WO2024104132A1 - 一种供电设备、受电设备、芯片以及供电*** - Google Patents

一种供电设备、受电设备、芯片以及供电*** Download PDF

Info

Publication number
WO2024104132A1
WO2024104132A1 PCT/CN2023/128130 CN2023128130W WO2024104132A1 WO 2024104132 A1 WO2024104132 A1 WO 2024104132A1 CN 2023128130 W CN2023128130 W CN 2023128130W WO 2024104132 A1 WO2024104132 A1 WO 2024104132A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
module
interface
power
control
Prior art date
Application number
PCT/CN2023/128130
Other languages
English (en)
French (fr)
Inventor
李新
阳美文
龚树强
张家聪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024104132A1 publication Critical patent/WO2024104132A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • Embodiments of the present application relate to the field of power supply technology, and in particular to a power supply device, a powered device, a chip, and a power supply system.
  • the industry usually separates the large-volume high-power power supply from the terminal equipment.
  • ultra-thinness is an important selling point of high-end terminal equipment, but further reduction of the thickness of terminal equipment is often limited by the power supply part of the whole machine.
  • the main reason is that the high-power power supply components and heat sinks are large in size, and the safety regulations have safety distance requirements for spatial layout, which become the bottleneck of the thickness of the whole machine. Therefore, it is particularly important to design the power supply and terminal equipment separately.
  • the split solution will bring about the problem of interface and cable universality. If customized interfaces and customized cables are used, it is necessary to design customized interfaces, cables and power supplies for terminal devices with different power supply requirements, which will result in high costs. In the customized solution, since terminal devices with different power supply requirements are not compatible with the same power supply, the power supply cannot be designed in a normalized way. If terminal devices with different power supply requirements use universal interfaces, cables and power supplies, then since different terminal devices have different power supply requirements, the power supply that provides the power supply voltage has poor universality when matching, that is, the same power supply usually cannot adapt to terminal devices with different power supply requirements.
  • the embodiments of the present invention provide a power supply device, a powered device, a chip and a power supply system, which can enable the same power supply device to support powered devices with different power supply requirements.
  • a power supply device which is used to connect a powered device via a cable.
  • the power supply device includes: a power module, and a first control interface and a first power supply interface connected to the power module;
  • the powered device includes: a system module, a powered module, a second control interface and a second power supply interface, the system module is connected to the second control interface and the powered module, and the powered module is connected to the second power supply interface.
  • the first control interface is connected to the second control interface via the line in the cable
  • the first power supply interface is connected to the second power supply interface via the line in the cable.
  • the first control interface is configured to obtain first control information sent by the powered device through the second control interface, and the first control information is generated by the power supply demand of the powered module obtained by the system module;
  • the power supply module is configured to output first direct current to the first power supply interface according to the power supply demand of the powered module indicated by the first control information, and the electrical parameters of the first direct current are adjusted to the first value by the power supply module according to the power supply demand of the powered module.
  • the powered device can obtain the power supply demand of the powered module through the system module and generate the first control information and send it to the power supply device, after receiving the first control information, the power supply device can control the electrical parameters of the direct current output by the power supply module to the powered module according to the power supply demand of the powered module indicated by the first control information, thereby realizing flexible adjustment of the power supply to the powered device, especially for powered devices with different power supply requirements. Since the solution provided by the embodiment of the present application can realize flexible adjustment of the power supply to the powered device, it also ensures that the power supply device can support powered devices with different power supply requirements.
  • the power supply device also includes: a third power supply interface connected to the power supply module; the powered device also includes a fourth power supply interface connected to the system module; when the power supply device is connected to the powered device via a cable, the third power supply interface is connected to the fourth power supply interface via a line in the cable; the power supply module is configured to output a second direct current to the third power supply interface.
  • the power supply device since it is necessary to obtain the power supply demand of the powered module through the system module, it is necessary to first power on the system module through the power supply device.
  • This implementation can ensure that the system module can work normally when the second direct current is supplied.
  • there are other ways to power on the system module which are described in detail in the second aspect below.
  • the electrical parameters of the second DC power Vsys may be further adjusted according to the power supply requirements of the system module.
  • the system module is configured to generate the second control information according to the power supply requirements of the system module;
  • the power supply demand of the system module may include electrical parameters determined by the load state (light load or heavy load) and working state (e.g., screen off, screen on, power on or standby) of the system module, such as voltage, current and power.
  • the first control interface is further configured to obtain second control information sent by the powered device through the second control interface, and the second control information is generated by the power supply demand of the system module obtained by the system module; the power supply module is configured to adjust the electrical parameters of the second direct current to the second value according to the power supply demand of the system module indicated by the second control information.
  • the power supply device further includes a detection circuit, which is connected between the power module and the first control interface;
  • the powered device further includes a feedback circuit, which is connected between the system module and the second control interface;
  • the first control interface is specifically configured to receive the first control information sent by the feedback circuit through the second control interface, and the first control information is generated by the feedback circuit according to the power supply demand of the powered module obtained by the system module;
  • the detection circuit is configured to detect the first control information to generate the power supply demand of the powered module.
  • the power supply demand of the powered module can be converted by the feedback circuit into a fixed-format first control information and transmitted to the detection circuit through a line, and the detection circuit detects the power supply demand of the corresponding powered module in the fixed-format first control information and then transmits it to the power module, so as to implement the corresponding control of the power module in the above example.
  • the first control information can be one or more signals in the form of a protocol signal, a digital signal (such as a pulse width modulation (PWM) signal), an analog signal, and a general-purpose input/output (GPIO) signal.
  • PWM pulse width modulation
  • GPIO general-purpose input/output
  • the power supply device further includes a detection circuit, which is connected between the power module and the first control interface; the powered device further includes a feedback circuit, which is connected between the system module and the second control interface; the first control interface is further configured to receive second control information sent by the feedback circuit through the second control interface, and the second control information is generated by the feedback circuit according to the power supply demand of the system module obtained by the system module; the detection circuit is configured to detect the second control information to generate the power supply demand of the system module.
  • the power supply demand of the above-mentioned system module can be converted by the feedback circuit into a second control information of a fixed format and transmitted to the detection circuit through a line, and the detection circuit detects the power supply demand of the corresponding system module in the second control information of the fixed format and then transmits it to the power module, so as to implement the corresponding control of the power module in the above-mentioned example.
  • the second control information can be one or more signals in the form of a protocol signal, or a digital signal (such as a PWM signal), an analog signal, and a GPIO signal.
  • the power supply device is further configured to receive feedback information sent by the powered device, the feedback information is generated by the powered device after receiving the first direct current by detecting the detection value of the electrical parameter of the first direct current; the feedback information carries the detection value of the electrical parameter of the first direct current; the power module is configured to adjust the electrical parameter of the first direct current to the first value according to the detection value.
  • closed-loop FB regulation can be implemented through feedback information so that the electrical parameter of the first direct current is always stable at the electrical parameter that matches the power supply demand of the power receiving module, avoiding insufficient power supply or power waste caused by the instability of the electrical parameter of the first direct current.
  • the power supply device further includes a detection circuit, which is connected between the power module and the first control interface; the power receiving device further includes a feedback circuit, which is connected between the power receiving module and the second control interface; the first control interface is configured to receive feedback information sent by the feedback circuit through the second control interface; the detection circuit is configured to detect the feedback information to obtain the detection value.
  • the power module is configured to adjust the electrical parameters of the first direct current to the first value according to the detection value.
  • the closed-loop FB adjustment is implemented by the detection value so that the electrical parameters of the first direct current are always stable at the electrical parameters that match the power supply requirements of the power receiving module, thereby avoiding insufficient power supply or power waste caused by the instability of the electrical parameters of the first direct current.
  • the above-mentioned detection value can be converted by the feedback circuit into feedback information in a fixed format and transmitted to the detection circuit through a line, and the detection circuit detects the corresponding detection value in the feedback information in the fixed format and then transmits it to the power module to implement the corresponding control of the power module in the above example.
  • the feedback information can be one or more signals in the form of a protocol signal, or a digital signal (such as a PWM signal), an analog signal, and a GPIO signal.
  • all control information (first control information, second control information and feedback information) is transmitted to the detection circuit through the feedback circuit in one line. Therefore, when designing the cable, the first control information, the second control information and the feedback information can be transmitted through only one line. Therefore, the corresponding interface in the connector can be connected through only one pin in the cable.
  • Such a setting is more conducive to supporting the forward and reverse plug-in design of the cable.
  • the detection circuit includes one or more of a protocol integrated circuit IC, a digital circuit, an analog circuit, and a general purpose input and output GPIO circuit.
  • the power supply device further includes a first feedback interface connected to the power supply module; the power receiving device further includes a second feedback interface connected to the power receiving module; when the power supply device is connected to the power receiving device via a cable, the first feedback interface is connected to the second feedback interface via a line in the cable; the first feedback interface is configured to receive feedback information sent by the power receiving module via the second feedback interface; the power supply module is configured to adjust the electrical parameters of the first direct current to a first value according to the detection value. In this way, the electrical parameters of the first direct current are always stabilized at the electrical parameters that match the power supply requirements of the power receiving module through closed-loop FB regulation, thereby avoiding insufficient power supply or power waste caused by unstable electrical parameters of the first direct current.
  • the detection circuit in order to implement protection functions such as overcurrent protection, overvoltage protection, and undervoltage protection for the power supply device and the powered device, is also connected to the first power supply interface and is configured to detect the electrical parameters of the first direct current of the first power supply interface.
  • a corresponding protection mechanism can be triggered, such as controlling the power supply module to cut off the power of the first direct current.
  • the detection circuit in order to implement protection functions such as overcurrent protection, overvoltage protection, and undervoltage protection for the power supply device and the powered device, is also connected to the third power supply interface and is configured to detect the electrical parameters of the second direct current of the third power supply interface.
  • a corresponding protection mechanism can be triggered, such as controlling the power supply module to cut off the power of the second direct current.
  • the power supply device also includes a switch connected between the power supply module and the first power supply interface; the control end of the switch is connected to the detection circuit; the detection circuit is configured to control the conduction state of the switch according to the electrical parameters of the first direct current.
  • the power module includes: a first conversion circuit and a second conversion circuit, the first conversion circuit is connected to the power supply and the second conversion circuit, and the second conversion circuit is connected to the first control interface and the first power supply interface; the first conversion circuit is configured to convert the alternating current received from the power supply into a first direct current; the second conversion circuit is configured to adjust the electrical parameters of the first direct current to a first value and output it to the first power supply interface according to the power supply demand of the power receiving module indicated by the first control information obtained at the first control interface.
  • the first conversion circuit may be an alternating current/direct current (AC/DC) conversion circuit, and the second conversion circuit may be a direct current-to-direct current (DC/DC) conversion circuit.
  • the power module includes a third conversion circuit, the third conversion circuit is connected to the power supply and the third power supply interface; the third conversion circuit is configured to convert the alternating current received from the power supply into a second direct current, and output it to the third power supply interface.
  • the third conversion circuit may be an AC/DC conversion circuit.
  • the power module further includes a fourth conversion circuit, the fourth conversion circuit is connected between the third conversion circuit and the third power supply interface, and the fourth conversion circuit is also connected to the first control interface; the first control interface is also configured to obtain the second control information sent by the powered device through the second control interface; the fourth conversion circuit is configured to adjust the electrical parameters of the second direct current to the second value and output it to the third power supply interface according to the power supply demand of the system module indicated by the second control information.
  • the fourth conversion circuit can be a DC/DC conversion circuit.
  • the power supply module further includes a fourth conversion circuit, which is connected between the first conversion circuit and the third power supply interface; the first control interface is further configured to obtain the second control information sent by the system module through the second control interface; the fourth conversion circuit is configured to control the fourth conversion circuit to adjust the electrical parameters of the first direct current to the second value and output it to the third power supply interface according to the power supply demand of the system module indicated by the second control information.
  • the fourth conversion circuit can be a DC/DC conversion circuit.
  • the power supply of the power receiving module and the system module can also share the same set of AC/DC conversion circuits, the first conversion circuit.
  • a powered device which is used to connect a power supply device through a cable.
  • the powered device includes: a system module, a powered module, a second control interface and a second power supply interface, the system module is connected to the second control interface and the powered module, and the powered module is connected to the second power supply interface;
  • the power supply device includes: a power supply module, and a first control interface connected to the power supply module and a first power supply interface; when the powered device is connected to the power supply device through a cable, the second control interface is connected to the first control interface through the line in the cable, and the second power supply interface is connected to the first power supply interface through the line in the cable.
  • the system module is configured to obtain the power supply demand of the powered module;
  • the second control interface is configured to send the first control information to the first control interface, and the first control information is generated by the power supply demand of the powered module obtained by the system module;
  • the powered module is configured to receive the first direct current output by the first power supply interface through the second power supply interface, wherein the electrical parameters of the first direct current are associated with the power supply demand of the powered module indicated by the first control information.
  • system module is configured to be powered on before obtaining the power supply requirement of the powered module.
  • the powered device includes a battery, which is connected to the system module; the battery is configured to output a second direct current to the system module to power on the system module.
  • the powered device includes a conversion circuit connected between the second power supply interface and the system module; the conversion circuit is configured to convert the first direct current into the second direct current and output it to the system module to power on the system module.
  • the powered device further includes: a fourth power supply interface connected to the system module; the power supply device further includes: a third power supply interface connected to the power supply module; when the powered device is connected to the power supply device via a cable, the fourth power supply interface is connected to the third power supply interface via a line in the cable; the system module is configured to receive the second direct current output by the power supply module via the third power supply interface via the fourth power supply interface, and power on the system module.
  • the system module is configured to obtain the power supply requirement of the system module; the second control interface is further configured to send second control information to the second control interface, and the second control information is generated by the power supply requirement of the system module obtained by the system module; the system module is configured to receive the second direct current output by the power supply device through the third power supply interface through a fourth power supply interface, and power on the system module, and the electrical parameters of the second direct current are associated with the power supply requirement of the system module indicated by the second control information.
  • the powered device further includes a feedback circuit, which is connected between the system module and the second control interface;
  • the power supply device further includes a detection circuit; the detection circuit is connected between the power supply module and the first control interface; the feedback circuit is configured to generate first control information based on the power supply demand of the powered module obtained by the system module; the feedback circuit is also configured to send the first control information to the second control interface.
  • the powered device further includes a feedback circuit connected between the system module and the second control interface;
  • the power supply device further includes a detection circuit connected between the power supply module and the first control interface;
  • the feedback circuit is configured to generate the second control information according to the power supply requirement of the system module obtained by the system module;
  • the feedback circuit is also configured to send the second control information to the second control interface.
  • the power receiving module is further configured to detect electrical parameters of the first direct current received by the second power supply interface and generate a detection value; the power receiving device is further configured to send feedback information to the power supply device, and the feedback information carries the detection value.
  • the powered device further includes a feedback circuit connected between the powered module and the second control interface;
  • the power supply device further includes a detection circuit connected between the power supply module and the first control interface;
  • the powered module is configured to send the detection value of the electrical parameter of the first direct current to the feedback circuit;
  • the feedback circuit is configured to generate feedback information based on the detection value and send the feedback information to the second control interface.
  • the powered device further includes a second feedback interface connected to the powered module;
  • the power supply device further includes a first feedback interface connected to the power supply module; when the powered device is connected to the power supply device via the cable, the second feedback interface is connected to the first feedback interface via the line in the cable;
  • the powered module is configured to detect the electrical parameters of the first direct current received by the second power supply interface and generate the detection value;
  • the powered module is specifically configured to send feedback information to the second feedback interface, and the feedback information carries the detection value.
  • the feedback circuit includes one or more of a protocol IC, a digital circuit, an analog circuit, and a GPIO circuit.
  • a detection circuit is applied to a power supply device, the power supply device is used to connect a powered device through a cable, the power supply device includes: a power supply module, and a first control interface and a first power supply interface connected to the power supply module, the power supply device also includes the detection circuit, the detection circuit is connected between the power supply module and the first control interface; the powered device includes: a system module, a powered module, a second control interface and a second power supply interface, the system module is connected to the second control interface and the powered module, the powered module is connected to the second power supply interface, the powered device also includes a feedback circuit, the feedback circuit is connected between the system module and the second control interface; the power supply device When the device is connected to the powered device via a cable, the first control interface is connected to the second control interface via the line in the cable, and the first power supply interface is connected to the second power supply interface via the line in the cable; the detection circuit is configured to detect the first control information received by the first control interface to generate the power supply requirement of
  • the power supply device also includes: a third power supply interface connected to the power supply module; the powered device also includes a fourth power supply interface connected to the system module; when the power supply device is connected to the powered device via a cable, the third power supply interface is connected to the fourth power supply interface via a line in the cable; the detection circuit is also configured to detect the second control information received by the first control interface to generate a power supply requirement of the system module; the second control information is generated by the feedback circuit according to the power supply requirement of the system module obtained by the system module; the second control information is used to control the power supply module to convert the alternating current received from the power supply into a second direct current and output it to the third power supply interface, wherein the electrical parameters of the second direct current are adjusted to a second value by the power supply module according to the power supply requirement of the system module indicated by the second control information.
  • the detection circuit is configured to detect feedback information received by the first control interface to generate a detection value of an electrical parameter of the first direct current; wherein the detection value of the electrical parameter of the first direct current is generated by the powered device detecting the first direct current received by the second power supply interface; the detection value is used to control the power supply module to adjust the electrical parameter of the first direct current to the first value.
  • the detection circuit is also connected to the first power supply interface, and is configured to detect electrical parameters of the first direct current of the first power supply interface.
  • the detection circuit is further connected to the third power supply interface, and is configured to detect electrical parameters of the second direct current of the third power supply interface.
  • the power supply device also includes a switch connected between the power supply module and the first power supply interface; the control end of the switch is connected to the detection circuit; the detection circuit is configured to control the conduction state of the switch according to the electrical parameters of the first direct current.
  • a feedback circuit is provided, which is applied to a powered device, wherein the powered device is used to connect a power supply device via a cable, and the powered device
  • the invention comprises: a system module, a power receiving module, a second control interface and a second power supply interface, wherein the system module is connected to the second control interface and the power receiving module, the power receiving module is connected to the second power supply interface, and the power receiving device further comprises a feedback circuit, wherein the feedback circuit is connected between the system module and the second control interface;
  • the power supply device comprises: a power supply module, and a first control interface and a first power supply interface connected to the power supply module, and the power supply device further comprises a detection circuit, wherein the detection circuit is connected between the power supply module and the first control interface; when the power receiving device is connected to the power supply device via a cable, the second control interface is connected to the first control interface via a line in the cable, and the second power supply interface is connected to the first power supply interface via a line in the cable; the feedback
  • the power supply device also includes: a third power supply interface connected to the power supply module; the powered device also includes a fourth power supply interface connected to the system module; when the powered device is connected to the power supply device via a cable, the fourth power supply interface is connected to the third power supply interface via a line in the cable; the feedback circuit is configured to generate second control information according to the power supply requirement of the system module obtained by the system module; the feedback circuit is also configured to send the second control information to the second control interface, the second control information is used to control the power supply module to convert the alternating current received from the power supply into a second direct current and output it to the third power supply interface, wherein the electrical parameters of the second direct current are associated with the power supply requirement of the system module indicated by the second control information.
  • the feedback circuit is configured to send feedback information to the second control interface, and the feedback information carries the detection value of the electrical parameter of the first direct current; wherein the detection value of the electrical parameter of the first direct current is generated by the power receiving module detecting the first direct current received by the second power supply interface.
  • a power supply control method is provided, which is applied to a power supply device, wherein the power supply device includes a power supply module, and the method includes: receiving first control information sent by a powered device, wherein the first control information is generated by the power supply requirement of the power receiving module of the powered device; outputting a first direct current to the power receiving module of the powered device according to the power supply requirement of the power receiving module indicated by the first control information, wherein the electrical parameters of the first direct current are adjusted to a first value by the power supply module according to the power supply requirement of the power receiving module.
  • the method further includes: controlling the power supply module to output a second direct current to a system module of the power receiving module, wherein the system module is used to obtain a power supply requirement of the power receiving module.
  • it also includes: receiving second control information sent by the powered device, where the second control information is generated by the power supply requirement of the system module obtained by the powered device; and controlling the power supply module to adjust the electrical parameters of the second direct current to a second value according to the power supply requirement of the system module indicated by the second control information.
  • the method further includes: detecting the first control information to generate a power supply requirement of the powered module.
  • the method further includes: detecting the second control information to generate a power supply requirement of the system module.
  • the method further includes: receiving feedback information sent by the powered device, the feedback information being generated by a detection value of an electrical parameter of the first direct current after the powered device receives the first direct current; and adjusting the electrical parameter of the first direct current to the first value according to the detection value.
  • the method further includes: detecting the feedback information to obtain the detection value.
  • a power supply control method for a power receiving device, wherein the power receiving device includes a power receiving module; the method includes: obtaining the power supply requirement of the power receiving module; sending first control information to the power supply device, wherein the first control information is generated by the power supply requirement of the power receiving module; receiving a first direct current output by the power supply device, and powering the power receiving module with the first direct current, wherein the electrical parameters of the first direct current are associated with the power supply requirement of the power receiving module indicated by the first control information.
  • the powered device further includes a system module
  • the method further includes: before obtaining the power supply requirement of the powered module, powering on the system module, wherein the system module is used to obtain the power supply requirement of the powered module.
  • the powered device further includes a battery; and the method further includes: outputting a second direct current to the system module through the battery to power on the system module.
  • the powered device includes a conversion circuit
  • the method further includes: converting the first direct current into a second direct current by the conversion circuit and outputting the second direct current to the system module, and powering on the system module.
  • the method further includes: receiving a second direct current output by the power supply device; and powering on the system module through the second direct current.
  • the method also includes: obtaining the power supply requirement of the system module; sending second control information to the power supply device, wherein the second control information is generated by the power supply requirement of the system module; sending the second control information to the power supply device; receiving a second direct current output by the power supply device, wherein electrical parameters of the second direct current are associated with the power supply requirement of the system module indicated by the second control signal.
  • the method before sending the first control information to the power supply device, the method further includes: generating the first control information according to a power supply requirement of the power receiving module.
  • the method before sending the second control information to the power supply device, the method further includes: generating the second control information according to a power supply requirement of the system module.
  • an electrical parameter of the first direct current is detected to generate a detection value; and feedback information is sent to the power supply device, where the feedback information carries the detection value.
  • the method before sending the feedback information to the power supply device, the method further includes: generating the feedback information according to the detection value.
  • a power supply control device including a processor and an interface, the processor being connected to the interface; the processor is used to execute program instructions in the memory to execute the power supply control method as described in the fifth aspect, the sixth aspect and any possible implementation method thereof.
  • a chip comprising a substrate, and a detection circuit as described in the third aspect and its possible implementations, or a feedback circuit as described in the fourth aspect and its possible implementations, arranged on the substrate.
  • a power supply system comprising the power supply device as described in the first aspect and possible implementations thereof and the powered device as described in the second aspect and possible implementations thereof.
  • the power supply device includes a power box
  • the powered device includes an ultra-thin display device.
  • FIG1 is a schematic diagram of the structure of a terminal device provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of a power supply system provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of a power supply system provided by another embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of a power supply system provided in yet another embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of a power supply system provided in yet another embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of a power supply system provided by another embodiment of the present application.
  • FIG7 is a schematic diagram of the structure of a power supply system provided in yet another embodiment of the present application.
  • FIG8 is a schematic structural diagram of a power supply system provided in yet another embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of a power module provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a power module provided by another embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of a power module provided in yet another embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of a power module provided in yet another embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a power supply system provided by another embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of a power supply system provided in yet another embodiment of the present application.
  • FIG15 is a schematic diagram of the structure of a power supply system provided in yet another embodiment of the present application.
  • FIG16 is a schematic diagram of the structure of a power supply system provided by another embodiment of the present application.
  • FIG17 is a flow chart of a power supply control method provided in an embodiment of the present application.
  • FIG18 is a schematic flow chart of a power supply control method provided in another embodiment of the present application.
  • FIG19 is a schematic diagram of the structure of a power supply control device provided in an embodiment of the present application.
  • FIG. 20 is a schematic diagram of the structure of a power supply control device provided in another embodiment of the present application.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more In the description of the embodiments of the present application, unless otherwise specified, “multiple” means two or more.
  • FIG1 is a schematic diagram of the structure of a terminal device 100 provided in an embodiment of the present application.
  • the terminal device 100 may be a large-screen terminal device such as an advertising screen (billboard), a display, a television (such as a smart screen), a laptop, a tablet computer, a vehicle-mounted device, etc.
  • the terminal device 100 may be a device such as a mobile phone, an e-reader, or a wearable device.
  • the embodiment shown in FIG1 is described by taking the terminal device 100 as a display device as an example.
  • the terminal device 100 may include a housing 110 and a screen assembly 120 .
  • the housing 110 may include a frame and a back cover.
  • the frame may surround the periphery of the back cover.
  • the housing 110 may, for example, include a middle frame of the terminal device 100.
  • the middle frame of the terminal device 100 may be accommodated in the inner periphery of the frame.
  • the middle frame of the terminal device 100 may serve as the frame of the housing 110.
  • the screen assembly 120 may be a component that provides a display function for the terminal device 100. The user may watch the screen assembly 120 to enjoy media resources such as images and videos.
  • the screen assembly 120 may be mounted on the housing 110.
  • the periphery of the screen assembly 120 may abut against the inner edge of the frame.
  • the frame may fix the screen assembly 120 on the housing 110.
  • the screen assembly 120 and the back cover may be mounted on both sides of the frame, respectively, so that the housing 110 may provide mechanical protection for the devices inside the terminal device, especially the devices on the screen assembly 120.
  • the screen assembly 120 may, for example, be fixed on the middle frame of the terminal device 100.
  • the screen assembly 120 may include a backlight module and a liquid crystal panel arranged on the light-emitting side of the backlight module.
  • the terminal device 100 may include a processor, a memory, a controller, a connector, a driver board, an integrated circuit, a chip, a power supply and other control modules.
  • the industry In order to reduce the thickness of the terminal device 100 and the influence of power supply heat dissipation on the terminal device, the industry usually designs a large-volume high-power power supply separately from the terminal device.
  • a power supply system in which a power supply and a terminal device are separated.
  • the power supply system includes a terminal device as a powered device 100 and a power supply device 200 as a power supply.
  • the powered device 100 and the power supply device 200 are connected via a cable 300.
  • the power supply device 200 is also referred to as a power dock (DOCK), a power box, an adapter, etc.
  • DOCK power dock
  • both the powered device 100 and the power supply device 200 are provided with a connector for plugging into the cable 300.
  • the connector is provided with an interface (or pin), which is used to connect the modules in the powered device 100 and the power supply device 200.
  • the interface inside the connector on the powered device 100 is used to connect the system module 101, the power receiving module (such as the light board 102), etc. inside the powered device 100; the interface inside the connector on the power supply device 200 is used to connect the power supply module 201, etc.; in addition, these interfaces or pins are also provided for plugging with the cable 300, so that the interface inside the connector on the powered device 100 is connected to the interface inside the connector on the power supply device 200 through the line inside the cable 300, thereby realizing the connection between the module inside the power supply device 200 and the module inside the powered device 100.
  • the power supply device 200 includes a power module 201, and the power module 201 includes an AC/DC conversion circuit for converting 220V AC mains power into one or more DCs for powering the powered device 100.
  • the AC/DC conversion circuit 201 can convert the mains power into Vsys for powering the system module 101 and VLED for powering the light board 102.
  • the AC/DC conversion circuit includes but is not limited to one or more voltage conversion circuits based on LLC converters or flyback converters.
  • the system module 101 is the control center of the powered device 100, and may include, for example, a processor, a memory, a bus, and an interface.
  • the system module may be an integrated circuit with logic processing functions, such as a system on chip (SOC), a central processing unit (CPU), a microcontroller unit (MCU), or a field-programmable gate array (FPGA);
  • the light board 102 is the powered module of the powered device 100.
  • SOC system on chip
  • CPU central processing unit
  • MCU microcontroller unit
  • FPGA field-programmable gate array
  • the powered module is mainly explained by taking the light board 102 as an example.
  • the powered device 100 also has other types of powered modules, such as radio frequency, power amplifier, and other power circuits.
  • the separate design of the power supply and the terminal device is conducive to the ultra-thinness of the terminal as a whole, the separate solution will bring about the problem of interface and cable universality. If customized interfaces and customized cables are used, it is necessary to design customized interfaces, cables and power supplies for terminal devices with different power supply requirements, which will result in high costs. In the customized solution, since terminal devices with different power supply requirements cannot be compatible with the same power supply, the power supply cannot be normalized. For example, the light panels of a 65-inch display device and a 55-inch display device have significantly different power supply requirements. Therefore, the rated voltage design of the interface, cable and power supply needs to be customized.
  • terminal devices with different power supply requirements use universal interfaces, cables, and power supplies
  • the universality of the power supply that provides the power supply voltage is poor when matching, that is, the same power supply usually cannot adapt to terminal devices with different power supply requirements.
  • the terminal device may not work properly due to insufficient power supply voltage, or the power supply voltage may exceed the rated voltage of the terminal device, causing damage to the terminal device.
  • the combination is not fool-proof.
  • an embodiment of the present application provides a power supply system, including a power supply device 200 and a powered device 100.
  • the power supply device 200 is connected to the powered device 100 via a cable 300, and the power supply device 200 is used to supply power to the powered device 100.
  • the power supply device 200 includes: a power module 201, and a first control interface 202 and a first power supply interface 203 connected to the power module 201.
  • the powered device 100 includes: a system module 101, a lamp board 102, a second control interface 103 and a second power supply interface 104, the system module 101 is connected to the second control interface 103 and the lamp board 102, and the lamp board 102 is connected to the second power supply interface 104.
  • the first control interface 202 is connected to the second control interface 103 via the line in the cable, thereby forming a transmission path for control information between the system module 101 and the power module 201;
  • the first power supply interface 203 is connected to the second power supply interface 104 via the line in the cable 300, thereby forming a transmission path for power supply signals between the lamp board 102 and the power module 201.
  • each module in each powered device 100 and power supply device 200 is described as follows:
  • the system module 101 is configured to obtain the power supply requirement of the light board 102; the second control interface 103 is configured to send first control information to the first interface, wherein the first control information is generated by the power supply requirement of the light board 102 obtained by the system module 101; since the first control interface 202 and the second control interface 103 are connected via line 3 in the cable 300, the first control information can be directly transmitted to the first control interface 202.
  • the first control interface 202 is configured to obtain first control information sent by the powered device 100 through the second control interface 103, and the first control information is generated by the powered device 100 based on the detection result of the power supply demand of the light board 102; wherein, in some schemes, the first control information may be the power supply demand of the light board 102 itself, and the power supply demand of the light board 102 may include electrical parameters determined by device specifications, manufacturer information, backlight power supply scheme (for example, light board power supply parameters under different backlight power consumption scenarios, light board power supply parameters under different backlight brightness scenarios, etc.), such as voltage, current and power.
  • backlight power supply scheme for example, light board power supply parameters under different backlight power consumption scenarios, light board power supply parameters under different backlight brightness scenarios, etc.
  • the power module 201 is configured to output a first direct current to the first power supply interface according to the power supply demand of the light board 102 indicated by the first control information, for example, convert the received alternating current into a first direct current Vled and output it to the first power supply interface 203, and the electrical parameters of the first direct current Vled are adjusted to a first value by the power module 201 according to the power supply demand of the light board 102 indicated by the first control information. Since the first power supply interface 203 is connected to the second power supply interface 104 through the line 1 in the cable 300, the first direct current Vled can be directly transmitted to the second power supply interface 104.
  • the first value can be the voltage, current and power corresponding to the power supply demand of the light board 102.
  • the power module 201 may include an AC/DC conversion circuit and a DC/DC conversion circuit, wherein the input end of the AC/DC conversion circuit is used to input alternating current, for example, 220V alternating current, and the AC/DC conversion circuit can convert the alternating current into the first direct current Vled; in addition, the DC/DC conversion circuit can adjust the electrical parameters of the first direct current Vled according to the power supply demand of the light board indicated by the first control information.
  • the light board 102 is configured to receive the first direct current Vled outputted by the first power supply interface 203 through the second power supply interface 104. In this way, the light board 102 is powered by the first direct current Vled.
  • the power supply device can control the electrical parameters of the direct current output to the powered module according to the first control information. Since the first control information can reflect the power supply demand of the light board, that is, the power supply demand of the light board indicated by the first control information is associated with the electrical parameters of the direct current output to the powered module, flexible adjustment of the power supply to the powered device can be achieved, especially for powered devices with different power supply requirements. Since the solution provided in the embodiments of the present application can achieve flexible adjustment of the power supply to the powered device, it also ensures that the power supply device can support powered devices with different power supply requirements.
  • the power supply device 200 may further include: a third power supply interface 204 connected to the power supply module 201; the powered device 100 also includes a fourth power supply interface 105 connected to the system module 101; when the power supply device 200 is connected to the powered device 100 via a cable 300, the third power supply interface 204 is connected to the fourth power supply interface 105 via line 2 in the cable 300.
  • the power module 201 is configured to convert the received alternating current into a second direct current Vsys, and output it to the third power supply interface 204.
  • the system module 101 is configured to receive the second direct current Vsys output by the power module 201 through the third power supply interface 204 through the fourth power supply interface 105, and the second direct current Vsys is generated by the power module 201 by converting the received alternating current.
  • the number of AC/DC conversion circuits and DC/DC conversion circuits in the power module 201 is not limited.
  • the power module 201 may have another set of AC/DC conversion circuits and DC/DC conversion circuits, wherein the other set of AC/DC conversion circuits and DC/DC conversion circuits may convert the alternating current into the second direct current Vsys, and directly power the system module 101 through the second direct current Vsys.
  • the electrical parameters of Vsys should meet the minimum working requirements of the system module 101 .
  • the system module 101 can be powered on by the power supply device first, so as to detect and obtain the power supply demand of the light board 102 through the system module 101, thereby ensuring that the system module can work normally when the second direct current Vsys is powered.
  • a set of AC/DC conversion circuits and two sets of DC/DC conversion circuits can also be set in the power supply module 201, and the output of the same set of AC/DC conversion circuits is used to power the light board and the system module respectively.
  • the electrical parameters of the second DC power Vsys can be further adjusted according to the power supply demand of the system module 101.
  • the system module 101 is configured to generate the second control information according to the power supply demand of the system module 101; wherein the power supply demand of the system module 101 may include electrical parameters determined by the load state (light load or heavy load) and working state (such as screen off, screen on, power on or standby) of the system module, such as voltage, current and power.
  • the system module 101 is further configured to send the second control information to the second control interface 103.
  • the first control interface 202 is further configured to obtain the second control information sent by the system module 101 through the second control interface 103; the power supply module 201 is configured to adjust the electrical parameters of the second DC power Vsys to a second value and output it to the third power supply interface 204 according to the second control information obtained by the first control interface 202.
  • the second value may be the voltage, current and power corresponding to the power supply demand of the system module 101.
  • the system module 101 is configured to receive the second direct current Vsys output by the power module 201 through the third power supply interface 204 through the fourth power supply interface 105.
  • the second control information can reflect the power supply demand of the system module, that is, the power supply demand of the light board indicated by the second control information is associated with the electrical parameters of the direct current output to the system module, the power supply of the system module can be flexibly adjusted.
  • the powered device 100 in order to first power on the system module 101, can be provided with a battery 108 connected to the system module 101, and the second direct current Vsys is directly provided to the system module 101 through the battery 108.
  • the electrical parameters of the first direct current can also be converted to generate the second direct current Vsys through a conversion circuit 109 (for example, which can be DC/DC) connected between the second power supply interface 104 and the system module 101.
  • a closed-loop feedback (FB) adjustment mechanism can also be introduced in the embodiment of the present application.
  • the power supply device 200 further includes a first feedback interface 205 connected to the power module 201; the powered device 100 further includes a second feedback interface 106 connected to the lamp board 102; when the power supply device 200 is connected to the powered device 100 through the cable 300, the first feedback interface 205 is connected to the second feedback interface 106 through the line 4 in the cable 300; the first feedback interface 205 is configured to receive feedback information sent by the lamp board 102 through the second feedback interface 106, and the feedback information can carry the detection value of the electrical parameter of the first direct current Vled, and the detection value is generated by the lamp board 102 detecting the electrical parameter of the first direct current Vled received by the second power supply interface 105; the power module 201 is configured to adjust the electrical parameter of the first direct current Vled to the first value according to the detection value.
  • the electrical parameters of the first DC power Vled are always stabilized at electrical parameters that match the power supply requirements of the lamp board 102, avoiding insufficient power supply or power waste caused by unstable electrical parameters of the first DC power Vled.
  • the embodiments of the present application do not limit the specific forms of the first control information, the second control information, and the feedback information.
  • the first control information and the second control information may be one or more of the protocol signals generated by the system module 101 after directly detecting the power supply requirements of the light board 102 and itself, or digital signals (such as pulse width modulation (PWM) signals), analog signals, and general-purpose input/output (GPIO) signals, and transmitted to the power module 201 through line 3 in FIG6.
  • the feedback information may be the electrical parameter value of the first direct current Vled directly detected by the light board 102, and fed back to the power module 201 through line 4.
  • the power supply device 200 provided in the embodiment of the present application shown in FIG6 and FIG7 also includes a detection circuit 206, and the powered device 100 may also include a feedback circuit 107.
  • the power supply requirements of the above-mentioned lamp board, the power supply requirements of the system module and the detection value can be converted by the feedback circuit 107 into the first control information, the second control information and the feedback information in a fixed format respectively, and then transmitted to the detection circuit 206 through the line 3.
  • the detection circuit 206 detects the corresponding power supply requirements of the lamp board, the power supply requirements of the system module and the detection value in the first control information, the second control information and the feedback information in the fixed format, and then transmits them to the power supply module 201, so as to realize the corresponding control of the power supply module 201 in the above example.
  • the power supply device 200 further includes a detection circuit 206, which is connected between the power supply module 201 and the first control interface 202; the powered device 100 further includes a feedback circuit 107, which is connected between the system module 101 and the second control interface 103.
  • the feedback circuit 107 is configured to generate the first control information according to the power supply demand of the light board 102 obtained by the system module 101.
  • the feedback circuit 107 is also configured to send the first control information to the second control interface 103.
  • the first control interface 202 is also configured to receive the first control information sent by the feedback circuit 107 through the second control interface 103.
  • detection circuit 206 is configured to detect the first control information to generate the power supply demand of the light board 102.
  • the feedback circuit 107 is configured to generate the second control information according to the power supply requirement of the system module 101 obtained by the system module 101.
  • the feedback circuit 107 is also configured to send the second control information to the second control interface 103.
  • the first control interface 202 is also configured to receive the second control information sent by the feedback circuit 107 through the second control interface 103;
  • the detection circuit 206 is configured to detect the power supply requirement of the system module 101 generated by the second control information.
  • the lamp board 102 is configured to detect the electrical parameters of the first direct current received by the second power supply interface 105, and generate the detection value of the electrical parameters of the first direct current; the lamp board 102 is also configured to send the detection value of the electrical parameters of the first direct current to the feedback circuit 107; the feedback circuit 107 is configured to send feedback information to the second control interface 103, and the feedback information carries the detection value.
  • the power supply device 200 also includes a detection circuit 206, and the detection circuit 206 is connected between the power module 201 and the first control interface 202; the first control interface 202 is configured to receive the feedback information sent by the feedback circuit 107 through the second control interface 103, and the feedback information carries the detection value of the electrical parameter of the first direct current; the detection circuit 206 is configured to detect the feedback information to obtain the detection value; the power module 201 is configured to adjust the electrical parameter of the first direct current to the first value according to the detection value.
  • the detection value can be transmitted to the detection circuit 206 through the feedback circuit 107, so that one line 4 can be reduced between the power supply device 200 and the powered device 100, that is, each control information is transmitted through one line. Therefore, when designing the cable, the first control information, the second control information and the feedback information can be transmitted through only one line, so that the corresponding interface in the connector can be plugged in only through one pin in the cable. Such a setting is more conducive to supporting the forward and reverse plug-in design of the cable.
  • the detection circuit 206 and the feedback circuit 107 need to adopt circuits with corresponding signal conversion functions, for example: the detection circuit and the feedback circuit can adopt one or more of the protocol IC, digital circuit, analog circuit, and GPIO circuit.
  • the power supply module 201 may include a first conversion circuit 2011 and a second conversion circuit 2012, wherein the first conversion circuit 2011 may be an AC/DC conversion circuit, and the second conversion circuit 2012 may be a DC/DC conversion circuit.
  • the first conversion circuit 2011 is connected to the second conversion circuit 2012, and the second conversion circuit 2012 is connected to the first control interface 202 and the first power supply interface 203;
  • the first conversion circuit 2011 is configured to convert the received alternating current into a first direct current;
  • the second conversion circuit 2012 is configured to adjust the electrical parameters of the first direct current to a first value and output it to the first power supply interface 203 according to the power supply demand of the light board indicated by the first control information obtained at the first control interface 202.
  • the power module 201 includes a third conversion circuit 2013, and the third conversion circuit 2013 is connected to the third power supply interface 204; the third conversion circuit 2013 is configured to convert the received alternating current into a second direct current, and output it to the third power supply interface 204.
  • the third conversion circuit 2013 may be an AC/DC conversion circuit.
  • the power module 201 may also include a fourth conversion circuit 2014, which is connected between the third conversion circuit 2013 and the third power supply interface 204, and is also connected to the first control interface 202; the fourth conversion circuit 2014 may be a DC/DC conversion circuit.
  • the first control interface 202 is also configured to obtain the second control information sent by the powered device through the second control interface; the fourth conversion circuit 2014 is configured to adjust the electrical parameters of the second direct current to the second value and output it to the third power supply interface 204 according to the power supply demand of the system module indicated by the second control information.
  • the lamp panel power supply and the system module power supply respectively adopt independent AC/DC conversion circuits.
  • the lamp panel power supply and the system module may also share the same set of AC/DC conversion circuits.
  • the power supply module 201 may include a first conversion circuit 2011, a second conversion circuit 2012, and a fourth conversion circuit 2014, wherein the connection relationship and functional description of the first conversion circuit 2011 and the second conversion circuit 2012 may refer to FIG. 7, the difference being that the power supply module 201 in FIG.
  • 11 also includes a fourth conversion circuit 2014, and the fourth conversion circuit 2014 is connected between the first conversion circuit 2011 and the third power supply interface 204; the first control interface 202 is further configured to obtain the second control information sent by the system module through the second control interface, and the fourth conversion circuit 2014 is configured to control the electrical parameters of the first direct current to be adjusted to the second value and output to the third power supply interface 204 according to the power supply demand of the system module indicated by the second control information.
  • the examples of power modules provided in the above-mentioned FIGS. 9 to 11 are only some optional examples, and on this basis, those skilled in the art can further adjust and expand the power modules to form more structures.
  • the first conversion circuit 2011 can be specifically a rectifier circuit, and an electromagnetic compatibility (EMI) filter protection circuit can be further provided at the input and output ends of the rectifier circuit, and a power factor correction (power factor correction) circuit for power factor adjustment can also be provided at the output end of the rectifier circuit.
  • EMI electromagnetic compatibility
  • PFC power factor correction
  • the fourth conversion circuit 2014 can specifically adopt a flyback conversion circuit with higher low power efficiency or a resonant (LLC) conversion circuit with higher high power efficiency.
  • LLC resonant
  • the second conversion circuit 2012 is mainly used to power the lamp board; and in order to match the dynamic range of the backlight, the power range of the lamp board is relatively wide (there may be large power and small power), so the second conversion circuit 2012 can adopt an LLC conversion circuit with higher efficiency in the high power range.
  • Vsys and Vled can also share the second conversion circuit 2012, so that multiple groups of DC/DC conversion circuits can be set after the second conversion circuit 2012 to power the system module and the lamp board respectively.
  • a group of DC/DC conversion circuits can be controlled by using the first control information to adjust the electrical parameters of the first direct current output by the second conversion circuit 2012 to generate Vled; and another group of DC/DC conversion circuits can be controlled by using the second control information to adjust the electrical parameters of the first direct current output by the second conversion circuit 2012 to generate Vsys.
  • Vsys can also be used to supply power to the power supply device, for example, it can supply power to the control circuit in the power module.
  • the solution provided in the embodiment of the present application can also detect the power specification of the first DC power Vled on line 1 and the second DC power Vsys on line 2.
  • the detection circuit 206 is also connected to the first power supply interface 203 and the third power supply interface 204, and is configured to detect the electrical parameters of the first DC power of the first power supply interface 203, and to detect the electrical parameters of the second DC power of the third power supply interface 204.
  • the power supply device shown in FIG13 can further include a switch K1 connected between the power supply module 201 and the first power supply interface 203; the control end of the switch K1 is connected to the detection circuit 206; the detection circuit 206 is configured to control the conduction state of the switch according to the electrical parameters of the first DC power, so that the power supply to the light board can be turned on and off separately.
  • the detection circuit 206 of the power supply device 200 and the feedback circuit 107 of the powered device 100 can also be powered by Vsys.
  • the feedback circuit 107 can also detect the power supply specification of Vsys and feed back the detection result to the detection circuit 206, and the detection circuit 206 performs closed-loop dynamic adjustment on Vsys.
  • the detection value of the electrical parameter of the second direct current output by the lamp board 102 can also be transmitted to the detection circuit 206 via line 4, and the detection circuit 206 controls the power module 201 to perform closed-loop dynamic adjustment on the electrical parameter of the second direct current Vsys according to the detection value.
  • the form of the cable 300 is not limited, and a cable IC may also be provided in the cable 300.
  • the cable may be an electronically marked cable (E-Marker), and the cable IC may store the cable electronic tag.
  • E-Marker electronically marked cable
  • the powered device may dynamically adjust the output DC power within the capacity range corresponding to the cable electronic tag to avoid cable damage.
  • FIG. 14 it is shown that the specific forms of the feedback circuit 107 and the detection circuit 206 can adopt the protocol IC;
  • FIG. 15 also shows that the specific forms of the feedback circuit 107 and the detection circuit 206 can adopt analog and/or digital circuits;
  • FIG. 16 also shows that the specific forms of the feedback circuit and the detection circuit can adopt GPIO.
  • the power module 201 can adopt any power module of the structural form shown in FIGS. 9-13 above.
  • an embodiment of the present application provides a power supply control method, as shown in FIG. 17 , comprising the following steps:
  • the power supply device controls the power supply module to convert the alternating current into a second direct current Vsys and outputs the second direct current to the system module of the powered device.
  • the power supply module can convert the 220V AC power into a second DC power Vsys, where the electrical parameters of Vsys can be initialized default values (default), which can ensure the normal operation of the system module to detect the power supply requirements of the light board.
  • the powered device detects the power supply demand of the light panel.
  • the power supply demand of the light board changes dynamically under different working conditions of the powered equipment. For example, when the service of the whole machine is switched, the power supply demand of the light board changes accordingly.
  • the power supply requirements of the light board may include electrical parameters determined by device specifications, manufacturer information, backlight power supply scheme (such as light board power supply parameters under different backlight power consumption scenarios, light board power supply parameters under different backlight brightness scenarios, etc.), such as voltage, current and power.
  • backlight power supply scheme such as light board power supply parameters under different backlight power consumption scenarios, light board power supply parameters under different backlight brightness scenarios, etc.
  • the powered device generates first control information according to the power supply requirement of the light board.
  • S104 The powered device sends the first control information to the power supply device.
  • step S104 when the power supply device includes a detection circuit, and the powered device includes a feedback circuit, the powered device may also generate the first control information in the form of the above-mentioned protocol signal, digital signal, analog signal or GPIO signal, etc., based on the power supply demand of the light board.
  • S104 may specifically be that the powered device generates the first control information based on the power supply demand of the powered module (such as the light board); and sends the first control information to the power supply device, and the first control information carries the power supply demand of the light board.
  • the power supply device receives first control information sent by the powered device.
  • the power supply device When the power supply requirement of the lamp board received by the power supply device is the first control information in the form of the above-mentioned protocol signal, digital signal, analog signal or GPIO signal, the power supply device is specifically used to detect the first control information to generate the power supply requirement of the lamp board.
  • the power supply device outputs a first direct current Vled.
  • step S106 specifically involves the power supply device controlling the power supply module to convert the AC power into the first DC power Vled and output it to the power receiving module (light board) of the powered device according to the power supply demand of the light board indicated by the first control information, wherein the electrical parameters of the first DC power Vled are adjusted to the first value by the power supply module according to the power supply demand of the light board indicated by the first control information.
  • the powered device can also be used to detect the electrical parameters of the received first direct current Vled, generate the detection value of the electrical parameters of the first direct current Vled; carry the detection value of the electrical parameters of the first direct current in the feedback information and send it to the power supply device.
  • the power supply device receives the detection value sent by the powered module; controls the power supply module to adjust the electrical parameters of the first direct current to the first value according to the detection value, thereby realizing closed-loop feedback regulation of the electrical parameters of the first direct current Vled.
  • the powered device can also generate the feedback information in the form of the above-mentioned protocol signal, digital signal, analog signal or GPIO signal from the detected detection value and send it to the power supply device.
  • the power supply device After receiving the feedback information sent by the powered device, the power supply device detects the feedback information to obtain the detection value; finally, controls the power supply module to adjust the electrical parameters of the first direct current to the first value according to the detection value.
  • the solution provided in the embodiment of the present application can also dynamically adjust the second DC power Vsys, specifically comprising the following steps:
  • the power supply device controls the power supply module to convert the alternating current into a second direct current Vsys and outputs the second direct current to the system module of the powered device.
  • the powered device detects the power supply demand of the system module.
  • the power supply demand of the system module changes dynamically under different working conditions of the powered equipment. For example, when the service of the whole machine is switched, the power supply demand of the system module changes accordingly.
  • the power supply requirements of the system module may include electrical parameters determined by the load state (light load or heavy load) and working state (such as screen off, screen on, on or in standby mode, etc.) of the system module, such as voltage, current and power.
  • the powered device generates second control information according to a power supply requirement of the system module.
  • S203 The powered device sends the second control information to the power supply device.
  • step S203 when the power supply device includes a detection circuit and the powered device includes a feedback circuit, the powered device can also generate the above-mentioned protocol signal, digital signal, analog signal or GPIO signal based on the power supply demand of the system module.
  • S203 can specifically be that the powered device generates the second control information based on the power supply demand of the system module and sends the second control information to the power supply device.
  • S204 The power supply device receives second control information sent by the powered device.
  • the power supply device When the signal received by the power supply device is the second control information in the form of the above-mentioned protocol signal, digital signal, analog signal or GPIO signal, the power supply device is specifically used to detect the power supply demand of the second control information generation system module.
  • the power supply device outputs the second direct current Vsys.
  • step S205 is that the power supply device controls the power supply module to adjust the electrical parameter of the second direct current Vsys to the second value according to the power supply demand of the system module indicated by the second control information.
  • the power supply control device includes hardware structures and/or software modules corresponding to the execution of each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • the embodiment of the present application can divide the functional modules of the power supply control device according to the above-mentioned power supply control method example.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated module can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • FIG. 19 shows the power supply control device involved in the above embodiment.
  • a possible structural diagram of a device 40 is shown, where the power supply control device is applied to the power supply device itself or a chip in the power supply device, including: a receiving unit 401 and a control unit 402.
  • the receiving unit 401 is used to receive first control information sent by a powered device, wherein the first control information is generated by a power supply requirement of a power receiving module of the powered device; the control unit 402 is used to output a first direct current to the power receiving module of the powered device according to the power supply requirement of the power receiving module indicated by the first control information, wherein the electrical parameters of the first direct current are adjusted to a first value by the power supply module according to the power supply requirement of the power receiving module.
  • control unit 402 is further used to control the power module to output a second direct current to a system module of the power receiving module, and the system module is used to obtain a power supply demand of the power receiving module.
  • the receiving unit 401 is further used to receive second control information sent by the powered device, where the second control information is generated by the power supply requirement of the system module obtained by the powered device; the control unit 402 is further used to control the power supply module to adjust the electrical parameters of the second direct current to a second value according to the power supply requirement of the system module indicated by the second control information.
  • control unit 402 is further used to detect the first control information to generate a power supply requirement of the power receiving module.
  • control unit 402 is further configured to detect the second control information to generate a power supply requirement of the system module.
  • the receiving unit 401 is specifically used to receive feedback information sent by the powered device, where the feedback information is generated by detecting the detection value of the electrical parameter of the first direct current after the powered device receives the first direct current; the control unit 402 is also used to adjust the electrical parameter of the first direct current to the first value according to the detection value.
  • control unit 402 is further configured to detect the feedback information to obtain the detection value.
  • the power supply control device 40 includes a processor and an interface, and the processor is connected to the interface; the processor is used to execute program instructions in the memory to execute the steps performed by the power supply device in the above-mentioned power supply control method.
  • the above-mentioned receiving unit 401 can be specifically an interface
  • the control unit 402 can be specifically a processor.
  • the power supply control device 40 can be a chip integrated in the above-mentioned power supply module or detection circuit.
  • FIG. 20 shows a possible structural schematic diagram of the power supply control device involved in the above embodiment.
  • the power supply control device 50 is applied to the power supply device itself or the chip in the power supply device, including: a control unit 501, a sending unit 502, and a receiving unit 503.
  • a control unit 501 is used to obtain the power supply requirement of the power receiving module; a sending unit 502 is used to send first control information to the power supply device, wherein the first control information is generated by the power supply requirement of the power receiving module; a receiving unit 503 is used to receive the first direct current output by the power supply device, and power the power receiving module with the first direct current, wherein the electrical parameters of the first direct current are associated with the power supply requirement of the power receiving module indicated by the first control information.
  • the powered device further includes a system module
  • the control unit 501 is further configured to power on the system module before obtaining the power supply requirement of the powered module
  • the system module is configured to obtain the power supply requirement of the powered module.
  • the powered device further includes a battery; and the control unit 501 is further configured to output a second direct current to the system module through the battery to power on the system module.
  • the powered device includes a conversion circuit
  • the control unit 501 is further configured to convert the first direct current into a second direct current through the conversion circuit and output the second direct current to the system module, thereby powering on the system module.
  • the receiving unit 503 is further configured to receive a second direct current output by the power supply device; and power on the system module through the second direct current.
  • control unit 501 is used to obtain the power supply requirement of the system module; the sending unit 502 is used to send second control information to the power supply device, the second control information is generated by the power supply requirement of the system module; the receiving unit 503 is also used to receive a second direct current output by the power supply device, the electrical parameters of the second direct current are associated with the power supply requirement of the system module indicated by the second control signal.
  • control unit 501 is further configured to generate the first control information according to a power supply requirement of the power receiving module.
  • control unit 501 is further used to detect electrical parameters of the first direct current and generate a detection value; the sending unit 502 is specifically used to send feedback information to the power supply device, and the feedback information carries the detection value.
  • control unit 501 is further configured to generate the feedback information according to the detection value.
  • the power supply control device 50 includes a processor and an interface, and the processor is connected to the interface; the processor is used to execute program instructions in the memory to execute the steps performed by the power receiving device in the above-mentioned power supply control method.
  • the above-mentioned sending unit 502 and receiving unit 503 can be specifically interfaces, and the control unit 501 can be specifically a processor.
  • the power supply control device 50 can be a chip integrated in the above-mentioned power receiving module or feedback circuit.
  • a readable storage medium in which a computer-executable instruction is stored, and when a device (which may be a single-chip microcomputer, chip, etc.) or a processor executes the steps of the method provided in FIG. 17 or FIG. 18.
  • the aforementioned readable storage medium may include: a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk, and other media that can store program codes.
  • a chip including a substrate, and a detection circuit or a feedback circuit arranged on the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

提供一种供电设备、受电设备、芯片以及供电***,涉及供电技术领域,能够实现同一供电设备支持不同供电需求的受电设备。供电设备包括:电源模组、以及连接电源模组的第一控制接口以及第一供电接口;受电设备包括:***模组、受电模组,***模组连接第二控制接口以及受电模组,受电模组连接第二供电接口。第一控制接口连接第二控制接口,第一供电接口连接第二供电接口;第一控制接口获取受电设备通过第二控制接口发送的第一控制信息,第一控制信息由***模组获取的受电模组的供电需求生成;电源模组根据第一控制信息指示的受电模组的供电需求,向第一供电接口输出第一直流电,第一直流电的电学参数被电源模组根据受电模组的供电需求调整为第一值。

Description

一种供电设备、受电设备、芯片以及供电***
本申请要求于2022年11月16日提交国家知识产权局、申请号为202211436779.2、申请名称为“一种供电设备、受电设备、芯片以及供电***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请的实施例涉及电源技术领域,尤其涉及一种供电设备、受电设备、芯片以及供电***。
背景技术
为了减少终端设备整机厚度以及电源散热对终端设备整机的影响,业界通常将体积较大的大功率电源与终端设备整机分体单独设计。尤其在终端设备上,超薄是高端终端设备的一个重要卖点,但终端设备厚度进一步降低往往受限于整机中的电源部分,究其原因主要是大功率电源器件及散热器体积较大,还有安规对空间布局的安全距离要求,成为整机厚度的瓶颈,因此电源与终端设备整机分体设计尤为重要。
然而,分体方案会带来接口和线缆通用性问题,如果采用定制接口和定制线缆,则需要为不同供电需求的终端设备单独设计定制化的接口、线缆以及电源,这将造成成本较高;定制化的方案中,由于不同供电需求的终端设备无法兼容同一电源,因此无法对电源进行归一化设计;如果不同供电需求的终端设备采用通用化的接口、线缆以及电源,则由于不同的终端设备具有不同的供电需求,提供供电电压的电源匹配时通用性差,即同一电源通常不能适配不同供电需求的终端设备,这样将同一电源与不同的终端设备通过通用接口和通用线缆互连时,可能会导致终端设备由于供电电压不够而无法正常工作,或者供电电压超过终端设备的额定电压而导致终端设备损坏;总之,通用化的方案中,不同的终端设备与电源通过通用化的接口和线缆互连时,互相组合不防呆。
发明内容
本发明的实施例提供一种供电设备、受电设备、芯片以及供电***,能够实现同一供电设备支持不同供电需求的受电设备。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种供电设备,用于通过线缆连接受电设备。其中在结构上,该供电设备包括:电源模组、以及连接电源模组的第一控制接口以及第一供电接口;受电设备包括:***模组、受电模组、第二控制接口以及第二供电接口,***模组连接第二控制接口以及受电模组,受电模组连接第二供电接口。这样,供电设备通过线缆连接受电设备时,第一控制接口通过线缆中的线路连接所述第二控制接口,第一供电接口通过线缆中的线路连接第二供电接口。
基于上述的结构,在供电设备中,第一控制接口,被配置为获取受电设备通过第二控制接口发送的第一控制信息,第一控制信息由***模组获取的受电模组的供电需求生成;电源模组,被配置为根据第一控制信息指示的受电模组的供电需求,向第一供电接口输出第一直流电,第一直流电的电学参数被电源模组根据受电模组的供电需求调整为第一值。
这样在上述的示例中,由于受电设备可以通过***模组获取受电模组的供电需求,并生成第一控制信息发送至供电设备,供电设备在接收到第一控制信息后,可以根据第一控制信息指示的受电模组的供电需求控制电源模组输出至受电模组的直流电的电学参数,从而实现对受电设备供电的灵活调整,尤其对于具有不同供电需求的受电设备,由于本申请的实施例提供的方案能够实现对受电设备供电的灵活调整,因此也确保了供电设备能够支持具有不同供电需求的受电设备。
在一种可能的实现方式中,供电设备,还包括:连接电源模组的第三供电接口;受电设备,还包括连接***模组的第四供电接口;供电设备通过线缆连接受电设备时,第三供电接口通过线缆中的线路连接第四供电接口;电源模组,被配置为向第三供电接口输出第二直流电。这样,由于需要通过***模组获取受电模组的供电需求,因此需要首先通过供电设备对该***模组上电,该实现方式中可以确保***模组在第二直流电供电时能够正常工作。当然,对***模组上电方式还有其他方式,在下述的第二方面具体进行描述。
在一种可能的实现方式中,当***模组上电后,还可以进一步根据***模组的供电需求进一步调整第二直流电Vsys的电学参数。例如,***模组,被配置为根据***模组的供电需求生成第二控制信息; 其中,***模组的供电需求可以包括由***模组的负载状态(轻载或重载)、工作状态(例如息屏、或亮屏、开机或待机等)等确定的电学参数,例如可以是电压、电流以及功率。第一控制接口,还被配置为获取受电设备通过第二控制接口发送的第二控制信息,第二控制信息由***模组获取的***模组的供电需求生成;电源模组,被配置为根据第二控制信息指示的***模组的供电需求,将第二直流电的电学参数调整至第二值。
在一种可能的实现方式中,供电设备还包括检测电路,检测电路连接于电源模组和第一控制接口之间;受电设备还包括反馈电路,反馈电路连接于***模组和第二控制接口之间;第一控制接口,具体被配置为接收反馈电路通过第二控制接口发送的第一控制信息,第一控制信息由反馈电路根据***模组获取的受电模组的供电需求生成;检测电路,被配置为检测第一控制信息生成受电模组的供电需求。在该示例中,上述的受电模组的供电需求可以由反馈电路转换为固定格式的第一控制信息通过线路传输至检测电路,并由检测电路在该固定格式的第一控制信息中检测出相应的受电模组的供电需求然后传输至电源模组,以对电源模组实现上述示例中相应的控制。例如第一控制信息可以是协议信号、或者数字信号(例如脉宽调制(pulse width modulation,PWM)信号)、模拟信号以及通用输入输出(general-purpose input/output,GPIO)信号等形式的信号中的一种或多种。
在一种可能的实现方式中,供电设备还包括检测电路,检测电路连接于电源模组和第一控制接口之间;受电设备还包括反馈电路,反馈电路连接于***模组和第二控制接口之间;第一控制接口,还被配置为接收反馈电路通过第二控制接口发送的第二控制信息,第二控制信息由反馈电路根据***模组获取的***模组的供电需求生成;检测电路,被配置为检测第二控制信息生成***模组的供电需求。在该示例中,上述的***模组的供电需求可以由反馈电路转换为固定格式的第二控制信息通过线路传输至检测电路,并由检测电路在该固定格式的第二控制信息中检测出相应的***模组的供电需求然后传输至电源模组,以对电源模组实现上述示例中相应的控制。例如第二控制信息可以是协议信号、或者数字信号(例如PWM信号)、模拟信号以及GPIO信号等形式的信号中的一种或多种。
在一种可能的实现方式中,供电设备,还被配置为接收受电设备发送的反馈信息,反馈信息为受电设备接收到第一直流电后通过检测第一直流电的电学参数的检测值生成;反馈信息携带第一直流电的电学参数的检测值;电源模组,被配置为根据检测值,将第一直流电的电学参数调整至第一值。在该示例中,可以通过反馈信息实现闭环的FB调节使得第一直流电的电学参数始终稳定在与受电模组的供电需求匹配的电学参数上,避免了第一直流电的电学参数不稳定造成的供电功率不足或功率浪费。
在一种可能的实现方式中,供电设备还包括检测电路,检测电路连接于电源模组和第一控制接口之间;受电设备还包括反馈电路,反馈电路连接于受电模组和第二控制接口之间;第一控制接口,被配置为接收反馈电路通过第二控制接口发送的反馈信息;检测电路,被配置为检测反馈信息获取检测值。电源模组,被配置为根据检测值,将第一直流电的电学参数调整至第一值。在该示例中,首先,通过检测值实现闭环的FB调节使得第一直流电的电学参数始终稳定在与受电模组的供电需求匹配的电学参数上,避免了第一直流电电学参数不稳定造成的供电功率不足或功率浪费。其次,上述的检测值可以由反馈电路转换为固定格式的反馈信息通过线路传输至检测电路,并由检测电路在该固定格式的反馈信息中检测出相应的检测值然后传输至电源模组,以对电源模组实现上述示例中相应的控制。例如反馈信息可以是协议信号、或者数字信号(例如PWM信号)、模拟信号以及GPIO信号等形式的信号中的一种或多种。这样所有的控制信息(第一控制信息、第二控制信息以及反馈信息)均通过反馈电路在一条线路传输至检测电路,因此在线缆设计时仅通过一条线路即可传输第一控制信息、第二控制信息以及反馈信息,因此仅通过线缆中的一个引脚即可实现对应连接器中的接口的插接,这样的设置更有利于支持线缆的正反插拔设计。
在一种可能的实现方式中,检测电路包括协议集成电路IC、数字电路、模拟电路、通用输入输出GPIO电路中的一种或多种。
在一种可能的实现方式中,供电设备,还包括连接电源模组的第一反馈接口;受电设备,还包括与受电模组连接的第二反馈接口;供电设备通过线缆连接受电设备时,第一反馈接口通过线缆中的线路连接第二反馈接口;第一反馈接口,被配置为接收受电模组通过第二反馈接口发送的反馈信息;电源模组,被配置为根据检测值将第一直流电的电学参数调整至第一值。这样通过闭环的FB调节使得第一直流电的电学参数始终稳定在与受电模组的供电需求匹配的电学参数上,避免了第一直流电的电学参数不稳定造成的供电功率不足或功率浪费。
在一种可能的实现方式中,为了实现对供电设备以及受电设备的过流保护、过压保护、欠压保护等保护功能,检测电路还连接第一供电接口,被配置为检测第一供电接口的第一直流电的电学参数。当然在确定电源规格不符合要求时可以触发相应的保护机制,例如控制电源模组对第一直流电断电控制。
在一种可能的实现方式中,为了实现对供电设备以及受电设备的过流保护、过压保护、欠压保护等保护功能,检测电路还连接第三供电接口,被配置为检测第三供电接口的第二直流电的电学参数。当然在确定电源规格不符合要求时可以触发相应的保护机制,例如控制电源模组对第二直流电断电控制。
在一种可能的实现方式中,供电设备,还包括连接于电源模组和第一供电接口之间的开关;开关的控制端连接于检测电路;检测电路,被配置为根据第一直流电的电学参数控制开关的导通状态。
在一种可能的实现方式中,电源模组包括:第一变换电路以及第二变换电路,第一变换电路连接电源以及第二变换电路,第二变换电路连接第一控制接口以及第一供电接口;第一变换电路,被配置为将接收自电源的交流电转换为第一直流电;第二变换电路,被配置为根据在第一控制接口获取的第一控制信息,按照第一控制信息指示的受电模组的供电需求将第一直流电的电学参数调整至第一值并输出至第一供电接口。其中第一变换电路可以为交流-直流(alternating current/direct current,AC/DC)变换电路,第二变换电路可以为直流-直流(DC/DC)变换电路。
在一种可能的实现方式中,电源模组,包括第三变换电路,第三变换电路连接电源以及第三供电接口;第三变换电路,被配置为将接收自电源的交流电转换为第二直流电,并输出至第三供电接口。第三变换电路可以为AC/DC变换电路。
在一种可能的实现方式中,电源模组,还包括第四变换电路,第四变换电路连接于第三变换电路和第三供电接口之间,第四变换电路还连接第一控制接口;第一控制接口,还被配置为获取受电设备通过第二控制接口发送的第二控制信息;第四变换电路,被配置为根据第二控制信息指示的***模组的供电需求将第二直流电的电学参数调整至第二值并输出至第三供电接口。第四变换电路可以为DC/DC变换电路。
在一种可能的实现方式中,电源模组,还包括第四变换电路,第四变换电路连接于第一变换电路和第三供电接口之间;第一控制接口,还被配置为获取***模组通过第二控制接口发送的第二控制信息;第四变换电路,被配置为根据第二控制信息,按照第二控制信息指示的***模组的供电需求控制第四变换电路将第一直流电的电学参数调整至第二值并输出至第三供电接口。第四变换电路可以为DC/DC变换电路。为了节约成本,也可以将受电模组供电和***模组共用同一组AC/DC变换电路第一变换电路。
第二方面,提供一种受电设备,用于通过线缆连接供电设备。在结构上,该受电设备包括:***模组、受电模组、第二控制接口以及第二供电接口,***模组连接第二控制接口以及受电模组,受电模组连接所述第二供电接口;供电设备包括:电源模组、以及连接电源模组的第一控制接口以及第一供电接口;受电设备通过线缆连接供电设备时,第二控制接口通过所述线缆中的线路连接第一控制接口,第二供电接口通过所述线缆中的线路连接第一供电接口。在功能上,***模组,被配置为获取受电模组的供电需求;第二控制接口,被配置为将第一控制信息发送至第一控制接口,第一控制信息由***模组获取的受电模组的供电需求生成;受电模组,被配置为通过第二供电接口接收第一供电接口输出的第一直流电,其中,第一直流电的电学参数与第一控制信息指示的受电模组的供电需求关联。
在一种可能的实现方式中,***模组,被配置为获取受电模组的供电需求之前上电。
在一种可能的实现方式中,受电设备包括电池,电池连接***模组;电池被配置为向***模组输出第二直流电,对***模组上电。
在一种可能的实现方式中,受电设备包括变换电路,变换电路连接与第二供电接口和***模组之间;变换电路,被配置为将第一直流电转换为第二直流电输出至***模组,对***模组上电。
在一种可能的实现方式中,受电设备,还包括:连接***模组的第四供电接口;供电设备,还包括:连接电源模组的第三供电接口;受电设备通过线缆连接供电设备时,第四供电接口通过线缆中的线路连接第三供电接口;***模组,被配置为通过第四供电接口接收电源模组通过第三供电接口输出的第二直流电,对***模组上电。
在一种可能的实现方式中,***模组,被配置为获取***模组的供电需求;第二控制接口,还被配置为将第二控制信息发送至第二控制接口,第二控制信息由***模组获取的***模组的供电需求生成;***模组,被配置为通过第四供电接口接收供电设备通过第三供电接口输出的第二直流电,对***模组上电,第二直流电的电学参数与第二控制信息指示的***模组的供电需求关联。
在一种可能的实现方式中,受电设备,还包括反馈电路,反馈电路连接于***模组和第二控制接口之间;供电设备,还包括检测电路;检测电路连接于电源模组和第一控制接口之间;反馈电路,被配置为根据***模组获取的受电模组的供电需求生成第一控制信息;反馈电路,还被配置为将第一控制信息发送至第二控制接口。
在一种可能的实现方式中,受电设备还包括反馈电路,反馈电路连接于***模组和第二控制接口之间;供电设备还包括检测电路,检测电路连接于电源模组和第一控制接口之间;反馈电路,被配置为根据所述***模组获取的所述***模组的供电需求生成所述第二控制信息;反馈电路,还被配置为将所述第二控制信息发送至所述第二控制接口。
在一种可能的实现方式中,受电模组,还被配置为检测所述第二供电接口接收的所述第一直流电的电学参数,生成检测值;受电设备,还被配置为向所述供电设备发送反馈信息,所述反馈信息携带所述检测值。
在一种可能的实现方式中,受电设备还包括反馈电路,所述反馈电路连接于所述受电模组和所述第二控制接口之间;供电设备还包括检测电路,所述检测电路连接于所述电源模组和所述第一控制接口之间;受电模组,被配置为将所述第一直流电的电学参数的检测值发送至所述反馈电路;反馈电路,被配置为根据所述检测值生成反馈信息,并向所述第二控制接口发送所述反馈信息。
在一种可能的实现方式中,受电设备,还包括与所述受电模组连接的第二反馈接口;所述供电设备,还包括连接所述电源模组的第一反馈接口;受电设备通过所述线缆连接所述供电设备时,所述第二反馈接口口通过所述线缆中的线路连接所述第一反馈接;受电模组,被配置为检测所述第二供电接口接收的所述第一直流电的电学参数,生成所述检测值;受电模组,具体被配置为向第二反馈接口发送反馈信息,所述反馈信息携带所述检测值。
在一种可能的实现方式中,反馈电路包括协议IC、数字电路、模拟电路、GPIO电路中的一种或多种。
第三方面,一种检测电路,应用于供电设备,供电设备用于通过线缆连接受电设备,供电设备包括:电源模组、以及连接电源模组的第一控制接口以及第一供电接口,供电设备还包括所述检测电路,所述检测电路连接于所述电源模组和所述第一控制接口之间;所述受电设备包括:***模组、受电模组、第二控制接口以及第二供电接口,***模组连接第二控制接口以及受电模组,受电模组连接第二供电接口,受电设备还包括反馈电路,反馈电路连接于***模组和第二控制接口之间;供电设备通过线缆连接受电设备时,第一控制接口通过线缆中的线路连接第二控制接口,第一供电接口通过线缆中的线路连接第二供电接口;检测电路,被配置为检测第一控制接口接收的第一控制信息生成受电模组的供电需求;第一控制信息由反馈电路根据***模组获取的受电模组的供电需求生成;第一控制信息用于控制电源模组将接收自电源的交流电转换为第一直流电并输出至第一供电接口,其中,第一直流电的电学参数被电源模组根据第一控制信息指示的受电模组的供电需求调整为第一值。
在一种可能的实现方式中,供电设备,还包括:连接电源模组的第三供电接口;受电设备,还包括连接***模组的第四供电接口;供电设备通过线缆连接受电设备时,第三供电接口通过线缆中的线路连接第四供电接口;检测电路,还被配置为检测第一控制接口接收的第二控制信息生成***模组的供电需求;第二控制信息由反馈电路根据***模组获取的***模组的供电需求生成;第二控制信息用于控制电源模组将接收自电源的交流电转换为第二直流电并输出至第三供电接口,其中,第二直流电的电学参数被电源模组根据第二控制信息指示的***模组的供电需求调整为第二值。
在一种可能的实现方式中,检测电路,被配置为检测第一控制接口接收的反馈信息生成第一直流电的电学参数的检测值;其中,第一直流电的电学参数的检测值由受电设备对第二供电接口接收的第一直流电检测生成;检测值用于控制电源模组将第一直流电的电学参数调整至第一值。
在一种可能的实现方式中,检测电路还连接第一供电接口,被配置为检测第一供电接口的第一直流电的电学参数。
在一种可能的实现方式中,检测电路还连接第三供电接口,被配置为检测第三供电接口的第二直流电的电学参数。
在一种可能的实现方式中,供电设备,还包括连接于电源模组和第一供电接口之间的开关;开关的控制端连接于检测电路;检测电路,被配置为根据第一直流电的电学参数控制开关的导通状态。
第四方面,提供一种反馈电路,应用于受电设备,受电设备用于通过线缆连接供电设备,受电设备 包括:***模组、受电模组、第二控制接口以及第二供电接口,***模组连接第二控制接口以及受电模组,受电模组连接第二供电接口,受电设备还包括反馈电路,反馈电路连接于***模组和第二控制接口之间;供电设备包括:电源模组、以及连接电源模组的第一控制接口以及第一供电接口,供电设备还包括检测电路,检测电路连接于电源模组和第一控制接口之间;受电设备通过线缆连接供电设备时,第二控制接口通过线缆中的线路连接第一控制接口,第二供电接口通过线缆中的线路连接第一供电接口;反馈电路,被配置为根据***模组获取的受电模组的供电需求生成第一控制信息;反馈电路,还被配置为将第一控制信息发送至第二控制接口,第一控制信息用于控制电源模组将接收自电源的交流电转换为第一直流电并输出至第一供电接口,其中,其中,第一直流电的电学参数与第一控制信息指示的受电模组的供电需求关联。
在一种可能的实现方式中,供电设备,还包括:连接电源模组的第三供电接口;受电设备,还包括连接***模组的第四供电接口;受电设备通过线缆连接供电设备时,第四供电接口通过线缆中的线路连接第三供电接口;反馈电路,被配置为根据***模组获取的***模组的供电需求生成第二控制信息;反馈电路,还被配置为将第二控制信息发送至第二控制接口,第二控制信息用于控制电源模组将接收自电源的交流电转换为第二直流电并输出至第三供电接口,其中,第二直流电的电学参数与第二控制信息指示的***模组的供电需求关联。
在一种可能的实现方式中,反馈电路,被配置为向第二控制接口发送反馈信息,反馈信息携带第一直流电的电学参数的检测值;其中,第一直流电的电学参数的检测值由受电模组对第二供电接口接收的第一直流电检测生成。
第五方面,提供一种供电控制方法,应用于供电设备,所述供电设备包括电源模组,该方法包括:接收受电设备发送的第一控制信息,所述第一控制信息由所述受电设备的受电模组的供电需求生成;根据所述第一控制信息指示的所述受电模组的供电需求,向所述受电设备的受电模组输出第一直流电,其中所述第一直流电的电学参数被所述电源模组根据所述受电模组的供电需求调整为第一值。
在一种可能的实现方式中,还包括:控制所述电源模组向所述受电模组的***模组输出第二直流电,所述***模组用于获取所述受电模组的供电需求。
在一种可能的实现方式中,还包括:接收所述受电设备发送的第二控制信息,所述第二控制信息由所述受电设备获取的所述***模组的供电需求生成;根据所述第二控制信息指示的所述***模组的供电需求,控制所述电源模组将所述第二直流电的电学参数调整至第二值。
在一种可能的实现方式中,所述接收所述受电设备发送的第一控制信息后,还包括:检测所述第一控制信息生成所述受电模组的供电需求。
在一种可能的实现方式中,所述接收所述受电设备发送的第二控制信息后,还包括:检测所述第二控制信息生成所述***模组的供电需求。
在一种可能的实现方式中,方法还包括:接收所述受电设备发送的反馈信息,所述反馈信息为所述受电设备接收到所述第一直流电后通过检测所述第一直流电的电学参数的检测值生成;根据所述检测值,将所述第一直流电的电学参数调整至所述第一值。
在一种可能的实现方式中,所述接收所述受电设备发送的反馈信息后,还包括:检测所述反馈信息获取所述检测值。
第六方面,提供一种供电控制方法,用于受电设备,所述受电设备包括受电模组;该方法包括:获取所述受电模组的供电需求;将第一控制信息发送至所述供电设备,所述第一控制信息由所述受电模组的供电需求生成;接收所述供电设备输出的第一直流电,通过所述第一直流电为所述受电模组供电,其中,所述第一直流电的电学参数与所述第一控制信息指示的所述受电模组的供电需求关联。
在一种可能的实现方式中,所述受电设备还包括***模组,该方法还包括:在获取所述受电模组的供电需求之前,对所述***模组上电,所述***模组用于获取所述受电模组的供电需求。
在一种可能的实现方式中,所述受电设备还包括电池;该方法还包括:通过所述电池向所述***模组输出第二直流电,对所述***模组上电。
在一种可能的实现方式中,所述受电设备包括变换电路,该方法还包括:通过所述变换电路将所述第一直流电转换为第二直流电输出至所述***模组,对所述***模组上电。
在一种可能的实现方式中,该方法还包括:接收所述供电设备输出的第二直流电;通过所述第二直流电为所述***模组上电。
在一种可能的实现方式中,该方法还包括:获取所述***模组的供电需求;将第二控制信息发送至所述供电设备,所述第二控制信息由所述***模组的供电需求生成;将所述第二控制信息发送至所述供电设备;接收所述供电设备输出的第二直流电,所述第二直流电的电学参数与所述第二控制信号指示的所述***模组的供电需求关联。
在一种可能的实现方式中,所述将所述第一控制信息发送至所述供电设备之前;还包括:根据所述受电模组的供电需求生成所述第一控制信息。
在一种可能的实现方式中,所述将所述第二控制信息发送至所述供电设备之前;还包括:根据所述***模组的供电需求生成所述第二控制信息。
在一种可能的实现方式中,检测所述第一直流电的电学参数,生成检测值;向所述供电设备发送反馈信息,所述反馈信息携带所述检测值。
在一种可能的实现方式中,所述向所述供电设备发送反馈信息之前还包括:根据所述检测值生成所述反馈信息。
第七方面,提供一种供电控制装置,包括处理器和接口,处理器与接口连接;处理器用于执行存储器中的程序指令以执行如上述第五方面、第六方面以及其任意一种可能的实现方式所述的供电控制方法。
第八方面,提供一种芯片,包括衬底,以及设置于衬底上的第三方面及其可能的实现方式中所述的检测电路,或如第四方面及其可能的实现方式中所述的反馈电路。
第九方面,提供一种供电***,包括如第一方面及其可能的实现方式中所述的供电设备以及如第二方面及其可能的实现方式中所述的受电设备。
在一种可能的实现方式中,所述供电设备包括电源盒子,所述受电设备包括超薄显示设备。
其中,第二方面至第九方面及其可能的实现方式所解决的技术问题以及实现的技术效果可以参考第一方面及其可能的实现方式中的描述,此处不再赘述。
附图说明
图1为本申请的实施例提供的一种终端设备的结构示意图;
图2为本申请的实施例提供的一种供电***的结构示意图;
图3为本申请的另一实施例提供的一种供电***的结构示意图;
图4为本申请的又一实施例提供的一种供电***的结构示意图;
图5为本申请的再一实施例提供的一种供电***的结构示意图;
图6为本申请的另一实施例提供的一种供电***的结构示意图;
图7为本申请的又一实施例提供的一种供电***的结构示意图;
图8为本申请的再一实施例提供的一种供电***的结构示意图;
图9为本申请的实施例提供的一种电源模组的结构示意图;
图10为本申请的另一实施例提供的一种电源模组的结构示意图;
图11为本申请的又一实施例提供的一种电源模组的结构示意图;
图12为本申请的再一实施例提供的一种电源模组的结构示意图;
图13为本申请的另一实施例提供的一种供电***的结构示意图;
图14为本申请的又一实施例提供的一种供电***的结构示意图;
图15为本申请的再一实施例提供的一种供电***的结构示意图;
图16为本申请的另一实施例提供的一种供电***的结构示意图;
图17为本申请的实施例提供的一种供电控制方法的流程示意图;
图18为本申请的另一实施例提供的一种供电控制方法的流程示意图;
图19为本申请的实施例提供的一种供电控制装置的结构示意图;
图20为本申请的另一实施例提供的一种供电控制装置的结构示意图。
具体实施方式
下面将结合附图,对本申请一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或 者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面将结合附图,对本申请的实施例中的技术方案进行描述。
图1是本申请实施例提供的一种终端设备100的结构示意图。终端设备100可以是广告屏(广告牌)、显示器、电视(如智慧屏)、笔记本电脑、平板电脑、车载设备等大屏终端设备。可选的,在一些场景下,终端设备100可以是手机、电子阅读器或可穿戴设备等设备。图1所示实施例以终端设备100是显示设备为例进行说明。
终端设备100可以包括壳体110和屏组件120。
壳体110可以包括边框和后盖。边框可以环绕设于后盖的周缘。壳体110例如可以包括终端设备100的中框。在一个示例中,终端设备100的中框可以收容于边框的内周。在另一个示例中,终端设备100的中框可以充当壳体110的边框。屏组件120可以是为终端设备100提供显示功能的组件。用户可以观看屏组件120以欣赏图像、视频等媒体资源。屏组件120可以安装于壳体110上。屏组件120的周缘可以抵靠在边框的内沿。边框可以将屏组件120固定在壳体110上。屏组件120和后盖可以分别安装于边框的两侧,使得壳体110可以为终端设备内部的器件,尤其是屏组件120上的器件,提供机械保护的功能。屏组件120例如可以固定于终端设备100的中框上。在一些示例中,以液晶显示为例,屏组件120可以包括背光模组以及设置于背光模组出光侧的液晶面板。为了控制背光模组中的灯板以及液晶面板进行图像显示,终端设备100可以包括处理器、存储器、控制器、连接器、驱动板、集成电路、芯片、电源等控制模组。
为了减少终端设备100的整机厚度以及电源散热对终端设备整机的影响,业界通常将体积较大的大功率电源与终端设备整机分体单独设计。
结合图2所示,提供了一种将电源与终端设备整机分立设计的供电***。参照图2所示,供电***包括作为受电设备100的终端设备以及作为电源的供电设备200。受电设备100和供电设备200通过线缆300连接。在一些示例中供电设备200也称作电源坞(DOCK)、电源盒子、适配器等。其中,受电设备100和供电设备200上均设置有用于插接线缆300的连接器,通常连接器上设置有接口(或引脚),这些接口或引脚一来用于连接受电设备100和供电设备200内的模组,例如受电设备100上的连接器内部的接口用来连接受电设备100内部的***模组101、受电模组(例如灯板102)等等;供电设备200上的连接器内部的接口用来连接电源模组201等等;另外,这些接口或引脚还提供与线缆300插接,从而将受电设备100上的连接器内部的接口通过线缆300内部的线路与供电设备200上的连接器内部的接口连通,从而实现供电设备200内部的模块与受电设备100内部的模块的连通。
如图2所示,供电设备200中包括电源模组201,电源模组201包括AC/DC变换电路,用于将220V的交流市电转换为用于为受电设备100供电的一个或多个直流电。例如,当需要为受电设备100中的***模组101以及灯板102供电时,则AC/DC变换电路201可以将市电转换为分别为***模组101供电的Vsys以及为灯板102供电的VLED。AC/DC变换电路包括但不限于一路或多路基于LLC变换器或反激变换器的电压变换电路。通常,***模组101是受电设备100的控制中心,例如可以包括处理器、存储器、总线以及接口等,在一些示例中,***模组可以是片上***(system on chip,SOC)、中央处理器(central processing unit,CPU)、微控制单元(microcontroller unit,MCU)、现场可编程门阵列(field-programmable gate array,FPGA)等具有逻辑处理功能的集成电路;灯板102为受电设备100的受电模组,当然,在本申请的实施例中受电模组主要是以灯板102为例进行说明,通常在受电设备100中还具有其他类型的受电模组,例如射频、功放等其他用电电路。
如上所述,虽然电源与终端设备整机分体设计有利于终端整体的超薄化,但是分体方案会带来接口和线缆通用性问题,如果采用定制接口和定制线缆,则需要为不同供电需求的终端设备单独设计定制化的接口、线缆以及电源,这将造成成本较高,在定制化的方案中,由于不同供电需求的终端设备无法兼容同一电源,因此无法对电源进行归一化设计,例如,65寸的显示设备与55寸的显示设备的灯板具有明显不同的供电需求,因此对于接口、线缆以及电源的额定电压设计需要做定制化设计。如果不同供电需求的终端设备采用通用化的接口、线缆以及电源,则由于不同的终端设备具有不同的供电需求,提供供电电压的电源匹配时通用性差,即同一电源通常不能适配不同供电需求的终端设备,这样将同一电源与不同的终端设备通过通用接口和通用线缆互连时,可能会导致终端设备由于供电电压不够而无法正常工作,或者供电电压超过终端设备的额定电压而导致终端设备损坏,总之通用化的方案中,不同的终端设备与电源通过通用化的接口和线缆互连时,互相组合不防呆(fool-proofing)。
为解决上述问题,参照图3所示,本申请的实施例提供一种供电***,包括供电设备200以及受电设备100。供电设备200通过线缆300与受电设备100连接,供电设备200用于向受电设备100供电。
供电设备200包括:电源模组201、以及连接电源模组201的第一控制接口202以及第一供电接口203。受电设备100包括:***模组101、灯板102、第二控制接口103以及第二供电接口104,***模组101连接第二控制接口103以及灯板102,灯板102连接第二供电接口104。
供电设备200通过线缆300连接受电设备100时,第一控制接口202通过线缆中的线路连接第二控制接口103,这样在***模组101与电源模组201之间形成控制信息的传输路径;第一供电接口203通过线缆300中的线路连接第二供电接口104,这样在灯板102与电源模组201之间形成供电信号的传输路径。
基于上述图3示出的硬件结构,对各个受电设备100以及供电设备200中各个模块的具体功能说明如下:
***模组101,被配置为获取灯板102的供电需求;第二控制接口103,被配置为向第一接口发送第一控制信息,其中第一控制信息是由***模组101获取的灯板102的供电需求生成;由于第一控制接口202与第二控制接口103通过线缆300中的线路3连接,因此该第一控制信息可以直接传输至第一控制接口202。
第一控制接口202,被配置为获取受电设备100通过第二控制接口103发送的第一控制信息,第一控制信息为受电设备100根据对灯板102的供电需求的检测结果生成;其中,在一些方案中第一控制信息可以是灯板102的供电需求本身,灯板102的供电需求可以包括由设备规格、厂家信息、背光供电方案(例如不同背光功耗场景下的灯板供电参数,不同背光亮度场景下的灯板供电参数等)等确定的电学参数,例如可以是电压、电流以及功率。
电源模组201,被配置为根据第一控制信息指示的灯板102的供电需求,向第一供电接口输出第一直流电,例如将接收的交流电转换为第一直流电Vled并输出至第一供电接口203,第一直流电Vled的电学参数被电源模组201根据第一控制信息指示的灯板102的供电需求调整为第一值。由于第一供电接口203通过线缆300中的线路1连接第二供电接口104,因此,第一直流电Vled可以被直接传输至第二供电接口104。例如该第一值可以是灯板102的供电需求对应的电压、电流以及功率。在图3中,电源模组201可以包括AC/DC变换电路以及DC/DC变换电路,其中,AC/DC变换电路的输入端用于输入交流电,例如可以是220V的交流电,AC/DC变换电路可以将交流电转换为第一直流电Vled;此外,DC/DC变换电路可以根据第一控制信息指示的灯板的供电需求调整第一直流电Vled的电学参数。
灯板102,被配置为通过第二供电接口104接收第一供电接口203输出的第一直流电Vled。这样,通过第一直流电Vled为灯板102供电。
这样在上述的示例中,由于受电设备可以通过***模组检测灯板的供电需求,并生成用于指示灯板的供电需求的第一控制信息,供电设备可以根据第一控制信息控制输出至受电模组的直流电的电学参数,由于第一控制信息可以反映灯板的供电需求,即第一控制信息指示的灯板的供电需求与输出至受电模组的直流电的电学参数相关联,从而可以实现对受电设备供电的灵活调整,尤其对于具有不同供电需求的受电设备,由于本申请的实施例提供的方案能够实现对受电设备供电的灵活调整,因此也确保了供电设备能够支持具有不同供电需求的受电设备。
在一些可能的实现方式中,参照图3所示,供电设备200,还可以进一步包括:连接电源模组201的第三供电接口204;受电设备100,还包括连接***模组101的第四供电接口105;供电设备200通过线缆300连接受电设备100时,第三供电接口204通过线缆300中的线路2连接第四供电接口105。
电源模组201,被配置为将接收的交流电转换为第二直流电Vsys,并输出至第三供电接口204。***模组101,被配置为通过第四供电接口105接收电源模组201通过第三供电接口204输出的第二直流电Vsys,第二直流电Vsys由电源模组201对接收的交流电转换生成。通常,电源模组201中并不限定AC/DC变换电路以及DC/DC变换电路的数量,例如在本申请的示例中,电源模组201可以具有另一组AC/DC变换电路以及DC/DC变换电路,其中该另一组AC/DC变换电路以及DC/DC变换电路可以将交流电转换为第二直流电Vsys,并通过该第二直流电Vsys直接为***模组101供电。这里, Vsys的电学参数应该是满足***模组101的最低工作需求的。
这样,可以先由供电设备对该***模组101上电,以通过***模组101检测并获取灯板102的供电需求,从而确保***模组在第二直流电Vsys供电时能够正常工作。当然在一些示例中,为了降低成本电源模组201中也可以设置一组AC/DC变换电路,两组DC/DC变换电路,通过两组DC/DC变换电路共用同一组AC/DC变换电路的输出分别为灯板和***模组供电。
此外,在一些示例中,当***模组101上电后,还可以进一步根据***模组101的供电需求调整第二直流电Vsys的电学参数。例如,***模组101,被配置为根据***模组101的供电需求生成第二控制信息;其中,***模组101的供电需求可以包括由***模组的负载状态(轻载或重载)、工作状态(例如息屏、或亮屏、开机或待机等)等确定的电学参数,例如可以是电压、电流以及功率。***模组101,还被配置为将第二控制信息发送至第二控制接口103。第一控制接口202,还被配置为获取***模组101通过第二控制接口103发送的第二控制信息;电源模组201,被配置为根据第一控制接口202获取的第二控制信息,将第二直流电Vsys的电学参数调整至第二值并输出至第三供电接口204。例如该第二值可以是***模组101的供电需求对应的电压、电流以及功率。***模组101,被配置为通过第四供电接口105接收电源模组201通过第三供电接口204输出的第二直流电Vsys。这样,由于第二控制信息可以反映***模组的供电需求,即第二控制信息指示的灯板的供电需求与输出至***模组的直流电的电学参数相关联,从而可以实现对***模组供电的灵活调整。
参照图4所示,在一些示例中,为了首先对***模组101上电,受电设备100可以设置有与***模组101连接的电池108,通过该电池108直接对***模组101提供第二直流电Vsys,当然在一些示例中,参照图5所示,也可以通过连接在第二供电接口104与***模组101之间的变换电路109(例如可以是DC/DC)将第一直流电的电学参数进行转换生成第二直流电Vsys。
为了在第一控制信息的控制下确保电源模组201能够按照灯板102的供电需求输出稳定的第一直流电Vled,本申请的实施例中还可以引入闭环反馈(feed back,FB)调节机制。即,参照图6所示,供电设备200,还包括连接电源模组201的第一反馈接口205;受电设备100,还包括与灯板102连接的第二反馈接口106;供电设备200通过线缆300连接受电设备100时,第一反馈接口205通过线缆300中的线路4连接第二反馈接口106;第一反馈接口205,被配置为接收灯板102通过第二反馈接口106发送的反馈信息,该反馈信息可以携带第一直流电Vled的电学参数的检测值,检测值由灯板102对第二供电接口105接收的第一直流电Vled的电学参数检测生成;电源模组201,被配置为根据检测值将第一直流电Vled的电学参数调整至第一值。这样通过闭环的FB调节使得第一直流电Vled电学参数始终稳定在与灯板102的供电需求匹配的电学参数上,避免了第一直流电Vled电学参数不稳定造成的供电功率不足或功率浪费。
在一些示例中,本申请的实施例并不限定第一控制信息、第二控制信息以及反馈信息的具体形式。例如,第一控制信息、第二控制信息可以是由***模组101直接对灯板102以及自身的供电需求检测后生成的协议信号、或者数字信号(例如脉宽调制(pulse width modulation,PWM)信号)、模拟信号以及通用输入输出(general-purpose input/output,GPIO)信号等形式的信号中的一种或多种,并通过图6中的线路3传输至电源模组201。反馈信息可以是灯板102直接检测的第一直流电Vled电学参数值,并通过线路4反馈至电源模组201。当然,由于需要通过线缆中的线路3以及线路4分别传输上述的两类信号,因此在连接器以及线缆的设计上,对于支持正反插接的设计难度较大。因此,参照图6和图7所示本申请的实施例提供的供电设备200还包括检测电路206,以及受电设备100还可以包括反馈电路107。这样,上述的灯板的供电需求、***模组的供电需求以及检测值均可以由反馈电路107分别转换为固定格式的第一控制信息、第二控制信息以及反馈信息,然后通过线路3传输至检测电路206,并由检测电路206在该固定格式的第一控制信息、第二控制信息以及反馈信息中检测出相应的灯板的供电需求、***模组的供电需求以及检测值然后传输至电源模组201,以对电源模组201实现上述示例中相应的控制。
具体的,参照图8所示,对于第一控制信息的传输过程:供电设备200还包括检测电路206,检测电路206连接于电源模组201和第一控制接口202之间;受电设备100还包括反馈电路107,反馈电路107连接于***模组101和第二控制接口103之间。反馈电路107,被配置为根据***模组101获取的灯板102的供电需求生成第一控制信息。反馈电路107,还被配置为将第一控制信息发送至第二控制接口103。第一控制接口202,还被配置为接收反馈电路107通过第二控制接口103发送的第一 控制信息;检测电路206,被配置为检测第一控制信息生成灯板102的供电需求。
对于第二控制信息的传输过程:反馈电路107,被配置为根据***模组101获取的***模组101的供电需求生成第二控制信息。反馈电路107,还被配置为将第二控制信息发送至第二控制接口103。第一控制接口202,还被配置为接收反馈电路107通过第二控制接口103发送的第二控制信息;检测电路206,被配置为检测第二控制信息生成***模组101的供电需求。
对于反馈信息的传输过程:灯板102,被配置为检测第二供电接口105接收的第一直流电的电学参数,生成第一直流电的电学参数的检测值;灯板102,还被配置为将第一直流电的电学参数的检测值发送至反馈电路107;反馈电路107,被配置为向第二控制接口103发送反馈信息,反馈信息携带检测值。供电设备200还包括检测电路206,检测电路206连接于电源模组201和第一控制接口202之间;第一控制接口202,被配置为接收反馈电路107通过所述第二控制接口103发送的反馈信息,所述反馈信息携带所述第一直流电的电学参数的检测值;检测电路206,被配置为检测反馈信息获取检测值;电源模组201,被配置为根据检测值,将第一直流电的电学参数调整至第一值。
可选地,在该示例中由于将携带检测值的反馈信息复用至通过第一控制接口202和第二控制接口103传输,因此可以将检测值通过反馈电路107传输至检测电路206,这样在供电设备200和受电设备100之间可以减少一条线路4,也即各控制信息均通过一条线路传输,因此在线缆设计时仅通过一条线路即可传输第一控制信息、第二控制信息以及反馈信息,从而仅通过线缆中的一个引脚即可实现对应连接器中的接口的插接,这样的设置更有利于支持线缆的正反插拔设计。
当然,为了实现上述各个反馈信息的生成和检测,检测电路206以及反馈电路107需要采用具有相应信号转换功能的电路,例如:检测电路以及反馈电路可以采用包括协议IC、数字电路、模拟电路、GPIO电路中的一种或多种。
在下述方案中对电源模组的具体结构说明如下:
为了对灯板供电,参照图9所示,电源模组201可以包括第一变换电路2011和第二变换电路2012,其中第一变换电路2011可以为AC/DC变换电路,第二变换电路2012可以为DC/DC变换电路。第一变换电路2011连接第二变换电路2012,第二变换电路2012连接第一控制接口202以及第一供电接口203;第一变换电路2011,被配置为将接收的交流电转换为第一直流电;第二变换电路2012,被配置为根据在第一控制接口202获取的第一控制信息指示的灯板的供电需求,将第一直流电的电学参数调整至第一值并输出至第一供电接口203。
此外,为了对***模组供电,参照图9所示,电源模组201,包括第三变换电路2013,第三变换电路2013连接第三供电接口204;第三变换电路2013,被配置为将接收的交流电转换为第二直流电,并输出至第三供电接口204。第三变换电路2013可以为AC/DC变换电路。
当然,为了实现对输出至***模组的第二直流电的电学参数进行调整,参照图10所示,电源模组201,还可以包括第四变换电路2014,第四变换电路2014连接于第三变换电路2013和第三供电接口204之间,第四变换电路2014还连接第一控制接口202;第四变换电路2014可以为DC/DC变换电路。第一控制接口202,还被配置为获取受电设备通过第二控制接口发送的第二控制信息;第四变换电路2014,被配置为根据第二控制信息指示的***模组的供电需求,将第二直流电的电学参数调整至第二值并输出至第三供电接口204。
在上述图9和图10的示例中,灯板供电和***模组供电分别采用独立的AC/DC变换电路。为了节约成本,也可以将灯板供电和***模组共用同一组AC/DC变换电路。参照图11所示,电源模组201可以包括第一变换电路2011和第二变换电路2012,以及第四变换电路2014,其中,第一变换电路2011和第二变换电路2012的连接关系以及功能描述可以参照图7所示,区别在于,图11中的电源模组201还包括第四变换电路2014,第四变换电路2014连接于第一变换电路2011和第三供电接口204之间;第一控制接口202,还被配置为获取***模组通过第二控制接口发送的第二控制信息,第四变换电路2014,被配置为根据第二控制信息指示的***模组的供电需求,控制第一直流电的电学参数调整至第二值并输出至第三供电接口204。
当然上述图9-图11提供的电源模组的示例仅仅是一些可选示例,在此基础上本领域人员还可以对电源模组进一步调整扩展出更多的结构。例如:参照图12所示,第一变换电路2011具体可以为整流电路,则在该整流电路的输入端和输出端还可以进一步设置电磁兼容性(electromagnetic compatibility,EMI)滤波防护电路,在该整流电路的输出端还可以设置用于功率因数调整的功率因数校正(power  factor correction,PFC)电路。另外,在图10示出的示例中,根据Vsys的实际供电需求,第四变换电路2014具体可以采用低功率效率更高的反激变换电路或高功率效率更高的谐振(LLC)变换电路。由于第二变换电路2012主要用于对灯板供电;并且为了配合背光的动态范围,因此灯板的功率范围较宽(可能存在较大的功率以及较小的功率),因此第二变换电路2012可以采用在高功率范围内具有更高效率的LLC变换电路。此外,如图12所示,Vsys和Vled也可以共用第二变换电路2012,这样可以在第二变换电路2012后设置多组DC/DC变换电路分别为***模组和灯板供电。具体地,可以在第二变换电路2012之后,采用第一控制信息控制一组DC/DC变换电路调整第二变换电路2012输出的第一直流电的电学参数生成Vled;采用第二控制信息控制另一组DC/DC变换电路调整第二变换电路2012输出的第一直流电的电学参数生成Vsys。此外,为了实现供电设备的正常工作Vsys还可用于向供电设备供电,例如可以向电源模组中的控制电路供电。
参照图13所示,为了实现对供电设备以及受电设备的过流保护、过压保护、欠压保护等保护功能,本申请的实施例提供的方案还可以对线路1上的第一直流电Vled以及线路2上的第二直流电Vsys进行电源规格检测。其中,参照图13所示,检测电路206还连接第一供电接口203以及第三供电接口204,被配置为检测第一供电接口203的第一直流电的电学参数,以及检测第三供电接口204的第二直流电的电学参数。当然在确定电源规格不符合要求时可以触发相应的保护机制,例如控制电源模组断电。另外,参照图13所示供电设备,还可以进一步包括连接于电源模组201和第一供电接口203之间的开关K1;开关K1的控制端连接于检测电路206;检测电路206,被配置为根据第一直流电的电学参数控制开关的导通状态,这样可以单独实现对灯板供电的通断。
另外,当本申请的实施例中,也可以通过Vsys对供电设备200的检测电路206以及受电设备100的反馈电路107供电。此外,反馈电路107也可以对Vsys进行供电规格检测并将检测结果反馈至检测电路206,由检测电路206对Vsys进行闭环的动态调整。另外需要说明的是,灯板102输出的对第二直流电的电学参数的检测值也可以经由线路4传输至检测电路206,由检测电路206根据该检测值控制电源模组201对第二直流电Vsys的电学参数进行闭环的动态调整。
在本申请的实施例中并不限定线缆300的形式,其中线缆300中也可以设置有线缆IC,例如线缆可以是电子标签线缆(electronically marked cable,E-Marker),线缆IC可以存储有线缆电子标签,这样在本申请的实施例中受电设备可以在线缆电子标签对应的能力范围内动态调整输出的直流电,避免线缆损坏。
在图14中,还是示出了反馈电路107以及检测电路206的具体形式可以采用协议IC;在图15中还示出了还是示出了反馈电路107以及检测电路206的具体形式可以采用模拟和\或数字电路;在图16中还示出了还是示出了反馈电路以及检测电路的具体形式可以采用GPIO。其中在图13-图16中,电源模组201可以采用上述图9-图13中示出的任一结构形式的电源模组。
基于上述的供电***,本申请的实施例提供一种供电控制方法,参照图17所示,包括如下步骤:
S101、供电设备控制电源模组将交流电转换为第二直流电Vsys并输出至受电设备的***模组。
例如,在220V的交流电为供电设备上电后,电源模组可以将220V的交流电转换为第二直流电Vsys,其中Vsys的电学参数可以为初始化的默认值(default),该默认值可以确保***模组正常工作,以对灯板的供电需求进行检测。
S102、受电设备对灯板进行供电需求检测。
当然,灯板的供电需求在受电设备不同的工作状况下是动态变化的,例如当整机发生业务切换时,灯板的供电需求相应的发生变化。
如上所述,灯板的供电需求可以包括由设备规格、厂家信息、背光供电方案(例如不同背光功耗场景下的灯板供电参数,不同背光亮度场景下的灯板供电参数等)等确定的电学参数,例如可以是电压、电流以及功率。
S103、受电设备根据灯板的供电需求生成第一控制信息。
S104、受电设备将第一控制信息发送至供电设备。
具体的,在步骤S104中,如上所述当供电设备包括检测电路,以及受电设备包括反馈电路时,受电设备还可以将灯板的供电需求生成上述的协议信号、数字信号、模拟信号或GPIO信号等形式的第一控制信息。例如:S104具体可以是受电设备根据对受电模组(如灯板)的供电需求生成第一控制信息;将第一控制信息发送至供电设备,第一控制信息携带灯板的供电需求。
S105、供电设备接收受电设备发送的第一控制信息。
当供电设备接收到的灯板的供电需求为上述的协议信号、数字信号、模拟信号或GPIO信号形式的第一控制信息时,供电设备具体用于检测第一控制信息生成灯板的供电需求。
S106、供电设备输出第一直流电Vled。
其中,步骤S106具体为供电设备根据第一控制信息指示的灯板的供电需求控制电源模组将交流电转换为第一直流电Vled并输出至受电设备的受电模组(灯板),其中第一直流电Vled的电学参数被电源模组根据第一控制信息指示的灯板的供电需求调整为第一值。
其中在步骤S106之后,为了实现第一直流电在相应的供电需求下稳定的输出,受电设备还可以用于检测接收的第一直流电Vled的电学参数,生成第一直流电Vled的电学参数的检测值;将第一直流电的电学参数的检测值携带在反馈信息中发送至供电设备。之后,供电设备接收受电模组发送的检测值;根据检测值控制电源模组将第一直流电的电学参数调整至第一值,从而实现对第一直流电Vled的电学参数的闭环反馈调节。进一步的,受电设备还可以将检测到的检测值生成上述的协议信号、数字信号、模拟信号或GPIO信号等形式的反馈信息发送至供电设备。供电设备接收受电设备发送的反馈信息后,检测反馈信息获取检测值;最后,根据检测值控制电源模组将第一直流电的电学参数调整至第一值。
另外,参照图18所示,本申请的实施例提供的方案还可以对第二直流电Vsys进行动态调整,具体包括如下步骤:
S101、供电设备控制电源模组将交流电转换为第二直流电Vsys并输出至受电设备的***模组。
S201、受电设备并对***模组进行供电需求检测。
当然,***模组的供电需求在受电设备不同的工作状况下是动态变化的,例如当整机发生业务切换时,***模组的供电需求相应的发生变化。
如上所述,***模组的供电需求可以包括由***模组的负载状态(轻载或重载)、工作状态(例如息屏、或亮屏、开机或待机等)等确定的电学参数,例如可以是电压、电流以及功率。
S202、受电设备根据***模组的供电需求生成第二控制信息。
S203、受电设备将第二控制信息发送至供电设备。
具体的,在步骤S203中,如上所述当供电设备包括检测电路,以及受电设备包括反馈电路时,受电设备还可以将***模组的供电需求生成上述的协议信号、数字信号、模拟信号或GPIO信号。例如:S203具体可以是受电设备根据对***模组的供电需求生成第二控制信息,将第二控制信息发送至供电设备。
S204、供电设备接收受电设备发送的第二控制信息。
当供电设备接收到的信号为上述的协议信号、数字信号、模拟信号或GPIO信号形式的第二控制信息时,供电设备具体用于检测第二控制信息生成***模组的供电需求。
S205、供电设备输出第二直流电Vsys。
其中,步骤S205具体为供电设备根据第二控制信息指示的***模组的供电需求,控制电源模组将第二直流电Vsys的电学参数调整至第二值。
其中,该供电控制方法的所解决的技术问题以及实现的技术效果可以参照上述供电***中的描述,此处不再赘述。
上述结合图17和图18主要是从方法步骤的角度对本申请实施例提供的供电控制方法进行了介绍。可以理解的是,为了实现上述功能,供电控制装置包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的交换芯片的步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述供电控制方法示例对供电控制装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图19示出了上述实施例中所涉及的供电控制装 置40的一种可能的结构示意图,该供电控制装置应用于供电设备本身或供电设备中的芯片,包括:接收单元401、控制单元402。
接收单元401,用于接收受电设备发送的第一控制信息,所述第一控制信息由所述受电设备的受电模组的供电需求生成;控制单元402,用于根据所述第一控制信息指示的所述受电模组的供电需求,向所述受电设备的受电模组输出第一直流电,其中所述第一直流电的电学参数被所述电源模组根据所述受电模组的供电需求调整为第一值。
可选的,控制单元402,还用于控制所述电源模组向所述受电模组的***模组输出第二直流电,所述***模组用于获取所述受电模组的供电需求。
可选的,接收单元401,还用于接收所述受电设备发送的第二控制信息,所述第二控制信息由所述受电设备获取的所述***模组的供电需求生成;控制单元402,还用于根据所述第二控制信息指示的所述***模组的供电需求,控制所述电源模组将所述第二直流电的电学参数调整至第二值。
可选的,控制单元402,还用于检测所述第一控制信息生成所述受电模组的供电需求。
可选的,控制单元402,还用于检测所述第二控制信息生成所述***模组的供电需求。
可选的,接收单元401,具体用于接收所述受电设备发送的反馈信息,所述反馈信息为所述受电设备接收到所述第一直流电后通过检测所述第一直流电的电学参数的检测值生成;控制单元402,还用于根据所述检测值,将所述第一直流电的电学参数调整至所述第一值。
可选的,控制单元402,还用于检测所述反馈信息获取所述检测值。
在硬件实现上,供电控制装置40,包括处理器和接口,处理器与接口连接;处理器用于执行存储器中的程序指令以执行上述的供电控制方法中供电设备执行的步骤。具体的,上述接收单元401具体可以为接口,控制单元402具体可以为处理器,此外,需要说明的是,结合上述的供电***,该供电控制装置40可以是集成于上述的电源模组或检测电路的芯片。
在采用对应各个功能划分各个功能模块的情况下,图20示出了上述实施例中所涉及的供电控制装置的一种可能的结构示意图,该供电控制装置50应用于供电设备本身或供电设备中的芯片,包括:控制单元501、发送单元502、接收单元503。
控制单元501,用于获取所述受电模组的供电需求;发送单元502,用于将第一控制信息发送至所述供电设备,所述第一控制信息由所述受电模组的供电需求生成;接收单元503,用于接收所述供电设备输出的第一直流电,通过所述第一直流电为所述受电模组供电,其中,所述第一直流电的电学参数与所述第一控制信息指示的所述受电模组的供电需求关联。
可选的,所述受电设备还包括***模组,控制单元501,还用于在获取所述受电模组的供电需求之前,对所述***模组上电,所述***模组用于获取所述受电模组的供电需求。
可选的,所述受电设备还包括电池;控制单元501,还用于通过所述电池向所述***模组输出第二直流电,对所述***模组上电。
可选的,所述受电设备包括变换电路,控制单元501,还用于通过所述变换电路将所述第一直流电转换为第二直流电输出至所述***模组,对所述***模组上电。
可选的,接收单元503,还用于接收所述供电设备输出的第二直流电;通过所述第二直流电为所述***模组上电。
可选的,控制单元501,用于获取所述***模组的供电需求;发送单元502,用于将第二控制信息发送至所述供电设备,所述第二控制信息由所述***模组的供电需求生成;接收单元503,还用于接收所述供电设备输出的第二直流电,所述第二直流电的电学参数与所述第二控制信号指示的所述***模组的供电需求关联。
可选的,控制单元501,还用于根据所述受电模组的供电需求生成所述第一控制信息。
可选的,控制单元501,还用于检测所述第一直流电的电学参数,生成检测值;发送单元502,具体用于向所述供电设备发送反馈信息,所述反馈信息携带所述检测值。
可选的,控制单元501,还用于根据所述检测值生成所述反馈信息。
在硬件实现上,供电控制装置50,包括处理器和接口,处理器与接口连接;处理器用于执行存储器中的程序指令以执行上述的供电控制方法中受电设备执行的步骤。具体的,上述发送单元502、接收单元503具体可以为接口,控制单元501具体可以为处理器,此外,需要说明的是,结合上述的供电***,该供电控制装置50可以是集成于上述的受电模组或反馈电路的芯片。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片等)或者处理器执行图17或图18所提供的方法的步骤。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种芯片,包括衬底,以及设置于衬底上的检测电路或反馈电路。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种供电设备,用于通过线缆连接受电设备,其特征在于,所述供电设备包括:电源模组、以及连接所述电源模组的第一控制接口以及第一供电接口;所述受电设备包括:***模组、受电模组、第二控制接口以及第二供电接口,所述***模组连接所述第二控制接口以及所述受电模组,所述受电模组连接所述第二供电接口;
    所述供电设备通过所述线缆连接所述受电设备时,所述第一控制接口通过所述线缆中的线路连接所述第二控制接口,所述第一供电接口通过所述线缆中的线路连接所述第二供电接口;
    所述第一控制接口,被配置为获取所述受电设备通过所述第二控制接口发送的第一控制信息,所述第一控制信息由所述***模组获取的所述受电模组的供电需求生成;
    所述电源模组,被配置为根据所述第一控制信息指示的所述受电模组的供电需求,向所述第一供电接口输出第一直流电,所述第一直流电的电学参数被所述电源模组根据所述受电模组的供电需求调整为第一值。
  2. 根据权利要求1所述的供电设备,其特征在于,
    所述供电设备,还包括:连接所述电源模组的第三供电接口;
    所述受电设备,还包括连接所述***模组的第四供电接口;
    所述供电设备通过所述线缆连接所述受电设备时,所述第三供电接口通过所述线缆中的线路连接所述第四供电接口;
    所述电源模组,被配置为向所述第三供电接口输出第二直流电。
  3. 根据权利要求2所述的供电设备,其特征在于,
    所述第一控制接口,还被配置为获取所述受电设备通过所述第二控制接口发送的第二控制信息,所述第二控制信息由所述***模组获取的所述***模组的供电需求生成;
    所述电源模组,被配置为根据所述第二控制信息指示的所述***模组的供电需求,将所述第二直流电的电学参数调整至第二值。
  4. 根据权利要求1-3任一项所述的供电设备,其特征在于,
    所述供电设备还包括检测电路,所述检测电路连接于所述电源模组和所述第一控制接口之间;
    所述受电设备还包括反馈电路,所述反馈电路连接于所述***模组和所述第二控制接口之间;
    所述第一控制接口,具体被配置为接收所述反馈电路通过所述第二控制接口发送的所述第一控制信息,所述第一控制信息由所述反馈电路根据所述***模组获取的所述受电模组的供电需求生成;
    所述检测电路,被配置为检测所述第一控制信息生成所述受电模组的供电需求。
  5. 根据权利要求3所述的供电设备,其特征在于,
    所述供电设备还包括检测电路,所述检测电路连接于所述电源模组和所述第一控制接口之间;
    所述受电设备还包括反馈电路,所述反馈电路连接于所述***模组和所述第二控制接口之间;
    所述第一控制接口,还被配置为接收所述反馈电路通过所述第二控制接口发送的第二控制信息,所述第二控制信息由所述反馈电路根据所述***模组获取的所述***模组的供电需求生成;
    所述检测电路,被配置为检测所述第二控制信息生成所述***模组的供电需求。
  6. 根据权利要求1-3任一项所述的供电设备,其特征在于,
    所述供电设备,还被配置为在通过所述第一供电接口向所述受电设备输出所述第一直流电后,接收所述受电设备发送的反馈信息,所述反馈信息携带所述第一直流电的电学参数的检测值;
    所述电源模组,被配置为根据所述检测值,将所述第一直流电的电学参数调整至所述第一值。
  7. 根据权利要求6所述的供电设备,其特征在于,
    所述供电设备还包括检测电路,所述检测电路连接于所述电源模组和所述第一控制接口之间;
    所述受电设备还包括反馈电路,所述反馈电路连接于所述受电模组和所述第二控制接口之间;
    所述第一控制接口,被配置为接收所述反馈电路通过所述第二控制接口发送的反馈信息;
    所述检测电路,被配置为检测所述反馈信息获取所述检测值。
  8. 根据权利要求6所述的供电设备,其特征在于,
    所述供电设备,还包括连接所述电源模组的第一反馈接口;
    所述受电设备,还包括与所述受电模组连接的第二反馈接口;
    所述供电设备通过所述线缆连接所述受电设备时,所述第一反馈接口通过所述线缆中的线路连接所述第二反馈接口;
    所述第一反馈接口,被配置为接收所述受电模组通过所述第二反馈接口发送的所述反馈信息。
  9. 根据权利要求4、5或7任一项所述的供电设备,其特征在于,所述检测电路包括协议集成电路IC、数字电路、模拟电路、通用输入输出GPIO电路中的一种或多种。
  10. 一种受电设备,用于通过线缆连接供电设备,其特征在于,所述受电设备包括:***模组、受电模组、第二控制接口以及第二供电接口,所述***模组连接所述第二控制接口以及所述受电模组,所述受电模组连接所述第二供电接口;所述供电设备包括:电源模组、以及连接所述电源模组的第一控制接口以及第一供电接口;
    所述受电设备通过所述线缆连接所述供电设备时,所述第二控制接口通过所述线缆中的线路连接所述第一控制接口,所述第二供电接口通过所述线缆中的线路连接所述第一供电接口;
    所述***模组,被配置为获取所述受电模组的供电需求;
    所述第二控制接口,被配置为将第一控制信息发送至所述第一控制接口,所述第一控制信息由所述***模组获取的所述受电模组的供电需求生成;
    所述受电模组,被配置为通过所述第二供电接口接收所述第一供电接口输出的第一直流电,其中,所述第一直流电的电学参数与所述第一控制信息指示的所述受电模组的供电需求关联。
  11. 根据权利要求10所述的受电设备,其特征在于,
    所述***模组,被配置为获取所述受电模组的供电需求之前上电。
  12. 根据权利要求11所述的受电设备,其特征在于,所述受电设备包括电池,所述电池连接所述***模组;
    所述电池被配置为向所述***模组输出第二直流电,对所述***模组上电。
  13. 根据权利要求11所述的受电设备,其特征在于,所述受电设备包括变换电路,所述变换电路连接与所述第二供电接口和所述***模组之间;
    所述变换电路,被配置为将所述第一直流电转换为第二直流电输出至所述***模组,对所述***模组上电。
  14. 根据权利要求11所述的受电设备,其特征在于,
    所述受电设备,还包括:连接所述***模组的第四供电接口;
    所述供电设备,还包括:连接所述电源模组的第三供电接口;
    所述受电设备通过所述线缆连接所述供电设备时,所述第四供电接口通过所述线缆中的线路连接所述第三供电接口;
    所述***模组,被配置为通过所述第四供电接口接收所述供电设备通过所述第三供电接口输出的第二直流电,对所述***模组上电。
  15. 根据权利要求14所述的受电设备,其特征在于,
    所述***模组,被配置为获取所述***模组的供电需求;
    所述第二控制接口,还被配置为将第二控制信息发送至所述第二控制接口,所述第二控制信息由所述***模组获取的所述***模组的供电需求生成;
    所述***模组,被配置为通过所述第四供电接口接收所述供电设备通过所述第三供电接口输出的第二直流电,对所述***模组上电,所述第二直流电的电学参数与所述第二控制信息指示的所述***模组的供电需求关联。
  16. 根据权利要求10-15任一项所述的受电设备,其特征在于,
    所述受电设备,还包括反馈电路,所述反馈电路连接于所述***模组和所述第二控制接口之间;
    所述供电设备,还包括检测电路;所述检测电路连接于所述电源模组和所述第一控制接口之间;
    所述反馈电路,被配置为根据所述***模组获取的所述受电模组的供电需求生成所述第一控制信息;
    所述反馈电路,还被配置为将所述第一控制信息发送至所述第二控制接口。
  17. 根据权利要求15所述的受电设备,其特征在于,
    所述受电设备还包括反馈电路,所述反馈电路连接于所述***模组和所述第二控制接口之间;
    所述供电设备还包括检测电路,所述检测电路连接于所述电源模组和所述第一控制接口之间;
    所述反馈电路,被配置为根据所述***模组获取的所述***模组的供电需求生成所述第二控制信息;
    所述反馈电路,还被配置为将所述第二控制信息发送至所述第二控制接口。
  18. 根据权利要求10-15任一项所述的受电设备,其特征在于,
    所述受电模组,还被配置为检测所述第二供电接口接收的所述第一直流电的电学参数,生成检测值;
    所述受电设备,还被配置为向所述供电设备发送反馈信息,所述反馈信息携带所述检测值。
  19. 根据权利要求18所述的受电设备,其特征在于,
    所述受电设备还包括反馈电路,所述反馈电路连接于所述受电模组和所述第二控制接口之间;
    所述供电设备还包括检测电路,所述检测电路连接于所述电源模组和所述第一控制接口之间;
    所述受电模组,被配置为将所述第一直流电的电学参数的检测值发送至所述反馈电路;
    所述反馈电路,被配置为根据所述检测值生成反馈信息,并向所述第二控制接口发送所述反馈信息。
  20. 根据权利要求16-18任一项所述的受电设备,其特征在于,
    所述受电设备,还包括与所述受电模组连接的第二反馈接口;所述供电设备,还包括连接所述电源模组的第一反馈接口;
    所述受电设备通过所述线缆连接所述供电设备时,所述第二反馈接口通过所述线缆中的线路连接所述第一反馈接口;
    所述受电模组,被配置为检测所述第二供电接口接收的所述第一直流电的电学参数,生成所述检测值;
    所述受电模组,具体被配置为向第二反馈接口发送反馈信息,所述反馈信息携带所述检测值。
  21. 根据权利要求19或20所述的受电设备,其特征在于,所述反馈电路包括协议IC、数字电路、模拟电路、GPIO电路中的一种或多种。
  22. 一种供电控制方法,其特征在于,应用于供电设备,所述供电设备包括电源模组,该方法包括:
    接收受电设备发送的第一控制信息,所述第一控制信息由所述受电设备的受电模组的供电需求生成;
    根据所述第一控制信息指示的所述受电模组的供电需求,向所述受电设备的受电模组输出第一直流电,其中所述第一直流电的电学参数被所述电源模组根据所述受电模组的供电需求调整为第一值。
  23. 根据权利要求22所述的供电控制方法,其特征在于,还包括:
    控制所述电源模组向所述受电模组的***模组输出第二直流电,所述***模组用于获取所述受电模组的供电需求。
  24. 根据权利要求23所述的供电控制方法,其特征在于,还包括:
    接收所述受电设备发送的第二控制信息,所述第二控制信息由所述受电设备获取的所述***模组的供电需求生成;
    根据所述第二控制信息指示的所述***模组的供电需求,控制所述电源模组将所述第二直流电的电学参数调整至第二值。
  25. 根据权利要求22-24任一项所述的供电控制方法,其特征在于,所述接收所述受电设备发送的第一控制信息后,还包括:
    检测所述第一控制信息生成所述受电模组的供电需求。
  26. 根据权利要求24所述的供电控制方法,其特征在于,所述接收所述受电设备发送的第二控制信息后,还包括:
    检测所述第二控制信息生成所述***模组的供电需求。
  27. 根据权利要求22-24任一项所述的供电控制方法,其特征在于,在通过所述第一供电接口向所述受电设备输出所述第一直流电后,所述方法还包括:
    接收所述受电设备发送的反馈信息,所述反馈信息携带所述第一直流电的电学参数的检测值;
    根据所述检测值,将所述第一直流电的电学参数调整至所述第一值。
  28. 根据权利要求27所述的供电控制方法,其特征在于,所述接收所述受电设备发送的反馈信息后,还包括:
    检测所述反馈信息获取所述检测值。
  29. 一种供电控制方法,其特征在于,用于受电设备,所述受电设备包括受电模组;该方法包括:
    获取所述受电模组的供电需求;
    将第一控制信息发送至所述供电设备,所述第一控制信息由所述受电模组的供电需求生成;
    接收所述供电设备输出的第一直流电,通过所述第一直流电为所述受电模组供电,其中,所述第一直流电的电学参数与所述第一控制信息指示的所述受电模组的供电需求关联。
  30. 根据权利要求29所述的供电控制方法,其特征在于,所述受电设备还包括***模组,该方法还包括:
    在获取所述受电模组的供电需求之前,对所述***模组上电,所述***模组用于获取所述受电模组的供电需求。
  31. 根据权利要求30所述的供电控制方法,其特征在于,该方法还包括:
    接收所述供电设备输出的第二直流电;
    通过所述第二直流电为所述***模组上电。
  32. 根据权利要求31所述的供电控制方法,其特征在于,该方法还包括:
    获取所述***模组的供电需求;
    将第二控制信息发送至所述供电设备,所述第二控制信息由所述***模组的供电需求生成;
    将所述第二控制信息发送至所述供电设备;
    接收所述供电设备输出的第二直流电,所述第二直流电的电学参数与所述第二控制信号指示的所述***模组的供电需求关联。
  33. 根据权利要求29-32任一项所述的供电控制方法,其特征在于,所述将所述第一控制信息发送至所述供电设备之前;还包括:
    根据所述受电模组的供电需求生成所述第一控制信息。
  34. 根据权利要求32所述的供电控制方法,其特征在于,所述将所述第二控制信息发送至所述供电设备之前;还包括:
    根据所述***模组的供电需求生成所述第二控制信息。
  35. 根据权利要求29-32任一项所述的供电控制方法,其特征在于,
    检测所述第一直流电的电学参数,生成检测值;
    向所述供电设备发送反馈信息,所述反馈信息携带所述检测值。
  36. 根据权利要求35所述的供电控制方法,其特征在于,所述向所述供电设备发送反馈信息之前还包括:
    根据所述检测值生成所述反馈信息。
  37. 一种供电控制装置,其特征在于,包括处理器和接口,所述处理器与所述接口连接;
    所述处理器用于执行存储器中的程序指令以执行如权利要求22-36任一项所述的供电控制方法。
  38. 一种供电***,其特征在于,包括如权利要求1-9任一项所述的供电设备以及如权利要求10-21任一项所述的受电设备。
  39. 根据权利要求38所述的供电***,其特征在于,所述供电设备包括电源盒子,所述受电设备包括超薄显示设备。
PCT/CN2023/128130 2022-11-16 2023-10-31 一种供电设备、受电设备、芯片以及供电*** WO2024104132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211436779.2 2022-11-16
CN202211436779.2A CN118054389A (zh) 2022-11-16 2022-11-16 一种供电设备、受电设备、芯片以及供电***

Publications (1)

Publication Number Publication Date
WO2024104132A1 true WO2024104132A1 (zh) 2024-05-23

Family

ID=91045723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128130 WO2024104132A1 (zh) 2022-11-16 2023-10-31 一种供电设备、受电设备、芯片以及供电***

Country Status (2)

Country Link
CN (1) CN118054389A (zh)
WO (1) WO2024104132A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140313792A1 (en) * 2013-01-15 2014-10-23 Rohm Co., Ltd. Power delivery device, ac adapter, and electronic apparatus
CN105357017A (zh) * 2015-11-16 2016-02-24 上海斐讯数据通信技术有限公司 稳定poe供电电压的***及方法
CN106774764A (zh) * 2016-12-05 2017-05-31 青岛海信移动通信技术股份有限公司 多电源供电usb接口的实现方法和usb电源
CN209134431U (zh) * 2018-12-12 2019-07-19 湖南恒茂高科股份有限公司 供电装置及***
CN110571783A (zh) * 2019-08-20 2019-12-13 普联技术有限公司 受电设备及其控制方法、受电***
CN112455254A (zh) * 2020-11-24 2021-03-09 广州橙行智动汽车科技有限公司 输出高压直流电的***及方法、线缆、控制方法及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140313792A1 (en) * 2013-01-15 2014-10-23 Rohm Co., Ltd. Power delivery device, ac adapter, and electronic apparatus
CN105357017A (zh) * 2015-11-16 2016-02-24 上海斐讯数据通信技术有限公司 稳定poe供电电压的***及方法
CN106774764A (zh) * 2016-12-05 2017-05-31 青岛海信移动通信技术股份有限公司 多电源供电usb接口的实现方法和usb电源
CN209134431U (zh) * 2018-12-12 2019-07-19 湖南恒茂高科股份有限公司 供电装置及***
CN110571783A (zh) * 2019-08-20 2019-12-13 普联技术有限公司 受电设备及其控制方法、受电***
CN112455254A (zh) * 2020-11-24 2021-03-09 广州橙行智动汽车科技有限公司 输出高压直流电的***及方法、线缆、控制方法及设备

Also Published As

Publication number Publication date
CN118054389A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
EP3382845B1 (en) Intelligent uninterruptible power charging apparatus and method of operating the same
US9620963B2 (en) Portable electric apparatus with power adapter to maintain power efficiency based on state information of host
EP3934239B1 (en) Power supply control circuit and display device
KR20220114647A (ko) 전자 디바이스, 무선 충전 수신 장치, 제어 방법 및 무선 충전 시스템
CN111030200B (zh) 电子装置及其功率调整方法
WO2015070583A1 (zh) 供电***
TW200849200A (en) Split-type power supply circuit for LCD TV
CN110099234B (zh) 一种电源启动装置及电视机
WO2024104132A1 (zh) 一种供电设备、受电设备、芯片以及供电***
US10942553B2 (en) Display device
US10998759B2 (en) Uninterruptible power supply with DC output
CN210608927U (zh) 一种双向直流端口启动装置及电动汽车
CN101071254A (zh) 投影装置
TWM565440U (zh) 可於電力中斷時提供高壓直流電並於電力正常供應時提供交流電的不斷電電源供應器
US6327161B1 (en) Power-saving circuit
CN201255981Y (zh) 用于等离子显示器的数字电源装置
CN104062834B (zh) 投影机电源***
US20060261757A1 (en) Power-supplier duplexing operation apparatus and operation method thereof
US20230420967A1 (en) Multifunctional interface conversion device and multifunctional interface conversion system
US10595427B2 (en) Additional function device of external power supply module
CN211906913U (zh) 一种背光驱动电路及显示设备
WO2021097813A1 (zh) 背光控制电路、其驱动方法、背光模组及显示装置
JP2012243238A (ja) 電子機器
CN216531072U (zh) 电源电路及显示设备
CN219938212U (zh) 一种电源供应器、电源供应电路板及电源模块电路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890568

Country of ref document: EP

Kind code of ref document: A1