WO2024103268A1 - 连接失败后的处理方法、装置、终端设备以及网络侧设备 - Google Patents

连接失败后的处理方法、装置、终端设备以及网络侧设备 Download PDF

Info

Publication number
WO2024103268A1
WO2024103268A1 PCT/CN2022/132101 CN2022132101W WO2024103268A1 WO 2024103268 A1 WO2024103268 A1 WO 2024103268A1 CN 2022132101 W CN2022132101 W CN 2022132101W WO 2024103268 A1 WO2024103268 A1 WO 2024103268A1
Authority
WO
WIPO (PCT)
Prior art keywords
scg
terminal device
configuration
connection failure
connection
Prior art date
Application number
PCT/CN2022/132101
Other languages
English (en)
French (fr)
Inventor
吴昱民
罗星熠
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/132101 priority Critical patent/WO2024103268A1/zh
Publication of WO2024103268A1 publication Critical patent/WO2024103268A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method, device, terminal equipment, and network-side equipment for processing after a connection failure.
  • Dual Connectivity means that the terminal equipment (User Equipment, UE) can establish connections in two cell groups at the same time. These two cell groups are the Master Cell Group (MCG) and the Secondary Cell Group (SCG). MCG includes the Primary Cell (PCell) and the Secondary Cell (SCell); SCG includes the Primary SCG Cell (PSCell) and the SCell. Among them, PCell and PSCell can be collectively referred to as SpCell (Special Cell). In the case of SCG connection failure in the terminal device, the specific processing method has not been discussed in the current relevant technology.
  • the present disclosure provides a method, an apparatus, a terminal device and a network side device for processing after a connection failure.
  • a method for processing a connection failure is provided, which is applied to a terminal device, and the method includes:
  • an SCG connection failure processing operation is performed according to network configuration or protocol provisions.
  • a method for processing a connection failure is provided, which is applied to a network side device, and the method includes:
  • a processing device after a connection failure is provided, which is applied to a terminal device, and the device includes:
  • the failure processing module is configured to respond to the SCG connection failure and perform SCG connection failure processing operations according to network configuration or protocol regulations.
  • a device for processing after a connection failure is provided, the device being applied to a network side device, the device comprising:
  • the sending module is configured to send a network configuration to a terminal device, where the network configuration is used to perform an SCG connection failure processing operation when an SCG connection failure occurs in the terminal device.
  • a terminal device including:
  • a first memory for storing first processor executable instructions
  • the first processor is configured to execute the executable instructions to implement the processing method after connection failure provided in the first aspect of the present disclosure.
  • a network side device including:
  • a second processor
  • a second memory for storing second processor executable instructions
  • the second processor is configured to execute the executable instructions to implement the processing method after connection failure provided in the second aspect of the present disclosure.
  • a computer-readable storage medium on which computer program instructions are stored.
  • the program instructions are executed by a processor, the steps of the processing method after connection failure provided in the first aspect or the second aspect of the present disclosure are implemented.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: when it is determined that the SCG connection has failed, the present disclosure may perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby reducing interruptions and packet losses during data transmission and reception.
  • FIG. 1 is an application scenario applicable to a method for processing a connection failure according to some embodiments.
  • FIG. 2 is a flow chart showing a method for processing after a connection failure according to some embodiments.
  • FIG. 3 is a flow chart showing a method for processing a connection failure according to other embodiments.
  • FIG. 4 is a communication sequence diagram showing a method for processing after a connection failure according to some other embodiments.
  • FIG. 5 is a flow chart showing a method for processing after a connection failure according to yet other embodiments.
  • FIG. 6 is a flow chart of a method for processing a connection failure according to some further embodiments.
  • FIG. 7 is a flowchart of a method for processing a connection failure according to yet other embodiments.
  • FIG8 is a flowchart of a method for processing a connection failure according to some further embodiments.
  • FIG. 9 is a flowchart of a method for processing after a connection failure according to yet other embodiments.
  • FIG. 10 is a flowchart of a method for processing a connection failure according to some further embodiments.
  • FIG. 11 is a flowchart of a method for processing a connection failure according to yet other embodiments.
  • FIG. 12 is a flowchart of a method for processing a connection failure according to some further embodiments.
  • FIG. 13 is a flowchart of a method for processing a connection failure according to yet other embodiments.
  • FIG. 14 is a flowchart of a method for processing after a connection failure according to some embodiments.
  • FIG. 15 is a block diagram of a device for processing after a connection failure according to some embodiments.
  • FIG. 16 is a block diagram of a device for processing after a connection failure according to some embodiments.
  • FIG17 is a block diagram of a terminal device according to some embodiments.
  • FIG18 is a block diagram of a network-side device according to some embodiments.
  • Terminal equipment includes equipment that provides voice and/or data connectivity to users, specifically, equipment that provides voice to users, or equipment that provides data connectivity to users, or equipment that provides voice and data connectivity to users.
  • it may include a handheld device with wireless connection function, or a processing device connected to a wireless modem.
  • the terminal equipment may include a terminal equipment (user equipment, UE), a wireless terminal equipment, a mobile terminal equipment, or a user equipment (user device), etc.
  • the network side equipment is also called the wireless access network equipment.
  • the network side equipment is a device that connects the terminal equipment to the wireless network. It can include access network equipment, core network equipment, and service provider equipment (such as servers).
  • the network side equipment includes but is not limited to: transmission point (transmission and reception point, TRP), base station (such as gNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), BTS (base transceiver station), HeNB (home evolved NodeB), or HNB (home NodeB), baseband unit (baseband unit, BBU), etc.
  • a network architecture in which a terminal device in a connected state can maintain connection and communication with at least two different access network devices at the same time, and can utilize the wireless resources of two different access network devices, one of which is a master node (Master Node, Main Node or Primary Node, MN or PN), and the other is a secondary node (Secondary Node, SN), and MN and SN are connected to the same core network device.
  • MN can provide terminal devices with signaling control functions for accessing the network.
  • the cell group on the MN side is the master cell group, and MCG includes a master cell (PCell) and M secondary cells (SCell), M ⁇ 0.
  • the cell group on the SN side is the secondary cell group and N secondary cells, N ⁇ 0.
  • PCell is the cell that the terminal device initially accesses on the MN side.
  • the PCell and SCell in the MCG work on different carriers and are combined through the carrier aggregation (CA) technology.
  • PSCell is the cell that the terminal device initially accesses on the SN side.
  • the PSCell and SCell in the SCG work on different carriers and are combined through the CA technology.
  • the network side device can provide multiple candidate cells to the terminal device, and the network side device can control the terminal device to change in multiple candidate cells through L1 signaling or L2 signaling.
  • L1 signaling can be downlink control information (Downlink Control Information, DCI)
  • L2 signaling can be MAC (Medium Access Control) CE (Control Element) signaling.
  • multiple candidate cells may include candidate cell-1 and candidate cell-2.
  • the service cell can be changed from candidate cell-1 to candidate cell-2.
  • a service cell can correspond to one or more candidate cells.
  • the terminal device can change the cell based on the pre-configured conditions sent by the network side device and the pre-configured cells corresponding to the configuration conditions.
  • the change process can be called a mobility process based on conditional triggering.
  • conditional triggering may include CHO (Conditional Handover), CPA (Conditional PSCell Addition) and CPC (Conditional PSCell Change).
  • the terminal device can also change the cell according to the network instruction. Specifically, after the pre-configuration condition is met, the terminal device can change the configuration of a specific cell. For example, the terminal device can change the PCell configuration from candidate cell configuration-1 to candidate cell configuration-2.
  • the embodiments of the present disclosure provide a method, apparatus, terminal device and network-side device for processing after a connection failure, so as to reduce interruption and packet loss during data transmission and reception.
  • the application environment may include a terminal device 01 and a network side device 02, wherein the terminal device 01 and the network side device 02 may be connected in a wired or wireless manner.
  • the terminal device 01 may be a mobile station (MS) or a mobile terminal (MT), etc.
  • the terminal device 01 may be a mobile phone, a tablet computer or a computer with wireless transceiver function, or a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, a wireless terminal in smart grid, a wireless terminal in smart city, a smart home, a vehicle-mounted terminal, etc.
  • VR virtual reality
  • AR augmented reality
  • the network side device 02 may include access network equipment, core network equipment, or equipment of a service provider (such as a server), etc., without limitation.
  • the network side device 02 is mainly used to implement functions such as resource scheduling, wireless resource management, and wireless access control of the terminal device 01.
  • the network side device 02 may be any of a small base station, a wireless access point, a transmission and reception point (TRP), a transmission point (TP), and some other access nodes.
  • Fig. 2 is a flow chart of a method for processing a connection failure according to some embodiments. As shown in Fig. 2, the method for processing a connection failure can be used in a terminal device, and includes the following steps.
  • step S110 in response to the SCG connection failure, an SCG connection failure processing operation is performed according to the network configuration or protocol regulations.
  • the terminal device may perform an SCG connection failure processing operation according to a network configuration or protocol specification in response to an SCG connection failure.
  • the network configuration may be sent in advance by a network side device to the terminal device when performing a cell change.
  • the protocol specification may be a configuration information agreed upon by the terminal device before leaving the factory.
  • the terminal device can perform SCG connection failure processing operations according to network configuration or protocol regulations.
  • the terminal device in response to the failure of the SCG connection, may send a report message to the network side device through the MCG.
  • the terminal device may also reestablish the SCG connection, that is, reestablish the SCG connection.
  • the terminal device may also receive one or more candidate cell configurations from the network side device, wherein the one or more candidate cell configurations may be transmitted via an RRCReconfiguration message.
  • the network side device may control the terminal device to change among multiple candidate cells through signaling, that is, after receiving the signaling from the network side device, the terminal device may implement the cell change based on one or more candidate cell configurations, that is, change among multiple candidate cells according to the received signaling.
  • the signaling may be a cell change indication.
  • the cell here may be a cell in the SCG.
  • the terminal device after receiving L1 signaling or L2 signaling sent by the network side device, the terminal device can switch the cell of the terminal device according to one or more candidate cell configurations. For example, the terminal device can change the working cell from candidate cell-1 to candidate cell-2.
  • the terminal device when the triggering conditions specified by the network configuration or protocol are met, can change the configuration of the serving cell to the configuration of the candidate cell based on one or more candidate cell configurations. For example, when it is determined that the measurement data meets the A3 event or the A5 event, the terminal device can change the serving MCG configuration to the candidate MCG configuration. Similar to the above, the candidate cell here can be a cell in the SCG.
  • the cell in the embodiment of the present disclosure may also be a cell group.
  • the terminal device when changing a cell, the terminal device may change the working cell to a target cell.
  • the terminal device when changing a cell, the terminal device may change the working cell group to a target cell group.
  • the cell in the embodiment of the present disclosure may be the primary and secondary cells in the SCG, or may be all cells in the SCG. Therefore, the SCG connection failure may be the primary and secondary cell connection failure in the SCG, or may be the connection failure of all cells in the SCG.
  • SCG connection failures in the embodiments of the present disclosure may include wireless link failures and SCG change failures, etc.
  • the embodiments of the present disclosure provide that, in the event that an SCG connection failure is determined, the present disclosure can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby reducing interruptions and packet losses during data transmission and reception.
  • Fig. 3 is a flow chart of a method for processing a connection failure according to some other embodiments. As shown in Fig. 3, the method for processing a connection failure can be used in a terminal device, and includes the following steps.
  • step S210 network configuration is received from a network-side device.
  • the terminal device can receive a network configuration from a network side device, and the network configuration can include connection failure detection configuration information, wherein the connection failure detection configuration information can be transmitted via L1 signaling or L2 signaling.
  • the terminal device can determine whether the connection of the SCG fails based on the connection failure detection configuration information, that is, enter step S220.
  • step S220 it is determined whether the SCG connection fails based on the connection failure detection configuration information.
  • the terminal device may determine whether the SCG connection has failed based on the connection failure detection configuration.
  • the connection failure detection configuration may include a timer duration configuration for SCG changes. If it is determined that the SCG connection has failed, the terminal device may perform an SCG connection failure processing operation. In addition, after determining that the SCG connection has failed, the terminal device may also record the SCG connection failure event, or may also output an SCG connection failure prompt, etc.
  • the embodiment of the present disclosure can also determine whether the terminal device successfully accesses the target SCG within the agreed time. If the terminal device does not successfully access the target SCG within the agreed time, it can be determined that the SCG connection has failed.
  • Fig. 4 is a communication sequence diagram of a method for processing after a connection failure according to other embodiments.
  • the terminal device can receive connection failure detection configuration information from the network side device, and on this basis, the terminal device can determine whether the SCG connection fails based on the connection failure detection configuration information.
  • the embodiments of the present disclosure provide that, in the case of determining that the SCG connection fails, the present disclosure can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby reducing interruptions and packet loss during data transmission and reception. In addition, the embodiments of the present disclosure can determine whether the SCG connection fails based on the connection failure detection configuration information, thereby more accurately performing post-connection failure processing.
  • Fig. 5 is a flow chart of a method for processing after a connection failure according to some other embodiments. As shown in Fig. 5, the method for processing after a connection failure can be used in a terminal device, and includes the following steps.
  • step S310 network configuration is received from a network-side device.
  • step S320 it is determined whether the SCG connection fails based on the connection failure detection configuration information.
  • step S310 and step S320 have been described in detail in the above embodiment and will not be repeated here.
  • step S320 in response to the SCG connection failure, an SCG connection failure processing operation is performed according to the network configuration or protocol provisions.
  • the embodiment of the present disclosure can perform an SCG connection failure processing operation according to the network configuration or protocol specification.
  • the terminal device can respond to the SCG connection failure and perform an SCG connection failure processing operation according to the network configuration or protocol specification.
  • the terminal device can transmit data with the successfully connected SCG.
  • the embodiments of the present disclosure provide that, in the case of determining that the SCG connection fails, the present disclosure can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby reducing interruptions and packet loss during data transmission and reception.
  • the embodiments of the present disclosure can process the SCG with failed connection, thereby further reducing the interruption rate and packet loss rate.
  • Fig. 6 is a flow chart of a method for processing a connection failure according to some further embodiments. As shown in Fig. 6, the method for processing a connection failure can be used in a terminal device and includes the following steps.
  • step S410 in response to a wireless link failure, an SCG connection failure processing operation is performed according to network configuration or protocol regulations.
  • the wireless link failure may include at least one of physical layer desynchronization, random access failure, RLC (Radio Link Control) layer reaching the maximum number of retransmissions and beam failure.
  • RLC Radio Link Control
  • Physical layer desynchronization is also called physical layer failure.
  • Physical layer desynchronization may be an abnormality in which the signal quality of the physical layer is relatively poor and the signal quality of the physical layer has not improved when the timer t310 times out;
  • random access failure may be a random access failure of the MAC layer, such as reaching the maximum number of random access attempts;
  • the RLC layer reaching the maximum number of retransmissions may be the maximum RLC layer reaching the maximum number of retransmissions;
  • beam failure may be a beam failure detection mechanism detecting that a beam failure has occurred, such as the beam failure counter reaching a specified threshold value.
  • the radio link failure may also include radio resource control (RRC) connection configuration failure, integrity check failure, and exceeding the maximum uplink transmission timing difference, etc.
  • RRC radio resource control
  • the radio resource control connection configuration failure may be that the RRC connection reconfiguration message received by the terminal device exceeds the capability of the terminal device, or the terminal device cannot recognize the RRC configuration message
  • the integrity check failure may be that the integrity check corresponding to the data or control information received by the terminal device fails
  • the maximum uplink transmission timing difference may be the difference in subframe boundaries of uplink transmission between MCG and SCG when the network configures synchronous dual connection.
  • the terminal device in response to the failure of the radio link, performs SCG connection failure processing operations according to the network configuration or protocol provisions. For example, in response to the failure of the radio link, the terminal device can reestablish the SCG connection through the candidate SCG configuration.
  • the embodiments of the present disclosure provide that, in the case of determining that the SCG connection fails, the present disclosure can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby reducing interruptions and packet loss during data transmission and reception. In addition, in the case of detecting a wireless link failure, the embodiments of the present disclosure can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby more accurately processing after the connection failure and improving the success rate of reconstruction.
  • Fig. 7 is a flow chart of a method for processing a connection failure according to some other embodiments. As shown in Fig. 7, the method for processing a connection failure can be used in a terminal device, and includes the following steps.
  • step S510 in response to the SCG change failure, an SCG connection failure processing operation is performed according to the network configuration or protocol regulations.
  • the type of SCG change failure may include any of the following: a change indication sent by a network side device for making changes in multiple candidate cells; a change in cell configuration when the network configuration or protocol agreement is met.
  • the SCG change may be triggered by a change indication sent by a network side device, such as the SCG change may be triggered by DCI and/or MAC CE.
  • the SCG change may also be triggered by the terminal device when the network configuration and protocol requirements are met, such as the SCG change may be triggered when the terminal device meets an A3 event or an A5 event.
  • the terminal device in response to the SCG change failure, can perform SCG connection failure processing operations according to network configuration or protocol provisions. For example, in response to the SCG change failure, the terminal device can reestablish the SCG connection through the source SCG configuration.
  • the embodiments of the present disclosure provide that, in the case of determining that the SCG connection fails, the present disclosure can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby reducing interruptions and packet loss during data transmission and reception. In addition, in the case of detecting that the SCG change fails, the embodiments of the present disclosure can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby more accurately processing after the connection failure and improving the success rate of reconstruction.
  • Fig. 8 is a flow chart of a method for processing a connection failure according to some further embodiments. As shown in Fig. 8, the method for processing a connection failure can be used in a terminal device, and includes the following steps.
  • step S610 in response to a timer specified in the network configuration or protocol expiring, it is determined that the SCG change has failed.
  • the condition for the terminal device to determine that the SCG change has failed may be that a timer specified by the network configuration or protocol has timed out, that is, if the terminal device has not successfully accessed the target SCG within the agreed time, then the SCG change has failed. Therefore, in response to the timer specified by the network configuration or protocol having timed out, the embodiments of the present disclosure may determine that the SCG change has failed.
  • the SCG change may include any of the following: adding an SCG or changing the SCG configuration from a source SCG to a target SCG.
  • the SCG addition may be the first time a terminal device adds an SCG configuration, i.e., adding a new SCG.
  • the SCG change may include a change in the SCG configuration or a change in the configuration of a SpCell in the SCG.
  • the start condition of the timer may include any one of the following: receiving a change indication sent by a network side device and changing the configuration of the SCG based on the change indication; receiving a change indication sent by a network side device and sending feedback information to the network side device, which feedback information may be feedback on the change indication; receiving a change indication sent by a network side device and releasing the source SCG; meeting the trigger conditions agreed upon by the network configuration or protocol.
  • the terminal device can start the timer, that is, the timer starts timing.
  • the network side device can configure multiple SCG configurations for the terminal device through an RRC message.
  • the network side device can indicate the target SCG configuration that the terminal device needs to change through a DCI message, a MAC CE message or an RRC message.
  • the terminal device starts the timer after receiving the change indication, or can start the timer after changing the SCG.
  • the terminal device After receiving the change indication sent by the network side device and changing the configuration of the SCG based on the change indication, the terminal device starts the timer after sending feedback information of the change indication to the network side device, that is, the timer starts timing.
  • the feedback information may include any of the following: HARQ (Hybrid Automatic Repeat-reQuest) feedback, MAC CE feedback and RRC message feedback.
  • the network side device configures multiple SCG configurations for the terminal through an RRC message.
  • the network side device can indicate the target SCG configuration that needs to be changed to the terminal device through a DCI message, a MAC CE message or an RRC message.
  • the terminal device can send feedback information for the change indication, and the terminal can start the timer after sending the feedback information of the change indication.
  • the terminal device can send the feedback information to the source SCG or source MCG.
  • the network side device here can be the source SCG or source MCG.
  • the change indication information sent by the network side device can be sent by the source SCG or source MCG, and the feedback information of the terminal device can also be sent through the source SCG or source MCG.
  • the change indication is used to indicate the target SCG configuration in one or more preconfigured SCGs.
  • the change indication can be transmitted via a MAC CE message, a DCI message, or an RRC message.
  • the terminal device after receiving the change indication sent by the network side device and changing the configuration of the SCG based on the change indication, the terminal device starts the timer after releasing the source SCG, that is, the timer starts timing.
  • the network side device configures multiple SCG configurations for the terminal through an RRC message.
  • the network side device can indicate the target SCG configuration that the terminal device needs to change through a DCI message, a MAC CE message or an RRC message.
  • the terminal device After receiving the change indication, the terminal device can release the source SCG, that is, prepare to access the target SCG. After releasing the source SCG, the terminal device can start the timer.
  • the terminal device may start the timer when the triggering condition of the network configuration or the protocol counterpart is met.
  • the terminal device may start the timer after determining that the measurement data meets the A3 event or the A5 event.
  • the embodiments of the present disclosure provide that, in the case of determining that the SCG connection fails, the present disclosure can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby reducing interruptions and packet loss during data transmission and reception.
  • the embodiments of the present disclosure determine that the SCG change fails when a timer timeout is detected, which can more simply and effectively determine whether the SCG change fails.
  • Fig. 9 is a flow chart of a method for processing a connection failure according to some other embodiments. As shown in Fig. 9, the method for processing a connection failure can be used in a terminal device, and includes the following steps.
  • step S710 in response to the timer configured by the network or agreed upon by the protocol stopping, it is determined that the SCG change is successful.
  • stopping of the timer may indicate that the SCG change is successful, wherein the stopping condition of the timer may include any one of the following: receiving the first configuration information sent by the network side device; successfully accessing the target SCG.
  • the terminal device can determine whether the SCG change is successful based on a timer. When the timer meets the start condition and stops without timing out, it can be determined that the SCG change is successful.
  • the specific implementation of the start condition has been described in detail in the above embodiment and will not be repeated here.
  • the disclosed embodiment provides that, in the case of determining that the SCG connection fails, the disclosed embodiment can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby reducing interruptions and packet loss during data transmission and reception.
  • the disclosed embodiment can determine that the SCG change is successful when the timer stops, thereby more simply and effectively determining whether the SCG change is successful.
  • Fig. 10 is a flow chart of a method for processing a connection failure according to some further embodiments. As shown in Fig. 10, the method for processing a connection failure can be used in a terminal device, and includes the following steps.
  • step S810 in response to receiving the first configuration information sent by the network side device, it is determined that the SCG change is successful.
  • the terminal device if it receives the first configuration information sent by the network side device, it can determine that the SCG change is successful, that is, in response to receiving the first configuration information sent by the network side device, the terminal device can determine that the SCG change is successful.
  • the first configuration information may include any one of the following: a new target MCG configuration or a new SCG configuration; an SCG deletion indication; an RRC connection release indication.
  • the new target MCG configuration may include switching configuration information for initiating MCG change; the new target SCG configuration may include SCG change configuration information for initiating SCG change.
  • the target SCG in the embodiment of the present disclosure may be a PSCell corresponding to the target SCG.
  • the terminal device can perform the SCG deletion operation based on the SCG deletion indication, that is, the terminal device can delete the SCG configuration corresponding to the source cell according to the SCG deletion indication.
  • the terminal device can also release the RRC connection based on the RRC connection release indication.
  • the embodiments of the present disclosure provide that, in the case of determining that the SCG connection fails, the present disclosure can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby reducing interruptions and packet loss during data transmission and reception. In addition, in the case of receiving the first configuration information sent by the network side device, the embodiments of the present disclosure determine that the SCG change is successful, thereby more accurately and effectively determining whether the SCG change is successful.
  • Fig. 11 is a flow chart of a method for processing a connection failure according to some other embodiments. As shown in Fig. 11, the method for processing a connection failure can be used in a terminal device, and includes the following steps.
  • step S910 in response to successfully accessing the target SCG, it is determined that the SCG change is successful.
  • the terminal device can determine that the SCG change is successful.
  • the judgment condition for successfully accessing the target SCG includes any one of the following: receiving feedback information on the success of the random access process sent by the network side device; receiving feedback information on the successful access to the target SCG sent by the network side device; receiving downlink data transmission sent by the network side device; receiving a new transmission (new transmission) scheduled by the network side device.
  • the new transmission scheduled by the network side device can be a new data transmission of the HARQ process, which can correspond to a retransmission (retransmission).
  • the network side device may be a target SCG. Similar to the above embodiment, the target SCG here may also be a PSCell corresponding to the target SCG.
  • the terminal device detects that its random access process in the target SCG is successful, it is determined that the target SCG is successfully accessed. For example, when the terminal device receives feedback information of the random access process and the contention is resolved, it is determined that the target SCG is successfully accessed.
  • the feedback information at this time may include Msg4 or MsgB, where Msg4 corresponds to a 4-step random access process and MsgB corresponds to a 2-step random access process.
  • the terminal device receives feedback information of successful access to the target SCG sent by the network side device, it is determined that the target SCG is successfully accessed.
  • the network side device may indicate feedback information of successful access to the target SCG through a MAC CE or RRC message.
  • the terminal device receives a downlink data transmission sent by the target SCG, it determines that the target SCG is successfully accessed.
  • the downlink transmission may be a downlink transmission indicated by the terminal device identifier.
  • the downlink transmission may be a downlink transmission indicated by a C-RNTI (Cell Radio Network Temporary Identifier).
  • the terminal device receives a new transmission scheduled by the network side device, it determines that the target SCG is successfully accessed.
  • the new transmission scheduled by the network side device includes at least one of the following: uplink transmission and/or downlink transmission; a new transmission indicated by an identifier of the terminal device, such as a new data transmission indicated by a C-RNTI.
  • the new transmission scheduled by the network side device may include the new data transmission of the HARQ process.
  • the feedback information of the success of the random access process or the feedback information of the success of the target SCG access may be transmitted through MAC CE or RRC message.
  • MAC CE may include any of the following: MAC subheader; n-bit content of the first MAC PDU sent by the terminal device in the target cell; n-bit content in the predefined content.
  • the MAC CE may be a MAC CE that includes only a MAC subheader.
  • the MAC CE may include n bits of content of the first MAC PDU sent by the terminal device in the target cell.
  • the content of the MAC CE may be 48 bits of content in the first MAC PDU sent by the terminal device in the target cell.
  • the MAC CE may also include n bits of predefined content.
  • the content of the MAC CE may be 48 bits of predefined content, and the values of all bits may be "0" or "1".
  • the disclosed embodiment provides that, in the case of determining that the SCG connection fails, the disclosed embodiment can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby reducing interruptions and packet loss during data transmission and reception. In addition, in the case of successfully accessing the target SCG, the disclosed embodiment determines that the SCG change is successful, thereby more accurately and effectively determining whether the SCG change is successful.
  • Fig. 12 is a flow chart of a method for processing a connection failure according to some further embodiments. As shown in Fig. 12, the method for processing a connection failure can be used in a terminal device, and includes the following steps.
  • step S1010 in response to the SCG connection failure, report information is sent to the network side device through the MCG.
  • the terminal device in response to the SCG connection failure, may send a report message to the network side device through the MCG, and the report message is used to notify the network side device of the SCG connection failure.
  • the terminal device may report the SCG connection failure information through the SRB1 (Signalling Radio Bearer) of the MCG.
  • the embodiment of the present disclosure can perform an MCG connection recovery operation, that is, in response to the MCG being unavailable, the terminal device can perform an MCG connection recovery operation.
  • the MCG connection recovery operation may include any one of the following: RRC connection reconstruction; reconstruction through candidate MCG configuration, that is, the terminal device can be reconstructed through the candidate MCG configuration; reconstruction through source MCG configuration, that is, the terminal device can be reconstructed through the source MCG configuration.
  • MCG connection failure is similar to SCG connection failure, which may include any one of wireless link failure and MCG change failure.
  • the embodiment of the present disclosure may be provided with a number of candidate cell configuration reconstructions, which may be a network configuration or protocol agreement.
  • the maximum number of candidate cell configuration reconstructions may be n times, where n may be an integer, such as 1.
  • the report information includes at least one of the following: connection failure type; connection failure configuration indication information; connection failure cell indication; connection failure cell group indication.
  • the connection failure type may include radio link failure and SCG change failure, wherein the SCG change type corresponding to the SCG change failure is "indicating the target SCG configuration in one or more pre-configured SCG configurations" to perform SCG change;
  • the connection failure configuration indication information may include the configuration identifier of the candidate cell where the connection failed, if the terminal has multiple candidate cell configurations, the terminal device may report the configuration identifier of the cell where the connection failed;
  • the connection failure cell indication may include the identifier of the candidate cell where the connection failed;
  • the connection failure cell group indication may be used to indicate the type of cell group where the connection failed, for example, the connection failure cell group indication may be used to indicate that the type of cell group where the connection failed is SCG.
  • the embodiments of the present disclosure provide that, in the case of determining that the SCG connection fails, the present disclosure can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby reducing interruptions and packet loss during data transmission and reception.
  • the embodiments of the present disclosure can send report information through MCG, which can further reduce the interruption rate and packet loss rate during data transmission and reception.
  • Fig. 13 is a flow chart of a method for processing a connection failure according to some other embodiments. As shown in Fig. 13, the method for processing a connection failure can be used in a terminal device, and includes the following steps.
  • step S1110 in response to the SCG connection failure, the SCG connection is reestablished.
  • the terminal device in response to an SCG connection failure, can re-establish the SCG connection, that is, in the case of detecting an SCG connection failure, the terminal device can rebuild the SCG connection. Specifically, the terminal device can rebuild the SCG connection through a candidate SCG configuration, that is, the terminal device can rebuild through a candidate SCG configuration. In this process, the terminal device can first obtain the type of SCG connection failure. If the type of SCG connection failure is a wireless link failure, the terminal device can rebuild the SCG connection through a candidate SCG configuration. The main reason is that the wireless link failure usually occurs at the time of the change. In this case, the link quality of the source SCG is very poor.
  • the embodiment of the present disclosure can rebuild the SCG connection through a candidate SCG configuration.
  • the terminal device can also rebuild the SCG connection through the source SCG configuration, that is, the terminal device can rebuild through the source SCG configuration.
  • the terminal device can first obtain the type of SCG connection failure. If the type of SCG connection failure is SCG change failure, the terminal device can rebuild the SCG connection through the source SCG configuration. The main reason is that the SCG change is to disconnect or release the source SCG and initiate a connection with the target cell to access the new SCG.
  • the connection can be established through the previous configuration, that is, in the case where the type of SCG connection failure is SCG change failure, the embodiment of the present disclosure can rebuild the SCG connection through the source SCG configuration.
  • the terminal device can also send report information to the successfully re-established SCG.
  • the report information is similar to the report information sent through the MCG in the above embodiment, so it will not be repeated here.
  • the embodiments of the present disclosure provide that, in the case of determining that the SCG connection fails, the present disclosure can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby reducing interruptions and packet loss during data transmission and reception.
  • the embodiments of the present disclosure can re-establish the SCG connection based on the type of connection failure, thereby improving the success probability of reconstruction to a certain extent.
  • Fig. 14 is a flow chart of a method for processing a connection failure according to some embodiments. As shown in Fig. 14, the method for processing a connection failure can be used in a network side device, and includes the following steps.
  • step S1210 a network configuration is sent to the terminal device, where the network configuration is used to perform an SCG connection failure processing operation when an SCG connection failure occurs in the terminal device.
  • the network configuration may include connection failure detection configuration information, wherein the connection failure detection configuration information is used to assist the terminal device in determining whether the SCG connection has failed.
  • the network side device may send a change indication to the terminal device, and the change indication may be used to instruct the terminal device to perform an SCG change, that is, the change indication may be used to indicate a target SCG configuration in one or more pre-configured SCG configurations.
  • the network side device may receive feedback information from the terminal device, and the feedback information may be feedback on the change indication.
  • the network side device may send the first configuration information to the terminal device.
  • the first configuration information may include any one of the following: a new target MCG configuration or a new SCG configuration; an SCG deletion indication; or an RRC connection release indication.
  • the network side device may send feedback information of successful random access process to the terminal device; or, the network side device may send feedback information of successful access to the target SCG to the terminal device; or, the network side device may send downlink data transmission to the terminal device; or, the network side device may send a new transmission scheduled by the network side device to the terminal device.
  • the network side device can send a network configuration to the terminal device.
  • the network configuration can be used to perform SCG connection failure processing operations when an SCG connection failure occurs in the terminal device, thereby reducing data transmission and reception interruptions and packet loss.
  • Fig. 15 is a block diagram of a device 1300 for processing after a connection failure according to some embodiments.
  • the device 1300 for processing after a connection failure is applied to a terminal device, and the device 1300 for processing after a connection failure may include a failure processing module 1310 .
  • the failure processing module 1310 is configured to respond to an SCG connection failure and perform SCG connection failure processing operations according to network configuration or protocol regulations.
  • the processing device 1300 after the connection failure may further include:
  • a configuration receiving module configured to receive the network configuration from a network side device, wherein the network configuration includes connection failure detection configuration information
  • a determination module is configured to determine whether the SCG connection fails based on the connection failure detection configuration information.
  • the SCG connection failure includes at least one of the following:
  • the wireless link fails
  • condition for SCG change failure includes timer expiration specified in the network configuration or protocol.
  • the start condition of the timer includes any one of the following:
  • the triggering conditions stipulated in the network configuration or protocol are met.
  • the change indication is used to indicate a target SCG configuration among one or more pre-configured SCG configurations.
  • the feedback information includes at least one of HARQ feedback, MAC CE feedback, and RRC message feedback.
  • the timer stopping indicates that the SCG change is successful, and the timer stopping condition includes any one of the following:
  • the first configuration information includes any one of the following:
  • New target MCG configuration or new SCG configuration are New target MCG configuration or new SCG configuration
  • the judgment condition for successfully accessing the target SCG includes any one of the following:
  • a new transmission scheduled by the network side device is received.
  • the new transmission scheduled by the network side device includes at least one of the following:
  • the new transmission scheduled by the network side device includes new data transmission of a HARQ process.
  • feedback information on the success of the random access process or feedback information on the success of the target SCG access is transmitted via MAC CE or RRC message.
  • the MAC CE includes any one of the following:
  • the wireless link failure includes at least one of physical layer desynchronization, random access failure, RLC layer reaching the maximum number of retransmissions, and beam failure.
  • the SCG change includes any one of the following:
  • the SCG change includes adding an SCG or changing the SCG configuration from a source SCG to a target SCG.
  • the failure handling module 1310 may include:
  • the report information sending submodule is configured to send report information to the network side device through the MCG, and the report information is used to notify the network side device of the SCG connection failure.
  • the processing device 1300 after the connection failure may further include:
  • the MCG recovery module is configured to perform the MCG connection recovery operation when the MCG is unavailable.
  • the MCG connection recovery operation includes any one of the following:
  • the report information includes at least one of the following:
  • the failure handling module 1310 may include:
  • the reconnection submodule is configured to reestablish the SCG connection.
  • the reconnection submodule may be configured to reestablish the SCG connection through a candidate SCG configuration; or to reestablish the SCG connection through a source SCG configuration.
  • the embodiments of the present disclosure provide that, in the event that an SCG connection failure is determined, the present disclosure can perform SCG connection failure processing operations according to network configuration or protocol provisions, thereby reducing interruptions and packet losses during data transmission and reception.
  • Fig. 16 is a block diagram of a post-connection failure processing device 1400 according to some embodiments.
  • the post-connection failure processing device 1400 is applied to a network side device, and the post-connection failure processing device 1400 may include a sending module 1410 .
  • the sending module 1410 is configured to send a network configuration to a terminal device, where the network configuration is used to perform an SCG connection failure processing operation when an SCG connection failure occurs in the terminal device.
  • the network configuration includes connection failure detection configuration information, and the connection failure detection configuration information is used to assist the terminal device in determining whether the SCG connection has failed.
  • the processing device 1400 after the connection failure may further include:
  • the change indication sending module is configured to send a change indication to the terminal device, and the change indication is used to instruct the terminal device to execute the SCG change.
  • the processing device 1400 after the connection failure may further include:
  • the feedback information receiving module is configured to receive feedback information from the terminal device, where the feedback information is feedback on the change indication.
  • the processing device 1400 after the connection failure may further include:
  • the configuration information sending module is configured to send first configuration information to the terminal device.
  • the first configuration information includes any one of the following:
  • New target MCG configuration or new SCG configuration are New target MCG configuration or new SCG configuration
  • the processing device 1400 after the connection failure may further include:
  • a first feedback information sending module is configured to send feedback information of success of a random access process to the terminal device;
  • a first feedback information sending module is configured to send feedback information of successful access to the target SCG to the terminal device;
  • a downlink data transmission module configured to send downlink data transmission to the terminal device
  • the new transmission data sending module is configured to send the new transmission scheduled by the network side device to the terminal device.
  • the network side device can send a network configuration to the terminal device.
  • the network configuration can be used to perform SCG connection failure processing operations when an SCG connection failure occurs in the terminal device, thereby reducing data transmission and reception interruptions and packet loss.
  • the present disclosure also provides a computer-readable storage medium on which computer program instructions are stored.
  • the program instructions are executed by a processor, the steps of the method for processing after a connection failure provided by the present disclosure are implemented.
  • the terminal device 1500 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, a smart car, etc.
  • the terminal device 1500 may include one or more of the following components: a first processing component 1502 , a first memory 1504 , a first power component 1506 , a multimedia component 1508 , an audio component 1510 , a first input/output interface 1512 , a sensor component 1514 , and a communication component 1516 .
  • the first processing component 1502 generally controls the overall operation of the terminal device 1500, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the first processing component 1502 may include one or more first processors 1520 to execute instructions to complete all or part of the steps of the above-mentioned processing method after the connection failure.
  • the first processing component 1502 may include one or more modules to facilitate the interaction between the first processing component 1502 and other components.
  • the first processing component 1502 may include a multimedia module to facilitate the interaction between the multimedia component 1508 and the first processing component 1502.
  • the first memory 1504 is configured to store various types of data to support operations on the terminal device 1500. Examples of such data include instructions for any application or method operating on the terminal device 1500, contact data, phone book data, messages, pictures, videos, etc.
  • the first memory 1504 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the first power supply component 1506 provides power to various components of the terminal device 1500.
  • the first power supply component 1506 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to the terminal device 1500.
  • the multimedia component 1508 includes a screen that provides an output interface between the terminal device 1500 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1508 includes a front camera and/or a rear camera. When the terminal device 1500 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and the rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 1510 is configured to output and/or input audio signals.
  • the audio component 1510 includes a microphone (MIC), and when the terminal device 1500 is in an operation mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the first memory 1504 or sent via the communication component 1516.
  • the audio component 1510 also includes a speaker for outputting audio signals.
  • the first input/output interface 1512 provides an interface between the first processing component 1502 and a peripheral interface module, which may be a keyboard, a click wheel, buttons, etc. These buttons may include but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor assembly 1514 includes one or more sensors for providing various aspects of status assessment for the terminal device 1500.
  • the sensor assembly 1514 can detect the open/closed state of the terminal device 1500, the relative positioning of the components, such as the display and keypad of the terminal device 1500, and the sensor assembly 1514 can also detect the position change of the terminal device 1500 or a component of the terminal device 1500, the presence or absence of contact between the user and the terminal device 1500, the orientation or acceleration/deceleration of the terminal device 1500, and the temperature change of the terminal device 1500.
  • the sensor assembly 1514 may include a proximity sensor configured to detect the presence of a nearby object without any physical contact.
  • the sensor assembly 1514 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1514 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 1516 is configured to facilitate wired or wireless communication between the terminal device 1500 and other devices.
  • the terminal device 1500 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1516 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 1516 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the terminal device 1500 can be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic components to execute the above-mentioned processing method after connection failure.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors or other electronic components to execute the above-mentioned processing method after connection failure.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a first memory 1504 including instructions, and the instructions can be executed by the first processor 1520 of the terminal device 1500 to complete the above-mentioned processing method after the connection failure.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • the above-mentioned device can also be a part of an independent electronic device.
  • the device can be an integrated circuit (IC) or a chip, wherein the integrated circuit can be an IC or a collection of multiple ICs; the chip can include but is not limited to the following types: GPU (Graphics Processing Unit), CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit), SOC (System on Chip, SoC), etc.
  • the above-mentioned integrated circuit or chip can be used to execute executable instructions (or codes) to implement the above-mentioned processing method after connection failure.
  • the executable instructions can be stored in the integrated circuit or chip, or can be obtained from other devices or equipment, such as the integrated circuit or chip includes a processor, a memory, and an interface for communicating with other devices.
  • the executable instruction can be stored in the memory, and when the executable instruction is executed by the processor, the above-mentioned processing method after the connection failure is implemented; alternatively, the integrated circuit or chip can receive the executable instruction through the interface and transmit it to the processor for execution, so as to implement the above-mentioned processing method after the connection failure.
  • a computer program product is further provided.
  • the computer program product includes a computer program executable by a programmable device, and the computer program has a code portion for executing the above-mentioned method for processing after a connection failure when executed by the programmable device.
  • FIG18 is a block diagram of a network side device according to an exemplary embodiment.
  • the network side device 1600 may be provided as a server.
  • the network side device 1600 includes a second processing component 1622, which further includes one or more processors, and a memory resource represented by a second memory 1632 for storing instructions executable by the second processing component 1622, such as an application.
  • the application stored in the second memory 1632 may include one or more modules, each corresponding to a set of instructions.
  • the second processing component 1622 is configured to execute instructions to execute a processing method after a connection failure.
  • the network side device 1600 may further include a second power supply component 1626 configured to perform power management of the network side device 1600, a wired or wireless network interface 1650 configured to connect the network side device 1600 to a network, and a second input/output interface 1658.
  • the network side device 1600 may operate based on an operating system stored in the memory 1632, such as Windows Server TM , Mac OS X TM , Unix TM , Linux TM , FreeBSD TM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种连接失败后的处理方法、装置、终端设备以及网络侧设备,所述方法包括:响应于SCG连接失败,根据网络配置或协议规定执行SCG连接失败处理操作。本公开在检测到SCG连接失败的情况下通过执行SCG连接失败处理操作能够减少数据收发过程中的中断和丢包。

Description

连接失败后的处理方法、装置、终端设备以及网络侧设备 技术领域
本公开涉及通信技术领域,尤其涉及一种连接失败后的处理方法、装置、终端设备以及网络侧设备。
背景技术
双连接(Dual Connectivity,DC)是指终端设备(User Equipment,UE)可以在两个小区组同时建立连接,这两个小区组分别为主小区组(Master Cell Group,MCG)和辅小区组(Secondary Cell Group,SCG)。MCG中包括主小区(Primary Cell,PCell)和辅小区(Secondary Cell,SCell);SCG中包括主辅小区(Primary SCG Cell,PSCell)和SCell。其中,PCell和PSCell可以统称为SpCell(Special Cell,特殊小区)。在终端设备发生SCG连接失败的情况下,具体如何进行处理目前相关技术中并未讨论。
发明内容
为克服相关技术中存在的问题,本公开提供一种连接失败后的处理方法、装置、终端设备以及网络侧设备。
根据本公开实施例的第一方面,提供一种连接失败后的处理方法,应用于终端设备,所述方法包括:
响应于SCG连接失败,根据网络配置或协议规定执行SCG连接失败处理操作。
根据本公开实施例的第二方面,提供一种连接失败后的处理方法,应用于网络侧设备,所述方法包括:
向终端设备发送网络配置,所述网络配置用于在终端设备发生SCG连接失败的情况下执行SCG连接失败处理操作。
根据本公开实施例的第三方面,提供一种连接失败后的处理装置,应用于终端设备,所述装置包括:
失败处理模块,配置为响应于SCG连接失败,根据网络配置或协议规定执行SCG连接失败处理操作。
根据本公开实施例的第四方面,提供一种连接失败后的处理装置,所述装置应用于网络侧设备,所述装置包括:
发送模块,配置为向终端设备发送网络配置,所述网络配置用于在终端设备发生SCG连接失败的情况下执行SCG连接失败处理操作。
根据本公开实施例的第五方面,提供一种终端设备,包括:
第一处理器;
用于存储第一处理器可执行指令的第一存储器;
其中,所述第一处理器被配置为执行所述可执行指令,以实现本公开第一方面所提供的连接失败后的处理方法。
根据本公开实施例的第六方面,提供一种网络侧设备,包括:
第二处理器;
用于存储第二处理器可执行指令的第二存储器;
其中,所述第二处理器被配置为执行所述可执行指令,以实现本公开第二方面所提供的连接失败后的处理方法。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开第一方面或第二方面所提供的连接失败后 的处理方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:在确定SCG连接失败的情况下,本公开可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够减少数据收发过程中的中断和丢包。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据一些实施例示出的一种连接失败后的处理方法所适用的应用场景。
图2是根据一些实施例示出的一种连接失败后的处理方法的流程图。
图3是根据另一些实施例示出的一种连接失败后的处理方法的流程图。
图4是根据另一些实施例示出的一种连接失败后的处理方法的通信时序图。
图5是根据又一些实施例示出的一种连接失败后的处理方法的流程图。
图6是根据再一些实施例示出的一种连接失败后的处理方法的流程图。
图7是根据又一些实施例示出的一种连接失败后的处理方法的流程图。
图8是根据再一些实施例示出的一种连接失败后的处理方法的流程图。
图9是根据又一些实施例示出的一种连接失败后的处理方法的流程图。
图10是根据再一些实施例示出的一种连接失败后的处理方法的流程图。
图11是根据又一些实施例示出的一种连接失败后的处理方法的流程图。
图12是根据再一些实施例示出的一种连接失败后的处理方法的流程图。
图13是根据又一些实施例示出的一种连接失败后的处理方法的流程图。
图14是根据一些实施例示出的一种连接失败后的处理方法的流程图。
图15是根据一些实施例示出的一种连接失败后的处理装置的框图。
图16是根据一些实施例示出的一种连接失败后的处理装置的框图。
图17是根据一些实施例示出的一种终端设备的框图。
图18是根据一些实施例示出的一种网络侧设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
为便于理解本公开实施例,以下对本公开实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备
终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。作为一种方式,终端设备可以包括终端设备(user equipment,UE)、无线终端设备、移动终端设备、或用户装备(user device)等。
2)网络侧设备
网络侧设备又称为无线接入网设备,该网络侧设备是一种将终端设备接入到无线网络 的设备,其既可以包括接入网设备,也可以包括核心网设备,还可以包括服务供应商的设备(如服务器)等。例如,网络侧设备包括但不限于:传输点(transmission and reception point,TRP)、基站(如,gNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、BTS(base transceiver station)、HeNB(home evolved NodeB),或HNB(home NodeB)、基带单元(baseband unit,BBU)等。
3)双连接架构
一种网络架构,在DC架构中,处于连接态的终端设备可以与至少两个不同的接入网设备同时保持连接和通信,能够利用两个不同的接入网设备的无线资源,两个不同的接入网设备中一个为主节点(Master Node、Main Node或者Primary Node,MN或者PN),另一个为辅节点(Secondary Node,SN),MN和SN与相同的核心网设备连接。相较于SN,MN能够为终端设备提供接入网络的信令控制功能。在MN侧的小区组为主小区组,MCG包括一个主小区(PCell)和M个辅小区(SCell),M≥0。在SN侧的小区组为辅小区组和N个辅小区,N≥0。
其中,PCell是终端设备在MN一侧初始接入的小区,MCG中PCell和SCell工作在不同的载波上,通过载波聚合(Carrier aggregation,CA)技术联合在一起。同样的,PSCell是终端设备在SN一侧初始接入的小区,SCG中的PSCell和SCell工作在不同的载波上,通过CA技术联合在一起。
4)动态小区变更
在5G***中,网络侧设备可以给终端设备提供多个候选小区,且网络侧设备可以通过L1信令或L2信令控制终端设备在多个候选小区进行变更。其中,L1信令可以为下行控制信息(Downlink Control Information,DCI),L2信令可以为MAC(Medium Access Control,媒体接入控制)CE(Control Element,控制单元)信令。作为一个示例,多个候选小区可以包括候选小区-1和候选小区-2,在控制终端设备在多个候选小区进行变更时,能够将服务小区从候选小区-1变更为候选小区-2。一个服务小区可以对应一个或多个候选小区。
终端设备可以基于网络侧设备发送的预配置条件以及和配置条件对应的预配置小区进行小区的变更,该变更过程可以称作是基于条件触发的移动性过程。具体的,当终端设备满足预配置条件时,本公开可以将服务小区变更为预配置的小区。其中,基于条件触发的移动性过程可以包括CHO(Conditional Handover,条件切换)、CPA(Conditional PSCell Addition,条件主辅小区添加)以及CPC(Conditional PSCell Change,条件主辅小区变更)。
另外,终端设备也可以根据网络指示,进行小区的变更,具体的,在满足预配置条件后,终端设备可以对特定小区的配置进行变更。例如,终端设备可以将PCell配置从候选小区配置-1变更为候选小区配置-2。
目前终端设备在进行动态小区变更的时候,在发生SCG连接失败的情况时,无法对SCG进行恢复处理,也无法很好的对SCG连接失败进行检测。
为了解决上述问题,本公开实施例提供的一种连接失败后的处理方法、装置、终端设备以及网络侧设备,以减少数据收发过程中的中断和丢包。
下面对本实施例提供的一种连接失败后的处理方法的应用环境进行说明,如图1所示,该应用环境可以包括终端设备01和网络侧设备02,其中,终端设备01与网络侧设备02可以通过有线或者无线的方式进行连接。
其中,终端设备01可以是移动台(mobile station,MS)或者移动终端(mobile terminal,MT)等。具体的,终端设备01可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑,还可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智能家居、车载终端等。
网络侧设备02可以包括接入网设备,也可以包括核心网设备,还可以包括服务供应商的设备(如服务器)等,不予限制。网络侧设备02主要用于实现终端设备01的资源调度、无线资源管理、无线接入控制等功能。具体的,网络侧设备02可以为小型基站、无线接入点、收发点(transmission and reception point,TRP)、传输点(transmission point,TP)以及某种其它接入节点中的任一节点。
图2是根据一些实施例示出的一种连接失败后的处理方法的流程图。如图2所示,该连接失败后的处理方法可以用于终端设备中,包括以下步骤。
在步骤S110中,响应于SCG连接失败,根据网络配置或协议规定执行SCG连接失败处理操作。
在一些实施方式中,终端设备可以响应于SCG连接失败,根据网络配置或协议规定执行SCG连接失败处理操作。其中,网络配置可以是网络侧设备在进行小区变更时预先发送给终端设备的。另外,协议规定可以是终端设备在出厂之前约定好的一个配置信息。
作为一种可选地方式,在检测到SCG连接失败的情况下,终端设备可以根据网络配置或协议规定执行SCG连接失败处理操作。
作为一个具体的实施方式,响应于SCG连接失败终端设备可以通过MCG向网络侧设备发送报告信息。可选地,终端设备也可以对SCG连接进行重建,即重建SCG连接。
需要说明的是,终端设备在进行SCG连接之前,其也可以从网络侧设备处接收一个或多个候小区配置,其中,一个或多个候选小区配置可以是通过RRCReconfiguration消息传输。
在一些实施方式中,网络侧设备可通过信令控制终端设备在多个候选小区进行变更,即终端设备在从网络侧设备处接收到信令后可以基于一个或多个候选小区配置实现小区的变更,即根据接收到的信令在多个候选小区中进行变更。其中,信令可以为小区变更指示。这里的小区可以是SCG中的小区。
作为一个示例,终端设备在接收到网络侧设备发送的L1信令或L2信令后,可根据一个或多个候选小区配置对终端设备的小区进行切换。例如,终端设备可以将工作的小区从候选小区-1变更为候选小区-2。
在另一些实施方式中,在满足网络配置或协议规定的触发条件的时候,终端设备可以基于一个或多个候选小区配置将服务小区的配置变更为候选小区的配置。例如,在确定测量数据满足A3事件或A5事件的时候,终端设备可以将服务MCG配置变更为候选MCG配置。与上面类似,这里的候选小区可以是SCG中的小区。
需要说明的是,本公开实施例中的小区也可以为小区组。例如,在进行小区变更时,终端设备可以将工作的小区变更为目标小区。又如,在进行小区变更时,终端设备可以将工作的小区组变更为目标小区组。
换句话说,本公开实施例中的小区可以是SCG中的主辅小区,也可以是SCG中的所有小区。因此,SCG连接失败可以是SCG中的主辅小区连接失败,也可以是SCG中的所有小区均连接失败。
另需说明的是,本公开实施例中的SCG连接失败的类型可以包括无线链路失败和SCG变更失败等。
本公开实施例规定了,在确定SCG连接失败的情况下,本公开可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够减少数据收发过程中的中断和丢包。
图3是根据另一些实施例示出的一种连接失败后的处理方法的流程图。如图3所示,该连接失败后的处理方法可以用于终端设备中,包括以下步骤。
在步骤S210中,从网络侧设备处接收网络配置。
作为一种可选地方式,终端设备可以从网络侧设备处接收网络配置,该网络配置可以 包括连接失败检测配置信息,其中,连接失败检测配置信息可以通过L1信令或L2信令传输,终端设备可以基于所述连接失败检测配置信息确定SCG的连接是否失败,即进入步骤S220。
在步骤S220中,基于连接失败检测配置信息确定所SCG连接是否失败。
在一些实施方式中,终端设备接收到连接失败检测配置后,其可以基于所述连接失败检测配置确定SCG连接是否失败。作为一个示例,连接失败检测配置可以包括SCG变更的定时器时长配置。如果确定SCG连接失败,终端设备可以执行SCG连接失败处理操作。另外,确定SCG连接失败后,终端设备也可以对SCG连接失败事件进行记录,或者也可以输出SCG连接失败提示等。
作为另一个示例,本公开实施例也可以确定终端设备是否在约定的时间内成功接入目标SCG,如果终端设备未在约定的时间内成功接入目标SCG,则可以确定SCG连接失败。
图4是根据另一些实施例示出的一种连接失败后的处理方法的通信时序图。如图4所示,终端设备可以从网络侧设备处接收连接失败检测配置信息,在此基础上,终端设备可以基于该连接失败检测配置信息确定SCG连接是否失败。
需要说明的是,利用“或”隔开的多个实施例或是特征,即使其中一些特征是不可实现的,也不会对其他方案造成影响。另外,在不矛盾的情况下,本公开实施例可以与其他用于终端设备的连接失败后的处理方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例规定了,在确定SCG连接失败的情况下,本公开可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够减少数据收发过程中的中断和丢包。另外,本公开实施例可以基于连接失败检测配置信息确定SCG连接是否失败,如此可以更准确的进行连接失败后的处理。
图5是根据又一些实施例示出的一种连接失败后的处理方法的流程图。如图5所示,该连接失败后的处理方法可以用于终端设备中,包括以下步骤。
在步骤S310中,从网络侧设备处接收网络配置。
在步骤S320中,基于连接失败检测配置信息确定所SCG连接是否失败。
其中,步骤S310和步骤S320的具体实施方式上述实施例已进行了详细描述,这里就不再进行赘述。
在步骤S320中,响应于SCG连接失败,根据网络配置或协议规定执行SCG连接失败处理操作。
作为一种可选地方式,基于连接失败检测配置信息若确定SCG连接失败,则本公开实施例可以根据网络配置或协议规定执行SCG连接失败处理操作。换句话说,终端设备可以响应于SCG连接失败,并根据网络配置或协议规定执行SCG连接失败处理操作。
另外,基于连接失败检测配置若确定SCG连接成功,终端设备则可以与连接成功的SCG进行数据的传输。
需要说明的是,利用“或”隔开的多个实施例或是特征,即使其中一些特征是不可实现的,也不会对其他方案造成影响。另外,在不矛盾的情况下,本公开实施例可以与其他用于终端设备的连接失败后的处理方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例规定了,在确定SCG连接失败的情况下,本公开可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够减少数据收发过程中的中断和丢包。另外,本公开实施例基于连接失败检测配置信息确定SCG连接失败后,能够对连接失败的SCG进行处理,如此可以进一步降低中断率和丢包率。
图6是根据再一些实施例示出的一种连接失败后的处理方法的流程图。如图6所示, 该连接失败后的处理方法可以用于终端设备中,包括以下步骤。
在步骤S410中,响应于无线链路失败,根据网络配置或协议规定执行SCG连接失败处理操作。
本公开实施例中,无线链路失败可以包括物理层失步、随机接入失败、RLC(Radio Link Control,无线链路层控制协议)层达到最大重传次数和波束失败中的至少一个。
其中,物理层失步也称作是物理层失败,物理层失步可以是物理层的信号质量比较差且定时器t310超时的情况下物理层信号质量仍未变好的异常;随机接入失败可以是MAC层的随机接入失败,如达到最大随机接入尝试次数;RLC层达到最大重传次数可以是最大RLC层达到最大重传次数;波束失败可以是波束失败检测机制检测到发生了波束失败,如波束失败计数器达到指定门限值。
可选地,无线链路失败还可以包括无线资源控制(Radio Resource Control,RRC)连接配置失败、完整性检测失败以及超出最大上行传输定时差等。其中,无线资源控制连接配置失败可以是终端设备接收到的RRC连接重配置消息超过终端设备的能力,或终端设备无法识别该RRC配置消息;完整性检测失败可以是终端设备接收到的数据或控制信息对应的完整性检测无法通过;最大上行传输定时差可以为网络配置同步双连接的时候,MCG和SCG之间的上行传输的子帧边界的差值。
作为一种可选地方式,响应于无线链路失败,终端设备根据网络配置或协议规定执行SCG连接失败处理操作。例如,响应于无线链路失败,终端设备可以通过候选SCG配置来重建SCG连接。
需要说明的是,利用“或”隔开的多个实施例或是特征,即使其中一些特征是不可实现的,也不会对其他方案造成影响。另外,在不矛盾的情况下,本公开实施例可以与其他用于终端设备的连接失败后的处理方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例规定了,在确定SCG连接失败的情况下,本公开可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够减少数据收发过程中的中断和丢包。另外,本公开实施例检测到无线链路失败的情况下可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够更准确的进行连接失败后的处理,同时可以提高重建的成功率。
图7是根据又一些实施例示出的一种连接失败后的处理方法的流程图。如图7所示,该连接失败后的处理方法可以用于终端设备中,包括以下步骤。
在步骤S510中,响应于SCG变更失败,根据网络配置或协议规定执行SCG连接失败处理操作。
本公开实施例中,SCG变更失败的类型可以包括以下任意一种:由网络侧设备发送的用于在多个候选小区进行变更的变更指示;在满足网络配置或协议约定的情况下进行小区配置的变更。换句话说,SCG变更可以是由网络侧设备发送的变更指示触发,如SCG变更可以是通过DCI和/或MAC CE触发。
可选地,SCG变更也可以是终端设备在满足网络配置和协议规定的情况下触发,如终端设备在满足A3事件或A5事件的时候可以触发SCG变更。
作为一种可选地方式,响应于SCG变更失败,终端设备可以根据网络配置或协议规定执行SCG连接失败处理操作。例如,响应于SCG变更失败,终端设备可以通过源SCG配置来重建SCG连接。
需要说明的是,利用“或”隔开的多个实施例或是特征,即使其中一些特征是不可实现的,也不会对其他方案造成影响。另外,在不矛盾的情况下,本公开实施例可以与其他用于终端设备的连接失败后的处理方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例规定了,在确定SCG连接失败的情况下,本公开可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够减少数据收发过程中的中断和丢包。另外,本公开实施例检测到SCG变更失败的情况下可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够更准确的进行连接失败后的处理,同时可以提高重建的成功率。
图8是根据再一些实施例示出的一种连接失败后的处理方法的流程图。如图8所示,该连接失败后的处理方法可以用于终端设备中,包括以下步骤。
在步骤S610中,响应于网络配置或协议约定的定时器超时,确定SCG变更失败。
在一些实施方式中,终端设备判断SCG变更失败的条件可以为网络配置或协议规定的定时器超时,即终端设备若没有在约定的时间内成功接入目标SCG,则确定SCG变更失败。因此,响应于网络配置或协议约定的定时器超时,本公开实施例可以确定SCG变更失败。
本公开实施例中,SCG变更可以包括以下任意一项:SCG添加或将SCG配置从源SCG变更为目标SCG。其中,SCG添加可以是终端设备首次添加SCG配置,即添加新的SCG。在一些实现中,SCG变更可以包括SCG配置的变更或者SCG中的SpCell的配置的变更。
作为一种可选地方式,定时器的启动条件可以包括以下任意一种:接收网络侧设备发送的变更指示,并基于变更指示对SCG的配置进行变更;接收网络侧设备发送的变更指示,并向网络侧设备发送反馈信息,该反馈信息可以是对变更指示的反馈;接收网络侧设备发送的变更指示,并将源SCG释放;满足网络配置或协议约定的触发条件。
具体的,终端设备在接收到网络侧设备发送的变更指示,并基于该变更指示对SCG的配置进行变更之后可以启动定时器,即定时器开始计时。作为一个示例,网络侧设备可以通过RRC消息给终端设备配置多个SCG配置,在此基础上,网络侧设备可以通过DCI消息、MAC CE消息或RRC消息指示终端设备需要变更的目标SCG配置,终端设备在接收到该变更指示后启动定时器,或者可以在对SCG进行变更后启动定时器。
可选地,终端设备在接收到网络侧设备发送的变更指示,并基于该变更指示对SCG的配置进行变更后,向网络侧设备发送了对该变更指示的反馈信息后启动定时器,即定时器开始计时。其中,反馈信息可以包括以下任意一种:HARQ(Hybrid Automatic Repeat-reQuest,混合自动重传请求)反馈、MAC CE反馈和RRC消息反馈。
作为一个示例,网络侧设备通过RRC消息给终端配置了多个SCG配置,在此基础上,网络侧设备可以通过DCI消息、MAC CE消息或RRC消息指示终端设备需要变更的目标SCG配置,终端设备在接收到该变更指示后可以发送针对该变更指示的反馈信息,终端可以在发送该变更指示的反馈信息后启动定时器。
另外,终端设备可以向源SCG或源MCG发送该反馈信息。换句话说,这里的网络侧设备可以为源SCG或源MCG。例如,网络侧设备发送的变更指示信息可以是源SCG或源MCG发送,而终端设备的反馈信息也可以是通过源SCG或源MCG发送。
这里,变更指示用于在预配置的一个或多个SCG中指示目标SCG配置。另外,变更指示可以通过MAC CE消息、DCI消息或者RRC消息传输。
可选地,终端设备在接收到网络侧设备发送的变更指示,并基于该变更指示对SCG的配置进行变更后,对源SCG进行了释放后启动定时器,即定时器开始计时。作为一个示例,网络侧设备通过RRC消息给终端配置了多个SCG配置,在此基础上,网络侧设备可以通过DCI消息、MAC CE消息或RRC消息指示终端设备需要变更的目标SCG配置,终端设备在接收到该变更指示后可以将源SCG释放,即准备接入目标SCG,将源SCG释放后终端设备可以启动定时器。
可选地,终端设备在满足网络配置或协议对方的触发条件的时候可以启动定时器。作为一个示例,终端设备在确定测量数据满足A3事件或A5事件后可以启动定时器。
需要说明的是,利用“或”隔开的多个实施例或是特征,即使其中一些特征是不可实现的,也不会对其他方案造成影响。另外,在不矛盾的情况下,本公开实施例可以与其他用于终端设备的连接失败后的处理方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例规定了,在确定SCG连接失败的情况下,本公开可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够减少数据收发过程中的中断和丢包。另外,本公开实施例在检测到定时器超时的情况下确定SCG变更失败,能够更加简单有效的确定出SCG变更是否失败。
图9是根据又一些实施例示出的一种连接失败后的处理方法的流程图。如图9所示,该连接失败后的处理方法可以用于终端设备中,包括以下步骤。
在步骤S710中,响应于网络配置或协议约定的定时器停止,确定SCG变更成功。
本公开实施例中,定时器停止可以表示SCG变更成功,其中,定时器的停止条件可以包括以下任意一项:接收到网络侧设备发送的第一配置信息;成功接入目标SCG。
在一些实施方式中,终端设备可以基于定时器确定SCG变更是否成功,当定时器满足启动条件,且未超时便停止,则可以确定SCG变更成功,启动条件的具体实施方式上述实施例已进行了详细描述,这里就不再进行赘述。
需要说明的是,利用“或”隔开的多个实施例或是特征,即使其中一些特征是不可实现的,也不会对其他方案造成影响。另外,在不矛盾的情况下,本公开实施例可以与其他用于终端设备的连接失败后的处理方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例规定了,在确定SCG连接失败的情况下,本公开可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够减少数据收发过程中的中断和丢包。另外,本公开实施例在检测到定时器停止时可以确定SCG变更成功,如此可以更加简单有效的确定出SCG变更是否成功。
图10是根据再一些实施例示出的一种连接失败后的处理方法的流程图。如图10所示,该连接失败后的处理方法可以用于终端设备中,包括以下步骤。
在步骤S810中,响应于接收到网络侧设备发送的第一配置信息,确定SCG变更成功。
本公开实施例中,终端设备若接收到网络侧设备发送的第一配置信息,则可以确定SCG变更成功,即响应于接收到网络侧设备发送的第一配置信息,终端设备可以确定SCG变更成功。其中,第一配置信息可以包括以下任意一种:新的目标MCG配置或新的SCG配置;SCG删除指示;RRC连接释放指示。
这里,新的目标MCG配置可以包括用于启动MCG变更的切换配置信息;新的目标SCG配置可以包括用于启动SCG变更的SCG变更配置信息。另外,本公开实施例中的目标SCG可以为目标SCG对应的PSCell。
这里,接收到SCG删除指示后,终端设备可以基于SCG删除指示执行SCG删除操作,即终端设备可以根据SCG删除指示将源小区对应的SCG配置删除。另外,接收到S RRC连接释放指示后,终端设备也可以基于RRC连接释放指示将RRC连接释放。
需要说明的是,利用“或”隔开的多个实施例或是特征,即使其中一些特征是不可实现的,也不会对其他方案造成影响。另外,在不矛盾的情况下,本公开实施例可以与其他用于终端设备的连接失败后的处理方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例规定了,在确定SCG连接失败的情况下,本公开可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够减少数据收发过程中的中断和丢包。另外,本公开实施例在接收到网络侧设备发送的第一配置信息的情况下,确定SCG变更成功,如 此可以更加准确有效的确定出SCG变更是否成功。
图11是根据又一些实施例示出的一种连接失败后的处理方法的流程图。如图11所示,该连接失败后的处理方法可以用于终端设备中,包括以下步骤。
在步骤S910中,响应于成功接入目标SCG,确定SCG变更成功。
作为一种可选地方式,本公开实施例若检测到终端设备成功接入目标SCG,则可以确定SCG变更成功,即响应于成功接入目标SCG,终端设备可以确定SCG变更成功。其中,成功接入目标SCG的判断条件包括以下任意一种:接收到网络侧设备发送的随机接入过程成功的反馈信息;接收到网络侧设备发送的目标SCG接入成功的反馈信息;接收到网络侧设备发送的下行数据传输;接收到网络侧设备调度的新传(new transmission)。其中,网络侧设备调度的新传可以是HARQ进程的新数据传输,其对应可以与重传(retransmission)对应。
本公开实施例中,网络侧设备可以为目标SCG,与上述实施例类似,这里的目标SCG也可以为目标SCG对应的PSCell。
具体的,终端设备若检测到其在目标SCG的随机接入过程成功,则确定成功接入目标SCG。例如,当终端设备接收到随机接入过程的反馈信息,且竞争解决时,确定成功接入目标SCG。此时的反馈信息可以包括Msg4或MsgB,其中,Msg4对应4步随机接入过程,MsgB对应2步随机接入过程。
可选地,终端设备若接收到网络侧设备发送的目标SCG接入成功的反馈信息,则确定成功接入目标SCG。例如,网络侧设备可以通过MAC CE或RRC消息指示目标SCG接入成功的反馈信息。
可选地,终端设备若接收到目标SCG发送的下行数据传输,则确定成功接入目标SCG。其中,下行传输可以是终端设备标识指示的下行传输。例如,下行传输可以是C-RNTI(Cell Radio Network Temporary Identifier,小区无线网络临时标识)指示的下行传输。
可选地,终端设备若接收到网络侧设备调度的新传,则确定成功接入目标SCG。其中,网络侧设备调度的新传包括以下至少一项:上行传输和/或下行传输;通过终端设备的标识指示的新传,如可以是C-RNTI指示的新数据传输。
这里,网络侧设备调度的新传可以包括HARQ进程的新数据传输。另外,随机接入过程成功的反馈信息或目标SCG接入成功的反馈信息可以通过MAC CE或RRC消息传输。其中,MAC CE可以包括以下任意一种:MAC子头;终端设备在目标小区发送的第一个MAC PDU的n比特内容;预定义内容中的n比特内容。
具体的,MAC CE可以是仅包括MAC子头(MAC Subheader)的MAC CE。另外,MAC CE可以包括终端设备在目标小区发送的第一个MAC PDU的n比特内容。作为一个示例,MAC CE的内容可以是终端设备在目标小区发送的第一个MAC PDU中的48比特的内容。
可选地,MAC CE也可以包括预定义内容中的n比特内容。作为一个示例,MAC CE的内容可以为48比特的预定义内容,所有比特的取值可以为“0”或“1”。
需要说明的是,利用“或”隔开的多个实施例或是特征,即使其中一些特征是不可实现的,也不会对其他方案造成影响。另外,在不矛盾的情况下,本公开实施例可以与其他用于终端设备的连接失败后的处理方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例规定了,在确定SCG连接失败的情况下,本公开可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够减少数据收发过程中的中断和丢包。另外,本公开实施例在成功接入目标SCG的情况下,确定SCG变更成功,如此可以更加准确有效的确定出SCG变更是否成功。
图12是根据再一些实施例示出的一种连接失败后的处理方法的流程图。如图12所示,该连接失败后的处理方法可以用于终端设备中,包括以下步骤。
在步骤S1010中,响应于SCG连接失败,通过MCG向网络侧设备发送报告信息。
本公开实施例中,响应于SCG连接失败,终端设备可以通过MCG向网络侧设备发送报告信息,该报告信息用于向网络侧设备通知SCG连接失败。作为一个示例,终端设备可以通过MCG的SRB1(Signalling Radio Bearer,信令无线承载)报告SCG连接失败信息。
另外,如果MCG不可用,本公开实施例可以执行MCG连接恢复操作,即响应于MCG不可用,终端设备可以执行MCG连接恢复操作。其中,MCG连接恢复操作可以包括以下任意一种:RRC连接重建;通过候选MCG配置重建,即终端设备可以通过候选MCG配置来进行重建;通过源MCG配置重建,即终端设备可以通过源MCG配置来进行重建。
在一些实施方式中,MCG连接失败与SCG连接失败类似,其可以包括无线链路失败和MCG变更失败中的任意一种。
需要说明的是,本公开实施例可以设置有候选小区配置重建的次数,该次数可以是网络配置或协议约定的。作为一个示例,候选小区配置重建的最大次数可以为n次,n可以为整数,如n可以为1。
本公开实施例中,报告信息包括以下至少一项:连接失败类型;连接失败配置指示信息;连接失败小区指示;连接失败小区组指示。其中,连接失败类型可以包括无线链路失败和SCG变更失败,其中,该SCG变更失败对应的SCG变更类型为“在预配置的一个或多个SCG配置中指示目标SCG配置”进行SCG变更;连接失败配置指示信息可以包括连接失败的候选小区的配置标识,如终端有多个候选小区配置,终端设备可以报告发生连接失败的小区的配置标识;连接失败小区指示可以包括连接失败的候选小区的标识;连接失败小区组指示可用于指示连接失败的小区组的类型,例如,连接失败小区组指示可用于指示连接失败的小区组的类型为SCG。
另需要说明的是,利用“或”隔开的多个实施例或是特征,即使其中一些特征是不可实现的,也不会对其他方案造成影响。另外,在不矛盾的情况下,本公开实施例可以与其他用于终端设备的连接失败后的处理方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例规定了,在确定SCG连接失败的情况下,本公开可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够减少数据收发过程中的中断和丢包。另外,本公开实施例在SCG连接失败的情况下可以通过MCG发送报告信息,能够进一步降低数据收发过程中的中断率和丢包率。
图13是根据又一些实施例示出的一种连接失败后的处理方法的流程图。如图13所示,该连接失败后的处理方法可以用于终端设备中,包括以下步骤。
在步骤S1110中,响应于SCG连接失败,重新建立SCG连接。
本公开实施例中,响应于SCG连接失败,终端设备可以重新建立SCG连接,即在检测到SCG连接失败的情况下,终端设备可以重建SCG连接。具体的,终端设备可以通过候选SCG配置重建SCG连接,即终端设备可以通过候选SCG配置来进行重建。在此过程中,终端设备可以先获取SCG连接失败的类型,如果SCG连接失败的类型为无线链路失败,则终端设备可以通过候选SCG配置来重建SCG连接。主要原因是无线链路失败通常是在变更的时候发生,这种情况下代表源SCG的链路质量很差,此时如果用源SCG的配置进行重建,则很有可能导致重建失败。因此,在SCG连接失败的类型为无线链路失败的情况下,本公开实施例可以通过候选SCG配置重建SCG连接。
可选地,终端设备也可以通过源SCG配置重建SCG连接,即终端设备可以通过源SCG配置来进行重建。在此过程中,终端设备可以先获取SCG连接失败的类型,若SCG连接 失败的类型为SCG变更失败,则终端设备可以通过源SCG配置来重建SCG连接。主要原因是SCG变更是把源SCG断开或释放,并与目标小区发起连接,以接入新的SCG,在连接新SCG的过程中,若发生SCG连接失败,则可以通过之前的配置建立连接,即在SCG连接失败的类型为SCG变更失败的情况下,本公开实施例可以通过源SCG配置重建SCG连接。
需要说明的是,重新建立SCG连接,且重新建立SCG成功后,终端设备也可以向重建成功的SCG发送报告信息,这里的报告信息与上述实施例中通过MCG发送的报告信息类似,故这里就不再进行赘述。
另需要说明的是,利用“或”隔开的多个实施例或是特征,即使其中一些特征是不可实现的,也不会对其他方案造成影响。另外,在不矛盾的情况下,本公开实施例可以与其他用于终端设备的连接失败后的处理方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例规定了,在确定SCG连接失败的情况下,本公开可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够减少数据收发过程中的中断和丢包。另外,本公开实施例可以基于连接失败的类型重新建立SCG连接,如此在一定程度上可以提高重建的成功概率。
图14是根据一些实施例示出的一种连接失败后的处理方法的流程图。如图14所示,该连接失败后的处理方法可以用于网络侧设备中,包括以下步骤。
在步骤S1210中,向终端设备发送网络配置,所述网络配置用于在终端设备发生SCG连接失败的情况下执行SCG连接失败处理操作。
本公开实施例中,网络配置可以包括连接失败检测配置信息,其中,连接失败检测配置信息用于辅助终端设备确定SCG连接是否失败。
在一些实施方式中,网络侧设备可以向终端设备发送变更指示,该变更指示可用于指示终端设备执行SCG变更,即变更指示可用于在预配置的一个或多个SCG配置中指示目标SCG配置。
在另一些实施方式中,网络侧设备可以从终端设备处接收反馈信息,该反馈信息可以是对变更指示的反馈。
在另一些实施方式中,网络侧设备可以向终端设备发送第一配置信息。其中,第一配置信息可以包括以下任意一种:新的目标MCG配置或新的SCG配置;SCG删除指示;RRC连接释放指示。
在另一些实施方式中,网络侧设备可以向终端设备发送随机接入过程成功的反馈信息;或者,网络侧设备可以向终端设备发送目标SCG接入成功的反馈信息;或者网络侧设备可以向终端设备发送下行数据传输;或者网络侧设备可以向终端设备发送网络侧设备调度的新传。
需要说明的是,利用“或”隔开的多个实施例或是特征,即使其中一些特征是不可实现的,也不会对其他方案造成影响。另外,在不矛盾的情况下,本公开实施例可以与用于终端设备的连接失败后的处理方法所涉及的实施例或实施方式及其各种可选方案相互组合,这里就不再赘述。
本公开实施例中,网络侧设备可以向终端设备发送网络配置,该网络配置可用于在终端设备发生SCG连接失败的情况下执行SCG连接失败处理操作,如此可以减少数据收发中断和丢包。
图15是根据一些实施例示出的一种连接失败后的处理装置1300的框图。参照图15,该连接失败后的处理装置1300应用于终端设备,该连接失败后的处理装置1300可以包括失败处理模块1310。
该失败处理模块1310配置为响应于SCG连接失败,根据网络配置或协议规定执行SCG连接失败处理操作。
在一些实施方式中,连接失败后的处理装置1300还可以包括:
配置接收模块,被配置为从网络侧设备处接收所述网络配置,所述网络配置包括连接失败检测配置信息;
确定模块,被配置为基于所述连接失败检测配置信息确定所述SCG连接是否失败。
在一些实施方式中,SCG连接失败包括以下至少一种:
无线链路失败;
SCG变更失败。
在一些实施方式中,SCG变更失败的条件包括网络配置或协议约定的定时器超时。
在一些实施方式中,所述定时器的启动条件包括以下任意一种:
接收网络侧设备发送的变更指示,并基于所述变更指示对所述SCG的配置进行变更;
接收所述网络侧设备发送的变更指示,并向所述网络侧设备发送反馈信息,所述反馈信息是对所述变更指示的反馈;
接收所述网络侧设备发送的变更指示,并将源SCG释放;
满足所述网络配置或协议约定的触发条件。
在一些实施方式中,所述变更指示用于在预配置的一个或多个SCG配置中指示目标SCG配置。
在一些实施方式中,所述反馈信息包括HARQ反馈、MAC CE反馈和RRC消息反馈中的至少一种。
在一些实施方式中,所述定时器停止表示所述SCG变更成功,所述定时器的停止条件包括以下任意一种:
接收到网络侧设备发送的第一配置信息;
成功接入目标SCG。
在一些实施方式中,所述第一配置信息包括以下任意一种:
新的目标MCG配置或新的SCG配置;
SCG删除指示;
RRC连接释放指示。
在一些实施方式中,所述成功接入目标SCG的判断条件包括以下任意一种:
接收到所述网络侧设备发送的随机接入过程成功的反馈信息;
接收到所述网络侧设备发送的所述目标SCG接入成功的反馈信息;
接收到所述网络侧设备发送的下行数据传输;
接收到所述网络侧设备调度的新传。
在一些实施方式中,所述网络侧设备调度的新传包括以下至少一项:
上行传输和/或下行传输;
通过所述终端设备的标识指示的新传。
在一些实施方式中,所述网络侧设备调度的新传包括HARQ进程的新数据传输。
在一些实施方式中,所述随机接入过程成功的反馈信息或目标SCG接入成功的反馈信息通过MAC CE或RRC消息传输。
在一些实施方式中,所述MAC CE包括以下任意一种:
MAC子头;
所述终端设备在目标小区发送的第一个MAC PDU的n比特内容;
预定义内容中的n比特内容。
在一些实施方式中,所述无线链路失败包括物理层失步、随机接入失败、RLC层达到 最大重传次数和波束失败中的至少一个。
在一些实施方式中,所述SCG变更包括以下任意一项:
由网络侧设备发送的用于在多个候选小区进行变更的变更指示;
在满足网络配置或协议约定的情况下进行小区配置的变更。
在一些实施方式中,所述SCG变更包括SCG添加或将SCG配置从源SCG变更为目标SCG。
在一些实施方式中,所述失败处理模块1310可以包括:
报告信息发送子模块,被配置为通过MCG向网络侧设备发送报告信息,所述报告信息用于向网络侧设备通知SCG连接失败。
在一些实施方式中,连接失败后的处理装置1300还可以包括:
MCG恢复模块,被配置为在所述MCG不可用的情况下,执行所述MCG连接恢复操作。
在一些实施方式中,所述MCG连接恢复操作包括以下任意一种:
RRC连接重建;
通过候选MCG配置重建;
通过源MCG配置重建。
在一些实施方式中,所述报告信息包括以下至少一项:
连接失败类型;
连接失败配置指示信息;
连接失败小区指示;
连接失败小区组指示。
在一些实施方式中,所述失败处理模块1310可以包括:
重连接子模块,被配置为重新建立SCG连接。
在一些实施方式中,重连接子模块可以被配置为通过候选SCG配置重建所述SCG连接;或者通过源SCG配置重建所述SCG连接。
本公开实施例规定了,在确定SCG连接失败的情况下,本公开可以根据网络配置或协议规定执行SCG连接失败处理操作,如此能够减少数据收发过程中的中断和丢包。
图16是根据一些实施例示出的一种连接失败后的处理装置1400的框图。参照图16,该连接失败后的处理装置1400应用于网络侧设备,该连接失败后的处理装置1400可以包括发送模块1410。
该发送模块1410,被配置为向终端设备发送网络配置,所述网络配置用于在所述终端设备发生SCG连接失败的情况下执行SCG连接失败处理操作。
在一些实施方式中,所述网络配置包括连接失败检测配置信息,所述连接失败检测配置信息用于辅助终端设备确定SCG连接是否失败。
在一些实施方式中,连接失败后的处理装置1400还可以包括:
变更指示发送模块,被配置为向所述终端设备发送变更指示,所述变更指示用于指示所述终端设备执行所述SCG变更。
在一些实施方式中连接失败后的处理装置1400还可以包括:
反馈信息接收模块,被配置为从所述终端设备处接收反馈信息,所述反馈信息是对所述变更指示的反馈。
在一些实施方式中,连接失败后的处理装置1400还可以包括:
配置信息发送模块,被配置为向所述终端设备发送第一配置信息。
在一些实施方式中,所述第一配置信息包括以下任意一种:
新的目标MCG配置或新的SCG配置;
SCG删除指示;
RRC连接释放指示。
在一些实施方式中,连接失败后的处理装置1400还可以包括:
第一反馈信息发送模块,被配置为向所述终端设备发送随机接入过程成功的反馈信息;或者,
第一反馈信息发送模块,被配置为向所述终端设备发送目标SCG接入成功的反馈信息;或者
下行数据发送模块,被配置为向所述终端设备发送下行数据传输;或者
新传数据发送模块,被配置为向所述终端设备发送所述网络侧设备调度的新传。
本公开实施例中,网络侧设备可以向终端设备发送网络配置,该网络配置可用于在终端设备发生SCG连接失败的情况下执行SCG连接失败处理操作,如此可以减少数据收发中断和丢包。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开提供的连接失败后的处理方法的步骤。
图17是根据一些实施例示出的一种终端设备的框图。例如,终端设备1500可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理,智能汽车等。
参照图17,终端设备1500可以包括以下一个或多个组件:第一处理组件1502,第一存储器1504,第一电源组件1506,多媒体组件1508,音频组件1510,第一输入/输出接口1512,传感器组件1514,以及通信组件1516。
第一处理组件1502通常控制终端设备1500的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。第一处理组件1502可以包括一个或多个第一处理器1520来执行指令,以完成上述的连接失败后的处理方法的全部或部分步骤。此外,第一处理组件1502可以包括一个或多个模块,便于第一处理组件1502和其他组件之间的交互。例如,第一处理组件1502可以包括多媒体模块,以方便多媒体组件1508和第一处理组件1502之间的交互。
第一存储器1504被配置为存储各种类型的数据以支持在终端设备1500的操作。这些数据的示例包括用于在终端设备1500上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。第一存储器1504可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
第一电源组件1506为终端设备1500的各种组件提供电力。第一电源组件1506可以包括电源管理***,一个或多个电源,及其他与为终端设备1500生成、管理和分配电力相关联的组件。
多媒体组件1508包括在所述终端设备1500和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1508包括一个前置摄像头和/或后置摄像头。当终端设备1500处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数 据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件1510被配置为输出和/或输入音频信号。例如,音频组件1510包括一个麦克风(MIC),当终端设备1500处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在第一存储器1504或经由通信组件1516发送。在一些实施例中,音频组件1510还包括一个扬声器,用于输出音频信号。
第一输入/输出接口1512为第一处理组件1502和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1514包括一个或多个传感器,用于为终端设备1500提供各个方面的状态评估。例如,传感器组件1514可以检测到终端设备1500的打开/关闭状态,组件的相对定位,例如所述组件为终端设备1500的显示器和小键盘,传感器组件1514还可以检测终端设备1500或终端设备1500一个组件的位置改变,用户与终端设备1500接触的存在或不存在,终端设备1500方位或加速/减速和终端设备1500的温度变化。传感器组件1514可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1514还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1514还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1516被配置为便于终端设备1500和其他设备之间有线或无线方式的通信。终端设备1500可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1516经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1516还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端设备1500可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述连接失败后的处理方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的第一存储器1504,上述指令可由终端设备1500的第一处理器1520执行以完成上述连接失败后的处理方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
上述装置除了可以是独立的电子设备外,也可是独立电子设备的一部分,例如在一种实施例中,该装置可以是集成电路(Integrated Circuit,IC)或芯片,其中该集成电路可以是一个IC,也可以是多个IC的集合;该芯片可以包括但不限于以下种类:GPU(Graphics Processing Unit,图形处理器)、CPU(Central Processing Unit,中央处理器)、FPGA(Field Programmable Gate Array,可编程逻辑阵列)、DSP(Digital Signal Processor,数字信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、SOC(System on Chip,SoC,片上***或***级芯片)等。上述的集成电路或芯片中可以用于执行可执行指令(或代码),以实现上述的连接失败后的处理方法。其中该可执行指令可以存储在该集成电路或芯片中,也可以从其他的装置或设备获取,例如该集成电路或芯片中包括处理器、存储器,以及用于与其他的装置通信的接口。该可执行指令可以存储于该存储器中,当该可执行指令被处理器执行时实现上述的连接失败后的处理方法;或者,该集成电路或 芯片可以通过该接口接收可执行指令并传输给该处理器执行,以实现上述的连接失败后的处理方法。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的连接失败后的处理方法的代码部分。
图18是根据一示例性实施例示出的一种网络侧设备的框图。例如,网络侧设备1600可以被提供为一服务器。参照图18,网络侧设备1600包括第二处理组件1622,其进一步包括一个或多个处理器,以及由第二存储器1632所代表的存储器资源,用于存储可由第二处理组件1622的执行的指令,例如应用程序。第二存储器1632中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,第二处理组件1622被配置为执行指令,以执行连接失败后的处理方法。
网络侧设备1600还可以包括一个第二电源组件1626被配置为执行网络侧设备1600的电源管理,一个有线或无线网络接口1650被配置为将网络侧设备1600连接到网络,和一个第二输入/输出接口1658。网络侧设备1600可以操作基于存储在存储器1632的操作***,例如Windows Server TM,Mac OS X TM,Unix TM,Linux TM,FreeBSD TM或类似。
本领域技术人员在考虑说明书及实践本公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (35)

  1. 一种连接失败后的处理方法,其特征在于,应用于终端设备,包括:
    响应于辅小区组SCG连接失败,根据网络配置或协议规定执行SCG连接失败处理操作。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    从网络侧设备处接收所述网络配置,所述网络配置包括连接失败检测配置信息;
    基于所述连接失败检测配置信息确定所述SCG连接是否失败。
  3. 根据权利要求1所述的方法,其特征在于,所述SCG连接失败包括以下至少一种:
    无线链路失败;
    SCG变更失败。
  4. 根据权利要求3所述的方法,其特征在于,所述SCG变更失败的条件包括网络配置或协议约定的定时器超时。
  5. 根据权利要求4所述的方法,其特征在于,所述定时器的启动条件包括以下任意一种:
    接收网络侧设备发送的变更指示,并基于所述变更指示对所述SCG的配置进行变更;
    接收所述网络侧设备发送的变更指示,并向所述网络侧设备发送反馈信息,所述反馈信息是对所述变更指示的反馈;
    接收所述网络侧设备发送的变更指示,并将源SCG释放;
    满足所述网络配置或协议约定的触发条件。
  6. 根据权利要求5所述的方法,其特征在于,所述变更指示用于在预配置的一个或多个SCG配置中指示目标SCG配置。
  7. 根据权利要求5所述的方法,其特征在于,所述反馈信息包括HARQ反馈、MAC CE反馈和RRC消息反馈中的至少一种。
  8. 根据权利要求4所述的方法,其特征在于,所述定时器停止表示所述SCG变更成功,所述定时器的停止条件包括以下任意一种:
    接收到网络侧设备发送的第一配置信息;
    成功接入目标SCG。
  9. 根据权利要求8所述的方法,其特征在于,所述第一配置信息包括以下任意一种:
    新的目标主小区组MCG配置或新的SCG配置;
    SCG删除指示;
    RRC连接释放指示。
  10. 根据权利要求8所述的方法,其特征在于,所述成功接入目标SCG的判断条件包括以下任意一种:
    接收到所述网络侧设备发送的随机接入过程成功的反馈信息;
    接收到所述网络侧设备发送的指示所述目标SCG接入成功的反馈信息;
    接收到所述网络侧设备发送的下行数据传输;
    接收到所述网络侧设备调度的新传。
  11. 根据权利要求10所述的方法,其特征在于,所述网络侧设备调度的新传包括以下至少一项:
    上行传输和/或下行传输;
    通过所述终端设备的标识指示的新传。
  12. 根据权利要求10所述的方法,其特征在于,所述网络侧设备调度的新传包括HARQ进程的新数据传输。
  13. 根据权利要求10所述的方法,其特征在于,所述随机接入过程成功的反馈信息或目标SCG接入成功的反馈信息通过MAC CE或RRC消息传输。
  14. 根据权利要求13所述的方法,其特征在于,所述MAC CE包括以下任意一种:
    MAC子头;
    所述终端设备在目标小区发送的第一个MAC PDU的n比特内容;
    预定义内容中的n比特内容。
  15. 根据权利要求3至14任一所述的方法,其特征在于,所述无线链路失败包括物理层失步、随机接入失败、RLC层达到最大重传次数和波束失败中的至少一个。
  16. 根据权利要求3至14任一所述的方法,其特征在于,所述SCG变更包括以下任意一项:
    由网络侧设备发送的用于在多个候选小区进行变更的变更指示;
    在满足网络配置或协议约定的情况下进行小区配置的变更。
  17. 根据权利要求3至14任一所述的方法,其特征在于,所述SCG变更包括SCG添加或将SCG配置从源SCG变更为目标SCG。
  18. 根据权利要求1至14任一所述的方法,其特征在于,所述执行SCG连接失败处理操作,包括:
    通过MCG向网络侧设备发送报告信息,所述报告信息用于向网络侧设备通知SCG连接失败。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    在所述MCG不可用的情况下,执行所述MCG连接恢复操作。
  20. 根据权利要求19所述的方法,其特征在于,所述MCG连接恢复操作包括以下任意一种:
    RRC连接重建;
    通过候选MCG配置重建;
    通过源MCG配置重建。
  21. 根据权利要求18所述的方法,其特征在于,所述报告信息包括以下至少一项:
    连接失败类型;
    连接失败配置指示信息;
    连接失败小区指示;
    连接失败小区组指示。
  22. 根据权利要求1至14任一所述的方法,其特征在于,所述执行SCG连接失败处理操作,还包括:
    重新建立SCG连接。
  23. 根据权利要求22所述的方法,其特征在于,所述重新建立SCG连接,包括:
    通过候选SCG配置重建所述SCG连接;或者
    通过源SCG配置重建所述SCG连接。
  24. 一种连接失败后的处理方法,其特征在于,应用于网络侧设备,包括:
    向终端设备发送网络配置,所述网络配置用于在所述终端设备发生SCG连接失败的情况下执行SCG连接失败处理操作。
  25. 根据权利要求24所述的方法,其特征在于,所述网络配置包括连接失败检测配置信息,所述连接失败检测配置信息用于辅助终端设备确定SCG连接是否失败。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送变更指示,所述变更指示用于指示所述终端设备执行所述SCG变更。
  27. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    从所述终端设备处接收反馈信息,所述反馈信息是对所述变更指示的反馈。
  28. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一配置信息。
  29. 根据权利要求28所述的方法,其特征在于,所述第一配置信息包括以下任意一种:
    指示了新的目标MCG配置或新的SCG配置;
    指示将SCG删除;
    指示将RRC连接释放。
  30. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送随机接入过程成功的反馈信息;或者,
    向所述终端设备发送目标SCG接入成功的反馈信息;或者
    向所述终端设备发送下行数据传输;或者
    向所述终端设备发送所述网络侧设备调度的新传。
  31. 一种连接失败后的处理装置,其特征在于,应用于终端设备,包括:
    失败处理模块,配置为响应于SCG连接失败,根据网络配置或协议规定执行SCG连接失败处理操作。
  32. 一种连接失败后的处理装置,其特征在于,应用于网络侧设备,包括:
    发送模块,配置为向终端设备发送网络配置,所述网络配置用于在所述终端设备发生SCG连接失败的情况下执行SCG连接失败处理操作。
  33. 一种终端设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述可执行指令,以实现如权利要求1至23中任一项所述方法。
  34. 一种网络侧设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述可执行指令,以实现如权利要求24至30中任一所述方法。
  35. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,该程序指令被处理装置执行时实现权利要求1至30中任一项所述方法的步骤。
PCT/CN2022/132101 2022-11-15 2022-11-15 连接失败后的处理方法、装置、终端设备以及网络侧设备 WO2024103268A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/132101 WO2024103268A1 (zh) 2022-11-15 2022-11-15 连接失败后的处理方法、装置、终端设备以及网络侧设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/132101 WO2024103268A1 (zh) 2022-11-15 2022-11-15 连接失败后的处理方法、装置、终端设备以及网络侧设备

Publications (1)

Publication Number Publication Date
WO2024103268A1 true WO2024103268A1 (zh) 2024-05-23

Family

ID=91083605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132101 WO2024103268A1 (zh) 2022-11-15 2022-11-15 连接失败后的处理方法、装置、终端设备以及网络侧设备

Country Status (1)

Country Link
WO (1) WO2024103268A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022588A (zh) * 2018-01-09 2019-07-16 电信科学技术研究院 一种SCG Failure的处理方法及设备
CN112770350A (zh) * 2019-11-06 2021-05-07 维沃移动通信有限公司 一种失败报告的上报方法及相关设备
CN113259974A (zh) * 2020-02-13 2021-08-13 华为技术有限公司 用于配置主辅小区的方法和装置
CN113498093A (zh) * 2020-04-08 2021-10-12 大唐移动通信设备有限公司 一种scg失败的处理方法、装置、终端及网络侧设备
WO2022127731A1 (zh) * 2020-12-16 2022-06-23 夏普株式会社 小区变更方法以及用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022588A (zh) * 2018-01-09 2019-07-16 电信科学技术研究院 一种SCG Failure的处理方法及设备
CN112770350A (zh) * 2019-11-06 2021-05-07 维沃移动通信有限公司 一种失败报告的上报方法及相关设备
CN113259974A (zh) * 2020-02-13 2021-08-13 华为技术有限公司 用于配置主辅小区的方法和装置
CN113498093A (zh) * 2020-04-08 2021-10-12 大唐移动通信设备有限公司 一种scg失败的处理方法、装置、终端及网络侧设备
WO2022127731A1 (zh) * 2020-12-16 2022-06-23 夏普株式会社 小区变更方法以及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUTUREWEI: "Failure and validation handling on intra-SN CPC", 3GPP TSG-RAN WG2 MEETING #109E, R2-2000446, 14 February 2020 (2020-02-14), XP051849034 *

Similar Documents

Publication Publication Date Title
EP3780852B1 (en) Information transmission method and information transmission device
KR102454657B1 (ko) 재구성 방법 및 단말
WO2020051744A1 (zh) 辅服务小区波束失败的上报方法,装置和存储介质
WO2020164516A1 (zh) 确定方法及设备
WO2021008382A1 (zh) 随机接入过程回退方法、设备及***
US20220386191A1 (en) Conditional full configuration and conditional delta configuration
TWI733083B (zh) 與基地台處理一雙連結的裝置及方法
US11700553B2 (en) Method of apparatus for monitoring for a radio link failure associated with a secondary cell of a secondary base station
CN114600503B (zh) 通过辅节点改变的快速主小区组故障恢复
US20220124568A1 (en) Managing mcg fast recovery
CN109246835B (zh) 一种通信方法及装置
WO2019210817A1 (zh) 无线链路恢复方法和终端
US20220216957A1 (en) Method and device for carrier aggregation, communication apparatus, and storage medium
WO2022086421A1 (en) Initiator of sn change and scg failure reporting when mcg is suspended
WO2020038294A1 (zh) 传输方法及终端设备
WO2022236498A1 (zh) 连接失败检测方法及装置、通信设备及存储介质
WO2020156395A1 (zh) 随机接入方法及装置
WO2020073861A1 (zh) 无线链路恢复方法、终端及辅基站
US9060355B2 (en) Message handling
WO2024103268A1 (zh) 连接失败后的处理方法、装置、终端设备以及网络侧设备
US20230224772A1 (en) Managing communication during mcg failure
US20190166528A1 (en) Data transmission method, user equipment, base station, and system
US20200252842A1 (en) Managing cell group configuration in disaggregated base station architecture
CN114765791A (zh) 连接失败信息的处理方法、装置和***
CN106658620B (zh) 一种接入点切换的方法和装置