9.
 半導体スイッチング素子Q15と半導体スイッチング素子Q16との接続点Uo、半導体スイッチング素子Q19と半導体スイッチング素子Q20との接続点Vo、半導体スイッチング素子Q23と半導体スイッチング素子Q24との接続点Woは、それぞれ負荷4に接続される。 The connection point Uo between semiconductor switching element Q15 and semiconductor switching element Q16, the connection point Vo between semiconductor switching element Q19 and semiconductor switching element Q20, and the connection point Wo between semiconductor switching element Q23 and semiconductor switching element Q24 are each connected to load 4.
 制御部19は、メインインバータ9及びサブインバータ12に設けられた電流センサ101、電圧センサ(図示せず)、あるいは温度センサ102などのセンサから、センサ信号を受信するとともに、メインインバータ9及びサブインバータ12が具備する半導体スイッチング素子Q1~Q24にゲート駆動信号を出力し、所定の電力に変換するように制御を行う。 The control unit 19 receives sensor signals from sensors such as a current sensor 101, a voltage sensor (not shown), or a temperature sensor 102 provided in the main inverter 9 and the sub-inverter 12, and outputs gate drive signals to the semiconductor switching elements Q1 to Q24 provided in the main inverter 9 and the sub-inverter 12, controlling them to convert to a specified power.
 次に、実施の形態1に係る電力変換装置3の動作について説明する。以降、動作の説明はU相を例に説明する。V相およびW相も動作は同様である。図4A~図4Cは、メインインバータ9およびサブインバータ12の、U相の交流出力1周期における出力電圧指令値を説明するための図である。図4Aは、インバータ3からの目標とする出力電圧指令値を示す図である。目標の出力波形は図のように正弦波である。図4Bはメインインバータ9の出力電圧指令値を示す図で、交流出力1周期において、出力波形は正負それぞれ1パルスの方形波である。図4Cは、サブインバータ12の出力電圧指令値の波形を示しており、図4Aの出力電圧指令値と図4Bのメインインバータ9の出力電圧指令値の差分の波形となる。 Next, the operation of the power conversion device 3 according to the first embodiment will be described. Hereinafter, the operation will be described using the U phase as an example. The operation is similar for the V phase and the W phase. Figures 4A to 4C are diagrams for explaining the output voltage command values of the main inverter 9 and the sub-inverter 12 in one cycle of the U phase AC output. Figure 4A is a diagram showing the target output voltage command value from the inverter 3. The target output waveform is a sine wave as shown in the figure. Figure 4B is a diagram showing the output voltage command value of the main inverter 9, and in one cycle of the AC output, the output waveform is a square wave with one positive and one negative pulse. Figure 4C shows the waveform of the output voltage command value of the sub-inverter 12, which is the waveform of the difference between the output voltage command value of Figure 4A and the output voltage command value of the main inverter 9 in Figure 4B.
 インバータ30の出力は、メインインバータ9の出力に、サブインバータ12の中間コンデンサの電圧をプラス、またはマイナス、すなわち加減することにより生成される。メインインバータ9及びサブインバータ12は、制御部19からのゲート駆動信号により、それぞれの所定の波形の出力電圧指令値により電圧を出力する。メインインバータ9は、低周波のスイッチング動作により、正負ワンパルスの波形を生成し、サブインバータ12は、出力電圧指令値の電圧を出力するよう、PWM(Pulse Width Modulation:パルス幅変調)制御により、多数のパルス状の電圧波形を生成する。図4Bに示すように、メインインバータ9の波形の波高値を1とすると、サブインバータ12の出力電圧指令値の最高値は1よりも小さい、例えば0.5となる。サブインバータ12の出力電圧は、中間コンデンサ10uの電圧となる。このため、サブインバータ12の各中間コンデンサの電圧が、メインインバータ9の入力コンデンサであるP側コンデンサ5及びN側コンデンサ6の電圧より小さくなるように設定する。図4Cに示す例のように、例えば、1/2(直流源1の電圧の1/4)に設定すれば、サブインバータ12のPWM動作において高調波成分の少ない安定した波形を出力することができる。 The output of the inverter 30 is generated by adding or subtracting the voltage of the intermediate capacitor of the sub-inverter 12 to or from the output of the main inverter 9. The main inverter 9 and the sub-inverter 12 output voltages according to the output voltage command values of their respective predetermined waveforms in response to gate drive signals from the control unit 19. The main inverter 9 generates a positive and negative single-pulse waveform by low-frequency switching operation, and the sub-inverter 12 generates multiple pulse-shaped voltage waveforms by PWM (Pulse Width Modulation) control so as to output a voltage of the output voltage command value. As shown in FIG. 4B, if the crest value of the waveform of the main inverter 9 is 1, the maximum value of the output voltage command value of the sub-inverter 12 is smaller than 1, for example, 0.5. The output voltage of the sub-inverter 12 is the voltage of the intermediate capacitor 10u. For this reason, the voltage of each intermediate capacitor of the sub-inverter 12 is set to be smaller than the voltage of the P-side capacitor 5 and the N-side capacitor 6, which are the input capacitors of the main inverter 9. As shown in the example in FIG. 4C, for example, if it is set to 1/2 (1/4 of the voltage of DC source 1), a stable waveform with fewer harmonic components can be output in the PWM operation of sub-inverter 12.
 制御部19は、コンデンサの電圧比の関係を保つように、メインインバータ9及びサブインバータ12に設けられた電流センサあるいは電圧センサからのセンサ信号を用いてゲート駆動信号を演算し、各半導体スイッチング素子Q1~Q24に出力する。その結果、メインインバータ9は、高い直流電圧で低周波のスイッチング動作によりワンパルスの波形を生成し、サブインバータ12は低い直流電圧で高速スイッチング動作を行うことになる。 The control unit 19 calculates gate drive signals using sensor signals from current or voltage sensors provided in the main inverter 9 and sub-inverter 12 so as to maintain the relationship of the capacitor voltage ratios, and outputs the signals to each of the semiconductor switching elements Q1 to Q24. As a result, the main inverter 9 generates a one-pulse waveform by low-frequency switching operation at a high DC voltage, and the sub-inverter 12 performs high-speed switching operation at a low DC voltage.
 図5は、メインインバータ9のU相の出力電圧指令値に対応する電圧波形を出力するために、各半導体スイッチング素子に出力される理想的なゲート駆動信号を示す図である。図5において、上から順に、メインインバータ9の出力電圧指令値、メインインバータ9のU相のレグを構成する半導体スイッチング素子Q1~半導体スイッチング素子Q4を駆動するためのゲート駆動信号の波形である。半導体スイッチング素子Q1~半導体スイッチング素子Q4は交流出力1周期当たりオン及びオフ1回ずつスイッチングする。このとき半導体スイッチング素子のドレイン―ソース間の印加電圧はゲート駆動信号がオフ(すなわち0)の期間に入力コンデンサであるP側コンデンサ5またはN側コンデンサ6の電圧値となり、ゲート駆動信号がオン(すなわち1)の期間の電圧値は0となる(実際には内部による電圧降下分印加される)。 Figure 5 shows ideal gate drive signals that are output to each semiconductor switching element to output a voltage waveform corresponding to the output voltage command value of the U-phase of the main inverter 9. In Figure 5, from the top, the output voltage command value of the main inverter 9 and the waveforms of the gate drive signals for driving the semiconductor switching elements Q1 to Q4 that make up the U-phase leg of the main inverter 9 are shown. The semiconductor switching elements Q1 to Q4 are switched on and off once per AC output period. At this time, the voltage applied between the drain and source of the semiconductor switching element becomes the voltage value of the input capacitor P-side capacitor 5 or N-side capacitor 6 while the gate drive signal is off (i.e. 0), and the voltage value becomes 0 while the gate drive signal is on (i.e. 1) (actually, the voltage drop due to internal factors is applied).
 次に、サブインバータ12の動作を説明する。図6Aは、比較例として特許文献1に記載されているPWM制御方式による、U相のサブインバータ12の出力電圧指令値に対応する電圧波形を出力するための半導体スイッチング素子に出力されるゲート駆動信号を示す図である。図において、上から順に、サブインバータ12の出力電圧指令値及びキャリア波、サブインバータ12のU相のインバータを構成する半導体スイッチング素子Q13~半導体スイッチング素子Q16を駆動するための各ゲート駆動信号の波形である。本比較例では、キャリア波Aとキャリア波Bの2つのキャリア波について、レベルシフト変調方式でPWM制御を行っている。レベルシフト変調方式は、(レベル数-1)個のキャリア波にキャリア波の最大振幅に対して均等に直流オフセットを加え、出力電圧指令値とそれぞれのキャリア波とを比較する方式である。レベル数とは、出力できる電圧値のレベル数を意味する。サブインバータのレベル数は3である。 Next, the operation of the sub-inverter 12 will be described. FIG. 6A is a diagram showing gate drive signals output to semiconductor switching elements for outputting a voltage waveform corresponding to the output voltage command value of the U-phase sub-inverter 12 according to the PWM control method described in Patent Document 1 as a comparative example. In the figure, from the top, the output voltage command value and carrier wave of the sub-inverter 12, and the waveforms of each gate drive signal for driving the semiconductor switching elements Q13 to Q16 constituting the U-phase inverter of the sub-inverter 12 are shown. In this comparative example, PWM control is performed using a level shift modulation method for two carrier waves, carrier wave A and carrier wave B. The level shift modulation method is a method in which a DC offset is evenly added to the maximum amplitude of the carrier wave to (the number of levels - 1) carrier waves, and the output voltage command value and each carrier wave are compared. The number of levels means the number of levels of voltage values that can be output. The number of levels of the sub-inverter is 3.
 半導体スイッチング素子Q13(第一半導体スイッチング素子Q13とも称する)、半導体スイッチング素子Q14(第二半導体スイッチング素子Q14とも称する)、半導体スイッチング素子Q15(第三半導体スイッチング素子Q15とも称する)、および半導体スイッチング素子Q16(第四半導体スイッチング素子Q16とも称する)は交流出力1周期当たり複数回ずつオン及びオフスイッチングする。PWM動作するサブインバータ12を構成する半導体スイッチング素子はスイッチング回数が多いので、スイッチング損失の小さいSiC-MOSFET等の高周波駆動に適した半導体スイッチング素子を使用すればよい。このとき半導体スイッチング素子のドレイン―ソース間の印加電圧はゲート駆動信号がオフ(すなわち0)の期間に中間コンデンサ10uの電圧値となり、ゲート駆動信号がオン(すなわち1)の期間の電圧値は0となる(実際には内部による電圧降下分印加される)。図6Aに示すように、半導体スイッチング素子Q13~半導体スイッチング素子Q16は、それぞれスイッチングの導通時間が異なるため、サブインバータを構成するそれぞれの半導体スイッチング素子に異なる損失が発生するため局所的に発熱する恐れがあり、装置の寿命低下あるいは放熱器の強化による重量増が見込まれるので好ましくない。 Semiconductor switching element Q13 (also referred to as first semiconductor switching element Q13), semiconductor switching element Q14 (also referred to as second semiconductor switching element Q14), semiconductor switching element Q15 (also referred to as third semiconductor switching element Q15), and semiconductor switching element Q16 (also referred to as fourth semiconductor switching element Q16) are switched on and off multiple times per AC output cycle. Since the semiconductor switching elements that make up the PWM-operated sub-inverter 12 switch many times, it is sufficient to use semiconductor switching elements that are suitable for high frequency driving such as SiC-MOSFETs with small switching losses. In this case, the voltage applied between the drain and source of the semiconductor switching elements becomes the voltage value of intermediate capacitor 10u during the period when the gate drive signal is off (i.e. 0), and the voltage value becomes 0 during the period when the gate drive signal is on (i.e. 1) (in reality, the voltage drop due to internal factors is applied). As shown in FIG. 6A, semiconductor switching elements Q13 to Q16 each have a different switching conduction time, which means that different losses occur in each of the semiconductor switching elements that make up the sub-inverter, which can lead to localized heat generation. This is undesirable as it can reduce the lifespan of the device or increase the weight due to the strengthening of the heat sink.
 図6Bは、実施の形態1による電力変換装置の、サブインバータのU相における動作を説明する図である。実施の形態1によるサブインバータでは、サブインバータを構成する半導体スイッチング素子に発生する損失(スイッチング損失および導通損失)が、それぞれの半導体スイッチング素子に分散される制御を行う。図6Bにおいて、上から順に、サブインバータ12の出力電圧指令値及びキャリア波、サブインバータ12のU相のインバータを構成する半導体スイッチング素子Q13~半導体スイッチング素子Q16を駆動するための各ゲート駆動信号の波形である。図6Bに示すように、本実施の形態1では、位相シフト変調方式でPWM制御を行う。位相シフト変調は、(レベル数-1)個のキャリア波の位相を均等にシフトさせ、電圧指令値とキャリア波を比較する方式である。 FIG. 6B is a diagram explaining the operation of the sub-inverter in the U-phase of the power conversion device according to the first embodiment. In the sub-inverter according to the first embodiment, the losses (switching loss and conduction loss) occurring in the semiconductor switching elements constituting the sub-inverter are distributed to each semiconductor switching element. In FIG. 6B, from the top, the output voltage command value and carrier wave of the sub-inverter 12, and the waveforms of each gate drive signal for driving the semiconductor switching elements Q13 to Q16 constituting the inverter of the U-phase of the sub-inverter 12 are shown. As shown in FIG. 6B, in the first embodiment, PWM control is performed using a phase shift modulation method. Phase shift modulation is a method in which the phases of (number of levels - 1) carrier waves are shifted evenly and the voltage command value and the carrier wave are compared.
 半導体スイッチング素子Q13~半導体スイッチング素子Q16は交流出力1周期当たり複数回ずつオン及びオフスイッチングする。PWM動作するサブインバータ12を構成するスイッチング素子はスイッチング回数が多いので、スイッチング損失の小さいSiC-MOSFET等の高周波駆動に適した半導体スイッチング素子を使用すればよい。このとき半導体スイッチング素子のドレイン―ソース間の印加電圧はゲート駆動信号がオフ(すなわち0)の期間に中間コンデンサ10uの電圧値となり、ゲート駆動信号がオン(すなわち1)の期間の電圧値は0となる(実際には内部による電圧降下分印加される)。 Semiconductor switching elements Q13 to Q16 are switched on and off multiple times per AC output cycle. The switching elements that make up the PWM-operated sub-inverter 12 switch many times, so semiconductor switching elements suitable for high-frequency driving, such as SiC-MOSFETs with small switching losses, can be used. In this case, the voltage applied between the drain and source of the semiconductor switching elements becomes the voltage value of the intermediate capacitor 10u while the gate drive signal is off (i.e., 0), and the voltage value becomes 0 while the gate drive signal is on (i.e., 1) (in reality, the voltage drop due to internal factors is applied).
 サブインバータ12の各中間コンデンサの電圧を、メインインバータ9の入力コンデンサであるP側コンデンサ5及びN側コンデンサ6の電圧より小さくなるように、例えば、1/2に設定した場合、サブインバータ12を構成する半導体スイッチング素子に印加される電圧は、メインインバータ9を構成する半導体スイッチング素子に印加される電圧の1/2となる。これらは3相の電力変換装置でなくても適用可能である。 If the voltage of each intermediate capacitor of the sub-inverter 12 is set to be smaller than the voltage of the P-side capacitor 5 and N-side capacitor 6, which are the input capacitors of the main inverter 9, for example to 1/2, the voltage applied to the semiconductor switching elements that make up the sub-inverter 12 will be 1/2 of the voltage applied to the semiconductor switching elements that make up the main inverter 9. These can be applied to other power conversion devices as well as three-phase power conversion devices.
 図6Bに示すように、実施の形態1による電力変換装置のサブインバータ12の動作によれば、半導体スイッチング素子Q13~半導体スイッチング素子Q16は、それぞれスイッチングの導通時間がほぼ同じであり、サブインバータを構成するそれぞれの半導体スイッチング素子に発生する損失はほぼ同じとなる。したがって、比較例に比べて、局所的に発熱する恐れがなく、冷却ファンまたはヒートシンクの軽量化および故障のリスクを低減できる。 As shown in FIG. 6B, according to the operation of the sub-inverter 12 of the power conversion device of the first embodiment, the semiconductor switching elements Q13 to Q16 each have approximately the same switching conduction time, and the losses generated in each of the semiconductor switching elements constituting the sub-inverter are approximately the same. Therefore, compared to the comparative example, there is no risk of localized heat generation, and the cooling fan or heat sink can be made lighter and the risk of failure can be reduced.
 図7Aおよび図7Bは、図5および比較例による図6Aのゲート駆動信号を図2の半導体スイッチング素子Q1~半導体スイッチング素子Q4および半導体スイッチング素子Q13~半導体スイッチング素子Q16に適用したときの出力波形の一例を示す線図である。すなわち比較例の動作を示す線図である。図7Aにおいて、上から順に、
サブインバータ12を構成する半導体スイッチング素子Q13およびQ14のドレイン電流、
サブインバータ12を構成する半導体スイッチング素子Q13のドレインソース電圧、
サブインバータ12を構成する半導体スイッチング素子Q14のドレインソース電圧、
サブインバータ12を構成する半導体スイッチング素子Q15およびQ16のドレイン電流、
サブインバータ12を構成する半導体スイッチング素子Q15のドレインソース電圧、
サブインバータ12を構成する半導体スイッチング素子Q16のドレインソース電圧、
の波形である。
7A and 7B are diagrams showing an example of output waveforms when the gate drive signals of FIG. 5 and FIG. 6A according to a comparative example are applied to the semiconductor switching elements Q1 to Q4 and the semiconductor switching elements Q13 to Q16 of FIG. 2. That is, the diagrams show the operation of the comparative example. In FIG. 7A, from the top,
The drain currents of the semiconductor switching elements Q13 and Q14 constituting the sub-inverter 12,
The drain-source voltage of the semiconductor switching element Q13 constituting the sub-inverter 12,
The drain-source voltage of the semiconductor switching element Q14 constituting the sub-inverter 12,
The drain currents of the semiconductor switching elements Q15 and Q16 constituting the sub-inverter 12,
The drain-source voltage of the semiconductor switching element Q15 constituting the sub-inverter 12,
The drain-source voltage of the semiconductor switching element Q16 constituting the sub-inverter 12,
This is the waveform.
 また、図7Bにおいて、上から順に
インバータ30(メインインバータ9+サブインバータ12)が出力する各相電流、
インバータ30が出力する各線間電圧、
インバータ30が出力する各相電圧
の波形である
In addition, in FIG. 7B, the phase currents output by the inverter 30 (main inverter 9+sub-inverter 12) are shown in order from the top.
Each line voltage output by the inverter 30,
1 is a waveform of each phase voltage output by the inverter 30.
 各半導体スイッチング素子のドレイン電流波形より、Q14およびQ16の導通時間がQ13およびQ15に対して長くなる。これにより、導通時間の割合に応じた導通損失が発生するためQ14およびQ16の素子はQ13およびQ15に比べて、発熱量が多くなり、素子の寿命低下につながる。各半導体スイッチング素子のドレインソース電圧波形より、0Vから500Vに変化するタイミングをターンオフ、500Vから0Vに変化するタイミングをターンオンといい、ターンオフおよびターンオン時にスイッチング損失が発生する。Q13~Q16のターンオンおよびターンオフの回数はほぼ等しいためスイッチング損失の偏りはほとんど生じていない。半導体スイッチング素子で発生する損失は主にスイッチング損失と導通損失の総量であるため(厳密にはボディーダイオードのリカバリー損失も含む)、Q13およびQ15で発生する損失はQ14およびQ16に比べて大きくなるので好ましくない。 The drain current waveform of each semiconductor switching element shows that the conduction time of Q14 and Q16 is longer than that of Q13 and Q15. This causes conduction loss according to the proportion of the conduction time, so the elements Q14 and Q16 generate more heat than Q13 and Q15, leading to a shorter lifespan of the elements. From the drain-source voltage waveform of each semiconductor switching element, the timing when it changes from 0V to 500V is called turn-off, and the timing when it changes from 500V to 0V is called turn-on, and switching loss occurs at turn-off and turn-on. The number of turn-ons and turn-offs of Q13 to Q16 is almost equal, so there is almost no bias in switching loss. Since the loss generated by semiconductor switching elements is mainly the sum of switching loss and conduction loss (strictly speaking, it also includes recovery loss of the body diode), the loss generated by Q13 and Q15 is larger than that of Q14 and Q16, which is not desirable.
 図8Aおよび図8Bは、図5および実施の形態1による図6Bのゲート駆動信号を図2の半導体スイッチング素子Q1~半導体スイッチング素子Q4および半導体スイッチング素子Q13~半導体スイッチング素子Q16に適用したときの出力波形の一例を示す。すなわち実施の形態1による電力変換装置の動作を示す線図である。図8Aにおいて、上から順に、
サブインバータ12を構成する半導体スイッチング素子Q13およびQ14のドレイン電流、
サブインバータ12を構成する半導体スイッチング素子Q13のドレインソース電圧、
サブインバータ12を構成する半導体スイッチング素子Q14のドレインソース電圧、
サブインバータ12を構成する半導体スイッチング素子Q15およびQ16のドレイン電流、
サブインバータ12を構成する半導体スイッチング素子Q15のドレインソース電圧、
サブインバータ12を構成する半導体スイッチング素子Q16のドレインソース電圧、
8A and 8B show examples of output waveforms when the gate drive signals of FIG. 5 and FIG. 6B according to the first embodiment are applied to the semiconductor switching elements Q1 to Q4 and the semiconductor switching elements Q13 to Q16 of FIG. 2. That is, it is a diagram showing the operation of the power conversion device according to the first embodiment. In FIG. 8A, from the top,
The drain currents of the semiconductor switching elements Q13 and Q14 constituting the sub-inverter 12,
The drain-source voltage of the semiconductor switching element Q13 constituting the sub-inverter 12,
The drain-source voltage of the semiconductor switching element Q14 constituting the sub-inverter 12,
The drain currents of the semiconductor switching elements Q15 and Q16 constituting the sub-inverter 12,
The drain-source voltage of the semiconductor switching element Q15 constituting the sub-inverter 12,
The drain-source voltage of the semiconductor switching element Q16 constituting the sub-inverter 12,
 また、図8Bにおいて、上から順に
インバータ30が出力する各相電流、
インバータ30が出力する各線間電圧、
インバータ30が出力する各相電圧
の波形である。
In addition, in FIG. 8B, the phase currents output by the inverter 30 are shown in order from the top.
Each line voltage output by the inverter 30,
4 shows the waveforms of the phase voltages output by the inverter 30.
 各半導体スイッチング素子のドレイン電流波形より、Q13~Q16の導通時間がほぼ等しいため導通損失の偏りはほとんど生じていない。各半導体スイッチング素子のドレインソース電圧波形より、0Vから500Vに変化するタイミングをターンオフ、500Vから0Vに変化するタイミングをターンオンといい、ターンオフおよびターンオン時にスイッチング損失が発生する。Q13~Q16のターンオンおよびターンオフの回数はほぼ等しいためスイッチング損失の偏りはほとんど生じていない。すなわち半導体スイッチング素子Q13~Q16で発生する損失はほぼ等しく分散できる。 The drain current waveforms of each semiconductor switching element show that the conduction times of Q13 to Q16 are almost equal, so there is almost no bias in conduction loss. The drain-source voltage waveforms of each semiconductor switching element show that the timing when the voltage changes from 0V to 500V is called turn-off, and the timing when the voltage changes from 500V to 0V is called turn-on, and switching losses occur at the time of turn-off and turn-on. The number of times Q13 to Q16 are turned on and off is almost equal, so there is almost no bias in switching losses. In other words, the losses generated by semiconductor switching elements Q13 to Q16 can be distributed almost equally.
 また、図7Bと図8Bとの比較からわかるように、比較例と実施の形態1において、各相電流、各線間電圧、各相電圧は、大きく異ならない。すなわち、相電流、線間電圧、相電圧を維持しながら、半導体スイッチング素子Q13~Q16における損失の偏りを抑制することができる。 Furthermore, as can be seen from a comparison between FIG. 7B and FIG. 8B, the phase currents, line voltages, and phase voltages in the comparative example and embodiment 1 do not differ significantly. In other words, it is possible to suppress the bias in losses in the semiconductor switching elements Q13 to Q16 while maintaining the phase currents, line voltages, and phase voltages.
 以上のように、本実施の形態1によれば、サブインバータを構成する各半導体スイッチング素子の損失を分散するように制御するので、局所的な損失の偏りを減少し、冷却ファンまたはヒートシンクの軽量化および故障のリスクを低減する。すなわち、重量を増加させることなく、信頼性が向上した電力変換装置を提供することができる。 As described above, according to the first embodiment, the loss of each semiconductor switching element constituting the sub-inverter is controlled so as to be distributed, thereby reducing localized loss bias, and reducing the weight of the cooling fan or heat sink and the risk of failure. In other words, it is possible to provide a power conversion device with improved reliability without increasing weight.
 負荷変動による電圧変調率が変化した場合に半導体スイッチング素子が発生する損失の分散する割合が変化する。以下、本実施の形態1の電力変換装置によれば、負荷変動時においても高い損失分散効果が維持できることを説明する。 When the voltage modulation rate changes due to load fluctuation, the distribution ratio of the loss generated by the semiconductor switching element changes. Below, it will be explained that the power conversion device of this embodiment 1 can maintain a high loss distribution effect even during load fluctuation.
 図9Aは、比較例である図6Aと同様の変調方式を用いて負荷モータの回転数を10000rpmに制御した時の出力電圧波形とQ13~Q16のゲート駆動信号波形を示している。図9Aのゲート駆動信号波形の各図において、縦軸の1が、各半導体スイッチング素子がオン、すなわち導通している状態を示している。各半導体スイッチング素子のゲート駆動信号波形より、Q13およびQ15が1周期に対して導通時間の割合(導通割合)が18%、Q14およびQ16の導通割合が82%と偏りが生じる。これにより、導通時間の割合に応じた導通損失が発生するためQ14およびQ16の素子はQ13およびQ15に比べて、発熱量が多くなり、素子の寿命低下につながる。 FIG. 9A shows the output voltage waveform and gate drive signal waveforms for Q13 to Q16 when the rotation speed of the load motor is controlled to 10,000 rpm using the same modulation method as in FIG. 6A, which is a comparative example. In each diagram of the gate drive signal waveforms in FIG. 9A, 1 on the vertical axis indicates that each semiconductor switching element is on, i.e., conducting. The gate drive signal waveforms of each semiconductor switching element show that Q13 and Q15 have a conduction time ratio (conduction ratio) of 18% per cycle, while Q14 and Q16 have a conduction ratio of 82%, resulting in a bias. This causes conduction loss according to the ratio of conduction time, and so the elements Q14 and Q16 generate more heat than Q13 and Q15, leading to a shortened lifespan of the elements.
 図9Bは、比較例である図6Aと同様の変調方式を用いて負荷モータの回転数を8000rpmに制御した時の出力電圧波形とQ13~Q16のゲート駆動信号波形を示している。各半導体スイッチング素子のゲート駆動信号波形より、Q13の導通割合が26%、Q14の導通割合は74%、Q15の導通割合は21%、Q16の導通割合は79%と偏りが生じる。10000rpmから8000rpmに減速した場合、Q14およびQ16とQ13およびQ15の導通時間の割合は、緩和される方向になったが、Q14およびQ16の素子はQ13およびQ15に比べて、約3倍発熱量が多くなり、素子の寿命低下につながる。 Figure 9B shows the output voltage waveform and gate drive signal waveforms for Q13 to Q16 when the load motor speed is controlled to 8000 rpm using the same modulation method as Figure 6A (comparison example). The gate drive signal waveforms for each semiconductor switching element show a bias in the conduction rate of Q13, 26%, Q14, 74%, Q15, 21%, and Q16, 79%. When decelerating from 10,000 rpm to 8,000 rpm, the proportion of conduction time for Q14 and Q16 and Q13 and Q15 tends to be mitigated, but the elements Q14 and Q16 generate about three times as much heat as Q13 and Q15, leading to a shortened lifespan of the elements.
 図10Aは、図6Bと同様の変調方式すなわち実施の形態1の変調方式を用いて負荷モータの回転数を10000rpmに制御した時の出力波形とQ13~Q16のゲート駆動信号波形を示している。各半導体スイッチング素子のゲート駆動信号波形より、Q13~Q16のいずれの半導体スイッチング素子も、導通割合が50%と損失分散していることがわかる。 Fig. 10A shows the output waveform and the gate drive signal waveforms of Q13 to Q16 when the load motor speed is controlled to 10,000 rpm using the same modulation method as Fig. 6B, i.e., the modulation method of embodiment 1. From the gate drive signal waveforms of each semiconductor switching element, it can be seen that the conduction rate of each of the semiconductor switching elements Q13 to Q16 is 50%, and the losses are distributed.
 図10Bは、図6Bと同様の変調方式すなわち実施の形態1の変調方式を用いて負荷モータの回転数を8000rpmに制御した時の出力波形とQ13~Q16のゲート駆動信号波形を示している。各半導体スイッチング素子のゲート駆動信号波形より、Q13の導通割合が51%、Q14の導通割合は49%、Q15の導通割合は50%、Q16の導通割合は50%となっている。10000rpmから8000rpmに減速した場合、若干であるがQ13とQ14の導通割合が変わり、半導体スイッチング素子Q13の発熱量が若干多くなるが、図9Bで示した比較例に対して、大幅に損失分散されていることが分かる。 FIG. 10B shows the output waveform and the gate drive signal waveforms of Q13 to Q16 when the rotation speed of the load motor is controlled to 8000 rpm using the same modulation method as in FIG. 6B, i.e., the modulation method of embodiment 1. The gate drive signal waveforms of each semiconductor switching element show that the conduction rate of Q13 is 51%, the conduction rate of Q14 is 49%, the conduction rate of Q15 is 50%, and the conduction rate of Q16 is 50%. When decelerating from 10,000 rpm to 8,000 rpm, the conduction rates of Q13 and Q14 change slightly, and the amount of heat generated by semiconductor switching element Q13 increases slightly, but it can be seen that the loss is distributed significantly compared to the comparative example shown in FIG. 9B.
 以上説明したように、実施の形態1による電力変換装置によれば、PWM制御により制御される複数の半導体スイッチング素子を有するサブインバータ12の各半導体スイッチング素子の損失が均等となるよう制御するようにしたので、半導体スイッチング素子の発熱の偏りが低減でき、冷却ファンまたはヒートシンクの軽量化および故障のリスクを低減できる電力変換装置が得られる。 As described above, the power conversion device according to embodiment 1 controls the losses of the semiconductor switching elements of the sub-inverter 12, which has multiple semiconductor switching elements controlled by PWM control, to be equal. This reduces uneven heat generation among the semiconductor switching elements, and provides a power conversion device that can reduce the weight of the cooling fan or heat sink and the risk of failure.
実施の形態2.
 実施の形態2では、サブインバータ12において同じ電圧を出力する、それぞれで各半導体スイッチング素子の導通損失が異なるスイッチングパターンが複数あり、スイッチングパターンを選択することで、半導体スイッチング素子の損失の均等化を図ることができる技術を説明する。
Embodiment 2.
In embodiment 2, a technology is described in which there are multiple switching patterns in which the sub-inverter 12 outputs the same voltage, each of which has a different conduction loss in each semiconductor switching element, and by selecting a switching pattern, it is possible to equalize the losses in the semiconductor switching elements.
 図11は、サブインバータ12のスイッチングパターンを示す。記号symbolは、「+」「ゼロUP」「ゼロDOWN」「-」とする。「+」はサブインバータ12の出力電圧がプラスとなる状態、「ゼロUP」は電流が半導体スイッチング素子Q13とQ15を通過してサブインバータ12の出力電圧が0となる状態、「ゼロDOWN」は電流が半導体スイッチング素子Q14とQ16を通過してサブインバータ12の出力電圧が0となる状態、「-」はサブインバータ12の出力電圧がマイナスとなる状態、を意味する。また、Vsubはサブインバータが出力する電圧を意味する。Vcapは中間コンデンサの電圧であり、サブインバータ12は、半導体スイッチング素子のオン・オフの切替により、+Vcapまたは-Vcapの電圧を出力(発生)する。図11に示す「+」から「ゼロUP」に切り替える、電流I>0(負荷に流れる方向を正とする)時の各半導体スイッチング素子Q13~Q16のオン・オフ状態の遷移であるスイッチングパターンを図12に、回路図上の電流経路の遷移を図13に示す。また、電流I>0時の「+」から「ゼロDOWN」に切り替えるようにサブインバータを制御した場合のスイッチングパターンを図14に、電流経路の遷移を図15に示す。なお、図12および図14において、「OFF(D導通)」は、ゲート駆動信号はオフであり、半導体スイッチング素子のダイオードを電流が流れる状態を示している。以降、同様である。 Figure 11 shows the switching pattern of the sub-inverter 12. The symbols are "+", "zero up", "zero down", and "-". "+" means that the output voltage of the sub-inverter 12 is positive, "zero up" means that the current passes through the semiconductor switching elements Q13 and Q15 and the output voltage of the sub-inverter 12 is zero, "zero down" means that the current passes through the semiconductor switching elements Q14 and Q16 and the output voltage of the sub-inverter 12 is zero, and "-" means that the output voltage of the sub-inverter 12 is negative. Additionally, Vsub means the voltage output by the sub-inverter. Vcap is the voltage of the intermediate capacitor, and the sub-inverter 12 outputs (generates) a voltage of +Vcap or -Vcap by switching the semiconductor switching elements on and off. FIG. 12 shows a switching pattern, which is the transition of the on/off state of each semiconductor switching element Q13 to Q16 when current I>0 (the direction flowing to the load is positive) switching from "+" shown in FIG. 11 to "zero up," and FIG. 13 shows the transition of the current path on the circuit diagram. FIG. 14 shows the switching pattern when the sub-inverter is controlled to switch from "+" to "zero down" when current I>0, and FIG. 15 shows the transition of the current path. Note that in FIG. 12 and FIG. 14, "OFF (D conduction)" indicates that the gate drive signal is off and current flows through the diode of the semiconductor switching element. This is the same below.
 切り替え時にはデッドタイムを設けている。デットタイムとは、上下アームの短絡を防止するために、オン・オフの切り替えタイミングにおいて、上下のスイッチが同時にオンならないように同時オフの状態にする期間のことである。電力変換装置を実機で動作させる場合デッドタイムを適用することは公知であるため詳しくは説明しない。 A dead time is provided during switching. Dead time is a period during which the upper and lower switches are not turned on at the same time when switching on and off, in order to prevent a short circuit between the upper and lower arms. It is well known that dead time is used when operating a power conversion device in real equipment, so it will not be explained in detail.
 図12のスイッチングパターンでは、Q13およびQ15を導通させ、ゼロ電圧を生成する。このとき、Q13およびQ15は導通損失が発生する。図14のスイッチングパターンでは、Q14およびQ16を導通させ、ゼロ電圧を生成する。このとき、Q14およびQ16は導通損失が発生する。 In the switching pattern of FIG. 12, Q13 and Q15 are made conductive, generating zero voltage. At this time, conduction loss occurs in Q13 and Q15. In the switching pattern of FIG. 14, Q14 and Q16 are made conductive, generating zero voltage. At this time, conduction loss occurs in Q14 and Q16.
 図12のスイッチングパターンと図14のスイッチングパターンとでは、図13と図15を参照すれば、どちらも出力する電圧は同じであることがわかる。すなわち、導通する半導体スイッチング素子の組み合わせ、すなわちスイッチングパターンを選択することができ、導通損失の分散が可能になる。例えば、半導体スイッチング素子のQ13~Q16のうちQ13の損失が高い場合に、Q13を導通させない図14のスイッチングパターンを選択することでQ13の損失を抑えることができる。半導体スイッチング素子の損失は、図3に示すように素子直下に温度センサ102を配置し、温度から判断することができる。具体的には、温度により、各半導体スイッチング素子の損失を把握し、温度にばらつきがある場合、サブインバータ12の出力電圧がゼロとなるときの半導体スイッチング素子の電流経路を変更して、温度が高い半導体スイッチング素子のオン時間を短くし、損失の偏りを減らす方向に制御する。温度を同等にすることは、損失の偏りがないということになる。なお、図3では、半導体スイッチング素子1個を1個のモジュールとした例を示したが、たとえば、Q13とQ14を1個のモジュール、Q15とQ16を1個のモジュールとし、それぞれのモジュールの各半導体スイッチング素子の直下に温度センサが配置される構造もとりえる。 With reference to Figs. 13 and 15, it can be seen that the switching pattern in Fig. 12 and the switching pattern in Fig. 14 both output the same voltage. In other words, the combination of semiconductor switching elements that are conductive, i.e., the switching pattern, can be selected, making it possible to distribute the conduction loss. For example, if the loss of Q13 is high among the semiconductor switching elements Q13 to Q16, the loss of Q13 can be suppressed by selecting the switching pattern in Fig. 14, which does not make Q13 conductive. The loss of the semiconductor switching element can be determined from the temperature by placing a temperature sensor 102 directly under the element as shown in Fig. 3. Specifically, the loss of each semiconductor switching element is grasped depending on the temperature, and if there is a variation in temperature, the current path of the semiconductor switching element when the output voltage of the sub-inverter 12 becomes zero is changed, the on time of the semiconductor switching element with a high temperature is shortened, and control is performed in a direction to reduce the bias in loss. Making the temperature equal means that there is no bias in loss. In addition, while Figure 3 shows an example in which one semiconductor switching element is one module, it is also possible to use a structure in which, for example, Q13 and Q14 are one module, and Q15 and Q16 are one module, with a temperature sensor located directly under each semiconductor switching element of each module.
 次に図11に示す「-」から「ゼロDOWN」に切り替える、電流I>0(負荷に流れる方向を正とする)時のスイッチングパターンを図16に、電流経路の遷移を図17に示す。また、電流I>0(負荷に流れる方向を正とする)時の「-」から「ゼロUP」に切り替える場合のスイッチングパターンを図18に、電流経路の遷移を図19に示す。図16のスイッチングパターンでは、Q14およびQ16を導通させ、ゼロ電圧を生成する。このとき、Q14およびQ16は導通損失が発生する。図18のスイッチングパターンでは、Q13およびQ15を導通させ、ゼロ電圧を生成する。このとき、Q13およびQ15は導通損失が発生する。図16と図18のスイッチングパターンでは、図17と図19を参照すれば、どちらも出力する電圧は同じであることがわかる。 Next, the switching pattern when switching from "-" shown in FIG. 11 to "zero DOWN" when current I>0 (the direction flowing through the load is positive) is shown in FIG. 16, and the transition of the current path is shown in FIG. 17. Also, the switching pattern when switching from "-" to "zero UP" when current I>0 (the direction flowing through the load is positive) is shown in FIG. 18, and the transition of the current path is shown in FIG. 19. In the switching pattern of FIG. 16, Q14 and Q16 are made conductive to generate zero voltage. At this time, conduction loss occurs in Q14 and Q16. In the switching pattern of FIG. 18, Q13 and Q15 are made conductive to generate zero voltage. At this time, conduction loss occurs in Q13 and Q15. In the switching patterns of FIG. 16 and FIG. 18, referring to FIG. 17 and FIG. 19, it can be seen that the voltage output is the same in both cases.
 次に図11に示す「+」から「ゼロUP」に切り替える、電流I<0(負荷に流れる方向を正とする)時のスイッチングパターンを図20に、電流経路の遷移を図21に示す。また、電流I<0(負荷に流れる方向を正とする)時の「+」から「ゼロDOWN」に切り替える場合のスイッチングパターンを図22に、電流経路の遷移を図23に示す。図20のスイッチングパターンでは、Q13およびQ15を導通させ、ゼロ電圧を生成する。このとき、Q13およびQ15は導通損失が発生する。図22のスイッチングパターンでは、Q14およびQ16を導通させ、ゼロ電圧を生成する。このとき、Q14およびQ16は導通損失が発生する。図20と図22のスイッチングパターンでは、図21と図23を参照すれば、どちらも出力する電圧は同じであることがわかる。 Next, FIG. 20 shows the switching pattern when switching from "+" shown in FIG. 11 to "zero UP" when current I<0 (the direction flowing through the load is positive), and FIG. 21 shows the transition of the current path. Also, FIG. 22 shows the switching pattern when switching from "+" to "zero DOWN" when current I<0 (the direction flowing through the load is positive), and FIG. 23 shows the transition of the current path. In the switching pattern of FIG. 20, Q13 and Q15 are made conductive to generate zero voltage. At this time, conduction loss occurs in Q13 and Q15. In the switching pattern of FIG. 22, Q14 and Q16 are made conductive to generate zero voltage. At this time, conduction loss occurs in Q14 and Q16. In the switching patterns of FIG. 20 and FIG. 22, referring to FIG. 21 and FIG. 23, it can be seen that the voltage output is the same in both cases.
 次に図11に示す「-」から「ゼロUP」に切り替える、電流I<0(負荷に流れる方向を正とする)時のスイッチングパターンを図24に、電流経路の遷移を図25に示す。また、電流I<0(負荷に流れる方向を正とする)時の「-」から「ゼロDOWN」に切り替える場合のスイッチングパターンを図26に、電流経路の遷移を図27に示す。図24のスイッチングパターンでは、Q13およびQ15を導通させ、ゼロ電圧を生成する。このとき、Q13およびQ15は導通損失が発生する。図26のスイッチングパターンでは、Q14およびQ16を導通させ、ゼロ電圧を生成する。このとき、Q14およびQ16は導通損失が発生する。図24と図26のスイッチングパターンでは、図25と図27を参照すれば、どちらも出力する電圧は同じであることがわかる。 Next, the switching pattern when switching from "-" shown in FIG. 11 to "zero UP" when current I<0 (the direction flowing through the load is positive) is shown in FIG. 24, and the transition of the current path is shown in FIG. 25. Also, the switching pattern when switching from "-" to "zero DOWN" when current I<0 (the direction flowing through the load is positive) is shown in FIG. 26, and the transition of the current path is shown in FIG. 27. In the switching pattern of FIG. 24, Q13 and Q15 are made conductive to generate zero voltage. At this time, conduction loss occurs in Q13 and Q15. In the switching pattern of FIG. 26, Q14 and Q16 are made conductive to generate zero voltage. At this time, conduction loss occurs in Q14 and Q16. In the switching patterns of FIG. 24 and FIG. 26, by referring to FIG. 25 and FIG. 27, it can be seen that the voltage output is the same in both cases.
 上記のように、サブインバータ12においてゼロ電圧を発生させるときの半導体スイッチング素子のスイッチングパターンを選択することができ、Q13およびQ15、Q14およびQ16で導通時間を制御できる。 As described above, the switching pattern of the semiconductor switching elements when generating zero voltage in sub-inverter 12 can be selected, and the conduction time can be controlled by Q13 and Q15, and Q14 and Q16.
 図28は、サブインバータ12が、プラス電圧およびマイナス電圧を発生させる場合の、Q13およびQ16、Q14およびQ15の導通時間を制御するためのサブインバータのスイッチングパターンを示す。記号symbolの、「+」はサブインバータ12がプラス電圧を発生する場合、「-」はマイナス電圧を発生する場合とする。図28に示す、「+」、すなわちプラス電圧を発生させる場合のサブインバータ12における電流経路を図29A、図29Bに、電流I<0(負荷に流れる方向を正とする)時にプラス電圧を発生させる場合の電流経路を図29Cに示す。プラス電圧を生成するときは、Q14およびQ15を導通する。あるいは、電流I<0時にQ13~16の全てをオフすることでもプラス電圧を生成することができる。したがって、Q14およびQ15を導通してプラス電圧を発生しているときに、Q14およびQ15をオフしてプラス電圧を発生し続けることができるため、Q14およびQ15の導通時間を制御できる。あるいは、プラス電圧を発生するときの、スイッチングパターン、すなわち電流経路を選択することにより、平均的な導通時間を制御することができる。 FIG. 28 shows the switching pattern of the sub-inverter for controlling the conduction time of Q13 and Q16, Q14 and Q15 when the sub-inverter 12 generates a positive voltage and a negative voltage. The symbol "+" indicates that the sub-inverter 12 generates a positive voltage, and "-" indicates that the sub-inverter generates a negative voltage. The current path in the sub-inverter 12 when "+" shown in FIG. 28, i.e., when generating a positive voltage, is shown in FIG. 29A and FIG. 29B, and the current path when generating a positive voltage when current I<0 (the direction flowing to the load is positive) is shown in FIG. 29C. When generating a positive voltage, Q14 and Q15 are made conductive. Alternatively, a positive voltage can also be generated by turning off all of Q13 to Q16 when current I<0. Therefore, when Q14 and Q15 are made conductive to generate a positive voltage, Q14 and Q15 can be turned off to continue generating a positive voltage, so that the conduction time of Q14 and Q15 can be controlled. Alternatively, the average conduction time can be controlled by selecting the switching pattern, i.e., the current path, when generating a positive voltage.
 図28より、「-」、すなわちマイナス電圧を発生する場合の電流経路を図30A、図30B、電流I>0(負荷に流れる方向を正とする)時にマイナス電圧を発生させる電流経路を図30Cに示す。マイナス電圧を生成するときは、Q13およびQ16を導通する。あるいは、電流I>0時にQ13~16の全てをオフすることでもマイナス電圧を生成することができる。したがって、Q13およびQ16を導通してマイナス電圧を発生しているときに、Q13およびQ16をオフしてマイナス電圧を発生し続けることができるため、Q13およびQ16の導通時間を制御できる。あるいは、マイナス電圧を発生するときの、スイッチングパターン、すなわち電流経路を選択することにより、平均的な導通時間を制御することができる。 From Figure 28, the current paths for generating "-", i.e., a negative voltage, are shown in Figures 30A and 30B, while Figure 30C shows the current path for generating a negative voltage when current I>0 (the direction flowing through the load is positive). When generating a negative voltage, Q13 and Q16 are made conductive. Alternatively, a negative voltage can also be generated by turning off all of Q13 to 16 when current I>0. Therefore, when Q13 and Q16 are made conductive to generate a negative voltage, Q13 and Q16 can be turned off to continue generating a negative voltage, so the conductive time of Q13 and Q16 can be controlled. Alternatively, the average conductive time can be controlled by selecting the switching pattern, i.e., the current path, when generating a negative voltage.
 上記のように、Q13およびQ16、Q14およびQ15で導通時間を制御できる。これを利用して、各半導体スイッチング素子の温度にばらつきが検出された場合、ばらつきを検出するまでの出力電圧の発生パターンと同一の発生パターンにおいて、各半導体スイッチング素子の電流経路を変更して、温度が高い半導体スイッチング素子の導通時間を短くするよう制御することで、損失を分散することができる。 As described above, the conduction time can be controlled by Q13 and Q16, and Q14 and Q15. By using this, when a variation in temperature of each semiconductor switching element is detected, the current path of each semiconductor switching element can be changed in the same generation pattern of the output voltage as that before the variation was detected, and the conduction time of the semiconductor switching element with a higher temperature can be controlled to be shorter, thereby dispersing losses.
 以上のように、本実施の形態2によれば、本願に開示される電力変換装置において、サブインバータを構成する各半導体スイッチング素子の温度にばらつきがある場合、半導体損失を分散するように制御でき、局所的な損失の偏りを減少し、冷却ファンまたはヒートシンクの軽量化および故障のリスクを低減する。すなわち、重量を増加さえることなく、信頼性を向上させる電力変換装置を提供することができる。 As described above, according to the second embodiment, in the power conversion device disclosed in the present application, when there is variation in temperature among the semiconductor switching elements constituting the sub-inverter, the semiconductor loss can be controlled to be distributed, reducing the bias in localized loss and reducing the weight of the cooling fan or heat sink and the risk of failure. In other words, it is possible to provide a power conversion device that improves reliability without increasing weight.
実施の形態3.
 本実施の形態は、実施の形態1あるいは実施の形態2による電力変換装置を備えた飛行物体の実施の形態である。本実施の形態の飛行物体は、例えば航空機、ヘリコプター、ドローン、空飛ぶ自動車等である。
Embodiment 3.
This embodiment is an embodiment of a flying object including the power conversion device according to embodiment 1 or embodiment 2. The flying object of this embodiment is, for example, an airplane, a helicopter, a drone, a flying car, or the like.
 図31は、実施の形態3による飛行物体100の概略ブロック図である。飛行物体100は、実施の形態1あるいは実施の形態2で説明した電力変換装置を備える。飛行物体100は、その推進系電力システム60として、電力源63、電力源63に接続された電源(DC電源)1、電源1に接続され所定の電圧に変換する降圧チョッパ回路を備えたDC/DCコンバータ50、DC/DCコンバータ50で降圧された直流電力を交流電力に変換するインバータ30、インバータ30から電力が供給される負荷61、及びDC/DCコンバータ50、インバータ30を制御する制御部62を備える。ここで負荷61は推進力を得るための推進系負荷であり、例えば電動モータである。 FIG. 31 is a schematic block diagram of a flying object 100 according to embodiment 3. The flying object 100 is equipped with the power conversion device described in embodiment 1 or embodiment 2. The flying object 100 is equipped with a propulsion power system 60 including a power source 63, a power source (DC power source) 1 connected to the power source 63, a DC/DC converter 50 connected to the power source 1 and equipped with a step-down chopper circuit for converting to a predetermined voltage, an inverter 30 that converts the DC power stepped down by the DC/DC converter 50 into AC power, a load 61 to which power is supplied from the inverter 30, and a control unit 62 that controls the DC/DC converter 50 and the inverter 30. Here, the load 61 is a propulsion load for obtaining propulsive force, such as an electric motor.
 実施の形態1あるいは実施の形態2による電力変換装置のインバータは、飛行物体100に搭載されるインバータ30として用いられる。航空機に代表される飛行物体のように上空を飛行するものに搭載する装置は、軽量化および信頼性が求められる。このため、実施の形態1あるいは実施の形態2で説明したサブインバータの損失が分散されたインバータ30を備えた電力変換装置を推進系電力システム60に搭載する。これにより、冷却ファンあるいは冷却ヒートシンクを軽量化し、重量及びコストの増加を抑制することができ、また、局所的に発熱することを抑制できて信頼性を向上できる。 The inverter of the power conversion device according to embodiment 1 or embodiment 2 is used as the inverter 30 mounted on the flying object 100. Devices mounted on flying objects such as aircraft that fly in the sky are required to be lightweight and reliable. For this reason, a power conversion device equipped with an inverter 30 in which the losses of the sub-inverters described in embodiment 1 or embodiment 2 are distributed is mounted on the propulsion power system 60. This makes it possible to reduce the weight of the cooling fan or cooling heat sink, suppressing increases in weight and cost, and also suppressing localized heat generation, improving reliability.
実施の形態4.
 本実施の形態は、実施の形態1あるいは実施の形態2による電力変換装置を備えた飛行物体の実施の形態である。本実施の形態の飛行物体は、例えば航空機、ヘリコプター、ドローン、空飛ぶ自動車等である。
Embodiment 4.
This embodiment is an embodiment of a flying object including the power conversion device according to embodiment 1 or embodiment 2. The flying object of this embodiment is, for example, an airplane, a helicopter, a drone, a flying car, or the like.
 図32は、実施の形態4による飛行物体100の概略ブロック図である。飛行物体100は、実施の形態1あるいは実施の形態2で説明した電力変換装置を備える。飛行物体100は、その装備品系電力システム70として、電力源74、電力源74に接続され交流電力を直流電力に変換するAC/DCコンバータ72、AC/DCコンバータ72に接続された直流源1、直流源1に接続され所定の電圧に変換する降圧チョッパ回路を備えたDC/DCコンバータ50、DC/DCコンバータ50で降圧された直流電力を交流電力に変換するインバータ30、インバータ30から電力が供給される負荷71、及びDC/DCコンバータ50、インバータ30、AC/DCコンバータ72を制御する制御部73を備える。ここで負荷71は装備品系負荷であり、例えば空調、エンジンスタータ、及び補助電力装置の駆動に用いる電動モータ等を指す。 FIG. 32 is a schematic block diagram of a flying object 100 according to embodiment 4. The flying object 100 is equipped with the power conversion device described in embodiment 1 or embodiment 2. The flying object 100 is equipped with, as its equipment power system 70, a power source 74, an AC/DC converter 72 connected to the power source 74 and converting AC power to DC power, a DC source 1 connected to the AC/DC converter 72, a DC/DC converter 50 connected to the DC source 1 and equipped with a step-down chopper circuit for converting to a predetermined voltage, an inverter 30 that converts the DC power stepped down by the DC/DC converter 50 into AC power, a load 71 to which power is supplied from the inverter 30, and a control unit 73 that controls the DC/DC converter 50, the inverter 30, and the AC/DC converter 72. Here, the load 71 is an equipment load, and refers to, for example, an electric motor used to drive an air conditioner, an engine starter, and an auxiliary power device.
 実施の形態3と同様に、実施の形態1あるいは実施の形態2による電力変換装置のインバータは、飛行物体100に搭載される装備品系電力システム70のインバータ30として用いられる。航空機に代表される飛行物体のように上空を飛行するものに搭載する装置は、軽量化および信頼性が求められる。実施の形態1あるいは実施の形態2で説明した電力変換装置を、装備品系電力システム70に搭載することで、実施の形態3と同様の効果を奏する。 As in embodiment 3, the inverter of the power conversion device according to embodiment 1 or embodiment 2 is used as inverter 30 of equipment power system 70 mounted on flying object 100. Lightweight and reliable devices are required for mounting on flying objects that fly in the sky, such as flying objects represented by aircraft. By mounting the power conversion device described in embodiment 1 or embodiment 2 on equipment power system 70, the same effects as embodiment 3 can be achieved.
 なお、図2に示した制御部19は、具体的には、図33に示すように、CPU(Central Processing Unit)等の演算処理装置191、演算処理装置191とデータをやり取りする記憶装置192、演算処理装置191と外部の間で信号を入出力する入出力インターフェース193などを備えている。演算処理装置191としてASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、および各種の信号処理回路等が備えられても良い。また、演算処理装置191として、同じ種類のもの、または異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置192として、演算処理装置191からデータを読み出しおよび書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置191からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入出力インターフェース193は、例えば、メインインバータ9およびサブインバータ12に備えられた各電圧検知手段、電流センサ101、温度センサ102などから出力されるセンサ信号を演算処理装置191に入力するA/D変換器、各半導体スイッチング素子に駆動信号を出力するための駆動回路などから構成される。 The control unit 19 shown in FIG. 2 specifically includes, as shown in FIG. 33, an arithmetic processing device 191 such as a CPU (Central Processing Unit), a storage device 192 for exchanging data with the arithmetic processing device 191, and an input/output interface 193 for inputting and outputting signals between the arithmetic processing device 191 and the outside. The arithmetic processing device 191 may include an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), and various signal processing circuits. In addition, multiple arithmetic processing devices 191 of the same type or different types may be provided, and each process may be shared and executed. The storage device 192 includes a RAM (Random Access Memory) configured to be able to read and write data from the arithmetic processing device 191, a ROM (Read Only Memory) configured to be able to read data from the arithmetic processing device 191, and the like. The input/output interface 193 is composed of, for example, each voltage detection means provided in the main inverter 9 and the sub-inverter 12, an A/D converter that inputs sensor signals output from the current sensor 101, the temperature sensor 102, etc., to the arithmetic processing device 191, a drive circuit for outputting drive signals to each semiconductor switching element, etc.
 本願には、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although various exemplary embodiments and examples are described in this application, the various features, aspects, and functions described in one or more of the embodiments are not limited to application in a particular embodiment, but may be applied to the embodiments alone or in various combinations. Thus, countless variations not illustrated are anticipated within the scope of the technology disclosed in this specification. For example, this includes cases in which at least one component is modified, added, or omitted, and even cases in which at least one component is extracted and combined with components of other embodiments.
 1 直流源、4、61、71 負荷、9 メインインバータ、10u、10v、10w 中間コンデンサ、12 サブインバータ、19 制御部、100 飛行物体、Q13 第一半導体スイッチング素子、Q14 第二半導体スイッチング素子、Q15 第三半導体スイッチング素子、Q16 第四半導体スイッチング素子 1 DC source, 4, 61, 71 Load, 9 Main inverter, 10u, 10v, 10w Intermediate capacitor, 12 Sub-inverter, 19 Control unit, 100 Flying object, Q13 First semiconductor switching element, Q14 Second semiconductor switching element, Q15 Third semiconductor switching element, Q16 Fourth semiconductor switching element

Claims (9)

  1.  直流のプラス電位が印加されるプラス端子と、直流のマイナス電位が印加されるマイナス端子との間に中性点を有するコンデンサを備え、少なくとも、前記プラス端子の電位と前記マイナス端子の電位と、前記中性点の電位とを出力可能なメインインバータと、
    前記メインインバータの出力に接続され、複数の半導体スイッチング素子と中間コンデンサとを有し、前記中間コンデンサの電圧を前記メインインバータの出力電圧に加減するサブインバータと、
     前記メインインバータおよび前記サブインバータを制御する制御部と、を備え、
    前記制御部は、前記サブインバータをPWM制御により制御し、前記サブインバータが出力する電圧を制御する電力変換装置において、
    前記制御部は、前記サブインバータの前記複数の半導体スイッチング素子の各半導体スイッチング素子の損失が均等になるよう制御する電力変換装置。
    a main inverter including a capacitor having a neutral point between a positive terminal to which a DC positive potential is applied and a negative terminal to which a DC negative potential is applied, and capable of outputting at least a potential of the positive terminal, a potential of the negative terminal, and a potential of the neutral point;
    a sub-inverter connected to an output of the main inverter, the sub-inverter having a plurality of semiconductor switching elements and an intermediate capacitor, and adjusting a voltage of the intermediate capacitor to an output voltage of the main inverter;
    A control unit that controls the main inverter and the sub-inverter,
    In a power conversion device, the control unit controls the sub-inverter by PWM control to control a voltage output by the sub-inverter,
    The control unit is a power conversion device that controls the plurality of semiconductor switching elements of the sub-inverter so that losses in the respective semiconductor switching elements are equalized.
  2.  前記サブインバータは、直列に接続された第一半導体スイッチング素子と第二半導体スイッチング素子と、直列に接続された第三半導体スイッチング素子と第四半導体スイッチング素子と、前記中間コンデンサとが並列に接続され、前記第一半導体スイッチング素子と前記第二半導体スイッチング素子の接続点が、前記メインインバータの出力点に接続され、前記第三半導体スイッチング素子と前記第四半導体スイッチング素子の接続点を出力とする請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the sub-inverter is configured such that a first semiconductor switching element and a second semiconductor switching element are connected in series, a third semiconductor switching element and a fourth semiconductor switching element are connected in series, and the intermediate capacitor is connected in parallel, the connection point between the first semiconductor switching element and the second semiconductor switching element is connected to the output point of the main inverter, and the connection point between the third semiconductor switching element and the fourth semiconductor switching element is used as an output.
  3.  前記制御部は、前記PWM制御において、前記サブインバータの前記複数の半導体スイッチング素子の各半導体スイッチング素子の導通時間が均等になるよう、前記複数の半導体スイッチング素子を制御する請求項1または2に記載の電力変換装置。 The power conversion device according to claim 1 or 2, wherein the control unit controls the plurality of semiconductor switching elements of the sub-inverter in the PWM control so that the conduction times of each of the plurality of semiconductor switching elements are uniform.
  4.  前記PWM制御は、位相シフトされた複数のキャリア波を用いたPWM制御である請求項1から3のいずれか1項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 3, wherein the PWM control is PWM control using multiple phase-shifted carrier waves.
  5.  前記制御部は、前記PWM制御において、前記サブインバータの前記複数の半導体スイッチング素子の温度が均等になるよう前記複数の半導体スイッチング素子を制御する請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the control unit controls the plurality of semiconductor switching elements of the sub-inverter in the PWM control so that the temperatures of the plurality of semiconductor switching elements are uniform.
  6.  前記サブインバータは、前記複数の半導体スイッチング素子として、直列に接続された第一半導体スイッチング素子と第二半導体スイッチング素子と、直列に接続された第三半導体スイッチング素子と第四半導体スイッチング素子とを備え、直列に接続された前記第一半導体スイッチング素子と前記第二半導体スイッチング素子と、直列に接続された前記第三半導体スイッチング素子と前記第四半導体スイッチング素子と、前記中間コンデンサとが並列に接続され、前記第一半導体スイッチング素子と前記第二半導体スイッチング素子の接続点が、前記メインインバータの出力点に接続され、前記第三半導体スイッチング素子と前記第四半導体スイッチング素子の接続点を出力とする請求項5に記載の電力変換装置。 The sub-inverter includes, as the plurality of semiconductor switching elements, a first semiconductor switching element and a second semiconductor switching element connected in series, and a third semiconductor switching element and a fourth semiconductor switching element connected in series, the first semiconductor switching element and the second semiconductor switching element connected in series, the third semiconductor switching element and the fourth semiconductor switching element connected in series, and the intermediate capacitor are connected in parallel, the connection point between the first semiconductor switching element and the second semiconductor switching element is connected to the output point of the main inverter, and the connection point between the third semiconductor switching element and the fourth semiconductor switching element is the output. The power conversion device according to claim 5.
  7.  前記制御部は、前記サブインバータの前記複数の半導体スイッチング素子の各半導体スイッチング素子について、温度にばらつきが検出された場合、前記PWM制御において、温度のばらつきを検出するまでの前記サブインバータの出力電圧の発生パターンと同一の発生パターンにおいて、前記各半導体スイッチング素子の電流経路を変更する請求項5または6に記載の電力変換装置。 The power conversion device according to claim 5 or 6, wherein when a temperature variation is detected for each of the semiconductor switching elements of the plurality of semiconductor switching elements of the sub-inverter, the control unit changes the current path of each of the semiconductor switching elements in the PWM control in the same generation pattern as the generation pattern of the output voltage of the sub-inverter until the temperature variation is detected.
  8.  前記制御部は、前記サブインバータの前記複数の半導体スイッチング素子の各半導体スイッチング素子について、温度にばらつきが検出された場合、前記PWM制御において、前記サブインバータの出力電圧がゼロとなるときの前記各半導体スイッチング素子の電流経路を変更する請求項5または6に記載の電力変換装置。 The power conversion device according to claim 5 or 6, wherein when a temperature variation is detected for each of the semiconductor switching elements of the plurality of semiconductor switching elements of the sub-inverter, the control unit changes the current path of each of the semiconductor switching elements when the output voltage of the sub-inverter becomes zero in the PWM control.
  9.  直流源と、この直流源の電力を用いる負荷と、前記直流源の電力を変換して前記負荷に電力を供給する電力変換装置である、請求項1から8のいずれか1項に記載の電力変換装置とを備えた飛行物体。 A flying object comprising a DC source, a load that uses the power of the DC source, and a power conversion device according to any one of claims 1 to 8 that converts the power of the DC source and supplies the power to the load.
PCT/JP2022/042815 2022-11-18 2022-11-18 Power conversion device and flying object WO2024105872A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042815 WO2024105872A1 (en) 2022-11-18 2022-11-18 Power conversion device and flying object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042815 WO2024105872A1 (en) 2022-11-18 2022-11-18 Power conversion device and flying object

Publications (1)

Publication Number Publication Date
WO2024105872A1 true WO2024105872A1 (en) 2024-05-23

Family

ID=91084159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042815 WO2024105872A1 (en) 2022-11-18 2022-11-18 Power conversion device and flying object

Country Status (1)

Country Link
WO (1) WO2024105872A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146637A1 (en) * 2009-06-19 2010-12-23 三菱電機株式会社 Power conversion equipment
JP2012147559A (en) * 2011-01-12 2012-08-02 Toshiba Corp Semiconductor power converter
WO2022054155A1 (en) * 2020-09-09 2022-03-17 三菱電機株式会社 Power converter and aircraft equipped with power converter
WO2022180709A1 (en) * 2021-02-25 2022-09-01 三菱電機株式会社 Power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146637A1 (en) * 2009-06-19 2010-12-23 三菱電機株式会社 Power conversion equipment
JP2012147559A (en) * 2011-01-12 2012-08-02 Toshiba Corp Semiconductor power converter
WO2022054155A1 (en) * 2020-09-09 2022-03-17 三菱電機株式会社 Power converter and aircraft equipped with power converter
WO2022180709A1 (en) * 2021-02-25 2022-09-01 三菱電機株式会社 Power conversion device

Similar Documents

Publication Publication Date Title
Itoh et al. A novel approach to practical matrix converter motor drive system with reverse blocking IGBT
JP5450635B2 (en) Power converter
EP2323248B1 (en) Operation of a three level converter
JP6206502B2 (en) Power conversion device and power conversion method
WO2011064970A1 (en) Load drive system, electric motor drive system and vehicle control system
CA2578585A1 (en) Nine device ac-to-ac converter
Razani et al. Enhanced hybrid modular multilevel converter with improved reliability and performance characteristics
JP2004266884A (en) Switching power supply type power supply equipment and nuclear magnetic resonance imaging apparatus using the same
Banaei et al. Analysis of a generalized symmetrical multilevel inverter
JP2011160617A (en) Z-source step-up circuit
JP2002272125A (en) Controller of power converter
JP2011147233A (en) Z source boost circuit
Jafari et al. New mmc-based multilevel converter with two-and-one set of arms and one inductor
WO2019167244A1 (en) Power conversion device and electric motor system
JP5043585B2 (en) Power converter
US11682996B2 (en) Power conversion device
WO2024105872A1 (en) Power conversion device and flying object
Singhai et al. New topology of asymmtrical multilevel inverter [15/29 Level]
WO2014141398A1 (en) Pwm control method and power conversion apparatus using same
WO2018092315A1 (en) Power conversion device and electric motor drive device using same
JP7271808B1 (en) Power converters and flying objects
WO2017034028A1 (en) Control method and control device for inverter, and inverter device
Sundaravel et al. A Modified Cascaded H-Bridge Multilevel Inverter topology with Reduced Number of Power Electronic Switching Components
WO2023032150A1 (en) Power conversion device and aircraft equipped with power conversion device
JP6639762B1 (en) 3-level power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965848

Country of ref document: EP

Kind code of ref document: A1