WO2024105743A1 - Breaker device, control device, inrush current suppression method, and program - Google Patents

Breaker device, control device, inrush current suppression method, and program Download PDF

Info

Publication number
WO2024105743A1
WO2024105743A1 PCT/JP2022/042279 JP2022042279W WO2024105743A1 WO 2024105743 A1 WO2024105743 A1 WO 2024105743A1 JP 2022042279 W JP2022042279 W JP 2022042279W WO 2024105743 A1 WO2024105743 A1 WO 2024105743A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit breaker
inrush current
unit
power line
current
Prior art date
Application number
PCT/JP2022/042279
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 花岡
徹 田中
裕二 樋口
尚倫 中村
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/042279 priority Critical patent/WO2024105743A1/en
Publication of WO2024105743A1 publication Critical patent/WO2024105743A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H81/00Protective switches in which contacts are normally closed but are repeatedly opened and reclosed as long as a condition causing excess current persists, e.g. for current limiting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks

Definitions

  • the present invention relates to technology for suppressing inrush current in a power supply system.
  • Inrush current can cause problems such as breakdowns in the power supply circuit, so it is necessary to suppress inrush current.
  • the present invention was made in consideration of the above points, and aims to provide a technology for suppressing inrush current without providing an inrush current suppression circuit on the load device side.
  • a power supply circuit includes: a breaker that breaks and connects a power line that connects a DC power supply and a load device; and a control unit that controls the interrupter to repeatedly interrupt and connect the power line when an occurrence of an inrush current is detected.
  • the disclosed technology provides a technology that makes it possible to suppress inrush current without providing an inrush current suppression circuit on the load device side.
  • FIG. 1 is a configuration diagram of a power supply system.
  • FIG. 4 is a diagram showing the waveform of an inrush current.
  • FIG. 4 is a diagram showing the waveform of an inrush current.
  • FIG. 1 illustrates an example of a microgrid.
  • FIG. 1 is a diagram illustrating an example in which consumers are connected to a bus in a microgrid.
  • FIG. 2 is a diagram illustrating an example of the configuration of a circuit breaker.
  • FIG. 2 is a diagram illustrating an example of the configuration of a circuit breaker.
  • 4 is a flowchart of an inrush current suppression process.
  • FIG. 13 is a diagram showing an example of waveforms when the ON time is gradually increased.
  • FIG. 2 is a configuration diagram of a system including a control device 200.
  • FIG. 2 is a functional configuration diagram of a control device 200.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of a control device 200.
  • turning off a circuit breaker means interrupting the electric circuit (path of current). Turning off a circuit breaker may also be expressed as opening the circuit breaker. Interrupting an electric circuit may also be expressed as opening the electric circuit, interrupting the current, interrupting the power line, etc.
  • Turning a circuit breaker ON means connecting the electrical circuit. Turning a circuit breaker ON can also be expressed as “closing the circuit breaker.” Connecting the electrical circuit can also be expressed as “connecting the power line,” “closing the electrical circuit,” etc.
  • the power supply system described below is a DC power supply system.
  • the technology according to the present invention is not limited to DC power supply systems and can be applied to other systems.
  • the communication lines (which may be called networks) used in the following description are not limited to a specific type, but may be, for example, metal wires, optical fibers, or radio waves.
  • FIG. 1 A basic configuration of a power supply system according to the present embodiment is shown in Fig. 1.
  • a DC power source 10 and a load device 20 are connected by a power line, and a circuit breaker 100 is provided on the power line.
  • the circuit breaker may also be called a circuit breaker.
  • the load device 20 includes a power supply circuit 30 (DC/DC converter) and a capacitor 40 (called an X capacitor).
  • the capacitor 40 is provided within the load device 20, but this is an example.
  • the capacitor 40 may be provided anywhere between the positive power line and the negative power line in the power supply system.
  • the circuit breaker 100 includes a circuit breaker section for opening and closing (cutting (OFF) and connecting (ON)) the power line.
  • the circuit breaker section may be mechanical, semiconductor, electromagnetic, or of another type. However, in this embodiment, it is assumed that a semiconductor circuit breaker section is used.
  • a circuit breaker using a semiconductor circuit breaker section may be called a semiconductor circuit breaker.
  • a specific example of the configuration of the circuit breaker 100 will be described later.
  • the power supply system shown in FIG. 1 is assumed to be used in, for example, a microgrid.
  • the DC power source 10 is provided on the bus side, and the load device 20 is provided on the consumer side.
  • FIG. 1 describes the "bus side” and the "consumer side.”
  • an inrush current of, for example, several hundred amperes flows toward the capacitor 40 of the load device 20.
  • the inrush current may cause the power supply circuit to stop or become damaged.
  • An example of the waveform of the inrush current is shown in FIG. 2.
  • the circuit breaker 100 when the circuit breaker 100 detects a signal indicating an event that generates an inrush current (a signal indicating the start of an inrush current), the circuit breaker 100 turns the circuit breaker unit on and off multiple times.
  • the current waveform in this case is shown in Figure 3. Note that when the circuit breaker 100 detects that the magnitude of the current flowing through the power line has exceeded a threshold value, it may determine that an inrush current has been detected and turn the circuit breaker unit on and off multiple times.
  • the capacitor 40 can be charged intermittently. As the capacitor 40 is charged (accumulated), the voltage of the capacitor 40 increases and the current flowing through the power line decreases. Figure 3 shows that the peak current decreases each time the circuit breaker is turned on.
  • the "ON time” is the length of time that the circuit breaker is ON
  • the "OFF time” is the length of time that the circuit breaker is OFF.
  • the ON time and OFF time are not limited to a specific time length, but may be, for example, a time length of about several ns to several ms.
  • a time length of about several ns to several ms is, for example, a time length in the range of 1 ns to 10 ms.
  • the OFF time may be longer than the ON time.
  • the OFF time may be, for example, about several seconds.
  • a time length of about several seconds is, for example, a time length in the range of 1 s to 10 s.
  • the power supply system according to the present embodiment can be applied to, for example, a microgrid.
  • the microgrid has a configuration in which consumers are connected to a ring-shaped power line (called a bus) via a power line.
  • the microgrid is also provided with a plurality of circuit breakers.
  • consumers such as loads, storage batteries, and renewable energy power generation devices.
  • FIG. 5 is a diagram showing some of the consumers connected to the bus from the entire microgrid.
  • a circuit breaker 100 according to this embodiment is inserted between the microgrid bus and consumer A.
  • Consumer A is equipped with the load device 20 shown in FIG. 1, but FIG. 5 shows a power supply circuit 30.
  • the microgrid bus is in a voltage state, which corresponds to a state in which the DC power supply 10 shown in FIG. 1 is ON.
  • a Molded Case Circuit Breaker (MCCB) 50 is provided between the microgrid bus and the circuit breaker 100, and the circuit breaker 100 and the MCCB 50 are connected by a communication line. Note that the MCCB 50 may not be provided.
  • the microgrid bus is in a voltage-applied state. Therefore, if the technology of the present invention is not used, when a new consumer A (specifically, load device 20) is connected to the microgrid, if the circuit breaker 100 is turned from OFF to ON, or if the MCCB 50 is turned from OFF to ON while the circuit breaker 100 is ON, a large inrush current will flow from the bus to consumer A, which may cause the power supply circuit 30 (specifically, the DC/CD converter) of the load device 20 to stop. Furthermore, the inrush current may cause a voltage fluctuation on the microgrid bus, which may also cause the power supply circuit of another consumer B connected to the bus to stop.
  • the power supply circuit 30 specifically, the DC/CD converter
  • the technology according to this embodiment makes it possible to suppress the above-mentioned inrush current. In other words, it is possible to reduce the magnitude of the inrush current.
  • a new consumer A (specifically, load device 20) is connected to the microgrid
  • a signal indicating that the MCCB 50 has been turned ON is sent to the circuit breaker 100 via the communication line.
  • the circuit breaker 100 After receiving the above signal, when the circuit breaker 100 detects that a current greater than or equal to a predetermined threshold has flowed through the circuit breaker 100, it continuously turns the circuit breaker unit ON/OFF as described above to charge the capacitor 40 in stages and suppress the inrush current. Note that after receiving the above signal, the circuit breaker 100 may start control to continuously turn the circuit breaker unit ON/OFF without performing a process to detect that a current greater than or equal to a predetermined threshold has flowed through the circuit breaker 100.
  • the functional unit After receiving the signal, if the functional unit detects that a current greater than or equal to a predetermined threshold has flowed through the circuit breaker 100, it will continuously turn the circuit breaker ON/OFF as described above to charge the capacitor 40 in stages and suppress the inrush current.
  • the state in which the circuit breaker is repeatedly turned ON/OFF may be called the "inrush current suppression mode.”
  • the functional unit may start control to charge the capacitor 40 in stages by continuously turning the circuit breaker ON/OFF, without performing a process to detect that a current greater than or equal to a predetermined threshold has flowed through the circuit breaker 100.
  • the circuit breaker 100 when the MCCB is ON and the circuit breaker 100 receives an ON signal indicating that the power supply circuit 30 of consumer A is ON, the circuit breaker 100 goes into inrush current suppression mode for a certain period of time. In the inrush current suppression mode, the circuit breaker 100 repeatedly turns ON and OFF in a short period of time to suppress the inrush current.
  • the circuit breaker 100 detects that the peak magnitude of the inrush current has fallen below a threshold while repeatedly turning the circuit breaker unit on and off, it stops the on/off control and maintains the on state.
  • the following examples 1 and 2 are examples of operations for preventing other circuit breakers 60 from erroneously operating due to the inrush current suppression operation by the circuit breaker 100.
  • the circuit breaker 100 and the other circuit breakers 60 are connected by a communication line.
  • the circuit breaker 100 When starting the operation of suppressing the inrush current, the circuit breaker 100 notifies the other circuit breaker 60 of a signal indicating the start of the operation of suppressing the inrush current. Upon receiving the signal, the other circuit breaker 60 controls the circuit breaker 60 to continue in the ON state.
  • the circuit breaker 100 When the circuit breaker 100 ends the inrush current suppression operation, it notifies the other circuit breaker 60 of the end of the inrush current suppression operation. Upon receiving the signal, the other circuit breaker 60 ends the control to keep the circuit breaker 60 in the ON state and returns to the normal state.
  • Example 2 When the circuit breaker 100 starts the operation of suppressing the inrush current, it notifies the other circuit breaker 60 of a signal indicating the start of the operation of suppressing the inrush current. Upon receiving the signal, the other circuit breaker 60 controls the circuit breaker 60 to continue the ON state for a predetermined time. When this time has elapsed, the circuit breaker 60 ends the control to continue the ON state and returns to the normal state.
  • Example of circuit breaker configuration shows an example of the configuration of the circuit breaker 100 according to the present embodiment.
  • the circuit breaker 100 described here can also be used as another circuit breaker in a microgrid.
  • the circuit breaker 100 in this embodiment has a circuit breaker unit 110, a current detection unit 120, a circuit breaker unit 130, and a control unit 140. Both circuit breakers 110 and 130 turn the current on/off (open/close) in accordance with a control signal from control unit 140 that is based on the current value measured using current detection unit 120.
  • the "circuit breaker” may also be called a “circuit breaker device.”
  • the "circuit breaker unit 110 and circuit breaker unit 130" may also be called a “circuit breaker unit.”
  • the interrupter unit 110 interrupts current in one direction, and the interrupter unit 130 interrupts current in the opposite direction.
  • the control unit 140 performs signal detection, ON/OFF control, threshold determination, and the like to suppress inrush current. In addition, as a normal operation, the control unit 140 transmits a control signal to instruct the interrupter unit 310/interrupter unit 330 to turn ON/OFF based on the current value measured using the current detection unit 120 and the set setting value.
  • FIG. 7 shows a specific example of the configuration of the circuit breaker 100.
  • the circuit breaker 110 includes a capacitor 111, a transistor 112, and a diode 113.
  • the current detection unit 120 includes a current sensor 121.
  • the circuit breaker 130 includes a diode 131, a transistor 132, and a capacitor 133.
  • Transistors 112 and 132 are, for example, MOSFETs.
  • Current sensor 121 is, for example, a Hall element or a shunt resistor. Note that the use of capacitors/diodes in the locations indicated by 111, 113, 131, and 133 is one example.
  • the control unit 140 has a measurement unit 141, a calculation unit 142, a control processing unit 143, and a communication unit 144.
  • the measurement unit 141, the calculation unit 142, the control processing unit 143, and the communication unit 144 may all be realized by a hardware circuit, or may be realized by having a computer consisting of a CPU and memory execute a program. Note that the communication unit 144 may not be provided.
  • the measurement unit 141 measures the current value based on the signal obtained from the current detection unit 120.
  • the calculation unit 142 determines, for example, based on the current value and the set value, whether or not to send a control signal to instruct the cutoff unit 310/cutoff unit 330 to cut off.
  • the calculation unit 142 also executes threshold determination and the like in the flow described below.
  • the calculation unit 142 also instructs the control processing unit 143 to perform ON/OFF control operations.
  • the control processing unit 143 transmits a control signal instructing ON/OFF to the interrupting unit 110/interrupting unit 130 based on instructions from the calculation unit 142.
  • the communication unit 144 communicates with the control device 100 described below, and between the circuit breakers.
  • the control processing unit 143 and the calculation unit 142 may be integrated into a single functional unit. This single functional unit may be called a control unit or a control processing unit.
  • basic data required for subsequent calculations is input to the control unit 140 of the circuit breaker 100.
  • the input basic data is stored, for example, in a data storage unit (memory, etc.) in the control unit 140.
  • the basic data is, for example, the ON time and OFF time of the inrush current mode, and the threshold value of the current magnitude for transitioning to the current continuation mode (a mode in which the ON state continues, a normal mode), etc.
  • the control unit 140 waits (monitors a signal).
  • the calculation unit 142 in the control unit 140 detects a signal indicating an event that will cause an inrush current (Yes in S3), the process proceeds to S4.
  • a "signal indicating an event that will cause an inrush current” is, for example, a signal indicating that the MCCB 50 has been turned ON, a signal indicating that the power circuit of the load device connected to the circuit breaker 100 has been turned ON, or a signal indicating that the circuit breaker has been turned ON.
  • the "signal indicating an event that generates an inrush current” may also be a “signal indicating that a current greater than or equal to a threshold has been detected to flow through the circuit breaker 100.”
  • the circuit breaker 100 transitions to the inrush current mode.
  • the calculation unit 142 notifies the control processing unit 143 of, for example, the specified ON time and OFF time.
  • the control processing unit 143 executes ON/OFF control by transmitting a control signal to the circuit breaker units 110/130 according to the notified ON time and OFF time.
  • the measurement unit 141 uses the current detection unit 120 to measure the current flowing through the power line. The current measurement result is notified to the calculation unit 142.
  • the calculation unit 142 detects that the magnitude of the peak current is equal to or less than the threshold value (or is less than the threshold value) (Yes in S5), it proceeds to S6.
  • the circuit breaker 100 (specifically, the calculation unit 142) stops repeating ON/OFF and switches the mode to the current continuation mode.
  • the control processing unit 143 controls the circuit breaker units 110/130 to maintain the ON state, for example, until a stop signal is received (S6, S7).
  • circuit breaker 100 If a short circuit occurs and the circuit breaker 100 detects a large current while the ON state is maintained, the circuit breaker 100 will turn OFF.
  • the ON time and the OFF time may each be a predetermined length or may be variable.
  • the ON time and the OFF time may each be a predetermined length or may be variable.
  • an example of a case where they are variable will be described.
  • control in which the ON time is gradually lengthened is shown, but control in which the ON time is gradually shortened may also be performed.
  • gradually lengthening the ON time means, for example, making the length of the ON time for the n+1th (an integer equal to or greater than n1) ON/OFF cycle longer than the length of the ON time for the nth cycle.
  • Figure 9 shows an example of the waveform of the current flowing through the interrupter when the control unit 140 detects an event that generates an inrush current and performs control to gradually lengthen the ON time.
  • the control unit 140 when it detects that the current value detected by the current detection unit 120 has reached a threshold value, it notifies the breaker unit of a signal (OFF signal) to turn off the breaker unit. If the peak current value of the waveform shown in FIG. 9 is X, the threshold value is Y, which is lower than X. The reason for this control is that there is a time lag between sending the OFF signal and the breaker unit turning OFF.
  • the control unit 140 After sending the OFF signal, the control unit 140 turns the interrupter ON again, for example after a predetermined OFF time has elapsed, and when it detects that the current value has reached the threshold value (Y), it sends an OFF signal to the interrupter to turn it OFF.
  • the cutoff unit can be transitioned from inrush current mode (a mode that turns ON/OFF) to continuous current mode (a mode that is always ON) in a shorter time than with control that keeps the ON time constant.
  • the circuit breaker 100 itself determines whether to switch to the inrush current mode and performs ON/OFF control in the inrush current mode, but this is not limited to this.
  • a control device 200 connected to the circuit breaker 100 via a communication line may instruct the circuit breaker 100 to switch to the inrush current mode based on information acquired from the circuit breaker 100.
  • Fig. 11 shows a configuration example of the control device 200 in the modified example.
  • the control device 200 includes an information acquisition unit 210, a calculation unit 220, an output unit 230, and a data storage unit 240. The operation of the control device 200 including these functional units will be described later.
  • the "calculation unit 220 and the output unit 230" may be referred to as a "control unit.”
  • the control device 200 can be realized, for example, by having a computer execute a program.
  • This computer may be a physical computer or a virtual machine on the cloud.
  • control device 200 can be realized by executing a program corresponding to the processing performed by the control device 200 using hardware resources such as a CPU and memory built into the computer.
  • the above program can be recorded on a computer-readable recording medium (such as a portable memory) and stored or distributed.
  • the above program can also be provided via a network such as the Internet or email.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the computer.
  • the computer in FIG. 12 has a drive device 1000, an auxiliary storage device 1002, a memory device 1003, a CPU 1004, an interface device 1005, a display device 1006, an input device 1007, an output device 1008, etc., all of which are interconnected by a bus BS.
  • the computer may further include a GPU.
  • the program that realizes the processing on the computer is provided by a recording medium 1001, such as a CD-ROM or a memory card.
  • a recording medium 1001 storing the program is set in the drive device 1000, the program is installed from the recording medium 1001 via the drive device 1000 into the auxiliary storage device 1002.
  • the program does not necessarily have to be installed from the recording medium 1001, but may be downloaded from another computer via a network.
  • the auxiliary storage device 1002 stores the installed program as well as necessary files, data, etc.
  • the memory device 1003 When an instruction to start a program is received, the memory device 1003 reads out and stores the program from the auxiliary storage device 1002.
  • the CPU 1004 realizes functions related to the control device 200 in accordance with the program stored in the memory device 1003.
  • the interface device 1005 is used as an interface for connecting to a network, etc.
  • the display device 1006 displays a GUI (Graphical User Interface) or the like according to a program.
  • the input device 1007 is composed of a keyboard and mouse, buttons, a touch panel, etc., and is used to input various operational instructions.
  • the output device 1008 outputs the results of calculations.
  • the input basic data is stored in the data storage unit 240.
  • the basic data includes, for example, the ON time and OFF time of the inrush current mode, and the threshold value of the current magnitude for transitioning to the current continuation mode (a mode in which the ON state continues, a normal mode).
  • the control device 200 waits (monitors a signal).
  • the calculation unit 220 in the control device 200 detects a signal indicating an event that will cause an inrush current (Yes in S3), the calculation unit 220 proceeds to S4.
  • the "signal indicating an event that will cause an inrush current" is as described above.
  • the above signal may be detected by the circuit breaker 100 and transmitted from the circuit breaker 100 to the control device 200, or may be transmitted from the MCCB 50 or the load device to the control device 200.
  • the information acquisition unit 210 receives the above signal and passes it to the calculation unit 220.
  • the calculation unit 220 of the control device 200 decides to switch the mode of the circuit breaker 100 to the inrush current mode, and transmits a signal instructing the circuit breaker 100 to switch the mode to the inrush current mode from the output unit 230.
  • the control device 200 also transmits the ON time and the OFF time to the circuit breaker 100 along with the signal instructing the circuit breaker 100 to switch the mode to the inrush current mode.
  • control processing unit 143 executes ON/OFF control by sending control signals to the circuit breaker units 110/130 according to the notified ON and OFF times.
  • the measurement unit 141 of the circuit breaker 100 uses the current detection unit 120 to measure the current flowing through the power line, and the communication unit 144 transmits the measurement result to the control device 200.
  • the control device 200 transmits a signal to the circuit breaker 100 to switch the mode to the current continuation mode.
  • the circuit breaker 100 which receives the signal, switches to the current continuation mode.
  • the control processing unit 143 of the circuit breaker 100 controls the circuit breaker units 110/130 to maintain the ON state, for example, until a stop signal is received (S6, S7).
  • the technique described in this embodiment makes it possible to suppress inrush current without providing an inrush current suppression circuit on the load device side.
  • the technology described in this embodiment makes it possible to realize inrush current suppression while simplifying the circuit to reduce costs, reducing the number of parts, and making the device smaller in volume. Furthermore, compared to the prior art where an inrush current suppression circuit is provided, the resistance components can be reduced, and constant power loss can be reduced. Furthermore, it is possible to prevent the DC/DC converter from shutting down due to an overvoltage caused by the inrush current.
  • Additional Notes a breaker unit that breaks and connects a power line connecting a DC power source and a load device; a control unit that controls the interrupter to repeatedly interrupt and connect the power line when an occurrence of an inrush current is detected.
  • the control unit is determining that an inrush current has occurred when a signal indicating an event that generates an inrush current is received; or When the magnitude of the current flowing through the power line becomes equal to or greater than a threshold, it is determined that an inrush current has occurred.
  • the interrupter device according to claim 1.
  • the interrupting device according to claim 1 or 2 wherein the control unit controls the interrupting unit to repeatedly perform interruption and connection during an OFF time and an ON time.
  • a method for suppressing inrush current performed by a breaker provided between a DC power source and a load device connected by a power line comprising: Detecting an occurrence of an inrush current; and repeatedly disconnecting and connecting the power line.
  • a non-transitory storage medium storing a program for causing a computer to function as each unit in the control device described in appended claim 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

This breaker device comprises: a breaker unit that breaks and connects a power line with which a DC power source and a load device are connected; and a control unit that, if an inrush current is detected, controls the breaker unit so as to repeatedly break and connect the power line.

Description

遮断装置、制御装置、突入電流抑制方法、及びプログラムCircuit breaker, control device, inrush current suppression method, and program
 本発明は、給電システムにおける突入電流を抑制するための技術に関連するものである。 The present invention relates to technology for suppressing inrush current in a power supply system.
 直流の給電システムに負荷装置を新たに接続する場合等において、電力線に一時的に大電流が流れる。これを突入電流と呼ぶ。突入電流により電源回路の故障等が発生する可能性があるため、突入電流を抑制することが必要である。 When a new load device is connected to a DC power supply system, a large current flows temporarily through the power lines. This is called inrush current. Inrush current can cause problems such as breakdowns in the power supply circuit, so it is necessary to suppress inrush current.
 従来技術では、突入電流の抑制のために、負荷装置側に突入電流抑制回路(抵抗あるいはサーミスタ等)を備えることで、常時回路の抵抗を大きくする対策や遮断器投入後のみ抵抗を大きくする対策が用いられていた(例えば特許文献1)。 In conventional technology, in order to suppress inrush current, a countermeasure has been used in which the resistance of the circuit is constantly increased by providing an inrush current suppression circuit (resistor or thermistor, etc.) on the load device side, or the resistance is increased only after the circuit breaker is closed (for example, Patent Document 1).
特開2007-116832号公報JP 2007-116832 A
 しかし、従来技術における突入電流抑制回路を用いた対策では、抵抗、サーミスタ、ダイオードブリッジ等が必要となり、回路の複雑化によるコスト増が発生するとともに、部品点数の増加による体積増が発生する。また、挿入した抵抗での損失が増加してしまう。 However, conventional countermeasures using inrush current suppression circuits require resistors, thermistors, diode bridges, etc., which increase costs due to the complexity of the circuit, and also increase the volume due to the increased number of parts. In addition, the loss in the inserted resistors increases.
 本発明は上記の点に鑑みてなされたものであり、負荷装置側に突入電流抑制回路を備えることなく、突入電流の抑制を実現するための技術を提供することを目的とする。 The present invention was made in consideration of the above points, and aims to provide a technology for suppressing inrush current without providing an inrush current suppression circuit on the load device side.
 開示の技術によれば、直流電源と負荷装置とを接続する電力線の遮断と接続を行う遮断部と、
 突入電流の発生を検知した場合に、前記電力線の遮断と接続を繰り返し行うよう前記遮断部を制御する制御部と
 を備える遮断装置が提供される。
According to the disclosed technique, a power supply circuit includes: a breaker that breaks and connects a power line that connects a DC power supply and a load device;
and a control unit that controls the interrupter to repeatedly interrupt and connect the power line when an occurrence of an inrush current is detected.
 開示の技術によれば、負荷装置側に突入電流抑制回路を備えることなく、突入電流の抑制を実現することを可能とする技術が提供される。 The disclosed technology provides a technology that makes it possible to suppress inrush current without providing an inrush current suppression circuit on the load device side.
給電システムの構成図である。FIG. 1 is a configuration diagram of a power supply system. 突入電流の波形を示す図である。FIG. 4 is a diagram showing the waveform of an inrush current. 突入電流の波形を示す図である。FIG. 4 is a diagram showing the waveform of an inrush current. マイクログリッドの例を示す図である。FIG. 1 illustrates an example of a microgrid. マイクログリッドにおいて需要家がバスに接続される例を示す図である。FIG. 1 is a diagram illustrating an example in which consumers are connected to a bus in a microgrid. 遮断器の構成例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of a circuit breaker. 遮断器の構成例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of a circuit breaker. 突入電流抑制処理のフローチャートである。4 is a flowchart of an inrush current suppression process. ON時間を徐々に長くする場合の波形の例を示す図である。FIG. 13 is a diagram showing an example of waveforms when the ON time is gradually increased. 制御装置200を含むシステムの構成図である。FIG. 2 is a configuration diagram of a system including a control device 200. 制御装置200の機能構成図である。FIG. 2 is a functional configuration diagram of a control device 200. 制御装置200のハードウェア構成例を示す図である。FIG. 2 is a diagram illustrating an example of a hardware configuration of a control device 200.
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。 Below, an embodiment of the present invention (present embodiment) will be described with reference to the drawings. The embodiment described below is merely an example, and the embodiment to which the present invention is applicable is not limited to the embodiment described below.
 以下の説明において、遮断器(遮断部、遮断装置とも呼ぶ)をOFFにするとは、電路(電流の通路)を遮断することである。遮断器をOFFにすることを、遮断器を開放すると表現してもよい。電路を遮断することを、電路を開放する、電流を遮断する、電力線を遮断する、などと表現してもよい。 In the following explanation, turning off a circuit breaker (also called a circuit breaker section or circuit breaker device) means interrupting the electric circuit (path of current). Turning off a circuit breaker may also be expressed as opening the circuit breaker. Interrupting an electric circuit may also be expressed as opening the electric circuit, interrupting the current, interrupting the power line, etc.
 遮断器をONにするとは、電路を接続状態にすることである。遮断器をONにすることを、遮断器を投入すると表現してもよい。電路を接続状態にすることを、電力線を接続する、電路を閉じる、などと表現してもよい。 Turning a circuit breaker ON means connecting the electrical circuit. Turning a circuit breaker ON can also be expressed as "closing the circuit breaker." Connecting the electrical circuit can also be expressed as "connecting the power line," "closing the electrical circuit," etc.
 以下で説明する給電システムは、直流の給電システムである。ただし、本発明に係る技術は直流の給電システムに限らずに適用可能である。また、以下の説明で使用する通信線(ネットワークと呼んでもよい)は、特定の種類に限定されないが、例えば、メタル線、光ファイバ、あるいは電波などである。 The power supply system described below is a DC power supply system. However, the technology according to the present invention is not limited to DC power supply systems and can be applied to other systems. Furthermore, the communication lines (which may be called networks) used in the following description are not limited to a specific type, but may be, for example, metal wires, optical fibers, or radio waves.
 (実施の形態の基本構成)
 図1に、本実施の形態における給電システムの基本構成を示す。図1に示すように、本実施の形態における給電システムは、直流電源10と負荷装置20が電力線で接続され、電力線に遮断器100が備えられている。なお、遮断器を遮断装置と呼んでもよい。
(Basic configuration of the embodiment)
A basic configuration of a power supply system according to the present embodiment is shown in Fig. 1. As shown in Fig. 1, in the power supply system according to the present embodiment, a DC power source 10 and a load device 20 are connected by a power line, and a circuit breaker 100 is provided on the power line. The circuit breaker may also be called a circuit breaker.
 負荷装置20は、電源回路30(DC/DCコンバータ)とコンデンサ40(Xコンデンサと呼ばれる)を含む。なお、本実施の形態では、負荷装置20内にコンデンサ40を備えることとしているが、これは例である。コンデンサ40は、給電システムにおける正側電力線と負側電力線の間であれば、どこに備えられてもよい。 The load device 20 includes a power supply circuit 30 (DC/DC converter) and a capacitor 40 (called an X capacitor). In this embodiment, the capacitor 40 is provided within the load device 20, but this is an example. The capacitor 40 may be provided anywhere between the positive power line and the negative power line in the power supply system.
 遮断器100は、電力線を開閉(遮断(OFF)、接続(ON))するための遮断部を含む。遮断部は機械式であってもよいし、半導体式であってもよいし、電磁式のものであってもよいし、これら以外の方式であってもよい。ただし、本実施の形態では、半導体式の遮断部を使用することを想定している。半導体式の遮断部を使用した遮断器を半導体遮断器と呼んでもよい。遮断器100の構成の具体例については後述する。 The circuit breaker 100 includes a circuit breaker section for opening and closing (cutting (OFF) and connecting (ON)) the power line. The circuit breaker section may be mechanical, semiconductor, electromagnetic, or of another type. However, in this embodiment, it is assumed that a semiconductor circuit breaker section is used. A circuit breaker using a semiconductor circuit breaker section may be called a semiconductor circuit breaker. A specific example of the configuration of the circuit breaker 100 will be described later.
 なお、図1に示す給電システムは、例えば、マイクログリッドにおいて使用されることが想定される。給電システムが、マイクログリッドにおいて使用される場合、直流電源10はバス側に備えられ、負荷装置20は需要家側に備えられる。そのため、図1には、「バス側」、「需要家側」が記載されている。 The power supply system shown in FIG. 1 is assumed to be used in, for example, a microgrid. When the power supply system is used in a microgrid, the DC power source 10 is provided on the bus side, and the load device 20 is provided on the consumer side. For this reason, FIG. 1 describes the "bus side" and the "consumer side."
 図1に示す給電システムにおいて、直流電源10の電流を印加した状態で、図1の矢印に示すように遮断器100をOFFからONにすると、負荷装置20のコンデンサ40に向けて、例えば数百Aの突入電流が流れる。突入電流により、電源回路が停止したり破損したりする可能性がある。突入電流の波形の例を図2に示す。 In the power supply system shown in FIG. 1, when the circuit breaker 100 is turned from OFF to ON as shown by the arrow in FIG. 1 while current is being applied from the DC power source 10, an inrush current of, for example, several hundred amperes flows toward the capacitor 40 of the load device 20. The inrush current may cause the power supply circuit to stop or become damaged. An example of the waveform of the inrush current is shown in FIG. 2.
 上記のような突入電流を抑制するために、本実施の形態では、遮断器100が、突入電流を発生させる事象を示す信号(突入電流の開始を示す信号)を検知すると、遮断器100は遮断部を複数回ON/OFFさせる。この場合の電流の波形を図3に示す。なお、遮断器100は、電力線を流れる電流の大きさが閾値以上になったことを検知した場合に、突入電流の発生を検知したと判断して、遮断部を複数回ON/OFFさせることとしてもよい。 In order to suppress the above-mentioned inrush current, in this embodiment, when the circuit breaker 100 detects a signal indicating an event that generates an inrush current (a signal indicating the start of an inrush current), the circuit breaker 100 turns the circuit breaker unit on and off multiple times. The current waveform in this case is shown in Figure 3. Note that when the circuit breaker 100 detects that the magnitude of the current flowing through the power line has exceeded a threshold value, it may determine that an inrush current has been detected and turn the circuit breaker unit on and off multiple times.
 遮断部を複数回ON/OFFさせることで、コンデンサ40を間欠的に充電することができる。コンデンサ40への充電(電荷の蓄積)により、コンデンサ40の電圧は上昇し、電力線に流れる電流は減少する。図3は、遮断部をONする度に、電流の大きさのピークが減少していくことを示している。 By turning the circuit breaker on and off multiple times, the capacitor 40 can be charged intermittently. As the capacitor 40 is charged (accumulated), the voltage of the capacitor 40 increases and the current flowing through the power line decreases. Figure 3 shows that the peak current decreases each time the circuit breaker is turned on.
 例えば、「ON時間」を、遮断部をONとしておく時間長とし、「OFF時間」を、遮断部をOFFとしておく時間長とする。ON時間とOFF時間とを周期的に繰り返すことで、図3に示す波形を得ることができる。遮断器100は、電力線を流れる電流のピークの大きさが閾値以下になったことを検知すると、ON/OFF動作を停止して、ON状態を継続させる。 For example, the "ON time" is the length of time that the circuit breaker is ON, and the "OFF time" is the length of time that the circuit breaker is OFF. By periodically repeating the ON time and OFF time, the waveform shown in Figure 3 can be obtained. When the circuit breaker 100 detects that the peak magnitude of the current flowing through the power line has fallen below a threshold, it stops the ON/OFF operation and maintains the ON state.
 上記の処理により、突入電流のピークを低減させることができる。なお、ON時間とOFF時間はいずれも、特定の時間長に限定されないが、例えば、数ns~数ms程度の時間長である。「数ns~数ms程度の時間長」とは、例えば、1ns~10msの範囲にある時間長である。なお、OFF時間は、ON時間よりも長い時間長であってもよい。OFF時間は、例えば、数s程度であってもよい。「数s程度」とは、例えば、1s~10sの範囲にある時間長である。 The above process can reduce the peak of the inrush current. Note that the ON time and OFF time are not limited to a specific time length, but may be, for example, a time length of about several ns to several ms. "A time length of about several ns to several ms" is, for example, a time length in the range of 1 ns to 10 ms. Note that the OFF time may be longer than the ON time. The OFF time may be, for example, about several seconds. "A time length of about several seconds" is, for example, a time length in the range of 1 s to 10 s.
 (システム構成例、動作例)
 本実施の形態における給電システムは、例えば、マイクログリッドに適用することができる。マイクログリッドは、例えば、図4に示すように、リング状の電力線(バスと呼ぶ)に、各需要家が電力線により接続された構成を有する。また、マイクログリッドに複数の遮断器が備えられる。需要家としては、負荷、蓄電池、再生エネルギー発電装置などの様々な需要家が存在する。
(System configuration and operation examples)
The power supply system according to the present embodiment can be applied to, for example, a microgrid. As shown in Fig. 4, for example, the microgrid has a configuration in which consumers are connected to a ring-shaped power line (called a bus) via a power line. The microgrid is also provided with a plurality of circuit breakers. There are various types of consumers, such as loads, storage batteries, and renewable energy power generation devices.
 図5は、マイクログリッド全体から、バスに接続される一部の需要家の部分を抜き出して示した図である。図5に示す例において、マイクログリッドのバスと需要家Aとの間に本実施の形態における遮断器100が挿入されている。需要家Aには、図1に示した負荷装置20が備えられるが、図5には電源回路30が示されている。マイクログリッドのバスは有電圧状態であり、図1に示した直流電源10がONである状態に相当する。 FIG. 5 is a diagram showing some of the consumers connected to the bus from the entire microgrid. In the example shown in FIG. 5, a circuit breaker 100 according to this embodiment is inserted between the microgrid bus and consumer A. Consumer A is equipped with the load device 20 shown in FIG. 1, but FIG. 5 shows a power supply circuit 30. The microgrid bus is in a voltage state, which corresponds to a state in which the DC power supply 10 shown in FIG. 1 is ON.
 また、図5に示す例では、マイクログリッドのバスと遮断器100との間にMCCB(Molded Case Circuit Breaker)50が備えられ、遮断器100とMCCB50との間は通信線により接続されている。なお、MCCB50を備えないこととしてもよい。 In the example shown in FIG. 5, a Molded Case Circuit Breaker (MCCB) 50 is provided between the microgrid bus and the circuit breaker 100, and the circuit breaker 100 and the MCCB 50 are connected by a communication line. Note that the MCCB 50 may not be provided.
 上述のとおり、マイクログリッドのバスは有電圧状態になっている。そのため、本発明に係る技術を使用しない場合には、マイクログリッドに新しく需要家A(具体的には負荷装置20)を接続する際に、遮断器100をOFFからONにすると、又は、遮断器100がONの状態でMCCB50をOFFからONにすると、バス側から需要家A側に大きな突入電流が流れ、負荷装置20の電源回路30(具体的にはDC/CDコンバータ)が停止する可能性がある。更に、突入電流によりマイクログリッドのバスに電圧変動が発生し、バスに接続された他の需要家Bの電源回路まで停止してしまう可能性がある。 As described above, the microgrid bus is in a voltage-applied state. Therefore, if the technology of the present invention is not used, when a new consumer A (specifically, load device 20) is connected to the microgrid, if the circuit breaker 100 is turned from OFF to ON, or if the MCCB 50 is turned from OFF to ON while the circuit breaker 100 is ON, a large inrush current will flow from the bus to consumer A, which may cause the power supply circuit 30 (specifically, the DC/CD converter) of the load device 20 to stop. Furthermore, the inrush current may cause a voltage fluctuation on the microgrid bus, which may also cause the power supply circuit of another consumer B connected to the bus to stop.
 本実施の形態に係る技術により、上記のような突入電流を抑制することができる。つまり、突入電流の大きさを低減させることができる。 The technology according to this embodiment makes it possible to suppress the above-mentioned inrush current. In other words, it is possible to reduce the magnitude of the inrush current.
 具体的には、例えば、マイクログリッドに新たに需要家A(具体的には負荷装置20)を接続する際に、MCCB50をONにすると、MCCB50をONにしたことを示す信号が通信線により遮断器100に通知される。 Specifically, for example, when a new consumer A (specifically, load device 20) is connected to the microgrid, if the MCCB 50 is turned ON, a signal indicating that the MCCB 50 has been turned ON is sent to the circuit breaker 100 via the communication line.
 遮断器100は、上記の信号を受信した後、予め定めた閾値以上の大きさの電流が遮断器100に流れたことを検知すると、前述したように連続的に遮断部をON/OFFすることでコンデンサ40への充電を段階的に行い、突入電流を抑制する。なお、遮断器100は、上記の信号を受信した後、予め定めた閾値以上の大きさの電流が遮断器100に流れたことを検知する処理を行うことなく、連続的に遮断部をON/OFFする制御を開始してもよい。 After receiving the above signal, when the circuit breaker 100 detects that a current greater than or equal to a predetermined threshold has flowed through the circuit breaker 100, it continuously turns the circuit breaker unit ON/OFF as described above to charge the capacitor 40 in stages and suppress the inrush current. Note that after receiving the above signal, the circuit breaker 100 may start control to continuously turn the circuit breaker unit ON/OFF without performing a process to detect that a current greater than or equal to a predetermined threshold has flowed through the circuit breaker 100.
 また、例えば、マイクログリッドに新たに需要家A(具体的には負荷装置20)を接続する際に、MCCB50がONの状態で、遮断器100が遮断部をOFFからONにすると、遮断器100の内部で、ON/OFFを制御する機能部に、遮断部をONにしたことを示す信号が通知される。 Also, for example, when a new consumer A (specifically, load device 20) is connected to the microgrid, if the MCCB 50 is in the ON state and the circuit breaker 100 turns the circuit breaker unit from OFF to ON, a signal indicating that the circuit breaker unit has been turned ON is sent to the function unit inside the circuit breaker 100 that controls ON/OFF.
 当該機能部は、上記の信号を受信した後、予め定めた閾値以上の大きさの電流が遮断器100に流れたことを検知すると、前述したように連続的に遮断部をON/OFFすることでコンデンサ40への充電を段階的に行い、突入電流を抑制する。なお、ON/OFFを繰り返す状態を「突入電流抑制モード」と呼んでもよい。また、上記機能部は、上記の信号を受信した後、予め定めた閾値以上の大きさの電流が遮断器100に流れたことを検知する処理を行うことなく、連続的に遮断部をON/OFFすることでコンデンサ40への充電を段階的に行う制御を開始してもよい。 After receiving the signal, if the functional unit detects that a current greater than or equal to a predetermined threshold has flowed through the circuit breaker 100, it will continuously turn the circuit breaker ON/OFF as described above to charge the capacitor 40 in stages and suppress the inrush current. The state in which the circuit breaker is repeatedly turned ON/OFF may be called the "inrush current suppression mode." Furthermore, after receiving the signal, the functional unit may start control to charge the capacitor 40 in stages by continuously turning the circuit breaker ON/OFF, without performing a process to detect that a current greater than or equal to a predetermined threshold has flowed through the circuit breaker 100.
 また、例えば、MCCBがONの状態で、遮断器100が、需要家Aの電源回路30がONされたことを示すON信号を受信すると、遮断器100は、一定時間、突入電流抑制モードとなる。突入電流抑制モードでは、遮断器100が短時間でON/OFFを繰り返し、突入電流を抑制する。 For example, when the MCCB is ON and the circuit breaker 100 receives an ON signal indicating that the power supply circuit 30 of consumer A is ON, the circuit breaker 100 goes into inrush current suppression mode for a certain period of time. In the inrush current suppression mode, the circuit breaker 100 repeatedly turns ON and OFF in a short period of time to suppress the inrush current.
 上記のいずれの場合でも、遮断器100は、遮断部のON/OFFを繰り返す中で、突入電流のピークの大きさが閾値以下になったことを検知すると、ON/OFF制御を停止して、ON状態を維持する。 In any of the above cases, when the circuit breaker 100 detects that the peak magnitude of the inrush current has fallen below a threshold while repeatedly turning the circuit breaker unit on and off, it stops the on/off control and maintains the on state.
 なお、遮断器100において、上述したON/OFF制御により突入電流の電流レベルを小さくしても、遮断器100と電力線を介して接続される他の遮断器60が動作する(OFFになる)可能性がある。 Note that even if the current level of the inrush current is reduced in the circuit breaker 100 by the above-mentioned ON/OFF control, there is a possibility that another circuit breaker 60 connected to the circuit breaker 100 via a power line may operate (become OFF).
 遮断器100による突入電流抑制の動作に起因して他の遮断器60が誤って動作することを防止するための動作例として、下記の例1、例2がある。下記の例1、例2いずれの場合でも、遮断器100と他の遮断器60とは通信線で接続されているとする。 The following examples 1 and 2 are examples of operations for preventing other circuit breakers 60 from erroneously operating due to the inrush current suppression operation by the circuit breaker 100. In both examples 1 and 2 below, the circuit breaker 100 and the other circuit breakers 60 are connected by a communication line.
 <例1>
 遮断器100は、突入電流抑制の動作を開始する際に、突入電流抑制の動作を開始することを示す信号を他の遮断器60に通知する。当該他の遮断器60は、当該信号を受信したことで、遮断器60のON状態を継続するように制御する。
<Example 1>
When starting the operation of suppressing the inrush current, the circuit breaker 100 notifies the other circuit breaker 60 of a signal indicating the start of the operation of suppressing the inrush current. Upon receiving the signal, the other circuit breaker 60 controls the circuit breaker 60 to continue in the ON state.
 遮断器100は、突入電流抑制の動作を終了する際に、突入電流抑制の動作を終了することを示す信号を当該他の遮断器60に通知する。当該他の遮断器60は、当該信号を受信したことで、遮断器60のON状態を継続する制御を終了し、通常状態に戻る。 When the circuit breaker 100 ends the inrush current suppression operation, it notifies the other circuit breaker 60 of the end of the inrush current suppression operation. Upon receiving the signal, the other circuit breaker 60 ends the control to keep the circuit breaker 60 in the ON state and returns to the normal state.
 <例2>
 遮断器100は、突入電流抑制の動作を開始する際に、突入電流抑制の動作を開始することを示す信号を他の遮断器60に通知する。当該他の遮断器60は、当該信号を受信したことで、遮断器60のON状態を、予め定めた時間だけ継続するように制御する。この時間が経過すると、遮断器60は、ON状態を継続する制御を終了し、通常状態に戻る。
<Example 2>
When the circuit breaker 100 starts the operation of suppressing the inrush current, it notifies the other circuit breaker 60 of a signal indicating the start of the operation of suppressing the inrush current. Upon receiving the signal, the other circuit breaker 60 controls the circuit breaker 60 to continue the ON state for a predetermined time. When this time has elapsed, the circuit breaker 60 ends the control to continue the ON state and returns to the normal state.
 (遮断器の構成例)
 図6に、本実施の形態における遮断器100の構成例を示す。ここで説明する遮断器100は、マイクログリッドにおける他の遮断器としても使用することができる。
(Example of circuit breaker configuration)
6 shows an example of the configuration of the circuit breaker 100 according to the present embodiment. The circuit breaker 100 described here can also be used as another circuit breaker in a microgrid.
 図6に示すように、本実施の形態における遮断器100は、遮断部110、電流検出部120、遮断部130、制御部140を有する。遮断部110、130はいずれも、電流検出部120を用いて測定された電流値に基づく制御部140からの制御信号に従って、電流のON/OFF(開通/遮断)を行う。なお、「遮断器」を「遮断装置」と呼んでもよい。また、「遮断部110と遮断部130」を「遮断部」と呼んでもよい。 As shown in FIG. 6, the circuit breaker 100 in this embodiment has a circuit breaker unit 110, a current detection unit 120, a circuit breaker unit 130, and a control unit 140. Both circuit breakers 110 and 130 turn the current on/off (open/close) in accordance with a control signal from control unit 140 that is based on the current value measured using current detection unit 120. Note that the "circuit breaker" may also be called a "circuit breaker device." Also, the "circuit breaker unit 110 and circuit breaker unit 130" may also be called a "circuit breaker unit."
 遮断部110は、片方向の電流の遮断を行い、遮断部130は、その方向と逆の片方向の電流の遮断を行う。制御部140は、突入電流抑制のための、信号検知、ON/OFF制御、閾値判定などを行う。また、制御部140は、通常の動作として、電流検出部120を用いて測定された電流値と、設定された整定値に基づいて、遮断部310/遮断部330に対してON/OFFを指示する制御信号を送信する動作を行う。 The interrupter unit 110 interrupts current in one direction, and the interrupter unit 130 interrupts current in the opposite direction. The control unit 140 performs signal detection, ON/OFF control, threshold determination, and the like to suppress inrush current. In addition, as a normal operation, the control unit 140 transmits a control signal to instruct the interrupter unit 310/interrupter unit 330 to turn ON/OFF based on the current value measured using the current detection unit 120 and the set setting value.
 図7に、遮断器100の具体的な構成例を示す。図7の例において、遮断部110は、コンデンサ111、トランジスタ112、ダイオード113を備える。電流検出部120は、電流センサ121を備える。遮断部130は、ダイオード131、トランジスタ132、コンデンサ133を備える。 FIG. 7 shows a specific example of the configuration of the circuit breaker 100. In the example of FIG. 7, the circuit breaker 110 includes a capacitor 111, a transistor 112, and a diode 113. The current detection unit 120 includes a current sensor 121. The circuit breaker 130 includes a diode 131, a transistor 132, and a capacitor 133.
 トランジスタ112、132は、例えば、MOSFETである。電流センサ121は、例えば、ホール素子、シャント抵抗などである。なお、111、113、131、及び133に示す部位にコンデンサ/ダイオードを使用することは一例である。 Transistors 112 and 132 are, for example, MOSFETs. Current sensor 121 is, for example, a Hall element or a shunt resistor. Note that the use of capacitors/diodes in the locations indicated by 111, 113, 131, and 133 is one example.
 制御部140は、計測部141、計算部142、制御処理部143、通信部144を有する。計測部141、計算部142、制御処理部143、及び通信部144はいずれも、ハードウェア回路で実現してもよいし、CPUとメモリからなるコンピュータにプログラムを実行させることにより実現してもよい。なお、通信部144を備えないこととしてもよい。 The control unit 140 has a measurement unit 141, a calculation unit 142, a control processing unit 143, and a communication unit 144. The measurement unit 141, the calculation unit 142, the control processing unit 143, and the communication unit 144 may all be realized by a hardware circuit, or may be realized by having a computer consisting of a CPU and memory execute a program. Note that the communication unit 144 may not be provided.
 計測部141は、電流検出部120から得られた信号に基づき電流値を計測する。計算部142は、例えば、電流値と整定値とに基づき、遮断部310/遮断部330に対して遮断を指示する制御信号を送信するか否かの判断を行う。また、計算部142は、後述するフローにおける閾値判定等を実行する。また、計算部142は、ON/OFF制御動作を制御処理部143に指示する。 The measurement unit 141 measures the current value based on the signal obtained from the current detection unit 120. The calculation unit 142 determines, for example, based on the current value and the set value, whether or not to send a control signal to instruct the cutoff unit 310/cutoff unit 330 to cut off. The calculation unit 142 also executes threshold determination and the like in the flow described below. The calculation unit 142 also instructs the control processing unit 143 to perform ON/OFF control operations.
 制御処理部143は、計算部142からの指示に基づいて、ON/OFFを指示する制御信号を遮断部110/遮断部130に対して送信する。通信部144は、後述する制御装置100との通信、遮断器間の通信などを行う。なお、制御処理部143と計算部142はまとまった1つの機能部であってもよい。その1つの機能部を制御部あるいは制御処理部と呼んでもよい。 The control processing unit 143 transmits a control signal instructing ON/OFF to the interrupting unit 110/interrupting unit 130 based on instructions from the calculation unit 142. The communication unit 144 communicates with the control device 100 described below, and between the circuit breakers. The control processing unit 143 and the calculation unit 142 may be integrated into a single functional unit. This single functional unit may be called a control unit or a control processing unit.
 (動作例)
 次に、図8のフローチャートの手順に沿って、遮断器100の具体的な動作例を説明する。
(Example of operation)
Next, a specific example of the operation of the circuit breaker 100 will be described in accordance with the procedure of the flowchart in FIG.
 S1において、遮断器100の制御部140に、以降の計算に必要な基礎データを入力する。入力された基礎データは、例えば、制御部140におけるデータ格納部(メモリ等)に格納される。基礎データは、例えば、突入電流モードのON時間とOFF時間、電流継続モード(ON状態を継続するモード、通常のモード)に移行するための電流の大きさの閾値などである。 In S1, basic data required for subsequent calculations is input to the control unit 140 of the circuit breaker 100. The input basic data is stored, for example, in a data storage unit (memory, etc.) in the control unit 140. The basic data is, for example, the ON time and OFF time of the inrush current mode, and the threshold value of the current magnitude for transitioning to the current continuation mode (a mode in which the ON state continues, a normal mode), etc.
 S2において、制御部140は待機する(信号を監視する)。制御部140における計算部142は、突入電流を発生させる事象を示す信号を検出すると(S3のYes)、S4に進む。「突入電流を発生させる事象を示す信号」とは、例えば、MCCB50がONになったことを示す信号、遮断器100に接続される負荷装置の電源回路がONになったことを示す信号、遮断部がONになったことを示す信号などである。 In S2, the control unit 140 waits (monitors a signal). When the calculation unit 142 in the control unit 140 detects a signal indicating an event that will cause an inrush current (Yes in S3), the process proceeds to S4. A "signal indicating an event that will cause an inrush current" is, for example, a signal indicating that the MCCB 50 has been turned ON, a signal indicating that the power circuit of the load device connected to the circuit breaker 100 has been turned ON, or a signal indicating that the circuit breaker has been turned ON.
 また、「突入電流を発生させる事象を示す信号」は、「遮断器100に閾値以上の大きさの電流が流れたことを検知したことを示す信号」であってもよい。 The "signal indicating an event that generates an inrush current" may also be a "signal indicating that a current greater than or equal to a threshold has been detected to flow through the circuit breaker 100."
 S4において、遮断器100(具体的には計算部142)は、モードを突入電流モードに移行させる。突入電流モードにおいて、計算部142は、例えば、指定されたON時間とOFF時間を制御処理部143に通知する。制御処理部143は、通知されたON時間とOFF時間に従って、遮断部110/130に対して制御信号を送信することにより、ON/OFF制御を実行する。 In S4, the circuit breaker 100 (specifically, the calculation unit 142) transitions to the inrush current mode. In the inrush current mode, the calculation unit 142 notifies the control processing unit 143 of, for example, the specified ON time and OFF time. The control processing unit 143 executes ON/OFF control by transmitting a control signal to the circuit breaker units 110/130 according to the notified ON time and OFF time.
 突入電流モードにおいて、計測部141は、電流検出部120を用いて、電力線を流れる電流を計測している。電流の計測結果は計算部142に通知される。計算部142は、電流のピークの大きさが閾値以下(あるいは閾値未満)になったことを検知すると(S5のYes)、S6に進む。 In the inrush current mode, the measurement unit 141 uses the current detection unit 120 to measure the current flowing through the power line. The current measurement result is notified to the calculation unit 142. When the calculation unit 142 detects that the magnitude of the peak current is equal to or less than the threshold value (or is less than the threshold value) (Yes in S5), it proceeds to S6.
 S6において、遮断器100(具体的には計算部142)は、ON/OFFの繰り返しを停止して、モードを電流継続モードに移行させる。電流継続モードにおいて、制御処理部143は、例えば停止信号があるまで、ON状態を維持するように、遮断部110/130を制御する(S6、S7)。 In S6, the circuit breaker 100 (specifically, the calculation unit 142) stops repeating ON/OFF and switches the mode to the current continuation mode. In the current continuation mode, the control processing unit 143 controls the circuit breaker units 110/130 to maintain the ON state, for example, until a stop signal is received (S6, S7).
 なお、ON状態を維持している期間において、もしも短絡が発生して、遮断器100が大きな電流を検知した場合には、遮断器100はOFFになる。 If a short circuit occurs and the circuit breaker 100 detects a large current while the ON state is maintained, the circuit breaker 100 will turn OFF.
 (ON時間とOFF時間について)
 本実施の形態(変形例を含む)において、ON時間とOFF時間はそれぞれ、予め定めた長さでもよいし、可変であってもよい。ここでは、可変である場合の例を説明する。以下では、「可変」の例として、ON時間を徐々に長くする制御の例を示しているが、ON時間を徐々に短くする制御が行われてもよい。
(Regarding ON time and OFF time)
In this embodiment (including the modified example), the ON time and the OFF time may each be a predetermined length or may be variable. Here, an example of a case where they are variable will be described. In the following, as an example of "variable", an example of control in which the ON time is gradually lengthened is shown, but control in which the ON time is gradually shortened may also be performed.
 なお、ON時間を徐々に長くすることにおける「徐々に」は、例えば、ON/OFFの繰り返しにおける、n+1回目(n1以上の整数)のON時間の長さを、n回目のON時間の長さよりも長くすることである。 Note that "gradually" in gradually lengthening the ON time means, for example, making the length of the ON time for the n+1th (an integer equal to or greater than n1) ON/OFF cycle longer than the length of the ON time for the nth cycle.
 制御部140が、突入電流を発生させる事象を検知した場合に、ON時間を徐々に長くする制御を行う際における、遮断部を流れる電流の波形の例を図9に示す。 Figure 9 shows an example of the waveform of the current flowing through the interrupter when the control unit 140 detects an event that generates an inrush current and performs control to gradually lengthen the ON time.
 図9に示す例において、制御部140は、遮断部をONにした後、電流検出部120により検出される電流値が閾値に達したことを検知すると、遮断部をOFFにするための信号(OFF信号)を遮断部に通知する。図9に示す波形のピークの電流値をXとすると、当該閾値は、Xよりも低いYとする。このような制御を行う理由は、OFF信号を送信してから、遮断部がOFFになるまでにタイムラグがあるためである。 In the example shown in FIG. 9, after the control unit 140 turns on the breaker unit, when it detects that the current value detected by the current detection unit 120 has reached a threshold value, it notifies the breaker unit of a signal (OFF signal) to turn off the breaker unit. If the peak current value of the waveform shown in FIG. 9 is X, the threshold value is Y, which is lower than X. The reason for this control is that there is a time lag between sending the OFF signal and the breaker unit turning OFF.
 制御部140は、OFF信号を送信してから、例えば予め定めたOFF時間の後に、再び遮断部をONとし、電流値が閾値(Y)に達したことを検知すると、遮断部にOFF信号を送信して、遮断部をOFFにする。 After sending the OFF signal, the control unit 140 turns the interrupter ON again, for example after a predetermined OFF time has elapsed, and when it detects that the current value has reached the threshold value (Y), it sends an OFF signal to the interrupter to turn it OFF.
 コンデンサ40に電荷が蓄積され、電圧が上昇するにつれて、コンデンサ40へ電荷が蓄積される速さは低下するので、上記のような制御を繰り返し行うことで、ON時間が徐々に長くなり、1回のON時間でコンデンサ40に蓄積する電荷の量を徐々に増加させることができる。結果として、ON時間を一定とする制御に比べて、より短時間で、遮断部を、突入電流モード(ON/OFFを行うモード)から、電流継続モード(常時ONとするモード)へ移行させることができる。 As charge accumulates in capacitor 40 and the voltage rises, the rate at which charge accumulates in capacitor 40 decreases, so by repeating the above control, the ON time gradually becomes longer, and the amount of charge accumulated in capacitor 40 during one ON time can be gradually increased. As a result, the cutoff unit can be transitioned from inrush current mode (a mode that turns ON/OFF) to continuous current mode (a mode that is always ON) in a shorter time than with control that keeps the ON time constant.
 (変形例)
 これまでに説明した例では、遮断器100自身が、突入電流モードへの移行判断、突入電流モードにおけるON/OFF制御を行っていたが、これに限定されるわけではない。例えば、図10に示すように、遮断器100と通信線で接続される制御装置200が、遮断器100から取得した情報に基づき、遮断器100に対して突入電流モードへの移行指示などを行ってもよい。
(Modification)
In the examples described so far, the circuit breaker 100 itself determines whether to switch to the inrush current mode and performs ON/OFF control in the inrush current mode, but this is not limited to this. For example, as shown in Fig. 10, a control device 200 connected to the circuit breaker 100 via a communication line may instruct the circuit breaker 100 to switch to the inrush current mode based on information acquired from the circuit breaker 100.
 <制御装置200の構成例>
 図11に、変形例における制御装置200の構成例を示す。図11に示すように、制御装置200は、情報取得部210、計算部220、出力部230、データ格納部240を備える。これら機能部を備える制御装置200の動作については後述する。なお、「計算部220と出力部230」を「制御部」と呼んでもよい。
<Configuration example of control device 200>
Fig. 11 shows a configuration example of the control device 200 in the modified example. As shown in Fig. 11, the control device 200 includes an information acquisition unit 210, a calculation unit 220, an output unit 230, and a data storage unit 240. The operation of the control device 200 including these functional units will be described later. The "calculation unit 220 and the output unit 230" may be referred to as a "control unit."
 制御装置200は、例えば、コンピュータにプログラムを実行させることにより実現できる。このコンピュータは、物理的なコンピュータであってもよいし、クラウド上の仮想マシンであってもよい。 The control device 200 can be realized, for example, by having a computer execute a program. This computer may be a physical computer or a virtual machine on the cloud.
 すなわち、制御装置200は、コンピュータに内蔵されるCPUやメモリ等のハードウェア資源を用いて、制御装置200で実施される処理に対応するプログラムを実行することによって実現することが可能である。上記プログラムは、コンピュータが読み取り可能な記録媒体(可搬メモリ等)に記録して、保存したり、配布したりすることが可能である。また、上記プログラムをインターネットや電子メール等、ネットワークを通して提供することも可能である。 In other words, the control device 200 can be realized by executing a program corresponding to the processing performed by the control device 200 using hardware resources such as a CPU and memory built into the computer. The above program can be recorded on a computer-readable recording medium (such as a portable memory) and stored or distributed. The above program can also be provided via a network such as the Internet or email.
 図12は、上記コンピュータのハードウェア構成例を示す図である。図12のコンピュータは、それぞれバスBSで相互に接続されているドライブ装置1000、補助記憶装置1002、メモリ装置1003、CPU1004、インタフェース装置1005、表示装置1006、入力装置1007、出力装置1008等を有する。なお、当該コンピュータは、更にGPUを備えてもよい。 FIG. 12 is a diagram showing an example of the hardware configuration of the computer. The computer in FIG. 12 has a drive device 1000, an auxiliary storage device 1002, a memory device 1003, a CPU 1004, an interface device 1005, a display device 1006, an input device 1007, an output device 1008, etc., all of which are interconnected by a bus BS. The computer may further include a GPU.
 当該コンピュータでの処理を実現するプログラムは、例えば、CD-ROM又はメモリカード等の記録媒体1001によって提供される。プログラムを記憶した記録媒体1001がドライブ装置1000にセットされると、プログラムが記録媒体1001からドライブ装置1000を介して補助記憶装置1002にインストールされる。但し、プログラムのインストールは必ずしも記録媒体1001より行う必要はなく、ネットワークを介して他のコンピュータよりダウンロードするようにしてもよい。補助記憶装置1002は、インストールされたプログラムを格納すると共に、必要なファイルやデータ等を格納する。 The program that realizes the processing on the computer is provided by a recording medium 1001, such as a CD-ROM or a memory card. When the recording medium 1001 storing the program is set in the drive device 1000, the program is installed from the recording medium 1001 via the drive device 1000 into the auxiliary storage device 1002. However, the program does not necessarily have to be installed from the recording medium 1001, but may be downloaded from another computer via a network. The auxiliary storage device 1002 stores the installed program as well as necessary files, data, etc.
 メモリ装置1003は、プログラムの起動指示があった場合に、補助記憶装置1002からプログラムを読み出して格納する。CPU1004は、メモリ装置1003に格納されたプログラムに従って、制御装置200に係る機能を実現する。インタフェース装置1005は、ネットワーク等に接続するためのインタフェースとして用いられる。表示装置1006はプログラムによるGUI(Graphical User Interface)等を表示する。入力装置1007はキーボード及びマウス、ボタン、又はタッチパネル等で構成され、様々な操作指示を入力させるために用いられる。出力装置1008は演算結果を出力する。 When an instruction to start a program is received, the memory device 1003 reads out and stores the program from the auxiliary storage device 1002. The CPU 1004 realizes functions related to the control device 200 in accordance with the program stored in the memory device 1003. The interface device 1005 is used as an interface for connecting to a network, etc. The display device 1006 displays a GUI (Graphical User Interface) or the like according to a program. The input device 1007 is composed of a keyboard and mouse, buttons, a touch panel, etc., and is used to input various operational instructions. The output device 1008 outputs the results of calculations.
 <変形例の動作例>
 変形例でも、基本的な処理の流れは図8に示したフローのとおりであることから、制御装置200の動作を含む動作例を、図8を参照して説明する。なお、以下では、動作の一例として、図8のフローに基づく動作を説明するが、変形例でも、図9に示したON時間を徐々に長くする制御を行うことも可能である。
<Operation example of modified example>
In the modified example, the basic process flow is the same as the flow shown in Fig. 8, so an operation example including the operation of the control device 200 will be described with reference to Fig. 8. Note that, as an example of the operation, an operation based on the flow in Fig. 8 will be described below, but in the modified example, it is also possible to perform the control of gradually lengthening the ON time shown in Fig. 9.
 S1において、制御装置200の情報取得部210から、以降の計算に必要な基礎データを入力する。入力された基礎データは、データ格納部240に格納される。基礎データは、例えば、突入電流モードのON時間とOFF時間、電流継続モード(ON状態を継続するモード、通常のモード)に移行するための電流の大きさの閾値などである。 In S1, basic data required for subsequent calculations is input from the information acquisition unit 210 of the control device 200. The input basic data is stored in the data storage unit 240. The basic data includes, for example, the ON time and OFF time of the inrush current mode, and the threshold value of the current magnitude for transitioning to the current continuation mode (a mode in which the ON state continues, a normal mode).
 S2において、制御装置200は待機する(信号を監視する)。制御装置200における計算部220は、突入電流を発生させる事象を示す信号を検出すると(S3のYes)、S4に進む。「突入電流を発生させる事象を示す信号」は、前述のとおりである。 In S2, the control device 200 waits (monitors a signal). When the calculation unit 220 in the control device 200 detects a signal indicating an event that will cause an inrush current (Yes in S3), the calculation unit 220 proceeds to S4. The "signal indicating an event that will cause an inrush current" is as described above.
 上記の信号は、遮断器100が検出して、遮断器100から制御装置200に送信してもよいし、MCCB50あるいは負荷装置から制御装置200に送信してもよい。制御装置200では、情報取得部210が上記の信号を受信して、計算部220に渡す。 The above signal may be detected by the circuit breaker 100 and transmitted from the circuit breaker 100 to the control device 200, or may be transmitted from the MCCB 50 or the load device to the control device 200. In the control device 200, the information acquisition unit 210 receives the above signal and passes it to the calculation unit 220.
 S4において、制御装置200の計算部220は、遮断器100のモードを突入電流モードに移行させることを決定し、モードを突入電流モードに移行させることを指示する信号を出力部230から遮断器100に送信する。また、制御装置200は、モードを突入電流モードに移行させることを指示する信号とともに、ON時間とOFF時間を遮断器100に送信する。 In S4, the calculation unit 220 of the control device 200 decides to switch the mode of the circuit breaker 100 to the inrush current mode, and transmits a signal instructing the circuit breaker 100 to switch the mode to the inrush current mode from the output unit 230. The control device 200 also transmits the ON time and the OFF time to the circuit breaker 100 along with the signal instructing the circuit breaker 100 to switch the mode to the inrush current mode.
 上記の信号と、ON時間とOFF時間を受信した遮断器100において、制御処理部143は、通知されたON時間とOFF時間に従って、遮断部110/130に対して制御信号を送信することにより、ON/OFF制御を実行する。 In the circuit breaker 100 that receives the above signal and the ON and OFF times, the control processing unit 143 executes ON/OFF control by sending control signals to the circuit breaker units 110/130 according to the notified ON and OFF times.
 突入電流モードにおいて、遮断器100の計測部141は、電流検出部120を用いて、電力線を流れる電流を計測し、通信部144が計測結果を制御装置200に送信している。 In inrush current mode, the measurement unit 141 of the circuit breaker 100 uses the current detection unit 120 to measure the current flowing through the power line, and the communication unit 144 transmits the measurement result to the control device 200.
 制御装置200の計算部220は、遮断器100から受信した電流計測結果に基づいて、電流のピークの大きさが閾値以下(あるいは閾値未満)になったことを検知すると(S5のYes)、S6に進む。 When the calculation unit 220 of the control device 200 detects that the magnitude of the peak current is equal to or less than the threshold value (or is less than the threshold value) based on the current measurement result received from the circuit breaker 100 (Yes in S5), it proceeds to S6.
 S6において、制御装置200は、モードを電流継続モードに移行させるための信号を遮断器100に送信する。当該信号を受信した遮断器100は電流継続モードに移行する。電流継続モードにおいて、遮断器100の制御処理部143は、例えば停止信号があるまで、ON状態を維持するように、遮断部110/130を制御する(S6、S7)。 In S6, the control device 200 transmits a signal to the circuit breaker 100 to switch the mode to the current continuation mode. The circuit breaker 100, which receives the signal, switches to the current continuation mode. In the current continuation mode, the control processing unit 143 of the circuit breaker 100 controls the circuit breaker units 110/130 to maintain the ON state, for example, until a stop signal is received (S6, S7).
 (実施の形態のまとめ、効果等)
 以上説明したとおり、本実施の形態で説明した技術により、負荷装置側に突入電流抑制回路を備えることなく、突入電流の抑制を実現することが可能となる。
(Summary of the embodiment, effects, etc.)
As described above, the technique described in this embodiment makes it possible to suppress inrush current without providing an inrush current suppression circuit on the load device side.
 すなわち、本実施の形態で説明した技術により、突入電流抑制を実現しつつ、回路を簡易化してコストを抑制し、部品点数を減少させて、装置の体積を小さくすることができる。また、従来技術のように突入電流抑制回路を備える場合と比べて、抵抗成分を少なくでき、常時の電力損失を低減できる。また、DC/DCコンバータが、突入電流の過電圧により停止することを防止できる。 In other words, the technology described in this embodiment makes it possible to realize inrush current suppression while simplifying the circuit to reduce costs, reducing the number of parts, and making the device smaller in volume. Furthermore, compared to the prior art where an inrush current suppression circuit is provided, the resistance components can be reduced, and constant power loss can be reduced. Furthermore, it is possible to prevent the DC/DC converter from shutting down due to an overvoltage caused by the inrush current.
 以上の実施形態に関し、更に以下の付記を開示する。 The following notes are further provided with respect to the above embodiment.
 <付記>
(付記項1)
 直流電源と負荷装置とを接続する電力線の遮断と接続を行う遮断部と、
 突入電流の発生を検知した場合に、前記電力線の遮断と接続を繰り返し行うよう前記遮断部を制御する制御部と
 を備える遮断装置。
(付記項2)
 前記制御部は、
 突入電流を発生させる事象を示す信号を受信した場合に、突入電流の発生を検知したと判断する、又は、
 前記電力線を流れる電流の大きさが閾値以上になった場合に、突入電流の発生を検知したと判断する、
 付記項1に記載の遮断装置。
(付記項3)
 前記制御部は、OFF時間とON時間で、遮断と接続を繰り返し行うよう前記遮断部を制御する
 付記項1又は2に記載の遮断装置。
(付記項4)
 前記制御部は、前記ON時間が徐々に長くなるように、前記遮断部を制御する
 請求項3に記載の遮断装置。
(付記項5)
 前記制御部は、前記電力線を流れる電流のピークの大きさが閾値以下になった場合に、前記遮断部を接続状態とする
 付記項1ないし4のうちいずれか1項に記載の遮断装置。
(付記項6)
 電力線で接続される直流電源と負荷装置との間に備えられる遮断装置を制御する制御装置であって、
 メモリと、
 前記メモリに接続された少なくとも1つのプロセッサと、
 を含み、
 前記プロセッサは、
 前記電力線における突入電流の発生を示す信号を受信し、
 前記電力線の遮断と接続を繰り返し行うことを前記遮断装置に対して指示する
 制御装置。
(付記項7)
 電力線で接続される直流電源と負荷装置との間に備えられる遮断装置が実行する突入電流抑制方法であって、
 突入電流の発生を検知するステップと、
 前記電力線の遮断と接続を繰り返し行うステップと
 を備える突入電流抑制方法。
(付記項8)
 コンピュータを、付記項5に記載の制御装置における各部として機能させるためのプログラムを記憶した非一時的記憶媒体。
<Additional Notes>
(Additional Note 1)
a breaker unit that breaks and connects a power line connecting a DC power source and a load device;
a control unit that controls the interrupter to repeatedly interrupt and connect the power line when an occurrence of an inrush current is detected.
(Additional Note 2)
The control unit is
determining that an inrush current has occurred when a signal indicating an event that generates an inrush current is received; or
When the magnitude of the current flowing through the power line becomes equal to or greater than a threshold, it is determined that an inrush current has occurred.
2. The interrupter device according to claim 1.
(Additional Note 3)
The interrupting device according to claim 1 or 2, wherein the control unit controls the interrupting unit to repeatedly perform interruption and connection during an OFF time and an ON time.
(Additional Note 4)
The circuit breaker according to claim 3 , wherein the control unit controls the circuit breaker so that the ON time is gradually increased.
(Additional Note 5)
The circuit breaker according to any one of claims 1 to 4, wherein the control unit brings the circuit breaker into a connected state when a peak magnitude of a current flowing through the power line becomes equal to or smaller than a threshold value.
(Additional Note 6)
A control device for controlling a breaker provided between a DC power source and a load device connected by a power line,
Memory,
at least one processor coupled to the memory;
Including,
The processor,
receiving a signal indicative of an inrush current occurring on the power line;
a control device that instructs the interrupting device to repeatedly interrupt and connect the power line.
(Additional Note 7)
A method for suppressing inrush current performed by a breaker provided between a DC power source and a load device connected by a power line, comprising:
Detecting an occurrence of an inrush current;
and repeatedly disconnecting and connecting the power line.
(Additional Note 8)
A non-transitory storage medium storing a program for causing a computer to function as each unit in the control device described in appended claim 5.
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The present embodiment has been described above, but the present invention is not limited to this specific embodiment, and various modifications and variations are possible within the scope of the gist of the present invention as described in the claims.
100 遮断器
110 遮断部
111 コンデンサ
112 トランジスタ
113 ダイオード
120 電流検出部
121 電流センサ
130 遮断部
131 ダイオード
132 トランジスタ
133 コンデンサ
140 制御部
141 計測部
142 計算部
143 制御処理部
144 通信部
200 制御装置
210 情報取得部
220 計算部
230 出力部
240 データ格納部
1000 ドライブ装置
1001 記録媒体
1002 補助記憶装置
1003 メモリ装置
1004 CPU
1005 インタフェース装置
1006 表示装置
1007 入力装置
1008 出力装置
REFERENCE SIGNS LIST 100 Circuit Breaker 110 Circuit Breaker 111 Capacitor 112 Transistor 113 Diode 120 Current Detector 121 Current Sensor 130 Circuit Breaker 131 Diode 132 Transistor 133 Capacitor 140 Control Unit 141 Measurement Unit 142 Calculation Unit 143 Control Processing Unit 144 Communication Unit 200 Control Device 210 Information Acquisition Unit 220 Calculation Unit 230 Output Unit 240 Data Storage Unit 1000 Drive Device 1001 Recording Medium 1002 Auxiliary Storage Device 1003 Memory Device 1004 CPU
1005 Interface device 1006 Display device 1007 Input device 1008 Output device

Claims (8)

  1.  直流電源と負荷装置とを接続する電力線の遮断と接続を行う遮断部と、
     突入電流の発生を検知した場合に、前記電力線の遮断と接続を繰り返し行うよう前記遮断部を制御する制御部と
     を備える遮断装置。
    a breaker unit that breaks and connects a power line connecting a DC power source and a load device;
    a control unit that controls the interrupter to repeatedly interrupt and connect the power line when an occurrence of an inrush current is detected.
  2.  前記制御部は、
     突入電流を発生させる事象を示す信号を受信した場合に、突入電流の発生を検知したと判断する、又は、
     前記電力線を流れる電流の大きさが閾値以上になった場合に、突入電流の発生を検知したと判断する、
     請求項1に記載の遮断装置。
    The control unit is
    determining that an inrush current has occurred when a signal indicating an event that generates an inrush current is received; or
    When the magnitude of the current flowing through the power line becomes equal to or greater than a threshold, it is determined that an inrush current has occurred.
    The shutoff device according to claim 1 .
  3.  前記制御部は、OFF時間とON時間で、遮断と接続を繰り返し行うよう前記遮断部を制御する
     請求項1に記載の遮断装置。
    The circuit breaker according to claim 1 , wherein the control unit controls the circuit breaker unit to repeatedly perform disconnection and connection during an OFF time and an ON time.
  4.  前記制御部は、前記ON時間が徐々に長くなるように、前記遮断部を制御する
     請求項3に記載の遮断装置。
    The circuit breaker according to claim 3 , wherein the control unit controls the circuit breaker so that the ON time is gradually increased.
  5.  前記制御部は、前記電力線を流れる電流のピークの大きさが閾値以下になった場合に、前記遮断部を接続状態とする
     請求項1に記載の遮断装置。
    The circuit breaker according to claim 1 , wherein the control unit brings the circuit breaker into a connected state when a peak magnitude of a current flowing through the power line becomes equal to or smaller than a threshold value.
  6.  電力線で接続される直流電源と負荷装置との間に備えられる遮断装置を制御する制御装置であって、
     前記電力線における突入電流の発生を示す信号を受信する情報取得部と、
     前記信号を受信した場合に、前記電力線の遮断と接続を繰り返し行うことを前記遮断装置に対して指示する出力部と
     を備える制御装置。
    A control device for controlling a breaker provided between a DC power source and a load device connected by a power line,
    an information acquisition unit that receives a signal indicating an occurrence of an inrush current in the power line;
    an output unit that, when receiving the signal, instructs the disconnection device to repeatedly disconnect and connect the power line.
  7.  電力線で接続される直流電源と負荷装置との間に備えられる遮断装置が実行する突入電流抑制方法であって、
     突入電流の発生を検知するステップと、
     前記電力線の遮断と接続を繰り返し行うステップと
     を備える突入電流抑制方法。
    A method for suppressing inrush current performed by a breaker provided between a DC power source and a load device connected by a power line, comprising:
    Detecting an occurrence of an inrush current;
    and repeatedly disconnecting and connecting the power line.
  8.  コンピュータを、請求項6に記載の制御装置における各部として機能させるためのプログラム。 A program for causing a computer to function as each part of the control device described in claim 6.
PCT/JP2022/042279 2022-11-14 2022-11-14 Breaker device, control device, inrush current suppression method, and program WO2024105743A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042279 WO2024105743A1 (en) 2022-11-14 2022-11-14 Breaker device, control device, inrush current suppression method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/042279 WO2024105743A1 (en) 2022-11-14 2022-11-14 Breaker device, control device, inrush current suppression method, and program

Publications (1)

Publication Number Publication Date
WO2024105743A1 true WO2024105743A1 (en) 2024-05-23

Family

ID=91083962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042279 WO2024105743A1 (en) 2022-11-14 2022-11-14 Breaker device, control device, inrush current suppression method, and program

Country Status (1)

Country Link
WO (1) WO2024105743A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141787A (en) * 1997-07-16 1999-02-12 Hino Motors Ltd Overcurrent interrupting circuit
JP2000324807A (en) * 1999-05-10 2000-11-24 Seiko Instruments Inc Switching regulator
JP2011217497A (en) * 2010-03-31 2011-10-27 Ntt Facilities Inc Semiconductor breaker and dc power supply system
JP2013059214A (en) * 2011-09-08 2013-03-28 Sharp Corp Power supply control device and electronic device having the same
JP2013081338A (en) * 2011-10-05 2013-05-02 Ntt Facilities Inc Dc power feeding system
JP2015136231A (en) * 2014-01-17 2015-07-27 エクセン株式会社 inrush current prevention device
JP2016127347A (en) * 2014-12-26 2016-07-11 富士ゼロックス株式会社 Switch device
JP2016144351A (en) * 2015-02-04 2016-08-08 矢崎総業株式会社 Rush current suppression circuit
US20170244236A1 (en) * 2016-02-19 2017-08-24 Dell Products, Lp Inrush Current Limitation Circuit and Method
JP2020205728A (en) * 2019-06-19 2020-12-24 マツダ株式会社 Overcurrent protection device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141787A (en) * 1997-07-16 1999-02-12 Hino Motors Ltd Overcurrent interrupting circuit
JP2000324807A (en) * 1999-05-10 2000-11-24 Seiko Instruments Inc Switching regulator
JP2011217497A (en) * 2010-03-31 2011-10-27 Ntt Facilities Inc Semiconductor breaker and dc power supply system
JP2013059214A (en) * 2011-09-08 2013-03-28 Sharp Corp Power supply control device and electronic device having the same
JP2013081338A (en) * 2011-10-05 2013-05-02 Ntt Facilities Inc Dc power feeding system
JP2015136231A (en) * 2014-01-17 2015-07-27 エクセン株式会社 inrush current prevention device
JP2016127347A (en) * 2014-12-26 2016-07-11 富士ゼロックス株式会社 Switch device
JP2016144351A (en) * 2015-02-04 2016-08-08 矢崎総業株式会社 Rush current suppression circuit
US20170244236A1 (en) * 2016-02-19 2017-08-24 Dell Products, Lp Inrush Current Limitation Circuit and Method
JP2020205728A (en) * 2019-06-19 2020-12-24 マツダ株式会社 Overcurrent protection device

Similar Documents

Publication Publication Date Title
US7616419B2 (en) Switchgear control apparatus
US10411501B2 (en) Power supply device and switch control method therefor
JP2009232521A (en) Power supply system switching unit
JP6895647B2 (en) Arc detection circuit, switch system, power conditioner system and arc detection method
EP0419015A2 (en) Power supply system
JP2007074884A (en) Converter apparatus (low voltage detecting method)
CN107785864B (en) Monitoring unit for monitoring a circuit breaker and circuit breaker comprising such a unit
JP5511599B2 (en) Commutation type shut-off device
CN109429542B (en) Power conversion device and method for determining operating state of circuit breaking device
WO2024105743A1 (en) Breaker device, control device, inrush current suppression method, and program
JP5443013B2 (en) Battery protection circuit and battery device
US8988841B2 (en) Apparatus and methods for input protection for power converters
KR101606919B1 (en) Cutoff device for preventing non-synchronization connection with voltage regulating function
JP6772827B2 (en) Air conditioner
JP5509431B2 (en) Semiconductor circuit breaker and DC power supply system
KR20150068310A (en) Battery state monitoring circuit and battery device
JPWO2019012588A1 (en) Power conditioner, power system, and reactive power suppression method for power system
WO2023209903A1 (en) Determination device, determination method, and program
EP1919053A2 (en) State monitoring device for circuit breaker
JP4679072B2 (en) Battery pack and power supply
JP2004248345A (en) Distributed power source system
JPH0937461A (en) Power supply device
WO2024105742A1 (en) Breaking device, power supply system, control device, setting value determination method, and program
KR20230096655A (en) Solid state circuit breaker(sscb) and control method thereof
KR101877234B1 (en) Over current blocking system and a method for blocking over current using the same