WO2024101200A1 - 攪拌移送方法および攪拌移送装置 - Google Patents

攪拌移送方法および攪拌移送装置 Download PDF

Info

Publication number
WO2024101200A1
WO2024101200A1 PCT/JP2023/039093 JP2023039093W WO2024101200A1 WO 2024101200 A1 WO2024101200 A1 WO 2024101200A1 JP 2023039093 W JP2023039093 W JP 2023039093W WO 2024101200 A1 WO2024101200 A1 WO 2024101200A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
transfer pipe
stirring
transfer
mixing
Prior art date
Application number
PCT/JP2023/039093
Other languages
English (en)
French (fr)
Inventor
晋 後藤
大記 渡邊
健斗 江口
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2024101200A1 publication Critical patent/WO2024101200A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/60Mixers with rotating receptacles rotating about a horizontal or inclined axis, e.g. drum mixers
    • B01F29/62Mixers with rotating receptacles rotating about a horizontal or inclined axis, e.g. drum mixers without bars, i.e. without mixing elements; characterised by the shape or cross section of the receptacle, e.g. of Y-, Z-, S- or X- shape; with cylindrical receptacles rotating about an axis at an angle to their longitudinal axis

Definitions

  • the present invention relates to a method and device for agitating and transferring material.
  • Static mixers are known as one method of transporting liquids while stirring them.
  • static mixers mixing parts with complex shapes are installed inside the transport piping, and mixing is promoted by inducing complex flows of the liquid.
  • static mixers are disclosed in Patent Documents 1 and 2.
  • Static mixers are difficult to clean because they require mixing parts with complex shapes inside the transfer piping.
  • the only controllable parameter is the flow rate, so they also lack control over the mixing and transfer of liquids.
  • the objective of the present invention is to achieve an agitation and transfer method and an agitation and transfer device that is easy to clean and control.
  • the first aspect of the present invention is a method for producing a cellular membrane comprising the steps of: providing a transfer pipe extending in a horizontal extension direction; At least one type of liquid to be agitated and transported is flowed through the transport pipe at a Reynolds number within a predetermined range and a filling rate within a predetermined range, The at least one type of liquid is agitated by rotating the transfer pipe around the extension direction to generate vortex streets in the at least one type of liquid.
  • the at least one type of liquid can be agitated by rotating the transfer pipe. Therefore, good cleaning properties can be ensured.
  • a vortex street with a rotation axis perpendicular to the flow direction is generated. Adjacent vortices in the vortex street rotate in opposite directions to each other, and agitation is achieved by the vortex street.
  • the flow rate (transfer speed) of the at least one type of liquid, but also the rotation speed of the transfer pipe is an adjustable parameter. Therefore, by adjusting the transfer speed and rotation speed, the agitation transfer can be suitably controlled, and appropriate agitation transfer can be achieved depending on the process to be carried out.
  • horizontal does not only mean strictly horizontal, but also roughly horizontal, and for example, an inclination of at least several degrees from the horizontal direction is allowed.
  • the at least one type of liquid includes a multiphase flow of a gas or solid and a liquid.
  • the filling rate of the predetermined range may be 10% or more and 90% or less.
  • the cross-sectional shape of the transport pipe perpendicular to the extension direction may be circular.
  • This method allows the formation of a smooth inner surface of the transfer pipe, enabling stable mixing.
  • the diameter of the transfer pipe may be constant or may vary.
  • the transport piping may be a circular pipe having a constant diameter.
  • This method allows the use of simple, cylindrical transport piping, making it easy to manufacture and install.
  • the transport pipe may have a length of 0.6 or more times the diameter of a circle in a cross section perpendicular to the stretching direction.
  • the Reynolds number in the predetermined range may be 98 or more.
  • the at least one type of liquid to be stirred and transferred may contain particles, the Stokes number in the stirring may be 2.7 ⁇ 10-5 or more, and the ratio of the terminal velocity of free fall of the particles to the inner wall surface velocity in the rotation direction of the transfer pipe may be -0.01 or more and 0.52 or less.
  • This method allows the particles to aggregate as they are stirred.
  • the effectiveness of these particle aggregation conditions was confirmed by actually conducting a numerical simulation to confirm the coarseness and density of the particle field.
  • a second aspect of the present invention is a method for producing a composition
  • a transfer pipe extending in a horizontal extension direction and transferring at least one type of liquid to be stirred and transferred by causing it to flow at a filling rate within a predetermined range and at a Reynolds number within a predetermined range; a rotation mechanism that rotates the transfer pipe around the extension direction to generate vortex streets in the at least one type of liquid, thereby agitating the at least one type of liquid.
  • the predetermined range of filling rate may be 10% or more and 90% or less.
  • the cross-sectional shape of the transfer pipe perpendicular to the extension direction may be circular.
  • the transfer piping may be a circular pipe with a constant diameter.
  • the transport piping may have a length that is 0.6 times or more the diameter of a circle in a cross section perpendicular to the extension direction.
  • the Reynolds number in the predetermined range may be 98 or more.
  • the at least one type of liquid to be stirred and transported contains particles, the Stokes number in the stirring is 2.7 ⁇ 10-5 or more, and the ratio of the terminal velocity of free fall of the particles to the inner wall surface velocity in the rotation direction of the transport pipe may be -0.01 or more and 0.52 or less.
  • the stirring and transfer method and the stirring and transfer device can achieve stirring and transfer with good cleanability and controllability.
  • FIG. 1 is a schematic configuration diagram of a mixing and transferring device according to an embodiment of the present invention; Photograph of experimental results showing vortex streets in a quiescent liquid.
  • Vector diagram of the flow field resulting from a numerical simulation showing vortex streets in a quiescent liquid Vector diagram of the flow field resulting from a numerical simulation showing vortex streets in a flowing liquid at time 0 seconds.
  • Vector diagram of the flow field resulting from a numerical simulation showing vortex streets at a filling rate of 90% is a first graph showing the results of a numerical simulation showing the relationship between the strength of the circulating flow and the ratio K1 (average flow velocity/inner wall surface velocity). 13 is a second graph showing the results of a numerical simulation showing the relationship between the strength of the circulating flow and the ratio K1 (average flow velocity/inner wall surface velocity). Schematic showing the particle field when the particles are in their initial configuration in a numerical simulation of the Stokes number.
  • FIG. 13 is a diagram showing the particle field when the particles are initially positioned in a numerical simulation of the ratio of the terminal velocity of the free fall of the particles to the inner wall velocity in the rotational direction of the transport pipe.
  • FIG. 13 is a diagram showing a particle field when the ratio of the terminal velocity of the free fall of the particle to the inner wall surface velocity in the rotation direction of the transport pipe is 0.068.
  • FIG. 13 is a diagram showing a particle field when the ratio of the terminal velocity of the free fall of the particle to the inner wall surface velocity in the rotation direction of the transport pipe is 0.27.
  • 13 is a diagram showing a particle field when the ratio of the terminal velocity of the free fall of the particle to the inner wall surface velocity in the rotation direction of the transport pipe is 0.55.
  • 1 is a graph showing the relationship between N ⁇ /N p (the proportion of particles on the wall surface of the transport piping or near the liquid surface) and the ratio K2 (terminal velocity of free fall of particles/inner wall surface velocity in the rotation direction of the transport piping).
  • the stirring and transferring device 1 of this embodiment shown in Figure 1 transfers liquid while stirring it.
  • the X direction indicates the extension direction of the transfer pipe 10 in the horizontal plane (which coincides with the extension direction of the rotation axis RA in this embodiment)
  • the Y direction indicates the direction perpendicular to the X direction in the horizontal plane
  • the Z direction indicates the vertical direction (up and down direction).
  • the object of the stirring and transport can be at least one type of any liquid.
  • the at least one type of any liquid includes not only a single liquid, but also a multiphase flow of a gas or a solid and a liquid.
  • it can be water alone, water and oil in an emulsion (a multiphase flow of liquids and liquids), a monomer or polymer and water in a polymerization reaction process, slurry stirring in a catalytic reaction process (a multiphase flow of solids and liquids), a single-phase or multiphase non-Newtonian fluid (pseudoplastic fluid or plastic fluid), aeration stirring of oxygen in a bioreactor (a multiphase flow of gas and liquids), or a multiphase flow of a solid (mud, etc.) and a liquid in an anaerobic layer in a bioreactor.
  • the solid can also be a particle.
  • the particles can be agglomerated by stirring them in a liquid.
  • the mixing and transferring device 1 has a transfer pipe 10 that transfers the liquid to be mixed and transferred, and a rotation mechanism 20 that mixes the liquid by rotating the transfer pipe 10.
  • the mixing and transferring device 1 also has a flow device 30 for causing the liquid to flow, and a control device 40 for controlling each part.
  • the transfer pipe 10 is a circular pipe of uniform thickness that extends in a horizontal extension direction.
  • the transfer pipe 10 has a smooth inner surface and does not have additional components inside, such as stirring parts with complex shapes. Therefore, the transfer pipe 10 has excellent cleanability.
  • the length of the transport pipe 10 is 0.6 times or more the diameter of the circle of the cross section perpendicular to the extension direction. The appropriateness of such a numerical range will be described in detail later.
  • the material of the transport pipe 10 can be set arbitrarily.
  • the transfer pipe 10 is raised from the floor surface G by a plurality of support members 11 erected on the floor surface G.
  • Each of the plurality of support members 11 has a through hole portion 11a and a bearing 12 attached to the through hole portion 11a.
  • the transfer pipe 10 passes through the through hole portion 11a and is held by the support members 11 via the bearings 12 so as to be rotatable around the rotation axis RA.
  • connection parts 13 are attached to both ends of the transfer pipe 10 in the extension direction.
  • the connection parts 13 are for connection to general pipes (not shown). In this way, the transfer pipe 10 can be connected to existing general pipes. Therefore, the mixing and transfer device 1 has high versatility.
  • the rotation mechanism 20 is mechanically connected to the transfer pipe 10 and rotates the transfer pipe 10 around the rotation axis RA.
  • the rotation mechanism 20 has a motor 21 that serves as a drive source, and a belt 22 and pulleys 23 and 24 that transmit the force from the motor 21.
  • the pulley 23 is attached to the motor 21, the pulley 24 is attached to the transfer pipe 10, and the belt 22 is stretched across the pulleys 23 and 24.
  • the rotational force of the motor 21 is transmitted to the transport pipe 10 via the belt 22 and pulleys 23 and 24, causing the transport pipe 10 to rotate around the rotation axis RA.
  • the rotation axis RA and the central axis of the transport pipe 10 coincide with each other.
  • the flow device 30 is a device for adjusting the flow rate or flow rate (transport speed) of a liquid.
  • the flow device 30 is, for example, a known pump.
  • the form of the flow device 30 is not particularly limited, and the flow device 30 can take any form.
  • the control device 40 performs calculations and controls the entire device.
  • the control device 40 is composed of hardware such as a CPU (Central Processing Unit), RAM (Random Access Memory), and ROM (Read Only Memory), as well as software implemented on these.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • control device 40 controls the rotation mechanism 20 to adjust the rotation speed of the transfer pipe 10 around the rotation axis RA.
  • the control device 40 also controls the flow device 30 to adjust the average flow velocity of the liquid in the extension direction of the transfer pipe 10.
  • the liquid to be stirred and transported flows in the transport piping 10 with a predetermined range of Reynolds number Re and a predetermined range of filling rate F.
  • the predetermined range of the filling rate F is 10% or more and 90% or less (10 ⁇ F ⁇ 90).
  • the predetermined range of the Reynolds number Re is 98 or more (Re ⁇ 98).
  • Such a numerical range is achieved by the control of the control device 40. The appropriateness of such a numerical range will be described in detail later.
  • the stirring and transferring device 1 is prepared, and the liquid to be stirred and transferred is flowed into the transfer pipe 10.
  • the filling rate of the liquid in the transfer pipe 10 is, for example, 10% or more and 90% or less. Therefore, a layer of liquid and air exists in the transfer pipe 10.
  • the transfer pipe 10 After the liquid is flowed through the transfer pipe 10, the transfer pipe 10 is rotated around the rotation axis RA by the rotation mechanism 20. At this time, the Reynolds number Re is, for example, 98 or more (Re ⁇ 98).
  • the rotation speed or flow rate may be constant or may vary slightly. In this embodiment, the transfer pipe 10 is rotated at a constant speed and the liquid is caused to flow at a constant flow rate.
  • Figure 2 is a photograph of the experimental results showing vortex streets in stationary liquid. Figure 2 shows the results of observing the agitation of the liquid from the side (Y direction) of the transfer pipe 10.
  • a circular pipe with a diameter of 100 mm and a length of 800 mm was prepared as the transfer pipe 10.
  • the transfer pipe 10 was made of transparent acrylic so that the inside could be easily seen.
  • the transfer pipe 10 was filled with water at a filling rate of 60% (the remaining 40% was air), and mica particles were further added as a visualization agent.
  • the rotation speed of the transfer pipe 10 was set to 3 rpm. Note that, unlike this embodiment, in the experiment, the flow rate of the water in the extension direction (X direction) of the transfer pipe 10 was set to zero, i.e., the water was stationary.
  • a vortex street with an axis of rotation perpendicular to the extension direction of the transfer piping 10 was generated in the water inside the transfer piping 10.
  • the reference symbol A1 is used to indicate the rotation of each vortex in the vortex street. Adjacent vortices in the vortex street rotate in opposite directions to each other, and mixing was achieved by the vortex street. In other words, by experimentally confirming the generation of a vortex street, it was confirmed that the device and method function as a mixing device.
  • Figure 3 is a vector diagram of the flow field resulting from a numerical simulation showing vortex streets in a stationary liquid. Specifically, Figure 3 shows the results of a numerical simulation performed under the same conditions as Figure 2.
  • a vortex street with a rotation axis perpendicular to the extension direction of the transfer piping 10 was generated in the liquid inside the transfer piping 10.
  • the reference symbol A2 is used to indicate the rotation of each vortex in the vortex street.
  • the vortex street agreed well with the experimental results shown in Figure 2, and by confirming the generation of the vortex street through numerical simulation, it was confirmed that the device and method function as a stirring device.
  • Figures 4 to 6 correspond to this embodiment and are vector diagrams of the flow field resulting from a numerical simulation showing vortex streets in a flowing liquid at times 0, 4, and 8 seconds, respectively.
  • the stirring and transfer can be suitably controlled, and appropriate stirring and transfer can be achieved depending on the process being carried out.
  • the transfer pipe 10 is simply a circular pipe, making it easy to manufacture and install.
  • Figure 7 shows the results of a numerical simulation when the filling rate is 10%
  • Figure 8 shows the results of a numerical simulation when the filling rate is 90%.
  • the generation of vortex rows was confirmed even when the filling rate was 10% (minimum value) and 90% (maximum value).
  • the symbols A5 and A6 are attached to indicate the rotation of each vortex in the vortex row. Therefore, from these results, it was confirmed that the stirring and transporting device 1 and the stirring and transporting method of this embodiment are effective when the filling rate is in the range of 10% to 90%. Therefore, by specifying the filling rate in this manner, it is possible to realize stable generation of vortex rows and stable stirring.
  • Figure 9 shows the results of a numerical simulation when the filling rate is 60% and the Reynolds number Re is 100.
  • the Reynolds number Re was adjusted by changing the viscosity ⁇ of the liquid.
  • the reference symbol A4 is used to indicate the rotation of each vortex in the vortex street.
  • Table 1 shows the results of a summary of the minimum Reynolds number Re at which the occurrence of a vortex street could be confirmed for each filling rate.
  • the stirring and transporting device 1 and stirring and transporting method of this embodiment may be effective when the Reynolds number Re is 98 or more (when the filling rate is 60%). Specifically, it was confirmed that by specifying the Reynolds number Re in this way, it may be possible to generate vortex streets, and stable stirring may be achieved. Therefore, the Reynolds number Re may be set to 98 or more. Furthermore, the Reynolds number Re may be set to 326 or more so that vortex streets are generated stably at a total filling rate of 10% to 90%. Furthermore, the Reynolds number Re may be appropriately set to a value equal to or greater than the minimum value shown in Table 1 depending on the filling rate to be set.
  • Figure 10 shows the results of a numerical simulation when the length of the transfer piping 10 is 0.6 times its diameter. As a result, the occurrence of vortex streets was confirmed even when the length of the transfer piping 10 was 0.6 times its diameter (i.e., the aspect ratio was 0.6).
  • the reference symbol A7 is used to indicate the rotation of each vortex in the vortex street.
  • Such simulations were performed with various changes to the Reynolds number Re and filling rate to confirm the occurrence of vortex streets.
  • Table 2 below shows the results of a summary of the minimum aspect ratios at which the occurrence of vortex streets could be confirmed, for each filling rate and the minimum Reynolds number for that filling rate (see Table 1 above).
  • the stirring and transporting device 1 and the stirring and transporting method of this embodiment may be effective (when the filling rate is 10%) when the length of the transport pipe 10 is 0.6 times or more the diameter (aspect ratio is 0.6 or more). Therefore, by specifically specifying the ratio of the length and diameter (aspect ratio) of the transport pipe 10 in this way, it may be possible to realize stable generation of vortex streets, and stable stirring may be realized. Therefore, the transport pipe 10 may have a length of 0.6 times or more the diameter of the circle of the cross section perpendicular to the stretching direction (i.e., an aspect ratio of 0.6 or more).
  • the transport pipe 10 may have a length of 1.8 times or more the diameter of the circle of the cross section perpendicular to the stretching direction (i.e., an aspect ratio of 1.8 or more).
  • an aspect ratio equal to or greater than the minimum value shown in Table 2 may be appropriately set according to the filling rate to be set.
  • Figure 11 is a graph of the results of a numerical simulation showing the relationship between the strength of the circulating flow (vortex flow) and the ratio K1 (average flow velocity/inner wall surface velocity). Note that in the numerical simulation of Figure 11, the Reynolds number Re for the viscosity of the liquid was set to 200, the filling rate was set to 40%, and the average flow velocity was changed in various ways.
  • Fig. 12 is a graph showing the relationship between the strength of the circulating flow (vortex flow) and the ratio K1, which is a result of a numerical simulation.
  • the average flow velocity was set so that the mainstream Reynolds number Re m was 150, the filling rate was set to 40%, and the Reynolds number Re was changed in various ways.
  • particles contained in a liquid can also be aggregated under a predetermined condition.
  • the predetermined condition may be as follows.
  • the Stokes number St in stirring is 2.7 ⁇ 10 ⁇ 5 or more (St ⁇ 2.7 ⁇ 10 ⁇ 5 ) at the Reynolds number Re at which a vortex street occurs
  • the ratio K2 of the terminal velocity of the free fall of the particles to the inner wall surface velocity in the rotation direction of the transport pipe 10 is ⁇ 0.01 or more and 0.52 or less ( ⁇ 0.01 ⁇ K2 ⁇ 0.52).
  • the terminal velocity of the free fall of the particles here also includes the case where the particles float (the case where the terminal velocity is negative). Specifically, the ratio K2 ⁇ 0 indicates that the particles float.
  • the Stokes number St is expressed by the following formula (1):
  • d represents the diameter of the particle
  • represents the viscosity of the liquid
  • represents the density of the liquid
  • ⁇ p represents the density of the particle
  • represents the rotation speed of the transfer pipe 10.
  • the ratio K2 is expressed by the following formula (2).
  • g represents the gravitational acceleration
  • R represents the radius of the transfer pipe 10
  • the other parameters are the same as those shown in formula (1).
  • the density ⁇ p of the particles was set to 1200 [kg/m 3 ] (i.e., the density ratio of the particles to the liquid was 1.2/1.0), and the number of particles was set to about 100,000.
  • the particle diameter d was changed in various ways, the time evolution of the particle field was observed, and the change in the spatial distribution of particles with respect to the particle diameter d (i.e., the Stokes number St) was confirmed.
  • Figure 13 shows the initial particle placement in a numerical simulation for Stokes number St. As shown, the particles are evenly distributed in the liquid.
  • the Stokes number St in stirring may be set to 2.7 x 10-5 or more (St ⁇ 2.7 x 10-5 ).
  • the results of examining the ratio K2 (terminal velocity of free fall of particles/inner wall surface velocity in the rotation direction of the transfer pipe 10) will be described.
  • the radius R of the transfer pipe 10 was set to 1 [cm]
  • the viscosity ⁇ of the liquid was set to 0.001 [Pa ⁇ s]
  • the density ⁇ of the liquid was set to 1000 [kg/m 3 ]
  • the filling rate was set to 40%
  • the rotation speed ⁇ of the transfer pipe 10 around the horizontal axis was set to 4 [rad/s] (94 rpm). This resulted in the Reynolds number Re being set to 400.
  • the particle diameter d was set to 100 [ ⁇ m], and the number of particles was set to about 100,000. Under these conditions, the particle density ⁇ p was changed in various ways, the time development of the particle field was observed, and the change in the spatial distribution of particles relative to the particle density ⁇ p (i.e., the ratio K2) was confirmed.
  • Figure 19 shows the initial particle placement in the numerical simulation for ratio K2. As shown, the particles are evenly distributed in the liquid.
  • Fig. 25 is a graph showing the results of confirming the ratio of particles on the inner wall surface of the transfer piping 10 or near the liquid surface.
  • Fig. 24 is a graph confirming the dependency of N ⁇ /Np on the ratio K2, where N ⁇ is the number of particles within 100 [ ⁇ m] from the inner wall surface of the transfer piping 10 or the liquid surface , and Np is the total number of particles.
  • the ratio K2 is -0.01 or more and 0.52 or less (-0.01 ⁇ K2 ⁇ 0.52), and N ⁇ /N p is equal to or less than the threshold value of 0.4. In other words, it was confirmed that in this range, 60% or more of the particles are not located near the inner wall surface or the liquid surface, but are densely located in the central region of the liquid. Therefore, the ratio K2 may be set to -0.01 or more and 0.52 or less (-0.01 ⁇ K2 ⁇ 0.52).
  • the shape of the transfer pipe 10 is not limited to a circular pipe, but may be a pipe of any shape with a smooth inner surface. Therefore, the shape of the cross section perpendicular to the extension direction of the transfer pipe 10 may be circular as in the above embodiment, or may be a shape other than circular.
  • the shape of the cross section perpendicular to the extension direction of the transfer pipe 10 may be elliptical or donut-shaped.
  • the thickness (diameter) of the transfer pipe 10 does not have to be uniform, that is, it may change depending on the position in the extension direction.
  • the transfer pipe 10 may have a tapered shape that becomes thinner from one end to the other end.
  • the transfer pipe 10 need not only be arranged horizontally, but also need only be arranged approximately horizontally, and for example, a tilt of a few degrees from the horizontal direction is acceptable. Furthermore, the rotation axis RA and the central axis of the transfer pipe 10 do not need to be perfectly aligned, and may be slightly misaligned (eccentric).
  • the configuration of the rotation mechanism 20 can be variously considered other than the above embodiment, and any configuration that can rotate the transfer pipe 10 around the rotation axis RA can be adopted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

攪拌移送方法は、水平の延伸方向に延びる移送配管10を準備し、前記移送配管10内に攪拌移送対象の少なくとも1種類の液体を所定の範囲のレイノルズ数かつ所定の範囲の充填率で流して移送し、移送配管10を延伸方向のまわりに回転させ、少なくとも1種類の液体内に渦列を発生させることにより少なくとも1種類の液体を攪拌することを含む。

Description

攪拌移送方法および攪拌移送装置
 本発明は、攪拌移送方法および攪拌移送装置に関する。
 液体を攪拌しながら移送する方法の一つとして、スタティックミキサーが知られている。スタティックミキサーでは、移送配管の内部に複雑な形状の攪拌パーツを設置し、液体の複雑な流れを誘起することで攪拌を促す。例えば、そのようなスタティックミキサーが特許文献1,2に開示されている。
特開2011-121038号公報 特開2022-62345号公報
 スタティックミキサーは、移送配管内に複雑な形状を有する攪拌パーツを要するために、洗浄性に欠ける。また、操作可能なパラメータは流量のみであるため、液体の攪拌移送に関する制御性にも欠ける。
 本発明は、攪拌移送方法および攪拌移送装置において、洗浄性および制御性の良好な攪拌移送を実現することを課題とする。
 本発明の第1の態様は、
 水平の延伸方向に延びる移送配管を準備し、
 前記移送配管内に攪拌移送対象の少なくとも1種類の液体を所定の範囲のレイノルズ数かつ所定の範囲の充填率で流して移送し、
 前記移送配管を前記延伸方向まわりに回転させ、前記少なくとも1種類の液体内に渦列を発生させることにより前記少なくとも1種類の液体を攪拌する
 ことを含む、攪拌移送方法を提供する。
 この方法によれば、移送配管内に複雑な形状を有する攪拌パーツを設置する必要もなく、移送配管の回転によって少なくとも1種類の液体を攪拌できる。従って、良好な洗浄性を確保できる。攪拌に際しては、流れ方向に垂直な回転軸を有する渦列が生成される。渦列における隣接する渦同士は互いに逆旋回しており、当該渦列によって攪拌が実現される。また、少なくとも1種類の液体の流量(移送速度)だけでなく、移送配管の回転速度も調整可能なパラメータとなる。従って、移送速度と回転速度を調整することで、攪拌移送を好適に制御でき、実施するプロセスに応じて適切な攪拌移送を実現できる。ここで、水平とは、厳密な水平だけでなく概略水平を意味し、例えば水平方向から少なくとも数度程度の傾きは許容される。また、少なくとも1種類の液体は、気体または固体と、液体との混相流を含む。
 前記攪拌移送方法において、前記所定の範囲の充填率は、10%以上かつ90%以下であってもよい。
 この方法によれば、充填率を規定することにより、安定した渦列の発生を実現でき、安定した攪拌を実現できる。当該充填率の範囲の有効性は、数値シミュレーションにより確認したものである。
 前記攪拌移送方法において、前記移送配管の前記延伸方向に垂直な断面の形状は、円形であってもよい。
 この方法によれば、移送配管の滑らかな内面を形成でき、安定した攪拌を実現できる。ここで、移送配管の径は、一定でもよいし、変化してもよい。
 前記攪拌移送方法において、前記移送配管は、径が一定の円管であってもよい。
 この方法によれば、単純な円管状の移送配管を使用できるため、製造および設置が容易となる。
 前記攪拌移送方法において、前記移送配管は、前記延伸方向に垂直な断面の円形の直径の0.6倍以上の長さを有していてもよい。
 この方法によれば、移送配管の長さと直径の比(アスペクト比)を具体的に規定することにより、安定した渦列の発生を実現できる場合があり、安定した攪拌を実現できる場合がある。なお、当該アスペクト比の範囲の有効性は充填率やレイノルズ数に依存するが、実際にシミュレーションを行い、上記アスペクト比にて渦列の発生を確認した。
 前記攪拌移送方法において、前記所定の範囲のレイノルズ数は、98以上であってもよい。
 この方法によれば、レイノルズ数を規定することにより、渦列の発生を実現できる場合があり、安定した攪拌を実現できる場合がある。なお、当該レイノルズ数の範囲の有効性は充填率に依存するが、実際にシミュレーションを行い、上記レイノルズ数にて渦列の発生を確認した。
 前記攪拌移送方法において、前記攪拌移送対象の少なくとも1種類の液体は、粒子を含み、前記攪拌におけるストークス数は2.7×10―5以上であり、かつ、前記粒子の自由落下の終端速度と前記移送配管の回転方向の内壁面速度の比は-0.01以上かつ0.52以下であってもよい。
 この方法によれば、攪拌に伴って粒子を凝集させることができる。当該粒子凝集条件の有効性については、実際に数値シミュレーションを行い、粒子場の粗密を確認した。
 本発明の第2の態様は、
 水平の延伸方向に延び、攪拌移送対象の少なくとも1種類の液体を所定の範囲の充填率かつ所定の範囲のレイノルズ数で流動させて移送する移送配管と、
 前記移送配管を前記延伸方向まわりに回転させ、前記少なくとも1種類の液体内に渦列を発生させることにより前記少なくとも1種類の液体を攪拌する回転機構と
 を備える、攪拌移送装置を提供する。
 前記攪拌移送装置において、前記所定の範囲の充填率は、10%以上かつ90%以下であってもよい。
 前記攪拌移送装置において、前記移送配管の前記延伸方向に垂直な断面の形状は、円形であってもよい。
 前記攪拌移送装置において、前記移送配管は、径が一定の円管であってもよい。
 前記攪拌移送装置において、前記移送配管は、延伸方向に垂直な断面の円形の直径の0.6倍以上の長さを有していてもよい。
 前記攪拌移送装置において、前記所定の範囲のレイノルズ数は、98以上であってもよい。
 前記攪拌移送装置において、前記攪拌移送対象の少なくとも1種類の液体は、粒子を含み、前記攪拌におけるストークス数は2.7×10―5以上であり、かつ、前記粒子の自由落下の終端速度と前記移送配管の回転方向の内壁面速度の比は-0.01以上かつ0.52以下であってもよい。
 本発明によれば、本発明は、攪拌移送方法および攪拌移送装置において、洗浄性および制御性の良好な攪拌移送を実現できる。
本発明の一実施形態に係る攪拌移送装置の概略構成図。 静止した液体での渦列を示す実験結果の写真。 静止した液体での渦列を示す数値シミュレーション結果の流れ場のベクトル図。 流動する液体での時刻0秒での渦列を示す数値シミュレーション結果の流れ場のベクトル図。 流動する液体での時刻4秒での渦列を示す数値シミュレーション結果の流れ場のベクトル図。 流動する液体での時刻8秒での渦列を示す数値シミュレーション結果の流れ場のベクトル図。 充填率10%のときの渦列を示す数値シミュレーション結果の流れ場のベクトル図。 充填率90%のときの渦列を示す数値シミュレーション結果の流れ場のベクトル図。 レイノルズ数100のときの渦列を示す数値シミュレーション結果の流れ場のベクトル図。 移送配管の長さが直径の0.6倍のときの渦列を示す数値シミュレーション結果の流れ場のベクトル図。 循環流の強さと比K1(平均流速/内壁面速度)との関係を示す数値シミュレーション結果の第1グラフ。 循環流の強さと比K1(平均流速/内壁面速度)との関係を示す数値シミュレーション結果の第2グラフ。 ストークス数に関する数値シミュレーションにおける粒子が初期配置のときの粒子場を示す図。 ストークス数が9.5×10―6のときの粒子場を示す図。 ストークス数が2.7×10―5のときの粒子場を示す図。 ストークス数が1.1×10―5のときの粒子場を示す図。 ストークス数が4.2×10―4のときの粒子場を示す図。 ストークス数が1.7×10―3のときの粒子場を示す図。 粒子の自由落下の終端速度と移送配管の回転方向の内壁面速度の比に関する数値シミュレーションにおける粒子が初期配置のときの粒子場を示す図。 粒子の自由落下の終端速度と移送配管の回転方向の内壁面速度の比が-0.02のときの粒子場を示す図。 粒子の自由落下の終端速度と移送配管の回転方向の内壁面速度の比が-0.0068のときの粒子場を示す図。 粒子の自由落下の終端速度と移送配管の回転方向の内壁面速度の比が0.068のときの粒子場を示す図。 粒子の自由落下の終端速度と移送配管の回転方向の内壁面速度の比が0.27のときの粒子場を示す図。 粒子の自由落下の終端速度と移送配管の回転方向の内壁面速度の比が0.55のときの粒子場を示す図。 ε/N(移送配管の壁面または液面付近の粒子の割合)と比K2(粒子の自由落下の終端速度/移送配管の回転方向の内壁面速度)との関係を示すグラフ。
 以下、添付図面を参照して本発明の実施形態を説明する。
 図1に示す本実施形態の攪拌移送装置1は、液体を攪拌しつつ移送するものである。X方向は水平面内において移送配管10の延伸方向(本実施形態では回転軸RAの延びる方向に一致)を示し、Y方向は水平面内においてX方向に直交する方向を示し、Z方向は鉛直方向(上下方向)を示している。
 攪拌移送装置1の構成について説明する。
 攪拌移送対象としては、少なくとも1種類の任意の液体を対象とすることができる。当該少なくとも1種類の任意の液体は、液体単体だけでなく、気体または固体と、液体との混相流を含む。例えば、水単体、乳化における水と油(液体と液体の混相流)、重合反応プロセスにおけるモノマーやポリマーと水、触媒反応プロセスにおけるスラリー攪拌(固体と液体の混相流)、単相もしくは複相の非ニュートン性流体(擬塑性流体ないし塑性流体)、バイオリアクターなどの酸素の通気攪拌(気体と液体の混相流)、または、バイオリアクターなどの嫌気層における固体(泥など)と液体の混相流などを対象とし得る。また、当該固体は粒子であってもよい。液体中で粒子を攪拌することにより、粒子を凝集させることもできる。
 攪拌移送装置1は、攪拌移送対象の液体を移送する移送配管10と、移送配管10を回転させることによって液体を攪拌する回転機構20とを有している。また、本実施形態では、攪拌移送装置1は、液体を流動させるための流動装置30と、各部を制御するための制御装置40とを有している。
 本実施形態では、移送配管10は、水平の延伸方向に延び、太さの均一な円管である。移送配管10は、滑らかな内面を有し、内部に複雑な形状の攪拌パーツなどの追加の構成を有していない。従って、移送配管10は、洗浄性に優れている。
 好ましくは、移送配管10は、延伸方向に垂直な断面の円形の直径の0.6倍以上の長さを有している。そのような数値範囲の妥当性については、詳細を後述する。また、移送配管10の材質は、任意に設定され得る。
 本実施形態では、移送配管10は、床面Gに立設された複数の支持部材11によって床面Gから持ち上げられている。複数の支持部材11のそれぞれは、貫通孔部11aと、貫通孔部11aに取り付けられたベアリング12とを有している。移送配管10は、貫通孔部11aを貫通するとともにベアリング12を介して回転軸RAまわりに回転可能に支持部材11によって保持されている。
 本実施形態では、移送配管10の延伸方向の両端部には、接続部品13が取り付けられている。接続部品13は、図示しない一般の配管との接続用である。このように、移送配管10は、既設の一般の配管に対して接続できる。よって、攪拌移送装置1は、高い汎用性を有している。
 回転機構20は、移送配管10と機械的に接続され、移送配管10を回転軸RAまわりに回転させる。本実施形態では、回転機構20は、駆動源となるモータ21と、モータ21からの力を伝達するベルト22およびプーリ23,24とを有している。プーリ23はモータ21に取り付けられ、プーリ24は移送配管10に取り付けられ、ベルト22はプーリ23,24に架け渡されている。
 モータ21が駆動されると、モータ21の回転力がベルト22およびプーリ23,24を介して移送配管10に伝達され、移送配管10が回転軸RAまわりに回転される。本実施形態では、回転軸RAと移送配管10の中心軸は一致する。
 流動装置30は、液体の流速ないし流量(移送速度)を調整するための装置である。流動装置30は、例えば公知のポンプである。ただし、流動装置30の態様は特に限定されず、流動装置30は任意の態様をとり得る。
 制御装置40は、演算処理および装置全体の制御を行う。本実施形態では、制御装置40は、CPU(Central Processing Unit)、RAM(Random Access Memory)、およびROM(Read Only Memory)等のハードウェアと、それらに実装されたソフトウェアとにより構成されている。
 本実施形態では、制御装置40は、回転機構20を制御し、回転軸RAまわりの移送配管10の回転速度を調整する。また、制御装置40は、流動装置30を制御し、移送配管10の延伸方向における液体の平均流速を調整する。
 攪拌移送対象の液体は、移送配管10内で所定の範囲のレイノルズ数Reかつ所定の範囲の充填率Fで流される。ここで、レイノルズ数Reは、液体の密度ρ、移送配管10の半径R、移送配管10の回転速度ω、および液体の粘度μによって表される値である(Re=ρRω/μ)。充填率Fは、移送配管10の容積Cに対する移送配管10内の液体の体積Vの割合(%)で表される値である(F=100×V/C)。
 好ましくは、所定の範囲の充填率Fは、10%以上かつ90%以下である(10≦F≦90)。また、好ましくは、所定の範囲のレイノルズ数Reは、98以上である(Re≧98)。そのような数値範囲は、制御装置40の制御によって達成される。そのような数値範囲の妥当性については、詳細を後述する。
 次に、本実施形態の攪拌移送方法について説明する。
 本実施形態の攪拌移送方法では、上記攪拌移送装置1を準備し、攪拌移送対象の液体を移送配管10内に流す。このとき、移送配管10内の液体の充填率は、例えば10%以上かつ90%以下とする。従って、移送配管10内では、液体と空気の層が存在することとなる。
 移送配管10内に液体を流した後、回転機構20によって移送配管10を回転軸RAまわりに回転させる。このとき、レイノルズ数Reは、例えば98以上とする(Re≧98)。回転速度または流量は、一定であってもよいし、わずかに変化してもよい。本実施形態では、移送配管10を一定速度で回転させるとともに、液体を一定流量で流動させる。
 回転機構20によって移送配管10を回転軸RAまわりに回転させると、液体が移送配管10内で攪拌されながら移送される。この攪拌は、液体内に渦列が生じることによる。そのような渦列の発生原理は科学的にも非自明であるが、渦列が発生することにより、液体を効率的に攪拌できる。
 渦列の発生を確認した実験について説明する。
 図2は、静止した液体での渦列を示す実験結果の写真である。図2は、移送配管10の側方(Y方向)から液体の攪拌の様子を観測した結果である。
 実験では、移送配管10として、直径100mmおよび長さ800mmの円管を用意した。移送配管10は、内部が見やすいように透明のアクリル製とした。移送配管10には、水を充填率60%(残りの40%は空気)で封入し、さらに可視化剤として雲母粒子を入れた。移送配管10の回転速度は3rpmに設定した。なお、実験では、本実施形態と異なり移送配管10の延伸方向(X方向)の水の流速はゼロとし、即ち静止した状態の水を対象とした。
 図2に示すように、移送配管10内の水には、移送配管10の延伸方向に垂直な回転軸を有する渦列が生成された。図示を明瞭にすべく、渦列の各渦の回転を示す符号A1を付している。渦列における隣接する渦同士は互いに逆旋回しており、当該渦列によって攪拌が実現された。即ち、渦列の生成を実験的に確認することで、攪拌装置および攪拌方法として機能することが確認できた。
 図3は、静止した液体での渦列を示す数値シミュレーション結果の流れ場のベクトル図である。具体的には、図3は、図2と同様の条件で数値シミュレーションを行った結果である。
 数値シミュレーションでは、実験で設定したパラメータ以外に、液体としての水の各種物性値(例えば密度1000[kg/m]および粘度0.001[Pa・s])、重力加速度9.8[m/s]、表面張力0[N/m]、並びに、空気層の粘度および密度をいずれも水の0.01倍に設定した。
 図3に示すように、移送配管10内の液体には、移送配管10の延伸方向に垂直な回転軸を有する渦列が生成された。図示を明瞭にすべく、渦列の各渦の回転を示す符号A2を付している。当該渦列は、図2に示す実験結果とよく一致し、渦列の生成を数値シミュレーション的にも確認することで、攪拌装置および攪拌方法として機能することが確認できた。
 上記図2,3の結果は、本実施形態と異なり、静止した液体(水)を攪拌対象としたものであるが、本実施形態では攪拌だけでなく移送も同時に行う。そこで、以下では、図4~6を参照して、移送配管10の延伸方向に液体を流した場合について図2,3と同様の数値シミュレーションを行った結果を説明する。
 図4~6は、本実施形態に対応し、流動する液体でのそれぞれ時刻0,4,8秒での渦列を示す数値シミュレーション結果の流れ場のベクトル図である。
 数値シミュレーションでは、図3の条件から一部を変更し、移送配管10の半径Rを50mm、回転速度ωを18rpm、充填率を40%、および液体の流速(移送速度)を0.012[m/s]に設定した。また、液体の粘度μについては、レイノルズ数Reが200となるように設定した。
 図4~6を参照して、液体が流れている場合でも、移送配管10の延伸方向に垂直な回転軸を有する渦列が生成された。図示を明瞭にすべく、渦列の各渦の回転を示す符号A3を付している。また、渦列は、液体の流れととともに移動していることが確認された。従って、液体が流れている場合でも、渦列の生成を数値シミュレーション的に確認することで、本実施形態の攪拌移送装置1および攪拌移送方法が有効であることを確認できた。
 本実施形態によれば、移送配管10内に複雑な形状を有する攪拌パーツを設置する必要もなく、移送配管10の回転によって少なくとも1種類の液体を攪拌できる。従って、良好な洗浄性を確保できる。また、少なくとも1種類の液体の流量(移送速度)だけでなく、移送配管10の回転速度も調整可能なパラメータとなっている。従って、移送速度と回転速度を調整することで、攪拌移送を好適に制御でき、実施するプロセスに応じて適切な攪拌移送を実現できる。
 また、本実施形態では、移送配管10が単なる円管であるので、製造および設置が容易である。
 以下、各種パラメータの好適な範囲について説明する。
 図7~8を参照して、液体の充填率について検討した結果を説明する。具体的には、液体の充填率を小さくまたは大きくしすぎると、渦列の発生が抑制される可能性があるため、液体の充填率の最小値および最大値について検討した。なお、図7の数値シミュレーションでは、液体の粘度についてレイノルズ数Reが500となるように設定した。図8の数値シミュレーションでは、液体の粘度についてレイノルズ数Reが250となるように設定した。
 図7は充填率が10%のときの数値シミュレーション結果を示し、図8は充填率が90%のときの数値シミュレーション結果を示している。結果として、充填率が10%(最小値)および90%(最大値)のときにおいても渦列の発生を確認できた。図示を明瞭にすべく、渦列の各渦の回転を示す符号A5,A6をそれぞれ付している。従って、当該結果から、充填率が10%から90%の範囲において、本実施形態の攪拌移送装置1および攪拌移送方法が有効であることを確認できた。よって、このように充填率を規定することにより、安定した渦列の発生を実現でき、安定した攪拌を実現できる。
 図9を参照して、レイノルズ数Reについて検討した結果を説明する。具体的には、レイノルズ数Reを小さくしすぎると、渦列の発生が抑制される可能性があるため、レイノルズ数Reの最小値について検討した。また、当該レイノルズ数Reの最小値は、液体の充填率によっても変わるため、充填率毎に確認した。
 図9は、充填率が60%でのレイノルズ数Reが100のときの数値シミュレーション結果を示している。レイノルズ数Reは、液体の粘度μを変更することによって調整した。結果として、レイノルズ数Reが100のときにおいても渦列の発生を確認できた。図示を明瞭にすべく、渦列の各渦の回転を示す符号A4を付している。このようなシミュレーションをレイノルズ数Reと充填率を様々に変更して実行し、渦列の発生の有無を確認した。以下の表1に、渦列の発生を確認できた最小のレイノルズ数Reを充填率毎にまとめた結果を示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示す結果から、レイノルズ数Reが98以上において、本実施形態の攪拌移送装置1および攪拌移送方法が有効である場合がある(充填率60%の場合)ことを確認できた。具体的には、このようにレイノルズ数Reを規定することにより、渦列の発生を実現できる場合があり、安定した攪拌を実現できる場合があることを確認できた。よって、レイノルズ数Reを98以上と設定してもよい。また、10%~90%の全充填率にて渦列を安定して発生させるように、レイノルズ数Reを326以上としてもよい。また、設定する充填率に応じて表1に示す最小値以上のレイノルズ数Reを適宜設定してもよい。
 図10を参照して、移送配管10の長さと直径の関係(アスペクト比)について検討した結果を説明する。具体的には、移送配管10の長さを直径に対して小さくしすぎると、渦列の発生が抑制される可能性があるため、移送配管10における直径に対する長さの最小値について検討した。なお、図10の数値シミュレーションでは、液体の粘度μについてレイノルズ数Reが500となるように設定し、充填率については10%となるように設定した。
 図10は、移送配管10の長さが直径の0.6倍のときの数値シミュレーション結果を示している。結果として、移送配管10の長さが直径の0.6倍(即ちアスペクト比が0.6)のときにおいても渦列の発生を確認できた。図示を明瞭にすべく、渦列の各渦の回転を示す符号A7を付している。このようなシミュレーションをレイノルズ数Reと充填率を様々に変更して実行し、渦列の発生の有無を確認した。以下の表2に、渦列の発生を確認できた最小のアスペクト比を、充填率および当該充填率における最小のレイノルズ数(上記表1参照)毎にまとめた結果を示す。
Figure JPOXMLDOC01-appb-T000002
 上記表2に示す結果から、移送配管10の長さが直径の0.6倍以上(アスペクト比が0.6以上)において、本実施形態の攪拌移送装置1および攪拌移送方法が有効である場合がある(充填率10%の場合)ことを確認できた。よって、このように移送配管10の長さと直径の比(アスペクト比)を具体的に規定することにより、安定した渦列の発生を実現できる場合があり、安定した攪拌を実現できる場合がある。よって、移送配管10は、延伸方向に垂直な断面の円形の直径の0.6倍以上の長さ(即ちアスペクト比を0.6以上)としてもよい。また、10%~90%の全充填率にて渦列を安定して発生させるように、移送配管10は、延伸方向に垂直な断面の円形の直径の1.8倍以上の長さ(即ちアスペクト比を1.8以上)としてもよい。また、設定する充填率に応じて表2に示す最小値以上のアスペクト比を適宜設定してもよい。
 図11を参照して、移送配管10の回転方向の内壁面速度に対する移送配管10の延伸方向の液体の平均流速の比K1について検討した結果を説明する。図11は、循環流(渦流)の強さと比K1(平均流速/内壁面速度)との関係を示す数値シミュレーション結果のグラフである。なお、図11の数値シミュレーションでは、液体の粘度についてレイノルズ数Reが200となるように設定し、充填率については40%となるように設定し、平均流速を様々に変更した。
 結果として、比K1が0.25以下または0.6以上である場合には渦列(循環流)の発生を確認できた。特に、比K1が、0.25以下では小さいほど強い循環流を確認でき、0.6以上では大きいほど強い循環流を確認できた。従って、当該結果から、比K1が0.25以下または0.6以上において、本実施形態の攪拌移送装置1および攪拌移送方法が有効である場合があることを確認できた。よって、このように比K1を具体的に規定することにより、安定した渦列の発生を実現できる場合があり、安定した攪拌を実現できる場合がある。
 図12を参照して、移送配管10の回転方向の内壁面速度に対する移送配管10の延伸方向の液体の平均流速の比K1(平均流速/内壁面速度)について検討した別の結果を説明する。
 図12は、循環流(渦流)の強さと比K1との関係を示す数値シミュレーション結果のグラフである。なお、図12の数値シミュレーションでは、主流レイノルズ数Reが150となるように平均流速を設定し、充填率については40%となるように設定し、レイノルズ数Reを様々に変更した。ここで、主流レイノルズ数Reは、液体の密度ρ、移送配管10の半径R、主流方向の平均流速U、および液体の粘度μによって表される値である(Re=ρRU/μ)。
 結果として、比K1が1.5以下である場合には渦列(循環流)の発生を確認できた。特に、比K1が、1.5以下では小さいほど強い循環流を確認できた。従って、当該結果から、比K1が1.5以下において、本実施形態の攪拌移送装置1および攪拌移送方法が有効である場合があることを確認できた。よって、このように比K1を具体的に規定することにより、安定した渦列の発生を実現できる場合があり、安定した攪拌を実現できる場合がある。
 本実施形態の攪拌移送装置1および攪拌移送方法では、所定の条件下で、液体中に含まれる粒子を凝集させることもできる。所定の条件は、以下の通りとしてもよい。攪拌移送対象の少なくとも1種類の液体が粒子を含む場合に、渦列が発生するレイノルズ数Reにおいて、攪拌におけるストークス数Stは2.7×10―5以上であり(St≧2.7×10―5)、かつ、粒子の自由落下の終端速度と移送配管10の回転方向の内壁面速度の比K2は-0.01以上かつ0.52以下である(-0.01≦K2≦0.52)。なお、ここでの粒子の自由落下の終端速度は、粒子が浮上する場合(終端速度が負となる場合)も含む。具体的には、比K2<0の場合は粒子が浮上することを示す。
 ストークス数Stは、以下の式(1)で表される。以下の式(1)において、dは粒子の直径、μは液体の粘度、ρは液体の密度、ρは粒子の密度、ωは移送配管10の回転速度を表す。
Figure JPOXMLDOC01-appb-M000003
 比K2は、以下の式(2)で表される。以下の式(2)において、gは重力加速度、Rは移送配管10の半径を表し、その他のパラメータは式(1)で示したものと同じである。
Figure JPOXMLDOC01-appb-M000004
 図13~18を参照して、上記ストークス数Stについて検討した結果を説明する。具体的にはストークス数Stを小さくしすぎると、粒子の凝集が抑制される可能性があるため、ストークス数Stの最小値について数値シミュレーションを用いて検討した。数値シミュレーションでは、移送配管10の半径Rを1[cm]、液体の粘度μを0.001[Pa・s]、液体の密度ρを1000[kg/m]、充填率を40%、移送配管10の水平軸まわりの回転速度ωを4[rad/s](94rpm)に設定した。これにより、レイノルズ数Reを400に設定したこととなる。また、数値シミュレーションでは、粒子の密度ρを1200[kg/m](即ち粒子と液体の密度比が1.2/1.0)、粒子数を約10万個に設定した。この条件で、粒子の直径dを様々に変更し、粒子場の時間発展を観測し、粒子の直径d(即ちストークス数St)に対する粒子の空間分布の変化を確認した。
 図13は、ストークス数Stに関する数値シミュレーションにおける粒子の初期配置を示している。図示の通り、粒子は液体内において均等に配置されている。
 図14は粒子の直径dが15[μm](ストークス数St=9.5×10―6)の場合を示し、図15は粒子の直径dが25[μm](ストークス数St=2.7×10―5)の場合を示し、図16は粒子の直径dが50[μm](ストークス数St=1.1×10―5)の場合を示し、図17は粒子の直径dが100[μm](ストークス数St=4.2×10―4)の場合を示し、図18は粒子の直径dが200[μm](ストークス数St=1.7×10―3)の場合を示している。
 図14~18に示す結果から、ストークス数が2.7×10―5以上(図15~18)において、粒子分布の粗密を顕著に確認でき、即ち密な部分で粒子の衝突が活発化し、凝集が促進され得ることが確認できた。従って、粒子の凝集のためには、攪拌におけるストークス数Stは2.7×10―5以上に設定してもよい(St≧2.7×10―5)。
 図19~24を参照して、上記比K2(粒子の自由落下の終端速度/移送配管10の回転方向の内壁面速度)について検討した結果を説明する。数値シミュレーションでは、移送配管10の半径Rを1[cm]、液体の粘度μを0.001[Pa・s]、液体の密度ρを1000[kg/m]、充填率を40%、移送配管10の水平軸まわりの回転速度ωを4[rad/s](94rpm)に設定した。これにより、レイノルズ数Reを400に設定したこととなる。また、数値シミュレーションでは、粒子の直径dを100[μm]、粒子数を約10万個に設定した。この条件で、粒子の密度ρを様々に変更し、粒子場の時間発展を観測し、粒子の密度ρ(即ち比K2)に対する粒子の空間分布の変化を確認した。
 図19は、比K2に関する数値シミュレーションにおける粒子の初期配置を示している。図示の通り、粒子は液体内において均等に配置されている。
 図20は粒子の密度ρが850[kg/m](K2=-0.02)の場合を示し、図21は粒子の密度ρが950[kg/m](K2=-0.0068)の場合を示し、図22は粒子の密度ρが1500[kg/m](K2=0.068)の場合を示し、図23は粒子の密度ρが3000[kg/m](K2=0.27)の場合を示し、図24は粒子の密度ρが5000[kg/m](K2=0.55)の場合を示している。
 図20~24に示す結果から、いずれにおいても粒子の粗密は見られる。ただし、これらの結果だけでは奥行き方向の粒子の空間分布を確認できないため、移送配管10の回転軸に垂直な断面における粒子の空間分布も以下の通り確認した。
 図25は、移送配管10の内壁面または液面付近の粒子の割合を確認した結果を示すグラフである。具体的には、図24は、移送配管10の内壁面または液面から100[μm]以内にある粒子の数をNεとし、全粒子の数をNとし、Nε/Nの比K2に対する依存性を確認したグラフである。
 図25を参照すると、比K2が-0.01以上かつ0.52以下で(-0.01≦K2≦0.52)、Nε/Nが閾値0.4以下となっている。つまり、この範囲においては、6割以上の粒子が内壁面または液面付近に位置しておらず、液体の中央領域に密集して位置していることが確認できた。従って、比K2は-0.01以上かつ0.52以下に設定してもよい(-0.01≦K2≦0.52)。
 以上より、本発明の具体的な実施形態について説明したが、本発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。
 例えば、移送配管10の形状は、円管に限定されず、滑らかな内面形状を持つ任意の形状の管であり得る。従って、移送配管10の延伸方向に垂直な断面の形状は、上記実施形態のように円形であってもよいし、円形以外の形状であってもよい。例えば、移送配管10の延伸方向に垂直な断面の形状は、楕円形またはドーナツ形であってもよい。また、移送配管10の太さ(径)は一様でなくてもよく、即ち延伸方向の位置によって変化していてもよい。例えば、移送配管10は、一端から他端に向かって細くなるテーパ形状を有していてもよい。
 また、移送配管10は、水平配置だけでなく、概略水平に配置されていればよく、例えば水平方向から数度程度の傾きは許容される。また、回転軸RAと移送配管10の中心軸は、完全に一致していなくてもよく、わずかにずれて(偏心して)いてもよい。
 また、回転機構20の構成についても、上記実施形態以外に様々に考えられ、移送配管10を回転軸RAまわりに回転させることのできる任意の構成を採用し得る。
  1 攪拌移送装置
  10 移送配管
  11 支持部材
  11a 貫通孔部
  12 ベアリング
  13 接続部品
  20 回転機構
  21 モータ
  22 ベルト
  23,24 プーリ
  30 流動装置
  40 制御装置
  G 床面
  RA 回転軸

Claims (14)

  1.  水平の延伸方向に延びる移送配管を準備し、
     前記移送配管内に攪拌移送対象の少なくとも1種類の液体を所定の範囲のレイノルズ数かつ所定の範囲の充填率で流して移送し、
     前記移送配管を前記延伸方向まわりに回転させ、前記少なくとも1種類の液体内に渦列を発生させることにより前記少なくとも1種類の液体を攪拌する
     ことを含む、攪拌移送方法。
  2.  前記所定の範囲の充填率は、10%以上かつ90%以下である、請求項1に記載の攪拌移送方法。
  3.  前記移送配管の前記延伸方向に垂直な断面の形状は、円形である、請求項1または2に記載の攪拌移送方法。
  4.  前記移送配管は、径が一定の円管である、請求項3に記載の攪拌移送方法。
  5.  前記移送配管は、前記延伸方向に垂直な断面の円形の直径の0.6倍以上の長さを有している、請求項4に記載の攪拌移送方法。
  6.  前記所定の範囲のレイノルズ数は、98以上である、請求項4に記載の攪拌移送方法。
  7.  前記攪拌移送対象の少なくとも1種類の液体は、粒子を含み、
     前記攪拌におけるストークス数は2.7×10―5以上であり、かつ、前記粒子の自由落下の終端速度と前記移送配管の回転方向の内壁面速度の比は-0.01以上かつ0.52以下である、請求項4に記載の攪拌移送方法。
  8.  水平の延伸方向に延び、攪拌移送対象の少なくとも1種類の液体を所定の範囲の充填率かつ所定の範囲のレイノルズ数で流動させて移送する移送配管と、
     前記移送配管を前記延伸方向まわりに回転させ、前記少なくとも1種類の液体内に渦列を発生させることにより前記少なくとも1種類の液体を攪拌する回転機構と
     を備える、攪拌移送装置。
  9.  前記所定の範囲の充填率は、10%以上かつ90%以下である、請求項8に記載の攪拌移送装置。
  10.  前記移送配管の前記延伸方向に垂直な断面の形状は、円形である、請求項8または9に記載の攪拌移送装置。
  11.  前記移送配管は、径が一定の円管である、請求項10に記載の攪拌移送装置。
  12.  前記移送配管は、前記延伸方向に垂直な断面の円形の直径の0.6倍以上の長さを有している、請求項11に記載の攪拌移送装置。
  13.  前記所定の範囲のレイノルズ数は、98以上である、請求項11に記載の攪拌移送装置。
  14.  前記攪拌移送対象の少なくとも1種類の液体は、粒子を含み、
     前記攪拌におけるストークス数は2.7×10―5以上であり、かつ、前記粒子の自由落下の終端速度と前記移送配管の回転方向の内壁面速度の比は-0.01以上かつ0.52以下である、請求項13に記載の攪拌移送装置。
PCT/JP2023/039093 2022-11-09 2023-10-30 攪拌移送方法および攪拌移送装置 WO2024101200A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022179637 2022-11-09
JP2022-179637 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024101200A1 true WO2024101200A1 (ja) 2024-05-16

Family

ID=91032834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039093 WO2024101200A1 (ja) 2022-11-09 2023-10-30 攪拌移送方法および攪拌移送装置

Country Status (1)

Country Link
WO (1) WO2024101200A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150031066A1 (en) * 2013-07-26 2015-01-29 Union Biometrica, Inc. Systems, methods, and apparatus for sample dispersion
KR20220007235A (ko) * 2020-07-10 2022-01-18 이진필 비스크루 비프로펠러 방식의 배관내 고속 혼합장치
JP2022040084A (ja) * 2020-08-28 2022-03-10 国立大学法人大阪大学 攪拌方法、攪拌装置、および攪拌容器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150031066A1 (en) * 2013-07-26 2015-01-29 Union Biometrica, Inc. Systems, methods, and apparatus for sample dispersion
KR20220007235A (ko) * 2020-07-10 2022-01-18 이진필 비스크루 비프로펠러 방식의 배관내 고속 혼합장치
JP2022040084A (ja) * 2020-08-28 2022-03-10 国立大学法人大阪大学 攪拌方法、攪拌装置、および攪拌容器

Similar Documents

Publication Publication Date Title
WO2017002905A1 (ja) 撹拌装置
CN102834169A (zh) 循环式分散***及其方法
US9724654B2 (en) Agitating bar and agitator comprising the same
JP4805319B2 (ja) 撹拌装置及び撹拌槽
AU2003230911A1 (en) Mixer
JP2011161401A (ja) 撹拌装置
WO2024101200A1 (ja) 攪拌移送方法および攪拌移送装置
Carissimi et al. Characterization of the high kinetic energy dissipation of the Flocs Generator Reactor (FGR)
JP2023073454A (ja) 連続攪拌装置
WO2006033276A2 (ja) 撹拌機
JP2005131578A (ja) 撹拌混合装置
CN111530330B (zh) 一种高粘度纳米粉体浆料混合装置
JPH0975699A (ja) 撹拌装置
JP2000005585A (ja) 撹拌機及び撹拌装置
CN107636140A (zh) 用于生产剪切稀化介质的发酵罐
JP5597315B1 (ja) 攪拌装置
JP2022040084A (ja) 攪拌方法、攪拌装置、および攪拌容器
JP2020535013A (ja) フローシステムのための改善された混合器
KR20190025590A (ko) 입자 생성용 용기 및 입자 생성 방법
JPH0871395A (ja) 横型2軸を備えた高粘度液連続処理装置の使用方法
JPH03217222A (ja) 撹拌羽根
JP4909201B2 (ja) 攪拌装置
JPS6271521A (ja) 低速撹拌方法及びその装置
Frankiewicz et al. Effect of blade shape on unsteady mixing of gas-liquid systems
CN220573210U (zh) 净液混合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888548

Country of ref document: EP

Kind code of ref document: A1