WO2024104057A1 - 资源分配方法及装置 - Google Patents

资源分配方法及装置 Download PDF

Info

Publication number
WO2024104057A1
WO2024104057A1 PCT/CN2023/125916 CN2023125916W WO2024104057A1 WO 2024104057 A1 WO2024104057 A1 WO 2024104057A1 CN 2023125916 W CN2023125916 W CN 2023125916W WO 2024104057 A1 WO2024104057 A1 WO 2024104057A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
terminal
domain resource
indication information
network device
Prior art date
Application number
PCT/CN2023/125916
Other languages
English (en)
French (fr)
Inventor
余龙
张敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024104057A1 publication Critical patent/WO2024104057A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application relates to the field of communications, and in particular to a resource allocation method and device.
  • the network equipment allocates frequency domain resources in the form of resource block groups (RBGs) to the terminal to achieve uplink and downlink transmission with the terminal.
  • RBGs resource block groups
  • an RBG is composed of multiple RBs, and the terminal can use multiple RBs in the RBG for data transmission.
  • the frequency domain resource allocation method in the above RBG form is relatively fixed, resulting in low utilization of frequency domain resources.
  • the embodiments of the present application provide a resource allocation method and device to improve the utilization rate of frequency domain resources.
  • a resource allocation method includes: a network device obtains first indication information, and sends the first indication information to a first terminal.
  • the network device reserves a frequency domain resource set that can be used by the first terminal for the first terminal, and the first indication information is used to indicate: the first terminal uses a first frequency domain resource in the frequency domain resource set, and the first terminal does not use a second frequency domain resource in the frequency domain resource set.
  • the network device when the network device pre-reserves a frequency domain resource set that can be used by the first terminal for the first terminal, the network device can instruct the first terminal to use a part of the frequency domain resources in the frequency domain resource set through the first information, such as the first terminal only uses the first frequency domain resources to transmit data, so as to achieve data transmission for multiple terminals by using the frequency domain resource set of one terminal, thereby improving the utilization rate of the frequency domain resources.
  • the first indication information includes information for indicating that the first frequency domain resource is a non-punctured frequency domain resource, and information for indicating that the second frequency domain resource is a punctured frequency domain resource, the information that the first frequency domain resource is a non-punctured frequency domain resource is used to indicate that the first terminal uses the first frequency domain resource, and the information that the second frequency domain resource is a punctured frequency domain resource is used to indicate that the first terminal does not use the second frequency domain resource.
  • the first terminal can accurately identify which frequency domain resources it can currently use and which frequency domain resources it cannot currently use, thereby avoiding resource conflicts.
  • the frequency domain resource set is a resource block group RBG
  • the first frequency domain resource or the second frequency domain resource includes one or more resource blocks RB
  • one RBG is composed of multiple resource blocks RB.
  • the first terminal can use part of the continuous RBs in the RBG to transmit data, or can use part of the discontinuous RBs in the RBG to transmit data, so that the frequency domain resource allocation method of the first terminal is more flexible.
  • the first indication information is carried in at least one of the following items: a first wireless control information RRC message, or a first downlink control information DCI message, so as to multiplex existing signaling and reduce the difficulty of implementation.
  • the method described in the first aspect may further include: the network device sends second indication information to the second terminal.
  • the second indication information is used to indicate that the second terminal uses the second frequency domain resource in the frequency domain resource set.
  • the network device can determine which terminals can use the second frequency domain resources according to actual needs, such as if the second frequency domain resources can meet the data transmission needs of the second terminal.
  • the second indication information is carried in at least one of the following items: a first wireless control information RRC message, or a first downlink control information DCI message, so as to multiplex existing signaling and reduce the difficulty of implementation.
  • a resource allocation method includes: a first terminal receives first indication information from a network device, and uses a first frequency domain resource indicated by the first indication information.
  • the network device reserves a frequency domain resource set that can be used by the first terminal for the first terminal, and the first indication information is used to indicate: the first terminal uses the first frequency domain resource in the frequency domain resource set, and the first terminal does not use the second frequency domain resource in the frequency domain resource set.
  • the first indication information includes information for indicating that the first frequency domain resource is a non-punctured frequency domain resource, and information for indicating that the second frequency domain resource is a punctured frequency domain resource, and the first frequency domain resource is non-punctured frequency domain resource information.
  • the frequency domain resource information is used to indicate that the first terminal uses the first frequency domain resource
  • the second frequency domain resource is a punctured frequency domain resource information, and is used to indicate that the first terminal does not use the second frequency domain resource.
  • the frequency domain resource set is a resource block group RBG, and the first frequency domain resource or the second frequency domain resource includes one or more resource blocks RB.
  • the first indication information is carried in at least one of the following: a first RRC message or a first DCI message.
  • the technical effects of the resource allocation method described in the second aspect can refer to the technical effects of the resource allocation method described in the first aspect, and will not be repeated here.
  • a resource allocation method includes: a second terminal receives second indication information from a network device, and uses a second frequency domain resource indicated by the second indication information.
  • the second indication information is used to instruct the second terminal to use the second frequency domain resource, and the network device reserves a frequency domain resource set that can be used by other terminals for other terminals, and the second frequency domain resource belongs to the frequency domain resource set.
  • the second indication information is carried in at least one of the following: a second RRC message or a second DCI message.
  • the technical effects of the resource allocation method described in the third aspect can refer to the technical effects of the resource allocation method described in the first aspect, and will not be repeated here.
  • a resource allocation method includes: a network device obtains indication information and sends the indication information to a first terminal.
  • the indication information is used to instruct the first terminal to use a first bandwidth part BWP and a second bandwidth part BWP, and the bandwidth of the frequency domain resources included in the first BWP is different from the bandwidth of the frequency domain resources included in the second BWP.
  • the bandwidth of the frequency domain resources included in the first BWP is different from the bandwidth of the frequency domain resources included in the second BWP, and different bandwidths correspond to different numbers of RBs.
  • the first terminal can select the corresponding BWP for data transmission according to actual business needs to avoid waste of resources, thereby improving the utilization rate of frequency domain resources.
  • the indication information is specifically used to indicate that the first terminal uses the frequency domain resources in the first BWP at the first moment, and that the first terminal uses the frequency domain resources in the second BWP for data transmission at the second moment.
  • the first terminal can select the corresponding BWP for data transmission according to actual service requirements at different moments, thereby dynamically adjusting the frequency domain resource allocation granularity of the first terminal, and realizing rapid switching of the frequency domain resource allocation granularity of the first terminal through BWP switching.
  • the network device sends configuration information to the first terminal.
  • the configuration information is used to configure the first BWP and the second BWP used by the first terminal for the first terminal.
  • the network device pre-configures the first BWP and the second BWP of the first terminal so that the network device can directly use the resources of the first terminal when scheduling, thereby shortening the delay and improving the communication efficiency between the network device and the first terminal.
  • the indication information is carried in at least one of the following items: an RRC message or a DCI message, so as to reuse existing signaling and reduce the difficulty of implementation.
  • a resource allocation method includes: a first terminal receives indication information from a network device, and uses the frequency domain resources of a first BWP and the frequency domain resources of a second BWP for data transmission according to the indication information.
  • the indication information is used to instruct the first terminal to use the first bandwidth part BWP and the second BWP, and the bandwidth of the frequency domain resources included in the first BWP is different from the bandwidth of the frequency domain resources included in the second BWP.
  • the indication information is specifically used to instruct the first terminal to use the frequency domain resources in the first BWP at a first moment, and to use the frequency domain resources in the second BWP for data transmission at a second moment.
  • the first terminal receives configuration information from a network device, wherein the configuration information is used to configure a first BWP and a second BWP used by the first terminal.
  • the indication information is carried in at least one of the following: an RRC message or a DCI message.
  • the technical effects of the resource allocation method described in the fifth aspect can refer to the technical effects of the resource allocation method described in the fourth aspect, and will not be repeated here.
  • a resource allocation method includes: a network device obtains indication information and sends the indication information to a first terminal.
  • the indication information is used to instruct the first terminal to use a first power for data transmission, the first power includes the power of a first frequency domain resource and the power of a second frequency domain resource, the first frequency domain resource is a frequency domain resource allocated by the network device to the first terminal for use, and the second frequency domain resource is a frequency domain resource allocated by the network device to the second terminal and not used by the second terminal.
  • the network device when the network device pre-allocates power to the first terminal for use of the first frequency domain resources, the network device instructs the first terminal through indication information to use the power of the first frequency domain resources and the power of the frequency domain resources not used by the second terminal for data transmission, which can reduce the waste of frequency domain resources caused by redundant power resources and improve the utilization rate of frequency domain resources.
  • the indication information is carried in at least one of the following items: an RRC message or a DCI message, so as to reuse existing signaling and reduce the difficulty of implementation.
  • a communication device which includes a module for executing the method described in the first aspect, for example, a processing module and a transceiver module.
  • the processing module is used to obtain the first indication information.
  • the transceiver module is used to send the first indication information to the first terminal.
  • the communication device described in the seventh aspect reserves a frequency domain resource set that can be used by the first terminal for the first terminal, and the first indication information is used to indicate: the first terminal uses the first frequency domain resource in the frequency domain resource set, and the first terminal does not use the second frequency domain resource in the frequency domain resource set; the second frequency domain resource is used for other terminals.
  • the first indication information includes information for indicating that the first frequency domain resource is a non-punctured frequency domain resource, and information for indicating that the second frequency domain resource is a punctured frequency domain resource.
  • the information that the first frequency domain resource is a non-punctured frequency domain resource is used to indicate that the first terminal uses the first frequency domain resource
  • the information that the second frequency domain resource is a punctured frequency domain resource is used to indicate that the first terminal does not use the second frequency domain resource.
  • the frequency domain resource set is a resource block group RBG, and the first frequency domain resource or the second frequency domain resource includes one or more resource blocks RB.
  • the first indication information is carried in at least one of the following: a first radio control information RRC message, or a first downlink control information DCI message.
  • the transceiver module is further used for the communication device described in the seventh aspect to send second indication information to the second terminal.
  • the second indication information is used to instruct the second terminal to use the second frequency domain resource in the frequency domain resource set.
  • the second indication information is carried in at least one of the following: a second RRC message, or a second DCI message.
  • the transceiver module may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device described in the seventh aspect, and the receiving module is used to implement the receiving function of the communication device described in the seventh aspect.
  • the communication device described in the seventh aspect may further include a storage module, wherein the storage module stores a program or an instruction.
  • the processing module executes the program or the instruction
  • the communication device may execute the resource allocation method described in the first aspect.
  • the device described in the seventh aspect can be a network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, and this application does not limit this.
  • the technical effects of the communication device described in the seventh aspect can refer to the technical effects of the resource allocation method described in the first aspect, and will not be repeated here.
  • a communication device which includes a module for executing the method described in the second aspect, for example, a transceiver module and a processing module.
  • the transceiver module is used to receive the first indication information from the network device.
  • the processing module is used to use the first frequency domain resource.
  • the network device reserves a frequency domain resource set that can be used by the communication device described in the eighth aspect, and the first indication information is used to indicate that the communication device uses the first frequency domain resource in the frequency domain resource set, and the communication device does not use the second frequency domain resource in the frequency domain resource set.
  • the first indication information includes information used to indicate that the first frequency domain resource is a non-punctured frequency domain resource, and information used to indicate that the second frequency domain resource is a punctured frequency domain resource.
  • the information that the first frequency domain resource is a non-punctured frequency domain resource is used to indicate that the communication device described in the eighth aspect uses the first frequency domain resource
  • the information that the second frequency domain resource is a punctured frequency domain resource is used to indicate that the communication device does not use the second frequency domain resource.
  • the frequency domain resource set is a resource block group RBG, and the first frequency domain resource or the second frequency domain resource includes one or more resource blocks RB.
  • the first indication information is carried in at least one of the following: a first radio control information RRC message, or a first downlink control information DCI message.
  • the transceiver module may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device described in the eighth aspect, and the receiving module is used to implement the receiving function of the communication device described in the eighth aspect.
  • the communication device described in the eighth aspect may further include a storage module, wherein the storage module stores a program or an instruction.
  • the processing module executes the program or the instruction
  • the communication device may execute the resource allocation method described in the second aspect.
  • the communication device described in the eighth aspect can be a terminal, such as the first terminal, or a chip (system) or other parts or components that can be set in a network device, or a device including a terminal, which is not limited in this application.
  • the technical effects of the communication device described in the eighth aspect can refer to the technical effects of the resource allocation method described in the second aspect, and will not be repeated here.
  • a communication device which includes a module for executing the method described in the third aspect, for example, a transceiver module and a processing module.
  • the transceiver module is used to receive the second indication information from the network device.
  • the processing module is used to use the second frequency domain resource.
  • the second indication information is used to instruct the communication device described in the ninth aspect to use the second frequency domain resource, and the network device reserves a frequency domain resource set that can be used by other terminals for other terminals, and the second frequency domain resource belongs to the frequency domain resource set.
  • the second indication information is carried in at least one of the following: a second RRC message or a second DCI message.
  • the transceiver module may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device described in the ninth aspect, and the receiving module is used to implement the receiving function of the communication device described in the ninth aspect.
  • the communication device described in the ninth aspect may further include a storage module, wherein the storage module stores a program or an instruction.
  • the processing module executes the program or the instruction
  • the communication device may execute the resource allocation method described in the third aspect.
  • the communication device described in the ninth aspect can be a terminal, such as a second terminal, or a chip (system) or other parts or components that can be set in a network device, or a device including a terminal, which is not limited in this application.
  • the technical effects of the communication device described in the ninth aspect can refer to the technical effects of the resource allocation method described in the third aspect, and will not be repeated here.
  • a communication device in a tenth aspect, includes: a module for executing the method described in the fourth aspect, for example, a processing module and a transceiver module.
  • the processing module is used to obtain the indication information.
  • the transceiver module is used to send the indication information to the first terminal.
  • the indication information is used to instruct the first terminal to use the first bandwidth part BWP and the second BWP, and the bandwidth of the frequency domain resources included in the first BWP is different from the bandwidth of the frequency domain resources included in the second BWP.
  • the indication information is specifically used to instruct the first terminal to use the frequency domain resources in the first BWP at a first moment, and the first terminal to use the frequency domain resources in the second BWP for data transmission at a second moment.
  • the transceiver module is further used to send configuration information to the first terminal, wherein the configuration information is used to configure the first BWP and the second BWP used by the first terminal.
  • the indication information is carried in at least one of the following: an RRC message or a DCI message.
  • the transceiver module may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device described in the tenth aspect, and the receiving module is used to implement the receiving function of the communication device described in the tenth aspect.
  • the communication device described in the tenth aspect may further include a storage module, wherein the storage module stores a program or instruction.
  • the processing module executes the program or instruction
  • the communication device may execute the resource allocation method described in the fourth aspect.
  • the communication device described in the tenth aspect can be a network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, and this application does not limit this.
  • the technical effects of the communication device described in the tenth aspect can refer to the technical effects of the resource allocation method described in the fourth aspect, and will not be repeated here.
  • a communication device which includes: a module for executing the method described in the fifth aspect, for example, a transceiver module and a processing module.
  • the transceiver module is used to receive instruction information from the network device.
  • the processing module is used to use the frequency domain resources of the first BWP and the frequency domain resources of the second BWP for data transmission.
  • the instruction information is used to instruct the communication device described in the eleventh aspect to use the first bandwidth part BWP and the second BWP, and the bandwidth of the frequency domain resources included in the first BWP is different from the bandwidth of the frequency domain resources included in the second BWP.
  • the indication information is used to instruct the communication device described in the tenth aspect to use the frequency domain resources in the first BWP at a first moment, and to use the frequency domain resources in the second BWP for data transmission at a second moment.
  • the sending module is further used to receive configuration information from a network device, wherein the configuration information is used to configure the first BWP and the second BWP used by the communication device.
  • the indication information is carried in at least one of the following: an RRC message or a DCI message.
  • the transceiver module may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device described in the eleventh aspect, and the receiving module is used to implement the receiving function of the communication device described in the eleventh aspect.
  • the communication device described in the eleventh aspect may further include a storage module, wherein the storage module stores a program or instruction.
  • the processing module executes the program or instruction
  • the communication device may execute the resource allocation method described in the fifth aspect.
  • the communication device described in the eleventh aspect can be a terminal, such as the first terminal, or a chip (system) or other parts or components that can be set in a network device, or a device including a terminal, which is not limited in this application.
  • the technical effects of the communication device described in the eleventh aspect can refer to the technical effects of the resource allocation method described in the fifth aspect, and will not be repeated here.
  • a communication device in a twelfth aspect, includes: a module for executing the method described in the sixth aspect, for example, a transceiver module and a processing module.
  • the transceiver module is used to obtain the indication information.
  • the processing module is used to send the indication information to the first terminal.
  • the indication information is used to instruct the first terminal to use the first power for data transmission, and the first power includes the power of the first frequency domain resource and the power of the second frequency domain resource.
  • the first frequency domain resource is the frequency domain resource allocated to the first terminal by the communication device described in the twelfth aspect
  • the second frequency domain resource is the frequency domain resource allocated to the second terminal by the communication device and not used by the second terminal.
  • the indication information is carried in at least one of the following: an RRC message or a DCI message.
  • the transceiver module may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device described in aspect 12, and the receiving module is used to implement the receiving function of the communication device described in aspect 12.
  • the communication device described in the twelfth aspect may further include a storage module, wherein the storage module stores a program or an instruction.
  • the processing module executes the program or the instruction
  • the communication device may execute the resource allocation method described in the sixth aspect.
  • the communication device described in the twelfth aspect can be a network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, and this application does not limit this.
  • the technical effects of the communication device described in the twelfth aspect can refer to the technical effects of the resource allocation method described in the sixth aspect, and will not be repeated here.
  • a communication device comprising: a processor, wherein the processor is configured to execute the resource allocation method described in any one of the first aspect to the sixth aspect.
  • the communication device described in the thirteenth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver may be used for the device to communicate with other communication devices.
  • the communication device described in the thirteenth aspect may also include a memory.
  • the memory may be integrated with the processor or may be separately provided.
  • the memory may be used to store the computer program and/or data involved in the resource allocation method described in any one of the first to sixth aspects.
  • the communication device described in the thirteenth aspect may be the terminal or network device described in the first to sixth aspects, or a chip (system) or other parts or components that may be set in the terminal or network device, or a device that includes the terminal or network device.
  • the technical effects of the communication device described in the thirteenth aspect can refer to the technical effects of the resource allocation method described in any one of the first to sixth aspects, and will not be repeated here.
  • a communication device comprising: a processor coupled to a memory, the processor being configured to execute a computer program stored in the memory, so that the communication device executes the resource allocation method described in any one of the first to sixth aspects.
  • the communication device described in the fourteenth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver may be used for the device to communicate with other communication devices.
  • the communication device described in aspect 14 may be the terminal or network device described in aspects 1 to 6, or a chip (system) or other parts or components that may be arranged in the terminal or network device, or a device including the terminal or network device.
  • the technical effect of the communication device described in the fourteenth aspect can refer to any one of the first aspect to the sixth aspect.
  • the technical effects of the resource allocation method will not be elaborated here.
  • a communication device comprising: a processor and a memory; the memory is used to store a computer program, and when the processor executes the computer program, the communication device executes the resource allocation method described in any one of the first to sixth aspects.
  • the communication device described in the fifteenth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver may be used for the device to communicate with other communication devices.
  • the communication device described in aspect 15 may be the terminal or network device described in aspects 1 to 6, or a chip (system) or other parts or components that may be arranged in the terminal or network device, or a device including the terminal or network device.
  • the technical effects of the communication device described in the fifteenth aspect can refer to the technical effects of the resource allocation method described in any one of the first to sixth aspects, and will not be repeated here.
  • a communication device comprising: a processor, wherein the processor is coupled to a memory, and after reading a computer program in the memory, executes the resource allocation method as described in any one of the first to sixth aspects according to the computer program.
  • the communication device described in the sixteenth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver may be used for the device to communicate with other communication devices.
  • the communication device described in Aspect 16 may be the terminal or network device described in Aspects 1 to 6, or a chip (system) or other parts or components that may be arranged in the terminal or network device, or a device including the terminal or network device.
  • the technical effects of the communication device described in the sixteenth aspect can refer to the technical effects of the resource allocation method described in any one of the first to sixth aspects, and will not be repeated here.
  • a resource allocation system which includes: the terminal or network device described in the first to sixth aspects.
  • a computer-readable storage medium comprising: a computer program or instructions; when the computer program or instructions are executed on a computer, the computer executes the resource allocation method as described in any one of the first to sixth aspects.
  • a computer program product comprising: a computer program or instructions, which, when executed on a computer, enables the computer to execute the resource allocation method as described in any one of the first to sixth aspects.
  • FIG1 is a schematic diagram of a scenario of switching a resource allocation mode
  • FIG2 is a second schematic diagram of a scenario in which a resource allocation mode is switched
  • FIG3 is a schematic diagram of the architecture of a resource allocation system provided by the present application.
  • FIG4 is a flowchart of a resource allocation method provided in an embodiment of the present application.
  • FIG5 is a schematic diagram 1 of RBG frequency domain resource multiplexing provided in an embodiment of the present application.
  • FIG6 is a second schematic diagram of RBG frequency domain resource multiplexing provided in an embodiment of the present application.
  • FIG7 is a third schematic diagram of RBG frequency domain resource multiplexing provided in an embodiment of the present application.
  • FIG8 is a second flow chart of a resource allocation method provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of resource allocation granularity switching provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of a BWP switching process of a first terminal provided in an embodiment of the present application.
  • FIG11 is a third flow chart of a resource allocation method provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of terminal power conversion provided in an embodiment of the present application.
  • FIG13 is a structural schematic diagram 1 of a communication device provided by the present application.
  • FIG. 14 is a second structural diagram of a communication device provided in accordance with an embodiment of the present application.
  • DL resource allocation type (RA type):
  • the new radio (NR) protocol defines the resource allocation methods of the physical downlink shared channel (PDSCH) as type 0 and type 1.
  • the minimum resource allocation granularity of type 0 mode is resource block group (RBG)
  • each RBG is composed of multiple resource blocks (RB)
  • the frequency domain resources allocated by the network device to the terminal through type 0 mode can be continuous or discontinuous.
  • the network device can indicate the allocation of RB resources through the bitmap of RBG, and each bit of the bitmap represents an RBG.
  • the bitmap can be carried in the resource allocation field in the downlink control information (DCI).
  • DCI downlink control information
  • the network device can send a DCI message to the terminal, thereby sending the information of the bitmap to the terminal.
  • the size of RBG is related to the size of the bandwidth part (BWP).
  • Table 1 shows the correspondence between the size of BWP and the size of RBG.
  • BWP belongs to the 1-36 RB resource interval, and the size of RBG can be 2RB or 4RB;
  • BWP belongs to the 37-42 RB resource interval, and the size of RBG can be 4RB or 8RB;
  • BWP belongs to the 73-144 RB resource interval, and the size of RBG can be 8RB or 16RB;
  • BWP belongs to the 145-275 RB resource interval, and the size of RBG can be 16RB.
  • the correspondence between the size of the BWP and the size of the RBG described in Table 1 is only an example, and the correspondence between the size of the BWP and the size of the RBG may also be other cases, which are not limited here.
  • the minimum resource allocation granularity of type 1 method is resource block RB.
  • the frequency domain resources allocated by the network device to the terminal through type 1 method are usually continuous, and the allocation of RB resources can be indicated by resource indication value (RIV), that is, the starting RB position and the number of RBs are indicated by RIV.
  • RIV can be carried in the resource allocation field in the DCI message, and the network device can send the RIV information to the terminal through the DCI message.
  • the resource allocation granularity of type 0 method is large, the frequency domain position is more flexible, and the frequency domain resources allocated by the network device to the terminal can be continuous or discontinuous; the resource allocation granularity of type 1 method is small, and the frequency domain resources allocated by the network device to the terminal are usually continuous.
  • the service types and service requirements on the terminal side change dynamically. If the frequency domain resource allocation mode on the network device side is fixed to a certain mode, then:
  • the terminal When type0 allocation is adopted, the terminal has less business demand at a certain moment. At this time, the network equipment uses RBG to schedule the terminal. The actual business demand of the terminal only needs to use part of the RBs in the RBG. The unused RBs in the RBG will be occupied by redundant information, which increases the padding, wastes the frequency domain resources and reduces the communication efficiency.
  • terminal 1 When type 1 is used for allocation, the terminal's service demand changes from small to large at a certain moment. At this time, the network equipment uses continuous RBs to schedule the terminal, and the resource allocation flexibility is poor, which is easy to cause packet interception for large-packet services. For example, terminal 1 has a large service demand at a certain moment, that is, large-packet data, which needs to continuously occupy 33 RBs between 13-45. At this time, if terminal 2 has occupied 5 RBs between 35-40, then terminal 1 usually transmits part of the large-packet data, resulting in packet interception.
  • RRC radio resource control
  • the network device configures the type0 resource allocation mode for the terminal and schedules it based on the RBG granularity. After that, the network device monitors the terminal's services. If it finds that the terminal's service requirements have changed, it switches the resource allocation mode by sending an RRC to the terminal, which may include the following two situations.
  • the network device switches the terminal PDSCH resource allocation mode to type 1 through an RRC message.
  • the network device switches the resource allocation mode of the terminal PDSCH to type 0 through an RRC message.
  • FIG1 is a schematic diagram of a scenario of switching a resource allocation mode.
  • a network device uses one of the resource allocation modes in a transmission time interval (TTI), such as scheduling the terminal in type0 mode at TTI_N and TTI_N+1.
  • TTI transmission time interval
  • the network device may send an RRC message to the terminal at TTI_N+1 to instruct the terminal to switch to a resource allocation mode of type1. Since the network device requires a long processing time to reconfigure the RRC message of the terminal, the terminal can complete the switch from type0 to type1 at TTI_N+M.
  • the network device schedules the terminal in type1 mode at TTI_X.
  • the network device may send an RRC message to the terminal at TTI_X to instruct the terminal to switch to a resource allocation mode of type0.
  • the network device requires a long processing time to reconfigure the RRC message of the terminal, so the terminal can complete the switch from type1 to type0 at TTI_X+Y.
  • the terminal reports to the network device that it supports the flexible switching capability of type0 and type1, it means that in addition to supporting the static configuration of type0 or type1, the terminal can also support flexible speed switching of type0 or type1, that is, the network device can send a DCI message to the terminal in each TTI, indicating that the terminal can quickly switch the resource allocation method in each TTI.
  • Figure 2 is a second schematic diagram of the scenario of switching the resource allocation mode.
  • the network device schedules the terminal in type0 at TTI_N, and the network device can send a DCI message to the terminal at TTI_N+1 to instruct the terminal to quickly switch to type1 resource allocation mode at TTI_N+1; the network device can send a DCI message to the terminal at TTI_N+2 to instruct the terminal to quickly switch to type0 resource allocation mode at TTI_N+2; the network device can send a DCI message to the terminal at TTI_N+3 to instruct the terminal to quickly switch to type1 resource allocation mode at TTI_N+3, and so on.
  • the type0 resource allocation method is mainly used to schedule terminals.
  • the minimum resource allocation granularity of the type0 resource allocation method is in the form of RBG.
  • the frequency domain resource allocation method in the form of RBG is relatively fixed, which will cause a waste of frequency domain resources.
  • the network equipment For terminals that do not support TTI-level resource allocation mode switching, that is, terminals that do not have the ability to flexibly switch between type 0 and type 1, the network equipment relies on sending RRC reconfiguration messages to the terminals to switch the resource allocation mode. At this time, if the number of terminals is large and the service requirements change frequently, the network equipment needs to reconfigure the RRC messages of a large number of terminals, the reconfiguration takes a long time, and the rate of switching the terminal resource allocation mode is low.
  • the embodiments of the present application propose the following technical solutions to solve the problem of low utilization of frequency domain resources due to the relatively fixed frequency domain allocation method in the form of RBG.
  • WiFi wireless fidelity
  • V2X vehicle to everything
  • D2D device-to-device
  • 4G such as long term evolution (LTE) systems
  • WiMAX worldwide interoperability for microwave access
  • 5G such as new radio (NR) systems
  • WiFi wireless fidelity
  • NR new radio
  • the information indicated by the indication information is referred to as the information to be indicated.
  • the information to be indicated there are many ways to indicate the information to be indicated, such as but not limited to, directly indicating the information to be indicated, such as the information to be indicated itself or the index of the information to be indicated, etc., or indirectly indicating the information to be indicated by indicating other information, wherein there is an association between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while the other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information may be realized by using the arrangement order of each piece of information agreed upon in advance (eg stipulated by the protocol), thereby reducing the indication overhead to a certain extent.
  • the information to be indicated can be sent as a whole or divided into multiple sub-information and sent separately, and the sending period and/or sending time of these sub-information can be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending time of these sub-information can be pre-defined, for example, pre-defined according to a protocol, or can be configured by the transmitting end device by sending configuration information to the receiving end device.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art can appreciate that with the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the resource allocation system mainly includes: a network device and a first terminal.
  • the network device may be an access network (AN) device, or may be called a radio access network (RAN) device.
  • the RAN device may provide access functions for the terminal, and is responsible for functions such as radio resource management, quality of service (QoS) management, data compression and encryption on the air interface side.
  • QoS quality of service
  • the RAN device may include 5G, such as a gNB in an NR system, or one or a group of antenna panels (including multiple antenna panels) of a base station in a 5G, or a network node constituting a gNB, a transmission point (TRP or transmission point, TP) or a transmission measurement function (TMF), such as a baseband unit (BBU), or a centralized unit (CU) or a distributed unit (DU), an RSU with a base station function, or a wired access gateway, or a core network element of a 5G.
  • 5G such as a gNB in an NR system, or one or a group of antenna panels (including multiple antenna panels) of a base station in a 5G, or a network node constituting a gNB, a transmission point (TRP or transmission point, TP) or a transmission measurement function (TMF), such as a baseband unit (BBU), or a centralized unit (CU) or a distributed unit (DU), an
  • the RAN device may also include an access point (AP) in a wireless fidelity (WiFi) system, a wireless relay node, a wireless backhaul node, various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, wearable devices, vehicle-mounted devices, etc.
  • AP access point
  • WiFi wireless fidelity
  • the RAN device may also include a next-generation mobile communication system, such as a 6G access network device, such as a 6G base station, or in the next-generation mobile communication system, the network device may also have other naming methods, which are all covered within the protection scope of the embodiments of the present application, and the present application does not make any limitation on this.
  • the first terminal may be a terminal with transceiver functions, or a chip or chip system that can be set in the terminal.
  • the terminal may also be called user equipment (UE), access terminal, subscriber unit, user station, mobile station (MS), mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • MS mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device.
  • the terminal in the embodiments of the present application can be a mobile phone, a cellular phone, a smart phone, a tablet computer, a wireless data card, a personal digital assistant (PDA), a wireless modem, a handheld device (handset), a laptop computer, a machine type communication (MTC) terminal, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in self driving, a wireless terminal in remote medical, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, a vehicle-mounted terminal, a road side unit (RSU) with terminal function, etc.
  • the terminal of the present application may also be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip or a vehicle-mounted unit built into the vehicle as one or more components or units.
  • FIG3 is only a simplified schematic diagram for ease of understanding, and the resource allocation system may also include other network devices and/or other terminal devices, which are not drawn in FIG3.
  • the network device can instruct the first terminal to use a part of the frequency domain resources in the frequency domain resource set through a first information, such as the first terminal only uses the first frequency domain resource to transmit data, so as to achieve data transmission for multiple terminals by using the frequency domain resource set of one terminal, thereby improving the utilization rate of frequency domain resources, and further realizing TTI-level resource allocation mode switching, so that the resource allocation mode of the terminal can be adjusted and matched in real time.
  • Figure 4 is a flow chart of a resource allocation method provided in an embodiment of the present application.
  • the method can be applied to the communication between the network device and the first terminal in the above resource allocation system.
  • the present application uses the above type0 method to perform frequency domain resource allocation for terminals that do not support the flexible switching capability of type0 and type1.
  • the process of the resource allocation method is as follows:
  • S401 A network device obtains first indication information.
  • the first indication information may be used to indicate that: the first terminal uses the first frequency domain resource in the frequency domain resource set, and the first terminal does not use the second frequency domain resource in the frequency domain resource set.
  • the frequency domain resource set may be a frequency domain resource set pre-allocated by the network device to the first terminal for use, that is, the network device reserves a frequency domain resource set that the first terminal can use for the first terminal.
  • the frequency domain resource set may be a frequency domain resource set at the RB level, such as multiple RBs, or may be a frequency domain resource set at the RBG level, such as one or more RBGs, or any possible level of frequency domain resources, without limitation.
  • the frequency domain resource set may include multiple frequency domain resources, such as a first frequency domain resource and a second frequency domain resource, and may also include other frequency domain resources, without limitation.
  • the first frequency domain resource may be a frequency domain resource actually used for data transmission by the first terminal in the frequency domain resource set, specifically one or more RBs, which may be continuous or non-continuous, so that the first terminal can flexibly select the frequency domain resource actually used according to actual needs, and the frequency domain resource allocation method is more flexible.
  • the second frequency domain resource may be a frequency domain resource not actually used for data transmission by the first terminal in the frequency domain resource set, that is, an idle frequency domain resource, specifically one or more RBs.
  • the network device reserves a frequency domain resource set that can be used by the first terminal for the first terminal, which can also be understood as the network device reserves a frequency domain resource set for the first terminal, or can also be understood as: the network device allocates a frequency domain resource set to the first terminal.
  • the first indication information may include information for indicating that the first frequency domain resource is a non-punctured frequency domain resource, and information for indicating that the second frequency domain resource is a punctured frequency domain resource.
  • the information that the first frequency domain resource is a non-punctured frequency domain resource may be used to indicate that the first terminal uses the first frequency domain resource
  • the information that the second frequency domain resource is a punctured frequency domain resource may be used to indicate that the first terminal does not use the second frequency domain resource. That is, the first indication information may specifically indicate whether the resource can be used by the terminal by indicating the puncturing state of the resource.
  • network devices can puncture frequency domain resource sets by rate matching (RM), where rate matching refers to puncturing bits on a channel to match the channel's carrying capacity.
  • RM rate matching
  • the punctured frequency domain resources and the non-punctured frequency domain resources can be indicated by an RM pattern, that is, the first indication information is specifically an RM pattern, or can be information used to indicate the RM pattern, such as an index of the RM pattern.
  • the RM pattern can be an RM pattern in the form of a bitmap. That is to say, the value of each bit in the RM pattern can correspond to an indication: whether a frequency domain resource in the frequency domain resource set is a punctured frequency domain resource or a non-punctured frequency domain resource.
  • the value of one or more bits corresponding to the first frequency domain resource is 0, indicating that one or more RBs corresponding to the first frequency domain resource are non-punctured frequency domain resources
  • the value of one or more bits corresponding to the second frequency domain resource is 1, indicating that one or more RBs corresponding to the second frequency domain resource are punctured frequency domain resources. Therefore, the value of the bitmap composed of these bits can indicate the puncturing status of each of the multiple RBs corresponding to the frequency domain resource set.
  • the first indication information can also indicate whether the frequency domain resource can be used by the terminal in any other possible manner.
  • the first indication information can only indicate the first frequency domain resource, such as carrying an identifier of the first frequency domain resource.
  • the first terminal can determine that the second frequency domain resource in the frequency domain resource set is not indicated based on the fact that the first indication information only indicates the first frequency domain resource, thereby determining that the second frequency domain resource cannot be used by the first terminal.
  • the first indication message may also be a first instruction, a first indication signaling, etc., which is not limited here.
  • S402 The network device sends first indication information to the first terminal.
  • the first terminal receives the first indication information from the network device.
  • the network device may send the first indication information to the first device via a first RRC message and/or a first DCI message.
  • the RM pattern in the first indication information is used to indicate that the terminal uses the frequency domain resources corresponding to the RM pattern in multiple TTIs scheduled by the RRC message. That is to say, the first frequency domain resources may be frequency domain resources used by the terminal in multiple TTIs, and the second frequency domain resources may be frequency domain resources not used by the terminal in multiple TTIs.
  • the frequency domain resource set RBG contains 16 RBs
  • the bit map of the RM pattern in the first indication information is 0000000011111111, which can indicate RB0-RB15 corresponding to the RBG from left to right.
  • the network device indicates the terminal through the first RRC message to use RB0-RB7 of the RBG for data transmission in multiple TTIs scheduled by the first RRC message, instead of using the resources of RB8-RB15 of the RBG.
  • the RM pattern in the first indication information is used to indicate that the terminal uses the frequency domain resources corresponding to the RM pattern in a TTI scheduled by the first DCI message, and the network device can use the first DCI in the next TTI.
  • the message scheduler uses frequency domain resources corresponding to other RM patterns. In this case, the frequency domain resources that the terminal may use and the frequency domain resources that cannot be used in each TTI may be different.
  • the frequency domain resource set RBG contains 16 RBs.
  • the network device instructs the terminal to use the frequency domain resources corresponding to RM pattern 1 through a DCI message at TTI_A, and the network device instructs the terminal to use the frequency domain resources corresponding to RM pattern 2 through the first DCI message at TTI_B.
  • RM pattern 1 and RM pattern 2 can be indicated by a 2-bit bitmap, and the bitmap can be 00, 01, 10 and 11.
  • a bitmap of 00 can indicate that the 16 RBs of the RBG are not punctured; a bitmap of 01 can indicate that the first 8 RBs of the RBG are not punctured, and the last 8 RBs are punctured; a bitmap of 10 can indicate that the first 8 RBs of the RBG are punctured, and the last 8 RBs are not punctured; a bitmap of 11 can indicate that the 16 RBs of the RBG are punctured.
  • the bitmap can also instruct the terminal to puncture any RB position in the RBG, which is not limited here.
  • bitmap of RM pattern 1 is 01, it indicates that the terminal uses the first 8 RBs of the RBG for data transmission in TTI_A, and does not use the resources of the last 8 RBs of the RBG. If the bitmap of RM pattern 2 is 10, it indicates that the terminal uses the last 8 RBs of the RBG for data transmission in TTI_B, and does not use the resources of the first 8 RBs of the RBG.
  • the first RRC message can also be represented by RRC message 1, RRC message a, etc., which is not limited here.
  • the first terminal uses first frequency domain resources.
  • the first terminal may use the indication of the first indication information to determine available frequency domain resources and unavailable frequency domain resources in the frequency domain resource set, so that the first terminal may use the available frequency domain resources in the frequency domain resource set to transmit data.
  • the first indication information can be carried in the first RRC message.
  • the frequency domain resource set RBG includes 16 RBs.
  • the bit map of the RM pattern in the first indication information is 0000000011111111.
  • the bit map can indicate RB0-RB15 corresponding to the RBG from left to right.
  • the network device instructs the terminal through the first RRC message to use RB0-RB7 of the RBG for data transmission in multiple TTIs scheduled by the first RRC message, instead of using the resources of RB8-RB15 of the RBG.
  • the first indication information may be carried in the first DCI message.
  • the network device instructs the terminal to use the frequency domain resources corresponding to RM pattern 1 through the first DCI message at TTI_A, and the network device instructs the terminal to use the frequency domain resources corresponding to RM pattern 2 through the first DCI message at TTI_B.
  • the bitmap of RM pattern 1 is 01, it is used to indicate that the terminal uses the first 8 RBs of the RBG for data transmission at TTI_A, instead of using the resources of the last 8 RBs of the RBG.
  • the bitmap of RM pattern 2 is 10, it is used to indicate that the terminal uses the last 8 RBs of the RBG for data transmission at TTI_B, instead of using the resources of the first 8 RBs of the RBG.
  • the network device when the network device pre-resers a frequency domain resource set that can be used by the first terminal for the first terminal, the network device can instruct the first terminal to use a part of the frequency domain resources in the frequency domain resource set through the first information, such as the first terminal only uses the first frequency domain resources to transmit data, so as to achieve the data transmission of multiple terminals by using the frequency domain resource set of one terminal, thereby improving the utilization rate of frequency domain resources, and further realizing the switching of resource allocation methods at the TTI level, so that the resource allocation method of the terminal can be adjusted and matched in real time.
  • the above method further includes: the network device sends second indication information to the second terminal.
  • the second terminal receives the second indication information from the network device.
  • the above method further includes: the network device sends second indication information to the second terminal.
  • the second terminal receives the second indication information from the network device.
  • the second terminal uses second frequency domain resources.
  • the second terminal can be a terminal with transceiver functions, or a chip or chip system that can be set in the terminal.
  • the relevant introduction of the first terminal please refer to the relevant introduction of the first terminal, which will not be repeated here.
  • the network device may reserve a frequency domain resource set that can be used by other terminals for other terminals, and the second indication information is used to indicate that the second terminal can use the second frequency domain resource in the frequency domain resource set for data transmission.
  • the second indication information may indicate the corresponding RM pattern through a bitmap, and the RM pattern of the second indication information is opposite to the indication information of the RM pattern of the first indication information. That is, the RM pattern of the second indication information may indicate that the first frequency domain resource is a punctured frequency domain resource, and the second frequency domain resource is a non-punctured frequency domain resource.
  • the second indication information may also directly indicate the second frequency domain resource, or the index of the second frequency domain resource, to indicate that the terminal uses the second frequency domain resource for data transmission.
  • the second indication information may be carried in at least one of the following: a second RRC message or a second DCI message, so as to reuse existing signaling and reduce the difficulty of design. It is understood that the second RRC message may also be represented by RRC message 2, RRC message b, etc., which is not limited here.
  • FIG. 5 is a schematic diagram of RBG frequency domain resource multiplexing provided in an embodiment of the present application.
  • the network device indicates The information instructs terminal 1 to puncture part of the frequency domain resources in the RBG, and terminal 1 uses the unpunctured RB resources, that is, the first frequency domain resources, for data transmission. If the frequency domain resources occupied by terminal 2 are located in the punctured part of the RBG, that is, the idle RB of terminal 1, the RB resources corresponding to the unpunctured part of the RBG, that is, the second frequency domain resources, can be allocated to terminal 2 at this time, so that terminal 1 and terminal 2 can reuse the same RBG. It can be understood that if the actual service demand of terminal 1 exceeds 1 RBG, the RBG will no longer be reused with other terminals.
  • Figure 6 is a second schematic diagram of RBG frequency domain resource reuse provided in an embodiment of the present application.
  • RBG0 and RBG1 both contain 16 RBs
  • the first 8 RBs of RBG0 and RBG1 are not punctured
  • the last 8 RBs are punctured
  • the service demand of terminal a, terminal b, terminal c and terminal d is 8RBs
  • the frequency domain resources used for data transmission by terminal a and terminal b occupy different positions in RBG0
  • the frequency domain resources used for data transmission by terminal c and terminal d occupy different positions in RBG1.
  • terminal a and terminal b can be multiplexed in RBG0 for data transmission, and terminal c and terminal d can be multiplexed in RBG1 for data transmission.
  • the service needs of terminal a, terminal b, terminal c and terminal d can be met by 2 RBGs of 16RBs, compared with transmitting the data of terminal a, terminal b, terminal c and terminal d through 4 RBGs of 16RBs, 50% of the frequency domain resources can be saved.
  • FIG7 is a third schematic diagram of RBG frequency domain resource reuse provided in an embodiment of the present application.
  • RBGa, RBGb, and RBGc all contain 16 RBs
  • the service demand of terminal e is 12RBs
  • the service demand of terminal f, terminal g, and terminal h is 8RBs
  • the frequency domain resources used for data transmission by terminal f and terminal g occupy different positions in RBGb
  • the first 8 RBs of RBGb and RBGc may not be punctured
  • the last 8 RBs may be punctured
  • terminal e may use RBGa for data transmission
  • terminal f and terminal g may be multiplexed in RBGb for data transmission
  • terminal h may use RBGc for data transmission.
  • the service demands of terminal e, terminal f, terminal g, and terminal h may be met by three RBGs of 16RBs, and 25% of frequency domain resources may be saved compared to using four RBGs of 16RBs for data transmission to terminal e, terminal f, terminal g, and terminal h.
  • Figure 8 is a second flow chart of a resource allocation method provided in an embodiment of the present application.
  • the method can be applicable to the communication between the network device and the first terminal in the above-mentioned resource allocation system.
  • the present application uses the above-mentioned type0 method to perform frequency domain resource allocation for terminals that do not support the flexible switching capability of type0 and type1.
  • the process of the resource allocation method is as follows:
  • a network device obtains instruction information.
  • the indication information is used to instruct the first terminal to use the first bandwidth part BWP and the second BWP, and the bandwidth of the frequency domain resources included in the first BWP is different from the bandwidth of the frequency domain resources included in the second BWP.
  • the first BWP and the second BWP may be indexes corresponding to partial bandwidths.
  • the first BWP may be represented by the index BWP_x
  • the second BWP may be represented by the index BWP_y.
  • the first BWP and the second BWP may also be corresponding partial bandwidth values.
  • the bandwidth value of the first BWP may be 20 RBs
  • the bandwidth value of the second BWP may be 100 RBs.
  • the RBG corresponding to the first BWP includes 4 RBs
  • the RBG corresponding to the second BWP includes 16 RBs.
  • the first BWP and the second BWP may also be represented by other methods, which are not specifically limited here.
  • the frequency domain resources included in the first BWP may be the RBG corresponding to the first BWP
  • the frequency domain resources included in the second BWP may be the RBG corresponding to the second BWP.
  • some bandwidths belong to different resource intervals, and the sizes of the corresponding RBGs are also different.
  • the first BWP and the second BWP belong to different resource intervals, and the sizes of the RBGs corresponding to the first BWP and the second BWP are also different, that is, the frequency domain resources included in the first BWP are different from the frequency domain resources included in the second BWP.
  • S802 The network device sends indication information to the first terminal.
  • the first terminal receives the indication information from the network device.
  • the network device may send indication information to the first device through an RRC message and/or a DCI message. For example, the network device may predict the service demand of the first terminal by periodically counting the number of scheduling times of the first terminal, the number of allocated RB resources, and other data, and determine whether the service demand of the first terminal at the current TTI moment is a large data packet or a small data packet.
  • the terminal maintains the current resource allocation granularity for data transmission; if the prediction result of the network device is inconsistent with the current resource allocation granularity of the terminal, the network device instructs the terminal to switch the current resource allocation granularity by sending an RRC message and/or a DCI message to the first terminal.
  • FIG9 is a schematic diagram of resource allocation granularity switching provided by an embodiment of the present application.
  • the first BWP corresponds to a small data packet, the index of the first BWP is BWP_x, and the corresponding RBG size is RBG_x;
  • the second BWP corresponds to a large data packet, the index of the second BWP is BWP_y, and the corresponding RBG size is RBG_y.
  • the network device can instruct the terminal to switch from BWP_x to BWP_y through an indication message.
  • the network device can instruct the terminal to use RBG_y corresponding to BWP_y for data transmission through an indication message to meet the service needs of the terminal. If the network device predicts that the service needs of the terminal are small data packets, and the current resource allocation granularity of the terminal corresponds to large data packets, the network device can instruct the terminal to switch from BWP_y to BWP_x through an indication message, that is, the network device can instruct the terminal to use RBG_y corresponding to BWP_y for data transmission through an indication message to meet the service needs of the terminal.
  • the first terminal uses the frequency domain resources of the first BWP and the frequency domain resources of the second BWP for data transmission.
  • the network device may specifically instruct the first terminal to use the frequency domain resources in the first BWP at a first moment through the indication information, and the first terminal to use the frequency domain resources in the second BWP for data transmission at a second moment.
  • the service demand of the first terminal at the first moment is different from the service demand of the second moment.
  • the first terminal may be a small data packet at the first moment and a large data packet at the second moment.
  • the first terminal may use the resource allocation granularity corresponding to the first BWP at the first moment, such as using the above-mentioned RBG of 4RB for data transmission.
  • the first terminal may use the resource allocation granularity corresponding to the second BWP at the second moment, such as using the above-mentioned RBG of 16RB for data transmission.
  • the first moment and the second moment include one or more TTIs.
  • FIG 10 is a schematic diagram of the BWP switching process of the first terminal provided in an embodiment of the present application.
  • terminal 1 uses a single BWP for data transmission, for example, terminal 1 uses part of the bandwidth 100RB for data transmission.
  • the RBG contains 16 RBs, and the number of resources required by terminal 1 in TTI_N is 4RBs, but the network device actually allocates 16RBs to the first terminal for data transmission; the actual number of resources required by terminal 1 in TTI_M is 30RBs, and at this time the network device also actually allocates 2 RBGs to the first terminal, that is, 32RBs for data transmission.
  • terminal 1 uses a single BWP for data transmission, and uses 16RB frequency domain resources for 4RB data transmission in TTI_N. At this time, the remaining 12RB frequency domain resources are wasted, and the frequency domain resource utilization rate is only 25%.
  • terminal 1 uses dual BWP for data transmission, and uses 4RB corresponding to BWP1 for data transmission in TTI_X to meet actual needs. At this time, 75% of frequency domain resources can be saved, thereby improving the utilization rate of frequency domain resources.
  • the terminal can also instruct terminal 1 through an indication message to switch BWP in each TTI to achieve rapid switching of the frequency domain resource allocation granularity of the first terminal, thereby dynamically adjusting the frequency domain resource allocation granularity of the first terminal.
  • the network device sends configuration information to the first terminal.
  • the first terminal receives the configuration information from the network device.
  • the configuration information is used to configure the first BWP and the second BWP used by the first terminal for the first terminal.
  • the configuration information can be carried in an RRC message.
  • the network device sends the configuration information to the first terminal through an RRC message.
  • the configuration information can be the above-mentioned first BWP (BWP_x, RBG_x) and the first BWP (BWP_y, RBG_y).
  • the network device pre-configures the first BWP and the second BWP of the first terminal so that the network device can directly use them when scheduling the resources of the first terminal, thereby shortening the delay and improving the communication efficiency between the network device and the first terminal.
  • the network device instructs the first terminal to use the corresponding BWP for data transmission at different times through the indication information.
  • Different bandwidths can support different resource granularity sizes, so that the first terminal can select the corresponding size of RBG according to actual business needs to avoid resource waste and achieve timely matching of the terminal's business needs and resource allocation methods.
  • the terminal can also instruct the first terminal through the indication message to switch the BWP in each TTI to achieve rapid switching of the frequency domain resource allocation granularity of the first terminal, so that the frequency domain resource allocation granularity of the first terminal can be dynamically adjusted.
  • Figure 11 is a flow chart of the third resource allocation method provided in an embodiment of the present application.
  • the method can be applicable to the communication between the network device and the first terminal in the above-mentioned resource allocation system.
  • the present application uses the above-mentioned type0 method to perform frequency domain resource allocation for terminals that do not support the flexible switching capability of type0 and type1.
  • the process of the resource allocation method is as follows:
  • the network device obtains instruction information.
  • the indication information may be used to instruct the first terminal to use the first power for data transmission.
  • the first power may include the power of a first frequency domain resource and the power of a second frequency domain resource, wherein the first frequency domain resource is a frequency domain resource allocated by the network device to the first terminal for use, that is, the power pre-allocated by the network device to the first device for use, and the second frequency domain resource is a frequency domain resource allocated by the network device to the second terminal and not used by the second terminal, that is, the idle power allocated by the network device to the second device but not used by the second device. A portion of the power in the power or idle power.
  • the service demand of terminal 1 is a small data packet
  • the service demand of terminal 2 is a large data packet.
  • the network device allocates frequency domain resources to terminal 1 according to RBG1, and RBG1 includes N RBs.
  • the actual resource demand of terminal 1 is less than 1 RBG1, and terminal 1 occupies M RBs in RBG1.
  • the power of N-M RBs in RBG1 is extracted, that is, the power of the RBG where terminal 1 is located is proportionally reduced, and N-M RBs are the second frequency domain resources.
  • the power of N-M RBs is the power of the second frequency domain resources, that is, the power of the second frequency domain resources is the idle power of terminal 1.
  • the network device allocates frequency domain resources to terminal 2 according to RBG2 and RBG3, and RBG2 and RBG3 include X RBs in total. If the actual service demand of terminal 2 is greater than X RBs, the network device can extract the power of the second frequency domain resources of terminal 1 for data transmission by terminal 2, that is, the power of RBG2 and RBG3 where terminal 2 is located is proportionally increased. It can be understood that at this time X RBs are the first frequency domain resources, the power of X RBs is the power of the first frequency domain resources, and the first power can be the sum of the power of N-M RBs and the power of X RBs, that is, the first power is the power of N-M+X RBs.
  • the indication information is carried in at least one of the following: an RRC message or a DCI message, so as to reuse existing signaling and reduce design difficulty.
  • S1102 The network device sends indication information to the first terminal.
  • the network device may send indication information to the first device through an RRC message and/or a DCI message to instruct the first terminal to use the first power for data transmission.
  • FIG12 is a schematic diagram of terminal power conversion provided in an embodiment of the present application. As shown in FIG12, on the same TTI, terminal 2 uses the power of X RBs allocated by the network device and the idle power of terminal 1 as the power of N-M RBs, that is, the power of N-M+X RBs to transmit data.
  • N-M+X RBs can support the modulation and coding scheme (MCS) of terminal 2, more data can be carried on the X RBs of terminal 2 for transmission, and the power of the RBG where terminal 2 is located is raised; if the power of N-M+X RBs cannot support the MCS of terminal 2, the data carried on the X RBs of terminal 2 remains unchanged, and terminal 2 can improve the interference to noise ratio during data transmission and reduce the bit error rate.
  • MCS modulation and coding scheme
  • the network device can convert the frequency domain resources RB and the power resources according to the actual business needs of the terminal, reduce the resource allocation granularity to the RB level in the power domain dimension, dynamically adjust the frequency domain resource allocation granularity of the terminal, and extract the unused power of the terminal, thereby reducing the waste of frequency domain resources caused by redundant power resources, thereby improving the utilization rate of frequency domain resources.
  • the resource allocation method provided in the embodiment of the present application is described in detail above in conjunction with Figures 4 to 12.
  • the communication device for executing the resource allocation method provided in the embodiment of the present application is described in detail below in conjunction with Figures 13 to 14.
  • Fig. 13 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • a communication device 1300 includes: a transceiver module 1301 and a processing module 1302.
  • Fig. 13 only shows the main components of the communication device.
  • the communication device 1300 may be applicable to the resource allocation system shown in FIG. 3 to perform the functions of the above-mentioned network device.
  • the transceiver module 1301 can be used to execute the function of the network device to send and receive messages, such as the functions in the above steps S402, S802, S1102, etc.
  • the processing module 1302 can execute the functions of the network device other than sending and receiving messages, such as the functions in the above steps S401, S801, S1101, etc.
  • the processing module 1302 is used to obtain the first indication information.
  • the transceiver module 1301 is used to send the first indication information to the first terminal.
  • the network device reserves a frequency domain resource set that can be used by the first terminal for the first terminal, and the first indication information is used to indicate: the first terminal uses the first frequency domain resource in the frequency domain resource set, and the first terminal does not use the second frequency domain resource in the frequency domain resource set.
  • the transceiver module 1301 may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device 1300 , and the receiving module is used to implement the receiving function of the communication device 1300 .
  • the communication device 1300 may further include a storage module, wherein the storage module stores a program or an instruction.
  • the processing module 1302 executes the program or the instruction
  • the communication device 1300 may execute the above resource allocation method.
  • the communication device 1300 can be a network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, which is not limited in this application.
  • the technical effects of the communication device 1300 can refer to the technical effects of the above-mentioned resource allocation method, which will not be repeated here.
  • the communication device 1300 may be applicable to the resource allocation system shown in FIG. 3 to perform the function of the above-mentioned first terminal.
  • the transceiver module 1301 may be used to execute the function of the first terminal to send and receive messages, such as the functions in the above steps S402, S802, S1102, etc.
  • the processing module 1302 may execute the functions of the first terminal other than sending and receiving messages, such as the functions in the above steps S403, S803, etc.
  • the transceiver module 1301 is configured to receive first indication information from the network device.
  • the processing module 1302 is configured to use the first frequency domain resource.
  • the network device reserves a frequency domain resource set that can be used by the first terminal for the first terminal, and the first indication information is used to indicate: the first terminal uses the first frequency domain resource in the frequency domain resource set, and the first terminal does not use the second frequency domain resource in the frequency domain resource set.
  • the transceiver module 1301 may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device 1300 , and the receiving module is used to implement the receiving function of the communication device 1300 .
  • the communication device 1300 may further include a storage module, wherein the storage module stores a program or an instruction.
  • the processing module 1302 executes the program or the instruction
  • the communication device 1300 may execute the above resource allocation method.
  • the communication device 1300 can be a terminal, or a chip (system) or other parts or components that can be set in a terminal, or a device including a terminal device, which is not limited in this application.
  • the technical effects of the communication device 1300 can refer to the technical effects of the above-mentioned resource allocation method, which will not be repeated here.
  • FIG14 is a second schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device may be a terminal, or a chip (system) or other component or assembly that may be provided in a terminal.
  • a communication device 1400 may include a processor 1401.
  • the communication device 1400 may further include a memory 1402 and/or a transceiver 1403.
  • the processor 1401 is coupled to the memory 1402 and the transceiver 1403, such as by a communication bus.
  • the processor 1401 is the control center of the communication device 1400, which can be a processor or a general term for multiple processing elements.
  • the processor 1401 is one or more central processing units (CPUs), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application, such as one or more microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (field programmable gate arrays, FPGAs).
  • CPUs central processing units
  • ASIC application specific integrated circuit
  • integrated circuits configured to implement the embodiments of the present application, such as one or more microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (field programmable gate arrays, FPGAs).
  • the processor 1401 may execute various functions of the communication device 1400 , such as executing the resource allocation method shown in FIGS. 4 to 12 above, by running or executing a software program stored in the memory 1402 and calling data stored in the memory 1402 .
  • the processor 1401 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 14 .
  • the communication device 1400 may also include multiple processors, such as the processor 1401 and the processor 1404 shown in FIG. 14. Each of these processors may be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • the memory 1402 is used to store the software program for executing the solution of the present application, and the execution is controlled by the processor 1401.
  • the specific implementation method can refer to the above method embodiment, which will not be repeated here.
  • the memory 1402 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 1402 may be integrated with the processor 1401, or may exist independently and be coupled to the processor 1401 through an interface circuit (not shown in FIG. 14 ) of the communication device 1400, which is not specifically limited in the embodiments of the present application.
  • the transceiver 1403 is used for communication with other communication devices. For example, if the communication device 1400 is a terminal, the transceiver 1403 can be used to communicate with a network device, or with another terminal device. For another example, if the communication device 1400 is a network device, the transceiver 1403 can be used to communicate with a terminal, or with another network device.
  • the transceiver 1403 may include a receiver and a transmitter (not shown separately in FIG. 14 ), wherein the receiver is used to implement a receiving function, and the transmitter is used to implement a sending function.
  • the transceiver 1403 may be integrated with the processor 1401, or may exist independently and be coupled to the processor 1401 via an interface circuit (not shown in FIG. 14 ) of the communication device 1400 , which is not specifically limited in the embodiments of the present application.
  • the structure of the communication device 1400 shown in FIG. 14 does not constitute a limitation on the communication device.
  • the configuration may include more or fewer components than shown, or combine certain components, or arrange the components differently.
  • the technical effects of the communication device 1400 can refer to the technical effects of the resource allocation method described in the above method embodiment, which will not be repeated here.
  • the embodiment of the present application provides a resource allocation system.
  • the resource allocation system includes: the network device shown in FIG3 , and one or more terminals.
  • processors in the embodiments of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application-specific integrated circuits
  • FPGA field programmable gate arrays
  • a general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static RAM
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous link DRAM
  • DR RAM direct rambus RAM
  • the above embodiments can be implemented in whole or in part by software, hardware (such as circuits), firmware or any other combination.
  • the above embodiments can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that a computer can access or a data storage device such as a server or data center that contains one or more available media sets.
  • the available medium can be a magnetic medium (for example, a floppy disk, a hard disk, a tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid-state hard disk.
  • At least one means one or more, and “more than one” means two or more.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function.
  • there may be other ways of division for example, multiple units or components may be combined or integrated into another system, or some features may be ignored or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种资源分配方法及装置,属于通信技术领域,用以提高频域资源的利用率。该方法中,在网络设备预先为第一终端预留终端能使用的频域资源集合的情况下,网络设备可以通过第一信息指示第一终端使用频域资源集合中的一部分频域资源,如第一终端只使用第一频域资源进行数据的传输,以实现通过使用一个终端的频域资源集合来完成多个终端的数据传输,提高频域资源的利用率,并且终端可以实现TTI级别的资源分配方式切换,使得终端的资源分配方式可以做到实时调整和匹配。

Description

资源分配方法及装置
本申请要求于2022年11月14日提交国家知识产权局、申请号为202211419015.2、申请名称为“资源分配方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种资源分配方法及装置。
背景技术
在新空口(new radio,NR)***中,网络设备为实现与终端的上下行传输,会向终端分配资源块组(resource block group,RBG)形式的频域资源。其中,一个RBG由多个RB组成,终端可以使用RBG中的多个RB进行数据传输。
然而,上述RBG形式的频域资源分配方式比较固定,导致频域资源的利用率较低。
发明内容
本申请实施例提供一种资源分配方法及装置,用以提高频域资源的利用率。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种资源分配方法。该方法包括:网络设备获取第一指示信息,并向第一终端发送第一指示信息。其中,网络设备为第一终端预留有第一终端能使用的频域资源集合,第一指示信息用于指示:第一终端使用频域资源集合中的第一频域资源,以及第一终端不使用频域资源集合中的第二频域资源。
基于第一方面所述的方法,在网络设备预先为第一终端预留终端能使用的频域资源集合的情况下,网络设备可以通过第一信息指示第一终端使用频域资源集合中的一部分频域资源,如第一终端只使用第一频域资源进行数据的传输,以实现通过使用一个终端的频域资源集合来完成多个终端的数据传输,提高频域资源的利用率。
一种可能的设计方案中,第一指示信息包括用于指示第一频域资源是非打孔的频域资源的信息,以及用于指示第二频域资源是打孔的频域资源信息,第一频域资源是非打孔的频域资源信息用于指示第一终端使用第一频域资源,第二频域资源是打孔的频域资源信息用于指示第一终端不使用第二频域资源。如此,第一终端通过判断频域资源是否打孔,可以准确的识别出哪些是自己当前可以使用的频域资源,哪些是自己当前不能使用的频域资源,从而避免资源冲突。
可选地,频域资源集合为资源块组RBG,第一频域资源或第二频域资源包括一个或多个资源块RB,一个RBG多个资源块RB组成。第一终端可以使用该RBG中部分连续的RB传输数据,也可以使用该RBG中部分不连续的RB传输数据,使得第一终端的频域资源分配方式更灵活。
可选地,第一指示信息承载在如下至少一项中:第一无线控制信息RRC消息、或第一下行控制信息DCI消息,以实现复用已有信令,降低实现难度。
一种可能的设计方案中,第一方面所述的方法还可以包括:网络设备向第二终端发送第二指示信息。其中,第二指示信息用于指示第二终端使用频域资源集合中的第二频域资源。如此,网络设备可以根据实际需求确定哪些终端可以使用第二频域资源,如第二频域资源能够满足第二终端的数据传输需求。
可选地,第二指示信息承载在如下至少一项中:第一无线控制信息RRC消息、或第一下行控制信息DCI消息,以实现复用已有信令,降低实现难度。
第二方面,提供一种资源分配方法。该方法包括:第一终端接收来自网络设备的第一指示信息,并使用第一指示信息指示的第一频域资源。其中,网络设备为第一终端预留有第一终端能使用的频域资源集合,第一指示信息用于指示:第一终端使用频域资源集合中的第一频域资源,以及第一终端不使用频域资源集合中的第二频域资源。
一种可能的设计方案中,第一指示信息包括用于指示第一频域资源是非打孔的频域资源的信息,以及用于指示第二频域资源是打孔的频域资源信息,第一频域资源是非打孔的频域资源信息 用于指示第一终端使用第一频域资源,第二频域资源是打孔的频域资源信息用于指示第一终端不使用第二频域资源。
可选地,频域资源集合为资源块组RBG,第一频域资源或第二频域资源包括一个或多个资源块RB。
一种可能的设计方案中,第一指示信息承载在如下至少一项中:第一RRC消息、或第一DCI消息。
第二方面所述的资源分配方法的技术效果可以参考第一方面所述的资源分配方法的技术效果,此处不再赘述。
第三方面,提供一种资源分配方法。该方法包括:第二终端接收来自网络设备的第二指示信息,并使用第二指示信息指示的第二频域资源。其中,第二指示信息用于指示第二终端使用第二频域资源,网络设备为其他终端预留有其他终端能使用的频域资源集合,第二频域资源属于该频域资源集合。
一种可能的设计方案中,第二指示信息承载在如下至少一项中:第二RRC消息、或第二DCI消息。
第三方面所述的资源分配方法的技术效果可以参考第一方面所述的资源分配方法的技术效果,此处不再赘述。
第四方面,提供一种资源分配方法。该方法包括:网络设备获取指示信息,并向第一终端发送指示信息。其中,指示信息用于指示第一终端使用第一带宽部分BWP和第二带宽部分BWP,第一BWP包含的频域资源的带宽与第二BWP包含的频域资源的带宽不同。
基于第四方面所述的方法,第一BWP包含的频域资源的带宽与第二BWP包含的频域资源的带宽不同,不同的带宽对应的RB数量不同,此时,第一终端可以根据实际的业务需求选择对应的BWP进行数据传输,以避免资源浪费,从而提高频域资源的利用率。
一种可能的设计方案中,指示信息具体用于指示第一终端在第一时刻使用第一BWP中的频域资源,以及第一终端在第二时刻使用第二BWP中的频域资源进行数据传输。第一终端可以根据不同时刻的实际业务需求选择对应的BWP进行数据传输,从而可以动态调整第一终端的频域资源分配粒度,并通过BWP切换实现第一终端频域资源分配粒度的快速切换。
一种可能的设计方案中,网络设备向第一终端发送配置信息。其中,配置信息用于为第一终端配置第一终端使用的第一BWP和第二BWP。网络设备预先配置第一终端的第一BWP和第二BWP,使得网络设备对第一终端的资源进行调度时可以直接使用,从而缩短时延,提高网络设备与第一终端的通信效率。
一种可能的设计方案中,指示信息承载在如下至少一项中:RRC消息、或DCI消息,以实现复用已有信令,降低实现难度。
第五方面,提供一种资源分配方法。该方法包括:第一终端接收来自网络设备的指示信息,并根据指示信息使用第一BWP的频域资源和第二BWP的频域资源进行数据传输。其中,指示信息用于指示第一终端使用第一带宽部分BWP和第BWP,第一BWP包含的频域资源的带宽与第二BWP包含的频域资源的带宽不同。
可选地,指示信息具体用于指示第一终端在第一时刻使用第一BWP中的频域资源,以及在第二时刻使用第二BWP中的频域资源进行数据传输。
一种可能的设计方案中,第一终端接收来自网络设备的配置信息。其中,配置信息用于为第一终端配置第一终端使用的第一BWP和第二BWP。
一种可能的设计方案中,指示信息承载在如下至少一项中:RRC消息、或DCI消息。
第五方面所述的资源分配方法的技术效果可以参考第四方面所述的资源分配方法的技术效果,此处不再赘述。
第六方面,提供一种资源分配方法。该方法包括:网络设备获取指示信息,并向第一终端发送指示信息。其中,指示信息用于指示第一终端使用第一功率进行数据传输,第一功率包括第一频域资源的功率,以及第二频域资源的功率,第一频域资源是网络设备分配给第一终端使用的频域资源,第二频域资源是网络设备分配给第二终端且第二终端未使用的频域资源。
基于第六方面所述的方法,在网络设备预先分配给第一终端使用第一频域资源的功率的情况下,网络设备通过指示信息指示第一终端,使用第一频域资源的功率,以及第二终端未使用的频域资源的功率进行数据传输,可以减少因冗余功率资源而导致的频域资源浪费,提高频域资源的利用率。
一种可能的设计方案中,指示信息承载在如下至少一项中:RRC消息、或DCI消息,以实现复用已有信令,降低实现难度。
第七方面,提供一种通信装置。该装置包括用于:执行上述第一方面所述的方法的模块,例如,处理模块和收发模块。
其中,处理模块,用于获取第一指示信息。收发模块,用于向第一终端发送第一指示信息。其中,第七方面所述的通信装置为第一终端预留有第一终端能使用的频域资源集合,第一指示信息用于指示:第一终端使用频域资源集合中的第一频域资源,以及第一终端不使用频域资源集合中的第二频域资源;第二频域资源用于其他终端使用。
一种可能的设计方案中,第一指示信息包括用于指示第一频域资源是非打孔的频域资源的信息,以及用于指示第二频域资源是打孔的频域资源信息,第一频域资源是非打孔的频域资源信息用于指示第一终端使用第一频域资源,第二频域资源是打孔的频域资源信息用于指示第一终端不使用第二频域资源。
可选地,频域资源集合为资源块组RBG,第一频域资源或第二频域资源包括一个或多个资源块RB。
可选地,第一指示信息承载在如下至少一项中:第一无线控制信息RRC消息、或第一下行控制信息DCI消息。
一种可能的设计方案中,收发模块,还用于第七方面所述的通信装置向第二终端发送第二指示信息。其中,第二指示信息用于指示第二终端使用频域资源集合中的第二频域资源。
可选地,第二指示信息承载在如下至少一项中:第二RRC消息、或第二DCI消息。
可选地,收发模块可以包括发送模块和接收模块。其中,发送模块用于实现第七方面所述的通信装置的发送功能,接收模块用于实现第七方面所述的通信装置的接收功能。
可选地,第七方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块执行该程序或指令时,使得该通信装置可以执行第一方面所述的资源分配方法。
需要说明的是,第七方面所述的装置可以是网络设备,也可以是可设置于网络设备中的芯片(***)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,第七方面所述的通信装置的技术效果可以参考第一方面所述的资源分配方法的技术效果,此处不再赘述。
第八方面,提供一种通信装置。该装置包括用于执行上述第二方面所述的方法的模块,例如,收发模块和处理模块。
其中,收发模块,用于接收来自网络设备的第一指示信息。处理模块,用于使用第一频域资源。其中,网络设备为第八方面所述的通信装置预留有该通信装置能使用的频域资源集合,第一指示信息用于指示:该通信装置使用频域资源集合中的第一频域资源,以及该通信装置不使用频域资源集合中的第二频域资源。
一种可能的设计方案中,第一指示信息包括用于指示第一频域资源是非打孔的频域资源的信息,以及用于指示第二频域资源是打孔的频域资源信息,第一频域资源是非打孔的频域资源信息用于指示第八方面所述的通信装置使用第一频域资源,第二频域资源是打孔的频域资源信息用于指示该通信装置不使用第二频域资源。
可选地,频域资源集合为资源块组RBG,第一频域资源或第二频域资源包括一个或多个资源块RB。
可选地,第一指示信息承载在如下至少一项中:第一无线控制信息RRC消息、或第一下行控制信息DCI消息。
可选地,收发模块可以包括发送模块和接收模块。其中,发送模块用于实现第八方面所述的通信装置的发送功能,接收模块用于实现第八方面所述的通信装置的接收功能。
可选地,第八方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块执行该程序或指令时,使得该通信装置可以执行第二方面所述的资源分配方法。
需要说明的是,第八方面所述的通信装置可以是终端,如第一终端,也可以是可设置于网络设备中的芯片(***)或其他部件或组件,还可以是包含终端的装置,本申请对此不做限定。
此外,第八方面所述的通信装置的技术效果可以参考第二方面所述的资源分配方法的技术效果,此处不再赘述。
第九方面,提供一种通信装置。该装置包括用于执行上述第三方面所述的方法的模块,例如,收发模块和处理模块。
其中,收发模块,用于接收来自网络设备的第二指示信息。处理模块,用于使用第二频域资源。其中,第二指示信息用于指示第九方面所述的通信装置使用第二频域资源,网络设备为其他终端预留有其他终端能使用的频域资源集合,第二频域资源属于频域资源集合。
一种可能的设计方案中,第二指示信息承载在如下至少一项中:第二RRC消息、或第二DCI消息。
可选地,收发模块可以包括发送模块和接收模块。其中,发送模块用于实现第九方面所述的通信装置的发送功能,接收模块用于实现第九方面所述的通信装置的接收功能。
可选地,第九方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块执行该程序或指令时,使得该通信装置可以执行第三方面所述的资源分配方法。
需要说明的是,第九方面所述的通信装置可以是终端,如第二终端,也可以是可设置于网络设备中的芯片(***)或其他部件或组件,还可以是包含终端的装置,本申请对此不做限定。
此外,第九方面所述的通信装置的技术效果可以参考第三方面所述的资源分配方法的技术效果,此处不再赘述。
第十方面,提供一种通信装置。该装置包括:用于执行如第四方面所述的方法的模块。例如,处理模块和收发模块。
其中,处理模块,用于获取指示信息。收发模块,用于向第一终端发送指示信息。其中,指示信息用于指示第一终端使用第一带宽部分BWP和第二BWP,第一BWP包含的频域资源的带宽与第二BWP包含的频域资源的带宽不同。
一种可能的设计方案中,指示信息具体用于指示第一终端在第一时刻使用第一BWP中的频域资源,以及第一终端在第二时刻使用第二BWP中的频域资源进行数据传输。
一种可能的设计方案中,收发模块,还用于向第一终端发送配置信息。其中,配置信息用于为第一终端配置第一终端使用的第一BWP和第二BWP。
一种可能的设计方案中,指示信息承载在如下至少一项中:RRC消息、或DCI消息。
可选地,收发模块可以包括发送模块和接收模块。其中,发送模块用于实现第十方面所述的通信装置的发送功能,接收模块用于实现第十方面所述的通信装置的接收功能。
可选地,第十方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块执行该程序或指令时,使得该通信装置可以执行第四方面所述的资源分配方法。
需要说明的是,第十方面所述的通信装置可以是网络设备,也可以是可设置于网络设备中的芯片(***)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,第十方面所述的通信装置的技术效果可以参考第四方面所述的资源分配方法的技术效果,此处不再赘述。
第十一方面,提供一种通信装置。该装置包括:用于执行如第五方面所述的方法的模块。例如,收发模块和处理模块。
其中,收发模块,用于接收来自网络设备的指示信息。处理模块,用于使用第一BWP的频域资源和第二BWP的频域资源进行数据传输。其中,指示信息用于指示第十一方面所述的通信装置使用第一带宽部分BWP和第二BWP,第一BWP包含的频域资源的带宽与第二BWP包含的频域资源的带宽不同。
一种可能的设计方案中,指示信息用于指示第十方面所述的通信装置在第一时刻使用第一BWP中的频域资源,以及该通信装置在第二时刻使用第二BWP中的频域资源进行数据传输。
一种可能的设计方案中,发送模块,还用于接收来自网络设备的配置信息。其中,配置信息用于为该通信装置配置该通信装置使用的第一BWP和第二BWP。
一种可能的设计方案中,指示信息承载在如下至少一项中:RRC消息、或DCI消息。
可选地,收发模块可以包括发送模块和接收模块。其中,发送模块用于实现第十一方面所述的通信装置的发送功能,接收模块用于实现第十一方面所述的通信装置的接收功能。
可选地,第十一方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块执行该程序或指令时,使得该通信装置可以执行第五方面所述的资源分配方法。
需要说明的是,第十一方面所述的通信装置可以是终端,如第一终端,也可以是可设置于网络设备中的芯片(***)或其他部件或组件,还可以是包含终端的装置,本申请对此不做限定。
此外,第十一方面所述的通信装置的技术效果可以参考第五方面所述的资源分配方法的技术效果,此处不再赘述。
第十二方面,提供一种通信装置。该装置包括:用于执行如第六方面所述的方法的模块。例如,收发模块和处理模块。
其中,收发模块,用于获取指示信息。处理模块,用于向第一终端发送指示信息。其中,指示信息用于指示第一终端使用第一功率进行数据传输,第一功率包括第一频域资源的功率,以及第二频域资源的功率,第一频域资源是第十二方面所述的通信装置分配给第一终端使用的频域资源,第二频域资源是该通信装置分配给第二终端且第二终端未使用的频域资源。
一种可能的设计方案中,指示信息承载在如下至少一项中:RRC消息、或DCI消息。
可选地,收发模块可以包括发送模块和接收模块。其中,发送模块用于实现第十二方面所述的通信装置的发送功能,接收模块用于实现第十二方面所述的通信装置的接收功能。
可选地,第十二方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块执行该程序或指令时,使得该通信装置可以执行第六方面所述的资源分配方法。
需要说明的是,第十二方面所述的通信装置可以是网络设备,也可以是可设置于网络设备中的芯片(***)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,第十二方面所述的通信装置的技术效果可以参考第六方面所述的资源分配方法的技术效果,此处不再赘述。
第十三方面,提供一种通信装置。该通信装置包括:处理器,该处理器用于执行第一方面至第六方面中任一方面所述的资源分配方法。
在一种可能的设计方案中,第十三方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于该装置与其他通信装置通信。
在一种可能的设计方案中,第十三方面所述的通信装置还可以包括存储器。该存储器可以与处理器集成在一起,也可以分开设置。该存储器可以用于存储第一方面至第六方面中任一方面所述的资源分配方法所涉及的计算机程序和/或数据。
在本申请中,第十三方面所述的通信装置可以为第一方面至第六方面中所述的终端或网络设备,或者可设置于该终端或网络设备中的芯片(***)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第十三方面所述的通信装置的技术效果可以参考第一方面至第六方面中任一方面所述的资源分配方法的技术效果,此处不再赘述。
第十四方面,提供一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合,该处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行第一方面至第六方面中任一方面所述的资源分配方法。
在一种可能的设计方案中,第十四方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于该装置与其他通信装置通信。
在本申请中,第十四方面所述的通信装置可以为第一方面至第六方面中所述的终端或网络设备,或者可设置于该终端或网络设备中的芯片(***)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第十四方面所述的通信装置的技术效果可以参考第一方面至第六方面中任一方面所述 的资源分配方法的技术效果,此处不再赘述。
第十五方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机程序,当该处理器执行该计算机程序时,以使该通信装置执行第一方面至第六方面中任一方面所述的资源分配方法。
在一种可能的设计方案中,第十五方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于该装置与其他通信装置通信。
在本申请中,第十五方面所述的通信装置可以为第一方面至第六方面中所述的终端或网络设备,或者可设置于该终端或网络设备中的芯片(***)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第十五方面所述的通信装置的技术效果可以参考第一方面至第六方面中任一方面所述的资源分配方法的技术效果,此处不再赘述。
第十六方面,提供了一种通信装置,包括:处理器。该处理器用于与存储器耦合,并读取存储器中的计算机程序之后,根据该计算机程序执行如第一方面至第六方面中任一方面所述的资源分配方法。
在一种可能的设计方案中,第十六方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于该装置与其他通信装置通信。
在本申请中,第十六方面所述的通信装置可以为第一方面至第六方面中所述的终端或网络设备,或者可设置于该终端或网络设备中的芯片(***)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第十六方面所述的通信装置的技术效果可以参考第一方面至第六方面中任一方面所述的资源分配方法的技术效果,此处不再赘述。
第十七方面,提供一种资源分配***。该资源分配***包括:第一方面至第六方面中所述的终端或网络设备。
第十八方面,提供一种计算机可读存储介质,包括:计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得该计算机执行如第一方面至第六方面中任一方面所述的资源分配方法。
第十九方面,提供一种计算机程序产品,包括:计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行如第一方面至第六方面中任一方面所述的资源分配方法。
附图说明
图1为资源分配方式切换的场景示意图一;
图2为资源分配方式切换的场景示意图二;
图3为本申请实施提供的一种资源分配***的架构示意图;
图4为本申请实施例提供的一种资源分配方法的流程示意图一;
图5为本申请实施例提供的RBG频域资源复用的示意图一;
图6为本申请实施例提供的RBG频域资源复用的示意图二;
图7为本申请实施例提供的RBG频域资源复用的示意图三;
图8为本申请实施例提供的一种资源分配方法的流程示意图二;
图9为本申请实施例提供的资源分配粒度切换的示意图;
图10为本申请实施例提供的第一终端的BWP切换过程示意图;
图11为本申请实施例提供的一种资源分配方法的流程示意图三;
图12为本申请实施例提供的终端功率转化的示意图;
图13为本申请实施提供的一种通信装置的结构示意图一;
图14为本申请实施提供的一种通信装置的结构示意图二。
具体实施方式
方便理解,下面先介绍本申请实施例所涉及的技术术语。
1.下行(down link,DL)资源分配方式(resource allocation type,RA type):
新空口(new radio,NR)协议定义物理下行共享信道(physical downlink shared channel,PDSCH)的资源分配方式分为type0方式和type1。
其中,type 0方式的最小资源分配粒度为资源块组(resource block group,RBG),每个RBG由多个资源块(resource block,RB)组成,网络设备通过type0方式给终端分配的频域资源可以是连续的,也可以是不连续。网络设备可以通过RBG的比特位图(bitmap)来指示RB资源的分配,比特位图的每个比特(bit)表示一个RBG,该比特位图可以承载在下行控制信息(downlink control information,DCI)中的资源分配字段中,网络设备可以向终端发送DCI消息,从而将比特位图的信息发送给终端。
RBG的大小与部分带宽(bandwidth part,BWP)的大小有关,表1为BWP的大小与RBG大小的对应关系,如表1所示,BWP属于1-36个RB资源区间,RBG的大小可以为2RB,或者4RB;BWP属于37-42个RB资源区间,RBG的大小可以为4RB,或者8RB;BWP属于73-144个RB资源区间,RBG的大小可以为8RB,或者16RB;BWP属于145-275个RB资源区间,RBG的大小可以为16RB。
表1
表1所述的BWP的大小与RBG大小的对应关系仅为示例,BWP的大小与RBG大小的对应关系还可以为其他情况,在此不做限定。
type 1方式的最小资源分配粒度为资源块RB,网络设备通过type1方式给终端分配的频域资源通常是连续的,可以通过资源指示值(resouce indication value,RIV)来指示RB资源的分配,即通过RIV指示起始RB位置以及RB数量,该RIV可以承载在DCI消息中的资源分配字段中,网络设备可以通过DCI消息将RIV的信息发送给终端。
基于上述type 0方式和type1方式的资源分配方式,可得:type0方式的资源分配粒度大、频域位置更加灵活,网络设备给终端分配的频域资源可以是连续的,也可以是不连续;type1方式的资源分配粒度小、网络设备给终端分配的频域资源通常是连续的。
在实际的应用场景中,终端侧的业务类型和业务需求是动态变化的,如果网络设备侧的频域资源分配方式固定为某一种,那么:
采用type0方式分配,终端在某时刻业务量需求较少,此时网络设备采用RBG对终端进行调度,终端的实际业务需求只需使用该RBG中的部分RB,该RBG中未使用的RB会被冗余信息占用,使得填充(paddding)增加,造成频域资源浪费,通信效率降低。
采用type1方式分配,终端在某时刻业务量需求由小变大,此时网络设备采用连续RB对终端进行调度,资源分配灵活性较差,对于大包业务容易产生截包。例如,终端1在某时刻的业务需求较大,即为大包数据,其需要连续占用13-45之间的33个RB,此时若终端2已占用了35-40之间的5个RB,那么终端1通常传输大包数据中的一部分数据,导致出现截包的情况。
因此,网络设备需要根据终端业务的变化,灵活使用不同类型的资源分配方式,按照NR协议,如果终端未向网络设备上报支持type0和type1的灵活切换能力,则表明终端仅支持type0或者type1的静态配置,即终端在一段时间内只能使用其中一种资源分配方式。终端若想要切换分配方式,只能通过网络设备向终端发送无线资源控制消息(radio resource control,RRC)重配对资源分配方式进行切换。
例如,当终端初始接入网络设备时,网络设备为终端配置type0资源分配方式,并基于RBG粒度进行调度。此后,网络设备对终端的业务进行监控,若发现终端业务需求发生变化,则通过向终端发送RRC来切换资源分配方式,具体可以包括下面两种情况。
若终端业务需求由大业务量变成小业务量:网络设备通过RRC消息切换终端PDSCH的资源分配方式为type1。
若终端业务需求由小业务量变成大业务量:网络设备通过RRC消息切换终端PDSCH的资源分配方式为type0。
示例性的,图1为资源分配方式切换的场景示意图一,如图1所示,网络设备在一个时间传输时间间隔transmission time interval,TTI)使用其中一种资源分配方式,如,网络设备在TTI_N和TTI_N+1通过type0的方式对终端进行调度。网络设备可以在TTI_N+1向终端发送RRC消息,用以指示终端切换为type1的资源分配方式。由于网络设备对终端的RRC消息重配需要较长的处理时间,因此,终端在TTI_N+M才能完成type0向type1的切换。网络设备在TTI_X通过type1的方式对终端进行调度。网络设备在可以在TTI_X向终端发送RRC消息,用以指示终端切换为type0的资源分配方式,网络设备对终端的RRC消息重配需要较长的处理时间,因此,终端在TTI_X+Y才能完成type1向type0的切换。
如果终端向网络设备上报支持type0和type1的灵活切换能力,则表明终端除了支持type0或者type1的静态配置之外,还可以支持type0或者type1的灵活切速,即网络设备可以在每个TTI内向终端发送DCI消息,指示终端可以在每个TTI中快速切换资源分配方式。
示例性的,图2为资源分配方式切换的场景示意图二,如图2所示,网络设备在TTI_N通过type0的方式对终端进行调度,网络设备可以在TTI_N+1向终端发送DCI消息,用以指示终端在TTI_N+1快速切换为type1的资源分配方式;网络设备可以在TTI_N+2向终端发送DCI消息,用以指示终端在TTI_N+2快速切换为type0的资源分配方式;网络设备可以在TTI_N+3向终端发送DCI消息,指示终端在TTI_N+3快速切换为type1的资源分配方式,以此类推。
可以看出,上述现有技术主要存在如下问题:
1)主流的商用芯片/终端中主要采用type0的资源分配方式对终端进行调度,type0的资源分配方式的最小资源分配粒度为RBG形式,根据上述可知RBG形式的频域资源分配方式比较固定,会造成频域资源的浪费。
2)针对不支持TTI级别的资源分配方式切换的终端,即不具备支持type0和type1的灵活切换能力的终端,网络设备依赖于向终端发送RRC重配消息来对资源分配方式进行切换,此时,若终端的数量较多且业务需求变化频繁发生变化,则导致网络设备需要重配置大量终端的RRC消息,重配置的耗时较长,终端资源分配方式切换的速率较低。
综上,针对上述技术问题,本申请实施例提出了如下技术方案,用以解决由于RBG形式的频域分配方式比较固定,导致频域资源的利用率较低的问题。
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如无线保真(wireless fidelity,WiFi)***,车联网(vehicle to everything,V2X)通信***、设备间(device-todevie,D2D)通信***、4G,如长期演进(long term evolution,LTE)***、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、5G,如新空口(new radio,NR)***,以及未来的通信***等。
本申请将围绕可包括多个设备、组件、模块等的***来呈现各个方面、实施例或特征。应当理解和明白的是,各个***可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singaling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是匹配的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是匹配的。此外,本申请提到的“/”可以用于表示“或”的关系。可以理解,在本申请中,“指示”可以包括直接指示、间接指示、显示指示、隐式指示。当描述某一指示信息用于指示A时,可以理解为该指示信息携带A、直接指示A,或间接指示A。
本申请中,指示信息所指示的信息,称为待指示信息。在具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等,也可以通过指示其他信息来间接指示待指示信息,其中,该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例 如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图3中示出的资源分配***为例详细说明适用于本申请实施例的资源分配***。示例性的,图3为本申请实施例提供的资源分配方法所适用的一种资源分配***的架构示意图。
如图3所示,该资源分配***主要包括:网络设备和第一终端。
其中,网络设备可以为接入网(access network,AN)设备,或可以称为无线接入网设备(radio access network,RAN)设备。RAN设备可以为终端提供接入功能,负责空口侧的无线资源管理、服务质量(quality of service,QoS)管理、数据压缩和加密等功能。RAN设备可以包括5G,如NR***中的gNB,或,5G中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB、传输点(transmission and reception point,TRP或者transmission point,TP)或传输测量功能(transmission measurement function,TMF)的网络节点,如基带单元(building base band unit,BBU),或,集中单元(centralized unit,CU)或分布单元(distributed unit,DU)、具有基站功能的RSU,或者有线接入网关,或者5G的核心网网元。或者,RAN设备还可以包括无线保真(wireless fidelity,WiFi)***中的接入点(access point,AP),无线中继节点、无线回传节点、各种形式的宏基站、微基站(也称为小站)、中继站、接入点、可穿戴设备、车载设备等等。或者,RAN设备可以也可以包括下一代移动通信***,例如6G的接入网设备,例如6G基站,或者在下一代移动通信***中,该网络装置也可以有其他命名方式,其均涵盖在本申请实施例的保护范围以内,本申请对此不做任何限定。
第一终端可以为具有收发功能的终端,或为可设置于该终端的芯片或芯片***。该终端也可以称为用户设备(uesr equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动站(mobile station,MS)、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、蜂窝电话(cellular phone)、智能电话(smart phone)、平板电脑(Pad)、无线数据卡、个人数字助理电脑(personal digital assistant,PDA)、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的路边单元(road side unit,RSU)等。本申请的终端还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元。
可以理解,图3仅为便于理解而示例的简化示意图,该资源分配***中还可以包括其他网络装置,和/或,其他终端设备,图3中未予以画出。
在本申请实施例的资源分配***中,针对不支持type0和type1的灵活切换能力的终端,记为第一终端,在网络设备预先为第一终端预留终端能使用的频域资源集合的情况下,网络设备可以通过第一信息指示第一终端使用频域资源集合中的一部分频域资源,如第一终端只使用第一频域资源进行数据的传输,以实现通过使用一个终端的频域资源集合来完成多个终端的数据传输,提高频域资源的利用率,进而可以实现TTI级别的资源分配方式切换,使得终端的资源分配方式可以做到实时调整和匹配。
方便理解,下面将结合图4-图12对本申请实施例提供的资源分配方法进行具体阐述。
实施例1
示例性的,图4为本申请实施例提供的一种资源分配方法的流程示意图一。该方法可以适用于上述资源分配***中网络设备与第一终端之间的通信,本申请针对不支持type0和type1的灵活切换能力的终端,使用上述type0的方式进行频域资源分配。
具体的,如图4所示,该资源分配方法的流程如下:
S401,网络设备获取第一指示信息。
其中,第一指示信息可以用于指示:第一终端使用频域资源集合中的第一频域资源,以及第一终端不使用频域资源集合中的第二频域资源。
频域资源集合可以是网络设备预先分配给第一终端使用的频域资源集合,也即,网络设备为第一终端预留有第一终端能使用的频域资源集合该频域资源集合可以是RB级别的频域资源集合,如多个RB,或者可以是RBG级别的频域资源集合,如一个或多个RBG,或者任何可能级别的频域资源,不做限定。频域资源集合可以包括多个频域资源,如第一频域资源和第二频域资源,以及还可以包括其他的频域资源,不做限定。
第一频域资源可以为频域资源集合中第一终端实际用于数据传输的频域资源,具体可以是一个或多个RB,这些RB可以是连续的,或者也可以是非连续,使得第一终端可以根据实际需求,灵活选择其实际使用频域资源,频域资源分配方式更灵活。第二频域资源可以为频域资源集合中第一终端实际未用于数据传输的频域资源,即空闲的频域资源,具体可以是一个或多个RB。
网络设备为第一终端预留有第一终端能使用的频域资源集合,也可以理解为网络设备为第一终端预留有频域资源集合,或者也可以理解为:网络设备为第一终端分配频域资源集合。
第一指示信息可以包括用于指示第一频域资源是非打孔的频域资源的信息,以及用于指示所述第二频域资源是打孔的频域资源信息。第一频域资源是非打孔的频域资源信息可以用于指示第一终端使用第一频域资源,第二频域资源是打孔的频域资源信息可以用于指示第一终端不使用第二频域资源。也就是说,第一指示信息可以通过指示资源的打孔状态来具体指示该资源是否可以被终端使用。
例如,网络设备可以通过速率匹配(rate matching,RM)的方式对频域资源集合进行打孔。其中,速率匹配是指通过对信道上的比特进行打孔(punctured),以匹配信道的承载能力。
打孔的频域资源和非打孔的频域资源可以通过RM图案(pattern)进行指示,也即,第一指示信息具体是RM图案,或者可以是用于指示RM图案的信息,如RM图案的索引。RM图案可以是比特位图(bitmap)形式的RM图案。也就是说,RM图案中每个比特位的取值可以对应指示:频域资源集合中的一个频域资源是打孔的频域资源,还是非打孔的频域资源,例如,第一频域资源对应的一个或多个比特位的取值为0,用以指示第一频域资源对应的一个或多个RB是非打孔的频域资源,第二频域资源对应的一个或多个比特位的取值为1,用以指示第二频域资源对应的一个或多个RB是打孔的频域资源。因此,这些比特构成的比特位图的取值就可以指示频域资源集合对应的多个RB各自的打孔状态。
可以理解,第一指示信息也可以通过其他任何可能的方式来指示频域资源是否可以被终端使用。例如,第一指示信息可以仅指示第一频域资源,如携带第一频域资源的标识。这样,第一终端能够根据第一指示信息仅指示了第一频域资源,确定频域资源集合中的第二频域资源没有被指示,从而确定第二频域资源不能被第一终端使用。
第一指示消息还可以为第一指令,第一指示信令等,在此不做限定。
S402,网络设备向第一终端发送第一指示信息。第一终端接收来自网络设备的第一指示信息。
网络设备可以通过第一RRC消息、和/或第一DCI消息,向第一设备发送第一指示信息。
若第一指示信息承载在第一RRC消息中,此时第一指示信息中的RM图案用于指示终端在该RRC消息所调度的多个TTI中使用该RM图案对应的频域资源。也就是说,第一频域资源可以是在多个TTI中被终端使用的频域资源,第二频域资源可以是在多个TTI中不被终端使用的频域资源。例如,频域资源集合RBG包含16个RB,第一指示信息中的RM图案的比特位图是0000000011111111,该比特位图从左至右可以依次指示该RBG对应的RB0-RB15,此时网络设备通过第一RRC消息指示终端在该第一RRC消息所调度的多个TTI中使用该RBG的RB0-RB7进行数据的传输,而不使用该RBG的RB8-RB15的资源。
若第一指示信息承载在第一DCI消息中,此时第一指示信息中的RM图案用于指示终端在该第一DCI消息所调度的一个TTI中使用该RM图案对应的频域资源,网络设备在下一TTI可以通过第一DCI 消息调度终端使用其他的RM图案对应的频域资源,此时终端在每个TTI中可能使用的频域资源和不能使用的频域资源可以不同。
例如,频域资源集合RBG包含16个RB,网络设备在TTI_A通过DCI消息指示终端使用RM图案1对应的频域资源,网络设备在TTI_B通过第一DCI消息指示终端使用RM图案2对应的频域资源。其中,RM图案1和RM图案2可以通过2比特的比特位图进行指示,该比特位图可以为00、01、10和11。比特位图为00可以指示该RBG的16个RB不打孔;比特位图为01可以指示该RBG的前8个RB不打孔,后8个RB打孔;比特位图为10可以指示该RBG的前8个RB打孔,后8个RB不打孔;比特位图为11可以指示该RBG的16个RB打孔。该比特位图还可以指示终端对RBG中任意RB位置进行打孔,在此不做限定。
若RM图案1的比特位图为01,则用以指示终端在TTI_A使用该RBG的前8个RB进行数据的传输,而不使用该RBG的后8个RB的资源。若RM图案2的比特位图为10,则用以指示终端在TTI_B使用该RBG的后8个RB进行数据的传输,而不使用该RBG的前8个RB的资源。
可以理解,第一RRC消息还可以通过RRC消息1,RRC消息a等方式进行表示,在此不做限定。
S403,第一终端使用第一频域资源。
第一终端可以使用第一指示信息的指示,确定频域资源集合中可用的频域资源和不可用的频域资源,从而第一终端可以使用频域资源集合中可用的频域资源进行数据的传输。
第一指示信息可以承载在第一RRC消息中,例如,频域资源集合RBG包含16个RB,第一指示信息中的RM图案的比特位图是0000000011111111,该比特位图从左至右可以依次指示该RBG对应的RB0-RB15,此时网络设备通过第一RRC消息指示终端在该第一RRC消息所调度的多个TTI中使用该RBG的RB0-RB7进行数据的传输,而不使用该RBG的RB8-RB15的资源。
第一指示信息可以承载在第一DCI消息中,例如,网络设备在TTI_A通过第一DCI消息指示终端使用RM图案1对应的频域资源,网络设备在TTI_B通过第一DCI消息指示终端使用RM图案2对应的频域资源。若RM图案1的比特位图为01,则用以指示终端在TTI_A使用该RBG的前8个RB进行数据的传输,而不使用该RBG的后8个RB的资源。若RM图案2的比特位图为10,则用以指示终端在TTI_B使用该RBG的后8个RB进行数据的传输,而不使用该RBG的前8个RB的资源。
综上,本申请实施例中,在网络设备预先为第一终端预留终端能使用的频域资源集合的情况下,网络设备可以通过第一信息指示第一终端使用频域资源集合中的一部分频域资源,如第一终端只使用第一频域资源进行数据的传输,以实现通过使用一个终端的频域资源集合来完成多个终端的数据传输,提高频域资源的利用率,进而可以实现TTI级别的资源分配方式切换,使得终端的资源分配方式可以做到实时调整和匹配。
结合上述实施例,可选地,上述方法还包括:网络设备向第二终端发送第二指示信息。第二终端接收来自网络设备的第二指示信息。
结合上述实施例,可选地,上述方法还包括:网络设备向第二终端发送第二指示信息。第二终端接收来自网络设备的第二指示信息。
第二终端使用第二频域资源。
其中,第二终端可以为具有收发功能的终端,或为可设置于该终端的芯片或芯片***,具体介绍可参照第一终端的相关介绍,在此不做赘述。
网络设备可以为其他终端预留有其他终端能使用的频域资源集合,第二指示信息用于指示第二终端可以使用该频域资源集合中的第二频域资源进行数据传输。
第二指示信息可以通过比特位图指示对应的RM图案,第二指示信息的RM图案与第一指示信息的RM图案的指示信息相反。也就是说,第二指示信息的RM图案可以指示第一频域资源是打孔的频域资源,第二频域资源是非打孔频域资源。第二指示信息还可以直接指示第二频域资源,或者第二频域资源的索引,用以指示终端使用第二频域资源进行数据的传输。
可选地,第二指示信息可以承载在如下至少一项中:第二RRC消息、或第二DCI消息,以实现复用现有信令,降低设计难度。可以理解,第二RRC消息还可以通过RRC消息2,RRC消息b等方式进行表示,在此不做限定。
图5为本申请实施例提供的RBG频域资源复用的示意图一,如图5所示,网络设备通过第一指示 信息指示终端1对RBG中的部分频域资源进行打孔,终端1使用未打孔的RB资源,即第一频域资源进行数据传输。若终端2占用的频域资源的位置位于该RBG中打孔部分,即终端1的空闲RB上,此时可以给终端2分配该RBG中的未打孔部分对应的RB资源,即第二频域资源,以实现终端1和终端2复用同一个RBG。可以理解,如果终端1的实际业务需求超过1个RBG,此时该RBG不再与其他终端做复用。
图6为本申请实施例提供的RBG频域资源复用的示意图二,如图6所示,若RBG0和RBG1均包含16个RB,对RBG0和RBG1的前8个RB不打孔,后8个RB打孔,终端a,终端b,终端c和终端d的业务需求为8RB,并且终端a与终端b用于数据传输的频域资源在RBG0中所占用的位置不同,终端c和终端d用于数据传输的频域资源在RBG1中所占用的位置不同,此时终端a和终端b可以复用在RBG0中进行数据传输,终端c和终端d可以复用在RBG1中进行数据传输,此时可以通过2个16RB的RBG即可满足终端a,终端b,终端c和终端d的业务需求,相较于通过4个16RB的RBG对终端a,终端b,终端c和终端d的数据进行传输,可以节省50%的频域资源。
图7为本申请实施例提供的RBG频域资源复用的示意图三,如图7所示,若RBGa、RBGb和RBGc均包含16个RB,终端e的业务需求为12RB,终端f,终端g和终端h的业务需求为8RB,并且终端f与终端g用于数据传输的频域资源在RBGb中所占用的位置不同,此时可以对RBGb和RBGc的前8个RB不打孔,后8个RB打孔,终端e可以使用RBGa进行数据传输,终端f和终端g可以复用在RBGb中进行数据传输,终端h可以使用RBGc进行数据传输。即通过3个16RB的RBG即可满足终端e,终端f,终端g和终端h的业务需求,相较于通过4个16RB的RBG对终端e,终端f,终端g和终端h进行数据传输,可以节省25%的频域资源。
实施例2
示例性的,图8为本申请实施例提供的一种资源分配方法的流程示意图二,该方法可以适用于上述资源分配***中网络设备与第一终端之间的通信,本申请针对不支持type0和type1的灵活切换能力的终端,使用上述type0的方式进行频域资源分配。
具体的,如图8所示,该资源分配方法的流程如下:
S801,网络设备获取指示信息。
其中,指示信息用于指示第一终端使用第一带宽部分BWP和第二BWP,第一BWP包含的频域资源的带宽与第二BWP包含的频域资源的带宽不同。
第一BWP和第二BWP可以为部分带宽对应的索引,例如,第一BWP可以通过索引BWP_x进行表示,第二BWP可以通过索引BWP_y进行表示。第一BWP和第二BWP也可以为对应的部分带宽值,例如,第一BWP的带宽值可以为20个RB,第二BWP的带宽值可以为100个RB,此时,根据表1所示,第一BWP对应的RBG包含4个RB,第二BWP对应的RBG包含16个RB。第一BWP和第二BWP还可以通过其他的方式进行表示,在此不做具体限定。
第一BWP包含的频域资源可以为第一BWP对应的RBG,第二BWP包含的频域资源可以为第二BWP对应的RBG,根据表1所示,部分带宽属于不同的资源区间,其对应的RBG的大小也不同,第一BWP和第二BWP属于不同的资源区间,第一BWP和第二BWP对应的RBG的大小也不同,即第一BWP包含的频域资源与第二BWP包含的频域资源不同。
S802,网络设备向第一终端发送指示信息。第一终端接收来自网络设备的指示信息。
网络设备可以通过RRC消息、和/或DCI消息,向第一设备发送指示信息。例如,网络设备可以通过周期性统计第一终端的调度次数、分配的RB资源数等数据,对第一终端的业务需求做预判,判断第一终端在当前TTI时刻的业务需求是大数据包还是小数据包。
若网络设备的预判结果与终端当前的资源分配状态一致,则终端维持当前的资源分配粒度进行数据传输;若网络设备的预判结果与终端当前的资源分配粒度不一致,则网络设备通过向第一终端发送RRC消息、和/或DCI消息,指示终端对当前的资源分配粒度进行切换。
图9为本申请实施例提供的资源分配粒度切换的示意图,如图9所示,第一BWP对应小数据包,第一BWP的索引为BWP_x,对应的RBG的大小为RBG_x;第二BWP对应大数据包,第二BWP的索引为BWP_y,对应的RBG的大小为RBG_y。若网络设备预判终端的业务需求为大数据包,而终端当前的资源分配粒度对应小数据包,此时网络设备可以通过指示消息指示终端从BWP_x切换到BWP_y, 即网络设备可以通过指示消息指示终端使用BWP_y对应的RBG_y进行数据的传输,以满足终端的业务需求。若网络设备预判终端的业务需求为小数据包,而终端当前的资源分配粒度对应大据包,此时网络设备可以通过指示消息指示终端从BWP_y换到BWP_x,即网络设备可以通过指示信息指示终端使用BWP_y对应的RBG_y进行数据的传输,以满足终端的业务需求。
S803,第一终端使用第一BWP的频域资源和第二BWP的频域资源进行数据传输。
网络设备可以通过指示信息具体指示第一终端在第一时刻使用第一BWP中的频域资源,以及第一终端在第二时刻使用第二BWP中的频域资源进行数据传输。
其中,第一终端在第一时刻的业务需求和第二时刻的业务需求不同,例如,第一终端在第一时刻可以为小数据包,在第二时刻可以为大数据包,此时第一终端可以在第一时刻使用第一BWP对应的资源分配粒度,如通过上述大小为4RB的RBG进行数据传输,第一终端可以在第二时刻使用第二BWP对应的资源分配粒度,如通过上述大小为16RB的RBG进行数据传输。第一时刻和第二时刻包括一个或多个TTI。
图10为本申请实施例提供的第一终端的BWP切换过程示意图,如图10所示,若终端1使用单个BWP进行数据传输,例如,终端1使用部分带宽100RB进行数据传输,此时RBG包含16个RB,终端1在TTI_N的需求资源数为4RB,但网络设备给第一终端实际分配了16RB进行数据的传输;终端1在TTI_M的实际需求资源数为30RB,此时网络设备给第一终端也实际分配2个RBG,即32RB进行数据的传输。
若终端1使用双BWP进行数据传输,例如,终端1使用***带宽BWP1=20RB和BWP2=100RB进行数据传输,BWP1对应的RBG包含4个RB,BWP2对应的RBG包含16个RB,此时,终端1在TTI_N使用BWP1对应的4RB进行数据传输,在TTI_M使用BWP2对应的2个16RB进行数据传输。
通过上述可得,终端1使用单BWP进行数据传输,在TTI_N使用16RB的频域资源进行4RB的数据传输,此时剩余的12RB的频域资源浪费,频域资源利用率只有25%,但终端1使用双BWP进行数据传输,在TTI_X使用BWP1对应的4RB进行数据传输即可满足实际需求,此时可以节省75%的频域资源,从而提高频域资源的利用率。终端还可以通过指示消息指示终端1在每个TTI中通过BWP的切换,实现第一终端频域资源分配粒度的快速切换,从而可以动态调整第一终端的频域资源分配粒度。
可选地,网络设备向第一终端发送配置信息。第一终端接收来自网络设备的配置信息。
其中,配置信息用于为第一终端配置第一终端使用的第一BWP和第二BWP,配置信息可以承载在RRC消息中,网络设备通过RRC消息向第一终端发送配置信息,例如,配置信息可以为上述的第一BWP(BWP_x,RBG_x),第一BWP(BWP_y,RBG_y)。网络设备预先配置第一终端的第一BWP和第二BWP,使得网络设备对第一终端的资源进行调度时可以直接使用,从而缩短时延,提高网络设备与第一终端的通信效率。
综上,本申请实施例中,网络设备通过指示信息指示第一终端在不同时刻使用对应的BWP进行数据传输,不同的带宽可以支持的资源粒度大小不同,使得第一终端可以根据实际的业务需求选择对应大小的RBG,以避免资源浪费,实现终端的业务需求与资源分配方式的及时匹配。终端还可以通过指示消息指示第一终端在每个TTI中通过BWP的切换,实现第一终端频域资源分配粒度的快速切换,从而可以动态调整第一终端的频域资源分配粒度。
实施例3
示例性的,图11为本申请实施例提供的一种资源分配方法的流程示意图三,该方法可以适用于上述资源分配***中网络设备与第一终端之间的通信,本申请针对不支持type0和type1的灵活切换能力的终端,使用上述type0的方式进行频域资源分配。
具体的,如图11所示,该资源分配方法的流程如下:
S1101,网络设备获取指示信息。
其中,指示信息可以用于指示第一终端使用第一功率进行数据传输。
第一功率可以包括第一频域资源的功率,以及第二频域资源的功率,第一频域资源是网络设备分配给第一终端使用的频域资源,即网络设备预先分配给第一设备使用的功率,第二频域资源是网络设备分配给第二终端且第二终端未使用的频域资源,即网络设备分配给第二设备,但第二设备未使用的空闲功 率或空闲功率中的一部分功率。
例如,终端1的业务需求为小数据包,终端2的业务需求为大数据包。网络设备为终端1按照RBG1分配频域资源,RBG1包括N个RB,此时终端1的实际资源需求不足1个RBG1,终端1占用RBG1中的M个RB,此时将RBG1中的N-M个RB的功率提取出来,即终端1所在的RBG上等比降功率,N-M个RB即为第二频域资源,N-M个RB的功率为第二频域资源的功率,也就是说,第二频域资源的功率是终端1的空闲功率。若在同一个TTI上,网络设备为终端2按照RBG2和RBG3分配频域资源,RBG2和RBG3共包括X个RB。若终端2实际的业务需求大于X个RB,此时网络设备可以将终端1的第二频域资源的功率提取出来,以用于终端2进行数据的传输,即终端2所在的RBG2和RBG3上等比抬功率。可以理解,此时X个RB为第一频域资源,X个RB的功率为第一频域资源的功率,第一功率可以为N-M个RB的功率与X个RB的功率之和,即第一功率为N-M+X个RB的功率。
可选地,指示信息承载在如下至少一项中:RRC消息、或DCI消息,以实现复用现有信令,降低设计难度。
S1102,网络设备向第一终端发送指示信息。
网络设备可以通过RRC消息、和/或DCI消息,向第一设备发送指示信息,用以指示第一终端使用第一功率进行数据传输。例如,图12为本申请实施例提供的终端功率转化的示意图,如图12所示,在同一个TTI上,终端2利用网络设备分配的X个RB的功率以及终端1的空闲功率为N-M个RB的功率,即N-M+X个RB的功率进行数据的传输。若N-M+X个RB的功率能够支撑终端2的调制与编码策略(modulation and coding scheme,MCS)提升,此时终端2的X个RB上可以承载更多的数据进行传输,此时终端2所在的RBG上等比抬功率;若N-M+X个RB的功率不能够支撑终端2的MCS提升,此时终端2的X个RB上承载的数据不变,此时终端2可以提高数据传输过程中的干扰噪声比,降低误码率。
综上,本申请实施例中,网络设备可以根据终端的实际业务需求,将频域资源RB与功率资源做转换,在功率域维度将资源分配粒度降低到RB级,可以动态调整终端的频域资源分配粒度,并将终端未使用的功率提取出来,可以减少因冗余功率资源而导致的频域资源浪费,从而提高频域资源的利用率。
以上结合图4-图12详细说明了本申请实施例提供的资源分配方法。以下结合图13-图14详细说明用于执行本申请实施例提供的资源分配方法的通信装置。
示例性的,图13为本申请实施例提供的通信装置的结构示意图一。如图13所示,通信装置1300包括:收发模块1301和处理模块1302。为了便于说明,图13仅示出了该通信装置的主要部件。
一些实施例中,通信装置1300可适用于图3中所示出的资源分配***中,执行上述网络设备的功能。
其中,收发模块1301可以用于执行网络设备收发消息的功能,如上述S402、S802、S1102等步骤中的功能。处理模块1302可以执行该网络设备除收发消息以外的功能,如上述S401、S801、S1101等步骤中的功能。例如,处理模块1302,用于获取第一指示信息。收发模块1301,用于向第一终端发送第一指示信息。其中,网络设备为第一终端预留有第一终端能使用的频域资源集合,第一指示信息用于指示:第一终端使用频域资源集合中的第一频域资源,以及第一终端不使用频域资源集合中的第二频域资源。
可选地,收发模块1301可以包括发送模块和接收模块。其中,发送模块用于实现通信装置1300的发送功能,接收模块用于实现通信装置1300的接收功能。
可选地,通信装置1300还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块1302执行该程序或指令时,使得通信装置1300可以执行上述资源分配方法。
需要说明的是,通信装置1300可以是网络设备,也可以是可设置于网络设备中的芯片(***)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,通信装置1300的技术效果可以参考上述资源分配方法的技术效果,此处不再赘述。
另一些实施例中,一些实施例中,通信装置1300可适用于图3中所示出的资源分配***中,执行上述第一终端的功能。
其中,收发模块1301可以用于执行第一终端收发消息的功能,如上述S402、S802、S1102等步骤中的功能。处理模块1302可以执行该第一终端除收发消息以外的功能,如上述S403、S803等步骤中 的功能。例如,收发模块1301,用于接收来自网络设备的第一指示信息。处理模块1302,用于使用第一频域资源。其中,网络设备为第一终端预留有第一终端能使用的频域资源集合,第一指示信息用于指示:第一终端使用频域资源集合中的第一频域资源,以及第一终端不使用频域资源集合中的第二频域资源。
可选地,收发模块1301可以包括发送模块和接收模块。其中,发送模块用于实现通信装置1300的发送功能,接收模块用于实现通信装置1300的接收功能。
可选地,通信装置1300还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块1302执行该程序或指令时,使得通信装置1300可以执行上述资源分配方法。
需要说明的是,通信装置1300可以是终端,也可以是可设置于终端中的芯片(***)或其他部件或组件,还可以是包含终端设备的装置,本申请对此不做限定。
此外,通信装置1300的技术效果可以参考上述资源分配方法的技术效果,此处不再赘述。
示例性地,图14为本申请实施例提供的通信装置的结构示意图二。该通信装置可以是终端,也可以是可设置于终端的芯片(***)或其他部件或组件。如图14所示,通信装置1400可以包括处理器1401。可选地,通信装置1400还可以包括存储器1402和/或收发器1403。其中,处理器1401与存储器1402和收发器1403耦合,如可以通过通信总线连接。
下面结合图14对通信装置1400的各个构成部件进行具体的介绍:
其中,处理器1401是通信装置1400的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器1401是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器1401可以通过运行或执行存储在存储器1402内的软件程序,以及调用存储在存储器1402内的数据,执行通信装置1400的各种功能,例如执行上述图4-图12所示的资源分配方法。
在具体的实现中,作为一种实施例,处理器1401可以包括一个或多个CPU,例如图14中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置1400也可以包括多个处理器,例如图14中所示的处理器1401和处理器1404。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器1402用于存储执行本申请方案的软件程序,并由处理器1401来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器1402可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1402可以和处理器1401集成在一起,也可以独立存在,并通过通信装置1400的接口电路(图14中未示出)与处理器1401耦合,本申请实施例对此不作具体限定。
收发器1403,用于与其他通信装置之间的通信。例如,通信装置1400为终端,收发器1403可以用于与网络设备通信,或者与另一个终端设备通信。又例如,通信装置1400为网络设备,收发器1403可以用于与终端通信,或者与另一个网络设备通信。
可选地,收发器1403可以包括接收器和发送器(图14中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器1403可以和处理器1401集成在一起,也可以独立存在,并通过通信装置1400的接口电路(图14中未示出)与处理器1401耦合,本申请实施例对此不作具体限定。
需要说明的是,图14中示出的通信装置1400的结构并不构成对该通信装置的限定,实际的通信装 置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,通信装置1400的技术效果可以参考上述方法实施例所述的资源分配方法的技术效果,此处不再赘述。
本申请实施例提供一种资源分配***。该资源分配***包括:图3所示的网络设备,一个或多个终端。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能 划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种资源分配方法,其特征在于,所述方法包括:
    网络设备获取第一指示信息;其中,所述网络设备为第一终端预留有所述第一终端能使用的频域资源集合,所述频域资源集合包括第一频域资源和第二频域资源,所述第一指示信息用于指示:所述第一终端使用所述频域资源集合中的第一频域资源,以及所述第二频域资源为打孔的频域资源;
    所述网络设备向所述第一终端发送所述第一指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息包括用于指示第一频域资源是非打孔的频域资源的信息,所述第一频域资源是非打孔的频域资源信息用于指示所述第一终端使用所述第一频域资源,所述第二频域资源是打孔的频域资源信息用于指示所述第一终端不使用所述第二频域资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述频域资源集合为资源块组RBG,所述第一频域资源或所述第二频域资源包括一个或多个资源块RB。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一指示信息承载在如下至少一项中:第一无线控制信息RRC消息、或第一下行控制信息DCI消息。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向第二终端发送第二指示信息;其中,所述第二指示信息用于指示所述第二终端使用所述频域资源集合中的所述第二频域资源。
  6. 根据权利要求5所述的方法,其特征在于,所述第二指示信息承载在如下至少一项中:第二RRC消息、或第二DCI消息。
  7. 一种资源分配方法,其特征在于,所述方法包括:
    第一终端接收来自网络设备的第一指示信息;所述第一指示信息用于指示:所述第一终端使用所述频域资源集合中的第一频域资源,以及所述第二频域资源为打孔的频域资源;
    所述第一终端使用所述第一频域资源。
  8. 根据权利要求7所述的方法,其特征在于,所述第一指示信息包括用于指示第一频域资源是非打孔的频域资源的信息,所述第一频域资源是非打孔的频域资源信息用于指示所述第一终端使用所述第一频域资源,所述第二频域资源是打孔的频域资源信息用于指示所述第一终端不使用所述第二频域资源。
  9. 根据权利要求7或8所述的方法,其特征在于,所述频域资源集合为资源块组RBG,所述第一频域资源或所述第二频域资源包括一个或多个资源块RB。
  10. 根据权利要求7-9中任一项所述的方法,其特征在于,所述第一指示信息承载在如下至少一项中:第一RRC消息、或第一DCI消息。
  11. 一种资源分配方法,其特征在于,所述方法包括:
    第二终端接收来自网络设备的第二指示信息;其中,所述第二指示信息用于指示所述第二终端使用第二频域资源,所述网络设备为其他终端预留有所述其他终端能使用的频域资源集合,所述第二频域资源属于所述频域资源集合;
    所述第二终端使用所述第二频域资源。
  12. 根据权利要求11所述的方法,其特征在于,所述第二指示信息承载在如下至少一项中:第二RRC消息、或第二DCI消息。
  13. 一种资源分配方法,其特征在于,所述方法包括:
    网络设备获取指示信息;其中,所述指示信息用于指示第一终端使用第一带宽部分BWP和第二BWP,所述第一BWP包含的频域资源的带宽与第二BWP包含的频域资源的带宽不同;
    所述网络设备向所述第一终端发送所述指示信息。
  14. 根据权利要求13所述的方法,其特征在于,所述指示信息具体用于指示所述第一终端在第一时刻使用所述第一BWP中的频域资源,以及所述第一终端在第二时刻使用所述第二BWP中的频域资源进行数据传输。
  15. 根据权利要求13所述的方法,其特征在于,在所述网络设备向所述第一终端发送所述指 示信息之前,所述方法还包括:
    所述网络设备向所述第一终端发送配置信息;其中,所述配置信息用于为所述第一终端配置所述第一终端使用的所述第一BWP和所述第二BWP。
  16. 根据权利要求13所述的方法,其特征在于,所述指示信息承载在如下至少一项中:RRC消息、或DCI消息。
  17. 一种资源分配方法,其特征在于,所述方法包括:
    第一终端接收来自网络设备的指示信息;其中,所述指示信息用于指示所述第一终端使用第一带宽部分BWP和第二BWP,所述第一BWP包含的频域资源的带宽与第二BWP包含的频域资源的带宽不同;
    所述第一终端使用第一BWP的频域资源和所述第二BWP的频域资源进行数据传输。
  18. 根据权利要求17所述的方法,其特征在于,所述指示信息具体用于指示所述第一终端在第一时刻使用所述第一BWP中的频域资源,以及所述第一终端在第二时刻使用所述第二BWP中的频域资源进行数据传输。
  19. 根据权利要求17所述的方法,其特征在于,在第一终端接收来自网络设备的指示信息,所述方法还包括:
    所述第一终端接收来自所述网络设备的配置信息;其中,所述配置信息用于为所述第一终端配置所述第一终端使用的所述第一BWP和所述第二BWP。
  20. 根据权利要求17所述的方法,其特征在于,所述指示信息承载在如下至少一项中:RRC消息、或DCI消息。
  21. 一种资源分配方法,其特征在于,所述方法包括:
    网络设备获取指示信息;其中,所述指示信息用于指示第一终端使用第一功率进行数据传输,所述第一功率包括所述第一频域资源的功率,以及所述第二频域资源的功率,所述第一频域资源是所述网络设备分配给所述第一终端使用的频域资源,所述第二频域资源是所述网络设备分配给第二终端且所述第二终端未使用的频域资源;
    所述网络设备向所述第一终端发送所述指示信息。
  22. 根据权利要求21所述的方法,其特征在于,所述指示信息承载在如下至少一项中:RRC消息、或DCI消息。
  23. 一种资源分配装置,其特征在于,所述装置包括:用于执行如权利要求1-22中任一项所述的方法的模块。
  24. 一种资源分配装置,其特征在于,所述资源分配装置包括:处理器和存储器;所述存储器用于存储计算机指令,当所述处理器执行该指令时,以使所述资源分配装置执行如权利要求1-22中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-22中任一项所述的方法。
  26. 一种计算机程序产品,包括程序,其特征在于,当所述程序被处理器执行时,实现权利要求1-22中任一项所述的方法。
PCT/CN2023/125916 2022-11-14 2023-10-23 资源分配方法及装置 WO2024104057A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211419015.2A CN118042608A (zh) 2022-11-14 2022-11-14 资源分配方法及装置
CN202211419015.2 2022-11-14

Publications (1)

Publication Number Publication Date
WO2024104057A1 true WO2024104057A1 (zh) 2024-05-23

Family

ID=91000971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125916 WO2024104057A1 (zh) 2022-11-14 2023-10-23 资源分配方法及装置

Country Status (2)

Country Link
CN (1) CN118042608A (zh)
WO (1) WO2024104057A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012136130A1 (zh) * 2011-04-02 2012-10-11 华为技术有限公司 分配信道资源的方法、基站设备、终端设备和通信***
CN106171027A (zh) * 2015-01-14 2016-11-30 华为技术有限公司 终端、网络设备和随机接入过程中的数据传输方法
CN107241805A (zh) * 2017-07-14 2017-10-10 北京邮电大学 一种上行资源分配方法及装置
KR20180106860A (ko) * 2017-03-21 2018-10-01 주식회사 케이티 차세대 무선망에서 비트맵을 이용하여 하향 링크 선점 지시 정보를 송수신하는 방법 및 그 장치
CN115280868A (zh) * 2020-03-12 2022-11-01 华为技术有限公司 一种通信方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012136130A1 (zh) * 2011-04-02 2012-10-11 华为技术有限公司 分配信道资源的方法、基站设备、终端设备和通信***
CN102740468A (zh) * 2011-04-02 2012-10-17 华为技术有限公司 分配信道资源的方法、基站设备、终端设备和通信***
CN106171027A (zh) * 2015-01-14 2016-11-30 华为技术有限公司 终端、网络设备和随机接入过程中的数据传输方法
US20170318562A1 (en) * 2015-01-14 2017-11-02 Huawei Technologies Co., Ltd. Terminal, network device, and data transmission method in random access process
KR20180106860A (ko) * 2017-03-21 2018-10-01 주식회사 케이티 차세대 무선망에서 비트맵을 이용하여 하향 링크 선점 지시 정보를 송수신하는 방법 및 그 장치
CN107241805A (zh) * 2017-07-14 2017-10-10 北京邮电大学 一种上行资源分配方法及装置
CN115280868A (zh) * 2020-03-12 2022-11-01 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN118042608A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
US11191072B2 (en) Information transmission method and radio access network device
WO2018028269A1 (zh) 一种资源调度方法和装置
JP6708744B2 (ja) データ伝送方法
US11528637B2 (en) Method and apparatus for wireless communication
CN106954277B (zh) 一种调度请求处理方法和装置
US10623981B2 (en) Information transmission method, apparatus, and system
CN110460555B (zh) 一种确定资源块组大小的方法及装置
WO2018141244A1 (zh) 一种资源调度方法、装置及***
EP3537819B1 (en) Resource scheduling method and base station
JP2022531268A (ja) 保留中srキャンセル方法および装置
CN110832935B (zh) 分配和接收频域资源的方法、装置及通信***
CN111356172B (zh) 通信方法、装置、终端、网络设备及存储介质
US11540329B2 (en) Information transmission method, terminal device, and network device
EP3706488B1 (en) Uplink data packet resource allocation method and user terminal
US20230095067A1 (en) Communication method and communication device
CN110035548B (zh) 通信的方法和通信设备
CN115023914A (zh) 信息处理方法及设备
WO2024104057A1 (zh) 资源分配方法及装置
JP2023544762A (ja) データ受信方法及び装置
WO2024067499A1 (zh) 通信方法及通信装置
WO2023138622A1 (zh) 资源配置方法与装置、网络设备和终端设备
WO2024067186A1 (zh) 一种通信方法及装置
US20220191861A1 (en) Physical uplink control channel (pucch) transmission method, and related apparatus
WO2024067184A1 (zh) 一种通信方法及装置
EP3611980B1 (en) Resource allocation to logical channels and numerologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890493

Country of ref document: EP

Kind code of ref document: A1