WO2024103404A1 - 电池单体的壳体组件、电池单体、电池及用电装置 - Google Patents

电池单体的壳体组件、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024103404A1
WO2024103404A1 PCT/CN2022/132966 CN2022132966W WO2024103404A1 WO 2024103404 A1 WO2024103404 A1 WO 2024103404A1 CN 2022132966 W CN2022132966 W CN 2022132966W WO 2024103404 A1 WO2024103404 A1 WO 2024103404A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
area
battery cell
battery
cover
Prior art date
Application number
PCT/CN2022/132966
Other languages
English (en)
French (fr)
Inventor
孟浩
朱文琪
李萌
温裕乾
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/132966 priority Critical patent/WO2024103404A1/zh
Publication of WO2024103404A1 publication Critical patent/WO2024103404A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell housing assembly, a battery cell, a battery, and an electrical device.
  • the embodiments of the present application provide a battery cell shell assembly, a battery cell, a battery and an electrical device, which can effectively improve the pressure resistance and air tightness of the shell assembly.
  • an embodiment of the present application provides a battery cell housing assembly, comprising a housing body and a housing cover, wherein the housing body has an opening; the housing cover is disposed at the opening; and a rough area is provided on the surface where the housing cover and the housing body cooperate with each other.
  • the friction between the shell cover and the shell body can be increased.
  • the friction can be used to suppress the deformation and slippage of the shell cover, and the reliability of the cooperation between the shell cover and the shell body can be improved, thereby increasing the pressure resistance of the shell assembly and effectively improving the air tightness of the shell assembly. It is also helpful to save thicker sealing structural parts for improving air tightness and pressure resistance, thereby saving space and improving the energy density of the battery cell.
  • the rough area includes a first area disposed on the shell body, and the roughness of the first area is greater than the roughness of other areas on the shell body except the first area.
  • the roughness of the first area is greater than the roughness of the remaining areas on the shell except the first area.
  • a sealing member is disposed between the shell cover and the shell body, and the first region is located at a position of the shell body facing the sealing member.
  • a seal is provided between the shell cover and the shell body, and the first area is located at the shell body facing the seal, which can increase the friction between the shell body and the seal, making the shell body and the seal less likely to slide, thereby enhancing the sealing of the shell assembly.
  • the rough area includes a second area disposed on the shell cover, and the roughness of the second area is greater than the roughness of the remaining areas on the shell cover except the second area.
  • the roughness of the second area on the shell cover is greater than the roughness of the remaining areas on the shell cover except the second area.
  • a sealing member is disposed between the shell cover and the shell body, and the second region is located at a position of the shell cover facing the sealing member.
  • a seal is provided between the shell cover and the shell body, and the second area is located at the shell cover facing the seal, which can increase the friction between the shell cover and the seal, making it difficult for the shell cover and the seal to slide, thereby enhancing the sealing of the shell assembly.
  • the shell body includes a peripheral wall portion and an end wall portion, the end wall portion is connected to the axial end of the peripheral wall portion, the end wall portion stops at the axially outer side of the outer edge portion of the shell cover, and the rough area is located between the end wall portion and the outer edge portion.
  • the end wall of the shell body is axially outside the outer edge of the shell cover, and the rough area is located between the end wall and the outer edge, which can increase the friction between the end wall and the outer edge, inhibit sliding between the end wall and the outer edge, and thus increase the compressive strength of the shell assembly, while making the installation between the shell body and the shell cover simpler and more reliable.
  • the rough area includes a first area located on the inner surface of the end wall portion and/or a second area located on the outer surface of the outer edge portion.
  • the rough area includes a first area located on the inner surface of the end wall or a second area located on the outer surface of the outer edge, which can increase the friction between the end wall and the outer edge, inhibit sliding between the end wall and the outer edge, and thus increase the compressive strength of the shell assembly.
  • the rough area includes a first area located on the inner surface of the end wall and a second area located on the outer surface of the outer edge. The roughening of both the end wall and the outer edge is better than roughening of only one, which can better increase the friction and compressive strength of the shell assembly.
  • a seal is provided between the end wall portion and the outer edge portion.
  • a seal is arranged between the end wall and the outer edge, which can increase the friction between the end wall and the seal or the outer edge and the seal, or increase the friction between the end wall, the outer edge and the seal at the same time, thereby enhancing the sealing effect of the shell assembly.
  • the shell cover also includes a protrusion, and the outer edge portion is arranged around the protrusion.
  • the protrusion protrudes outward relative to the outer edge portion in a direction away from the center of the shell body and extends into the inner ring area of the end wall portion.
  • the protrusion can increase the expansion space of the battery cell shell, thereby increasing the pressure resistance of the battery cell shell.
  • an explosion-proof pressure relief structure is provided on the protrusion.
  • the provision of the protrusion is conducive to the explosion-proof pressure relief structure to achieve a reliable explosion-proof pressure relief effect.
  • the peripheral wall portion has an inner convex portion, which protrudes along the radial direction of the shell body and stops at the axial inner side of the outer edge portion.
  • the peripheral wall of the shell body has an inner convex portion, which protrudes radially along the shell body and stops at the axial inner side of the outer edge portion. In this way, the friction between the shell body and the shell cover is greater, and the shell cover is not easily ejected due to expansion, making the connection between the shell body and the shell cover more secure.
  • the shell body is formed into the end wall portion by a cold heading process.
  • the shell body is formed into the end wall portion by a cold heading process, the manufacturing process is simple, and no adverse thermal effects are generated.
  • an intermediate piece is provided between the positions where the shell body and the shell cover cooperate with each other, and sealing pieces are provided between the intermediate piece and the shell body and the shell cover respectively.
  • the rough area includes a third area provided on the intermediate piece, and the third area is provided facing the sealing piece. The roughness of the third area is greater than the roughness of the outer surface of the shell body and/or the inner surface of the shell cover.
  • an intermediate piece is provided between the positions where the shell body and the shell body cooperate with each other, and sealing pieces are provided between the intermediate piece and the shell body and the shell body, respectively.
  • the rough area includes a third area provided on the intermediate piece, and the third area is provided facing the sealing piece.
  • the roughness of the third area is greater than the roughness of the outer surface of the shell body and/or the inner surface of the shell cover.
  • the intermediate piece can be directly roughened by providing the intermediate piece. When the shell body and the shell cover do not need to be roughened, the manufacturing process of the shell body and the shell cover can be simplified. Of course, the shell body and the shell cover can also be roughened at the same time.
  • the seal is a piece of plastic sealing material.
  • the sealing member is a plastic sealing material member, which has good sealing performance, good manufacturability, and low cost, can improve the reliability of the fit between the shell body and the shell cover, and can save space.
  • a battery cell in a second aspect, includes an electrode assembly and a shell assembly of the battery cell, wherein the electrode assembly is disposed in the shell assembly.
  • a battery comprises a plurality of the above-mentioned battery cells.
  • an electrical device includes the above-mentioned battery.
  • FIG1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
  • FIG2 is an exploded view of a battery structure provided in some embodiments of the present application.
  • FIG3 is a schematic structural diagram of a housing assembly of a battery cell provided in some embodiments of the present application.
  • FIG4 is an exploded view of a housing assembly of a battery cell provided in some embodiments of the present application.
  • FIG5 is a schematic structural diagram of a housing assembly of a battery cell provided in some other embodiments of the present application.
  • FIG6 is a schematic structural diagram of a housing assembly of a battery cell provided in some other embodiments of the present application.
  • FIG. 7 is a schematic structural diagram of a housing assembly of a battery cell provided in some other embodiments of the present application.
  • Icons 10000-vehicle; 1000-battery; 2000-controller; 3000-motor; 100-battery cell; 200-casing; 201-first casing body; 202-second casing body; 10-shell body; 101-peripheral wall; 102-end wall; 103-inner convex portion; 104-opening; 11-casing cover; 111-protrusion; 112-outer edge; 13-first area; 14-second area; 15-seal; 16-middle piece; 17-third area; 20-rough area; 30-shell assembly.
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • the battery cell may include a primary battery or a secondary battery, and may also include a lithium-ion battery, a lithium-sulfur battery, a sodium-lithium-ion battery, a sodium-ion battery or a magnesium-ion battery, etc., which is not limited in the embodiments of the present application.
  • the battery cell may be cylindrical, flat, rectangular or other shapes, etc., which is not limited in the embodiments of the present application.
  • Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft-pack battery cells, which is not limited in the embodiments of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in the present application may include a battery module or a battery pack.
  • the battery generally includes a casing for encapsulating one or more battery cells or multiple battery modules.
  • the casing can prevent liquids or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery of the present application may not include the above-mentioned casing, which will not be described here.
  • the battery cell includes a shell, an electrode assembly and an electrolyte, and the shell is used to contain the electrode assembly and the electrolyte.
  • the electrode assembly is composed of a positive electrode sheet and a negative electrode sheet.
  • the battery cell mainly relies on the movement of metal ions between the positive electrode sheet and the negative electrode sheet to work.
  • the positive electrode sheet includes a positive electrode collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode collector, the positive electrode collector not coated with the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer, and the positive electrode collector not coated with the positive electrode active material layer serves as the positive electrode ear.
  • the material of the positive electrode collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide, etc.
  • the negative electrode sheet includes a negative electrode collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode collector, the negative electrode collector not coated with the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer, and the negative electrode collector not coated with the negative electrode active material layer serves as the negative electrode ear.
  • the negative electrode current collector may be made of copper, and the negative electrode active material may be carbon or silicon, etc. In order to ensure that a large current can pass without melting, the positive electrode tabs are multiple and stacked together, and the negative electrode tabs are multiple and stacked together.
  • the battery cell includes a separator, which may be a separator film, wherein the separator film may be made of polypropylene or polyethylene, etc.
  • the electrode assembly may be a winding structure or a laminated structure, but the embodiments of the present application are not limited thereto.
  • the battery cells will generate a lot of heat during the continuous charging and discharging process, which will cause the internal temperature of the battery cells to rise, and the structure of stacking multiple battery cells will aggravate this phenomenon.
  • the shell of the battery cell has a weak pressure resistance, the inside of the battery cell expands due to heat, causing the shell of the battery cell to be damaged, which in turn seriously affects the performance and service life of the battery cell.
  • the inventors have designed a battery cell shell assembly after in-depth research, including a shell body and a shell cover, the shell cover is covered on the shell body, and a rough area is set on the surface where the shell cover and the shell body cooperate with each other to increase the friction between the shell cover and the shell body.
  • the friction can increase accordingly, and then the deformation and slippage of the shell cover can be effectively suppressed, thereby improving the fit reliability between the shell cover and the shell body, improving the overall air tightness of the shell assembly, and the pressure resistance of the shell assembly, avoiding the damage of the shell assembly caused by the expansion of the battery cell, and improving the safety and service life of the battery cell.
  • the rough area can improve the pressure resistance and air tightness of the shell assembly. Therefore, in some embodiments, the sealing ring structure can be omitted compared to the prior art, which can increase the packaging speed, improve the packaging quality rate, and reduce production costs. On the other hand, it saves the space occupied by the sealing ring structure, thereby increasing the effective volume in the shell assembly, thereby ensuring the pressure resistance performance while improving the energy density of the battery cell.
  • the battery disclosed in the embodiment of the present application can be used in, but not limited to, electrical devices such as vehicles, ships or aircraft.
  • a power supply system comprising the battery disclosed in the present application can be used to form the electrical device, which is beneficial to improve the application range of the battery.
  • the embodiment of the present application provides an electric device using a battery as a power source
  • the electric device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, etc.
  • the electric toy may include a fixed or mobile electric toy, for example, a game console, an electric car toy, an electric ship toy, an electric airplane toy, etc.
  • the spacecraft may include an airplane, a rocket, a space shuttle, a spacecraft, etc.
  • FIG. 1 is a schematic diagram of the structure of a vehicle 10000 provided in some embodiments of the present application.
  • the vehicle 10000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 1000 is provided inside the vehicle 10000, and the battery 1000 may be provided at the bottom, head or tail of the vehicle 10000.
  • the battery 1000 may be used to power the vehicle 10000, for example, the battery 1000 may be used as an operating power source for the vehicle 10000.
  • the vehicle 10000 may also include a controller 2000 and a motor 3000, and the controller 2000 is used to control the battery 1000 to power the motor 3000, for example, for the starting, navigation and working power requirements of the vehicle 10000 during driving.
  • the battery 1000 can not only serve as the operating power source of the vehicle 10000, but also serve as the driving power source of the vehicle 10000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 10000.
  • the battery 1000 includes a box body 200 and a plurality of battery cells 100, and the battery cells 100 are accommodated in the box body 200.
  • the box body 200 is used to provide an assembly space for the battery cells 100, and the box body 200 can adopt a variety of structures.
  • the box body 200 may include a first box body 201 and a second box body 202, and the first box body 201 and the second box body 202 cover each other, and the first box body 201 and the second box body 202 jointly define an assembly space for accommodating the battery cells 100.
  • the second box body 202 may be a hollow structure with one end open, the first box body 201 may be a plate-like structure, and the first box body 201 covers the open side of the second box body 202, so that the first box body 201 and the second box body 202 jointly define an assembly space; the first box body 201 and the second box body 202 may also be hollow structures with one side open, and the open side of the first box body 201 covers the open side of the second box body 202.
  • the box body 200 formed by the first box body 201 and the second box body 202 may be in various shapes, such as a cylinder, a cuboid, etc.
  • multiple battery cells 100 can be connected in series, in parallel, or in a hybrid connection.
  • a hybrid connection means that multiple battery cells 100 are connected in series and in parallel. Multiple battery cells 100 can be directly connected in series, in parallel, or in a hybrid connection, and then the whole formed by multiple battery cells 100 is accommodated in the box 200; of course, the battery 1000 can also be a battery module formed by connecting multiple battery cells 100 in series, in parallel, or in a hybrid connection, and then multiple battery modules are connected in series, in parallel, or in a hybrid connection to form a whole, and accommodated in the box 200.
  • the battery 1000 may also include other structures, for example, the battery 1000 may also include a busbar component for realizing electrical connection between multiple battery cells 100.
  • Figure 3 is a schematic diagram of the structure of a shell assembly 30 of a battery cell 100 provided in some embodiments of the present application.
  • the shell assembly 30 includes a shell body 10 and a shell cover 11.
  • the shell body 10 has an opening 104.
  • the shell cover 11 is arranged at the opening 104 to close the opening 104.
  • the surface where the shell cover 11 and the shell body 10 fit together has a rough area 20, which can increase the friction between the shell cover 11 and the shell body 10.
  • the friction can increase accordingly, thereby effectively suppressing the deformation and slippage of the shell cover 11, thereby improving the fit reliability between the shell cover 11 and the shell body 10, improving the overall air tightness of the shell assembly 30, and the pressure resistance of the shell assembly 30, thereby avoiding the expansion of the battery cell 100 and causing damage to the shell assembly 30, and improving the safety and service life of the battery cell 100.
  • the sealing ring structure can be omitted compared with the prior art, thereby increasing the packaging speed, improving the packaging quality rate, and reducing the production cost.
  • the space occupied by the sealing ring structure is saved, thereby increasing the effective volume in the housing assembly 30, thereby improving the energy density of the battery cell 100 while ensuring the pressure resistance performance.
  • a sealing ring structure may also be provided, which is not limited here.
  • the rough area 20 located on the surface where the shell cover 11 and the shell body 10 cooperate with each other should be understood in a broad sense, that is, the rough area 20 is located at the position where the shell cover 11 and the shell body 10 cooperate with each other and on the surface used for cooperation, but it is not limited to being set on the surface of any component.
  • the rough area 20 can be set on the shell cover 11, or it can also be set on the shell body 10, or it can also be set on other components between the shell cover 11 and the shell body 10, and there is no limitation here.
  • the friction between the shell cover 11 and the shell body 10 can be increased, thereby improving the reliability of cooperation between the shell cover 11 and the shell body 10, and thereby increasing the pressure resistance of the shell assembly 30.
  • the rough area 20 includes a first area 13 provided on the shell body 10, and the roughness of the first area 13 is greater than the roughness of the remaining areas of the shell body 10 except the first area 13.
  • the first area 13 is located on the side of the shell body 10 facing the shell cover 11 .
  • the present application is not limited thereto.
  • the entire shell body 10 may be roughened so that the side of the shell body 10 facing the shell cover 11 has a rough area 20 .
  • a seal 15 is provided between the shell cover 11 and the shell body 10, and the first area 13 is located at a position of the shell body 10 facing the seal 15.
  • the rough first area 13 has a better bonding ability with the seal 15, which can increase the friction between the shell body 10 and the seal 15.
  • the shell body 10 and the seal 15 are not easy to slide, which can enhance the airtightness of the shell assembly 30.
  • the rough area 20 includes a second area 14 provided on the shell cover 11, and the roughness of the second area 14 is greater than the roughness of the remaining areas of the shell cover 11 except the second area 14.
  • the second area 14 is located on the side of the shell cover 11 facing the shell body 10 .
  • the present application is not limited thereto.
  • the shell cover 11 may be roughened as a whole so that the side of the shell cover 11 facing the shell body 10 has a roughened area 20 .
  • a seal 15 is provided between the shell cover 11 and the shell body 10, and the second area 14 is located at the shell cover 11 facing the seal 15.
  • the rough second area 14 has a better bonding ability with the seal 15, which can increase the friction between the shell cover 11 and the seal 15.
  • the shell cover 11 and the seal 15 are not easy to slide, which can enhance the airtightness of the shell assembly 30.
  • the shell body 10 includes a peripheral wall portion 101 and an end wall portion 102, the end wall portion 102 is connected to the axial end of the peripheral wall portion 101, and the end wall portion 102 stops at the axial outer side of the outer edge portion 112 of the shell cover 11 (that is, on the side of the shell body 10 in the axial direction away from the central cross section of the shell body 10), and the rough area 20 is located between the end wall portion 102 and the outer edge portion 112, which can increase the friction between the end wall portion 102 and the outer edge portion 112, and the direction of the friction force has a more effective anti-slip effect, which can effectively inhibit the sliding between the end wall portion 102 and the outer edge portion 112, and prevent the shell cover 11 from rushing out of the opening 104 of the shell body 10, thereby increasing the compressive strength of the shell assembly 30, and at the same time, the end wall portion 102 stops at the axial outer side of the outer edge portion 112 of the shell cover 11, which makes the installation between the shell
  • the rough area 20 includes a first area 13 located on the inner surface of the end wall portion 102 and/or a second area 14 located on the outer surface of the outer edge portion 112 .
  • the rough area 20 includes the first area 13 located on the inner surface of the end wall 102 or the second area 14 located on the outer surface of the outer edge 112, which can increase the friction between the end wall 102 and the outer edge 112, inhibit sliding between the end wall 102 and the outer edge 112, and thus increase the compressive strength of the housing assembly 30.
  • the rough area 20 includes the first area 13 located on the inner surface of the end wall 102 and the second area 14 located on the outer surface of the outer edge 112. When both the end wall 102 and the outer edge 112 are roughened, the effect of increasing friction is better than that of roughening only one, and the compressive strength of the housing assembly 30 can be better increased.
  • a seal 15 is provided between the end wall portion 102 and the outer edge portion 112.
  • a rough area 20 is provided between the end wall portion 102 and the outer edge portion 112
  • the bonding force between the end wall portion 102 and the seal 15, or the bonding force between the outer edge portion 112 and the seal 15, or the bonding force between the end wall portion 102, the outer edge portion 112 and the seal 15 can be effectively increased, thereby enhancing the air tightness and pressure resistance of the shell assembly 30.
  • the shell cover 11 also includes a protrusion 111, and the outer edge portion 112 is arranged around the protrusion 111.
  • the protrusion 111 protrudes outward relative to the outer edge portion 112 (i.e., in the direction away from the central cross-section of the shell body 10 in the axial direction of the shell body 10) and extends into the inner ring area of the end wall portion 102.
  • the protrusion 111 can increase the expansion space within the shell assembly 30, thereby increasing the pressure resistance of the battery cell 100.
  • an explosion-proof pressure relief structure such as an explosion-proof valve or a weak portion, is provided on the protrusion 111 to have an explosion-proof pressure relief function.
  • an explosion-proof pressure relief structure such as an explosion-proof valve or a weak portion, is provided on the protrusion 111 to have an explosion-proof pressure relief function.
  • the protrusion 111 may not be provided.
  • the shell cover 11 may be in the form of a flat plate (for example, as shown in FIG. 6 ).
  • the protrusion 111 may be provided with not only an explosion-proof pressure relief structure, but also other structures such as a liquid injection valve and a pole, which will not be described in detail here.
  • the peripheral wall portion 101 is of a uniform cross-sectional shape.
  • the accommodation space in the housing assembly 30 can be increased to accommodate a larger volume of electrode assemblies and increase the capacitance.
  • the peripheral wall portion 101 may be cylindrical or rectangular, in which case the axial direction of the shell body 10 may be the axial direction of the cylindrical peripheral wall portion 101, or the length or width direction of the rectangular peripheral wall portion 101, or the direction perpendicular to the shell cover 11.
  • the radial direction of the shell body 10 is the direction perpendicular to the axial direction of the shell body 10.
  • the shell body 10 is formed into the end wall portion 102 by cold heading process.
  • the manufacturing process is simple, fewer parts are required, and the sealing of the shell assembly 30 can be improved.
  • the cold heading process does not require heating, is suitable for processing the battery cell 100, and has high safety.
  • the peripheral wall portion 101 has an inner convex portion 103 (thus having a non-uniform cross-sectional shape), the inner convex portion 103 protrudes in the radial direction of the shell body 10 and stops at the axial inner side of the outer edge portion 112 (i.e., the side close to the central cross section of the shell body 10 in the axial direction of the shell body 10). In this way, the shell cover 11 is subjected to more friction and is not easily ejected due to internal expansion, making the connection between the shell cover 11 and the shell body 10 more secure.
  • the shell body 10 having the inner convex portion 103 on the peripheral wall portion 101 can also be formed into the end wall portion 102 and the inner convex portion 103 by cold heading process.
  • the manufacturing process is simple, fewer parts are required, and the sealing performance of the shell assembly 30 can be improved.
  • the cold heading process does not require heating, is suitable for processing the battery cell 100, and has high safety.
  • an intermediate piece 16 is provided between the positions where the shell body 10 and the shell cover 11 cooperate with each other, and sealing pieces 15 are provided between the intermediate piece 16 and the shell body 10 and the shell cover 11 respectively.
  • the rough area 20 includes a third area 17 provided on the intermediate piece 16, and the third area 17 is arranged facing the sealing piece 15. The roughness of the third area 17 is greater than the roughness of the outer surface of the shell body 10 and/or the inner surface of the shell cover 11.
  • the provision of the intermediate piece 16 can improve the pressure resistance of the housing assembly 30 on the one hand, and on the other hand, the intermediate piece 16 can be directly roughened without roughening the shell body 10 and the shell cover 11, thereby simplifying the manufacturing process of the shell body 10 and the shell cover 11.
  • a rough area may also be provided at the position corresponding to the seal 15 on the shell cover 11 and the shell body 10, such as the first area 13 and/or the second area 14 described above, to further improve the air tightness and pressure resistance.
  • the seal 15 mentioned in any of the above embodiments can be a plastic sealing material piece, which has a better combination effect with the shell cover 11 and the shell body 10, good sealing, easy operation, low cost, and can improve the connection reliability between the shell body 10 and the shell cover 11.
  • the plastic sealing material refers to a material that can be deformed by heat and re-combined with adjacent parts.
  • the provision of the rough area 20 can improve the thermal conductivity and shorten the hot pressing time of the plastic sealing material.
  • the sealing member 15 can be a sealant, etc., so that it is easy to obtain and use.
  • the packaging speed can be increased, the packaging quality rate can be improved, and the production cost can be reduced.
  • the space occupied by the sealing ring structure is saved, thereby increasing the effective volume in the housing assembly 30, thereby ensuring the pressure resistance performance while improving the energy density of the battery cell 100.
  • a plastic sealing material is arranged on the shell cover 11 or the shell body 10, and then the end wall portion 102 of the shell body 10 is processed so that the shell body 10 is connected to the shell cover 11, thereby realizing a reliable connection between the shell cover 11 and the shell body 10 and ensuring air tightness and pressure resistance.
  • the present application provides an embodiment of another aspect, and proposes a battery cell 100 .
  • the battery cell 100 includes an electrode assembly and the above-mentioned shell assembly 30 , and the electrode assembly is disposed in the shell assembly 30 .
  • the electrode assembly can be first installed in the shell body 10, and then the shell cover 11 is covered on the shell body 10, and then the connection between the shell body 10 and the shell cover 11 is subjected to a cold heading process to achieve the connection between the two.
  • the present application provides another embodiment, and proposes a battery 1000 including a plurality of the above-mentioned battery cells 100 .
  • the present application provides another embodiment, proposing an electrical device including the battery 1000 described above.
  • a seal 15 is provided between the shell body 10 and the shell cover 11, and a sealing connection structure is formed by cold heading process.
  • a roughened first area 13 is processed at the joint between the shell body 10 and the seal 15, and a roughened second area 14 is processed at the joint between the shell cover 11 and the seal 15.
  • the first area 13 and the second area 14 are used to make the combination between the shell body 10, the seal 15 and the shell cover 11 tighter, thereby improving the air tightness of the overall structure.
  • the roughened first area 13 and the second area 14 can provide greater friction, prevent the shell cover 11 from deforming and sliding, and improve the compressive strength of the shell assembly 30, thereby effectively improving the pressure resistance of the battery cell 100.
  • the seal 15 is made of a plastic sealing material such as sealant, and the parts where the shell cover 11 and the shell body 10 cooperate with each other are roughened.
  • a plastic sealing material such as sealant
  • the bonding strength between the shell cover 11, the shell body 10 and the seal 15 can be effectively improved, and the airtightness of the shell assembly 30 can be improved.
  • the rough area can increase the friction between the shell cover 11 and the shell body 10, and improve the pressure resistance of the battery cell 100.
  • the shell cover 11 and the shell body 10 with rough areas increase the thermal conductivity of the plastic sealing material and shorten the processing time.
  • the sealing ring structure can be omitted, thereby increasing the packaging speed, improving the packaging quality rate, and reducing the cost.
  • the space occupied by the sealing ring structure is saved, thereby increasing the effective volume in the housing assembly 30, thereby ensuring the pressure resistance performance while improving the energy density of the battery cell 100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种电池单体的壳体组件、电池单体、电池及用电装置,属于电池单体技术领域。其中,电池单体的壳体组件包括包括壳身和壳盖。其中,壳身具有敞口,壳盖设于敞口处,壳盖与壳身之间相互配合的表面上具有粗糙区域。

Description

电池单体的壳体组件、电池单体、电池及用电装置 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池单体的壳体组件、电池单体、电池及用电装置。
背景技术
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。电池由箱体和容纳于箱体内的多个电池组成。其中,电池作为新能源汽车核心零部件不论在安全性方面,还是使用寿命上均有着较高的要求。但是,电池中电池单体的壳体耐压能力弱,在不断的充放电使用过程中会产生大量的热量,电池单体受热膨胀从而导致壳体破损,进而严重影响到电池的使用性能和使用寿命。
发明内容
本申请实施例提供一种电池单体的壳体组件、电池单体、电池及用电装置,能够有效提高壳体组件的耐压性能和气密性。
第一方面,本申请实施例提供一种电池单体的壳体组件,包括壳身和壳盖。其中,壳身具有敞口;壳盖设于敞口处,壳盖与壳身之间相互配合的表面上具有粗糙区域。
在上述技术方案中,通过在壳盖与壳身之间相互配合的表面上设置粗糙区域,可增大壳盖和壳身之间的摩擦力,在壳体组件内部压力增大时,可以利用摩擦力抑制壳盖变形、滑移,提升壳盖与壳身之间的配合牢靠性,从而增大壳体组件的耐压能力,并且可以有效提高壳体组件的气密性。而且有利于省去为了提升气密性与耐压能力的较厚密封结构件,从而可以节省空间,提升电池单体的能量密度。
在一些实施例中,粗糙区域包括设于壳身上的第一区域,第一区域的粗糙度大于壳身上除第一区域以外其余区域的粗糙度。
在上述技术方案中,第一区域的粗糙度大于壳身上除第一区域以外其余区域的粗糙度,通过增大壳身局部的粗糙度,可增大壳身与壳盖之间的配合牢靠性。
在一些实施例中,壳盖与壳身之间设有密封件,第一区域位于壳身的面向密封件的位置。
在上述技术方案中,在壳盖与壳身之间设有密封件,第一区域位于壳身的面向密封件的位置,可增大壳身与密封件之间的摩擦力,壳身与密封件不易滑动,可增强壳体组件的密封性。
在一些实施例中,粗糙区域包括设于壳盖上的第二区域,第二区域的粗糙度大于壳盖上 除第二区域以外其余区域的粗糙度。
在上述技术方案中,壳盖上的第二区域的粗糙度大于壳盖上除第二区域以外其余区域的粗糙度,通过增大壳盖局部的粗糙度,可增大壳盖与壳身之间的配合牢靠性。
在一些实施例中,壳盖与壳身之间设有密封件,第二区域位于壳盖的面向密封件的位置。
在上述技术方案中,通过壳盖与壳身之间设有密封件,第二区域位于壳盖的面向密封件的位置,可增大壳盖与密封件之间的摩擦力,壳盖与密封件不易滑动,可增强壳体组件的密封性。
在一些实施例中,壳身包括周壁部和端壁部,端壁部连接在周壁部的轴端,端壁部止抵于壳盖的外缘部的轴向外侧,粗糙区域位于端壁部与外缘部之间。
在上述技术方案中,壳身的端壁部为止抵于壳盖的外缘部的轴向外侧,粗糙区域位于端壁部与外缘部之间,可增大端壁部与外缘部之间的摩擦力,抑制端壁部与外缘部之间发生滑动,进而增加壳体组件的耐压强度,同时使得壳身与壳盖之间的安装更加简单、牢靠。
在一些实施例中,粗糙区域包括位于端壁部的内表面的第一区域和/或位于外缘部的外表面的第二区域。
在上述技术方案中,粗糙区域包括位于端壁部的内表面的第一区域或位于外缘部的外表面的第二区域,都可增大端壁部与外缘部之间的摩擦力,抑制端壁部与外缘部之间发生滑动,进而增加壳体组件的耐压强度。粗糙区域包括位于端壁部的内表面的第一区域和位于外缘部的外表面的第二区域,在端壁部和外缘部上都进行粗糙比在单独一个上进行粗糙,增大摩擦力的效果更好,能更好地增加壳体组件的耐压强度。
在一些实施例中,端壁部与外缘部之间设有密封件。
在上述技术方案中,在端壁部与外缘部之间设置密封件,可增大端壁部与密封件或外缘部与密封件之间的摩擦力,或者同时增大端壁部、外缘部与密封件之间摩擦力,增强壳体组件的密封效果。
在一些实施例中,壳盖还包括凸出部,外缘部围绕凸出部设置,凸出部相对于外缘部向外凸出且伸入端壁部的内环区域。
在上述技术方案中,壳盖还包括凸出部,外缘部围绕凸出部设置,凸出部相对于外缘部朝向背离壳身的中心的方向向外凸出且伸入端壁部的内环区域,凸出部可以增大电池单体壳体的膨胀空间,进而增大电池单体壳体的耐压能力。
在一些实施例中,凸出部上设有防爆泄压结构。
在上述技术方案中,凸出部的设置有利于防爆泄压结构实现可靠的防爆泄压作用。
在一些实施例中,周壁部具有内凸部,内凸部沿壳身的径向凸出且止抵于外缘部的轴向内侧。
在上述技术方案中,壳身的周壁部具有内凸部,内凸部沿壳身的径向凸出且止抵于外缘部的轴向内侧,这样,使得壳身和壳盖之间的摩擦力更大,壳盖不容易因膨胀而被顶出,使得壳身和壳盖之间的连接更加牢固。
在一些实施例中,壳身通过冷镦工艺形成端壁部。
在上述技术方案中,壳身通过冷镦工艺形成端壁部,制作工艺简单,不会产生不利的热影响。
在一些实施例中,壳身与壳盖相互配合的位置之间设有中间件,中间件与壳身、壳盖之间分别设有密封件,粗糙区域包括设于中间件上的第三区域,第三区域面向密封件设置,第三区域的粗糙度大于壳身的外表面和/或壳盖的内表面的粗糙度。
在上述技术方案中,通过在壳身与壳体相互配合的位置之间设有中间件,中间件与壳身、壳体之间分别设有密封件,粗糙区域包括设于中间件上的第三区域,第三区域面向密封件设置,第三区域的粗糙度大于壳身的外表面和/或壳盖的内表面的粗糙度,设置中间件可直接对中间件进行粗糙,当不用对壳身和壳盖进行时,可以简化壳身和壳盖的制造工艺。当然,也可以同时对壳身和壳盖进行粗糙处理。
在一些实施例中,密封件为塑性密封材料件。
在上述实施例中,密封件为塑性密封材料件,塑性密封材料件的密封性好,制造性好,成本低,可以提升壳身与壳盖的配合牢靠性,且可以节省空间。
第二方面,一种电池单体,包括电极组件和上述的电池单体的壳体组件,电极组件设于壳体组件内。
第三方面,一种电池,包括多个上述的电池单体。
第四方面,一种用电装置包括上述的电池。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构***图;
图3为本申请一些实施例提供的电池单体的壳体组件的结构示意图;
图4为本申请一些实施例提供的电池单体的壳体组件的结构***图;
图5为本申请另一些实施例提供的电池单体的壳体组件的结构示意图;
图6为本申请再一些实施例提供的电池单体的壳体组件的结构示意图;
图7为本申请又一些实施例提供的电池单体的壳体组件的结构示意图。
图标:10000-车辆;1000-电池;2000-控制器;3000-马达;100-电池单体;200-箱体;201-第一箱本体;202-第二箱本体;10-壳身;101-周壁部;102-端壁部;103-内凸部;104-敞口;11-壳盖;111-凸出部;112-外缘部;13-第一区域;14-第二区域;15-密封件;16-中间件;17-第三区域;20-粗糙区域;30-壳体组件。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的 各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上包括两个。
本申请中,电池单体可以包括一次电池或者二次电池,也可以包括锂离子电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模组或电池包等。电池一般可以包括用于封装一个或多个电池单体或多个电池模组的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。或者,本申请的电池也可以不包括上述箱体,这里不作赘述。
电池单体包括外壳、电极组件和电解质,外壳用于容纳电极组件和电解质。电极组件由正极极片、负极极片组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂覆正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂覆正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂覆负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂覆负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
电池单体包括隔离件,隔离件可以为隔离膜,其中隔离膜的材质可以为聚丙烯(polypropylene)或聚乙烯(polyethylene)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。其中,电池作为新能源汽车核心零部件不论在安全性方面,还是循环使用寿命上均有着较高的要求。
发明人发现,在一般的动力电池中,为了使得电池获得足够的功率,通常将电池的多个电池单体呈排列方式进行堆叠设置。但是,电池单体在不断的充放电使用过程中会产生大量的热量,从而会导致电池单体的内部温度上升,且多个电池单体堆叠设置的结构会加剧这种现象的产生,由于电池单体的壳体耐压能力弱,电池单体的内部受热膨胀从而导致电池单体的壳体破损,进而严重影响到电池单体的使用性能和使用寿命。
基于上述考虑,为了解决电池单体的壳体耐压能力弱的问题,发明人经过深入研究,设计了一种电池单体的壳体组件,包括壳身和壳盖,壳盖盖合在壳身上,在壳盖与壳身相互配合的表面设置粗糙区域,以增大壳盖和壳身之间的摩擦力,在壳体组件内部压力增大时,摩擦力可以随之增大,进而可以有效抑制壳盖的变形、滑移等,提升了壳盖与壳身之间的配合牢靠性,提升壳体组件的整体气密性,以及壳体组件的耐压能力,避免电池单体膨胀导致壳体组件破损,提升电池单体的安全性和使用寿命。
另外,由于设置粗糙区域使得壳体组件的耐压性和气密性都可以有所提升。因此在一些实施例中,相比于现有技术可以省去密封圈结构,一方面可以提高封装速度,提升封装优率,降低生产成本。另一方面节省了密封圈结构的占用空间,从而增大了壳体组件内的有效容积,进而在保证耐压性能的同时,提升了电池单体的能量密度。
本申请实施例公开的电池可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池等组成该用电装置的电源***,这样,有利于提升电池的适用范围。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆10000的结构示意图。车辆10000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆10000的内部设置有电池1000,电池1000可以设置在车辆10000的底部或头部或尾部。电池1000可以用于车辆10000的供电, 例如,电池1000可以作为车辆10000的操作电源。车辆10000还可以包括控制器2000和马达3000,控制器2000用来控制电池1000为马达3000供电,例如,用于车辆10000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池1000不仅可以作为车辆10000的操作电源,还可以作为车辆10000的驱动电源,代替或部分地代替燃油或天然气为车辆10000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池1000的结构***图。电池1000包括箱体200和多个电池单体100,电池单体100容纳于箱体200内。其中,箱体200用于为电池单体100提供装配空间,箱体200可以采用多种结构。在一些实施例中,箱体200可以包括第一箱本体201和第二箱本体202,第一箱本体201与第二箱本体202相互盖合,第一箱本体201和第二箱本体202共同限定出用于容纳电池单体100的装配空间。第二箱本体202可以为一端开放的空心结构,第一箱本体201可以为板状结构,第一箱本体201盖合于第二箱本体202的开放侧,以使第一箱本体201与第二箱本体202共同限定出装配空间;第一箱本体201和第二箱本体202也可以是均为一侧开放的空心结构,第一箱本体201的开放侧盖合于第二箱本体202的开放侧。当然,第一箱本体201和第二箱本体202形成的箱体200可以是多种形状,比如,圆柱体、长方体等。
在电池1000中,多个电池单体100之间可串联或并联或混联,混联是指多个电池单体100中既有串联又有并联。多个电池单体100之间可直接串联或并联或混联在一起,再将多个电池单体100构成的整体容纳于箱体200内;当然,电池1000也可以是多个电池单体100先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体200内。电池1000还可以包括其他结构,例如,该电池1000还可以包括汇流部件,用于实现多个电池单体100之间的电连接。
以下实施例为了方便说明,以本申请一实施例的一种电池单体100的壳体组件30为例进行说明。
请参照图3和图4,图3为本申请一些实施例提供的一种电池单体100的壳体组件30的结构示意图。其中,壳体组件30包括壳身10和壳盖11,壳身10具有敞口104,壳盖11设于敞口104处,以用于封闭敞口104。
壳盖11与壳身10之间相互配合的表面上具有粗糙区域20,粗糙区域20可增大壳盖11和壳身10之间的摩擦力,在壳体组件30内部压力增大时,摩擦力可以随 之增大,进而可以有效抑制壳盖11的变形、滑移等,提升了壳盖11与壳身10之间的配合牢靠性,提升壳体组件30的整体气密性,以及壳体组件30的耐压能力,避免电池单体100膨胀导致壳体组件30破损,提升电池单体100的安全性和使用寿命。
另外,由于设置粗糙区域20使得壳体组件30的耐压性和气密性都可以有所提升,因此在一些实施例中,相比于现有技术可以省去密封圈结构,从而可以提高封装速度,提升封装优率,降低生产成本。而且节省了密封圈结构的占用空间,从而增大了壳体组件30内的有效容积,进而在保证耐压性能的同时,提升了电池单体100的能量密度。
当然,本申请不限于此,在本申请的其他实施例中,如果空间足够,也可以选择设置密封圈结构,这里不作限制。
值得说明的是,粗糙区域20位于壳盖11与壳身10之间相互配合的表面上当作广义理解,即粗糙区域20位于壳盖11与壳身10相互配合的位置且用于配合的表面上,但是并不限于设置在哪一零部件的表面上。例如,粗糙区域20可以设置在壳盖11上、或者也可以设置在壳身10上、或者还可以设置在壳盖11与壳身10之间的其他零部件上,这里不作限制。但是,只要是在壳盖11与壳身10之间相互配合的位置且用于配合的表面上设置粗糙区域20,都可以增大壳盖11与壳身10之间的摩擦力,进而提升了壳盖11与壳身10之间的配合牢靠性,进而增大壳体组件30的耐压能力。
在一些实施例中,参照图3和图4,粗糙区域20包括设于壳身10上的第一区域13,第一区域13的粗糙度大于壳身10上除第一区域13以外其余区域的粗糙度。由此,通过增大壳身10的局部粗糙度,可增大壳盖11和壳身10之间的配合牢靠性,且便于粗糙加工,缩短粗糙加工时间,并且粗糙区域20可以针对壳身10进行,适用范围广。
可以理解的是,由于粗糙区域20位于壳盖11与壳身10之间相互配合的表面上,因此第一区域13位于壳身10朝向壳盖11的一侧。
当然,本申请不限于此,例如在本申请的其他实施例中,也可以对壳身10整体进行粗糙,以使壳身10朝向壳盖11的一侧具有粗糙区域20。
在一些实施例中,如图3和图4所示,壳盖11与壳身10之间设有密封件15,第一区域13位于壳身10的面向密封件15的位置,粗糙的第一区域13与密封件15有更好的结合能力,可增大壳身10与密封件15之间的摩擦力,壳身10与密封件15不易滑动,可增强壳体组件30的气密性。
在一些实施例中,参照图3和图4,粗糙区域20包括设于壳盖11上的第二区域14,第二区域14的粗糙度大于壳盖11上除第二区域14以外其余区域的粗糙度。由此,通过增大壳盖11的局部粗糙度,可增大壳盖11和壳身10之间的配合牢靠性,且便于粗糙加工,缩短粗糙加工时间,并且粗糙区域20可以针对壳盖11进行,适用范围广。
可以理解的是,由于粗糙区域20位于壳盖11与壳身10之间相互配合的表面上,因此第二区域14位于壳盖11朝向壳身10的一侧。
当然,本申请不限于此,例如在本申请的其他实施例中,也可以对壳盖11整体进行粗糙,以使壳盖11朝向壳身10的一侧具有粗糙区域20。
在一些实施例中,如图3和图4所示,壳盖11与壳身10之间设有密封件15,第二区域14位于壳盖11的面向密封件15的位置,粗糙的第二区域14与密封件15有更好的结合能力,可增大壳盖11与密封件15之间的摩擦力,壳盖11与密封件15不易滑动,可增强壳体组件30的气密性。
在一些实施例中,如图3和图4所示,壳身10包括周壁部101和端壁部102,端壁部102连接在周壁部101的轴端,端壁部102止抵于壳盖11的外缘部112的轴向外侧(即在壳身10轴向上的远离壳身10中心横截面的一侧),粗糙区域20位于端壁部102与外缘部112之间,可增大端壁部102与外缘部112之间的摩擦力,且摩擦力的方向具有更加有效的防滑效果,能够有效抑制端壁部102与外缘部112之间发生滑动,阻止壳盖11从壳身10的敞口104冲出,进而增加壳体组件30的耐压强度,同时端壁部102止抵于壳盖11的外缘部112的轴向外侧的方案,使得与壳盖11之间的安装更加简单,简化安装步骤,且可以提高壳身10与壳盖11的配合可靠性。可选地,端壁部102为环形。
在一些实施例中,如图3和图4所示,粗糙区域20包括位于端壁部102的内表面的第一区域13和/或位于外缘部112的外表面的第二区域14。
在上述技术方案中,粗糙区域20包括位于端壁部102的内表面的第一区域13或位于外缘部112的外表面的第二区域14,都可增大端壁部102与外缘部112之间的摩擦力,抑制端壁部102与外缘部112之间发生滑动,进而增加壳体组件30的耐压强度。粗糙区域20包括位于端壁部102的内表面的第一区域13和位于外缘部112的外表面的第二区域14,在端壁部102和外缘部112上都进行粗糙比在单独一个上进行粗糙时,增大摩擦力的效果更好,能更好地增加壳体组件30的耐压强度。
在一些实施例中,如图3和图4所示,端壁部102与外缘部112之间设有密封件15,同时由于端壁部102与外缘部112之间设有粗糙区域20,从而可有效增大端壁部 102与密封件15之间的结合力、或者外缘部112与密封件15之间的结合力、或者同时增大端壁部102、外缘部112与密封件15之间的结合力,进而增强壳体组件30的气密性和耐压性。
在一些实施例中,如图3和图4所示,壳盖11还包括凸出部111,外缘部112围绕凸出部111设置,凸出部111相对于外缘部112向外(即在壳身10的轴向上背离壳身10的中心横截面的方向)凸出且伸入端壁部102的内环区域,凸出部111可以增大壳体组件30内的膨胀空间,进而增大电池单体100的耐压能力。
在一些实施例中,凸出部111上设有防爆泄压结构,例如防爆阀或薄弱部,以具有防爆泄压作用。由此,通过设置凸出部11伸入端壁部102的内环区域,可以避免端壁部102对凸出部11的遮挡,将防爆泄压结构设置在凸出部111上,可以可靠且有效地实现防爆泄压功能。
本申请不限于此,例如在本申请的其他实施例中,也可以不设置凸出部111,此时,壳盖11可以为平板形式(例如图6所示)等等。另外,凸出部111上也可以不仅设置防爆泄压结构,例如还可以设置注液阀、极柱等其他结构,这里不作赘述。
在一些实施例中,如图3和图4所示,周壁部101为等截面形状。通过将周壁部101设置为等截面形状,可以增加壳体组件30内的容纳空间,容纳更大体积的电极组件,增加电容量。
可选地,周壁部101可以为圆筒状或者长方体状,此时,壳身10的轴向可以为圆筒状的周壁部101的轴线方向,或者为长方体状的周壁部101的长度或宽度方向,或者为垂直于壳盖11的方向。壳身10的径向为垂直于壳身10的轴向的方向。
在一些实施例中,如图3和图5所示,壳身10通过冷镦工艺形成端壁部102。制作工艺简单,需要的零部件少,可提升壳体组件30的密封性,冷镦工艺不用加热,适合于电池单体100加工,安全性高。
在另外一些实施例中,如图6所示,周壁部101具有内凸部103(从而为非等截面形状),内凸部103沿壳身10的径向凸出且止抵于外缘部112的轴向内侧(即在壳身10轴向上的靠近壳身10中心横截面的一侧)。这样,使得壳盖11所受摩擦力更多,不容易因内部膨胀而被顶出,使得壳盖11和壳身10之间的连接更加牢固。
在一些实施例中,周壁部101具有内凸部103的壳身10也可通过冷镦工艺形成端壁部102和内凸部103。制作工艺简单,需要的零部件少,可提升壳体组件30的密封性,冷镦工艺不用加热,适合于电池单体100加工,安全性高。
请参照图7,在一些实施例中,壳身10与壳盖11相互配合的位置之间设有中间件16,中间件16与壳身10、壳盖11之间分别设有密封件15,粗糙区域20包括 设于中间件16上的第三区域17,第三区域17面向密封件15设置,第三区域17的粗糙度大于壳身10的外表面和/或壳盖11的内表面的粗糙度。
由此,设置中间件16一方面可提高壳体组件30的耐压强度,另一方面直接对中间件16进行粗糙化处理,不用对壳身10和壳盖11进行粗糙化处理,简化了壳身10和壳盖11的制造工艺。
但是,本申请不限于此,在本申请的其他实施例中,当设有中间件16时,也可以同时在壳盖11和壳身10上对应密封件15的位置设置粗糙区域,例如上文所述的第一区域13和/或第二区域14,以进一步提高气密性和耐压性。
在一些实施例中,上述任一实施例提到的密封件15均可以为塑性密封材料件,塑性密封材料件与壳盖11、壳身10的结合效果更好,密封性好,容易操作,成本低,可以提高壳身10与壳盖11的连接可靠性。
值得说明的是,塑性密封材料件指的是可以受热变形重新与相邻零部件结合的材料件。粗糙区域20的设置可以提升导热性能,缩短塑性密封材料件的热压时间。例如在一些示例中,密封件15可以为密封胶等,从而容易获得和使用。
而且,通过采用塑性密封材料件替代密封圈结构,可以提高封装速度,提升封装优率,降低生产成本。而且节省了密封圈结构的占用空间,从而增大了壳体组件30内的有效容积,进而可以在保证耐压性能的同时,提升电池单体100的能量密度。
例如,将塑性密封材料件设置在壳盖11或壳身10上,再加工壳身10的端壁部102,使得壳身10与壳盖11连接,可实现壳盖11与壳身10之间的可靠连接,保证气密性和耐压性。
本申请提供了另一方面的实施例,提出了一种电池单体100,电池单体100包括电极组件和上述的壳体组件30,电极组件设于壳体组件30内。
可选地,电极组件可先装入壳身10内,再将壳盖11盖合在壳身10上,之后再对壳身10与壳盖11的连接处进行冷镦工艺,实现二者的连接。
本申请提供了又一方面的实施例,提出了一种电池1000,包括多个上述的电池单体100。
本申请提供了又一方面的实施例,提出了一种用电装置,包括上述的电池1000。
根据本申请的一些实施例,壳身10与壳盖11之间设有密封件15,经冷镦工艺墩压形成密封连接结构,对壳身10与密封件15贴合处加工出粗糙化的第一区域13,对壳盖11与密封件15贴合处加工出粗糙化的第二区域14。利用第一区域13、第二区域14使壳身10、密封件15、壳盖11之间的结合更加紧密,提升整体结构的气密性。在壳体组件30内部产生气体时,粗糙化的第一区域13、第二区域14之间可以提供更大 的摩擦力,阻止壳盖11变形、滑移,提升壳体组件30的耐压强度,从而有效提升电池单体100的耐压能力。
密封件15采用塑性密封材料例如密封胶等,同时结合对壳盖11及壳身10相互配合的部位进行粗糙化处理,相比现有技术中仅采用密封圈结构,可以有效提升壳盖11、壳身10与密封件15的结合强度,提高壳体组件30的气密性。同时在高压失效时,粗糙区域可提升壳盖11与壳身10之间摩擦力,提升电池单体100的耐压性能。并且,具有粗糙区域的壳盖11与壳身10增大了与塑性密封材料的导热效率,缩短加工时间。
另外,相比于现有技术,可以省去密封圈结构,从而提高了封装速度,提升了封装优率,降低了成本。而且节省了密封圈结构的占用空间,从而增大了壳体组件30内的有效容积,进而可以在保证耐压性能的同时,提升电池单体100的能量密度。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种电池单体的壳体组件,其中,包括:
    壳身,所述壳身具有敞口;和
    壳盖,所述壳盖设于所述敞口处,所述壳盖与所述壳身之间相互配合的表面上具有粗糙区域。
  2. 根据权利要求1所述的电池单体的壳体组件,其中,所述粗糙区域包括设于所述壳身上的第一区域,所述第一区域的粗糙度大于所述壳身上除所述第一区域以外其余区域的粗糙度。
  3. 根据权利要求2所述的电池单体的壳体组件,其中,所述壳盖与所述壳身之间设有密封件,所述第一区域位于所述壳身的面向所述密封件的位置。
  4. 根据权利要求1-3中任一项所述的电池单体的壳体组件,其中,所述粗糙区域包括设于所述壳盖上的第二区域,所述第二区域的粗糙度大于所述壳盖上除所述第二区域以外其余区域的粗糙度。
  5. 根据权利要求4所述的电池单体的壳体组件,其中,所述壳盖与所述壳身之间设有密封件,所述第二区域位于所述壳盖的面向所述密封件的位置。
  6. 根据权利要求1-5中任一项所述的电池单体的壳体组件,其中,所述壳身包括周壁部和端壁部,所述端壁部连接在所述周壁部的轴端,所述端壁部止抵于所述壳盖的外缘部的轴向外侧,所述粗糙区域位于所述端壁部与所述外缘部之间。
  7. 根据权利要求6所述的电池单体的壳体组件,其中,所述粗糙区域包括位于所述端壁部的内表面的第一区域和/或位于所述外缘部的外表面的第二区域。
  8. 根据权利要求6或7所述的电池单体的壳体组件,其中,所述端壁部与所述外缘部之间设有密封件。
  9. 根据权利要求6-8中任一项所述的电池单体的壳体组件,其中,所述壳盖还包括凸出部,所述外缘部围绕所述凸出部设置,所述凸出部相对于所述外缘部向外凸出且伸入所述端壁部的内环区域。
  10. 根据权利要求9所述的电池单体的壳体组件,其中,所述凸出部上设有防爆泄压结构。
  11. 根据权利要求6-10中任一项所述的电池单体的壳体组件,其中,所述周壁部具有内凸部,所述内凸部沿所述壳身的径向凸出且止抵于所述外缘部的轴向内侧。
  12. 根据权利要求6-11中任一项所述的电池单体的壳体组件,其中,所述壳身通过冷镦工艺形成所述端壁部。
  13. 根据权利要求1-12中任一项所述的电池单体的壳体组件,其中,所述壳身与所述壳盖相互配合的位置之间设有中间件,所述中间件与所述壳身、所述壳盖之间分别设有密封件,所述粗糙区域包括设于所述中间件上的第三区域,所述第三区域面向所述密封件设置,所述第三区域的粗糙度大于所述壳身的外表面和/或所述壳盖的内表面的粗糙度。
  14. 根据权利要求3、5、8、13中任一项所述的电池单体的壳体组件,其中,所述密封件为塑性密封材料件。
  15. 一种电池单体,其中,包括电极组件和根据权利要求1-14中任一项所述的电池单体的壳体组件,所述电极组件设于所述壳体组件内。
  16. 一种电池,其中,包括多个根据权利要求15所述的电池单体。
  17. 一种用电装置,其中,包括根据权利要求16所述的电池。
PCT/CN2022/132966 2022-11-18 2022-11-18 电池单体的壳体组件、电池单体、电池及用电装置 WO2024103404A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/132966 WO2024103404A1 (zh) 2022-11-18 2022-11-18 电池单体的壳体组件、电池单体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/132966 WO2024103404A1 (zh) 2022-11-18 2022-11-18 电池单体的壳体组件、电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024103404A1 true WO2024103404A1 (zh) 2024-05-23

Family

ID=91083503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132966 WO2024103404A1 (zh) 2022-11-18 2022-11-18 电池单体的壳体组件、电池单体、电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024103404A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207896138U (zh) * 2018-03-13 2018-09-21 青海时代新能源科技有限公司 一种二次电池顶盖组件
US20210257607A1 (en) * 2018-06-28 2021-08-19 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
CN214625196U (zh) * 2021-03-02 2021-11-05 深圳市嘉姆特科技有限公司 一种一体封装的电池顶盖
CN216250920U (zh) * 2021-10-20 2022-04-08 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备
CN216720257U (zh) * 2021-07-27 2022-06-10 比亚迪股份有限公司 电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207896138U (zh) * 2018-03-13 2018-09-21 青海时代新能源科技有限公司 一种二次电池顶盖组件
US20210257607A1 (en) * 2018-06-28 2021-08-19 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
CN214625196U (zh) * 2021-03-02 2021-11-05 深圳市嘉姆特科技有限公司 一种一体封装的电池顶盖
CN216720257U (zh) * 2021-07-27 2022-06-10 比亚迪股份有限公司 电池
CN216250920U (zh) * 2021-10-20 2022-04-08 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Similar Documents

Publication Publication Date Title
US11967725B2 (en) Case of battery, battery, power consumption device, and method and device for preparing battery
US11631919B2 (en) Battery, power consumption device, method and device for preparing a battery
US20220013853A1 (en) Battery, power consumption device, method and device for preparing a battery
JP2023512947A (ja) 電池セル、電池及び電力消費装置
US20240154240A1 (en) Pressure relief apparatus, battery cell, battery, and power consuming device
US20230395931A1 (en) End cover assembly, battery cell, battery, and electric apparatus
CN217903284U (zh) 电池单体、电池及用电装置
US20230223669A1 (en) Battery cell, battery, electrical device, and method and device for manufacturing battery cell
US20230216118A1 (en) Battery cell, method and system for manufacture same, battery, and power consuming device
US20230163419A1 (en) Battery cell, battery, power consuming apparatus, and method and apparatus for manufacturing battery cell
WO2024103404A1 (zh) 电池单体的壳体组件、电池单体、电池及用电装置
US20220247043A1 (en) Battery cell, battery, power consumption device and battery cell manufaturing method and device
WO2023050282A1 (zh) 电池单体及其制造方法和制造***、电池以及用电装置
US11489231B2 (en) Battery, power consumption device, method and device for producing battery
US20220085465A1 (en) Current collecting member and manufacturing method thereof, secondary battery and manufacturing method thereof, battery module, and apparatus
CN219303773U (zh) 电池单体、电池及用电装置
WO2024130675A1 (zh) 电池单体、电池、用电装置和电池单体的制备方法及装置
CN218602480U (zh) 集流构件、电池单体、电池及用电装置
WO2023236218A1 (zh) 圆柱电池单体、电池以及用电装置
WO2024055257A1 (zh) 电池单体、电池及用电装置
WO2024098257A1 (zh) 电池单体、电池及用电装置
WO2024082096A1 (zh) 电池单体、电池、储能装置及用电装置
WO2024087327A1 (zh) 壳体组件、电池单体、电池和用电设备
WO2024031348A1 (zh) 电极组件、电池单体、电池及用电设备
US11984622B1 (en) Battery cell, method and apparatus of manufacturing the same, battery, and electric apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965584

Country of ref document: EP

Kind code of ref document: A1