WO2024101243A1 - Image processing method, image processing device, and image processing system - Google Patents

Image processing method, image processing device, and image processing system Download PDF

Info

Publication number
WO2024101243A1
WO2024101243A1 PCT/JP2023/039442 JP2023039442W WO2024101243A1 WO 2024101243 A1 WO2024101243 A1 WO 2024101243A1 JP 2023039442 W JP2023039442 W JP 2023039442W WO 2024101243 A1 WO2024101243 A1 WO 2024101243A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
images
orientation analysis
reconstructed
orientation
Prior art date
Application number
PCT/JP2023/039442
Other languages
French (fr)
Japanese (ja)
Inventor
裕子 新田
昌宏 今田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2024101243A1 publication Critical patent/WO2024101243A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers

Definitions

  • the present invention relates to an image processing method, an image processing device, and an image processing system.
  • the Talbot effect refers to the phenomenon in which, when coherent light passes through a first grating with slits at a constant period, a grating image is formed at a constant period in the direction of light travel. This grating image is called a self-image, and the Talbot interferometer places a second grating at the position where the self-image is formed, and measures the moiré fringes that are generated by slightly shifting this second grating.
  • the X-ray Talbot imaging device can obtain absorption images, differential phase images, small-angle scattering images, and orientation analysis images all at once. Therefore, X-ray Talbot imaging devices are used as non-destructive devices that can measure the internal structure without destroying the material.
  • the X-ray Talbot imaging device is used in the following cases.
  • cases include using orientation photography to display the orientation of a material in color, making it possible to visually confirm the orientation of the material (Patent Document 1), and combining absorption images, differential phase images, small-angle scattering images, and orientation analysis images to identify characteristics that are difficult to identify using absorption images alone (Patent Document 2).
  • the object of the present invention is therefore to provide an image processing method, image processing device, and image processing system that can easily grasp the area of interest or characteristic information obtained when combining images obtained from an X-ray Talbot imaging device.
  • the image processing method of the present invention comprises the steps of: An image processing method for an image obtained by photographing an object multiple times with an X-ray Talbot imaging device while changing the relative angle between an X-ray grating and a sample, comprising the steps of: a first acquisition step of acquiring a reconstructed image including a small-angle scattering image for each photograph based on the images; a second acquisition step of acquiring an orientation analysis image generated based on the plurality of small-angle scattering images or an image based on the orientation analysis image as a first image, and an orientation analysis image of a type different from the first image or the reconstructed image, or an orientation analysis image of a type different from the first image or an image based on the reconstructed image as a second image, Further, an extraction step of extracting a portion of interest from the first image or the second image; and an output step of outputting characteristic information based on the first image and the second image, or a composite image of the first image and the second image.
  • the image processing device of the present invention further comprises: An image processing device for images obtained by photographing an object multiple times with an X-ray Talbot imaging device while changing the relative angle between an X-ray grating and a sample, a first acquisition unit that acquires a reconstructed image including a small-angle scattering image for each photograph based on the image; a second acquisition unit that acquires, as a first image, an orientation analysis image generated based on the plurality of small-angle scattering images or an image based on the orientation analysis image, and, as a second image, an orientation analysis image of a type different from the first image or the reconstructed image, or an orientation analysis image of a type different from the first image or an image based on the reconstructed image, Further, an extraction unit that extracts a portion of interest from the first image or the second image; and an output unit that outputs characteristic information based on the first image and the second image, or a composite image of the first image and the second image.
  • the image processing system of the present invention further comprises: An image processing system for images of an object captured multiple times by an X-ray Talbot imaging device while changing the relative angle between an X-ray grating and a sample, a first acquisition unit that acquires a reconstructed image including a small-angle scattering image for each photograph based on the image; a second acquisition unit that acquires, as a first image, an orientation analysis image generated based on the plurality of small-angle scattering images or an image based on the orientation analysis image, and, as a second image, an orientation analysis image of a type different from the first image or the reconstructed image, or an orientation analysis image of a type different from the first image or an image based on the reconstructed image, Further, an extraction unit that extracts a portion of interest from the first image or the second image; and an output unit that outputs characteristic information based on the first image and the second image, or a composite image of the first image and the second image.
  • the present invention it is possible to easily grasp the area of interest or characteristic information obtained when combining images obtained from an X-ray Talbot imaging device.
  • FIG. 1 is a schematic diagram showing an overall view of an X-ray Talbot imaging device.
  • FIG. 1 is a diagram illustrating the principle of a Talbot interferometer.
  • 3 is a schematic plan view of a source grating, a first grating, and a second grating.
  • FIG. FIG. 2 is a block diagram showing a functional configuration of the image processing device.
  • 13 is a flowchart showing image processing.
  • FIG. 13 is a diagram showing the relationship between a combination of Talbot images and characteristic information.
  • 13 is a comparative example of a Talbot image.
  • 13 is a comparative example of a Talbot image.
  • 13 is a comparative example of a Talbot image.
  • 13 is a comparative example of a Talbot image.
  • 13 is a comparative example of a Talbot image.
  • FIG. 1 is a schematic diagram showing an overall view of a three-dimensional Talbot imaging device. 1 is a diagram illustrating the principle of a three-dimensional Talbot interferometer.
  • an X-ray imaging system 100 of this embodiment includes an X-ray Talbot imaging device 1 and an image processing device 2.
  • the X-ray imaging system 100 uses an X-ray Talbot imaging device 1 to rotate the sample in a plane perpendicular to the optical axis of the X-rays, change the angle, and capture images of a subject H multiple times.
  • the image processing device 2 generates a reconstructed image for each imaging angle based on the moiré image read by the X-ray Talbot imaging device 1 and a moiré image in the absence of the subject H (referred to as a BG: Back Ground moiré image).
  • the X-ray imaging system 100 captures a moire image in a state in which the subject H is not present at least once before or after imaging the subject H.
  • the X-ray Talbot imaging device 1 uses a Talbot-Lau interferometer equipped with a source grating (also called G0 grating) 12. It is also possible to use an X-ray Talbot imaging device that does not have a source grating 12 and uses a Talbot interferometer equipped only with a first grating (also called G1 grating) 14 and a second grating (also called G2 grating) 15.
  • a source grating also called G0 grating
  • G1 grating also called G1 grating
  • G2 grating also called G2 grating
  • the object to be inspected in this embodiment is made of a composite material (also called a composite material) and is used as a component part of a variety of products, including aerospace and aircraft related products, automobiles, ships, fishing rods, as well as electrical, electronic and home appliance parts, parabolic antennas, bathtubs, flooring materials, roofing materials, etc.
  • composite materials include CFRP (Carbon-Fiber-Reinforced Plastics) and CFRTP (Carbon Fiber Reinforced Plastics), which use carbon fiber or glass fiber as reinforcing fibers.
  • the composite materials include FRP (Fiber-Reinforced Plastics) such as GFRP (Glass-Fiber-Reinforced Plastics), and CMC (Ceramic Matrix Composites) using ceramic fibers as a reinforcing material.
  • FRP Fiber-Reinforced Plastics
  • GFRP Glass-Fiber-Reinforced Plastics
  • CMC Ceramic Matrix Composites
  • the term may include composite materials made of multiple types of wood, such as plywood.
  • the term may include composite materials that do not include fibers, such as MMC (Metal Matrix Composites), concrete, and reinforced concrete.
  • the resins used in the composite materials are, for example, general-purpose plastics, engineering plastics, and super engineering plastics, but are not limited to these.
  • Resins are used as resin composite materials to which fillers having micro- or nano-sized structures are added to impart certain properties such as strength, and are often used as plastic molded products.
  • Fillers include organic materials, inorganic materials, magnetic materials, and metal materials.
  • composite materials such as PPS, POM, PA, PC, and PP as resins and aramid fibers, talc, and cellulose fibers as fillers may be used.
  • the plastic molded product is a plastic mag
  • composite materials such as nylon as resin and strontium ferrite, samarium cobalt, and the like may be used as fillers.
  • the molded product that is the object of inspection as described above is manufactured by pouring resin into a mold or by extruding resin into a sheet shape.
  • the subject H may be the molded product itself or a sample cut out from the molded product. Note that the object of inspection is not limited to a molded product.
  • the X-ray Talbot imaging device 1 includes an X-ray generator 11, a source grating 12, a subject table 13, a first grating 14, a second grating 15, an X-ray detector 16, a support 17, and a base unit 18.
  • reconstructed images At least three types of images can be reconstructed (referred to as reconstructed images) by capturing a moire image of the subject H at a predetermined position relative to the subject table 13 using a method based on the principles of the fringe scanning method and analyzing the moire image using the Fourier transform method.
  • an absorption image (same as a normal X-ray absorption image) which visualizes the difference in average components between the BG moiré fringe image and the moiré fringe image
  • a differential phase image which visualizes the phase difference between the BG moiré fringe image and the moiré fringe image
  • a small-angle scattering image which visualizes the visibility ratio, which is the ratio of the visibility (clarity) between the BG moiré fringe image and the moiré fringe image.
  • the fringe scanning method is a method in which one of multiple gratings is moved in the direction of the slit period by 1/M (M is a positive integer, M>2 for absorption images, M>3 for differential phase images and small-angle scattering images) of the grating, and then reconstructed using the moiré images captured M times to obtain a high-resolution reconstructed image.
  • M is a positive integer, M>2 for absorption images, M>3 for differential phase images and small-angle scattering images
  • the Fourier transform method is a method in which, in the presence of a subject, a single moiré image is captured using an X-ray Talbot imaging device, and then in image processing, the moiré image is subjected to a Fourier transform or other process to reconstruct and generate an absorption image, differential phase image, small-angle scattering image, or other image.
  • Fig. 2 shows the case of a Talbot interferometer
  • the z direction in Fig. 2 corresponds to the vertical direction in the X-ray Talbot imaging device 1 in Fig. 1
  • the x and y directions in Fig. 2 correspond to the horizontal directions (front-back and left-right directions) in the X-ray Talbot imaging device 1 in Fig. 1.
  • the first grating 14 and the second grating 15 (and the source grating 12 in the case of a Talbot-Lau interferometer) have a plurality of slits S arranged at a predetermined period d in the x direction perpendicular to the z direction, which is the irradiation direction of the X-rays.
  • the periods of the source grating 12, the first grating 14, and the second grating 15 are not limited to being the same.
  • X-rays irradiated from X-ray source 11a (X-ray generator 11) (in the case of a Talbot-Lau interferometer, the X-rays irradiated from X-ray source 11a are converted into multiple light sources by source grating 12 (not shown in Figure 2)) pass through first grating 14, the transmitted X-rays form images at regular intervals in the z direction. These images are called self-images (also called grating images, etc.), and the phenomenon in which self-images are formed at regular intervals in the z direction is called the Talbot effect.
  • the Talbot effect is a phenomenon in which, when coherent light passes through the first grating 14, which has slits S at a constant period d as shown in Figure 2, it forms self-images at constant intervals in the direction of light travel, as described above.
  • a second grating 15 having slits S with approximately the same period as the self-image of the first grating 14 is placed at the position where the self-image of the first grating 14 forms an image.
  • the extension direction of the slits S of the second grating 15 i.e., the x-axis direction in FIG. 2
  • a moiré image Mo is obtained on the second grating 15.
  • the moiré image Mo is drawn away from the second grating 15 because if the moiré image Mo were drawn on the second grating 15, the moiré stripes and slits S would be mixed together, making it difficult to understand.
  • the moiré image Mo is formed on the second grating 15 and downstream of it. This moiré image Mo is then captured by the X-ray detector 16, which is placed directly below the second grating 15.
  • the subject H causes the phase of the X-rays to shift or the X-rays to scatter.
  • the moire fringes of the moire image Mo are disturbed at the boundary of the subject's edge, and in the latter case, the visibility rate of the scattered portion is reduced without being limited to the subject's edge.
  • the subject H is not present between the X-ray source 11a (X-ray generating device 11) and the first grating 14, a moire fringe image not influenced by the subject H, that is, a BG moire image, appears.
  • a moire fringe image not influenced by the subject H that is, a BG moire image.
  • the subject H may be disposed behind the first grating 14 .
  • the second grating 15 is arranged in the second cover unit 130 at a position where the self-image of the first grating 14 forms an image. Also, as mentioned above, if the second grating 15 and the X-ray detector 16 are separated, the moire image Mo (see FIG. 2) becomes blurred, so in this embodiment, the X-ray detector 16 is arranged directly below the second grating 15.
  • the second cover unit 130 is provided to protect the X-ray detector 16, etc. by preventing people or objects from colliding with or touching the first grating 14, second grating 15, X-ray detector 16, etc.
  • the X-ray detector 16 is configured such that conversion elements that generate electrical signals in response to irradiated X-rays are arranged in a two-dimensional array (matrix), and the electrical signals generated by the conversion elements are read as image signals.
  • the X-ray detector 16 captures the moiré image Mo, which is an image of the X-rays formed on the second grating 15, as an image signal for each conversion element.
  • the X-ray Talbot imaging device 1 captures multiple moiré images Mo using a so-called fringe scanning method. That is, in the X-ray Talbot imaging device 1 according to this embodiment, multiple moiré images Mo are captured while shifting the relative positions of the first grating 14 and the second grating 15 in the x-axis direction in Figures 1 to 3 (i.e., the direction perpendicular to the extension direction (y-axis direction) of the slit S). In another embodiment, the source grating 12 may be moved.
  • the image processing device 2 receives image signals of multiple moiré images Mo from the X-ray Talbot imaging device 1, and performs image processing to reconstruct an absorption image, a differential phase image, a small-angle scattering image, etc. based on the multiple moiré images Mo.
  • a moving device (not shown) is provided for moving the first grating 14 in the x-axis direction by a predetermined amount. Note that it is also possible to configure the device so that the second grating 15 is moved instead of the first grating 14, or so that both are moved. In another embodiment, the source grating 12 may be moved.
  • the X-ray Talbot imaging device 1 can be configured to capture only one moire image Mo while keeping the relative positions of the first grating 14 and the second grating 15 fixed, and then to reconstruct an absorption image, differential phase image, small angle scattering image, etc. by analyzing this moire image Mo using a Fourier transform method or the like in image processing in the image processing device.
  • a sine wave graph is a graph in which the horizontal axis represents the relative angle between the sample and the lattice, and the vertical axis represents the small-angle scattering signal value of a certain pixel. The amplitude, average, and phase of the sine wave are obtained as fitting parameters.
  • orientation degree image An image showing the amplitude value for each pixel is called an orientation degree image
  • an image showing the average value for each pixel is called a scattering intensity image
  • an image showing the phase for each pixel is called an orientation angle image.
  • the fitting method is not limited to a sine wave.
  • the images (orientation degree image, scattering intensity image, and orientation angle image) generated by recombining the reconstructed images are collectively referred to as an orientation analysis image.
  • the orientation analysis image is generated based on a plurality of small-angle scattering images captured by changing the relative angle of the subject with respect to the slits of the grid of the X-ray Talbot imaging device.
  • image processing such as filtering, clarity, and contour extraction on the reconstructed image and the orientation analysis image, as well as a synthesis process that combines two or more types of images.
  • Image processing such as filtering, clarity, and contour extraction, as well as synthesis processes, will be explained in the explanation of the image processing flow described later.
  • the first image refers to the orientation analysis image itself, or an image based on the orientation analysis image, such as an orientation analysis image that has been subjected to image processing such as filtering or an orientation analysis image that has been combined with another image.
  • the second image refers to not only an orientation analysis image or reconstructed image of a type different from the first image, but also an orientation analysis image or reconstructed image of a type different from the first image that has been subjected to image processing such as filtering or an orientation analysis image that has been combined with another image.
  • image processing also includes clarification processing and contour extraction image generation processing.
  • This embodiment is a so-called vertical type, in which the X-ray generator 11, radiation source grating 12, subject table 13, first grating 14, second grating 15, and X-ray detector 16 are arranged in this order in the z direction, which is the direction of gravity. That is, in this embodiment, the z direction is the irradiation direction of X-rays from the X-ray generator 11.
  • the X-ray generator 11 is equipped with an X-ray source 11a, such as a Coolidge X-ray source or a rotating anode X-ray source that are widely used in medical settings. Other X-ray sources can also be used.
  • the X-ray generator 11 of this embodiment is configured to irradiate X-rays in a cone beam shape from a focal point. In other words, the X-rays are irradiated so that they spread out the further away from the X-ray generator 11.
  • the radiation source grating 12 is provided below the X-ray generator 11.
  • the radiation source grating 12 is not attached to the X-ray generator 11, but is attached to a fixed member 18a attached to a base portion 18 provided on a support 17.
  • a buffer member 17a is provided between the X-ray generator 11 and the support 17 to prevent vibrations from the X-ray generator 11 from propagating to other parts of the X-ray Talbot imaging device 1, such as the support 17 (or to reduce the amount of vibration that propagates).
  • the fixed member 18a is equipped with a filter (also called an additional filter) 112 for changing the radiation quality of the X-rays transmitted through the radiation source grating 12, an irradiation field aperture 113 for narrowing the irradiation field of the irradiated X-rays, and an irradiation field lamp 114 for irradiating the subject with visible light instead of X-rays for alignment before irradiating the subject with X-rays.
  • a filter also called an additional filter
  • a first cover unit 120 is arranged around the radiation source grating 12 and other components to protect them.
  • the subject table 13 is a table on which the subject H is placed.
  • the subject table 13 is provided with a fixing unit (not shown) that fixes the position of the subject H with respect to the X-rays irradiated from the X-ray generator 11.
  • the fixing unit has a fixing part that can fix the subject H at a predetermined position, and a moving mechanism that can rotate the fixing part about the XY axis (two-dimensional direction) + ⁇ axis (three-dimensional direction).
  • the subject H does not necessarily need to be fixed, and if the subject H is a plate material or a dumbbell test piece that does not move on the subject table 13 even without being fixed, it can be photographed without being fixed.
  • the imaging angle is an angle indicating the position of the subject H relative to the X-ray Talbot imaging device 1, and specifically, a rotation angle from a reference position P of the subject table 13, which will be described later.
  • the grating facing angle is a relationship (angle) between the direction of a captured image (or an image displayed after imaging) and the direction of the gratings (multi-slit 12, first grating 14, second grating 15).
  • the degree of phase change or visibility rate reduction varies depending on the relative angle between the lattice and the boundary between materials with different refractive indexes inside the subject, or the scatterer, and when generated as a reconstructed image, the image seen according to the angle varies. Therefore, by photographing the same part of the subject H multiple times with different lattice facing angles, it is possible to obtain multiple image sets of three types of reconstructed images (absorption image, differential phase image, small angle scattering image) based on the same moire image Mo for each angle.
  • alignment may be performed by image processing.
  • the alignment may be performed using the characteristics of the subject H, or a marker for alignment other than the subject H may be photographed together with the subject H and the marker may be used.
  • the imaging angle of the subject H is adjusted by the moving mechanism of the fixed unit, but a configuration may be adopted in which the X-ray source 11a, the multiple gratings 12, 14, 15 (which may be grating holders), and the X-ray detector 16 rotate as a whole around the optical axis of the X-rays as the axis of rotation, thereby enabling imaging by changing the grating opposition angle between the subject H and the grating.
  • the image processing device 2 can use the moire image Mo obtained by the X-ray Talbot imaging device 1 to generate three types of high-definition reconstructed images (absorption image, differential phase image, small-angle scattering image) of the subject H, generate orientation analysis images (orientation degree image, scattering intensity image, orientation angle image), and perform image processing of the obtained reconstructed images and orientation analysis images.
  • the image processing device 2 is configured to include a control unit 21, an operation unit 22, a display unit 23, a communication unit 24, and a storage unit 25.
  • the image processing device 2 including the display unit 23 also functions as an image display device.
  • the control unit 21 is composed of a CPU (Central Processing Unit), a RAM (Random Access Memory), etc., and executes various processes including image processing, which will be described later, in cooperation with programs stored in the storage unit 25 .
  • the control unit 21 functions as a first acquisition unit that acquires a reconstructed image including a small-angle scattering image based on an image of a subject captured by an X-ray Talbot imaging device.
  • the control unit 21 functions as a second acquisition unit that acquires, as a first image, an orientation analysis image generated based on the small-angle scattering image or an image based on the orientation analysis image, and, as a second image, an orientation analysis image or reconstructed image of a type different from the first image, or an image based on an orientation analysis image or reconstructed image of a type different from the first image.
  • the control unit 21 functions as an extraction unit that extracts a portion of interest from the first image or the second image.
  • the control unit 21 functions as an output unit that outputs characteristic information based on the first image and the second image, or a composite image of the first image and the second image. It is to be noted that only one of the extraction unit and the output unit may be provided.
  • the composite image is obtained by subjecting two or more of the orientation analysis images or the reconstructed images generated based on the small-angle scattering images to division, addition, or other arithmetic processing.
  • the composite image may be obtained by subjecting three types of orientation analysis images and three types of reconstructed images to division, addition, subtraction, multiplication, or other combinational arithmetic processing.
  • the composite image may be an image obtained by dividing, adding, or performing other arithmetic processing on an orientation analysis image or a reconstructed image generated based on a small-angle scattering image and an arbitrary image.
  • the arbitrary image refers to a drawing or image obtained by a device other than an X-ray Talbot imaging device, such as a microscope image, CAD, or a photograph.
  • the operation unit 22 is configured with a keyboard equipped with cursor keys, numeric input keys, various function keys, etc., and a pointing device such as a mouse, and outputs press signals of keys pressed on the keyboard and operation signals from the mouse as input signals to the control unit 21. It may also be configured with a touch panel integrated with the display of the display unit 23, and generate operation signals corresponding to these operations and output them to the control unit 21.
  • the display unit 23 is configured with a display such as a CRT (Cathode Ray Tube) or LCD (Liquid Crystal Display), and displays various display screens, etc., according to the display control of the control unit 21.
  • a display such as a CRT (Cathode Ray Tube) or LCD (Liquid Crystal Display), and displays various display screens, etc., according to the display control of the control unit 21.
  • the communication unit 24 has a communication interface and communicates with the X-ray Talbot imaging device 1 on the communication network and with external systems such as a PACS (Picture Archiving and Communication System) via wired or wireless communication.
  • PACS Picture Archiving and Communication System
  • the memory unit 25 is composed of a non-volatile semiconductor memory, a hard disk, etc., and stores programs executed by the control unit 21, data necessary for executing the programs, information on the object to be inspected (subject information), information on reconstructed images and orientation analysis images (including the first image and the second image), characteristic information, etc.
  • Characteristic information is information that indicates the characteristics of the object to be inspected, and refers to, for example, information such as the material, size, anisotropy, density, refractive index difference, shape (roundness, circularity, etc.) of the object to be inspected, and candidates for substances (inclusions) contained in the object to be inspected (information regarding inclusions; for example, the orientation and density of fibers contained in the object to be inspected, the presence or absence of foreign objects, the location and size of voids, etc.).
  • the subject information (information about the subject) is information about the object to be inspected itself, such as the material, name, density, size range, etc. of the raw material that constitutes the subject. Note that the subject information is not limited to this.
  • the output information is information on the object to be inspected that is output by image processing, which will be described later.
  • the past output information is stored in the storage unit 25 in association with a combination of the first image and the second image, the output characteristic information, the extracted points of interest, and the like.
  • Image processing flow example 1 The image processing is executed by the control unit 21 in cooperation with a program stored in the storage unit 25. The steps of the image processing will be described with reference to FIG.
  • Image processing is a process of extracting points of interest from a first image or a second image, and outputting characteristic information based on the first image and the second image, or a composite image of the first image and the second image. It is assumed that before the image processing starts, the subject information, the first image, the second image, the reconstructed image, the orientation analysis image, and the output information are stored in the storage unit 25 .
  • the control unit 21 acquires from the storage unit 25 a reconstructed image selected by the user using the operation unit 22 (step S1). It is assumed that the selected reconstructed images include a small-angle scattering image.
  • the control unit 21 acquires the first image and the second image from the storage unit 25 as a second acquisition step (step S2).
  • the first image is an orientation analysis image generated based on the small-angle scattering image included in the reconstructed image selected in step S1 or an image based on the orientation analysis image
  • the second image is an orientation analysis image or reconstructed image of a type different from the first image, or an image based on an orientation analysis image or reconstructed image of a type different from the first image.
  • the first and second images may be selected by the user using the operation unit 22, or may be automatically selected by the control unit 21 from the reconstructed image and the orientation analysis image or an image based on them.
  • control unit 21 may select the first and second images of the image type (for example, the first image is a scattering intensity image and the second image is an absorption image) set in advance by the user, or the control unit 21 may comprehensively select combinations of the first and second images stored in the storage unit 25.
  • image type for example, the first image is a scattering intensity image and the second image is an absorption image
  • control unit 21 executes various image processes (step S3).
  • image processing attention point extraction processing, characteristic information output processing, synthesis processing, filtering processing, clarity processing, and contour extraction image generation processing
  • control unit 21 can execute any of the various types of image processing.
  • the process of extracting points of interest is a process of extracting points of interest from the first image and the second image.
  • a point of interest refers to a location or area where the signal strength differs from the surrounding area by more than a certain threshold value.
  • the threshold value may be set as an absolute value, or may be calculated from the signal strength of the image. Multiple threshold values may also be set. There may also be multiple points of interest. Points of interest are displayed, for example, as the circled areas in Figures 7A to E described below, the areas indicated by arrows in Figure 9AB, and the areas indicated by dots in the image in Figure 9CD.
  • the characteristic information output process is a process of outputting characteristic information, which is information indicating the characteristics of the object to be inspected, from the first image and the second image.
  • the characteristic information is derived by combining the first image and the second image. Specifically, as shown in FIG 6, the characteristic information is derived for each combination of the first image and the second image.
  • the characteristic information output process may be performed on the attention points extracted in the attention point extraction process as the processing target, or the characteristic information output process may be performed on the entire first image and the entire second image.
  • the characteristic information is output as indicating that the object is a metal or a highly absorbing particle/fiber.
  • the size of a void when the first image is a scattering intensity image and the second image is an absorption image, if the location of interest shows high scattering in the first image and low absorption in the second image, the object at the location of interest is displayed as a micro-sized void. Also, when the location of interest shows low scattering in the first image and low absorption in the second image, the object at the location of interest is displayed as a large-sized void. Void size classification will be described later.
  • FIG. 7 shows an example of a combination (comparison) of the first image and the second image.
  • 7A is an example of a combination of an absorption image and a scattering intensity image. Areas with small signal values in both the absorption image and the scattering intensity image (areas surrounded by circles) are identified as large voids.
  • 7B shows an example of a combination of an absorption image and a differential phase image. Areas where the signal value is small in the absorption image and where a signal change is observed in the differential phase image (areas surrounded by circles) can be confirmed to be large voids.
  • 7C shows an example of a combination of a scattering intensity image and a differential phase image.
  • Areas where the signal value is large in the scattering intensity image and where a signal change is observed in the differential phase image can be confirmed to be large-sized fiber bundles.
  • 7D is an example of a combination of a differential phase image and an orientation image. It can be seen that the areas where a signal change is observed in the differential phase image and the signal value is small in the orientation image (areas surrounded by circles) are approximately circular voids without anisotropy.
  • the first image is a scattering intensity image
  • the second image is an absorption image
  • the third image is an orientation image. If the area of interest shows high scattering in the first image, high absorption in the second image, and high orientation in the third image, the object at the area of interest is displayed as an anisotropic material with uniform orientation. If the area of interest shows high scattering in the first image, high absorption in the second image, and low orientation in the third image, the object at the area of interest is displayed as an anisotropic material with non-uniform orientation. Note that the absorption image shows that the density is higher than the surrounding area.
  • Figure 7E is an example of a combination of an absorption image, a scattering intensity image, and an orientation image. It can be confirmed that the area where the signal value in the absorption image is smaller than the surroundings, the signal value in the scattering intensity image is large, and the signal intensity in the orientation image is small (the area indicated by the arrow at the bottom of the image) is an area with many small voids.
  • the area surrounded by the dashed line on the left side of the image and the area surrounded by the solid line on the right side are both areas where signals are detected in the absorption image and the scattering intensity image, but the former has a small signal in the orientation image, so there are many random fibers, and the latter has a large signal in the orientation image, so there are many oriented fibers.
  • void size classification a method for measuring the number and shape of voids (void size classification) will be described.
  • the object to be inspected is fiber-reinforced resin
  • voids (air) in the fiber-reinforced resin have lower X-ray absorption than the surrounding material in the absorption image, and appear on the image as low-absorption regions.
  • the size can be correctly identified in the absorption image at 2 x detector pixel pitch / (image magnification rate) or more.
  • the size of voids with a diameter of 200 [ ⁇ m] or more can be determined, but voids less than 200 [ ⁇ m] can be detected, but the size is unknown, whether it is 150 or 50 [ ⁇ m]. Therefore, since the signal intensity of the small-angle scattering image varies depending on the size of the scatterer, the size range of the scatterer can be estimated.
  • the theoretical formula for the signal intensity of the small-angle scattering image and the size of the scatterer is shown in Equation 1 (S.K. Lynch, "Interpretation of dark-field contrast and particle size selectivity inclusion interferometers (APPLIED OPTICS.
  • the small-angle scattering signal intensity ( ⁇ d') of the voids is determined by D', and the denominator d of D' is a fixed value determined by the device and photographing conditions, so it depends on the particle diameter D.
  • Figure 8 shows the relationship between the particle size and the small-angle scattering signal intensity value ( ⁇ d) in the Talbot device.
  • the size of the voids detected in the small-angle scattering image is within the range of the arrow (several to 100 [ ⁇ m]), and further, for example, when the signal intensity is relatively high, it can be estimated that there are many voids in the vicinity of several to 30 [ ⁇ m], and when the signal intensity is low, it can be estimated that there are many voids smaller or larger than the above range.
  • factors other than the size of the voids such as the density of the voids and the thickness of the sample, may be considered. Therefore, the size range of voids in a sample can be estimated if only the absorption image, small-angle scattering image, and the Talbot device and imaging condition parameters used for image capture are available.
  • the synthesis process is a process of synthesizing the reconstructed image and the orientation analysis image by dividing, adding, or performing other arithmetic processes on the signal values.
  • clarifying (colorizing) and generating a contour extraction image using a scattering intensity image and an orientation image will be described.
  • the signal intensity of the scattering intensity image and the orientation image is binarized (filtered) above/below a threshold value to separate high/low regions of the signal intensity of the scattering intensity image and the orientation image, and a high scattering image, a low scattering image, a high orientation image, and a low orientation image are generated.
  • a composite image (enhanced image) for highlighting features is generated by synthesizing the high scattering image and the low orientation image, and the low scattering image and the high orientation image.
  • the enhanced image is processed. That is, the enhanced image generated from the high scattering image and the low orientation image is colorized, and a contour line is generated using the enhanced image generated from the low scattering image and the high orientation image. Then, these processed enhanced images are synthesized with the original scattering intensity image and the orientation image. As a result, a composite image in which features are clarified and contours are extracted is generated.
  • division, addition, and other operations include division, addition, and the like of drawings and images obtained by devices other than the X-ray Talbot imaging device, such as microscope images, CAD, photographs, etc. When clarifying the image, three or more color or monochrome images may be superimposed to make it easier to see.
  • FIG. 9 shows an example of a combination (comparison) of a first image, a second image, and a composite image.
  • 9A shows an example of a combination of a scattering intensity image, an orientation image, and a composite image (the signal value of the orientation image is divided by the signal value of the scattering intensity image).
  • 9B shows an example of a combination of an absorption image, a scattering intensity image, and a composite image (the signal value of the scattering intensity image is divided by the signal value of the absorption image).
  • 9C is an example of a combination of a scattering intensity image, a differential phase image, and a composite image (combining the signal values of the scattering intensity image and the differential phase image). It can be seen that the large voids (indicated by dots in the image) that can be confirmed from the differential phase image are concentrated in the low scattering intensity area on the end side of the test piece.
  • 9D shows an example of a combination of an orientation image, a differential phase image, and a composite image (combining the signal values of the orientation image and the differential phase image). It can be seen that the large voids (shown by dots in the image) that can be confirmed from the differential phase image are mostly located in the low orientation portion on the end side of the test piece.
  • FIG. 10 shows an example of the filtering process.
  • Image A is an image before filtering processing.
  • Image B is an image after filtering (brightness range, circularity).
  • fiber aggregation locations are represented by dots.
  • the dots themselves are the locations of interest, and their distribution is regarded as characteristic information.
  • a filter is used in which the absorption signal intensity/fiber amount (index), which is an index obtained by normalizing the absorption signal intensity by the fiber amount, is in the range of 0.004 to 0.006 and the circularity is in the range of 0.0 to 0.60.
  • the absorption signal intensity/fiber amount (index) is in the range of 0.004 to 0.006, only the fiber signal can be selectively detected.
  • the control unit 21 displays various image processing results (combination of the first image and the second image, characteristic information, etc.) on the display unit 23 (step S4).
  • the control unit 21 displays various image processing results of the selected first image and second image.
  • the various image processing results of the automatically selected first image and second image are displayed.
  • the control unit 21 causes the display unit 23 to display a list of combinations of the first and second images and their characteristic information, for example, as shown in Fig. 6.
  • the control unit 21 causes the display unit 23 to display the images and their highlighted characteristic information, as shown in Fig. 7 or 9.
  • One of the first image or the second image is a grayscale image and the other is a color image, and in step S4 (output step), the first image and the second image are displayed in an overlaid manner to make it easier for the user to view the characteristic information.
  • FIG. 11 The image processing flow shown in Fig. 11 is obtained by adding a subject information acquisition step, a target characteristic item acquisition step, and an output information acquisition step to the image processing flow shown in Fig. 5.
  • the other steps are the same as those shown in Fig. 5. It is assumed that information regarding the subject (subject information) has been stored in the storage unit 25 by the user using the operation unit 22 (recording step; not shown).
  • the control unit 21 acquires subject information from the storage unit 25 (step S21).
  • step S26 image processing
  • the control unit 21 can detect inclusions and the like inside the subject by using the subject information and the acquired image and taking into account the characteristics of the subject.
  • the control unit 21 acquires, as a third acquisition step, from the storage unit 25, the target property items input by the user using the operation unit 22 (step S22).
  • the target property item is an item of property information that the user wants to obtain. For example, if the target property item is a void, the control unit 21 detects the void, which is the target property item, in step S26 (image processing). This reduces the processing load of the control unit 21.
  • the control unit 21 acquires past output information from the storage unit 25 as a fourth acquisition step (step S25).
  • step S26 image processing
  • the control unit 21 performs image processing using the past output information and the acquired image. That is, the control unit 21 can acquire similar output information from the past output information of the subject, and perform image processing based on the output information.
  • the control unit 21 refers to information of the subject that has output information about voids in the past.
  • control unit 21 refers to output information of the subject that has been image-processed and an image processing method using a composite image of a past absorption image and a scattering intensity image.
  • [Second embodiment] 12 and 13 show examples of a three-dimensional Talbot reconstruction and an orientation analysis image acquisition method.
  • a subject H is placed in the device as shown in Fig. 12.
  • the subject H is attached to a movement/rotation mechanism 13a, and a plurality of projection images are taken at different rotation angles by rotating H as shown in Fig. 13, and three-dimensional reconstruction processing is performed to obtain Talbot CT reconstruction images (an absorption CT image obtained from a plurality of absorption projection images, a small-angle scattering CT image obtained from a plurality of small-angle scattering projection images, and a CT image obtained from a plurality of differential phase projection images).
  • a three-dimensional orientation analysis image is obtained by the following method: A subject is placed as shown in Fig.
  • Fig. 13 shows an example in which the lattice direction and the CT rotation axis are parallel, but other configurations are also possible in which the directions of the lattice direction and the CT rotation axis are changed, or the directions of the lattice direction and the CT rotation axis are fixed as parallel, perpendicular, or oblique, and the direction of the subject H relative to the CT rotation axis is changed.
  • a Talbot CT reconstructed image using the small-angle scattering image is obtained by performing a three-dimensional reconstruction process on each captured projection image.
  • the three-dimensional reconstruction process is performed for each captured projection image while changing the lattice direction and the direction of the CT rotation axis, and the direction of the subject H relative to the CT rotation axis, and the Talbot CT reconstructed image using each small-angle scattering image is then processed to obtain an orientation analysis image (which may be a 3D image or a 2D image) such as scattering intensity, orientation angle, orientation degree, etc.
  • an orientation analysis image which may be a 3D image or a 2D image
  • the method of obtaining the orientation analysis image such as scattering intensity, orientation angle, orientation degree, etc. is not limited to this.
  • the image processing method is a method for processing images obtained by photographing a subject multiple times with an X-ray Talbot imaging device while changing the relative angle between the X-ray grating and the sample, and includes a first acquisition step (step S1) of acquiring a reconstructed image including a small-angle scattering image for each photograph based on the images, a second acquisition step (step S2) of acquiring an orientation analysis image generated based on the multiple small-angle scattering images or an image based on the orientation analysis image as a first image, and an orientation analysis image or reconstructed image of a type different from the first image, or an image based on an orientation analysis image or reconstructed image of a type different from the first image, as a second image, and an image processing step (step S3).
  • the image processing step includes at least one of an extraction step (step S3) of extracting a site of interest from the first image or the second image, and an output step (step S3) of outputting characteristic information based on the first image and the second image, or a composite image of the first image and the second image, thereby making it possible to easily grasp a region of interest or characteristic information obtained when images acquired from a radiation imaging device using a Talbot interferometer or a Talbot-Lau interferometer are combined.
  • the output step (step S3) outputs characteristic information about the area of interest extracted in the extraction step, making it easy to grasp the area of interest or characteristic information obtained when combining images acquired from a radiation imaging device using a Talbot interferometer or Talbot-Lau interferometer.
  • the image processing method further includes a third acquisition step (step S22) for acquiring target characteristic items, an extraction step for extracting a point of interest based on the target characteristic items, and a characteristic information output step for outputting characteristic information based on the target characteristic items, thereby making it easy to grasp the area of interest or characteristic information obtained when combining images acquired from a radiation imaging device using a Talbot interferometer or a Talbot-Lau interferometer.
  • the first image is a scattering intensity image
  • the second image is an absorption image.
  • the output step (step S3) outputs information on at least one of the size, quantity, and shape of voids present in the area of interest from among the characteristic information, thereby making it easy to grasp the area of interest or the characteristic information.
  • the first image is a scattering intensity image
  • the second image is an absorption image
  • the third image is an orientation image.
  • information on the object present in the target area is output from the characteristic information, so that the target area or the characteristic information can be easily grasped.
  • one of the first image and the second image is a grayscale image and the other is a color image
  • the output step (step S3) displays the first image and the second image in an overlaid manner, making it easy to grasp the area of interest or characteristic information.
  • the image processing method further includes a contour extraction image generating step (step S3) for generating a contour extraction image from either the first image or the second image, and the output step displays the extracted contour extraction image superimposed on the other image, making it possible to easily grasp the region of interest or characteristic information.
  • the image processing method further includes a recording step for recording information about the subject, and an output step (step S3) outputs characteristic information based on the information recorded in the recording step and the first image and the second image, or based on the information recorded in the recording step and a composite image of the first image and the second image, thereby making it possible to output the area of interest or characteristic information more accurately.
  • the image processing method also has a fourth acquisition step (step S25) of acquiring output information from an output database that stores the output information, and an output step (step S3) of outputting characteristic information based on the output information acquired from the output database and the first and second images, or the output information acquired from the output database and a composite image of the first and second images, and the output database stores data that associates information about the subject, characteristic information, and the first and second images or the composite image of the first and second images, so that the area of interest or characteristic information can be output based on its past history.
  • the image processing device is an image processing device for processing images of a subject photographed multiple times with an X-ray Talbot imaging device while changing the relative angle between the X-ray grating and the sample, and has a first acquisition unit (control unit 21) that acquires a reconstructed image including a small-angle scattering image for each photograph based on the image, a second acquisition unit (control unit 21) that acquires an orientation analysis image or an image based on the orientation analysis image generated based on the multiple small-angle scattering images as a first image, an orientation analysis image or a reconstructed image of a type different from the first image, or an image based on an orientation analysis image or a reconstructed image of a type different from the first image as a second image, and an image processing unit (control unit 21).
  • the image processing unit includes at least one of an extraction unit (control unit 21) that extracts a location of interest from the first image or the second image, and an output unit (control unit 21) that outputs characteristic information based on the first image and the
  • the image processing system is an image processing system for processing images of an object photographed multiple times with an X-ray Talbot imaging device while changing the relative angle between the X-ray grating and the sample, and includes a first acquisition unit (control unit 21) that acquires a reconstructed image including a small-angle scattering image for each photograph based on the image, a second acquisition unit (control unit 21) that acquires an orientation analysis image or an image based on the orientation analysis image generated based on the multiple small-angle scattering images as a first image, an orientation analysis image or a reconstructed image of a type different from the first image, or an image based on an orientation analysis image or a reconstructed image of a type different from the first image as a second image, and an image processing unit (control unit 21).
  • the image processing unit includes at least one of an extraction unit (control unit 21) that extracts a location of interest from the first image or the second image, and an output unit (control unit 21) that outputs characteristic information based on the first image and the second image, or a composite image of the first image and the second image, making it easy to grasp the region of interest or characteristic information obtained when images acquired from a radiation imaging device using a Talbot interferometer or a Talbot-Lau interferometer are combined.
  • an extraction unit control unit 21
  • control unit 21 that outputs characteristic information based on the first image and the second image, or a composite image of the first image and the second image, making it easy to grasp the region of interest or characteristic information obtained when images acquired from a radiation imaging device using a Talbot interferometer or a Talbot-Lau interferometer are combined.
  • the image processing device 2 equipped with the display unit 23 also functions as an image display device, but the image processing device and the image display device may be separate devices.
  • the image display device may only perform display processing, and various processes and management of information such as characteristic information may be performed by a separate image processing device.
  • the image processing device may be a cloud, and only display processing may be performed by the image display device.
  • This disclosure can be used in image processing methods, image processing devices, and image processing systems.
  • X-ray Talbot imaging device 1 X-ray Talbot imaging device 2 Image processing device 11 X-ray generator 11a X-ray source 12 Source grating (G0 grating) 13 subject table 14 first grid (G1 grid) 15 Second lattice (G2 lattice) 16 X-ray detector (FPD) 21 control unit (first acquisition unit, second acquisition unit, extraction unit, output unit) 22 Operation unit 23 Display unit 24 Communication unit 25 Storage unit 100 X-ray imaging system H Subject S S Slit Mo Moire image

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Provided are an image processing method, an image processing device, and an image processing system making it easy to ascertain areas of interest or characteristic information that can be obtained if images acquired from an X-ray Talbot imaging device are combined. The image processing method includes: a first acquisition step S1 for acquiring a reconstructed image including small-angle scattering images from each instance of imaging, such acquisition being on the basis of images obtained by imaging a subject a plurality of times with an X-ray Talbot imaging device while also changing the relative angle between an X-ray grating and a sample; and a second acquisition step S2 for acquiring, as a first image, either an orientation analysis image generated on the basis of a plurality of small-angle scattering images or an image based on the orientation analysis image, and, as a second image, either an orientation analysis image or reconstructed image of a different type from that of the first image, or alternatively an image based on either an orientation analysis image or reconstructed image of a different type from that of the first image. The method furthermore includes: an extraction step for extracting a spot of interest from the first image or second image; and/or an output step for outputting characteristic information based on the first image and the second image, or on a composite image of the first image and the second image.

Description

画像処理方法、画像処理装置及び画像処理システムIMAGE PROCESSING METHOD, IMAGE PROCESSING APPARATUS, AND IMAGE PROCESSING SYSTEM
 本発明は、画像処理方法、画像処理装置及び画像処理システムに関する。 The present invention relates to an image processing method, an image processing device, and an image processing system.
 従来、タルボ効果を利用するタルボ干渉計やタルボ・ロー干渉計を用いたX線タルボ撮影装置が知られている。タルボ効果とは、一定の周期でスリットが設けられた第1格子を、干渉性の光が透過すると、光の進行方向に一定周期でその格子像を結ぶ現象をいう。この格子像は自己像と呼ばれ、タルボ干渉計は自己像を結ぶ位置に第2格子を配置し、この第2格子をわずかにずらすことで生じるモアレ縞を測定する。第2格子の前に物体を配置するとモアレが乱れることから、タルボ干渉計やタルボ・ロー干渉計によりX線撮影を行うのであれば、第1格子の前もしくは後ろに被写体を配置して干渉性X線を照射し、得られたモアレ縞の画像を演算することによって被写体の表示用画像を得ることが可能である(特許文献1)。  Conventionally, X-ray Talbot imaging devices using Talbot interferometers and Talbot-Lau interferometers that utilize the Talbot effect are known. The Talbot effect refers to the phenomenon in which, when coherent light passes through a first grating with slits at a constant period, a grating image is formed at a constant period in the direction of light travel. This grating image is called a self-image, and the Talbot interferometer places a second grating at the position where the self-image is formed, and measures the moiré fringes that are generated by slightly shifting this second grating. Since placing an object in front of the second grating distorts the moiré, if X-ray imaging is performed using a Talbot interferometer or Talbot-Lau interferometer, it is possible to obtain an image of the subject to be displayed by placing the subject in front of or behind the first grating, irradiating it with coherent X-rays, and calculating the image of the resulting moiré fringes (Patent Document 1).
 また、近年の材料開発では、単独の材料だけでは性能発現するのは限界が来ており、複数の材料を組み合わせた複合材料を用いて性能を発現させることが必要になってきている。その際、複合材料の内部構造を解析して把握し、性能と関連のある注目領域を探し出し改良することが必要になっている。  In addition, in recent material development, it has become necessary to achieve performance using composite materials that combine multiple materials, as there is a limit to what can be achieved with a single material. In doing so, it is necessary to analyze and understand the internal structure of the composite material, and to identify and improve areas of interest related to performance.
 X線タルボ撮影装置では、従来のX線透過検査装置やX線吸収CTと比較し、吸収画像・微分位相画像・小角散乱画像さらに配向解析画像を一度に得られる。
 したがって、内部構造を解析する上で材料を壊すことなく測定できる非破壊装置としてX線タルボ撮影装置が使われている。
Compared to conventional X-ray transmission inspection devices and X-ray absorption CT, the X-ray Talbot imaging device can obtain absorption images, differential phase images, small-angle scattering images, and orientation analysis images all at once.
Therefore, X-ray Talbot imaging devices are used as non-destructive devices that can measure the internal structure without destroying the material.
 具体的には、X線タルボ撮影装置は次のようなケースで利用されている。
 配向撮影により、材料の配向カラー表示を行うことで材料の配向を視認可能としたり(特許文献1)、吸収画像・微分位相画像・小角散乱画像、配向解析画像を組み合わせることで、吸収画像だけでは特定が困難であった特性を特定可能にしたり(特許文献2)するケースが挙げられる。
Specifically, the X-ray Talbot imaging device is used in the following cases.
Examples of cases include using orientation photography to display the orientation of a material in color, making it possible to visually confirm the orientation of the material (Patent Document 1), and combining absorption images, differential phase images, small-angle scattering images, and orientation analysis images to identify characteristics that are difficult to identify using absorption images alone (Patent Document 2).
特開2021-089195号公報JP 2021-089195 A 国際公開2021/002356号International Publication No. 2021/002356
 しかしながら、吸収画像・微分位相画像・小角散乱画像、配向解析画像を組み合わせる際には、それぞれの画像毎の特性を鑑みて、得たい情報に応じて、組み合わせる画像を適切に選択する必要があった。その組み合わせパターンは数多く、組み合わせた画像から注目領域や特性情報といった情報を把握することは熟練者でないと難しかった。 However, when combining absorption images, differential phase images, small-angle scattering images, and orientation analysis images, it was necessary to take into account the characteristics of each image and appropriately select the images to be combined depending on the information to be obtained. There were many combination patterns, and it was difficult for anyone other than an expert to grasp information such as areas of interest and characteristic information from the combined images.
 したがって、本発明の課題は、X線タルボ撮影装置から取得した画像を組み合せた場合に得られる注目領域又は特性情報を容易に把握することができる画像処理方法、画像処理装置及び画像処理システムを提供することを目的とする。 The object of the present invention is therefore to provide an image processing method, image processing device, and image processing system that can easily grasp the area of interest or characteristic information obtained when combining images obtained from an X-ray Talbot imaging device.
 上記課題を解決するため、本発明の画像処理方法は、
 被写体をX線タルボ撮影装置でX線格子と試料の相対角度を変えながら複数回撮影した画像の画像処理方法であって、
 前記画像に基づいて、各撮影ごとの小角散乱画像を含む再構成画像を取得する第1取得ステップと、
 前記複数の小角散乱画像に基づいて生成された配向解析画像または前記配向解析画像に基づいた画像を第1の画像として、前記第1の画像とは異なる種類の配向解析画像または前記再構成画像、あるいは前記第1の画像とは異なる種類の配向解析画像または前記再構成画像に基づいた画像を第2の画像として、取得する第2取得ステップと、を有し、
 更に、前記第1の画像、または前記第2の画像から注目箇所を抽出する抽出ステップと、
 前記第1の画像及び前記第2の画像、または前記第1の画像と前記第2の画像の合成画像に基づいた特性情報を出力する出力ステップと、のうち少なくとも何れか一方を含む。
In order to solve the above problems, the image processing method of the present invention comprises the steps of:
An image processing method for an image obtained by photographing an object multiple times with an X-ray Talbot imaging device while changing the relative angle between an X-ray grating and a sample, comprising the steps of:
a first acquisition step of acquiring a reconstructed image including a small-angle scattering image for each photograph based on the images;
a second acquisition step of acquiring an orientation analysis image generated based on the plurality of small-angle scattering images or an image based on the orientation analysis image as a first image, and an orientation analysis image of a type different from the first image or the reconstructed image, or an orientation analysis image of a type different from the first image or an image based on the reconstructed image as a second image,
Further, an extraction step of extracting a portion of interest from the first image or the second image;
and an output step of outputting characteristic information based on the first image and the second image, or a composite image of the first image and the second image.
 また、本発明の画像処理装置は、
 被写体をX線タルボ撮影装置でX線格子と試料の相対角度を変えながら複数回撮影した画像の画像処理装置であって、
 前記画像に基づいて、各撮影ごとの小角散乱画像を含む再構成画像を取得する第1取得部と、
 前記複数の小角散乱画像に基づいて生成された配向解析画像または前記配向解析画像に基づいた画像を第1の画像として、前記第1の画像とは異なる種類の配向解析画像または前記再構成画像、あるいは前記第1の画像とは異なる種類の配向解析画像または前記再構成画像に基づいた画像を第2の画像として、取得する第2取得部と、を有し、
 更に、前記第1の画像、または前記第2の画像から注目箇所を抽出する抽出部と、
 前記第1の画像及び前記第2の画像、または前記第1の画像と前記第2の画像の合成画像に基づいた特性情報を出力する出力部と、のうち少なくとも何れか一方を含む。
The image processing device of the present invention further comprises:
An image processing device for images obtained by photographing an object multiple times with an X-ray Talbot imaging device while changing the relative angle between an X-ray grating and a sample,
a first acquisition unit that acquires a reconstructed image including a small-angle scattering image for each photograph based on the image;
a second acquisition unit that acquires, as a first image, an orientation analysis image generated based on the plurality of small-angle scattering images or an image based on the orientation analysis image, and, as a second image, an orientation analysis image of a type different from the first image or the reconstructed image, or an orientation analysis image of a type different from the first image or an image based on the reconstructed image,
Further, an extraction unit that extracts a portion of interest from the first image or the second image;
and an output unit that outputs characteristic information based on the first image and the second image, or a composite image of the first image and the second image.
 また、本発明の画像処理システムは、
 被写体をX線タルボ撮影装置でX線格子と試料の相対角度を変えながら複数回撮影した画像の画像処理システムであって、
 前記画像に基づいて、各撮影ごとの小角散乱画像を含む再構成画像を取得する第1取得部と、
 前記複数の小角散乱画像に基づいて生成された配向解析画像または前記配向解析画像に基づいた画像を第1の画像として、前記第1の画像とは異なる種類の配向解析画像または前記再構成画像、あるいは前記第1の画像とは異なる種類の配向解析画像または前記再構成画像に基づいた画像を第2の画像として、取得する第2取得部と、を有し、
 更に、前記第1の画像、または前記第2の画像から注目箇所を抽出する抽出部と、
 前記第1の画像及び前記第2の画像、または前記第1の画像と前記第2の画像の合成画像に基づいた特性情報を出力する出力部と、のうち少なくとも何れか一方を含む。
The image processing system of the present invention further comprises:
An image processing system for images of an object captured multiple times by an X-ray Talbot imaging device while changing the relative angle between an X-ray grating and a sample,
a first acquisition unit that acquires a reconstructed image including a small-angle scattering image for each photograph based on the image;
a second acquisition unit that acquires, as a first image, an orientation analysis image generated based on the plurality of small-angle scattering images or an image based on the orientation analysis image, and, as a second image, an orientation analysis image of a type different from the first image or the reconstructed image, or an orientation analysis image of a type different from the first image or an image based on the reconstructed image,
Further, an extraction unit that extracts a portion of interest from the first image or the second image;
and an output unit that outputs characteristic information based on the first image and the second image, or a composite image of the first image and the second image.
 本発明によれば、X線タルボ撮影装置から取得した画像を組み合せた場合に得られる注目領域又は特性情報を容易に把握することができる。 According to the present invention, it is possible to easily grasp the area of interest or characteristic information obtained when combining images obtained from an X-ray Talbot imaging device.
X線タルボ撮影装置の全体像を表す概略図である。1 is a schematic diagram showing an overall view of an X-ray Talbot imaging device. タルボ干渉計の原理を説明する図である。FIG. 1 is a diagram illustrating the principle of a Talbot interferometer. 線源格子や第1格子、第2格子の概略平面図である。3 is a schematic plan view of a source grating, a first grating, and a second grating. FIG. 画像処理装置の機能的構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of the image processing device. 画像処理を示すフローチャートである。13 is a flowchart showing image processing. タルボ画像の組み合わせと特性情報の関係を示す図である。FIG. 13 is a diagram showing the relationship between a combination of Talbot images and characteristic information. タルボ画像の比較例である。13 is a comparative example of a Talbot image. タルボ画像の比較例である。13 is a comparative example of a Talbot image. タルボ画像の比較例である。13 is a comparative example of a Talbot image. タルボ画像の比較例である。13 is a comparative example of a Talbot image. タルボ画像の比較例である。13 is a comparative example of a Talbot image. ボイドの粒子径と小角散乱信号強度の関係を示すグラフである。1 is a graph showing the relationship between void particle size and small-angle scattering signal intensity. タルボ画像の比較例である。13 is a comparative example of a Talbot image. タルボ画像の比較例である。13 is a comparative example of a Talbot image. タルボ画像の比較例である。13 is a comparative example of a Talbot image. タルボ画像の比較例である。13 is a comparative example of a Talbot image. タルボ画像のフィルタリング処理の例である。13 is an example of a filtering process for a Talbot image. 画像処理を示すフローチャートである。13 is a flowchart showing image processing. 3次元タルボ撮影装置の全体像を表す概略図である。FIG. 1 is a schematic diagram showing an overall view of a three-dimensional Talbot imaging device. 3次元タルボ干渉計の原理を説明する図である。1 is a diagram illustrating the principle of a three-dimensional Talbot interferometer.
[第1実施形態]
 以下、図面を参照して本発明の実施の形態について説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の技術的範囲を以下の実施形態および図示例に限定するものではない。
[First embodiment]
Hereinafter, the embodiments of the present invention will be described with reference to the drawings. However, the embodiments described below are subject to various technically preferable limitations for carrying out the present invention, but the technical scope of the present invention is not limited to the following embodiments and illustrated examples.
 本実施形態のX線撮影システム100は、図1に示すように、X線タルボ撮影装置1と、画像処理装置2と、を備える。
 X線撮影システム100は、X線タルボ撮影装置1を用いて被写体Hを、X線の光軸に直交する面内において試料を回転させて、その角度を変え、複数回撮影し、画像処理装置2によって、X線タルボ撮影装置1で読み取られたモアレ画像及び被写体Hが存在しない状態でのモアレ画像(BG:Back Groundモアレ画像と呼ぶ)に基づいて、撮影角度ごとに再構成画像を生成する。
 なお、X線撮影システム100は、被写体Hが存在しない状態でのモアレ画像を少なくとも1回、被写体H撮影の事前や事後に撮影するものとする。
As shown in FIG. 1, an X-ray imaging system 100 of this embodiment includes an X-ray Talbot imaging device 1 and an image processing device 2.
The X-ray imaging system 100 uses an X-ray Talbot imaging device 1 to rotate the sample in a plane perpendicular to the optical axis of the X-rays, change the angle, and capture images of a subject H multiple times. The image processing device 2 generates a reconstructed image for each imaging angle based on the moiré image read by the X-ray Talbot imaging device 1 and a moiré image in the absence of the subject H (referred to as a BG: Back Ground moiré image).
The X-ray imaging system 100 captures a moire image in a state in which the subject H is not present at least once before or after imaging the subject H.
 X線タルボ撮影装置1としては、線源格子(G0格子ともいう。)12を備えるタルボ・ロー干渉計を用いたものが採用されている。なお、線源格子12を備えず、第1格子(G1格子ともいう。)14と第2格子(G2格子ともいう。)15のみを備えるタルボ干渉計を用いたX線タルボ撮影装置を採用することもできる。 The X-ray Talbot imaging device 1 uses a Talbot-Lau interferometer equipped with a source grating (also called G0 grating) 12. It is also possible to use an X-ray Talbot imaging device that does not have a source grating 12 and uses a Talbot interferometer equipped only with a first grating (also called G1 grating) 14 and a second grating (also called G2 grating) 15.
 本実施形態における検査対象物は、複合材料(複合素材とも言う。)によって構成されており、例えば宇宙・航空機関係、自動車、船舶、つり竿の他、電気・電子・家電部品、パラボラアンテナ、浴槽、床材、屋根材等を始め、様々な製品等の構成部材として用いられるものである。
 このような複合素材としては、例えば炭素繊維やガラス繊維を強化繊維として用いたCFRP(Carbon-Fiber-Reinforced Plastics:炭素繊維強化プラスチック)、CFRTP(Carbon Fiber Reinforced
 Thermo Plastics:炭素繊維強化熱可塑性プラスチック)、GFRP(Glass-Fiber-Reinforced Plastics:ガラス繊維強化プラスチック)に代表されるFRP(Fiber-Reinforced Plastics:繊維強化プラスチック)や、セラミックス繊維を強化材とするCMC(Ceramic Matrix Composites:セラミック基複合材料)等が知られている。また、広義には、例えば合板のように複数種類の木材からなる複合素材が含まれるものとしてもよい。その他にも、例えば、MMC(Metal Matrix Composites:金属基複合材料)コンクリート、鉄筋コンクリート等のように、繊維を含まずに構成された複合材料も含まれるものとしてもよい。
 なお、複合材料に用いられる樹脂は、例えば、汎用プラスチック、エンプラ、スーパーエンプラであるがこれらに限定されない。樹脂は、強度などの所定の特性を付加するためにマイクロサイズやナノサイズの構造を持つフィラーが添加される樹脂複合材料として用いられ、プラスチック成型加工品として使用されることが多い。フィラーには、有機材料、無機材料、磁性材料、金属材料がある。例えば、プラスチック成型加工品に強度や剛性を求められる場合には、樹脂としてPPS、POM、PA、PC、PPなど、フィラーとしてはアラミド繊維、タルク、セルロ―ス繊維など、の複合材料が用いられることがある。また、プラスチック成型加工品がプラマグである場合には、樹脂としてナイロン、フィラーとしてストロンチウムフェライト、サマリウムコバルトなど、の複合材料が用いられることがある。
The object to be inspected in this embodiment is made of a composite material (also called a composite material) and is used as a component part of a variety of products, including aerospace and aircraft related products, automobiles, ships, fishing rods, as well as electrical, electronic and home appliance parts, parabolic antennas, bathtubs, flooring materials, roofing materials, etc.
Examples of such composite materials include CFRP (Carbon-Fiber-Reinforced Plastics) and CFRTP (Carbon Fiber Reinforced Plastics), which use carbon fiber or glass fiber as reinforcing fibers.
Known examples of the composite materials include FRP (Fiber-Reinforced Plastics) such as GFRP (Glass-Fiber-Reinforced Plastics), and CMC (Ceramic Matrix Composites) using ceramic fibers as a reinforcing material. In a broad sense, the term may include composite materials made of multiple types of wood, such as plywood. In addition, the term may include composite materials that do not include fibers, such as MMC (Metal Matrix Composites), concrete, and reinforced concrete.
The resins used in the composite materials are, for example, general-purpose plastics, engineering plastics, and super engineering plastics, but are not limited to these. Resins are used as resin composite materials to which fillers having micro- or nano-sized structures are added to impart certain properties such as strength, and are often used as plastic molded products. Fillers include organic materials, inorganic materials, magnetic materials, and metal materials. For example, when strength and rigidity are required for plastic molded products, composite materials such as PPS, POM, PA, PC, and PP as resins and aramid fibers, talc, and cellulose fibers as fillers may be used. In addition, when the plastic molded product is a plastic mag, composite materials such as nylon as resin and strontium ferrite, samarium cobalt, and the like may be used as fillers.
 上記のような検査対象物である成型品は、型に樹脂などを流し込むことや樹脂をシート状に押し出すこと等で製造される。そして、被写体Hは、成型品そのものであったり、成型品から切り出されたサンプルであったりする。なお、検査対象物は、成型品に限定されない。 The molded product that is the object of inspection as described above is manufactured by pouring resin into a mold or by extruding resin into a sheet shape. The subject H may be the molded product itself or a sample cut out from the molded product. Note that the object of inspection is not limited to a molded product.
[X線タルボ撮影装置について]
 図1は、本実施形態に係るX線タルボ撮影装置1の全体像を表す概略図である。本実施形態に係るX線タルボ撮影装置1は、図1に示すように、X線発生装置11と、線源格子12と、被写体台13と、第1格子14と、第2格子15と、X線検出器16と、支柱17と、基台部18と、を備えている。
[About the X-ray Talbot Imaging Device]
1 is a schematic diagram showing an overall image of an X-ray Talbot imaging device 1 according to this embodiment. As shown in FIG. 1, the X-ray Talbot imaging device 1 according to this embodiment includes an X-ray generator 11, a source grating 12, a subject table 13, a first grating 14, a second grating 15, an X-ray detector 16, a support 17, and a base unit 18.
 このようなX線タルボ撮影装置1によれば、被写体台13に対して所定位置にある被写体Hのモアレ画像を縞走査法の原理に基づく方法で撮影したり、モアレ画像を、フーリエ変換法を用いて解析したりすることで、少なくとも3種類の画像を再構成することができる(再構成画像という)。
 すなわち、BGモアレ縞画像とモアレ縞画像の平均成分の差を画像化した吸収画像(通常のX線の吸収画像と同じ)と、BGモアレ縞画像とモアレ縞画像の位相の差を画像化した微分位相画像と、BGモアレ縞画像とモアレ縞画像のVisibility(鮮明度)の比であるVisibility率を画像化した小角散乱画像の3種類の画像である。
With such an X-ray Talbot imaging device 1, at least three types of images can be reconstructed (referred to as reconstructed images) by capturing a moire image of the subject H at a predetermined position relative to the subject table 13 using a method based on the principles of the fringe scanning method and analyzing the moire image using the Fourier transform method.
That is, there are three types of images: an absorption image (same as a normal X-ray absorption image) which visualizes the difference in average components between the BG moiré fringe image and the moiré fringe image; a differential phase image which visualizes the phase difference between the BG moiré fringe image and the moiré fringe image; and a small-angle scattering image which visualizes the visibility ratio, which is the ratio of the visibility (clarity) between the BG moiré fringe image and the moiré fringe image.
 なお、縞走査法とは、複数の格子のうちのひとつを格子のスリット周期の1/M(Mは正の整数、吸収画像はM>2、微分位相画像と小角散乱画像はM>3)ずつ、スリット周期方向に移動させてM回撮影したモアレ画像を用いて再構成を行い、高精細の再構成画像を得る方法である。 The fringe scanning method is a method in which one of multiple gratings is moved in the direction of the slit period by 1/M (M is a positive integer, M>2 for absorption images, M>3 for differential phase images and small-angle scattering images) of the grating, and then reconstructed using the moiré images captured M times to obtain a high-resolution reconstructed image.
 また、フーリエ変換法とは、被写体が存在する状態で、X線タルボ撮影装置でモアレ画像を1枚撮影し、画像処理において、そのモアレ画像をフーリエ変換する等して吸収画像、微分位相画像、小角散乱画像等の画像を再構成して生成する方法である。 The Fourier transform method is a method in which, in the presence of a subject, a single moiré image is captured using an X-ray Talbot imaging device, and then in image processing, the moiré image is subjected to a Fourier transform or other process to reconstruct and generate an absorption image, differential phase image, small-angle scattering image, or other image.
 次に、タルボ干渉計やタルボ・ロー干渉計に共通する原理について、図2を用いて説明する。 Next, the principle common to Talbot interferometers and Talbot-Lau interferometers will be explained using Figure 2.
 なお、図2では、タルボ干渉計の場合が示されているが、タルボ・ロー干渉計の場合も
基本的に同様に説明される。また、図2におけるz方向が図1のX線タルボ撮影装置1における鉛直方向に対応し、図2におけるx、y方向が図1のX線タルボ撮影装置1における水平方向(前後、左右方向)に対応する。
Although Fig. 2 shows the case of a Talbot interferometer, the case of a Talbot-Lau interferometer can be basically described in the same manner. The z direction in Fig. 2 corresponds to the vertical direction in the X-ray Talbot imaging device 1 in Fig. 1, and the x and y directions in Fig. 2 correspond to the horizontal directions (front-back and left-right directions) in the X-ray Talbot imaging device 1 in Fig. 1.
 また、図3に示すように、第1格子14や第2格子15には(タルボ・ロー干渉計の場合は線源格子12にも)、X線の照射方向であるz方向と直交するx方向に、所定の周期dで複数のスリットSが配列されて形成されている。
 なお、線源格子12、第1格子14、第2格子15の周期は、同一の周期に限定されない。
As shown in FIG. 3 , the first grating 14 and the second grating 15 (and the source grating 12 in the case of a Talbot-Lau interferometer) have a plurality of slits S arranged at a predetermined period d in the x direction perpendicular to the z direction, which is the irradiation direction of the X-rays.
The periods of the source grating 12, the first grating 14, and the second grating 15 are not limited to being the same.
 図2に示すように、X線源11a(X線発生装置11)から照射されたX線(タルボ・ロー干渉計の場合はX線源11aから照射されたX線が線源格子12(図2では図示省略)で多光源化されたX線)が第1格子14を透過すると、透過したX線がz方向に一定の間隔で像を結ぶ。この像を自己像(格子像等ともいう。)といい、このように自己像がz方向に一定の間隔をおいて形成される現象をタルボ効果という。 As shown in Figure 2, when X-rays irradiated from X-ray source 11a (X-ray generator 11) (in the case of a Talbot-Lau interferometer, the X-rays irradiated from X-ray source 11a are converted into multiple light sources by source grating 12 (not shown in Figure 2)) pass through first grating 14, the transmitted X-rays form images at regular intervals in the z direction. These images are called self-images (also called grating images, etc.), and the phenomenon in which self-images are formed at regular intervals in the z direction is called the Talbot effect.
 すなわち、タルボ効果とは、図2に示すように一定の周期dでスリットSが設けられた第1格子14を可干渉性(コヒーレント)の光が透過すると、上記のように光の進行方向に一定の間隔でその自己像を結ぶ現象をいう。 In other words, the Talbot effect is a phenomenon in which, when coherent light passes through the first grating 14, which has slits S at a constant period d as shown in Figure 2, it forms self-images at constant intervals in the direction of light travel, as described above.
 そして、図2に示すように、第1格子14の自己像が像を結ぶ位置に、第1格子14の自己像と略同じ周期のスリットSが設けられた第2格子15を配置する。その際、第2格子15のスリットSの延在方向(すなわち図2ではx軸方向)が、第1格子14のスリットSの延在方向に対して略平行になるように配置すると、第2格子15上でモアレ画像Moが得られる。 Then, as shown in FIG. 2, a second grating 15 having slits S with approximately the same period as the self-image of the first grating 14 is placed at the position where the self-image of the first grating 14 forms an image. At this time, if the extension direction of the slits S of the second grating 15 (i.e., the x-axis direction in FIG. 2) is placed approximately parallel to the extension direction of the slits S of the first grating 14, a moiré image Mo is obtained on the second grating 15.
 なお、図2では、モアレ画像Moを第2格子15上に記載するとモアレ縞とスリットSとが混在する状態になって分かりにくくなるため、モアレ画像Moを第2格子15から離して記載している。しかし、実際には第2格子15上およびその下流側でモアレ画像Moが形成される。そして、このモアレ画像Moが、第2格子15の直下に配置されるX線検出器16で撮影される。 In FIG. 2, the moiré image Mo is drawn away from the second grating 15 because if the moiré image Mo were drawn on the second grating 15, the moiré stripes and slits S would be mixed together, making it difficult to understand. However, in reality, the moiré image Mo is formed on the second grating 15 and downstream of it. This moiré image Mo is then captured by the X-ray detector 16, which is placed directly below the second grating 15.
 また、図2に示すように、X線源11a(X線発生装置11)と第1格子14との間に(すなわち図1の被写体台13上に)被写体Hが存在すると、被写体HによってX線の位相がずれたり、X線が散乱したりするため、前者の場合は、モアレ画像Moのモアレ縞が被写体の辺縁を境界に乱れ、後者の場合は、被写体の辺縁に限定されず、散乱を受けた部分のビジビリティ率が低下する。一方、図示を省略するが、X線源11a(X線発生装置11)と第1格子14との間に被写体Hが存在しなければ、被写体Hの影響を受けていないモアレ縞画像、つまりBGモアレ画像が現れる。以上がタルボ干渉計やタルボ・ロー干渉計の原理である。
 なお、被写体Hは、第1格子14の後ろに配置されていてもよい。
2, if a subject H is present between the X-ray source 11a (X-ray generating device 11) and the first grating 14 (i.e., on the subject table 13 in FIG. 1), the subject H causes the phase of the X-rays to shift or the X-rays to scatter. In the former case, the moire fringes of the moire image Mo are disturbed at the boundary of the subject's edge, and in the latter case, the visibility rate of the scattered portion is reduced without being limited to the subject's edge. On the other hand, although not shown, if the subject H is not present between the X-ray source 11a (X-ray generating device 11) and the first grating 14, a moire fringe image not influenced by the subject H, that is, a BG moire image, appears. This is the principle of the Talbot interferometer and the Talbot-Lau interferometer.
In addition, the subject H may be disposed behind the first grating 14 .
 この原理に基づいて、本実施形態に係るX線タルボ撮影装置1においても、例えば図1に示すように、第2のカバーユニット130内で、第1格子14の自己像が像を結ぶ位置に第2格子15が配置されるようになっている。また、前述したように、第2格子15とX線検出器16とを離すとモアレ画像Mo(図2参照)がぼやけるため、本実施形態では、X線検出器16は第2格子15の直下に配置されるようになっている。 Based on this principle, in the X-ray Talbot imaging device 1 according to this embodiment, for example as shown in FIG. 1, the second grating 15 is arranged in the second cover unit 130 at a position where the self-image of the first grating 14 forms an image. Also, as mentioned above, if the second grating 15 and the X-ray detector 16 are separated, the moire image Mo (see FIG. 2) becomes blurred, so in this embodiment, the X-ray detector 16 is arranged directly below the second grating 15.
 なお、第2のカバーユニット130は、人や物が第1格子14や第2格子15、X線検出器16等にぶつかったり触れたりしないようにして、X線検出器16等を防護するために設けられている。 The second cover unit 130 is provided to protect the X-ray detector 16, etc. by preventing people or objects from colliding with or touching the first grating 14, second grating 15, X-ray detector 16, etc.
 図示を省略するが、X線検出器16は、照射されたX線に応じて電気信号を生成する変換素子が二次元状(マトリクス状)に配置され、変換素子により生成された電気信号を画像信号として読み取るように構成されている。そして、本実施形態では、X線検出器16は、第2格子15上に形成されるX線の像である上記のモアレ画像Moを変換素子ごとの画像信号として撮影するようになっている。 Although not shown in the figure, the X-ray detector 16 is configured such that conversion elements that generate electrical signals in response to irradiated X-rays are arranged in a two-dimensional array (matrix), and the electrical signals generated by the conversion elements are read as image signals. In this embodiment, the X-ray detector 16 captures the moiré image Mo, which is an image of the X-rays formed on the second grating 15, as an image signal for each conversion element.
 そして、本実施形態では、X線タルボ撮影装置1は、いわゆる縞走査法を用いてモアレ画像Moを複数枚撮影するようになっている。すなわち、本実施形態に係るX線タルボ撮影装置1では、第1格子14と第2格子15との相対位置を図1~図3におけるx軸方向(すなわちスリットSの延在方向(y軸方向)に直交する方向)にずらしながらモアレ画像Moを複数枚撮影する。なお、別の実施形態として線源格子12を動かしてもよい。 In this embodiment, the X-ray Talbot imaging device 1 captures multiple moiré images Mo using a so-called fringe scanning method. That is, in the X-ray Talbot imaging device 1 according to this embodiment, multiple moiré images Mo are captured while shifting the relative positions of the first grating 14 and the second grating 15 in the x-axis direction in Figures 1 to 3 (i.e., the direction perpendicular to the extension direction (y-axis direction) of the slit S). In another embodiment, the source grating 12 may be moved.
 そして、X線タルボ撮影装置1から複数枚分のモアレ画像Moの画像信号を受信した画像処理装置2における画像処理で、複数枚のモアレ画像Moに基づいて、吸収画像や、微分位相画像や、小角散乱画像等を再構成するようになっている。 Then, the image processing device 2 receives image signals of multiple moiré images Mo from the X-ray Talbot imaging device 1, and performs image processing to reconstruct an absorption image, a differential phase image, a small-angle scattering image, etc. based on the multiple moiré images Mo.
 そのため、本実施形態に係るX線タルボ撮影装置1で、縞走査法によりモアレ画像Moを複数枚撮影するために、第1格子14をx軸方向に所定量ずつ移動させるための図示しない移動装置等が設けられている。なお、第1格子14を移動させる代わりに第2格子15を移動させたり、或いは両方とも移動させたりするように構成することも可能である。また、別の実施形態として線源格子12を動かしてもよい。 For this reason, in the X-ray Talbot imaging device 1 according to this embodiment, in order to capture multiple moiré images Mo by the fringe scanning method, a moving device (not shown) is provided for moving the first grating 14 in the x-axis direction by a predetermined amount. Note that it is also possible to configure the device so that the second grating 15 is moved instead of the first grating 14, or so that both are moved. In another embodiment, the source grating 12 may be moved.
 また、X線タルボ撮影装置1で、第1格子14と第2格子15との相対位置を固定したままモアレ画像Moを1枚だけ撮影し、画像処理装置における画像処理で、このモアレ画像Moをフーリエ変換法等を用いて解析する等して吸収画像、微分位相画像、小角散乱画像等を再構成するように構成することも可能である。 In addition, the X-ray Talbot imaging device 1 can be configured to capture only one moire image Mo while keeping the relative positions of the first grating 14 and the second grating 15 fixed, and then to reconstruct an absorption image, differential phase image, small angle scattering image, etc. by analyzing this moire image Mo using a Fourier transform method or the like in image processing in the image processing device.
 そして、この方法を用いる場合には、X線タルボ撮影装置1に必ずしも上記の移動装置等を設ける必要はない。なお、本発明は、このような移動装置が設けられていないX線タルボ撮影装置にも適用される。 When using this method, it is not necessary to provide the above-mentioned moving device etc. in the X-ray Talbot imaging device 1. Note that the present invention is also applicable to X-ray Talbot imaging devices that are not provided with such a moving device.
 なお、上記の3種類の再構成画像を再合成する等してさらに多くの種類の画像を生成することもできる。例えば、複数(3以上の)の格子対向角で撮影された小角散乱画像を用い、各画像の位置合わせを行ったうえで、画素ごとに、正弦波でフィッティングを行い、フィッティングパラメータを抽出する。正弦波のグラフは、横軸をサンプルと格子の相対角度とし、縦軸をある画素の小角散乱信号値とするグラフである。フィッティングパラメータとして、正弦波の振幅、平均、位相が得られる。画素ごとの振幅値を表す画像を配向度画像、画素ごとの平均値を示す画像を散乱強度画像、画素ごとの位相を示す画像を配向角度画像と呼ぶ。なお、フィッティングの方法は正弦波に限定されない。
 以降では、再構成画像を再合成することで生成された画像(配向度画像、散乱強度画像、配向角度画像)を合わせて配向解析画像とする。つまり、配向解析画像は、X線タルボ撮影装置の格子のスリットに対する被写体の相対角度を変えて撮影された複数の小角散乱画像に基づいて生成される。
It is also possible to generate many more types of images by recombining the above three types of reconstructed images. For example, small-angle scattering images taken at multiple (three or more) lattice facing angles are used, and after aligning each image, fitting is performed with a sine wave for each pixel to extract fitting parameters. A sine wave graph is a graph in which the horizontal axis represents the relative angle between the sample and the lattice, and the vertical axis represents the small-angle scattering signal value of a certain pixel. The amplitude, average, and phase of the sine wave are obtained as fitting parameters. An image showing the amplitude value for each pixel is called an orientation degree image, an image showing the average value for each pixel is called a scattering intensity image, and an image showing the phase for each pixel is called an orientation angle image. It is to be noted that the fitting method is not limited to a sine wave.
Hereinafter, the images (orientation degree image, scattering intensity image, and orientation angle image) generated by recombining the reconstructed images are collectively referred to as an orientation analysis image. In other words, the orientation analysis image is generated based on a plurality of small-angle scattering images captured by changing the relative angle of the subject with respect to the slits of the grid of the X-ray Talbot imaging device.
 また、再構成画像や配向解析画像に対して、フィルタリング、明瞭化処理、輪郭抽出処理などの画像処理や、2種類以上の画像を合成する合成処理を行うことも可能である。なお、フィルタリング、明瞭化処理、輪郭抽出処理などの画像処理や合成処理については、後述する画像処理のフローの説明において、説明する。 In addition, it is possible to perform image processing such as filtering, clarity, and contour extraction on the reconstructed image and the orientation analysis image, as well as a synthesis process that combines two or more types of images. Image processing such as filtering, clarity, and contour extraction, as well as synthesis processes, will be explained in the explanation of the image processing flow described later.
 以下において、配向解析画像自体、または、配向解析画像に対してフィルタリングなどの画像処理を行ったものや、配向解析画像を他の画像と合成したものなどの、配向解析画像に基づいた画像を、第1の画像とする。また、第1の画像とは異なる種類の配向解析画像または再構成画像自体だけでなく、第1の画像とは異なる種類の配向解析画像または再構成画像に対してフィルタリングなどの画像処理を行ったものや、他の画像と合成したものなどの、第1の画像とは異なる種類の配向解析画像または再構成画像に基づいた画像を、第2の画像とする。なお、画像処理には、明瞭化処理、輪郭抽出像生成処理も含まれる。 In the following, the first image refers to the orientation analysis image itself, or an image based on the orientation analysis image, such as an orientation analysis image that has been subjected to image processing such as filtering or an orientation analysis image that has been combined with another image. The second image refers to not only an orientation analysis image or reconstructed image of a type different from the first image, but also an orientation analysis image or reconstructed image of a type different from the first image that has been subjected to image processing such as filtering or an orientation analysis image that has been combined with another image. Note that image processing also includes clarification processing and contour extraction image generation processing.
 本実施形態に係るX線タルボ撮影装置1における他の部分の構成について説明する。本実施形態では、いわゆる縦型であり、X線発生装置11、線源格子12、被写体台13、第1格子14、第2格子15、X線検出器16が、この順序に重力方向であるz方向に配置されている。すなわち、本実施形態では、z方向が、X線発生装置11からのX線の照射方向ということになる。 The configuration of other parts of the X-ray Talbot imaging device 1 according to this embodiment will be described. This embodiment is a so-called vertical type, in which the X-ray generator 11, radiation source grating 12, subject table 13, first grating 14, second grating 15, and X-ray detector 16 are arranged in this order in the z direction, which is the direction of gravity. That is, in this embodiment, the z direction is the irradiation direction of X-rays from the X-ray generator 11.
 X線発生装置11は、X線源11aとして、例えば医療現場で広く一般に用いられているクーリッジX線源や回転陽極X線源等を備えている。また、それ以外のX線源を用いることも可能である。本実施形態のX線発生装置11は、焦点からX線をコーンビーム状に照射するようになっている。すなわち、X線発生装置11から離れるほどX線が広がるように照射される。 The X-ray generator 11 is equipped with an X-ray source 11a, such as a Coolidge X-ray source or a rotating anode X-ray source that are widely used in medical settings. Other X-ray sources can also be used. The X-ray generator 11 of this embodiment is configured to irradiate X-rays in a cone beam shape from a focal point. In other words, the X-rays are irradiated so that they spread out the further away from the X-ray generator 11.
 そして、本実施形態では、X線発生装置11の下方に線源格子12が設けられている。その際、X線源11aの陽極の回転等により生じるX線発生装置11の振動が線源格子12に伝わらないようにするために、本実施形態では、線源格子12は、X線発生装置11には取り付けられず、支柱17に設けられた基台部18に取り付けられた固定部材18aに取り付けられている。 In this embodiment, the radiation source grating 12 is provided below the X-ray generator 11. In order to prevent vibrations of the X-ray generator 11 caused by the rotation of the anode of the X-ray source 11a, etc., from being transmitted to the radiation source grating 12, in this embodiment, the radiation source grating 12 is not attached to the X-ray generator 11, but is attached to a fixed member 18a attached to a base portion 18 provided on a support 17.
 なお、本実施形態では、X線発生装置11の振動が支柱17等のX線タルボ撮影装置1の他の部分に伝播しないようにするために(或いは伝播する振動をより小さくするために)、X線発生装置11と支柱17との間に緩衝部材17aが設けられている。 In this embodiment, a buffer member 17a is provided between the X-ray generator 11 and the support 17 to prevent vibrations from the X-ray generator 11 from propagating to other parts of the X-ray Talbot imaging device 1, such as the support 17 (or to reduce the amount of vibration that propagates).
 本実施形態では、上記の固定部材18aには、線源格子12のほか、線源格子12を透過したX線の線質を変えるためのろ過フィルター(付加フィルターともいう。)112や、照射されるX線の照射野を絞るための照射野絞り113、X線を照射する前にX線の代
わりに可視光を被写体に照射して位置合わせを行うための照射野ランプ114等が取り付けられている。
In this embodiment, in addition to the radiation source grating 12, the fixed member 18a is equipped with a filter (also called an additional filter) 112 for changing the radiation quality of the X-rays transmitted through the radiation source grating 12, an irradiation field aperture 113 for narrowing the irradiation field of the irradiated X-rays, and an irradiation field lamp 114 for irradiating the subject with visible light instead of X-rays for alignment before irradiating the subject with X-rays.
 なお、線源格子12とろ過フィルター112と照射野絞り113とは、必ずしもこの順番に設けられる必要はない。また、本実施形態では、線源格子12等の周囲には、それらを保護するための第1のカバーユニット120が配置されている。 Note that the radiation source grating 12, the filtration filter 112, and the irradiation field aperture 113 do not necessarily have to be arranged in this order. In addition, in this embodiment, a first cover unit 120 is arranged around the radiation source grating 12 and other components to protect them.
 被写体台13は、被写体Hを載置するための台である。被写体台13は、X線発生装置11から照射されるX線に対して被写体Hの位置を固定する固定ユニット(図示せず。)が設けられている。固定ユニットは、被写体Hを所定の位置で固定可能とする固定部と、当該固定部をXY軸(2次元方向)+Θ軸(3次元方向)に回転可能とする移動機構と、を有する。このような固定ユニットを用いることで、X線タルボ撮影装置1によって、被写体Hの同一部位を、撮影角度や格子対向角度(格子対向角)を変えた状態で正確に複数回撮影することができる。なお、被写体Hは必ずしも固定されている必要はなく、例えば、板材やダンベル試験片など、固定せずとも被写体台13上で移動することがない被写体Hであれば、固定せず撮影可能である。
 ここで、撮影角度とは、X線タルボ撮影装置1に対する被写体Hの位置を示す角度であり、具体的には、被写体台13の後述する基準位置Pからの回転角度である。また、格子対向角とは、撮影された画像(もしくは、撮影後表示された画像)の方向と格子(マルチスリット12、第1格子14、第2格子15)の方向との関係(角度)である。
The subject table 13 is a table on which the subject H is placed. The subject table 13 is provided with a fixing unit (not shown) that fixes the position of the subject H with respect to the X-rays irradiated from the X-ray generator 11. The fixing unit has a fixing part that can fix the subject H at a predetermined position, and a moving mechanism that can rotate the fixing part about the XY axis (two-dimensional direction) + Θ axis (three-dimensional direction). By using such a fixing unit, the same part of the subject H can be accurately photographed multiple times by the X-ray Talbot imaging device 1 while changing the shooting angle and the lattice facing angle (lattice facing angle). Note that the subject H does not necessarily need to be fixed, and if the subject H is a plate material or a dumbbell test piece that does not move on the subject table 13 even without being fixed, it can be photographed without being fixed.
Here, the imaging angle is an angle indicating the position of the subject H relative to the X-ray Talbot imaging device 1, and specifically, a rotation angle from a reference position P of the subject table 13, which will be described later. Also, the grating facing angle is a relationship (angle) between the direction of a captured image (or an image displayed after imaging) and the direction of the gratings (multi-slit 12, first grating 14, second grating 15).
 なお、格子と、被写体内部の屈折率が異なる材料同士の境界部、あるいは散乱体との相対角度に応じて、位相の変化量あるいはビジビリティ率の低下の度合いが異なり、再構成画像として生成された際に、当該角度に応じて見える像が異なるものとなる。したがって、被写体Hの同一部位を、格子対向角を変えて複数回撮影することによって、同一のモアレ画像Moを基にした3種類(吸収画像、微分位相画像、小角散乱画像)の再構成画像の画像セットを各角度ごとに複数取得することができる。ここで、取得された各格子対向角ごとの画像における被写体Hの同一部位を合わせるため、画像処理にて位置合わせをしてもよい。また、位置合わせにおいては、被写体Hの特徴を用いてもよいし、被写体Hとは別の位置合わせ用のマーカーを被写体Hと一緒に撮影し、そのマーカーを利用して実施してもよい。
 また、本実施形態では、被写体Hの撮影角度の調整を、固定ユニットの移動機構で行うものとしたが、X線源11a、複数の格子12,14,15(格子保持部でもよい。)及びX線検出器16が、X線の光軸を回転軸として全体として回転することで、被写体Hと格子の格子対向角度を変えて撮影できるような構成を採用してもよいものとする。
In addition, the degree of phase change or visibility rate reduction varies depending on the relative angle between the lattice and the boundary between materials with different refractive indexes inside the subject, or the scatterer, and when generated as a reconstructed image, the image seen according to the angle varies. Therefore, by photographing the same part of the subject H multiple times with different lattice facing angles, it is possible to obtain multiple image sets of three types of reconstructed images (absorption image, differential phase image, small angle scattering image) based on the same moire image Mo for each angle. Here, in order to match the same part of the subject H in the images obtained for each lattice facing angle, alignment may be performed by image processing. In addition, the alignment may be performed using the characteristics of the subject H, or a marker for alignment other than the subject H may be photographed together with the subject H and the marker may be used.
In addition, in this embodiment, the imaging angle of the subject H is adjusted by the moving mechanism of the fixed unit, but a configuration may be adopted in which the X-ray source 11a, the multiple gratings 12, 14, 15 (which may be grating holders), and the X-ray detector 16 rotate as a whole around the optical axis of the X-rays as the axis of rotation, thereby enabling imaging by changing the grating opposition angle between the subject H and the grating.
[画像処理装置について]
 画像処理装置2は、X線タルボ撮影装置1により得られたモアレ画像Moを用いて、被写体Hの3種類の高精細な再構成画像(吸収画像、微分位相画像、小角散乱画像)を生成したり、配向解析画像(配向度画像、散乱強度画像、配向角度画像)を生成したり、得られた再構成画像や配向解析画像の画像処理を行ったりすることができる。このような画像処理装置2は、図4に示すように、制御部21、操作部22、表示部23、通信部24、記憶部25を備えて構成されている。
 なお、表示部23を備える画像処理装置2は、画像表示装置としても機能する。
[Image Processing Device]
The image processing device 2 can use the moire image Mo obtained by the X-ray Talbot imaging device 1 to generate three types of high-definition reconstructed images (absorption image, differential phase image, small-angle scattering image) of the subject H, generate orientation analysis images (orientation degree image, scattering intensity image, orientation angle image), and perform image processing of the obtained reconstructed images and orientation analysis images. As shown in Fig. 4, the image processing device 2 is configured to include a control unit 21, an operation unit 22, a display unit 23, a communication unit 24, and a storage unit 25.
The image processing device 2 including the display unit 23 also functions as an image display device.
 制御部21は、CPU(Central Processing Unit)やRAM(Random Access Memory)等から構成され、記憶部25に記憶されているプログラムとの協働により、後述する画像処理を始めとする各種処理を実行する。
 制御部21は、被写体をX線タルボ撮影装置で撮影した画像に基づいて、小角散乱画像を含む再構成画像を取得する第1取得部として機能する。
 制御部21は、小角散乱画像に基づいて生成された配向解析画像または配向解析画像に基づいた画像を第1の画像として、第1の画像とは異なる種類の配向解析画像または再構成画像、あるいは第1の画像とは異なる種類の配向解析画像または再構成画像に基づいた画像を第2の画像として、取得する第2取得部として機能する。
 制御部21は、第1の画像、または第2の画像から注目箇所を抽出する抽出部として機能する。
 制御部21は、第1の画像及び第2の画像、または第1の画像と第2の画像の合成画像に基づいた特性情報を出力する出力部として機能する。
 なお、抽出部と出力部のうち何れか一方のみでもよい。
 また、合成画像は、小角散乱画像に基づいて生成された配向解析画像または再構成画像のうち、2つ以上の画像を除算、加算、その他の演算処理をしたものである。例えば、合成画像は、配向解析画像3種類と再構成画像3種類を任意の組み合わせで除算・加算他、減算、乗算、それらの組合せ演算などの演算を行った合成画像であってもよい。
 また、合成画像は、小角散乱画像に基づいて生成された配向解析画像または再構成画像と任意の画像を除算、加算、その他の演算処理をしたものであってもよい。任意の画像とは、顕微鏡画像やCADや写真などのX線タルボ撮影装置以外の装置で取得した図面や画像などを指す。
The control unit 21 is composed of a CPU (Central Processing Unit), a RAM (Random Access Memory), etc., and executes various processes including image processing, which will be described later, in cooperation with programs stored in the storage unit 25 .
The control unit 21 functions as a first acquisition unit that acquires a reconstructed image including a small-angle scattering image based on an image of a subject captured by an X-ray Talbot imaging device.
The control unit 21 functions as a second acquisition unit that acquires, as a first image, an orientation analysis image generated based on the small-angle scattering image or an image based on the orientation analysis image, and, as a second image, an orientation analysis image or reconstructed image of a type different from the first image, or an image based on an orientation analysis image or reconstructed image of a type different from the first image.
The control unit 21 functions as an extraction unit that extracts a portion of interest from the first image or the second image.
The control unit 21 functions as an output unit that outputs characteristic information based on the first image and the second image, or a composite image of the first image and the second image.
It is to be noted that only one of the extraction unit and the output unit may be provided.
The composite image is obtained by subjecting two or more of the orientation analysis images or the reconstructed images generated based on the small-angle scattering images to division, addition, or other arithmetic processing. For example, the composite image may be obtained by subjecting three types of orientation analysis images and three types of reconstructed images to division, addition, subtraction, multiplication, or other combinational arithmetic processing.
The composite image may be an image obtained by dividing, adding, or performing other arithmetic processing on an orientation analysis image or a reconstructed image generated based on a small-angle scattering image and an arbitrary image. The arbitrary image refers to a drawing or image obtained by a device other than an X-ray Talbot imaging device, such as a microscope image, CAD, or a photograph.
 操作部22は、カーソルキー、数字入力キー、及び各種機能キー等を備えたキーボードと、マウス等のポインティングデバイスを備えて構成され、キーボードで押下操作されたキーの押下信号とマウスによる操作信号とを、入力信号として制御部21に出力する。表示部23のディスプレイと一体に構成されたタッチパネルを備え、これらの操作に応じた操作信号を生成して制御部21に出力する構成としてもよい。 The operation unit 22 is configured with a keyboard equipped with cursor keys, numeric input keys, various function keys, etc., and a pointing device such as a mouse, and outputs press signals of keys pressed on the keyboard and operation signals from the mouse as input signals to the control unit 21. It may also be configured with a touch panel integrated with the display of the display unit 23, and generate operation signals corresponding to these operations and output them to the control unit 21.
 表示部23は、例えば、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)等のディスプレイを備えて構成されており、制御部21の表示制御に従って、各種表示画面等を表示する。 The display unit 23 is configured with a display such as a CRT (Cathode Ray Tube) or LCD (Liquid Crystal Display), and displays various display screens, etc., according to the display control of the control unit 21.
 通信部24は、通信インターフェイスを備え、通信ネットワーク上にあるX線タルボ撮影装置1や、PACS(Picture Archiving and Communication System)等の外部システムと有線又は無線により通信する。 The communication unit 24 has a communication interface and communicates with the X-ray Talbot imaging device 1 on the communication network and with external systems such as a PACS (Picture Archiving and Communication System) via wired or wireless communication.
 記憶部25は、不揮発性の半導体メモリーやハードディスク等により構成され、制御部21により実行されるプログラムやプログラムの実行に必要なデータ、検査対象物の情報(被写体情報)、再構成画像や配向解析画像等(第1の画像と第2の画像を含む)の情報、特性情報等を記憶している。
 特性情報とは、検査対象物の特性を示す情報であり、例えば、検査対象物の材質、サイズ、異方性、密度、屈折率差、形状(真円度、円形度等)、検査対象物に含まれる物質(内包物)などの候補などの情報(内包物に関する情報;例えば、検査対象物に含まれる繊維の配向や密集度合、異物の有無、ボイドが存在する場所や大きさなど)などを指す。
 被写体情報(被写体に関する情報)とは、検査対象物自体の情報であり、例えば、被写体を構成する原料の材質、名称、密度、サイズ範囲などである。なお、被写体情報は、これに限定されるものではない。
 出力情報とは、後述する画像処理により出力される検査対象物の情報である。過去の出力情報は、第1の画像と第2の画像の組み合わせと、出力した特性情報や抽出した注目箇所等が関連付けられて記憶部25に記憶されている。
The memory unit 25 is composed of a non-volatile semiconductor memory, a hard disk, etc., and stores programs executed by the control unit 21, data necessary for executing the programs, information on the object to be inspected (subject information), information on reconstructed images and orientation analysis images (including the first image and the second image), characteristic information, etc.
Characteristic information is information that indicates the characteristics of the object to be inspected, and refers to, for example, information such as the material, size, anisotropy, density, refractive index difference, shape (roundness, circularity, etc.) of the object to be inspected, and candidates for substances (inclusions) contained in the object to be inspected (information regarding inclusions; for example, the orientation and density of fibers contained in the object to be inspected, the presence or absence of foreign objects, the location and size of voids, etc.).
The subject information (information about the subject) is information about the object to be inspected itself, such as the material, name, density, size range, etc. of the raw material that constitutes the subject. Note that the subject information is not limited to this.
The output information is information on the object to be inspected that is output by image processing, which will be described later. The past output information is stored in the storage unit 25 in association with a combination of the first image and the second image, the output characteristic information, the extracted points of interest, and the like.
(画像処理 フロー例1)
 画像処理は、制御部21と、記憶部25に記憶されているプログラムとの協働により実行される。図5を用いて、画像処理のステップを説明する。
(Image processing flow example 1)
The image processing is executed by the control unit 21 in cooperation with a program stored in the storage unit 25. The steps of the image processing will be described with reference to FIG.
 画像処理は、第1の画像、または第2の画像から注目箇所を抽出したり、第1の画像及び第2の画像、または第1の画像と第2の画像の合成画像に基づいた特性情報を出力したりする処理である。
 なお、画像処理開始前に、記憶部25に、被写体情報、第1の画像、第2の画像、再構成画像、配向解析画像、出力情報は記憶されているものとする。
Image processing is a process of extracting points of interest from a first image or a second image, and outputting characteristic information based on the first image and the second image, or a composite image of the first image and the second image.
It is assumed that before the image processing starts, the subject information, the first image, the second image, the reconstructed image, the orientation analysis image, and the output information are stored in the storage unit 25 .
 まず、制御部21は、記憶部25から、第1取得ステップとして、ユーザーにより操作部22を用いて選択された再構成画像を取得する(ステップS1)。
 なお、選択された再構成画像には、小角散乱画像を含まれているものとする。
First, as a first acquisition step, the control unit 21 acquires from the storage unit 25 a reconstructed image selected by the user using the operation unit 22 (step S1).
It is assumed that the selected reconstructed images include a small-angle scattering image.
 次に、制御部21は、記憶部25から、第2取得ステップとして、第1の画像及び第2の画像を取得する(ステップS2)。
 なお、ステップS1にて選択された再構成画像に含まれる小角散乱画像に基づいて生成された配向解析画像または配向解析画像に基づいた画像が第1の画像である。また、第1の画像とは異なる種類の配向解析画像または再構成画像、あるいは第1の画像とは異なる種類の配向解析画像または再構成画像に基づいた画像が第2の画像である。
 また、第1の画像及び第2の画像は、ユーザーにより操作部22を用いて選択されてもよいし、再構成画像及び配向解析画像やこれらに基づいた画像から制御部21により、自動選択されてもよい。また、制御部21による自動選択の場合、事前にユーザーにより設定された画像の種類(例えば、第1の画像は散乱強度画像、第2の画像は吸収画像)の第1の画像及び第2の画像を制御部21は選択してもよいし、記憶部25に記憶された第1の画像及び第2の画像の組み合わせを網羅的に制御部21は選択してもよい。
Next, the control unit 21 acquires the first image and the second image from the storage unit 25 as a second acquisition step (step S2).
The first image is an orientation analysis image generated based on the small-angle scattering image included in the reconstructed image selected in step S1 or an image based on the orientation analysis image, and the second image is an orientation analysis image or reconstructed image of a type different from the first image, or an image based on an orientation analysis image or reconstructed image of a type different from the first image.
The first and second images may be selected by the user using the operation unit 22, or may be automatically selected by the control unit 21 from the reconstructed image and the orientation analysis image or an image based on them. In the case of automatic selection by the control unit 21, the control unit 21 may select the first and second images of the image type (for example, the first image is a scattering intensity image and the second image is an absorption image) set in advance by the user, or the control unit 21 may comprehensively select combinations of the first and second images stored in the storage unit 25.
 次に、制御部21は、各種画像処理を実行する(ステップS3)。
 ここで、制御部21によって実行される各種画像処理(注目箇所抽出処理、特性情報出力処理、合成処理、フィルタリング処理、明瞭化処理、輪郭抽出像生成処理)について説明する。なお、制御部21は、各種画像処理のうち、任意の画像処理を実施可能である。
Next, the control unit 21 executes various image processes (step S3).
Here, we will explain various types of image processing (attention point extraction processing, characteristic information output processing, synthesis processing, filtering processing, clarity processing, and contour extraction image generation processing) executed by the control unit 21. Note that the control unit 21 can execute any of the various types of image processing.
 注目箇所抽出処理とは、第1の画像及び第2の画像から注目箇所を抽出する処理である。なお、注目箇所とは信号強度が周囲とある閾値以上に異なる箇所または領域を指す。ここで、閾値は絶対値として定めてもよいし、画像の信号強度から算出して定めてもよい。また、閾値を複数設定してもよい。また、複数の注目箇所があってもよい。なお、注目箇所は、例えば、後述する図7A~Eの丸で囲まれた箇所、図9ABの矢印で示した箇所、図9CDの画像内の点で示した箇所のように表示される。 The process of extracting points of interest is a process of extracting points of interest from the first image and the second image. A point of interest refers to a location or area where the signal strength differs from the surrounding area by more than a certain threshold value. The threshold value may be set as an absolute value, or may be calculated from the signal strength of the image. Multiple threshold values may also be set. There may also be multiple points of interest. Points of interest are displayed, for example, as the circled areas in Figures 7A to E described below, the areas indicated by arrows in Figure 9AB, and the areas indicated by dots in the image in Figure 9CD.
 特性情報出力処理とは、第1の画像及び第2の画像から検査対象物の特性を示す情報である特性情報を出力する処理である。
 なお、第1の画像及び第2の画像を組み合わせることで、特性情報が導き出される。具体的には、図6に示すように、第1の画像と第2の画像の組み合わせ毎に、特性情報が導き出される。
 また、注目箇所抽出処理にて抽出された注目箇所を処理の対象として特性情報出力処理が行われてもよいし、第1の画像及び第2の画像全体を対象として特性情報出力処理が行われてもよい。
 例えば、第1の画像が散乱強度画像、第2の画像が吸収画像である場合に、散乱強度画像において信号値が大きく、かつ、吸収画像において信号値が大きい場合、特性情報として金属や吸収の大きい微粒子・繊維であると出力する。
 また、例えば、ボイドの大きさについては、第1の画像が散乱強度画像、第2の画像が吸収画像である場合に、注目箇所が、第1の画像で高散乱を示し、かつ第2の画像で低吸収を示している場合、注目箇所にある対象物は微小サイズのボイドであると表示する。また、注目箇所が、第1の画像で低散乱を示し、かつ第2の画像で低吸収を示している場合、注目箇所にある対象物は大サイズのボイドであると表示する。なお、ボイドサイズ分類については、後述する。
The characteristic information output process is a process of outputting characteristic information, which is information indicating the characteristics of the object to be inspected, from the first image and the second image.
The characteristic information is derived by combining the first image and the second image. Specifically, as shown in FIG 6, the characteristic information is derived for each combination of the first image and the second image.
In addition, the characteristic information output process may be performed on the attention points extracted in the attention point extraction process as the processing target, or the characteristic information output process may be performed on the entire first image and the entire second image.
For example, when the first image is a scattering intensity image and the second image is an absorption image, if the signal value is large in the scattering intensity image and the signal value is large in the absorption image, the characteristic information is output as indicating that the object is a metal or a highly absorbing particle/fiber.
For example, regarding the size of a void, when the first image is a scattering intensity image and the second image is an absorption image, if the location of interest shows high scattering in the first image and low absorption in the second image, the object at the location of interest is displayed as a micro-sized void. Also, when the location of interest shows low scattering in the first image and low absorption in the second image, the object at the location of interest is displayed as a large-sized void. Void size classification will be described later.
 図7には、第1の画像と第2の画像の組み合わせ(比較)の例を示す。
 図7Aは、吸収画像と散乱強度画像の組み合わせの例である。吸収画像において信号値が小さく、かつ、散乱強度画像において信号値が小さい個所(丸で囲まれた箇所)は、大サイズのボイドであることが確認できる。
 図7Bは、吸収画像と微分位相画像の組み合わせの例である。吸収画像において信号値が小さく、かつ、微分位相画像において信号変化が見られる個所(丸で囲まれた箇所)は、大サイズのボイドであることが確認できる。
 図7Cは、散乱強度画像と微分位相画像の組み合わせの例である。散乱強度画像において信号値が大きく、かつ、微分位相画像において信号変化が見られる個所(丸で囲まれた箇所)は、大サイズの繊維束であることが確認できる。
 図7Dは、微分位相画像と配向度画像の組み合わせの例である。微分位相画像において信号変化が見られ、かつ、配向度画像において信号値が小さい個所(丸で囲まれた箇所)は、異方性の無い略円形ボイドであることが確認できる。
FIG. 7 shows an example of a combination (comparison) of the first image and the second image.
7A is an example of a combination of an absorption image and a scattering intensity image. Areas with small signal values in both the absorption image and the scattering intensity image (areas surrounded by circles) are identified as large voids.
7B shows an example of a combination of an absorption image and a differential phase image. Areas where the signal value is small in the absorption image and where a signal change is observed in the differential phase image (areas surrounded by circles) can be confirmed to be large voids.
7C shows an example of a combination of a scattering intensity image and a differential phase image. Areas where the signal value is large in the scattering intensity image and where a signal change is observed in the differential phase image (areas surrounded by circles) can be confirmed to be large-sized fiber bundles.
7D is an example of a combination of a differential phase image and an orientation image. It can be seen that the areas where a signal change is observed in the differential phase image and the signal value is small in the orientation image (areas surrounded by circles) are approximately circular voids without anisotropy.
 なお、上記では、2つの画像の組み合わせの例を示したが、3つの画像の組み合わせでもよい。
 例えば、繊維の配向について、第1の画像は散乱強度画像、第2の画像は吸収画像であり、さらに第3の画像として配向度画像を用い、注目箇所が、第1の画像で高散乱を示し、かつ第2の画像で高吸収を示し、かつ第3の画像で高配向度を示している場合、注目箇所にある対象物は配向が揃った異方性材料と表示する。また、注目箇所が、第1の画像で高散乱を示し、第2の画像で高吸収を示し、かつ第3の画像で低配向度を示している場合、注目箇所にある対象物は配向が揃っていない異方性材料と表示する。なお、吸収画像より、周囲より密度が高いことがわかる。
 また、例えば、図7Eは、吸収画像と散乱強度画像と配向度画像の組み合わせの例である。吸収画像において信号値が周囲よりも小さく、かつ、散乱強度画像において信号が大きく、且つ配向度画像において信号強度が小さい箇所(画像下側の矢印で示された箇所)は微小なボイドが多い領域である事が確認出来る。また、画像左側破線で囲まれた箇所、右端の実線で囲まれた箇所は、どちらも吸収画像と散乱強度画像では信号が検出されているが前者は配向度画像の信号が小さい事からランダムな繊維が多く、後者は配向度画像の信号が大きい事から配向した繊維が多い領域である事が確認できる。
Although the above describes an example of a combination of two images, a combination of three images may also be used.
For example, for fiber orientation, the first image is a scattering intensity image, the second image is an absorption image, and the third image is an orientation image. If the area of interest shows high scattering in the first image, high absorption in the second image, and high orientation in the third image, the object at the area of interest is displayed as an anisotropic material with uniform orientation. If the area of interest shows high scattering in the first image, high absorption in the second image, and low orientation in the third image, the object at the area of interest is displayed as an anisotropic material with non-uniform orientation. Note that the absorption image shows that the density is higher than the surrounding area.
Also, for example, Figure 7E is an example of a combination of an absorption image, a scattering intensity image, and an orientation image. It can be confirmed that the area where the signal value in the absorption image is smaller than the surroundings, the signal value in the scattering intensity image is large, and the signal intensity in the orientation image is small (the area indicated by the arrow at the bottom of the image) is an area with many small voids. In addition, the area surrounded by the dashed line on the left side of the image and the area surrounded by the solid line on the right side are both areas where signals are detected in the absorption image and the scattering intensity image, but the former has a small signal in the orientation image, so there are many random fibers, and the latter has a large signal in the orientation image, so there are many oriented fibers.
 ここで、ボイドの数量、形状を計測する方法(ボイドサイズ分類)を説明する。
 検査対象物が繊維強化樹脂である場合、繊維強化樹脂中のボイド(空気)は、吸収画像において、X線吸収が周囲の物質より低く、低吸収領域として画像上に現れる。標本化定理より吸収像で正しくサイズが識別できるのは2×検出器画素ピッチ/(画像拡大率)以上であり、例えば、画素ピッチ200[μm]で拡大率2倍の場合、直径200[μm]以上のボイドのサイズは分かるが、200[μm]未満のボイドは検出されるがサイズは150か50[μm]か分からない。
 そこで、小角散乱画像の信号強度は散乱体のサイズにより変わるため、散乱体のサイズ範囲を推定する事ができる。小角散乱画像の信号強度と散乱体のサイズの理論式を数1に示す(S.K.Lynch『Interpretation of dark-field contrast and particle size selectivity in gration interferometers(APPLIED OPTICS. Vol.50,No.22,p4310(2011))』)。以下では、小角散乱画像の信号強度から、ボイドのサイズ範囲を推定する例を説明する。
Figure JPOXMLDOC01-appb-M000001
 サイズが異なるボイド集合体A、Bを含む1枚の板状の繊維強化樹脂試料をタルボで撮影した場合、ボイドA,Bは同じ装置且つX線照射条件で画像撮影される。また、ボイド=空気でありAとBは同一化合物、ボイドを取り囲む物質は繊維と樹脂の混合物でありマクロ的に見ればA,Bは同じ物質に囲まれている。この場合、理論式によればボイドの小角散乱信号強度(μd’)は、D’で決まりD’の分母dは装置と撮影条件で決まる固定値のため粒子径Dに依存する。図8に、タルボ装置での粒径と小角散乱信号強度値(μd)の関係を示した。この図より分かるように、小角散乱画像で検出されているボイドのサイズは矢印の範囲内(数~100[μm])であり、更に例えば信号強度が相対的に高い場合は数~30[μm]付近のボイドが多く存在すると推定できるし、信号強度が低い場合は、前記範囲より小さい、あるいは大きいボイドが多く存在すると推定できる。なお推定にあたっては、ボイドの大きさ以外の要素として、ボイドの密度、試料の厚さなどを考慮しても良い。
 従って、吸収画像と小角散乱画像、画像撮影に使われたタルボ装置・撮影条件パラメータがあれば試料中のボイドのサイズ範囲を推定する事ができる。
Here, a method for measuring the number and shape of voids (void size classification) will be described.
When the object to be inspected is fiber-reinforced resin, voids (air) in the fiber-reinforced resin have lower X-ray absorption than the surrounding material in the absorption image, and appear on the image as low-absorption regions. According to the sampling theorem, the size can be correctly identified in the absorption image at 2 x detector pixel pitch / (image magnification rate) or more. For example, with a pixel pitch of 200 [μm] and a magnification rate of 2 times, the size of voids with a diameter of 200 [μm] or more can be determined, but voids less than 200 [μm] can be detected, but the size is unknown, whether it is 150 or 50 [μm].
Therefore, since the signal intensity of the small-angle scattering image varies depending on the size of the scatterer, the size range of the scatterer can be estimated. The theoretical formula for the signal intensity of the small-angle scattering image and the size of the scatterer is shown in Equation 1 (S.K. Lynch, "Interpretation of dark-field contrast and particle size selectivity inclusion interferometers (APPLIED OPTICS. Vol.50, No.22, p4310 (2011))"). In the following, an example of estimating the size range of a void from the signal intensity of the small-angle scattering image will be described.
Figure JPOXMLDOC01-appb-M000001
When a sheet-shaped fiber-reinforced resin sample containing void aggregates A and B of different sizes is photographed with a Talbot, images of the voids A and B are taken with the same device and X-ray irradiation conditions. In addition, the voids = air, A and B are the same compound, and the material surrounding the voids is a mixture of fibers and resin, so that A and B are surrounded by the same material when viewed macroscopically. In this case, according to the theoretical formula, the small-angle scattering signal intensity (μd') of the voids is determined by D', and the denominator d of D' is a fixed value determined by the device and photographing conditions, so it depends on the particle diameter D. Figure 8 shows the relationship between the particle size and the small-angle scattering signal intensity value (μd) in the Talbot device. As can be seen from this figure, the size of the voids detected in the small-angle scattering image is within the range of the arrow (several to 100 [μm]), and further, for example, when the signal intensity is relatively high, it can be estimated that there are many voids in the vicinity of several to 30 [μm], and when the signal intensity is low, it can be estimated that there are many voids smaller or larger than the above range. In addition, in the estimation, factors other than the size of the voids, such as the density of the voids and the thickness of the sample, may be considered.
Therefore, the size range of voids in a sample can be estimated if only the absorption image, small-angle scattering image, and the Talbot device and imaging condition parameters used for image capture are available.
 合成処理とは、再構成画像や配向解析画像を、信号値を除算、加算、その他の演算処理することで合成する処理である。
 具体例として、散乱強度画像と配向度画像を用いて、明瞭化(カラー化)、輪郭抽出像生成する例を説明する。まず、散乱強度画像と配向度画像の信号強度を、閾値以上/以下で信号値を2値化する(フィルタリング)ことで、散乱強度画像と配向度画像の信号強度の高/低領域を分離し、高散乱画像、低散乱画像、高配向度画像、低配向度画像を生成する。次に、高散乱画像及び低配向画像、低散乱画像及び高配向度画像を合成することで、特徴強調用の合成画像(強調画像)を生成する。次に、強調画像の加工を行う。つまり、高散乱画像及び低配向画像から生成された強調画像をカラー化したり、低散乱画像及び高配向度画像から生成された強調画像を用いて輪郭線を生成したりする。そして、これらの加工された強調画像を、元の散乱強度画像と配向度画像に合成する。これにより、特徴が明瞭化されたり、輪郭が抽出されたりした合成画像が生成されることとなる。
 なお、除算、加算、その他の演算には、顕微鏡画像やCADや写真などのX線タルボ撮影装置以外の装置で取得した図面や画像での除算、加算なども含まれる。また、明瞭化する際には、3枚以上のカラー・モノクロ画像を重ねて見やすくしてもよい。
The synthesis process is a process of synthesizing the reconstructed image and the orientation analysis image by dividing, adding, or performing other arithmetic processes on the signal values.
As a specific example, an example of clarifying (colorizing) and generating a contour extraction image using a scattering intensity image and an orientation image will be described. First, the signal intensity of the scattering intensity image and the orientation image is binarized (filtered) above/below a threshold value to separate high/low regions of the signal intensity of the scattering intensity image and the orientation image, and a high scattering image, a low scattering image, a high orientation image, and a low orientation image are generated. Next, a composite image (enhanced image) for highlighting features is generated by synthesizing the high scattering image and the low orientation image, and the low scattering image and the high orientation image. Next, the enhanced image is processed. That is, the enhanced image generated from the high scattering image and the low orientation image is colorized, and a contour line is generated using the enhanced image generated from the low scattering image and the high orientation image. Then, these processed enhanced images are synthesized with the original scattering intensity image and the orientation image. As a result, a composite image in which features are clarified and contours are extracted is generated.
The division, addition, and other operations include division, addition, and the like of drawings and images obtained by devices other than the X-ray Talbot imaging device, such as microscope images, CAD, photographs, etc. When clarifying the image, three or more color or monochrome images may be superimposed to make it easier to see.
 図9には、第1の画像と第2の画像と合成画像の組み合わせ(比較)の例を示す。
 図9Aは、散乱強度画像と配向度画像と合成画像(配向度画像の信号値を散乱強度画像の信号値で除算)の組み合わせの例である。矢印の箇所において、除算により、繊維量の差がキャンセルされ、配向度の高い領域を確認しやすくなる。
 図9Bは、吸収画像と散乱強度画像と合成画像(散乱強度画像の信号値を吸収画像の信号値で除算)の組み合わせの例である。矢印の箇所において、除算により、肉厚の差がキャンセルされ、高散乱部の領域を確認しやすくなる。
 図9Cは、散乱強度画像と微分位相画像と合成画像(散乱強度画像の信号値と微分位相画像の信号値を合成)の組み合わせの例である。微分位相画像から確認できる大サイズのボイド(画像内の点で示した個所)は、試験片端側の低散乱強度部に多いことが確認できる。
 図9Dは、配向度画像と微分位相画像と合成画像(配向度画像の信号値と微分位相画像の信号値を合成)の組み合わせの例である。微分位相画像から確認できる大サイズのボイド(画像内の点で示した個所)は、試験片端側の低配向度部に多いことが確認できる。
FIG. 9 shows an example of a combination (comparison) of a first image, a second image, and a composite image.
9A shows an example of a combination of a scattering intensity image, an orientation image, and a composite image (the signal value of the orientation image is divided by the signal value of the scattering intensity image). At the location of the arrow, the difference in fiber amount is cancelled out by the division, making it easier to confirm areas with a high degree of orientation.
9B shows an example of a combination of an absorption image, a scattering intensity image, and a composite image (the signal value of the scattering intensity image is divided by the signal value of the absorption image). At the location indicated by the arrow, the difference in thickness is cancelled out by the division, making it easier to confirm the high scattering area.
9C is an example of a combination of a scattering intensity image, a differential phase image, and a composite image (combining the signal values of the scattering intensity image and the differential phase image). It can be seen that the large voids (indicated by dots in the image) that can be confirmed from the differential phase image are concentrated in the low scattering intensity area on the end side of the test piece.
9D shows an example of a combination of an orientation image, a differential phase image, and a composite image (combining the signal values of the orientation image and the differential phase image). It can be seen that the large voids (shown by dots in the image) that can be confirmed from the differential phase image are mostly located in the low orientation portion on the end side of the test piece.
 図10は、フィルタリング処理の例である。
 画像Aは、フィルタリング処理の加工前の画像である。
 画像Bは、フィルタリング処理(輝度範囲、円形度)の加工後の画像である。画像Bでは、繊維凝集箇所が点で表される。なお、点自体が注目箇所であり、その分布を特性情報とみなす。
 具体的には、繊維凝集を選択的に検出する際には、吸収信号強度を繊維量で規格化した指標である吸収信号強度/繊維量(指標)が0.004~0.006の範囲であって、円形度が0.0~0.60の範囲というフィルターを使用する。
 吸収信号強度/繊維量(指標)が0.004~0.006の範囲であると、繊維の信号のみを選択的に検出することができる。
 また、円形度が0.0~0.60の範囲であると、繊維の凝集のみを抽出することができる。つまり、丸い異物を抽出しないことができる。
 なお、上記0.004~0.006や0.0~0.60の数値は、あくまでも具体例であり、一般的に広く適用可能な数値ではない。
FIG. 10 shows an example of the filtering process.
Image A is an image before filtering processing.
Image B is an image after filtering (brightness range, circularity). In image B, fiber aggregation locations are represented by dots. The dots themselves are the locations of interest, and their distribution is regarded as characteristic information.
Specifically, when selectively detecting fiber aggregation, a filter is used in which the absorption signal intensity/fiber amount (index), which is an index obtained by normalizing the absorption signal intensity by the fiber amount, is in the range of 0.004 to 0.006 and the circularity is in the range of 0.0 to 0.60.
When the absorption signal intensity/fiber amount (index) is in the range of 0.004 to 0.006, only the fiber signal can be selectively detected.
Furthermore, when the circularity is in the range of 0.0 to 0.60, it is possible to extract only fiber agglomerations, i.e., round foreign matter is not extracted.
It should be noted that the above values of 0.004 to 0.006 and 0.0 to 0.60 are merely specific examples and are not generally applicable values.
 次に、制御部21は、表示部23に、各種画像処理結果(第1の画像と第2の画像の組み合わせ、特性情報など)を表示する(ステップS4)。
 なお、制御部21は、ステップS2において第1の画像及び第2の画像がユーザーにより操作部22を用いて選択されている場合は、その選択された第1の画像及び第2の画像の各種画像処理結果を表示する。
 また、ステップS2において第1の画像及び第2の画像が制御部21により自動選択されている場合は、その自動選択された第1の画像及び第2の画像の各種画像処理結果を表示する。
 そして、選択もしくは自動選択された第1の画像及び第2の画像の組み合わせが複数ある場合、制御部21は、表示部23に、例えば、図6に示すような第1の画像と第2の画像の組み合わせと特性情報をリスト表示させる。そして、ユーザーは、ある組み合わせを選択することで、制御部21は、表示部23に、図7や図9に示すような画像と強調された特性情報を表示させる。
 なお、第1の画像または第2の画像の一方はグレースケール画像とし、他方はカラー画像とし、ステップS4(出力ステップ)では、第1の画像及び第2の画像を重ねて表示することで、ユーザーが特性情報を視認しやすくなる。
Next, the control unit 21 displays various image processing results (combination of the first image and the second image, characteristic information, etc.) on the display unit 23 (step S4).
In addition, if the first image and the second image are selected by the user using the operation unit 22 in step S2, the control unit 21 displays various image processing results of the selected first image and second image.
Furthermore, if the first image and the second image are automatically selected by the control unit 21 in step S2, the various image processing results of the automatically selected first image and second image are displayed.
When there are a plurality of combinations of first and second images that have been selected or automatically selected, the control unit 21 causes the display unit 23 to display a list of combinations of the first and second images and their characteristic information, for example, as shown in Fig. 6. When the user selects a certain combination, the control unit 21 causes the display unit 23 to display the images and their highlighted characteristic information, as shown in Fig. 7 or 9.
One of the first image or the second image is a grayscale image and the other is a color image, and in step S4 (output step), the first image and the second image are displayed in an overlaid manner to make it easier for the user to view the characteristic information.
(画像処理 フロー例2)
 図11に示す画像処理のフローは、図5に示す画像処理のフローに、被写体情報取得ステップ、目的特性項目取得ステップ、出力情報取得ステップを加えたものである。その他のステップは、図5に示すステップと同様である。
 なお、ユーザーにより、操作部22を用いて記憶部25に、被写体に関する情報(被写体情報)は記憶されているものとする(記録ステップ;非図示)。
(Image processing flow example 2)
The image processing flow shown in Fig. 11 is obtained by adding a subject information acquisition step, a target characteristic item acquisition step, and an output information acquisition step to the image processing flow shown in Fig. 5. The other steps are the same as those shown in Fig. 5.
It is assumed that information regarding the subject (subject information) has been stored in the storage unit 25 by the user using the operation unit 22 (recording step; not shown).
 制御部21は、記憶部25から、被写体情報を取得する(ステップS21)。
 制御部21は、ステップS26(画像処理)にて、被写体情報と取得された画像を用いて、被写体の特性を鑑みて、被写体の内部にある内包物などを検出することができる。
The control unit 21 acquires subject information from the storage unit 25 (step S21).
In step S26 (image processing), the control unit 21 can detect inclusions and the like inside the subject by using the subject information and the acquired image and taking into account the characteristics of the subject.
 制御部21は、記憶部25から、第3取得ステップとして、ユーザーにより操作部22を用いて入力された目的特性項目を取得する(ステップS22)。
 目的特性項目とは、ユーザーが得たい特性情報の項目である。例えば、目的特性項目をボイドとした場合、制御部21は、ステップS26(画像処理)にて、目的特性項目であるボイドを検出する。これにより、制御部21の処理負荷を減らすことができる。
The control unit 21 acquires, as a third acquisition step, from the storage unit 25, the target property items input by the user using the operation unit 22 (step S22).
The target property item is an item of property information that the user wants to obtain. For example, if the target property item is a void, the control unit 21 detects the void, which is the target property item, in step S26 (image processing). This reduces the processing load of the control unit 21.
 制御部21は、記憶部25から、第4取得ステップとして、過去の出力情報を取得する(ステップS25)。
 制御部21は、ステップS26(画像処理)にて、過去の出力情報と取得された画像を用いて、画像処理を行う。つまり、制御部21は、被写体の過去の出力情報から、類似した出力情報を取得し、その出力情報を基にして、画像処理を行うことが可能である。具体的には、過去の出力情報から、「特性情報」を使い類似した過去の出力情報を取得するパターンや、「画像情報」を使い類似した過去の出力情報を取得するパターンが挙げられる。例えば、制御部21は、前者のパターンでは、画像処理対象の被写体の目的特性項目がボイドである場合、過去にボイドに関する情報を出力した被写体の情報を参照する。また、制御部21は、後者のパターンでは、画像処理において被写体の吸収画像と散乱強度画像の組合せを使用している場合、過去の吸収画像と散乱強度画像の合成画像を使い画像処理した被写体の出力情報や画像処理方法を参照する。
The control unit 21 acquires past output information from the storage unit 25 as a fourth acquisition step (step S25).
In step S26 (image processing), the control unit 21 performs image processing using the past output information and the acquired image. That is, the control unit 21 can acquire similar output information from the past output information of the subject, and perform image processing based on the output information. Specifically, there are a pattern of acquiring similar past output information from the past output information using "characteristic information" and a pattern of acquiring similar past output information using "image information". For example, in the former pattern, when the target characteristic item of the subject to be image-processed is a void, the control unit 21 refers to information of the subject that has output information about voids in the past. Also, in the latter pattern, when a combination of an absorption image and a scattering intensity image of the subject is used in image processing, the control unit 21 refers to output information of the subject that has been image-processed and an image processing method using a composite image of a past absorption image and a scattering intensity image.
[第2実施形態]
 図12及び図13に、3次元タルボ再構成、配向解析画像取得法の例を示す。
 図12の様に装置に被写体Hを配置する。被写体Hは移動・回転機構13aに取り付けられており図13の様にHを回転させて異なる回転角度で複数の投影像を撮影し、3次元再構成処理を行う事でタルボCT再構成画像(複数の吸収投影像から得られる吸収CT画像、複数の小角散乱投影像から得られる小角散乱CT画像、複数の微分位相投影像から得られるCT画像)が取得できる。
 一方、3次元の配向解析画像は以下の方法で取得する。図13の様に被写体を設置し、被写体Hを異なる回転角度で複数の投影像を撮影する。図13には格子方向とCT回転軸の方向が平行を一例として示したが、他に格子方向とCT回転軸の方向を変える構成や格子方向とCT回転軸の方向は平行や直交や斜め方向等で固定とし、CT回転軸に対する被写体Hの方向を変える構成でも良い。
 次に、撮影された各投影像に対し、3次元再構成処理を行う事で小角散乱画像を用いたタルボCT再構成画像を取得する。格子方向とCT回転軸の方向やCT回転軸に対する被写体Hの方向を変えて撮影した投影像の撮影毎に3次元再構成処理を行う事で得られた各小角散乱画像を用いたタルボCT再構成画像を演算処理することで、散乱強度、配向角度、配向度などの配向解析画像(3D画像でも2D画像でも良い)を得る。ただし、散乱強度、配向角度、配向度などの配向解析画像の取得方法はこれに限らない。
[Second embodiment]
12 and 13 show examples of a three-dimensional Talbot reconstruction and an orientation analysis image acquisition method.
A subject H is placed in the device as shown in Fig. 12. The subject H is attached to a movement/rotation mechanism 13a, and a plurality of projection images are taken at different rotation angles by rotating H as shown in Fig. 13, and three-dimensional reconstruction processing is performed to obtain Talbot CT reconstruction images (an absorption CT image obtained from a plurality of absorption projection images, a small-angle scattering CT image obtained from a plurality of small-angle scattering projection images, and a CT image obtained from a plurality of differential phase projection images).
On the other hand, a three-dimensional orientation analysis image is obtained by the following method: A subject is placed as shown in Fig. 13, and multiple projection images of the subject H are taken at different rotation angles. Fig. 13 shows an example in which the lattice direction and the CT rotation axis are parallel, but other configurations are also possible in which the directions of the lattice direction and the CT rotation axis are changed, or the directions of the lattice direction and the CT rotation axis are fixed as parallel, perpendicular, or oblique, and the direction of the subject H relative to the CT rotation axis is changed.
Next, a Talbot CT reconstructed image using the small-angle scattering image is obtained by performing a three-dimensional reconstruction process on each captured projection image. The three-dimensional reconstruction process is performed for each captured projection image while changing the lattice direction and the direction of the CT rotation axis, and the direction of the subject H relative to the CT rotation axis, and the Talbot CT reconstructed image using each small-angle scattering image is then processed to obtain an orientation analysis image (which may be a 3D image or a 2D image) such as scattering intensity, orientation angle, orientation degree, etc. However, the method of obtaining the orientation analysis image such as scattering intensity, orientation angle, orientation degree, etc. is not limited to this.
(効果)
 以上説明したように、画像処理方法は、被写体をX線タルボ撮影装置でX線格子と試料の相対角度を変えながら複数回撮影した画像の処理方法であって、画像に基づいて、各撮影ごとの小角散乱画像を含む再構成画像を取得する第1取得ステップ(ステップS1)と、複数の小角散乱画像に基づいて生成された配向解析画像または配向解析画像に基づいた画像を第1の画像として、第1の画像とは異なる種類の配向解析画像または再構成画像、あるいは第1の画像とは異なる種類の配向解析画像または再構成画像に基づいた画像を第2の画像として、取得する第2取得ステップ(ステップS2)と、画像処理ステップ(ステップS3)と、を有し、画像処理ステップは、第1の画像、または第2の画像から注目箇所を抽出する抽出ステップ(ステップS3)と、第1の画像及び第2の画像、または第1の画像と第2の画像の合成画像に基づいた特性情報を出力する出力ステップ(ステップS3)と、のうち少なくとも何れか一方を含むことで、タルボ干渉計やタルボ・ロー干渉計を用いた放射線撮影装置から取得した画像を組み合せた場合に得られる注目領域又は特性情報を容易に把握することができる。
(effect)
As described above, the image processing method is a method for processing images obtained by photographing a subject multiple times with an X-ray Talbot imaging device while changing the relative angle between the X-ray grating and the sample, and includes a first acquisition step (step S1) of acquiring a reconstructed image including a small-angle scattering image for each photograph based on the images, a second acquisition step (step S2) of acquiring an orientation analysis image generated based on the multiple small-angle scattering images or an image based on the orientation analysis image as a first image, and an orientation analysis image or reconstructed image of a type different from the first image, or an image based on an orientation analysis image or reconstructed image of a type different from the first image, as a second image, and an image processing step (step S3). The image processing step includes at least one of an extraction step (step S3) of extracting a site of interest from the first image or the second image, and an output step (step S3) of outputting characteristic information based on the first image and the second image, or a composite image of the first image and the second image, thereby making it possible to easily grasp a region of interest or characteristic information obtained when images acquired from a radiation imaging device using a Talbot interferometer or a Talbot-Lau interferometer are combined.
 また、出力ステップ(ステップS3)は、抽出ステップにおいて抽出された注目箇所について、特性情報を出力することで、タルボ干渉計やタルボ・ロー干渉計を用いた放射線撮影装置から取得した画像を組み合せた場合に得られる注目領域又は特性情報を容易に把握することができる。 In addition, the output step (step S3) outputs characteristic information about the area of interest extracted in the extraction step, making it easy to grasp the area of interest or characteristic information obtained when combining images acquired from a radiation imaging device using a Talbot interferometer or Talbot-Lau interferometer.
 また、画像処理方法は、目的特性項目を取得する第3取得ステップ(ステップS22)と、をさらに有し、抽出ステップは、目的特性項目に基づいた注目箇所を抽出し、特性情報出力ステップは、目的特性項目に基づいた特性情報を出力することで、タルボ干渉計やタルボ・ロー干渉計を用いた放射線撮影装置から取得した画像を組み合せた場合に得られる注目領域又は特性情報を容易に把握することができる。 The image processing method further includes a third acquisition step (step S22) for acquiring target characteristic items, an extraction step for extracting a point of interest based on the target characteristic items, and a characteristic information output step for outputting characteristic information based on the target characteristic items, thereby making it easy to grasp the area of interest or characteristic information obtained when combining images acquired from a radiation imaging device using a Talbot interferometer or a Talbot-Lau interferometer.
 また、第1の画像は、散乱強度画像、第2の画像は、吸収画像であって、出力ステップ(ステップS3)は、特性情報のうち注目箇所に存在するボイドの大きさ、数量、形状の少なくともいずれか1つに関する情報を出力することで、注目領域又は特性情報を容易に把握することができる。 The first image is a scattering intensity image, and the second image is an absorption image. The output step (step S3) outputs information on at least one of the size, quantity, and shape of voids present in the area of interest from among the characteristic information, thereby making it easy to grasp the area of interest or the characteristic information.
 また、第1の画像は、散乱強度画像、第2の画像は、吸収画像であり、さらに第3の画像として配向度画像を用い、
 出力ステップ(ステップS3)は、特性情報のうち注目箇所に存在する対象物に関する情報を出力することで、注目領域又は特性情報を容易に把握することができる。
The first image is a scattering intensity image, the second image is an absorption image, and the third image is an orientation image.
In the output step (step S3), information on the object present in the target area is output from the characteristic information, so that the target area or the characteristic information can be easily grasped.
 また、第1の画像または第2の画像の一方は、グレースケール画像であり、他方は、カラー画像であり、出力ステップ(ステップS3)は、第1の画像または第2の画像を重ねて表示することで、注目領域又は特性情報を容易に把握することができる。 Furthermore, one of the first image and the second image is a grayscale image and the other is a color image, and the output step (step S3) displays the first image and the second image in an overlaid manner, making it easy to grasp the area of interest or characteristic information.
 また、画像処理方法は、第1の画像または第2の画像の一方から輪郭抽出像を生成する輪郭抽出像生成ステップ(ステップS3)と、さらに有し、出力ステップは、抽出された輪郭抽出像を他方の画像に重ねて表示することで、注目領域又は特性情報を容易に把握することができる。 The image processing method further includes a contour extraction image generating step (step S3) for generating a contour extraction image from either the first image or the second image, and the output step displays the extracted contour extraction image superimposed on the other image, making it possible to easily grasp the region of interest or characteristic information.
 また、画像処理方法は、被写体に関する情報を記録する記録ステップをさらに有し、出力ステップ(ステップS3)は、記録ステップにおいて記録された情報と、第1の画像及び第2の画像、または記録ステップにおいて記録された情報と、第1の画像と第2の画像の合成画像、に基づいて特性情報を出力することで、注目領域又は特性情報をより正確に出力することができる。 The image processing method further includes a recording step for recording information about the subject, and an output step (step S3) outputs characteristic information based on the information recorded in the recording step and the first image and the second image, or based on the information recorded in the recording step and a composite image of the first image and the second image, thereby making it possible to output the area of interest or characteristic information more accurately.
 また、画像処理方法は、出力情報を保存している出力データベースから出力情報を取得する第4取得ステップ(ステップS25)を有し、出力ステップ(ステップS3)は、出力データベースから取得した出力情報と、第1の画像及び第2の画像、または出力データベースから取得した出力情報と、第1の画像と第2の画像の合成画像、に基づいて特性情報を出力し、出力データベースでは、被写体に関する情報と特性情報と、第1の画像と第2の画像または第1の画像と第2の画像の合成画像、を関連付けたデータが保存されていることで、注目領域又は特性情報をその過去の履歴に基づいて出力することができる。 The image processing method also has a fourth acquisition step (step S25) of acquiring output information from an output database that stores the output information, and an output step (step S3) of outputting characteristic information based on the output information acquired from the output database and the first and second images, or the output information acquired from the output database and a composite image of the first and second images, and the output database stores data that associates information about the subject, characteristic information, and the first and second images or the composite image of the first and second images, so that the area of interest or characteristic information can be output based on its past history.
 また、画像処理装置(画像処理装置2)は、被写体をX線タルボ撮影装置でX線格子と試料の相対角度を変えながら複数回撮影した画像の処理装置であって、画像に基づいて、各撮影ごとの小角散乱画像を含む再構成画像を取得する第1取得部(制御部21)と、複数の小角散乱画像に基づいて生成された配向解析画像または配向解析画像に基づいた画像を第1の画像として、第1の画像とは異なる種類の配向解析画像または再構成画像、あるいは第1の画像とは異なる種類の配向解析画像または再構成画像に基づいた画像を第2の画像として、取得する第2取得部(制御部21)と、画像処理部(制御部21)と、を有し、画像処理部は、第1の画像、または第2の画像から注目箇所を抽出する抽出部(制御部21)と、第1の画像及び第2の画像、または第1の画像と第2の画像の合成画像に基づいた特性情報を出力する出力部(制御部21)と、のうち少なくとも何れか一方を含むことで、タルボ干渉計やタルボ・ロー干渉計を用いた放射線撮影装置から取得した画像を組み合せた場合に得られる注目領域又は特性情報を容易に把握することができる。 The image processing device (image processing device 2) is an image processing device for processing images of a subject photographed multiple times with an X-ray Talbot imaging device while changing the relative angle between the X-ray grating and the sample, and has a first acquisition unit (control unit 21) that acquires a reconstructed image including a small-angle scattering image for each photograph based on the image, a second acquisition unit (control unit 21) that acquires an orientation analysis image or an image based on the orientation analysis image generated based on the multiple small-angle scattering images as a first image, an orientation analysis image or a reconstructed image of a type different from the first image, or an image based on an orientation analysis image or a reconstructed image of a type different from the first image as a second image, and an image processing unit (control unit 21).The image processing unit includes at least one of an extraction unit (control unit 21) that extracts a location of interest from the first image or the second image, and an output unit (control unit 21) that outputs characteristic information based on the first image and the second image, or a composite image of the first image and the second image, so that it is easy to grasp the region of interest or characteristic information obtained when images acquired from a radiation imaging device using a Talbot interferometer or a Talbot-Lau interferometer are combined.
 また、画像処理システム(X線撮影システム100)は、被写体をX線タルボ撮影装置でX線格子と試料の相対角度を変えながら複数回撮影した画像の処理システムであって、画像に基づいて、各撮影ごとの小角散乱画像を含む再構成画像を取得する第1取得部(制御部21)と、複数の小角散乱画像に基づいて生成された配向解析画像または配向解析画像に基づいた画像を第1の画像として、第1の画像とは異なる種類の配向解析画像または再構成画像、あるいは第1の画像とは異なる種類の配向解析画像または再構成画像に基づいた画像を第2の画像として、取得する第2取得部(制御部21)と、画像処理部(制御部21)と、を有し、画像処理部は、第1の画像、または第2の画像から注目箇所を抽出する抽出部(制御部21)と、第1の画像及び第2の画像、または第1の画像と第2の画像の合成画像に基づいた特性情報を出力する出力部(制御部21)と、のうち少なくとも何れか一方を含むことで、タルボ干渉計やタルボ・ロー干渉計を用いた放射線撮影装置から取得した画像を組み合せた場合に得られる注目領域又は特性情報を容易に把握することができる。 The image processing system (X-ray imaging system 100) is an image processing system for processing images of an object photographed multiple times with an X-ray Talbot imaging device while changing the relative angle between the X-ray grating and the sample, and includes a first acquisition unit (control unit 21) that acquires a reconstructed image including a small-angle scattering image for each photograph based on the image, a second acquisition unit (control unit 21) that acquires an orientation analysis image or an image based on the orientation analysis image generated based on the multiple small-angle scattering images as a first image, an orientation analysis image or a reconstructed image of a type different from the first image, or an image based on an orientation analysis image or a reconstructed image of a type different from the first image as a second image, and an image processing unit (control unit 21). The image processing unit includes at least one of an extraction unit (control unit 21) that extracts a location of interest from the first image or the second image, and an output unit (control unit 21) that outputs characteristic information based on the first image and the second image, or a composite image of the first image and the second image, making it easy to grasp the region of interest or characteristic information obtained when images acquired from a radiation imaging device using a Talbot interferometer or a Talbot-Lau interferometer are combined.
 以上、本発明の実施形態について説明したが、上述した本実施形態における記述は、本発明に係る好適な一例であり、これに限定されるものではない。 The above describes an embodiment of the present invention, but the description of the above embodiment is a preferred example of the present invention and is not intended to be limiting.
 例えば、上記では、表示部23を備える画像処理装置2は、画像表示装置としても機能しているが、画像処理装置と画像表示装置を別の装置としてもよい。具体的には、画像表示装置では表示処理のみ行い、各種処理等や、特性情報等の情報の管理は別の画像処理装置で行ってもよい。例えば、画像処理装置をクラウドとし、表示処理のみ画像表示装置で行うことなどが挙げられる。 For example, in the above, the image processing device 2 equipped with the display unit 23 also functions as an image display device, but the image processing device and the image display device may be separate devices. Specifically, the image display device may only perform display processing, and various processes and management of information such as characteristic information may be performed by a separate image processing device. For example, the image processing device may be a cloud, and only display processing may be performed by the image display device.
 また、上記の説明では、本発明に係るプログラムのコンピューター読み取り可能な媒体としてハードディスクや半導体の不揮発性メモリー等を使用した例を開示したが、この例に限定されない。その他のコンピューター読み取り可能な媒体として、CD-ROM等の可搬型記録媒体を適用することが可能である。 In addition, in the above explanation, examples have been disclosed in which a hard disk or a non-volatile semiconductor memory is used as a computer-readable medium for the program according to the present invention, but the present invention is not limited to this example. Portable recording media such as a CD-ROM can also be used as other computer-readable media.
 その他、各装置の細部構成及び細部動作に関しても、発明の趣旨を逸脱することのない範囲で適宜変更可能である。 In addition, the detailed configuration and operation of each device may be modified as appropriate without departing from the spirit of the invention.
 本開示は、画像処理方法、画像処理装置及び画像処理システムに利用できる。 This disclosure can be used in image processing methods, image processing devices, and image processing systems.
1 X線タルボ撮影装置
2 画像処理装置
11 X線発生装置
11a X線源
12 線源格子(G0格子)
13 被写体台
14 第1格子(G1格子)
15 第2格子(G2格子)
16 X線検出器(FPD)
21 制御部(第1取得部、第2取得部、抽出部、出力部)
22 操作部
23 表示部
24 通信部
25 記憶部
100 X線撮影システム
H 被写体
S スリット
Mo モアレ画像
1 X-ray Talbot imaging device 2 Image processing device 11 X-ray generator 11a X-ray source 12 Source grating (G0 grating)
13 subject table 14 first grid (G1 grid)
15 Second lattice (G2 lattice)
16 X-ray detector (FPD)
21 control unit (first acquisition unit, second acquisition unit, extraction unit, output unit)
22 Operation unit 23 Display unit 24 Communication unit 25 Storage unit 100 X-ray imaging system H Subject S Slit Mo Moire image

Claims (17)

  1.  被写体をX線タルボ撮影装置でX線格子と試料の相対角度を変えながら複数回撮影した画像の画像処理方法であって、
     前記画像に基づいて、各撮影ごとの小角散乱画像を含む再構成画像を取得する第1取得ステップと、
     前記複数の小角散乱画像に基づいて生成された配向解析画像または前記配向解析画像に基づいた画像を第1の画像として、前記第1の画像とは異なる種類の配向解析画像または前記再構成画像、あるいは前記第1の画像とは異なる種類の配向解析画像または前記再構成画像に基づいた画像を第2の画像として、取得する第2取得ステップと、を有し、
     更に、前記第1の画像、または前記第2の画像から注目箇所を抽出する抽出ステップと、
     前記第1の画像及び前記第2の画像、または前記第1の画像と前記第2の画像の合成画像に基づいた特性情報を出力する出力ステップと、のうち少なくとも何れか一方を含む画像処理方法。
    An image processing method for an image obtained by photographing an object multiple times with an X-ray Talbot imaging device while changing the relative angle between an X-ray grating and a sample, comprising the steps of:
    a first acquisition step of acquiring a reconstructed image including a small-angle scattering image for each photograph based on the images;
    a second acquisition step of acquiring an orientation analysis image generated based on the plurality of small-angle scattering images or an image based on the orientation analysis image as a first image, and an orientation analysis image of a type different from the first image or the reconstructed image, or an orientation analysis image of a type different from the first image or an image based on the reconstructed image as a second image,
    Further, an extraction step of extracting a portion of interest from the first image or the second image;
    an output step of outputting characteristic information based on the first image and the second image, or a composite image of the first image and the second image.
  2.  前記出力ステップは、前記抽出ステップにおいて抽出された前記注目箇所について、前記特性情報を出力する請求項1に記載の画像処理方法。 The image processing method according to claim 1, wherein the output step outputs the characteristic information for the area of interest extracted in the extraction step.
  3.  目的特性項目を取得する第3取得ステップと、をさらに有し、
     前記抽出ステップは、前記目的特性項目に基づいた前記注目箇所を抽出し、
     前記出力ステップは、前記目的特性項目に基づいた前記特性情報を出力する請求項1に記載の画像処理方法。
    A third acquisition step of acquiring a target characteristic item,
    The extraction step includes extracting the attention portion based on the target characteristic item,
    The image processing method according to claim 1 , wherein the output step outputs the characteristic information based on the target characteristic item.
  4.  前記配向解析画像は、前記X線タルボ撮影装置の格子のスリットに対する前記被写体の相対角度を変えて撮影された複数の小角散乱画像に基づいて生成される請求項1に記載の画像処理方法。 The image processing method according to claim 1, wherein the orientation analysis image is generated based on a plurality of small-angle scattering images taken by changing the relative angle of the subject with respect to the slits of the grid of the X-ray Talbot imaging device.
  5.  前記配向解析画像に基づいた画像または前記再構成画像に基づいた画像は合成画像である請求項1に記載の画像処理方法。 The image processing method according to claim 1, wherein the image based on the orientation analysis image or the image based on the reconstructed image is a composite image.
  6.  前記合成画像は、前記小角散乱画像に基づいて生成された配向解析画像または前記再構成画像のうち、2つ以上の画像を除算または加算したものである請求項5に記載の画像処理方法。 The image processing method according to claim 5, wherein the composite image is obtained by dividing or adding two or more of the orientation analysis images or the reconstructed images generated based on the small-angle scattering image.
  7.  前記合成画像は、前記小角散乱画像に基づいて生成された配向解析画像または前記再構成画像と任意の画像を除算または加算したものである請求項5に記載の画像処理方法。 The image processing method according to claim 5, wherein the composite image is an orientation analysis image generated based on the small-angle scattering image or an image obtained by dividing or adding the reconstructed image and an arbitrary image.
  8.  前記第1の画像または前記第2の画像は、画像信号強度を用いたフィルタリング処理をされた画像である請求項1に記載の画像処理方法。 The image processing method according to claim 1, wherein the first image or the second image is an image that has been subjected to filtering processing using image signal intensity.
  9.  前記配向解析画像は、散乱強度画像、配向度画像、配向角画像のいずれかである請求項1に記載の画像処理方法。 The image processing method according to claim 1, wherein the orientation analysis image is one of a scattering intensity image, an orientation degree image, and an orientation angle image.
  10.  前記第1の画像は、散乱強度画像、前記第2の画像は、吸収画像であって、
     前記出力ステップは、前記特性情報のうち前記注目箇所に存在するボイドの大きさ、数量、形状の少なくともいずれか1つに関する情報を出力する請求項2に記載の画像処理方法。
    the first image is a scattering intensity image, and the second image is an absorption image;
    3. The image processing method according to claim 2, wherein the output step outputs information on at least one of the size, number, and shape of voids present in the target location from among the characteristic information.
  11.  前記第1の画像は、散乱強度画像、前記第2の画像は、吸収画像であり、さらに第3の画像として配向度画像を用い、
     前記出力ステップは、前記特性情報のうち前記注目箇所に存在する内包物に関する情報を出力する請求項2に記載の画像処理方法。
    The first image is a scattering intensity image, the second image is an absorption image, and a third image is an orientation image;
    The image processing method according to claim 2 , wherein the output step outputs information relating to an inclusion present in the target location from among the characteristic information.
  12.  前記第1の画像または前記第2の画像の一方は、グレースケール画像であり、他方は、カラー画像であり、
     前記出力ステップは、前記第1の画像及び前記第2の画像を重ねて表示する請求項1に記載の画像処理方法。
    one of the first image or the second image is a grayscale image and the other is a color image;
    2. The image processing method according to claim 1, wherein said outputting step displays said first image and said second image in an overlapping manner.
  13.  前記第1の画像または前記第2の画像の一方から輪郭抽出像を生成する輪郭抽出像生成ステップと、さらに有し、
     前記出力ステップは、抽出された輪郭抽出像を他方の画像に重ねて表示する請求項1に記載の画像処理方法。
    a contour extraction image generating step of generating a contour extraction image from one of the first image or the second image,
    2. The image processing method according to claim 1, wherein said output step displays the extracted contour image superimposed on the other image.
  14.  被写体に関する情報を記録する記録ステップをさらに有し、
     前記出力ステップは、前記記録ステップにおいて記録された情報と、前記第1の画像及び前記第2の画像、または前記記録ステップにおいて記録された情報と、前記第1の画像と前記第2の画像の合成画像、に基づいて前記特性情報を出力する請求項1に記載の画像処理方法。
    The method further includes a recording step of recording information about the subject,
    2. The image processing method according to claim 1, wherein the output step outputs the characteristic information based on the information recorded in the recording step and the first image and the second image, or based on the information recorded in the recording step and a composite image of the first image and the second image.
  15.  出力情報を保存している出力データベースから出力情報を取得する第4取得ステップを有し、
     前記出力ステップは、前記出力データベースから取得した出力情報と、前記第1の画像及び前記第2の画像、または前記出力データベースから取得した出力情報と、前記第1の画像と前記第2の画像の合成画像、に基づいて前記特性情報を出力し、
     前記出力データベースでは、前記被写体に関する情報と前記特性情報と、前記第1の画像と前記第2の画像または前記第1の画像と前記第2の画像の合成画像、を関連付けたデータが保存されている請求項1に記載の画像処理方法。
    A fourth acquisition step of acquiring output information from an output database storing the output information;
    the output step outputs the characteristic information based on output information acquired from the output database and the first image and the second image, or based on output information acquired from the output database and a composite image of the first image and the second image;
    The image processing method according to claim 1 , wherein the output database stores data associating information about the subject, the characteristic information, and a composite image of the first image and the second image or the first image and the second image.
  16.  被写体をX線タルボ撮影装置でX線格子と試料の相対角度を変えながら複数回撮影した画像の画像処理装置であって、
     前記画像に基づいて、各撮影ごとの小角散乱画像を含む再構成画像を取得する第1取得部と、
     前記複数の小角散乱画像に基づいて生成された配向解析画像または前記配向解析画像に基づいた画像を第1の画像として、前記第1の画像とは異なる種類の配向解析画像または前記再構成画像、あるいは前記第1の画像とは異なる種類の配向解析画像または前記再構成画像に基づいた画像を第2の画像として、取得する第2取得部と、を有し、
     更に、前記第1の画像、または前記第2の画像から注目箇所を抽出する抽出部と、
     前記第1の画像及び前記第2の画像、または前記第1の画像と前記第2の画像の合成画像に基づいた特性情報を出力する出力部と、のうち少なくとも何れか一方を含む画像処理装置。
    An image processing device for images obtained by photographing an object multiple times with an X-ray Talbot imaging device while changing the relative angle between an X-ray grating and a sample,
    a first acquisition unit that acquires a reconstructed image including a small-angle scattering image for each photograph based on the image;
    a second acquisition unit that acquires, as a first image, an orientation analysis image generated based on the plurality of small-angle scattering images or an image based on the orientation analysis image, and, as a second image, an orientation analysis image of a type different from the first image or the reconstructed image, or an orientation analysis image of a type different from the first image or an image based on the reconstructed image,
    Further, an extraction unit that extracts a portion of interest from the first image or the second image;
    an output unit that outputs characteristic information based on the first image and the second image, or a composite image of the first image and the second image.
  17.  被写体をX線タルボ撮影装置でX線格子と試料の相対角度を変えながら複数回撮影した画像の画像処理システムであって、
     前記画像に基づいて、各撮影ごとの小角散乱画像を含む再構成画像を取得する第1取得部と、
     前記複数の小角散乱画像に基づいて生成された配向解析画像または前記配向解析画像に基づいた画像を第1の画像として、前記第1の画像とは異なる種類の配向解析画像または前記再構成画像、あるいは前記第1の画像とは異なる種類の配向解析画像または前記再構成画像に基づいた画像を第2の画像として、取得する第2取得部と、を有し、
     更に、前記第1の画像、または前記第2の画像から注目箇所を抽出する抽出部と、
     前記第1の画像及び前記第2の画像、または前記第1の画像と前記第2の画像の合成画像に基づいた特性情報を出力する出力部と、のうち少なくとも何れか一方を含む画像処理システム。
    An image processing system for images of an object captured multiple times by an X-ray Talbot imaging device while changing the relative angle between an X-ray grating and a sample,
    a first acquisition unit that acquires a reconstructed image including a small-angle scattering image for each photograph based on the image;
    a second acquisition unit that acquires, as a first image, an orientation analysis image generated based on the plurality of small-angle scattering images or an image based on the orientation analysis image, and, as a second image, an orientation analysis image of a type different from the first image or the reconstructed image, or an orientation analysis image of a type different from the first image or an image based on the reconstructed image,
    Further, an extraction unit that extracts a portion of interest from the first image or the second image;
    an output unit that outputs characteristic information based on the first image and the second image, or a composite image of the first image and the second image; and
PCT/JP2023/039442 2022-11-10 2023-11-01 Image processing method, image processing device, and image processing system WO2024101243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-180192 2022-11-10
JP2022180192 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024101243A1 true WO2024101243A1 (en) 2024-05-16

Family

ID=91032948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039442 WO2024101243A1 (en) 2022-11-10 2023-11-01 Image processing method, image processing device, and image processing system

Country Status (1)

Country Link
WO (1) WO2024101243A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024068A (en) * 2013-07-29 2015-02-05 コニカミノルタ株式会社 Medical image processor
JP2016059593A (en) * 2014-09-18 2016-04-25 公益財団法人ヒューマンサイエンス振興財団 Medical image processor, medical image analysis system, medical image processing method and program
JP2016129662A (en) * 2015-01-09 2016-07-21 東芝メディカルシステムズ株式会社 Medical image diagnostic apparatus, image processing apparatus, and image processing method
WO2020246220A1 (en) * 2019-06-04 2020-12-10 コニカミノルタ株式会社 Radiography system and enlarged absorption contrast image generation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024068A (en) * 2013-07-29 2015-02-05 コニカミノルタ株式会社 Medical image processor
JP2016059593A (en) * 2014-09-18 2016-04-25 公益財団法人ヒューマンサイエンス振興財団 Medical image processor, medical image analysis system, medical image processing method and program
JP2016129662A (en) * 2015-01-09 2016-07-21 東芝メディカルシステムズ株式会社 Medical image diagnostic apparatus, image processing apparatus, and image processing method
WO2020246220A1 (en) * 2019-06-04 2020-12-10 コニカミノルタ株式会社 Radiography system and enlarged absorption contrast image generation method

Similar Documents

Publication Publication Date Title
JP7067221B2 (en) X-ray system
Alshibli et al. Quantifying morphology of sands using 3D imaging
EP3469343B1 (en) X-ray tensor tomography system
JP5818909B2 (en) Method and system for image integration using constrained optimization for phase contrast imaging with a grating device
JP7456135B2 (en) Molding support device and molding support method
JP7484610B2 (en) Information processing device, learning device, information processing system, information processing method, program, and recording medium
Rashidi et al. A review of current challenges and case study toward optimizing micro-computed X-ray tomography of carbon fabric composites
Peetermans et al. Simultaneous neutron transmission and diffraction contrast tomography as a non-destructive 3D method for bulk single crystal quality investigations
Bayer et al. Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures
Morimoto et al. Talbot–lau interferometry-based x-ray imaging system with retractable and rotatable gratings for nondestructive testing
Weber et al. Micropowder injection molding: investigation of powder-binder separation using synchrotron-based microtomography and 3D image analysis
Vent et al. Simulation and experimental validation of high-resolution test objects for evaluating a next-generation digital breast tomosynthesis prototype
US11386561B2 (en) X-ray imaging apparatus and x-ray imaging method
WO2024101243A1 (en) Image processing method, image processing device, and image processing system
Riedel et al. High-resolution quantitative phase-contrast x-ray imaging for biomedical samples at PETRA III
JP7306528B2 (en) Control device, display method and inspection method
Flay et al. Application of the optical transfer function in x-ray computed tomography-a review.
Savatović et al. Multi-resolution X-ray phase-contrast and dark-field tomography of human cerebellum with near-field speckles
WO2024128101A1 (en) Image processing method, image processing device, image processing system, and program
JP5814729B2 (en) Vector field tomography apparatus and vector field tomography reconstruction method
JP6844461B2 (en) X-ray phase imaging device and information acquisition method
WO2024101253A1 (en) Image processing method, image processing device, image processing system, and program
Liu et al. Optimization of reconstructed quality of hard x-ray phase microtomography
JP7276210B2 (en) X-ray phase imaging system, X-ray image processing device, and X-ray image processing method
Yu et al. Double-exposure method for speckle-tracking x-ray phase-contrast microtomography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888591

Country of ref document: EP

Kind code of ref document: A1